8e94c1102636670dabf637e5aff3e2e65fa661bc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 int ret;
38
39 ret = trace_seq_printf(s, "# compressed entry header\n");
40 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
43 ret = trace_seq_printf(s, "\n");
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return ret;
52 }
53
54 /*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
122 /*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140 /*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
172 * permanently.
173 */
174 void tracing_off_permanent(void)
175 {
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
191
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 unsigned length;
221
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257 }
258
259 /*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274 }
275
276 /**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
285 */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315 }
316
317 /**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
338
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
343 };
344
345 /*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
360 };
361
362 /*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 local_set(&bpage->commit, 0);
380 }
381
382 /**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
388 size_t ring_buffer_page_len(void *page)
389 {
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
402 }
403
404 /*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407 static inline int test_time_stamp(u64 delta)
408 {
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
434
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
446
447 return ret;
448 }
449
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454 };
455
456 /*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
490
491 struct rb_irq_work irq_work;
492 };
493
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
500
501 struct lock_class_key *reader_lock_key;
502
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
511
512 struct rb_irq_work irq_work;
513 };
514
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
522 };
523
524 /*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
564 }
565
566
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569 /*
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
575 *
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
582 *
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
588 */
589 work->waiters_pending = true;
590
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
594
595 finish_wait(&work->waiters, &wait);
596 return 0;
597 }
598
599 /**
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
605 *
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
609 *
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
612 */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
615 {
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
618
619 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
620 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
621 return POLLIN | POLLRDNORM;
622
623 if (cpu == RING_BUFFER_ALL_CPUS)
624 work = &buffer->irq_work;
625 else {
626 if (!cpumask_test_cpu(cpu, buffer->cpumask))
627 return -EINVAL;
628
629 cpu_buffer = buffer->buffers[cpu];
630 work = &cpu_buffer->irq_work;
631 }
632
633 work->waiters_pending = true;
634 poll_wait(filp, &work->waiters, poll_table);
635
636 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
637 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
638 return POLLIN | POLLRDNORM;
639 return 0;
640 }
641
642 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
643 #define RB_WARN_ON(b, cond) \
644 ({ \
645 int _____ret = unlikely(cond); \
646 if (_____ret) { \
647 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
648 struct ring_buffer_per_cpu *__b = \
649 (void *)b; \
650 atomic_inc(&__b->buffer->record_disabled); \
651 } else \
652 atomic_inc(&b->record_disabled); \
653 WARN_ON(1); \
654 } \
655 _____ret; \
656 })
657
658 /* Up this if you want to test the TIME_EXTENTS and normalization */
659 #define DEBUG_SHIFT 0
660
661 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
662 {
663 /* shift to debug/test normalization and TIME_EXTENTS */
664 return buffer->clock() << DEBUG_SHIFT;
665 }
666
667 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
668 {
669 u64 time;
670
671 preempt_disable_notrace();
672 time = rb_time_stamp(buffer);
673 preempt_enable_no_resched_notrace();
674
675 return time;
676 }
677 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
678
679 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
680 int cpu, u64 *ts)
681 {
682 /* Just stupid testing the normalize function and deltas */
683 *ts >>= DEBUG_SHIFT;
684 }
685 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
686
687 /*
688 * Making the ring buffer lockless makes things tricky.
689 * Although writes only happen on the CPU that they are on,
690 * and they only need to worry about interrupts. Reads can
691 * happen on any CPU.
692 *
693 * The reader page is always off the ring buffer, but when the
694 * reader finishes with a page, it needs to swap its page with
695 * a new one from the buffer. The reader needs to take from
696 * the head (writes go to the tail). But if a writer is in overwrite
697 * mode and wraps, it must push the head page forward.
698 *
699 * Here lies the problem.
700 *
701 * The reader must be careful to replace only the head page, and
702 * not another one. As described at the top of the file in the
703 * ASCII art, the reader sets its old page to point to the next
704 * page after head. It then sets the page after head to point to
705 * the old reader page. But if the writer moves the head page
706 * during this operation, the reader could end up with the tail.
707 *
708 * We use cmpxchg to help prevent this race. We also do something
709 * special with the page before head. We set the LSB to 1.
710 *
711 * When the writer must push the page forward, it will clear the
712 * bit that points to the head page, move the head, and then set
713 * the bit that points to the new head page.
714 *
715 * We also don't want an interrupt coming in and moving the head
716 * page on another writer. Thus we use the second LSB to catch
717 * that too. Thus:
718 *
719 * head->list->prev->next bit 1 bit 0
720 * ------- -------
721 * Normal page 0 0
722 * Points to head page 0 1
723 * New head page 1 0
724 *
725 * Note we can not trust the prev pointer of the head page, because:
726 *
727 * +----+ +-----+ +-----+
728 * | |------>| T |---X--->| N |
729 * | |<------| | | |
730 * +----+ +-----+ +-----+
731 * ^ ^ |
732 * | +-----+ | |
733 * +----------| R |----------+ |
734 * | |<-----------+
735 * +-----+
736 *
737 * Key: ---X--> HEAD flag set in pointer
738 * T Tail page
739 * R Reader page
740 * N Next page
741 *
742 * (see __rb_reserve_next() to see where this happens)
743 *
744 * What the above shows is that the reader just swapped out
745 * the reader page with a page in the buffer, but before it
746 * could make the new header point back to the new page added
747 * it was preempted by a writer. The writer moved forward onto
748 * the new page added by the reader and is about to move forward
749 * again.
750 *
751 * You can see, it is legitimate for the previous pointer of
752 * the head (or any page) not to point back to itself. But only
753 * temporarially.
754 */
755
756 #define RB_PAGE_NORMAL 0UL
757 #define RB_PAGE_HEAD 1UL
758 #define RB_PAGE_UPDATE 2UL
759
760
761 #define RB_FLAG_MASK 3UL
762
763 /* PAGE_MOVED is not part of the mask */
764 #define RB_PAGE_MOVED 4UL
765
766 /*
767 * rb_list_head - remove any bit
768 */
769 static struct list_head *rb_list_head(struct list_head *list)
770 {
771 unsigned long val = (unsigned long)list;
772
773 return (struct list_head *)(val & ~RB_FLAG_MASK);
774 }
775
776 /*
777 * rb_is_head_page - test if the given page is the head page
778 *
779 * Because the reader may move the head_page pointer, we can
780 * not trust what the head page is (it may be pointing to
781 * the reader page). But if the next page is a header page,
782 * its flags will be non zero.
783 */
784 static inline int
785 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
786 struct buffer_page *page, struct list_head *list)
787 {
788 unsigned long val;
789
790 val = (unsigned long)list->next;
791
792 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
793 return RB_PAGE_MOVED;
794
795 return val & RB_FLAG_MASK;
796 }
797
798 /*
799 * rb_is_reader_page
800 *
801 * The unique thing about the reader page, is that, if the
802 * writer is ever on it, the previous pointer never points
803 * back to the reader page.
804 */
805 static int rb_is_reader_page(struct buffer_page *page)
806 {
807 struct list_head *list = page->list.prev;
808
809 return rb_list_head(list->next) != &page->list;
810 }
811
812 /*
813 * rb_set_list_to_head - set a list_head to be pointing to head.
814 */
815 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
816 struct list_head *list)
817 {
818 unsigned long *ptr;
819
820 ptr = (unsigned long *)&list->next;
821 *ptr |= RB_PAGE_HEAD;
822 *ptr &= ~RB_PAGE_UPDATE;
823 }
824
825 /*
826 * rb_head_page_activate - sets up head page
827 */
828 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
829 {
830 struct buffer_page *head;
831
832 head = cpu_buffer->head_page;
833 if (!head)
834 return;
835
836 /*
837 * Set the previous list pointer to have the HEAD flag.
838 */
839 rb_set_list_to_head(cpu_buffer, head->list.prev);
840 }
841
842 static void rb_list_head_clear(struct list_head *list)
843 {
844 unsigned long *ptr = (unsigned long *)&list->next;
845
846 *ptr &= ~RB_FLAG_MASK;
847 }
848
849 /*
850 * rb_head_page_dactivate - clears head page ptr (for free list)
851 */
852 static void
853 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
854 {
855 struct list_head *hd;
856
857 /* Go through the whole list and clear any pointers found. */
858 rb_list_head_clear(cpu_buffer->pages);
859
860 list_for_each(hd, cpu_buffer->pages)
861 rb_list_head_clear(hd);
862 }
863
864 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
865 struct buffer_page *head,
866 struct buffer_page *prev,
867 int old_flag, int new_flag)
868 {
869 struct list_head *list;
870 unsigned long val = (unsigned long)&head->list;
871 unsigned long ret;
872
873 list = &prev->list;
874
875 val &= ~RB_FLAG_MASK;
876
877 ret = cmpxchg((unsigned long *)&list->next,
878 val | old_flag, val | new_flag);
879
880 /* check if the reader took the page */
881 if ((ret & ~RB_FLAG_MASK) != val)
882 return RB_PAGE_MOVED;
883
884 return ret & RB_FLAG_MASK;
885 }
886
887 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
888 struct buffer_page *head,
889 struct buffer_page *prev,
890 int old_flag)
891 {
892 return rb_head_page_set(cpu_buffer, head, prev,
893 old_flag, RB_PAGE_UPDATE);
894 }
895
896 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
897 struct buffer_page *head,
898 struct buffer_page *prev,
899 int old_flag)
900 {
901 return rb_head_page_set(cpu_buffer, head, prev,
902 old_flag, RB_PAGE_HEAD);
903 }
904
905 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
906 struct buffer_page *head,
907 struct buffer_page *prev,
908 int old_flag)
909 {
910 return rb_head_page_set(cpu_buffer, head, prev,
911 old_flag, RB_PAGE_NORMAL);
912 }
913
914 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
915 struct buffer_page **bpage)
916 {
917 struct list_head *p = rb_list_head((*bpage)->list.next);
918
919 *bpage = list_entry(p, struct buffer_page, list);
920 }
921
922 static struct buffer_page *
923 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
924 {
925 struct buffer_page *head;
926 struct buffer_page *page;
927 struct list_head *list;
928 int i;
929
930 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
931 return NULL;
932
933 /* sanity check */
934 list = cpu_buffer->pages;
935 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
936 return NULL;
937
938 page = head = cpu_buffer->head_page;
939 /*
940 * It is possible that the writer moves the header behind
941 * where we started, and we miss in one loop.
942 * A second loop should grab the header, but we'll do
943 * three loops just because I'm paranoid.
944 */
945 for (i = 0; i < 3; i++) {
946 do {
947 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
948 cpu_buffer->head_page = page;
949 return page;
950 }
951 rb_inc_page(cpu_buffer, &page);
952 } while (page != head);
953 }
954
955 RB_WARN_ON(cpu_buffer, 1);
956
957 return NULL;
958 }
959
960 static int rb_head_page_replace(struct buffer_page *old,
961 struct buffer_page *new)
962 {
963 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
964 unsigned long val;
965 unsigned long ret;
966
967 val = *ptr & ~RB_FLAG_MASK;
968 val |= RB_PAGE_HEAD;
969
970 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
971
972 return ret == val;
973 }
974
975 /*
976 * rb_tail_page_update - move the tail page forward
977 *
978 * Returns 1 if moved tail page, 0 if someone else did.
979 */
980 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
981 struct buffer_page *tail_page,
982 struct buffer_page *next_page)
983 {
984 struct buffer_page *old_tail;
985 unsigned long old_entries;
986 unsigned long old_write;
987 int ret = 0;
988
989 /*
990 * The tail page now needs to be moved forward.
991 *
992 * We need to reset the tail page, but without messing
993 * with possible erasing of data brought in by interrupts
994 * that have moved the tail page and are currently on it.
995 *
996 * We add a counter to the write field to denote this.
997 */
998 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
999 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1000
1001 /*
1002 * Just make sure we have seen our old_write and synchronize
1003 * with any interrupts that come in.
1004 */
1005 barrier();
1006
1007 /*
1008 * If the tail page is still the same as what we think
1009 * it is, then it is up to us to update the tail
1010 * pointer.
1011 */
1012 if (tail_page == cpu_buffer->tail_page) {
1013 /* Zero the write counter */
1014 unsigned long val = old_write & ~RB_WRITE_MASK;
1015 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1016
1017 /*
1018 * This will only succeed if an interrupt did
1019 * not come in and change it. In which case, we
1020 * do not want to modify it.
1021 *
1022 * We add (void) to let the compiler know that we do not care
1023 * about the return value of these functions. We use the
1024 * cmpxchg to only update if an interrupt did not already
1025 * do it for us. If the cmpxchg fails, we don't care.
1026 */
1027 (void)local_cmpxchg(&next_page->write, old_write, val);
1028 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1029
1030 /*
1031 * No need to worry about races with clearing out the commit.
1032 * it only can increment when a commit takes place. But that
1033 * only happens in the outer most nested commit.
1034 */
1035 local_set(&next_page->page->commit, 0);
1036
1037 old_tail = cmpxchg(&cpu_buffer->tail_page,
1038 tail_page, next_page);
1039
1040 if (old_tail == tail_page)
1041 ret = 1;
1042 }
1043
1044 return ret;
1045 }
1046
1047 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1048 struct buffer_page *bpage)
1049 {
1050 unsigned long val = (unsigned long)bpage;
1051
1052 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1053 return 1;
1054
1055 return 0;
1056 }
1057
1058 /**
1059 * rb_check_list - make sure a pointer to a list has the last bits zero
1060 */
1061 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1062 struct list_head *list)
1063 {
1064 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1065 return 1;
1066 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1067 return 1;
1068 return 0;
1069 }
1070
1071 /**
1072 * check_pages - integrity check of buffer pages
1073 * @cpu_buffer: CPU buffer with pages to test
1074 *
1075 * As a safety measure we check to make sure the data pages have not
1076 * been corrupted.
1077 */
1078 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1079 {
1080 struct list_head *head = cpu_buffer->pages;
1081 struct buffer_page *bpage, *tmp;
1082
1083 /* Reset the head page if it exists */
1084 if (cpu_buffer->head_page)
1085 rb_set_head_page(cpu_buffer);
1086
1087 rb_head_page_deactivate(cpu_buffer);
1088
1089 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1090 return -1;
1091 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1092 return -1;
1093
1094 if (rb_check_list(cpu_buffer, head))
1095 return -1;
1096
1097 list_for_each_entry_safe(bpage, tmp, head, list) {
1098 if (RB_WARN_ON(cpu_buffer,
1099 bpage->list.next->prev != &bpage->list))
1100 return -1;
1101 if (RB_WARN_ON(cpu_buffer,
1102 bpage->list.prev->next != &bpage->list))
1103 return -1;
1104 if (rb_check_list(cpu_buffer, &bpage->list))
1105 return -1;
1106 }
1107
1108 rb_head_page_activate(cpu_buffer);
1109
1110 return 0;
1111 }
1112
1113 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1114 {
1115 int i;
1116 struct buffer_page *bpage, *tmp;
1117
1118 for (i = 0; i < nr_pages; i++) {
1119 struct page *page;
1120 /*
1121 * __GFP_NORETRY flag makes sure that the allocation fails
1122 * gracefully without invoking oom-killer and the system is
1123 * not destabilized.
1124 */
1125 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1126 GFP_KERNEL | __GFP_NORETRY,
1127 cpu_to_node(cpu));
1128 if (!bpage)
1129 goto free_pages;
1130
1131 list_add(&bpage->list, pages);
1132
1133 page = alloc_pages_node(cpu_to_node(cpu),
1134 GFP_KERNEL | __GFP_NORETRY, 0);
1135 if (!page)
1136 goto free_pages;
1137 bpage->page = page_address(page);
1138 rb_init_page(bpage->page);
1139 }
1140
1141 return 0;
1142
1143 free_pages:
1144 list_for_each_entry_safe(bpage, tmp, pages, list) {
1145 list_del_init(&bpage->list);
1146 free_buffer_page(bpage);
1147 }
1148
1149 return -ENOMEM;
1150 }
1151
1152 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1153 unsigned nr_pages)
1154 {
1155 LIST_HEAD(pages);
1156
1157 WARN_ON(!nr_pages);
1158
1159 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1160 return -ENOMEM;
1161
1162 /*
1163 * The ring buffer page list is a circular list that does not
1164 * start and end with a list head. All page list items point to
1165 * other pages.
1166 */
1167 cpu_buffer->pages = pages.next;
1168 list_del(&pