Merge tag 'efi-urgent' into x86/urgent
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 int ret;
38
39 ret = trace_seq_printf(s, "# compressed entry header\n");
40 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
43 ret = trace_seq_printf(s, "\n");
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return ret;
52 }
53
54 /*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
122 /*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140 /*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
172 * permanently.
173 */
174 void tracing_off_permanent(void)
175 {
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
191
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 unsigned length;
221
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257 }
258
259 /*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274 }
275
276 /**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
285 */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315 }
316
317 /**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
338
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
343 };
344
345 /*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
360 };
361
362 /*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 local_set(&bpage->commit, 0);
380 }
381
382 /**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
388 size_t ring_buffer_page_len(void *page)
389 {
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
402 }
403
404 /*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407 static inline int test_time_stamp(u64 delta)
408 {
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
434
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
446
447 return ret;
448 }
449
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454 };
455
456 /*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
490
491 struct rb_irq_work irq_work;
492 };
493
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
500
501 struct lock_class_key *reader_lock_key;
502
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
511
512 struct rb_irq_work irq_work;
513 };
514
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
522 };
523
524 /*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 cpu_buffer = buffer->buffers[cpu];
561 work = &cpu_buffer->irq_work;
562 }
563
564
565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566
567 /*
568 * The events can happen in critical sections where
569 * checking a work queue can cause deadlocks.
570 * After adding a task to the queue, this flag is set
571 * only to notify events to try to wake up the queue
572 * using irq_work.
573 *
574 * We don't clear it even if the buffer is no longer
575 * empty. The flag only causes the next event to run
576 * irq_work to do the work queue wake up. The worse
577 * that can happen if we race with !trace_empty() is that
578 * an event will cause an irq_work to try to wake up
579 * an empty queue.
580 *
581 * There's no reason to protect this flag either, as
582 * the work queue and irq_work logic will do the necessary
583 * synchronization for the wake ups. The only thing
584 * that is necessary is that the wake up happens after
585 * a task has been queued. It's OK for spurious wake ups.
586 */
587 work->waiters_pending = true;
588
589 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 schedule();
592
593 finish_wait(&work->waiters, &wait);
594 }
595
596 /**
597 * ring_buffer_poll_wait - poll on buffer input
598 * @buffer: buffer to wait on
599 * @cpu: the cpu buffer to wait on
600 * @filp: the file descriptor
601 * @poll_table: The poll descriptor
602 *
603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604 * as data is added to any of the @buffer's cpu buffers. Otherwise
605 * it will wait for data to be added to a specific cpu buffer.
606 *
607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608 * zero otherwise.
609 */
610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 struct file *filp, poll_table *poll_table)
612 {
613 struct ring_buffer_per_cpu *cpu_buffer;
614 struct rb_irq_work *work;
615
616 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 return POLLIN | POLLRDNORM;
619
620 if (cpu == RING_BUFFER_ALL_CPUS)
621 work = &buffer->irq_work;
622 else {
623 if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 return -EINVAL;
625
626 cpu_buffer = buffer->buffers[cpu];
627 work = &cpu_buffer->irq_work;
628 }
629
630 work->waiters_pending = true;
631 poll_wait(filp, &work->waiters, poll_table);
632
633 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 return POLLIN | POLLRDNORM;
636 return 0;
637 }
638
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond) \
641 ({ \
642 int _____ret = unlikely(cond); \
643 if (_____ret) { \
644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 struct ring_buffer_per_cpu *__b = \
646 (void *)b; \
647 atomic_inc(&__b->buffer->record_disabled); \
648 } else \
649 atomic_inc(&b->record_disabled); \
650 WARN_ON(1); \
651 } \
652 _____ret; \
653 })
654
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
657
658 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659 {
660 /* shift to debug/test normalization and TIME_EXTENTS */
661 return buffer->clock() << DEBUG_SHIFT;
662 }
663
664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665 {
666 u64 time;
667
668 preempt_disable_notrace();
669 time = rb_time_stamp(buffer);
670 preempt_enable_no_resched_notrace();
671
672 return time;
673 }
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675
676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 int cpu, u64 *ts)
678 {
679 /* Just stupid testing the normalize function and deltas */
680 *ts >>= DEBUG_SHIFT;
681 }
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683
684 /*
685 * Making the ring buffer lockless makes things tricky.
686 * Although writes only happen on the CPU that they are on,
687 * and they only need to worry about interrupts. Reads can
688 * happen on any CPU.
689 *
690 * The reader page is always off the ring buffer, but when the
691 * reader finishes with a page, it needs to swap its page with
692 * a new one from the buffer. The reader needs to take from
693 * the head (writes go to the tail). But if a writer is in overwrite
694 * mode and wraps, it must push the head page forward.
695 *
696 * Here lies the problem.
697 *
698 * The reader must be careful to replace only the head page, and
699 * not another one. As described at the top of the file in the
700 * ASCII art, the reader sets its old page to point to the next
701 * page after head. It then sets the page after head to point to
702 * the old reader page. But if the writer moves the head page
703 * during this operation, the reader could end up with the tail.
704 *
705 * We use cmpxchg to help prevent this race. We also do something
706 * special with the page before head. We set the LSB to 1.
707 *
708 * When the writer must push the page forward, it will clear the
709 * bit that points to the head page, move the head, and then set
710 * the bit that points to the new head page.
711 *
712 * We also don't want an interrupt coming in and moving the head
713 * page on another writer. Thus we use the second LSB to catch
714 * that too. Thus:
715 *
716 * head->list->prev->next bit 1 bit 0
717 * ------- -------
718 * Normal page 0 0
719 * Points to head page 0 1
720 * New head page 1 0
721 *
722 * Note we can not trust the prev pointer of the head page, because:
723 *
724 * +----+ +-----+ +-----+
725 * | |------>| T |---X--->| N |
726 * | |<------| | | |
727 * +----+ +-----+ +-----+
728 * ^ ^ |
729 * | +-----+ | |
730 * +----------| R |----------+ |
731 * | |<-----------+
732 * +-----+
733 *
734 * Key: ---X--> HEAD flag set in pointer
735 * T Tail page
736 * R Reader page
737 * N Next page
738 *
739 * (see __rb_reserve_next() to see where this happens)
740 *
741 * What the above shows is that the reader just swapped out
742 * the reader page with a page in the buffer, but before it
743 * could make the new header point back to the new page added
744 * it was preempted by a writer. The writer moved forward onto
745 * the new page added by the reader and is about to move forward
746 * again.
747 *
748 * You can see, it is legitimate for the previous pointer of
749 * the head (or any page) not to point back to itself. But only
750 * temporarially.
751 */
752
753 #define RB_PAGE_NORMAL 0UL
754 #define RB_PAGE_HEAD 1UL
755 #define RB_PAGE_UPDATE 2UL
756
757
758 #define RB_FLAG_MASK 3UL
759
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED 4UL
762
763 /*
764 * rb_list_head - remove any bit
765 */
766 static struct list_head *rb_list_head(struct list_head *list)
767 {
768 unsigned long val = (unsigned long)list;
769
770 return (struct list_head *)(val & ~RB_FLAG_MASK);
771 }
772
773 /*
774 * rb_is_head_page - test if the given page is the head page
775 *
776 * Because the reader may move the head_page pointer, we can
777 * not trust what the head page is (it may be pointing to
778 * the reader page). But if the next page is a header page,
779 * its flags will be non zero.
780 */
781 static inline int
782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 struct buffer_page *page, struct list_head *list)
784 {
785 unsigned long val;
786
787 val = (unsigned long)list->next;
788
789 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 return RB_PAGE_MOVED;
791
792 return val & RB_FLAG_MASK;
793 }
794
795 /*
796 * rb_is_reader_page
797 *
798 * The unique thing about the reader page, is that, if the
799 * writer is ever on it, the previous pointer never points
800 * back to the reader page.
801 */
802 static int rb_is_reader_page(struct buffer_page *page)
803 {
804 struct list_head *list = page->list.prev;
805
806 return rb_list_head(list->next) != &page->list;
807 }
808
809 /*
810 * rb_set_list_to_head - set a list_head to be pointing to head.
811 */
812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 struct list_head *list)
814 {
815 unsigned long *ptr;
816
817 ptr = (unsigned long *)&list->next;
818 *ptr |= RB_PAGE_HEAD;
819 *ptr &= ~RB_PAGE_UPDATE;
820 }
821
822 /*
823 * rb_head_page_activate - sets up head page
824 */
825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826 {
827 struct buffer_page *head;
828
829 head = cpu_buffer->head_page;
830 if (!head)
831 return;
832
833 /*
834 * Set the previous list pointer to have the HEAD flag.
835 */
836 rb_set_list_to_head(cpu_buffer, head->list.prev);
837 }
838
839 static void rb_list_head_clear(struct list_head *list)
840 {
841 unsigned long *ptr = (unsigned long *)&list->next;
842
843 *ptr &= ~RB_FLAG_MASK;
844 }
845
846 /*
847 * rb_head_page_dactivate - clears head page ptr (for free list)
848 */
849 static void
850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851 {
852 struct list_head *hd;
853
854 /* Go through the whole list and clear any pointers found. */
855 rb_list_head_clear(cpu_buffer->pages);
856
857 list_for_each(hd, cpu_buffer->pages)
858 rb_list_head_clear(hd);
859 }
860
861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 struct buffer_page *head,
863 struct buffer_page *prev,
864 int old_flag, int new_flag)
865 {
866 struct list_head *list;
867 unsigned long val = (unsigned long)&head->list;
868 unsigned long ret;
869
870 list = &prev->list;
871
872 val &= ~RB_FLAG_MASK;
873
874 ret = cmpxchg((unsigned long *)&list->next,
875 val | old_flag, val | new_flag);
876
877 /* check if the reader took the page */
878 if ((ret & ~RB_FLAG_MASK) != val)
879 return RB_PAGE_MOVED;
880
881 return ret & RB_FLAG_MASK;
882 }
883
884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 struct buffer_page *head,
886 struct buffer_page *prev,
887 int old_flag)
888 {
889 return rb_head_page_set(cpu_buffer, head, prev,
890 old_flag, RB_PAGE_UPDATE);
891 }
892
893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 struct buffer_page *head,
895 struct buffer_page *prev,
896 int old_flag)
897 {
898 return rb_head_page_set(cpu_buffer, head, prev,
899 old_flag, RB_PAGE_HEAD);
900 }
901
902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 struct buffer_page *head,
904 struct buffer_page *prev,
905 int old_flag)
906 {
907 return rb_head_page_set(cpu_buffer, head, prev,
908 old_flag, RB_PAGE_NORMAL);
909 }
910
911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 struct buffer_page **bpage)
913 {
914 struct list_head *p = rb_list_head((*bpage)->list.next);
915
916 *bpage = list_entry(p, struct buffer_page, list);
917 }
918
919 static struct buffer_page *
920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921 {
922 struct buffer_page *head;
923 struct buffer_page *page;
924 struct list_head *list;
925 int i;
926
927 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 return NULL;
929
930 /* sanity check */
931 list = cpu_buffer->pages;
932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 return NULL;
934
935 page = head = cpu_buffer->head_page;
936 /*
937 * It is possible that the writer moves the header behind
938 * where we started, and we miss in one loop.
939 * A second loop should grab the header, but we'll do
940 * three loops just because I'm paranoid.
941 */
942 for (i = 0; i < 3; i++) {
943 do {
944 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 cpu_buffer->head_page = page;
946 return page;
947 }
948 rb_inc_page(cpu_buffer, &page);
949 } while (page != head);
950 }
951
952 RB_WARN_ON(cpu_buffer, 1);
953
954 return NULL;
955 }
956
957 static int rb_head_page_replace(struct buffer_page *old,
958 struct buffer_page *new)
959 {
960 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 unsigned long val;
962 unsigned long ret;
963
964 val = *ptr & ~RB_FLAG_MASK;
965 val |= RB_PAGE_HEAD;
966
967 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968
969 return ret == val;
970 }
971
972 /*
973 * rb_tail_page_update - move the tail page forward
974 *
975 * Returns 1 if moved tail page, 0 if someone else did.
976 */
977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 struct buffer_page *tail_page,
979 struct buffer_page *next_page)
980 {
981 struct buffer_page *old_tail;
982 unsigned long old_entries;
983 unsigned long old_write;
984 int ret = 0;
985
986 /*
987 * The tail page now needs to be moved forward.
988 *
989 * We need to reset the tail page, but without messing
990 * with possible erasing of data brought in by interrupts
991 * that have moved the tail page and are currently on it.
992 *
993 * We add a counter to the write field to denote this.
994 */
995 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997
998 /*
999 * Just make sure we have seen our old_write and synchronize
1000 * with any interrupts that come in.
1001 */
1002 barrier();
1003
1004 /*
1005 * If the tail page is still the same as what we think
1006 * it is, then it is up to us to update the tail
1007 * pointer.
1008 */
1009 if (tail_page == cpu_buffer->tail_page) {
1010 /* Zero the write counter */
1011 unsigned long val = old_write & ~RB_WRITE_MASK;
1012 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013
1014 /*
1015 * This will only succeed if an interrupt did
1016 * not come in and change it. In which case, we
1017 * do not want to modify it.
1018 *
1019 * We add (void) to let the compiler know that we do not care
1020 * about the return value of these functions. We use the
1021 * cmpxchg to only update if an interrupt did not already
1022 * do it for us. If the cmpxchg fails, we don't care.
1023 */
1024 (void)local_cmpxchg(&next_page->write, old_write, val);
1025 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026
1027 /*
1028 * No need to worry about races with clearing out the commit.
1029 * it only can increment when a commit takes place. But that
1030 * only happens in the outer most nested commit.
1031 */
1032 local_set(&next_page->page->commit, 0);
1033
1034 old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 tail_page, next_page);
1036
1037 if (old_tail == tail_page)
1038 ret = 1;
1039 }
1040
1041 return ret;
1042 }
1043
1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 struct buffer_page *bpage)
1046 {
1047 unsigned long val = (unsigned long)bpage;
1048
1049 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 return 1;
1051
1052 return 0;
1053 }
1054
1055 /**
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1057 */
1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 struct list_head *list)
1060 {
1061 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 return 1;
1063 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 return 1;
1065 return 0;
1066 }
1067
1068 /**
1069 * check_pages - integrity check of buffer pages
1070 * @cpu_buffer: CPU buffer with pages to test
1071 *
1072 * As a safety measure we check to make sure the data pages have not
1073 * been corrupted.
1074 */
1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077 struct list_head *head = cpu_buffer->pages;
1078 struct buffer_page *bpage, *tmp;
1079
1080 /* Reset the head page if it exists */
1081 if (cpu_buffer->head_page)
1082 rb_set_head_page(cpu_buffer);
1083
1084 rb_head_page_deactivate(cpu_buffer);
1085
1086 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 return -1;
1088 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 return -1;
1090
1091 if (rb_check_list(cpu_buffer, head))
1092 return -1;
1093
1094 list_for_each_entry_safe(bpage, tmp, head, list) {
1095 if (RB_WARN_ON(cpu_buffer,
1096 bpage->list.next->prev != &bpage->list))
1097 return -1;
1098 if (RB_WARN_ON(cpu_buffer,
1099 bpage->list.prev->next != &bpage->list))
1100 return -1;
1101 if (rb_check_list(cpu_buffer, &bpage->list))
1102 return -1;
1103 }
1104
1105 rb_head_page_activate(cpu_buffer);
1106
1107 return 0;
1108 }
1109
1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111 {
1112 int i;
1113 struct buffer_page *bpage, *tmp;
1114
1115 for (i = 0; i < nr_pages; i++) {
1116 struct page *page;
1117 /*
1118 * __GFP_NORETRY flag makes sure that the allocation fails
1119 * gracefully without invoking oom-killer and the system is
1120 * not destabilized.
1121 */
1122 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123 GFP_KERNEL | __GFP_NORETRY,
1124 cpu_to_node(cpu));
1125 if (!bpage)
1126 goto free_pages;
1127
1128 list_add(&bpage->list, pages);
1129
1130 page = alloc_pages_node(cpu_to_node(cpu),
1131 GFP_KERNEL | __GFP_NORETRY, 0);
1132 if (!page)
1133 goto free_pages;
1134 bpage->page = page_address(page);
1135 rb_init_page(bpage->page);
1136 }
1137
1138 return 0;
1139
1140 free_pages:
1141 list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 list_del_init(&bpage->list);
1143 free_buffer_page(bpage);
1144 }
1145
1146 return -ENOMEM;
1147 }
1148
1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 unsigned nr_pages)
1151 {
1152 LIST_HEAD(pages);
1153
1154 WARN_ON(!nr_pages);
1155
1156 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 return -ENOMEM;
1158
1159 /*
1160 * The ring buffer page list is a circular list that does not
1161 * start and end with a list head. All page list items point to
1162 * other pages.
1163 */
1164 cpu_buffer->pages = pages.next;
1165 list_del(&pages);
1166
1167 cpu_buffer->nr_pages = nr_pages;
1168
1169 rb_check_pages(cpu_buffer);
1170
1171 return 0;
1172 }
1173
1174 static struct ring_buffer_per_cpu *
1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176 {
1177 struct ring_buffer_per_cpu *cpu_buffer;
1178 struct buffer_page *bpage;
1179 struct page *page;
1180 int ret;
1181
1182 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 GFP_KERNEL, cpu_to_node(cpu));
1184 if (!cpu_buffer)
1185 return NULL;
1186
1187 cpu_buffer->cpu = cpu;
1188 cpu_buffer->buffer = buffer;
1189 raw_spin_lock_init(&cpu_buffer->reader_lock);
1190 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193 init_completion(&cpu_buffer->update_done);
1194 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196
1197 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198 GFP_KERNEL, cpu_to_node(cpu));
1199 if (!bpage)
1200 goto fail_free_buffer;
1201
1202 rb_check_bpage(cpu_buffer, bpage);
1203
1204 cpu_buffer->reader_page = bpage;
1205 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 if (!page)
1207 goto fail_free_reader;
1208 bpage->page = page_address(page);
1209 rb_init_page(bpage->page);
1210
1211 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213
1214 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215 if (ret < 0)
1216 goto fail_free_reader;
1217
1218 cpu_buffer->head_page
1219 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1220 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221
1222 rb_head_page_activate(cpu_buffer);
1223
1224 return cpu_buffer;
1225
1226 fail_free_reader:
1227 free_buffer_page(cpu_buffer->reader_page);
1228
1229 fail_free_buffer:
1230 kfree(cpu_buffer);
1231 return NULL;
1232 }
1233
1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235 {
1236 struct list_head *head = cpu_buffer->pages;
1237 struct buffer_page *bpage, *tmp;
1238
1239 free_buffer_page(cpu_buffer->reader_page);
1240
1241 rb_head_page_deactivate(cpu_buffer);
1242
1243 if (head) {
1244 list_for_each_entry_safe(bpage, tmp, head, list) {
1245 list_del_init(&bpage->list);
1246 free_buffer_page(bpage);
1247 }
1248 bpage = list_entry(head, struct buffer_page, list);
1249 free_buffer_page(bpage);
1250 }
1251
1252 kfree(cpu_buffer);
1253 }
1254
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block *self,
1257 unsigned long action, void *hcpu);
1258 #endif
1259
1260 /**
1261 * ring_buffer_alloc - allocate a new ring_buffer
1262 * @size: the size in bytes per cpu that is needed.
1263 * @flags: attributes to set for the ring buffer.
1264 *
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1269 */
1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 struct lock_class_key *key)
1272 {
1273 struct ring_buffer *buffer;
1274 int bsize;
1275 int cpu, nr_pages;
1276
1277 /* keep it in its own cache line */
1278 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 GFP_KERNEL);
1280 if (!buffer)
1281 return NULL;
1282
1283 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 goto fail_free_buffer;
1285
1286 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287 buffer->flags = flags;
1288 buffer->clock = trace_clock_local;
1289 buffer->reader_lock_key = key;
1290
1291 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292 init_waitqueue_head(&buffer->irq_work.waiters);
1293
1294 /* need at least two pages */
1295 if (nr_pages < 2)
1296 nr_pages = 2;
1297
1298 /*
1299 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 * in early initcall, it will not be notified of secondary cpus.
1301 * In that off case, we need to allocate for all possible cpus.
1302 */
1303 #ifdef CONFIG_HOTPLUG_CPU
1304 get_online_cpus();
1305 cpumask_copy(buffer->cpumask, cpu_online_mask);
1306 #else
1307 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308 #endif
1309 buffer->cpus = nr_cpu_ids;
1310
1311 bsize = sizeof(void *) * nr_cpu_ids;
1312 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 GFP_KERNEL);
1314 if (!buffer->buffers)
1315 goto fail_free_cpumask;
1316
1317 for_each_buffer_cpu(buffer, cpu) {
1318 buffer->buffers[cpu] =
1319 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320 if (!buffer->buffers[cpu])
1321 goto fail_free_buffers;
1322 }
1323
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 buffer->cpu_notify.priority = 0;
1327 register_cpu_notifier(&buffer->cpu_notify);
1328 #endif
1329
1330 put_online_cpus();
1331 mutex_init(&buffer->mutex);
1332
1333 return buffer;
1334
1335 fail_free_buffers:
1336 for_each_buffer_cpu(buffer, cpu) {
1337 if (buffer->buffers[cpu])
1338 rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 }
1340 kfree(buffer->buffers);
1341
1342 fail_free_cpumask:
1343 free_cpumask_var(buffer->cpumask);
1344 put_online_cpus();
1345
1346 fail_free_buffer:
1347 kfree(buffer);
1348 return NULL;
1349 }
1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1351
1352 /**
1353 * ring_buffer_free - free a ring buffer.
1354 * @buffer: the buffer to free.
1355 */
1356 void
1357 ring_buffer_free(struct ring_buffer *buffer)
1358 {
1359 int cpu;
1360
1361 get_online_cpus();
1362
1363 #ifdef CONFIG_HOTPLUG_CPU
1364 unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366
1367 for_each_buffer_cpu(buffer, cpu)
1368 rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
1370 put_online_cpus();
1371
1372 kfree(buffer->buffers);
1373 free_cpumask_var(buffer->cpumask);
1374
1375 kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 u64 (*clock)(void))
1381 {
1382 buffer->clock = clock;
1383 }
1384
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389 return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394 return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399 {
1400 struct list_head *tail_page, *to_remove, *next_page;
1401 struct buffer_page *to_remove_page, *tmp_iter_page;
1402 struct buffer_page *last_page, *first_page;
1403 unsigned int nr_removed;
1404 unsigned long head_bit;
1405 int page_entries;
1406
1407 head_bit = 0;
1408
1409 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410 atomic_inc(&cpu_buffer->record_disabled);
1411 /*
1412 * We don't race with the readers since we have acquired the reader
1413 * lock. We also don't race with writers after disabling recording.
1414 * This makes it easy to figure out the first and the last page to be
1415 * removed from the list. We unlink all the pages in between including
1416 * the first and last pages. This is done in a busy loop so that we
1417 * lose the least number of traces.
1418 * The pages are freed after we restart recording and unlock readers.
1419 */
1420 tail_page = &cpu_buffer->tail_page->list;
1421
1422 /*
1423 * tail page might be on reader page, we remove the next page
1424 * from the ring buffer
1425 */
1426 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 tail_page = rb_list_head(tail_page->next);
1428 to_remove = tail_page;
1429
1430 /* start of pages to remove */
1431 first_page = list_entry(rb_list_head(to_remove->next),
1432 struct buffer_page, list);
1433
1434 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 to_remove = rb_list_head(to_remove)->next;
1436 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437 }
1438
1439 next_page = rb_list_head(to_remove)->next;
1440
1441 /*
1442 * Now we remove all pages between tail_page and next_page.
1443 * Make sure that we have head_bit value preserved for the
1444 * next page
1445 */
1446 tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 head_bit);
1448 next_page = rb_list_head(next_page);
1449 next_page->prev = tail_page;
1450
1451 /* make sure pages points to a valid page in the ring buffer */
1452 cpu_buffer->pages = next_page;
1453
1454 /* update head page */
1455 if (head_bit)
1456 cpu_buffer->head_page = list_entry(next_page,
1457 struct buffer_page, list);
1458
1459 /*
1460 * change read pointer to make sure any read iterators reset
1461 * themselves
1462 */
1463 cpu_buffer->read = 0;
1464
1465 /* pages are removed, resume tracing and then free the pages */
1466 atomic_dec(&cpu_buffer->record_disabled);
1467 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468
1469 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471 /* last buffer page to remove */
1472 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 list);
1474 tmp_iter_page = first_page;
1475
1476 do {
1477 to_remove_page = tmp_iter_page;
1478 rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480 /* update the counters */
1481 page_entries = rb_page_entries(to_remove_page);
1482 if (page_entries) {
1483 /*
1484 * If something was added to this page, it was full
1485 * since it is not the tail page. So we deduct the
1486 * bytes consumed in ring buffer from here.
1487 * Increment overrun to account for the lost events.
1488 */
1489 local_add(page_entries, &cpu_buffer->overrun);
1490 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 }
1492
1493 /*
1494 * We have already removed references to this list item, just
1495 * free up the buffer_page and its page
1496 */
1497 free_buffer_page(to_remove_page);
1498 nr_removed--;
1499
1500 } while (to_remove_page != last_page);
1501
1502 RB_WARN_ON(cpu_buffer, nr_removed);
1503
1504 return nr_removed == 0;
1505 }
1506
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 struct list_head *pages = &cpu_buffer->new_pages;
1511 int retries, success;
1512
1513 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514 /*
1515 * We are holding the reader lock, so the reader page won't be swapped
1516 * in the ring buffer. Now we are racing with the writer trying to
1517 * move head page and the tail page.
1518 * We are going to adapt the reader page update process where:
1519 * 1. We first splice the start and end of list of new pages between
1520 * the head page and its previous page.
1521 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 * start of new pages list.
1523 * 3. Finally, we update the head->prev to the end of new list.
1524 *
1525 * We will try this process 10 times, to make sure that we don't keep
1526 * spinning.
1527 */
1528 retries = 10;
1529 success = 0;
1530 while (retries--) {
1531 struct list_head *head_page, *prev_page, *r;
1532 struct list_head *last_page, *first_page;
1533 struct list_head *head_page_with_bit;
1534
1535 head_page = &rb_set_head_page(cpu_buffer)->list;
1536 if (!head_page)
1537 break;
1538 prev_page = head_page->prev;
1539
1540 first_page = pages->next;
1541 last_page = pages->prev;
1542
1543 head_page_with_bit = (struct list_head *)
1544 ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546 last_page->next = head_page_with_bit;
1547 first_page->prev = prev_page;
1548
1549 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551 if (r == head_page_with_bit) {
1552 /*
1553 * yay, we replaced the page pointer to our new list,
1554 * now, we just have to update to head page's prev
1555 * pointer to point to end of list
1556 */
1557 head_page->prev = last_page;
1558 success = 1;
1559 break;
1560 }
1561 }
1562
1563 if (success)
1564 INIT_LIST_HEAD(pages);
1565 /*
1566 * If we weren't successful in adding in new pages, warn and stop
1567 * tracing
1568 */
1569 RB_WARN_ON(cpu_buffer, !success);
1570 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571
1572 /* free pages if they weren't inserted */
1573 if (!success) {
1574 struct buffer_page *bpage, *tmp;
1575 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 list) {
1577 list_del_init(&bpage->list);
1578 free_buffer_page(bpage);
1579 }
1580 }
1581 return success;
1582 }
1583
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586 int success;
1587
1588 if (cpu_buffer->nr_pages_to_update > 0)
1589 success = rb_insert_pages(cpu_buffer);
1590 else
1591 success = rb_remove_pages(cpu_buffer,
1592 -cpu_buffer->nr_pages_to_update);
1593
1594 if (success)
1595 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597
1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 struct ring_buffer_per_cpu, update_pages_work);
1602 rb_update_pages(cpu_buffer);
1603 complete(&cpu_buffer->update_done);
1604 }
1605
1606 /**
1607 * ring_buffer_resize - resize the ring buffer
1608 * @buffer: the buffer to resize.
1609 * @size: the new size.
1610 *
1611 * Minimum size is 2 * BUF_PAGE_SIZE.
1612 *
1613 * Returns 0 on success and < 0 on failure.
1614 */
1615 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1616 int cpu_id)
1617 {
1618 struct ring_buffer_per_cpu *cpu_buffer;
1619 unsigned nr_pages;
1620 int cpu, err = 0;
1621
1622 /*
1623 * Always succeed at resizing a non-existent buffer:
1624 */
1625 if (!buffer)
1626 return size;
1627
1628 /* Make sure the requested buffer exists */
1629 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1630 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1631 return size;
1632
1633 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1634 size *= BUF_PAGE_SIZE;
1635
1636 /* we need a minimum of two pages */
1637 if (size < BUF_PAGE_SIZE * 2)
1638 size = BUF_PAGE_SIZE * 2;
1639
1640 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1641
1642 /*
1643 * Don't succeed if resizing is disabled, as a reader might be
1644 * manipulating the ring buffer and is expecting a sane state while
1645 * this is true.
1646 */
1647 if (atomic_read(&buffer->resize_disabled))
1648 return -EBUSY;
1649
1650 /* prevent another thread from changing buffer sizes */
1651 mutex_lock(&buffer->mutex);
1652
1653 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654 /* calculate the pages to update */
1655 for_each_buffer_cpu(buffer, cpu) {
1656 cpu_buffer = buffer->buffers[cpu];
1657
1658 cpu_buffer->nr_pages_to_update = nr_pages -
1659 cpu_buffer->nr_pages;
1660 /*
1661 * nothing more to do for removing pages or no update
1662 */
1663 if (cpu_buffer->nr_pages_to_update <= 0)
1664 continue;
1665 /*
1666 * to add pages, make sure all new pages can be
1667 * allocated without receiving ENOMEM
1668 */
1669 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1671 &cpu_buffer->new_pages, cpu)) {
1672 /* not enough memory for new pages */
1673 err = -ENOMEM;
1674 goto out_err;
1675 }
1676 }
1677
1678 get_online_cpus();
1679 /*
1680 * Fire off all the required work handlers
1681 * We can't schedule on offline CPUs, but it's not necessary
1682 * since we can change their buffer sizes without any race.
1683 */
1684 for_each_buffer_cpu(buffer, cpu) {
1685 cpu_buffer = buffer->buffers[cpu];
1686 if (!cpu_buffer->nr_pages_to_update)
1687 continue;
1688
1689 /* The update must run on the CPU that is being updated. */
1690 preempt_disable();
1691 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1692 rb_update_pages(cpu_buffer);
1693 cpu_buffer->nr_pages_to_update = 0;
1694 } else {
1695 /*
1696 * Can not disable preemption for schedule_work_on()
1697 * on PREEMPT_RT.
1698 */
1699 preempt_enable();
1700 schedule_work_on(cpu,
1701 &cpu_buffer->update_pages_work);
1702 preempt_disable();
1703 }
1704 preempt_enable();
1705 }
1706
1707 /* wait for all the updates to complete */
1708 for_each_buffer_cpu(buffer, cpu) {
1709 cpu_buffer = buffer->buffers[cpu];
1710 if (!cpu_buffer->nr_pages_to_update)
1711 continue;
1712
1713 if (cpu_online(cpu))
1714 wait_for_completion(&cpu_buffer->update_done);
1715 cpu_buffer->nr_pages_to_update = 0;
1716 }
1717
1718 put_online_cpus();
1719 } else {
1720 /* Make sure this CPU has been intitialized */
1721 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1722 goto out;
1723
1724 cpu_buffer = buffer->buffers[cpu_id];
1725
1726 if (nr_pages == cpu_buffer->nr_pages)
1727 goto out;
1728
1729 cpu_buffer->nr_pages_to_update = nr_pages -
1730 cpu_buffer->nr_pages;
1731
1732 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1733 if (cpu_buffer->nr_pages_to_update > 0 &&
1734 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1735 &cpu_buffer->new_pages, cpu_id)) {
1736 err = -ENOMEM;
1737 goto out_err;
1738 }
1739
1740 get_online_cpus();
1741
1742 preempt_disable();
1743 /* The update must run on the CPU that is being updated. */
1744 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1745 rb_update_pages(cpu_buffer);
1746 else {
1747 /*
1748 * Can not disable preemption for schedule_work_on()
1749 * on PREEMPT_RT.
1750 */
1751 preempt_enable();
1752 schedule_work_on(cpu_id,
1753 &cpu_buffer->update_pages_work);
1754 wait_for_completion(&cpu_buffer->update_done);
1755 preempt_disable();
1756 }
1757 preempt_enable();
1758
1759 cpu_buffer->nr_pages_to_update = 0;
1760 put_online_cpus();
1761 }
1762
1763 out:
1764 /*
1765 * The ring buffer resize can happen with the ring buffer
1766 * enabled, so that the update disturbs the tracing as little
1767 * as possible. But if the buffer is disabled, we do not need
1768 * to worry about that, and we can take the time to verify
1769 * that the buffer is not corrupt.
1770 */
1771 if (atomic_read(&buffer->record_disabled)) {
1772 atomic_inc(&buffer->record_disabled);
1773 /*
1774 * Even though the buffer was disabled, we must make sure
1775 * that it is truly disabled before calling rb_check_pages.
1776 * There could have been a race between checking
1777 * record_disable and incrementing it.
1778 */
1779 synchronize_sched();
1780 for_each_buffer_cpu(buffer, cpu) {
1781 cpu_buffer = buffer->buffers[cpu];
1782 rb_check_pages(cpu_buffer);
1783 }
1784 atomic_dec(&buffer->record_disabled);
1785 }
1786
1787 mutex_unlock(&buffer->mutex);
1788 return size;
1789
1790 out_err:
1791 for_each_buffer_cpu(buffer, cpu) {
1792 struct buffer_page *bpage, *tmp;
1793
1794 cpu_buffer = buffer->buffers[cpu];
1795 cpu_buffer->nr_pages_to_update = 0;
1796
1797 if (list_empty(&cpu_buffer->new_pages))
1798 continue;
1799
1800 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1801 list) {
1802 list_del_init(&bpage->list);
1803 free_buffer_page(bpage);
1804 }
1805 }
1806 mutex_unlock(&buffer->mutex);
1807 return err;
1808 }
1809 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1810
1811 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1812 {
1813 mutex_lock(&buffer->mutex);
1814 if (val)
1815 buffer->flags |= RB_FL_OVERWRITE;
1816 else
1817 buffer->flags &= ~RB_FL_OVERWRITE;
1818 mutex_unlock(&buffer->mutex);
1819 }
1820 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1821
1822 static inline void *
1823 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1824 {
1825 return bpage->data + index;
1826 }
1827
1828 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1829 {
1830 return bpage->page->data + index;
1831 }
1832
1833 static inline struct ring_buffer_event *
1834 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1835 {
1836 return __rb_page_index(cpu_buffer->reader_page,
1837 cpu_buffer->reader_page->read);
1838 }
1839
1840 static inline struct ring_buffer_event *
1841 rb_iter_head_event(struct ring_buffer_iter *iter)
1842 {
1843 return __rb_page_index(iter->head_page, iter->head);
1844 }
1845
1846 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1847 {
1848 return local_read(&bpage->page->commit);
1849 }
1850
1851 /* Size is determined by what has been committed */
1852 static inline unsigned rb_page_size(struct buffer_page *bpage)
1853 {
1854 return rb_page_commit(bpage);
1855 }
1856
1857 static inline unsigned
1858 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1859 {
1860 return rb_page_commit(cpu_buffer->commit_page);
1861 }
1862
1863 static inline unsigned
1864 rb_event_index(struct ring_buffer_event *event)
1865 {
1866 unsigned long addr = (unsigned long)event;
1867
1868 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1869 }
1870
1871 static inline int
1872 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1873 struct ring_buffer_event *event)
1874 {
1875 unsigned long addr = (unsigned long)event;
1876 unsigned long index;
1877
1878 index = rb_event_index(event);
1879 addr &= PAGE_MASK;
1880
1881 return cpu_buffer->commit_page->page == (void *)addr &&
1882 rb_commit_index(cpu_buffer) == index;
1883 }
1884
1885 static void
1886 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1887 {
1888 unsigned long max_count;
1889
1890 /*
1891 * We only race with interrupts and NMIs on this CPU.
1892 * If we own the commit event, then we can commit
1893 * all others that interrupted us, since the interruptions
1894 * are in stack format (they finish before they come
1895 * back to us). This allows us to do a simple loop to
1896 * assign the commit to the tail.
1897 */
1898 again:
1899 max_count = cpu_buffer->nr_pages * 100;
1900
1901 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1902 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1903 return;
1904 if (RB_WARN_ON(cpu_buffer,
1905 rb_is_reader_page(cpu_buffer->tail_page)))
1906 return;
1907 local_set(&cpu_buffer->commit_page->page->commit,
1908 rb_page_write(cpu_buffer->commit_page));
1909 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1910 cpu_buffer->write_stamp =
1911 cpu_buffer->commit_page->page->time_stamp;
1912 /* add barrier to keep gcc from optimizing too much */
1913 barrier();
1914 }
1915 while (rb_commit_index(cpu_buffer) !=
1916 rb_page_write(cpu_buffer->commit_page)) {
1917
1918 local_set(&cpu_buffer->commit_page->page->commit,
1919 rb_page_write(cpu_buffer->commit_page));
1920 RB_WARN_ON(cpu_buffer,
1921 local_read(&cpu_buffer->commit_page->page->commit) &
1922 ~RB_WRITE_MASK);
1923 barrier();
1924 }
1925
1926 /* again, keep gcc from optimizing */
1927 barrier();
1928
1929 /*
1930 * If an interrupt came in just after the first while loop
1931 * and pushed the tail page forward, we will be left with
1932 * a dangling commit that will never go forward.
1933 */
1934 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1935 goto again;
1936 }
1937
1938 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1939 {
1940 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1941 cpu_buffer->reader_page->read = 0;
1942 }
1943
1944 static void rb_inc_iter(struct ring_buffer_iter *iter)
1945 {
1946 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1947
1948 /*
1949 * The iterator could be on the reader page (it starts there).
1950 * But the head could have moved, since the reader was
1951 * found. Check for this case and assign the iterator
1952 * to the head page instead of next.
1953 */
1954 if (iter->head_page == cpu_buffer->reader_page)
1955 iter->head_page = rb_set_head_page(cpu_buffer);
1956 else
1957 rb_inc_page(cpu_buffer, &iter->head_page);
1958
1959 iter->read_stamp = iter->head_page->page->time_stamp;
1960 iter->head = 0;
1961 }
1962
1963 /* Slow path, do not inline */
1964 static noinline struct ring_buffer_event *
1965 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1966 {
1967 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1968
1969 /* Not the first event on the page? */
1970 if (rb_event_index(event)) {
1971 event->time_delta = delta & TS_MASK;
1972 event->array[0] = delta >> TS_SHIFT;
1973 } else {
1974 /* nope, just zero it */
1975 event->time_delta = 0;
1976 event->array[0] = 0;
1977 }
1978
1979 return skip_time_extend(event);
1980 }
1981
1982 /**
1983 * rb_update_event - update event type and data
1984 * @event: the even to update
1985 * @type: the type of event
1986 * @length: the size of the event field in the ring buffer
1987 *
1988 * Update the type and data fields of the event. The length
1989 * is the actual size that is written to the ring buffer,
1990 * and with this, we can determine what to place into the
1991 * data field.
1992 */
1993 static void
1994 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1995 struct ring_buffer_event *event, unsigned length,
1996 int add_timestamp, u64 delta)
1997 {
1998 /* Only a commit updates the timestamp */
1999 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2000 delta = 0;
2001
2002 /*
2003 * If we need to add a timestamp, then we
2004 * add it to the start of the resevered space.
2005 */
2006 if (unlikely(add_timestamp)) {
2007 event = rb_add_time_stamp(event, delta);
2008 length -= RB_LEN_TIME_EXTEND;
2009 delta = 0;
2010 }
2011
2012 event->time_delta = delta;
2013 length -= RB_EVNT_HDR_SIZE;
2014 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2015 event->type_len = 0;
2016 event->array[0] = length;
2017 } else
2018 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2019 }
2020
2021 /*
2022 * rb_handle_head_page - writer hit the head page
2023 *
2024 * Returns: +1 to retry page
2025 * 0 to continue
2026 * -1 on error
2027 */
2028 static int
2029 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2030 struct buffer_page *tail_page,
2031 struct buffer_page *next_page)
2032 {
2033 struct buffer_page *new_head;
2034 int entries;
2035 int type;
2036 int ret;
2037
2038 entries = rb_page_entries(next_page);
2039
2040 /*
2041 * The hard part is here. We need to move the head
2042 * forward, and protect against both readers on
2043 * other CPUs and writers coming in via interrupts.
2044 */
2045 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2046 RB_PAGE_HEAD);
2047
2048 /*
2049 * type can be one of four:
2050 * NORMAL - an interrupt already moved it for us
2051 * HEAD - we are the first to get here.
2052 * UPDATE - we are the interrupt interrupting
2053 * a current move.
2054 * MOVED - a reader on another CPU moved the next
2055 * pointer to its reader page. Give up
2056 * and try again.
2057 */
2058
2059 switch (type) {
2060 case RB_PAGE_HEAD:
2061 /*
2062 * We changed the head to UPDATE, thus
2063 * it is our responsibility to update
2064 * the counters.
2065 */
2066 local_add(entries, &cpu_buffer->overrun);
2067 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2068
2069 /*
2070 * The entries will be zeroed out when we move the
2071 * tail page.
2072 */
2073
2074 /* still more to do */
2075 break;
2076
2077 case RB_PAGE_UPDATE:
2078 /*
2079 * This is an interrupt that interrupt the
2080 * previous update. Still more to do.
2081 */
2082 break;
2083 case RB_PAGE_NORMAL:
2084 /*
2085 * An interrupt came in before the update
2086 * and processed this for us.
2087 * Nothing left to do.
2088 */
2089 return 1;
2090 case RB_PAGE_MOVED:
2091 /*
2092 * The reader is on another CPU and just did
2093 * a swap with our next_page.
2094 * Try again.
2095 */
2096 return 1;
2097 default:
2098 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2099 return -1;
2100 }
2101
2102 /*
2103 * Now that we are here, the old head pointer is
2104 * set to UPDATE. This will keep the reader from
2105 * swapping the head page with the reader page.
2106 * The reader (on another CPU) will spin till
2107 * we are finished.
2108 *
2109 * We just need to protect against interrupts
2110 * doing the job. We will set the next pointer
2111 * to HEAD. After that, we set the old pointer
2112 * to NORMAL, but only if it was HEAD before.
2113 * otherwise we are an interrupt, and only
2114 * want the outer most commit to reset it.
2115 */
2116 new_head = next_page;
2117 rb_inc_page(cpu_buffer, &new_head);
2118
2119 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2120 RB_PAGE_NORMAL);
2121
2122 /*
2123 * Valid returns are:
2124 * HEAD - an interrupt came in and already set it.
2125 * NORMAL - One of two things:
2126 * 1) We really set it.
2127 * 2) A bunch of interrupts came in and moved
2128 * the page forward again.
2129 */
2130 switch (ret) {
2131 case RB_PAGE_HEAD:
2132 case RB_PAGE_NORMAL:
2133 /* OK */
2134 break;
2135 default:
2136 RB_WARN_ON(cpu_buffer, 1);
2137 return -1;
2138 }
2139
2140 /*
2141 * It is possible that an interrupt came in,
2142 * set the head up, then more interrupts came in
2143 * and moved it again. When we get back here,
2144 * the page would have been set to NORMAL but we
2145 * just set it back to HEAD.
2146 *
2147 * How do you detect this? Well, if that happened
2148 * the tail page would have moved.
2149 */
2150 if (ret == RB_PAGE_NORMAL) {
2151 /*
2152 * If the tail had moved passed next, then we need
2153 * to reset the pointer.
2154 */
2155 if (cpu_buffer->tail_page != tail_page &&
2156 cpu_buffer->tail_page != next_page)
2157 rb_head_page_set_normal(cpu_buffer, new_head,
2158 next_page,
2159 RB_PAGE_HEAD);
2160 }
2161
2162 /*
2163 * If this was the outer most commit (the one that
2164 * changed the original pointer from HEAD to UPDATE),
2165 * then it is up to us to reset it to NORMAL.
2166 */
2167 if (type == RB_PAGE_HEAD) {
2168 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2169 tail_page,
2170 RB_PAGE_UPDATE);
2171 if (RB_WARN_ON(cpu_buffer,
2172 ret != RB_PAGE_UPDATE))
2173 return -1;
2174 }
2175
2176 return 0;
2177 }
2178
2179 static unsigned rb_calculate_event_length(unsigned length)
2180 {
2181 struct ring_buffer_event event; /* Used only for sizeof array */
2182
2183 /* zero length can cause confusions */
2184 if (!length)
2185 length = 1;
2186
2187 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2188 length += sizeof(event.array[0]);
2189
2190 length += RB_EVNT_HDR_SIZE;
2191 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2192
2193 return length;
2194 }
2195
2196 static inline void
2197 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2198 struct buffer_page *tail_page,
2199 unsigned long tail, unsigned long length)
2200 {
2201 struct ring_buffer_event *event;
2202
2203 /*
2204 * Only the event that crossed the page boundary
2205 * must fill the old tail_page with padding.
2206 */
2207 if (tail >= BUF_PAGE_SIZE) {
2208 /*
2209 * If the page was filled, then we still need
2210 * to update the real_end. Reset it to zero
2211 * and the reader will ignore it.
2212 */
2213 if (tail == BUF_PAGE_SIZE)
2214 tail_page->real_end = 0;
2215
2216 local_sub(length, &tail_page->write);
2217 return;
2218 }
2219
2220 event = __rb_page_index(tail_page, tail);
2221 kmemcheck_annotate_bitfield(event, bitfield);
2222
2223 /* account for padding bytes */
2224 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2225
2226 /*
2227 * Save the original length to the meta data.
2228 * This will be used by the reader to add lost event
2229 * counter.
2230 */
2231 tail_page->real_end = tail;
2232
2233 /*
2234 * If this event is bigger than the minimum size, then
2235 * we need to be careful that we don't subtract the
2236 * write counter enough to allow another writer to slip
2237 * in on this page.
2238 * We put in a discarded commit instead, to make sure
2239 * that this space is not used again.
2240 *
2241 * If we are less than the minimum size, we don't need to
2242 * worry about it.
2243 */
2244 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2245 /* No room for any events */
2246
2247 /* Mark the rest of the page with padding */
2248 rb_event_set_padding(event);
2249
2250 /* Set the write back to the previous setting */
2251 local_sub(length, &tail_page->write);
2252 return;
2253 }
2254
2255 /* Put in a discarded event */
2256 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2257 event->type_len = RINGBUF_TYPE_PADDING;
2258 /* time delta must be non zero */
2259 event->time_delta = 1;
2260
2261 /* Set write to end of buffer */
2262 length = (tail + length) - BUF_PAGE_SIZE;
2263 local_sub(length, &tail_page->write);
2264 }
2265
2266 /*
2267 * This is the slow path, force gcc not to inline it.
2268 */
2269 static noinline struct ring_buffer_event *
2270 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2271 unsigned long length, unsigned long tail,
2272 struct buffer_page *tail_page, u64 ts)
2273 {
2274 struct buffer_page *commit_page = cpu_buffer->commit_page;
2275 struct ring_buffer *buffer = cpu_buffer->buffer;
2276 struct buffer_page *next_page;
2277 int ret;
2278
2279 next_page = tail_page;
2280
2281 rb_inc_page(cpu_buffer, &next_page);
2282
2283 /*
2284 * If for some reason, we had an interrupt storm that made
2285 * it all the way around the buffer, bail, and warn
2286 * about it.
2287 */
2288 if (unlikely(next_page == commit_page)) {
2289 local_inc(&cpu_buffer->commit_overrun);
2290 goto out_reset;
2291 }
2292
2293 /*
2294 * This is where the fun begins!
2295 *
2296 * We are fighting against races between a reader that
2297 * could be on another CPU trying to swap its reader
2298 * page with the buffer head.
2299 *
2300 * We are also fighting against interrupts coming in and
2301 * moving the head or tail on us as well.
2302 *
2303 * If the next page is the head page then we have filled
2304 * the buffer, unless the commit page is still on the
2305 * reader page.
2306 */
2307 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2308
2309 /*
2310 * If the commit is not on the reader page, then
2311 * move the header page.
2312 */
2313 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2314 /*
2315 * If we are not in overwrite mode,
2316 * this is easy, just stop here.
2317 */
2318 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2319 local_inc(&cpu_buffer->dropped_events);
2320 goto out_reset;
2321 }
2322
2323 ret = rb_handle_head_page(cpu_buffer,
2324 tail_page,
2325 next_page);
2326 if (ret < 0)
2327 goto out_reset;
2328 if (ret)
2329 goto out_again;
2330 } else {
2331 /*
2332 * We need to be careful here too. The
2333 * commit page could still be on the reader
2334 * page. We could have a small buffer, and
2335 * have filled up the buffer with events
2336 * from interrupts and such, and wrapped.
2337 *
2338 * Note, if the tail page is also the on the
2339 * reader_page, we let it move out.
2340 */
2341 if (unlikely((cpu_buffer->commit_page !=
2342 cpu_buffer->tail_page) &&
2343 (cpu_buffer->commit_page ==
2344 cpu_buffer->reader_page))) {
2345 local_inc(&cpu_buffer->commit_overrun);
2346 goto out_reset;
2347 }
2348 }
2349 }
2350
2351 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2352 if (ret) {
2353 /*
2354 * Nested commits always have zero deltas, so
2355 * just reread the time stamp
2356 */
2357 ts = rb_time_stamp(buffer);
2358 next_page->page->time_stamp = ts;
2359 }
2360
2361 out_again:
2362
2363 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2364
2365 /* fail and let the caller try again */
2366 return ERR_PTR(-EAGAIN);
2367
2368 out_reset:
2369 /* reset write */
2370 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2371
2372 return NULL;
2373 }
2374
2375 static struct ring_buffer_event *
2376 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2377 unsigned long length, u64 ts,
2378 u64 delta, int add_timestamp)
2379 {
2380 struct buffer_page *tail_page;
2381 struct ring_buffer_event *event;
2382 unsigned long tail, write;
2383
2384 /*
2385 * If the time delta since the last event is too big to
2386 * hold in the time field of the event, then we append a
2387 * TIME EXTEND event ahead of the data event.
2388 */
2389 if (unlikely(add_timestamp))
2390 length += RB_LEN_TIME_EXTEND;
2391
2392 tail_page = cpu_buffer->tail_page;
2393 write = local_add_return(length, &tail_page->write);
2394
2395 /* set write to only the index of the write */
2396 write &= RB_WRITE_MASK;
2397 tail = write - length;
2398
2399 /* See if we shot pass the end of this buffer page */
2400 if (unlikely(write > BUF_PAGE_SIZE))
2401 return rb_move_tail(cpu_buffer, length, tail,
2402 tail_page, ts);
2403
2404 /* We reserved something on the buffer */
2405
2406 event = __rb_page_index(tail_page, tail);
2407 kmemcheck_annotate_bitfield(event, bitfield);
2408 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2409
2410 local_inc(&tail_page->entries);
2411
2412 /*
2413 * If this is the first commit on the page, then update
2414 * its timestamp.
2415 */
2416 if (!tail)
2417 tail_page->page->time_stamp = ts;
2418
2419 /* account for these added bytes */
2420 local_add(length, &cpu_buffer->entries_bytes);
2421
2422 return event;
2423 }
2424
2425 static inline int
2426 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2427 struct ring_buffer_event *event)
2428 {
2429 unsigned long new_index, old_index;
2430 struct buffer_page *bpage;
2431 unsigned long index;
2432 unsigned long addr;
2433
2434 new_index = rb_event_index(event);
2435 old_index = new_index + rb_event_ts_length(event);
2436 addr = (unsigned long)event;
2437 addr &= PAGE_MASK;
2438
2439 bpage = cpu_buffer->tail_page;
2440
2441 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2442 unsigned long write_mask =
2443 local_read(&bpage->write) & ~RB_WRITE_MASK;
2444 unsigned long event_length = rb_event_length(event);
2445 /*
2446 * This is on the tail page. It is possible that
2447 * a write could come in and move the tail page
2448 * and write to the next page. That is fine
2449 * because we just shorten what is on this page.
2450 */
2451 old_index += write_mask;
2452 new_index += write_mask;
2453 index = local_cmpxchg(&bpage->write, old_index, new_index);
2454 if (index == old_index) {
2455 /* update counters */
2456 local_sub(event_length, &cpu_buffer->entries_bytes);
2457 return 1;
2458 }
2459 }
2460
2461 /* could not discard */
2462 return 0;
2463 }
2464
2465 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2466 {
2467 local_inc(&cpu_buffer->committing);
2468 local_inc(&cpu_buffer->commits);
2469 }
2470
2471 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2472 {
2473 unsigned long commits;
2474
2475 if (RB_WARN_ON(cpu_buffer,
2476 !local_read(&cpu_buffer->committing)))
2477 return;
2478
2479 again:
2480 commits = local_read(&cpu_buffer->commits);
2481 /* synchronize with interrupts */
2482 barrier();
2483 if (local_read(&cpu_buffer->committing) == 1)
2484 rb_set_commit_to_write(cpu_buffer);
2485
2486 local_dec(&cpu_buffer->committing);
2487
2488 /* synchronize with interrupts */
2489 barrier();
2490
2491 /*
2492 * Need to account for interrupts coming in between the
2493 * updating of the commit page and the clearing of the
2494 * committing counter.
2495 */
2496 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2497 !local_read(&cpu_buffer->committing)) {
2498 local_inc(&cpu_buffer->committing);
2499 goto again;
2500 }
2501 }
2502
2503 static struct ring_buffer_event *
2504 rb_reserve_next_event(struct ring_buffer *buffer,
2505 struct ring_buffer_per_cpu *cpu_buffer,
2506 unsigned long length)
2507 {
2508 struct ring_buffer_event *event;
2509 u64 ts, delta;
2510 int nr_loops = 0;
2511 int add_timestamp;
2512 u64 diff;
2513
2514 rb_start_commit(cpu_buffer);
2515
2516 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2517 /*
2518 * Due to the ability to swap a cpu buffer from a buffer
2519 * it is possible it was swapped before we committed.
2520 * (committing stops a swap). We check for it here and
2521 * if it happened, we have to fail the write.
2522 */
2523 barrier();
2524 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2525 local_dec(&cpu_buffer->committing);
2526 local_dec(&cpu_buffer->commits);
2527 return NULL;
2528 }
2529 #endif
2530
2531 length = rb_calculate_event_length(length);
2532 again:
2533 add_timestamp = 0;
2534 delta = 0;
2535
2536 /*
2537 * We allow for interrupts to reenter here and do a trace.
2538 * If one does, it will cause this original code to loop
2539 * back here. Even with heavy interrupts happening, this
2540 * should only happen a few times in a row. If this happens
2541 * 1000 times in a row, there must be either an interrupt
2542 * storm or we have something buggy.
2543 * Bail!
2544 */
2545 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2546 goto out_fail;
2547
2548 ts = rb_time_stamp(cpu_buffer->buffer);
2549 diff = ts - cpu_buffer->write_stamp;
2550
2551 /* make sure this diff is calculated here */
2552 barrier();
2553
2554 /* Did the write stamp get updated already? */
2555 if (likely(ts >= cpu_buffer->write_stamp)) {
2556 delta = diff;
2557 if (unlikely(test_time_stamp(delta))) {
2558 int local_clock_stable = 1;
2559 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2560 local_clock_stable = sched_clock_stable;
2561 #endif
2562 WARN_ONCE(delta > (1ULL << 59),
2563 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2564 (unsigned long long)delta,
2565 (unsigned long long)ts,
2566 (unsigned long long)cpu_buffer->write_stamp,
2567 local_clock_stable ? "" :
2568 "If you just came from a suspend/resume,\n"
2569 "please switch to the trace global clock:\n"
2570 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2571 add_timestamp = 1;
2572 }
2573 }
2574
2575 event = __rb_reserve_next(cpu_buffer, length, ts,
2576 delta, add_timestamp);
2577 if (unlikely(PTR_ERR(event) == -EAGAIN))
2578 goto again;
2579
2580 if (!event)
2581 goto out_fail;
2582
2583 return event;
2584
2585 out_fail:
2586 rb_end_commit(cpu_buffer);
2587 return NULL;
2588 }
2589
2590 #ifdef CONFIG_TRACING
2591
2592 /*
2593 * The lock and unlock are done within a preempt disable section.
2594 * The current_context per_cpu variable can only be modified
2595 * by the current task between lock and unlock. But it can
2596 * be modified more than once via an interrupt. To pass this
2597 * information from the lock to the unlock without having to
2598 * access the 'in_interrupt()' functions again (which do show
2599 * a bit of overhead in something as critical as function tracing,
2600 * we use a bitmask trick.
2601 *
2602 * bit 0 = NMI context
2603 * bit 1 = IRQ context
2604 * bit 2 = SoftIRQ context
2605 * bit 3 = normal context.
2606 *
2607 * This works because this is the order of contexts that can
2608 * preempt other contexts. A SoftIRQ never preempts an IRQ
2609 * context.
2610 *
2611 * When the context is determined, the corresponding bit is
2612 * checked and set (if it was set, then a recursion of that context
2613 * happened).
2614 *
2615 * On unlock, we need to clear this bit. To do so, just subtract
2616 * 1 from the current_context and AND it to itself.
2617 *
2618 * (binary)
2619 * 101 - 1 = 100
2620 * 101 & 100 = 100 (clearing bit zero)
2621 *
2622 * 1010 - 1 = 1001
2623 * 1010 & 1001 = 1000 (clearing bit 1)
2624 *
2625 * The least significant bit can be cleared this way, and it
2626 * just so happens that it is the same bit corresponding to
2627 * the current context.
2628 */
2629 static DEFINE_PER_CPU(unsigned int, current_context);
2630
2631 static __always_inline int trace_recursive_lock(void)
2632 {
2633 unsigned int val = this_cpu_read(current_context);
2634 int bit;
2635
2636 if (in_interrupt()) {
2637 if (in_nmi())
2638 bit = 0;
2639 else if (in_irq())
2640 bit = 1;
2641 else
2642 bit = 2;
2643 } else
2644 bit = 3;
2645
2646 if (unlikely(val & (1 << bit)))
2647 return 1;
2648
2649 val |= (1 << bit);
2650 this_cpu_write(current_context, val);
2651
2652 return 0;
2653 }
2654
2655 static __always_inline void trace_recursive_unlock(void)
2656 {
2657 unsigned int val = this_cpu_read(current_context);
2658
2659 val--;
2660 val &= this_cpu_read(current_context);
2661 this_cpu_write(current_context, val);
2662 }
2663
2664 #else
2665
2666 #define trace_recursive_lock() (0)
2667 #define trace_recursive_unlock() do { } while (0)
2668
2669 #endif
2670
2671 /**
2672 * ring_buffer_lock_reserve - reserve a part of the buffer
2673 * @buffer: the ring buffer to reserve from
2674 * @length: the length of the data to reserve (excluding event header)
2675 *
2676 * Returns a reseverd event on the ring buffer to copy directly to.
2677 * The user of this interface will need to get the body to write into
2678 * and can use the ring_buffer_event_data() interface.
2679 *
2680 * The length is the length of the data needed, not the event length
2681 * which also includes the event header.
2682 *
2683 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2684 * If NULL is returned, then nothing has been allocated or locked.
2685 */
2686 struct ring_buffer_event *
2687 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2688 {
2689 struct ring_buffer_per_cpu *cpu_buffer;
2690 struct ring_buffer_event *event;
2691 int cpu;
2692
2693 if (ring_buffer_flags != RB_BUFFERS_ON)
2694 return NULL;
2695
2696 /* If we are tracing schedule, we don't want to recurse */
2697 preempt_disable_notrace();
2698
2699 if (atomic_read(&buffer->record_disabled))
2700 goto out_nocheck;
2701
2702 if (trace_recursive_lock())
2703 goto out_nocheck;
2704
2705 cpu = raw_smp_processor_id();
2706
2707 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2708 goto out;
2709
2710 cpu_buffer = buffer->buffers[cpu];
2711
2712 if (atomic_read(&cpu_buffer->record_disabled))
2713 goto out;
2714
2715 if (length > BUF_MAX_DATA_SIZE)
2716 goto out;
2717
2718 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2719 if (!event)
2720 goto out;
2721
2722 return event;
2723
2724 out:
2725 trace_recursive_unlock();
2726
2727 out_nocheck:
2728 preempt_enable_notrace();
2729 return NULL;
2730 }
2731 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2732
2733 static void
2734 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2735 struct ring_buffer_event *event)
2736 {
2737 u64 delta;
2738
2739 /*
2740 * The event first in the commit queue updates the
2741 * time stamp.
2742 */
2743 if (rb_event_is_commit(cpu_buffer, event)) {
2744 /*
2745 * A commit event that is first on a page
2746 * updates the write timestamp with the page stamp
2747 */
2748 if (!rb_event_index(event))
2749 cpu_buffer->write_stamp =
2750 cpu_buffer->commit_page->page->time_stamp;
2751 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2752 delta = event->array[0];
2753 delta <<= TS_SHIFT;
2754 delta += event->time_delta;
2755 cpu_buffer->write_stamp += delta;
2756 } else
2757 cpu_buffer->write_stamp += event->time_delta;
2758 }
2759 }
2760
2761 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2762 struct ring_buffer_event *event)
2763 {
2764 local_inc(&cpu_buffer->entries);
2765 rb_update_write_stamp(cpu_buffer, event);
2766 rb_end_commit(cpu_buffer);
2767 }
2768
2769 static __always_inline void
2770 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2771 {
2772 if (buffer->irq_work.waiters_pending) {
2773 buffer->irq_work.waiters_pending = false;
2774 /* irq_work_queue() supplies it's own memory barriers */
2775 irq_work_queue(&buffer->irq_work.work);
2776 }
2777
2778 if (cpu_buffer->irq_work.waiters_pending) {
2779 cpu_buffer->irq_work.waiters_pending = false;
2780 /* irq_work_queue() supplies it's own memory barriers */
2781 irq_work_queue(&cpu_buffer->irq_work.work);
2782 }
2783 }
2784
2785 /**
2786 * ring_buffer_unlock_commit - commit a reserved
2787 * @buffer: The buffer to commit to
2788 * @event: The event pointer to commit.
2789 *
2790 * This commits the data to the ring buffer, and releases any locks held.
2791 *
2792 * Must be paired with ring_buffer_lock_reserve.
2793 */
2794 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2795 struct ring_buffer_event *event)
2796 {
2797 struct ring_buffer_per_cpu *cpu_buffer;
2798 int cpu = raw_smp_processor_id();
2799
2800 cpu_buffer = buffer->buffers[cpu];
2801
2802 rb_commit(cpu_buffer, event);
2803
2804 rb_wakeups(buffer, cpu_buffer);
2805
2806 trace_recursive_unlock();
2807
2808 preempt_enable_notrace();
2809
2810 return 0;
2811 }
2812 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2813
2814 static inline void rb_event_discard(struct ring_buffer_event *event)
2815 {
2816 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2817 event = skip_time_extend(event);
2818
2819 /* array[0] holds the actual length for the discarded event */
2820 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2821 event->type_len = RINGBUF_TYPE_PADDING;
2822 /* time delta must be non zero */
2823 if (!event->time_delta)
2824 event->time_delta = 1;
2825 }
2826
2827 /*
2828 * Decrement the entries to the page that an event is on.
2829 * The event does not even need to exist, only the pointer
2830 * to the page it is on. This may only be called before the commit
2831 * takes place.
2832 */
2833 static inline void
2834 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2835 struct ring_buffer_event *event)
2836 {
2837 unsigned long addr = (unsigned long)event;
2838 struct buffer_page *bpage = cpu_buffer->commit_page;
2839 struct buffer_page *start;
2840
2841 addr &= PAGE_MASK;
2842
2843 /* Do the likely case first */
2844 if (likely(bpage->page == (void *)addr)) {
2845 local_dec(&bpage->entries);
2846 return;
2847 }
2848
2849 /*
2850 * Because the commit page may be on the reader page we
2851 * start with the next page and check the end loop there.
2852 */
2853 rb_inc_page(cpu_buffer, &bpage);
2854 start = bpage;
2855 do {
2856 if (bpage->page == (void *)addr) {
2857 local_dec(&bpage->entries);
2858 return;
2859 }
2860 rb_inc_page(cpu_buffer, &bpage);
2861 } while (bpage != start);
2862
2863 /* commit not part of this buffer?? */
2864 RB_WARN_ON(cpu_buffer, 1);
2865 }
2866
2867 /**
2868 * ring_buffer_commit_discard - discard an event that has not been committed
2869 * @buffer: the ring buffer
2870 * @event: non committed event to discard
2871 *
2872 * Sometimes an event that is in the ring buffer needs to be ignored.
2873 * This function lets the user discard an event in the ring buffer
2874 * and then that event will not be read later.
2875 *
2876 * This function only works if it is called before the the item has been
2877 * committed. It will try to free the event from the ring buffer
2878 * if another event has not been added behind it.
2879 *
2880 * If another event has been added behind it, it will set the event
2881 * up as discarded, and perform the commit.
2882 *
2883 * If this function is called, do not call ring_buffer_unlock_commit on
2884 * the event.
2885 */
2886 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2887 struct ring_buffer_event *event)
2888 {
2889 struct ring_buffer_per_cpu *cpu_buffer;
2890 int cpu;
2891
2892 /* The event is discarded regardless */
2893 rb_event_discard(event);
2894
2895 cpu = smp_processor_id();
2896 cpu_buffer = buffer->buffers[cpu];
2897
2898 /*
2899 * This must only be called if the event has not been
2900 * committed yet. Thus we can assume that preemption
2901 * is still disabled.
2902 */
2903 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2904
2905 rb_decrement_entry(cpu_buffer, event);
2906 if (rb_try_to_discard(cpu_buffer, event))
2907 goto out;
2908
2909 /*
2910 * The commit is still visible by the reader, so we
2911 * must still update the timestamp.
2912 */
2913 rb_update_write_stamp(cpu_buffer, event);
2914 out:
2915 rb_end_commit(cpu_buffer);
2916
2917 trace_recursive_unlock();
2918
2919 preempt_enable_notrace();
2920
2921 }
2922 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2923
2924 /**
2925 * ring_buffer_write - write data to the buffer without reserving
2926 * @buffer: The ring buffer to write to.
2927 * @length: The length of the data being written (excluding the event header)
2928 * @data: The data to write to the buffer.
2929 *
2930 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2931 * one function. If you already have the data to write to the buffer, it
2932 * may be easier to simply call this function.
2933 *
2934 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2935 * and not the length of the event which would hold the header.
2936 */
2937 int ring_buffer_write(struct ring_buffer *buffer,
2938 unsigned long length,
2939 void *data)
2940 {
2941 struct ring_buffer_per_cpu *cpu_buffer;
2942 struct ring_buffer_event *event;
2943 void *body;
2944 int ret = -EBUSY;
2945 int cpu;
2946
2947 if (ring_buffer_flags != RB_BUFFERS_ON)
2948 return -EBUSY;
2949
2950 preempt_disable_notrace();
2951
2952 if (atomic_read(&buffer->record_disabled))
2953 goto out;
2954
2955 cpu = raw_smp_processor_id();
2956
2957 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2958 goto out;
2959
2960 cpu_buffer = buffer->buffers[cpu];
2961
2962 if (atomic_read(&cpu_buffer->record_disabled))
2963 goto out;
2964
2965 if (length > BUF_MAX_DATA_SIZE)
2966 goto out;
2967
2968 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2969 if (!event)
2970 goto out;
2971
2972 body = rb_event_data(event);
2973
2974 memcpy(body, data, length);
2975
2976 rb_commit(cpu_buffer, event);
2977
2978 rb_wakeups(buffer, cpu_buffer);
2979
2980 ret = 0;
2981 out:
2982 preempt_enable_notrace();
2983
2984 return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(ring_buffer_write);
2987
2988 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2989 {
2990 struct buffer_page *reader = cpu_buffer->reader_page;
2991 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2992 struct buffer_page *commit = cpu_buffer->commit_page;
2993
2994 /* In case of error, head will be NULL */
2995 if (unlikely(!head))
2996 return 1;
2997
2998 return reader->read == rb_page_commit(reader) &&
2999 (commit == reader ||
3000 (commit == head &&
3001 head->read == rb_page_commit(commit)));
3002 }
3003
3004 /**
3005 * ring_buffer_record_disable - stop all writes into the buffer
3006 * @buffer: The ring buffer to stop writes to.
3007 *
3008 * This prevents all writes to the buffer. Any attempt to write
3009 * to the buffer after this will fail and return NULL.
3010 *
3011 * The caller should call synchronize_sched() after this.
3012 */
3013 void ring_buffer_record_disable(struct ring_buffer *buffer)
3014 {
3015 atomic_inc(&buffer->record_disabled);
3016 }
3017 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3018
3019 /**
3020 * ring_buffer_record_enable - enable writes to the buffer
3021 * @buffer: The ring buffer to enable writes
3022 *
3023 * Note, multiple disables will need the same number of enables
3024 * to truly enable the writing (much like preempt_disable).
3025 */
3026 void ring_buffer_record_enable(struct ring_buffer *buffer)
3027 {
3028 atomic_dec(&buffer->record_disabled);
3029 }
3030 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3031
3032 /**
3033 * ring_buffer_record_off - stop all writes into the buffer
3034 * @buffer: The ring buffer to stop writes to.
3035 *
3036 * This prevents all writes to the buffer. Any attempt to write
3037 * to the buffer after this will fail and return NULL.
3038 *
3039 * This is different than ring_buffer_record_disable() as
3040 * it works like an on/off switch, where as the disable() version
3041 * must be paired with a enable().
3042 */
3043 void ring_buffer_record_off(struct ring_buffer *buffer)
3044 {
3045 unsigned int rd;
3046 unsigned int new_rd;
3047
3048 do {
3049 rd = atomic_read(&buffer->record_disabled);
3050 new_rd = rd | RB_BUFFER_OFF;
3051 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3052 }
3053 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3054
3055 /**
3056 * ring_buffer_record_on - restart writes into the buffer
3057 * @buffer: The ring buffer to start writes to.
3058 *
3059 * This enables all writes to the buffer that was disabled by
3060 * ring_buffer_record_off().
3061 *
3062 * This is different than ring_buffer_record_enable() as
3063 * it works like an on/off switch, where as the enable() version
3064 * must be paired with a disable().
3065 */
3066 void ring_buffer_record_on(struct ring_buffer *buffer)
3067 {
3068 unsigned int rd;
3069 unsigned int new_rd;
3070
3071 do {
3072 rd = atomic_read(&buffer->record_disabled);
3073 new_rd = rd & ~RB_BUFFER_OFF;
3074 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3075 }
3076 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3077
3078 /**
3079 * ring_buffer_record_is_on - return true if the ring buffer can write
3080 * @buffer: The ring buffer to see if write is enabled
3081 *
3082 * Returns true if the ring buffer is in a state that it accepts writes.
3083 */
3084 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3085 {
3086 return !atomic_read(&buffer->record_disabled);
3087 }
3088
3089 /**
3090 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3091 * @buffer: The ring buffer to stop writes to.
3092 * @cpu: The CPU buffer to stop
3093 *
3094 * This prevents all writes to the buffer. Any attempt to write
3095 * to the buffer after this will fail and return NULL.
3096 *
3097 * The caller should call synchronize_sched() after this.
3098 */
3099 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3100 {
3101 struct ring_buffer_per_cpu *cpu_buffer;
3102
3103 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3104 return;
3105
3106 cpu_buffer = buffer->buffers[cpu];
3107 atomic_inc(&cpu_buffer->record_disabled);
3108 }
3109 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3110
3111 /**
3112 * ring_buffer_record_enable_cpu - enable writes to the buffer
3113 * @buffer: The ring buffer to enable writes
3114 * @cpu: The CPU to enable.
3115 *
3116 * Note, multiple disables will need the same number of enables
3117 * to truly enable the writing (much like preempt_disable).
3118 */
3119 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3120 {
3121 struct ring_buffer_per_cpu *cpu_buffer;
3122
3123 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3124 return;
3125
3126 cpu_buffer = buffer->buffers[cpu];
3127 atomic_dec(&cpu_buffer->record_disabled);
3128 }
3129 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3130
3131 /*
3132 * The total entries in the ring buffer is the running counter
3133 * of entries entered into the ring buffer, minus the sum of
3134 * the entries read from the ring buffer and the number of
3135 * entries that were overwritten.
3136 */
3137 static inline unsigned long
3138 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3139 {
3140 return local_read(&cpu_buffer->entries) -
3141 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3142 }
3143
3144 /**
3145 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3146 * @buffer: The ring buffer
3147 * @cpu: The per CPU buffer to read from.
3148 */
3149 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3150 {
3151 unsigned long flags;
3152 struct ring_buffer_per_cpu *cpu_buffer;
3153 struct buffer_page *bpage;
3154 u64 ret = 0;
3155
3156 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3157 return 0;
3158
3159 cpu_buffer = buffer->buffers[cpu];
3160 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3161 /*
3162 * if the tail is on reader_page, oldest time stamp is on the reader
3163 * page
3164 */
3165 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3166 bpage = cpu_buffer->reader_page;
3167 else
3168 bpage = rb_set_head_page(cpu_buffer);
3169 if (bpage)
3170 ret = bpage->page->time_stamp;
3171 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3172
3173 return ret;
3174 }
3175 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3176
3177 /**
3178 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3179 * @buffer: The ring buffer
3180 * @cpu: The per CPU buffer to read from.
3181 */
3182 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3183 {
3184 struct ring_buffer_per_cpu *cpu_buffer;
3185 unsigned long ret;
3186
3187 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3188 return 0;
3189
3190 cpu_buffer = buffer->buffers[cpu];
3191 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3192
3193 return ret;
3194 }
3195 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3196
3197 /**
3198 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3199 * @buffer: The ring buffer
3200 * @cpu: The per CPU buffer to get the entries from.
3201 */
3202 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3203 {
3204 struct ring_buffer_per_cpu *cpu_buffer;
3205
3206 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3207 return 0;
3208
3209 cpu_buffer = buffer->buffers[cpu];
3210
3211 return rb_num_of_entries(cpu_buffer);
3212 }
3213 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3214
3215 /**
3216 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3217 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3218 * @buffer: The ring buffer
3219 * @cpu: The per CPU buffer to get the number of overruns from
3220 */
3221 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3222 {
3223 struct ring_buffer_per_cpu *cpu_buffer;
3224 unsigned long ret;
3225
3226 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3227 return 0;
3228
3229 cpu_buffer = buffer->buffers[cpu];
3230 ret = local_read(&cpu_buffer->overrun);
3231
3232 return ret;
3233 }
3234 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3235
3236 /**
3237 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3238 * commits failing due to the buffer wrapping around while there are uncommitted
3239 * events, such as during an interrupt storm.
3240 * @buffer: The ring buffer
3241 * @cpu: The per CPU buffer to get the number of overruns from
3242 */
3243 unsigned long
3244 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3245 {
3246 struct ring_buffer_per_cpu *cpu_buffer;
3247 unsigned long ret;
3248
3249 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3250 return 0;
3251
3252 cpu_buffer = buffer->buffers[cpu];
3253 ret = local_read(&cpu_buffer->commit_overrun);
3254
3255 return ret;
3256 }
3257 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3258
3259 /**
3260 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3261 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3262 * @buffer: The ring buffer
3263 * @cpu: The per CPU buffer to get the number of overruns from
3264 */
3265 unsigned long
3266 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3267 {
3268 struct ring_buffer_per_cpu *cpu_buffer;
3269 unsigned long ret;
3270
3271 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3272 return 0;
3273
3274 cpu_buffer = buffer->buffers[cpu];
3275 ret = local_read(&cpu_buffer->dropped_events);
3276
3277 return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3280
3281 /**
3282 * ring_buffer_read_events_cpu - get the number of events successfully read
3283 * @buffer: The ring buffer
3284 * @cpu: The per CPU buffer to get the number of events read
3285 */
3286 unsigned long
3287 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3288 {
3289 struct ring_buffer_per_cpu *cpu_buffer;
3290
3291 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3292 return 0;
3293
3294 cpu_buffer = buffer->buffers[cpu];
3295 return cpu_buffer->read;
3296 }
3297 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3298
3299 /**
3300 * ring_buffer_entries - get the number of entries in a buffer
3301 * @buffer: The ring buffer
3302 *
3303 * Returns the total number of entries in the ring buffer
3304 * (all CPU entries)
3305 */
3306 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3307 {
3308 struct ring_buffer_per_cpu *cpu_buffer;
3309 unsigned long entries = 0;
3310 int cpu;
3311
3312 /* if you care about this being correct, lock the buffer */
3313 for_each_buffer_cpu(buffer, cpu) {
3314 cpu_buffer = buffer->buffers[cpu];
3315 entries += rb_num_of_entries(cpu_buffer);
3316 }
3317
3318 return entries;
3319 }
3320 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3321
3322 /**
3323 * ring_buffer_overruns - get the number of overruns in buffer
3324 * @buffer: The ring buffer
3325 *
3326 * Returns the total number of overruns in the ring buffer
3327 * (all CPU entries)
3328 */
3329 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3330 {
3331 struct ring_buffer_per_cpu *cpu_buffer;
3332 unsigned long overruns = 0;
3333 int cpu;
3334
3335 /* if you care about this being correct, lock the buffer */
3336 for_each_buffer_cpu(buffer, cpu) {
3337 cpu_buffer = buffer->buffers[cpu];
3338 overruns += local_read(&cpu_buffer->overrun);
3339 }
3340
3341 return overruns;
3342 }
3343 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3344
3345 static void rb_iter_reset(struct ring_buffer_iter *iter)
3346 {
3347 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3348
3349 /* Iterator usage is expected to have record disabled */
3350 if (list_empty(&cpu_buffer->reader_page->list)) {
3351 iter->head_page = rb_set_head_page(cpu_buffer);
3352 if (unlikely(!iter->head_page))
3353 return;
3354 iter->head = iter->head_page->read;
3355 } else {
3356 iter->head_page = cpu_buffer->reader_page;
3357 iter->head = cpu_buffer->reader_page->read;
3358 }
3359 if (iter->head)
3360 iter->read_stamp = cpu_buffer->read_stamp;
3361 else
3362 iter->read_stamp = iter->head_page->page->time_stamp;
3363 iter->cache_reader_page = cpu_buffer->reader_page;
3364 iter->cache_read = cpu_buffer->read;
3365 }
3366
3367 /**
3368 * ring_buffer_iter_reset - reset an iterator
3369 * @iter: The iterator to reset
3370 *
3371 * Resets the iterator, so that it will start from the beginning
3372 * again.
3373 */
3374 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3375 {
3376 struct ring_buffer_per_cpu *cpu_buffer;
3377 unsigned long flags;
3378
3379 if (!iter)
3380 return;
3381
3382 cpu_buffer = iter->cpu_buffer;
3383
3384 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3385 rb_iter_reset(iter);
3386 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3387 }
3388 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3389
3390 /**
3391 * ring_buffer_iter_empty - check if an iterator has no more to read
3392 * @iter: The iterator to check
3393 */
3394 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3395 {
3396 struct ring_buffer_per_cpu *cpu_buffer;
3397
3398 cpu_buffer = iter->cpu_buffer;
3399
3400 return iter->head_page == cpu_buffer->commit_page &&
3401 iter->head == rb_commit_index(cpu_buffer);
3402 }
3403 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3404
3405 static void
3406 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3407 struct ring_buffer_event *event)
3408 {
3409 u64 delta;
3410
3411 switch (event->type_len) {
3412 case RINGBUF_TYPE_PADDING:
3413 return;
3414
3415 case RINGBUF_TYPE_TIME_EXTEND:
3416 delta = event->array[0];
3417 delta <<= TS_SHIFT;
3418 delta += event->time_delta;
3419 cpu_buffer->read_stamp += delta;
3420 return;
3421
3422 case RINGBUF_TYPE_TIME_STAMP:
3423 /* FIXME: not implemented */
3424 return;
3425
3426 case RINGBUF_TYPE_DATA:
3427 cpu_buffer->read_stamp += event->time_delta;
3428 return;
3429
3430 default:
3431 BUG();
3432 }
3433 return;
3434 }
3435
3436 static void
3437 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3438 struct ring_buffer_event *event)
3439 {
3440 u64 delta;
3441
3442 switch (event->type_len) {
3443 case RINGBUF_TYPE_PADDING:
3444 return;
3445
3446 case RINGBUF_TYPE_TIME_EXTEND:
3447 delta = event->array[0];
3448 delta <<= TS_SHIFT;
3449 delta += event->time_delta;
3450 iter->read_stamp += delta;
3451 return;
3452
3453 case RINGBUF_TYPE_TIME_STAMP:
3454 /* FIXME: not implemented */
3455 return;
3456
3457 case RINGBUF_TYPE_DATA:
3458 iter->read_stamp += event->time_delta;
3459 return;
3460
3461 default:
3462 BUG();
3463 }
3464 return;
3465 }
3466
3467 static struct buffer_page *
3468 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3469 {
3470 struct buffer_page *reader = NULL;
3471 unsigned long overwrite;
3472 unsigned long flags;
3473 int nr_loops = 0;
3474 int ret;
3475
3476 local_irq_save(flags);
3477 arch_spin_lock(&cpu_buffer->lock);
3478
3479 again:
3480 /*
3481 * This should normally only loop twice. But because the
3482 * start of the reader inserts an empty page, it causes
3483 * a case where we will loop three times. There should be no
3484 * reason to loop four times (that I know of).
3485 */
3486 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3487 reader = NULL;
3488 goto out;
3489 }
3490
3491 reader = cpu_buffer->reader_page;
3492
3493 /* If there's more to read, return this page */
3494 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3495 goto out;
3496
3497 /* Never should we have an index greater than the size */
3498 if (RB_WARN_ON(cpu_buffer,
3499 cpu_buffer->reader_page->read > rb_page_size(reader)))
3500 goto out;
3501
3502 /* check if we caught up to the tail */
3503 reader = NULL;
3504 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3505 goto out;
3506
3507 /* Don't bother swapping if the ring buffer is empty */
3508 if (rb_num_of_entries(cpu_buffer) == 0)
3509 goto out;
3510
3511 /*
3512 * Reset the reader page to size zero.
3513 */
3514 local_set(&cpu_buffer->reader_page->write, 0);
3515 local_set(&cpu_buffer->reader_page->entries, 0);
3516 local_set(&cpu_buffer->reader_page->page->commit, 0);
3517 cpu_buffer->reader_page->real_end = 0;
3518
3519 spin:
3520 /*
3521 * Splice the empty reader page into the list around the head.
3522 */
3523 reader = rb_set_head_page(cpu_buffer);
3524 if (!reader)
3525 goto out;
3526 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3527 cpu_buffer->reader_page->list.prev = reader->list.prev;
3528
3529 /*
3530 * cpu_buffer->pages just needs to point to the buffer, it
3531 * has no specific buffer page to point to. Lets move it out
3532 * of our way so we don't accidentally swap it.
3533 */
3534 cpu_buffer->pages = reader->list.prev;
3535
3536 /* The reader page will be pointing to the new head */
3537 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3538
3539 /*
3540 * We want to make sure we read the overruns after we set up our
3541 * pointers to the next object. The writer side does a
3542 * cmpxchg to cross pages which acts as the mb on the writer
3543 * side. Note, the reader will constantly fail the swap
3544 * while the writer is updating the pointers, so this
3545 * guarantees that the overwrite recorded here is the one we
3546 * want to compare with the last_overrun.
3547 */
3548 smp_mb();
3549 overwrite = local_read(&(cpu_buffer->overrun));
3550
3551 /*
3552 * Here's the tricky part.
3553 *
3554 * We need to move the pointer past the header page.
3555 * But we can only do that if a writer is not currently
3556 * moving it. The page before the header page has the
3557 * flag bit '1' set if it is pointing to the page we want.
3558 * but if the writer is in the process of moving it
3559 * than it will be '2' or already moved '0'.
3560 */
3561
3562 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3563
3564 /*
3565 * If we did not convert it, then we must try again.
3566 */
3567 if (!ret)
3568 goto spin;
3569
3570 /*
3571 * Yeah! We succeeded in replacing the page.
3572 *
3573 * Now make the new head point back to the reader page.
3574 */
3575 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3576 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3577
3578 /* Finally update the reader page to the new head */
3579 cpu_buffer->reader_page = reader;
3580 rb_reset_reader_page(cpu_buffer);
3581
3582 if (overwrite != cpu_buffer->last_overrun) {
3583 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3584 cpu_buffer->last_overrun = overwrite;
3585 }
3586
3587 goto again;
3588
3589 out:
3590 arch_spin_unlock(&cpu_buffer->lock);
3591 local_irq_restore(flags);
3592
3593 return reader;
3594 }
3595
3596 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3597 {
3598 struct ring_buffer_event *event;
3599 struct buffer_page *reader;
3600 unsigned length;
3601
3602 reader = rb_get_reader_page(cpu_buffer);
3603
3604 /* This function should not be called when buffer is empty */
3605 if (RB_WARN_ON(cpu_buffer, !reader))
3606 return;
3607
3608 event = rb_reader_event(cpu_buffer);
3609
3610 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3611 cpu_buffer->read++;
3612
3613 rb_update_read_stamp(cpu_buffer, event);
3614
3615 length = rb_event_length(event);
3616 cpu_buffer->reader_page->read += length;
3617 }
3618
3619 static void rb_advance_iter(struct ring_buffer_iter *iter)
3620 {
3621 struct ring_buffer_per_cpu *cpu_buffer;
3622 struct ring_buffer_event *event;
3623 unsigned length;
3624
3625 cpu_buffer = iter->cpu_buffer;
3626
3627 /*
3628 * Check if we are at the end of the buffer.
3629 */
3630 if (iter->head >= rb_page_size(iter->head_page)) {
3631 /* discarded commits can make the page empty */
3632 if (iter->head_page == cpu_buffer->commit_page)
3633 return;
3634 rb_inc_iter(iter);
3635 return;
3636 }
3637
3638 event = rb_iter_head_event(iter);
3639
3640 length = rb_event_length(event);
3641
3642 /*
3643 * This should not be called to advance the header if we are
3644 * at the tail of the buffer.
3645 */
3646 if (RB_WARN_ON(cpu_buffer,
3647 (iter->head_page == cpu_buffer->commit_page) &&
3648 (iter->head + length > rb_commit_index(cpu_buffer))))
3649 return;
3650
3651 rb_update_iter_read_stamp(iter, event);
3652
3653 iter->head += length;
3654
3655 /* check for end of page padding */
3656 if ((iter->head >= rb_page_size(iter->head_page)) &&
3657 (iter->head_page != cpu_buffer->commit_page))
3658 rb_inc_iter(iter);
3659 }
3660
3661 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3662 {
3663 return cpu_buffer->lost_events;
3664 }
3665
3666 static struct ring_buffer_event *
3667 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3668 unsigned long *lost_events)
3669 {
3670 struct ring_buffer_event *event;
3671 struct buffer_page *reader;
3672 int nr_loops = 0;
3673
3674 again:
3675 /*
3676 * We repeat when a time extend is encountered.
3677 * Since the time extend is always attached to a data event,
3678 * we should never loop more than once.
3679 * (We never hit the following condition more than twice).
3680 */
3681 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3682 return NULL;
3683
3684 reader = rb_get_reader_page(cpu_buffer);
3685 if (!reader)
3686 return NULL;
3687
3688 event = rb_reader_event(cpu_buffer);
3689
3690 switch (event->type_len) {
3691 case RINGBUF_TYPE_PADDING:
3692 if (rb_null_event(event))
3693 RB_WARN_ON(cpu_buffer, 1);
3694 /*
3695 * Because the writer could be discarding every
3696 * event it creates (which would probably be bad)
3697 * if we were to go back to "again" then we may never
3698 * catch up, and will trigger the warn on, or lock
3699 * the box. Return the padding, and we will release
3700 * the current locks, and try again.
3701 */
3702 return event;
3703
3704 case RINGBUF_TYPE_TIME_EXTEND:
3705 /* Internal data, OK to advance */
3706 rb_advance_reader(cpu_buffer);
3707 goto again;
3708
3709 case RINGBUF_TYPE_TIME_STAMP:
3710 /* FIXME: not implemented */
3711 rb_advance_reader(cpu_buffer);
3712 goto again;
3713
3714 case RINGBUF_TYPE_DATA:
3715 if (ts) {
3716 *ts = cpu_buffer->read_stamp + event->time_delta;
3717 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3718 cpu_buffer->cpu, ts);
3719 }
3720 if (lost_events)
3721 *lost_events = rb_lost_events(cpu_buffer);
3722 return event;
3723
3724 default:
3725 BUG();
3726 }
3727
3728 return NULL;
3729 }
3730 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3731
3732 static struct ring_buffer_event *
3733 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3734 {
3735 struct ring_buffer *buffer;
3736 struct ring_buffer_per_cpu *cpu_buffer;
3737 struct ring_buffer_event *event;
3738 int nr_loops = 0;
3739
3740 cpu_buffer = iter->cpu_buffer;
3741 buffer = cpu_buffer->buffer;
3742
3743 /*
3744 * Check if someone performed a consuming read to
3745 * the buffer. A consuming read invalidates the iterator
3746 * and we need to reset the iterator in this case.
3747 */
3748 if (unlikely(iter->cache_read != cpu_buffer->read ||
3749 iter->cache_reader_page != cpu_buffer->reader_page))
3750 rb_iter_reset(iter);
3751
3752 again:
3753 if (ring_buffer_iter_empty(iter))
3754 return NULL;
3755
3756 /*
3757 * We repeat when a time extend is encountered.
3758 * Since the time extend is always attached to a data event,
3759 * we should never loop more than once.
3760 * (We never hit the following condition more than twice).
3761 */
3762 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3763 return NULL;
3764
3765 if (rb_per_cpu_empty(cpu_buffer))
3766 return NULL;
3767
3768 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3769 rb_inc_iter(iter);
3770 goto again;
3771 }
3772
3773 event = rb_iter_head_event(iter);
3774
3775 switch (event->type_len) {
3776 case RINGBUF_TYPE_PADDING:
3777 if (rb_null_event(event)) {
3778 rb_inc_iter(iter);
3779 goto again;
3780 }
3781 rb_advance_iter(iter);
3782 return event;
3783
3784 case RINGBUF_TYPE_TIME_EXTEND:
3785 /* Internal data, OK to advance */
3786 rb_advance_iter(iter);
3787 goto again;
3788
3789 case RINGBUF_TYPE_TIME_STAMP:
3790 /* FIXME: not implemented */
3791 rb_advance_iter(iter);
3792 goto again;
3793
3794 case RINGBUF_TYPE_DATA:
3795 if (ts) {
3796 *ts = iter->read_stamp + event->time_delta;
3797 ring_buffer_normalize_time_stamp(buffer,
3798 cpu_buffer->cpu, ts);
3799 }
3800 return event;
3801
3802 default:
3803 BUG();
3804 }
3805
3806 return NULL;
3807 }
3808 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3809
3810 static inline int rb_ok_to_lock(void)
3811 {
3812 /*
3813 * If an NMI die dumps out the content of the ring buffer
3814 * do not grab locks. We also permanently disable the ring
3815 * buffer too. A one time deal is all you get from reading
3816 * the ring buffer from an NMI.
3817 */
3818 if (likely(!in_nmi()))
3819 return 1;
3820
3821 tracing_off_permanent();
3822 return 0;
3823 }
3824
3825 /**
3826 * ring_buffer_peek - peek at the next event to be read
3827 * @buffer: The ring buffer to read
3828 * @cpu: The cpu to peak at
3829 * @ts: The timestamp counter of this event.
3830 * @lost_events: a variable to store if events were lost (may be NULL)
3831 *
3832 * This will return the event that will be read next, but does
3833 * not consume the data.
3834 */
3835 struct ring_buffer_event *
3836 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3837 unsigned long *lost_events)
3838 {
3839 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3840 struct ring_buffer_event *event;
3841 unsigned long flags;
3842 int dolock;
3843
3844 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3845 return NULL;
3846
3847 dolock = rb_ok_to_lock();
3848 again:
3849 local_irq_save(flags);
3850 if (dolock)
3851 raw_spin_lock(&cpu_buffer->reader_lock);
3852 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3853 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3854 rb_advance_reader(cpu_buffer);
3855 if (dolock)
3856 raw_spin_unlock(&cpu_buffer->reader_lock);
3857 local_irq_restore(flags);
3858
3859 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3860 goto again;
3861
3862 return event;
3863 }
3864
3865 /**
3866 * ring_buffer_iter_peek - peek at the next event to be read
3867 * @iter: The ring buffer iterator
3868 * @ts: The timestamp counter of this event.
3869 *
3870 * This will return the event that will be read next, but does
3871 * not increment the iterator.
3872 */
3873 struct ring_buffer_event *
3874 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3875 {
3876 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3877 struct ring_buffer_event *event;
3878 unsigned long flags;
3879
3880 again:
3881 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3882 event = rb_iter_peek(iter, ts);
3883 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3884
3885 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3886 goto again;
3887
3888 return event;
3889 }
3890
3891 /**
3892 * ring_buffer_consume - return an event and consume it
3893 * @buffer: The ring buffer to get the next event from
3894 * @cpu: the cpu to read the buffer from
3895 * @ts: a variable to store the timestamp (may be NULL)
3896 * @lost_events: a variable to store if events were lost (may be NULL)
3897 *
3898 * Returns the next event in the ring buffer, and that event is consumed.
3899 * Meaning, that sequential reads will keep returning a different event,
3900 * and eventually empty the ring buffer if the producer is slower.
3901 */
3902 struct ring_buffer_event *
3903 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3904 unsigned long *lost_events)
3905 {
3906 struct ring_buffer_per_cpu *cpu_buffer;
3907 struct ring_buffer_event *event = NULL;
3908 unsigned long flags;
3909 int dolock;
3910
3911 dolock = rb_ok_to_lock();
3912
3913 again:
3914 /* might be called in atomic */
3915 preempt_disable();
3916
3917 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3918 goto out;
3919
3920 cpu_buffer = buffer->buffers[cpu];
3921 local_irq_save(flags);
3922 if (dolock)
3923 raw_spin_lock(&cpu_buffer->reader_lock);
3924
3925 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3926 if (event) {
3927 cpu_buffer->lost_events = 0;
3928 rb_advance_reader(cpu_buffer);
3929 }
3930
3931 if (dolock)
3932 raw_spin_unlock(&cpu_buffer->reader_lock);
3933 local_irq_restore(flags);
3934
3935 out:
3936 preempt_enable();
3937
3938 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3939 goto again;
3940
3941 return event;
3942 }
3943 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3944
3945 /**
3946 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3947 * @buffer: The ring buffer to read from
3948 * @cpu: The cpu buffer to iterate over
3949 *
3950 * This performs the initial preparations necessary to iterate
3951 * through the buffer. Memory is allocated, buffer recording
3952 * is disabled, and the iterator pointer is returned to the caller.
3953 *
3954 * Disabling buffer recordng prevents the reading from being
3955 * corrupted. This is not a consuming read, so a producer is not
3956 * expected.
3957 *
3958 * After a sequence of ring_buffer_read_prepare calls, the user is
3959 * expected to make at least one call to ring_buffer_prepare_sync.
3960 * Afterwards, ring_buffer_read_start is invoked to get things going
3961 * for real.
3962 *
3963 * This overall must be paired with ring_buffer_finish.
3964 */
3965 struct ring_buffer_iter *
3966 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3967 {
3968 struct ring_buffer_per_cpu *cpu_buffer;
3969 struct ring_buffer_iter *iter;
3970
3971 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3972 return NULL;
3973
3974 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3975 if (!iter)
3976 return NULL;
3977
3978 cpu_buffer = buffer->buffers[cpu];
3979
3980 iter->cpu_buffer = cpu_buffer;
3981
3982 atomic_inc(&buffer->resize_disabled);
3983 atomic_inc(&cpu_buffer->record_disabled);
3984
3985 return iter;
3986 }
3987 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3988
3989 /**
3990 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3991 *
3992 * All previously invoked ring_buffer_read_prepare calls to prepare
3993 * iterators will be synchronized. Afterwards, read_buffer_read_start
3994 * calls on those iterators are allowed.
3995 */
3996 void
3997 ring_buffer_read_prepare_sync(void)
3998 {
3999 synchronize_sched();
4000 }
4001 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4002
4003 /**
4004 * ring_buffer_read_start - start a non consuming read of the buffer
4005 * @iter: The iterator returned by ring_buffer_read_prepare
4006 *
4007 * This finalizes the startup of an iteration through the buffer.
4008 * The iterator comes from a call to ring_buffer_read_prepare and
4009 * an intervening ring_buffer_read_prepare_sync must have been
4010 * performed.
4011 *
4012 * Must be paired with ring_buffer_finish.
4013 */
4014 void
4015 ring_buffer_read_start(struct ring_buffer_iter *iter)
4016 {
4017 struct ring_buffer_per_cpu *cpu_buffer;
4018 unsigned long flags;
4019
4020 if (!iter)
4021 return;
4022
4023 cpu_buffer = iter->cpu_buffer;
4024
4025 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4026 arch_spin_lock(&cpu_buffer->lock);
4027 rb_iter_reset(iter);
4028 arch_spin_unlock(&cpu_buffer->lock);
4029 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4030 }
4031 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4032
4033 /**
4034 * ring_buffer_finish - finish reading the iterator of the buffer
4035 * @iter: The iterator retrieved by ring_buffer_start
4036 *
4037 * This re-enables the recording to the buffer, and frees the
4038 * iterator.
4039 */
4040 void
4041 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4042 {
4043 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4044 unsigned long flags;
4045
4046 /*
4047 * Ring buffer is disabled from recording, here's a good place
4048 * to check the integrity of the ring buffer.
4049 * Must prevent readers from trying to read, as the check
4050 * clears the HEAD page and readers require it.
4051 */
4052 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4053 rb_check_pages(cpu_buffer);
4054 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4055
4056 atomic_dec(&cpu_buffer->record_disabled);
4057 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4058 kfree(iter);
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4061
4062 /**
4063 * ring_buffer_read - read the next item in the ring buffer by the iterator
4064 * @iter: The ring buffer iterator
4065 * @ts: The time stamp of the event read.
4066 *
4067 * This reads the next event in the ring buffer and increments the iterator.
4068 */
4069 struct ring_buffer_event *
4070 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4071 {
4072 struct ring_buffer_event *event;
4073 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4074 unsigned long flags;
4075
4076 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4077 again:
4078 event = rb_iter_peek(iter, ts);
4079 if (!event)
4080 goto out;
4081
4082 if (event->type_len == RINGBUF_TYPE_PADDING)
4083 goto again;
4084
4085 rb_advance_iter(iter);
4086 out:
4087 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4088
4089 return event;
4090 }
4091 EXPORT_SYMBOL_GPL(ring_buffer_read);
4092
4093 /**
4094 * ring_buffer_size - return the size of the ring buffer (in bytes)
4095 * @buffer: The ring buffer.
4096 */
4097 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4098 {
4099 /*
4100 * Earlier, this method returned
4101 * BUF_PAGE_SIZE * buffer->nr_pages
4102 * Since the nr_pages field is now removed, we have converted this to
4103 * return the per cpu buffer value.
4104 */
4105 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4106 return 0;
4107
4108 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4109 }
4110 EXPORT_SYMBOL_GPL(ring_buffer_size);
4111
4112 static void
4113 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4114 {
4115 rb_head_page_deactivate(cpu_buffer);
4116
4117 cpu_buffer->head_page
4118 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4119 local_set(&cpu_buffer->head_page->write, 0);
4120 local_set(&cpu_buffer->head_page->entries, 0);
4121 local_set(&cpu_buffer->head_page->page->commit, 0);
4122
4123 cpu_buffer->head_page->read = 0;
4124
4125 cpu_buffer->tail_page = cpu_buffer->head_page;
4126 cpu_buffer->commit_page = cpu_buffer->head_page;
4127
4128 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4129 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4130 local_set(&cpu_buffer->reader_page->write, 0);
4131 local_set(&cpu_buffer->reader_page->entries, 0);
4132 local_set(&cpu_buffer->reader_page->page->commit, 0);
4133 cpu_buffer->reader_page->read = 0;
4134
4135 local_set(&cpu_buffer->entries_bytes, 0);
4136 local_set(&cpu_buffer->overrun, 0);
4137 local_set(&cpu_buffer->commit_overrun, 0);
4138 local_set(&cpu_buffer->dropped_events, 0);
4139 local_set(&cpu_buffer->entries, 0);
4140 local_set(&cpu_buffer->committing, 0);
4141 local_set(&cpu_buffer->commits, 0);
4142 cpu_buffer->read = 0;
4143 cpu_buffer->read_bytes = 0;
4144
4145 cpu_buffer->write_stamp = 0;
4146 cpu_buffer->read_stamp = 0;
4147
4148 cpu_buffer->lost_events = 0;
4149 cpu_buffer->last_overrun = 0;
4150
4151 rb_head_page_activate(cpu_buffer);
4152 }
4153
4154 /**
4155 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4156 * @buffer: The ring buffer to reset a per cpu buffer of
4157 * @cpu: The CPU buffer to be reset
4158 */
4159 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4160 {
4161 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4162 unsigned long flags;
4163
4164 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4165 return;
4166
4167 atomic_inc(&buffer->resize_disabled);
4168 atomic_inc(&cpu_buffer->record_disabled);
4169
4170 /* Make sure all commits have finished */
4171 synchronize_sched();
4172
4173 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4174
4175 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4176 goto out;
4177
4178 arch_spin_lock(&cpu_buffer->lock);
4179
4180 rb_reset_cpu(cpu_buffer);
4181
4182 arch_spin_unlock(&cpu_buffer->lock);
4183
4184 out:
4185 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4186
4187 atomic_dec(&cpu_buffer->record_disabled);
4188 atomic_dec(&buffer->resize_disabled);
4189 }
4190 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4191
4192 /**
4193 * ring_buffer_reset - reset a ring buffer
4194 * @buffer: The ring buffer to reset all cpu buffers
4195 */
4196 void ring_buffer_reset(struct ring_buffer *buffer)
4197 {
4198 int cpu;
4199
4200 for_each_buffer_cpu(buffer, cpu)
4201 ring_buffer_reset_cpu(buffer, cpu);
4202 }
4203 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4204
4205 /**
4206 * rind_buffer_empty - is the ring buffer empty?
4207 * @buffer: The ring buffer to test
4208 */
4209 int ring_buffer_empty(struct ring_buffer *buffer)
4210 {
4211 struct ring_buffer_per_cpu *cpu_buffer;
4212 unsigned long flags;
4213 int dolock;
4214 int cpu;
4215 int ret;
4216
4217 dolock = rb_ok_to_lock();
4218
4219 /* yes this is racy, but if you don't like the race, lock the buffer */
4220 for_each_buffer_cpu(buffer, cpu) {
4221 cpu_buffer = buffer->buffers[cpu];
4222 local_irq_save(flags);
4223 if (dolock)
4224 raw_spin_lock(&cpu_buffer->reader_lock);
4225 ret = rb_per_cpu_empty(cpu_buffer);
4226 if (dolock)
4227 raw_spin_unlock(&cpu_buffer->reader_lock);
4228 local_irq_restore(flags);
4229
4230 if (!ret)
4231 return 0;
4232 }
4233
4234 return 1;
4235 }
4236 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4237
4238 /**
4239 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4240 * @buffer: The ring buffer
4241 * @cpu: The CPU buffer to test
4242 */
4243 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4244 {
4245 struct ring_buffer_per_cpu *cpu_buffer;
4246 unsigned long flags;
4247 int dolock;
4248 int ret;
4249
4250 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4251 return 1;
4252
4253 dolock = rb_ok_to_lock();
4254
4255 cpu_buffer = buffer->buffers[cpu];
4256 local_irq_save(flags);
4257 if (dolock)
4258 raw_spin_lock(&cpu_buffer->reader_lock);
4259 ret = rb_per_cpu_empty(cpu_buffer);
4260 if (dolock)
4261 raw_spin_unlock(&cpu_buffer->reader_lock);
4262 local_irq_restore(flags);
4263
4264 return ret;
4265 }
4266 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4267
4268 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4269 /**
4270 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4271 * @buffer_a: One buffer to swap with
4272 * @buffer_b: The other buffer to swap with
4273 *
4274 * This function is useful for tracers that want to take a "snapshot"
4275 * of a CPU buffer and has another back up buffer lying around.
4276 * it is expected that the tracer handles the cpu buffer not being
4277 * used at the moment.
4278 */
4279 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4280 struct ring_buffer *buffer_b, int cpu)
4281 {
4282 struct ring_buffer_per_cpu *cpu_buffer_a;
4283 struct ring_buffer_per_cpu *cpu_buffer_b;
4284 int ret = -EINVAL;
4285
4286 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4287 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4288 goto out;
4289
4290 cpu_buffer_a = buffer_a->buffers[cpu];
4291 cpu_buffer_b = buffer_b->buffers[cpu];
4292
4293 /* At least make sure the two buffers are somewhat the same */
4294 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4295 goto out;
4296
4297 ret = -EAGAIN;
4298
4299 if (ring_buffer_flags != RB_BUFFERS_ON)
4300 goto out;
4301
4302 if (atomic_read(&buffer_a->record_disabled))
4303 goto out;
4304
4305 if (atomic_read(&buffer_b->record_disabled))
4306 goto out;
4307
4308 if (atomic_read(&cpu_buffer_a->record_disabled))
4309 goto out;
4310
4311 if (atomic_read(&cpu_buffer_b->record_disabled))
4312 goto out;
4313
4314 /*
4315 * We can't do a synchronize_sched here because this
4316 * function can be called in atomic context.
4317 * Normally this will be called from the same CPU as cpu.
4318 * If not it's up to the caller to protect this.
4319 */
4320 atomic_inc(&cpu_buffer_a->record_disabled);
4321 atomic_inc(&cpu_buffer_b->record_disabled);
4322
4323 ret = -EBUSY;
4324 if (local_read(&cpu_buffer_a->committing))
4325 goto out_dec;
4326 if (local_read(&cpu_buffer_b->committing))
4327 goto out_dec;
4328
4329 buffer_a->buffers[cpu] = cpu_buffer_b;
4330 buffer_b->buffers[cpu] = cpu_buffer_a;
4331
4332 cpu_buffer_b->buffer = buffer_a;
4333 cpu_buffer_a->buffer = buffer_b;
4334
4335 ret = 0;
4336
4337 out_dec:
4338 atomic_dec(&cpu_buffer_a->record_disabled);
4339 atomic_dec(&cpu_buffer_b->record_disabled);
4340 out:
4341 return ret;
4342 }
4343 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4344 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4345
4346 /**
4347 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4348 * @buffer: the buffer to allocate for.
4349 *
4350 * This function is used in conjunction with ring_buffer_read_page.
4351 * When reading a full page from the ring buffer, these functions
4352 * can be used to speed up the process. The calling function should
4353 * allocate a few pages first with this function. Then when it
4354 * needs to get pages from the ring buffer, it passes the result
4355 * of this function into ring_buffer_read_page, which will swap
4356 * the page that was allocated, with the read page of the buffer.
4357 *
4358 * Returns:
4359 * The page allocated, or NULL on error.
4360 */
4361 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4362 {
4363 struct buffer_data_page *bpage;
4364 struct page *page;
4365
4366 page = alloc_pages_node(cpu_to_node(cpu),
4367 GFP_KERNEL | __GFP_NORETRY, 0);
4368 if (!page)
4369 return NULL;
4370
4371 bpage = page_address(page);
4372
4373 rb_init_page(bpage);
4374
4375 return bpage;
4376 }
4377 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4378
4379 /**
4380 * ring_buffer_free_read_page - free an allocated read page
4381 * @buffer: the buffer the page was allocate for
4382 * @data: the page to free
4383 *
4384 * Free a page allocated from ring_buffer_alloc_read_page.
4385 */
4386 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4387 {
4388 free_page((unsigned long)data);
4389 }
4390 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4391
4392 /**
4393 * ring_buffer_read_page - extract a page from the ring buffer
4394 * @buffer: buffer to extract from
4395 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4396 * @len: amount to extract
4397 * @cpu: the cpu of the buffer to extract
4398 * @full: should the extraction only happen when the page is full.
4399 *
4400 * This function will pull out a page from the ring buffer and consume it.
4401 * @data_page must be the address of the variable that was returned
4402 * from ring_buffer_alloc_read_page. This is because the page might be used
4403 * to swap with a page in the ring buffer.
4404 *
4405 * for example:
4406 * rpage = ring_buffer_alloc_read_page(buffer);
4407 * if (!rpage)
4408 * return error;
4409 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4410 * if (ret >= 0)
4411 * process_page(rpage, ret);
4412 *
4413 * When @full is set, the function will not return true unless
4414 * the writer is off the reader page.
4415 *
4416 * Note: it is up to the calling functions to handle sleeps and wakeups.
4417 * The ring buffer can be used anywhere in the kernel and can not
4418 * blindly call wake_up. The layer that uses the ring buffer must be
4419 * responsible for that.
4420 *
4421 * Returns:
4422 * >=0 if data has been transferred, returns the offset of consumed data.
4423 * <0 if no data has been transferred.
4424 */
4425 int ring_buffer_read_page(struct ring_buffer *buffer,
4426 void **data_page, size_t len, int cpu, int full)
4427 {
4428 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4429 struct ring_buffer_event *event;
4430 struct buffer_data_page *bpage;
4431 struct buffer_page *reader;
4432 unsigned long missed_events;
4433 unsigned long flags;
4434 unsigned int commit;
4435 unsigned int read;
4436 u64 save_timestamp;
4437 int ret = -1;
4438
4439 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4440 goto out;
4441
4442 /*
4443 * If len is not big enough to hold the page header, then
4444 * we can not copy anything.
4445 */
4446 if (len <= BUF_PAGE_HDR_SIZE)
4447 goto out;
4448
4449 len -= BUF_PAGE_HDR_SIZE;
4450
4451 if (!data_page)
4452 goto out;
4453
4454 bpage = *data_page;
4455 if (!bpage)
4456 goto out;
4457
4458 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4459
4460 reader = rb_get_reader_page(cpu_buffer);
4461 if (!reader)
4462 goto out_unlock;
4463
4464 event = rb_reader_event(cpu_buffer);
4465
4466 read = reader->read;
4467 commit = rb_page_commit(reader);
4468
4469 /* Check if any events were dropped */
4470 missed_events = cpu_buffer->lost_events;
4471
4472 /*
4473 * If this page has been partially read or
4474 * if len is not big enough to read the rest of the page or
4475 * a writer is still on the page, then
4476 * we must copy the data from the page to the buffer.
4477 * Otherwise, we can simply swap the page with the one passed in.
4478 */
4479 if (read || (len < (commit - read)) ||
4480 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4481 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4482 unsigned int rpos = read;
4483 unsigned int pos = 0;
4484 unsigned int size;
4485
4486 if (full)
4487 goto out_unlock;
4488
4489 if (len > (commit - read))
4490 len = (commit - read);
4491
4492 /* Always keep the time extend and data together */
4493 size = rb_event_ts_length(event);
4494
4495 if (len < size)
4496 goto out_unlock;
4497
4498 /* save the current timestamp, since the user will need it */
4499 save_timestamp = cpu_buffer->read_stamp;
4500
4501 /* Need to copy one event at a time */
4502 do {
4503 /* We need the size of one event, because
4504 * rb_advance_reader only advances by one event,
4505 * whereas rb_event_ts_length may include the size of
4506 * one or two events.
4507 * We have already ensured there's enough space if this
4508 * is a time extend. */
4509 size = rb_event_length(event);
4510 memcpy(bpage->data + pos, rpage->data + rpos, size);
4511
4512 len -= size;
4513
4514 rb_advance_reader(cpu_buffer);
4515 rpos = reader->read;
4516 pos += size;
4517
4518 if (rpos >= commit)
4519 break;
4520
4521 event = rb_reader_event(cpu_buffer);
4522 /* Always keep the time extend and data together */
4523 size = rb_event_ts_length(event);
4524 } while (len >= size);
4525
4526 /* update bpage */
4527 local_set(&bpage->commit, pos);
4528 bpage->time_stamp = save_timestamp;
4529
4530 /* we copied everything to the beginning */
4531 read = 0;
4532 } else {
4533 /* update the entry counter */
4534 cpu_buffer->read += rb_page_entries(reader);
4535 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4536
4537 /* swap the pages */
4538 rb_init_page(bpage);
4539 bpage = reader->page;
4540 reader->page = *data_page;
4541 local_set(&reader->write, 0);
4542 local_set(&reader->entries, 0);
4543 reader->read = 0;
4544 *data_page = bpage;
4545
4546 /*
4547 * Use the real_end for the data size,
4548 * This gives us a chance to store the lost events
4549 * on the page.
4550 */
4551 if (reader->real_end)
4552 local_set(&bpage->commit, reader->real_end);
4553 }
4554 ret = read;
4555
4556 cpu_buffer->lost_events = 0;
4557
4558 commit = local_read(&bpage->commit);
4559 /*
4560 * Set a flag in the commit field if we lost events
4561 */
4562 if (missed_events) {
4563 /* If there is room at the end of the page to save the
4564 * missed events, then record it there.
4565 */
4566 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4567 memcpy(&bpage->data[commit], &missed_events,
4568 sizeof(missed_events));
4569 local_add(RB_MISSED_STORED, &bpage->commit);
4570 commit += sizeof(missed_events);
4571 }
4572 local_add(RB_MISSED_EVENTS, &bpage->commit);
4573 }
4574
4575 /*
4576 * This page may be off to user land. Zero it out here.
4577 */
4578 if (commit < BUF_PAGE_SIZE)
4579 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4580
4581 out_unlock:
4582 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4583
4584 out:
4585 return ret;
4586 }
4587 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4588
4589 #ifdef CONFIG_HOTPLUG_CPU
4590 static int rb_cpu_notify(struct notifier_block *self,
4591 unsigned long action, void *hcpu)
4592 {
4593 struct ring_buffer *buffer =
4594 container_of(self, struct ring_buffer, cpu_notify);
4595 long cpu = (long)hcpu;
4596 int cpu_i, nr_pages_same;
4597 unsigned int nr_pages;
4598
4599 switch (action) {
4600 case CPU_UP_PREPARE:
4601 case CPU_UP_PREPARE_FROZEN:
4602 if (cpumask_test_cpu(cpu, buffer->cpumask))
4603 return NOTIFY_OK;
4604
4605 nr_pages = 0;
4606 nr_pages_same = 1;
4607 /* check if all cpu sizes are same */
4608 for_each_buffer_cpu(buffer, cpu_i) {
4609 /* fill in the size from first enabled cpu */
4610 if (nr_pages == 0)
4611 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4612 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4613 nr_pages_same = 0;
4614 break;
4615 }
4616 }
4617 /* allocate minimum pages, user can later expand it */
4618 if (!nr_pages_same)
4619 nr_pages = 2;
4620 buffer->buffers[cpu] =
4621 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4622 if (!buffer->buffers[cpu]) {
4623 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4624 cpu);
4625 return NOTIFY_OK;
4626 }
4627 smp_wmb();
4628 cpumask_set_cpu(cpu, buffer->cpumask);
4629 break;
4630 case CPU_DOWN_PREPARE:
4631 case CPU_DOWN_PREPARE_FROZEN:
4632 /*
4633 * Do nothing.
4634 * If we were to free the buffer, then the user would
4635 * lose any trace that was in the buffer.
4636 */
4637 break;
4638 default:
4639 break;
4640 }
4641 return NOTIFY_OK;
4642 }
4643 #endif
4644
4645 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4646 /*
4647 * This is a basic integrity check of the ring buffer.
4648 * Late in the boot cycle this test will run when configured in.
4649 * It will kick off a thread per CPU that will go into a loop
4650 * writing to the per cpu ring buffer various sizes of data.
4651 * Some of the data will be large items, some small.
4652 *
4653 * Another thread is created that goes into a spin, sending out
4654 * IPIs to the other CPUs to also write into the ring buffer.
4655 * this is to test the nesting ability of the buffer.
4656 *
4657 * Basic stats are recorded and reported. If something in the
4658 * ring buffer should happen that's not expected, a big warning
4659 * is displayed and all ring buffers are disabled.
4660 */
4661 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4662
4663 struct rb_test_data {
4664 struct ring_buffer *buffer;
4665 unsigned long events;
4666 unsigned long bytes_written;
4667 unsigned long bytes_alloc;
4668 unsigned long bytes_dropped;
4669 unsigned long events_nested;
4670 unsigned long bytes_written_nested;
4671 unsigned long bytes_alloc_nested;
4672 unsigned long bytes_dropped_nested;
4673 int min_size_nested;
4674 int max_size_nested;
4675 int max_size;
4676 int min_size;
4677 int cpu;
4678 int cnt;
4679 };
4680
4681 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4682
4683 /* 1 meg per cpu */
4684 #define RB_TEST_BUFFER_SIZE 1048576
4685
4686 static char rb_string[] __initdata =
4687 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4688 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4689 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4690
4691 static bool rb_test_started __initdata;
4692
4693 struct rb_item {
4694 int size;
4695 char str[];
4696 };
4697
4698 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4699 {
4700 struct ring_buffer_event *event;
4701 struct rb_item *item;
4702 bool started;
4703 int event_len;
4704 int size;
4705 int len;
4706 int cnt;
4707
4708 /* Have nested writes different that what is written */
4709 cnt = data->cnt + (nested ? 27 : 0);
4710
4711 /* Multiply cnt by ~e, to make some unique increment */
4712 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4713
4714 len = size + sizeof(struct rb_item);
4715
4716 started = rb_test_started;
4717 /* read rb_test_started before checking buffer enabled */
4718 smp_rmb();
4719
4720 event = ring_buffer_lock_reserve(data->buffer, len);
4721 if (!event) {
4722 /* Ignore dropped events before test starts. */
4723 if (started) {
4724 if (nested)
4725 data->bytes_dropped += len;
4726 else
4727 data->bytes_dropped_nested += len;
4728 }
4729 return len;
4730 }
4731
4732 event_len = ring_buffer_event_length(event);
4733
4734 if (RB_WARN_ON(data->buffer, event_len < len))
4735 goto out;
4736
4737 item = ring_buffer_event_data(event);
4738 item->size = size;
4739 memcpy(item->str, rb_string, size);
4740
4741 if (nested) {
4742 data->bytes_alloc_nested += event_len;
4743 data->bytes_written_nested += len;
4744 data->events_nested++;
4745 if (!data->min_size_nested || len < data->min_size_nested)
4746 data->min_size_nested = len;
4747 if (len > data->max_size_nested)
4748 data->max_size_nested = len;
4749 } else {
4750 data->bytes_alloc += event_len;
4751 data->bytes_written += len;
4752 data->events++;
4753 if (!data->min_size || len < data->min_size)
4754 data->max_size = len;
4755 if (len > data->max_size)
4756 data->max_size = len;
4757 }
4758
4759 out:
4760 ring_buffer_unlock_commit(data->buffer, event);
4761
4762 return 0;
4763 }
4764
4765 static __init int rb_test(void *arg)
4766 {
4767 struct rb_test_data *data = arg;
4768
4769 while (!kthread_should_stop()) {
4770 rb_write_something(data, false);
4771 data->cnt++;
4772
4773 set_current_state(TASK_INTERRUPTIBLE);
4774 /* Now sleep between a min of 100-300us and a max of 1ms */
4775 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4776 }
4777
4778 return 0;
4779 }
4780
4781 static __init void rb_ipi(void *ignore)
4782 {
4783 struct rb_test_data *data;
4784 int cpu = smp_processor_id();
4785
4786 data = &rb_data[cpu];
4787 rb_write_something(data, true);
4788 }
4789
4790 static __init int rb_hammer_test(void *arg)
4791 {
4792 while (!kthread_should_stop()) {
4793
4794 /* Send an IPI to all cpus to write data! */
4795 smp_call_function(rb_ipi, NULL, 1);
4796 /* No sleep, but for non preempt, let others run */
4797 schedule();
4798 }
4799
4800 return 0;
4801 }
4802
4803 static __init int test_ringbuffer(void)
4804 {
4805 struct task_struct *rb_hammer;
4806 struct ring_buffer *buffer;
4807 int cpu;
4808 int ret = 0;
4809
4810 pr_info("Running ring buffer tests...\n");
4811
4812 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4813 if (WARN_ON(!buffer))
4814 return 0;
4815
4816 /* Disable buffer so that threads can't write to it yet */
4817 ring_buffer_record_off(buffer);
4818
4819 for_each_online_cpu(cpu) {
4820 rb_data[cpu].buffer = buffer;
4821 rb_data[cpu].cpu = cpu;
4822 rb_data[cpu].cnt = cpu;
4823 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4824 "rbtester/%d", cpu);
4825 if (WARN_ON(!rb_threads[cpu])) {
4826 pr_cont("FAILED\n");
4827 ret = -1;
4828 goto out_free;
4829 }
4830
4831 kthread_bind(rb_threads[cpu], cpu);
4832 wake_up_process(rb_threads[cpu]);
4833 }
4834
4835 /* Now create the rb hammer! */
4836 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4837 if (WARN_ON(!rb_hammer)) {
4838 pr_cont("FAILED\n");
4839 ret = -1;
4840 goto out_free;
4841 }
4842
4843 ring_buffer_record_on(buffer);
4844 /*
4845 * Show buffer is enabled before setting rb_test_started.
4846 * Yes there's a small race window where events could be
4847 * dropped and the thread wont catch it. But when a ring
4848 * buffer gets enabled, there will always be some kind of
4849 * delay before other CPUs see it. Thus, we don't care about
4850 * those dropped events. We care about events dropped after
4851 * the threads see that the buffer is active.
4852 */
4853 smp_wmb();
4854 rb_test_started = true;
4855
4856 set_current_state(TASK_INTERRUPTIBLE);
4857 /* Just run for 10 seconds */;
4858 schedule_timeout(10 * HZ);
4859
4860 kthread_stop(rb_hammer);
4861
4862 out_free:
4863 for_each_online_cpu(cpu) {
4864 if (!rb_threads[cpu])
4865 break;
4866 kthread_stop(rb_threads[cpu]);
4867 }
4868 if (ret) {
4869 ring_buffer_free(buffer);
4870 return ret;
4871 }
4872
4873 /* Report! */
4874 pr_info("finished\n");
4875 for_each_online_cpu(cpu) {
4876 struct ring_buffer_event *event;
4877 struct rb_test_data *data = &rb_data[cpu];
4878 struct rb_item *item;
4879 unsigned long total_events;
4880 unsigned long total_dropped;
4881 unsigned long total_written;
4882 unsigned long total_alloc;
4883 unsigned long total_read = 0;
4884 unsigned long total_size = 0;
4885 unsigned long total_len = 0;
4886 unsigned long total_lost = 0;
4887 unsigned long lost;
4888 int big_event_size;
4889 int small_event_size;
4890
4891 ret = -1;
4892
4893 total_events = data->events + data->events_nested;
4894 total_written = data->bytes_written + data->bytes_written_nested;
4895 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4896 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4897
4898 big_event_size = data->max_size + data->max_size_nested;
4899 small_event_size = data->min_size + data->min_size_nested;
4900
4901 pr_info("CPU %d:\n", cpu);
4902 pr_info(" events: %ld\n", total_events);
4903 pr_info(" dropped bytes: %ld\n", total_dropped);
4904 pr_info(" alloced bytes: %ld\n", total_alloc);
4905 pr_info(" written bytes: %ld\n", total_written);
4906 pr_info(" biggest event: %d\n", big_event_size);
4907 pr_info(" smallest event: %d\n", small_event_size);
4908
4909 if (RB_WARN_ON(buffer, total_dropped))
4910 break;
4911
4912 ret = 0;
4913
4914 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4915 total_lost += lost;
4916 item = ring_buffer_event_data(event);
4917 total_len += ring_buffer_event_length(event);
4918 total_size += item->size + sizeof(struct rb_item);
4919 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4920 pr_info("FAILED!\n");
4921 pr_info("buffer had: %.*s\n", item->size, item->str);
4922 pr_info("expected: %.*s\n", item->size, rb_string);
4923 RB_WARN_ON(buffer, 1);
4924 ret = -1;
4925 break;
4926 }
4927 total_read++;
4928 }
4929 if (ret)
4930 break;
4931
4932 ret = -1;
4933
4934 pr_info(" read events: %ld\n", total_read);
4935 pr_info(" lost events: %ld\n", total_lost);
4936 pr_info(" total events: %ld\n", total_lost + total_read);
4937 pr_info(" recorded len bytes: %ld\n", total_len);
4938 pr_info(" recorded size bytes: %ld\n", total_size);
4939 if (total_lost)
4940 pr_info(" With dropped events, record len and size may not match\n"
4941 " alloced and written from above\n");
4942 if (!total_lost) {
4943 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4944 total_size != total_written))
4945 break;
4946 }
4947 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4948 break;
4949
4950 ret = 0;
4951 }
4952 if (!ret)
4953 pr_info("Ring buffer PASSED!\n");
4954
4955 ring_buffer_free(buffer);
4956 return 0;
4957 }
4958
4959 late_initcall(test_ringbuffer);
4960 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */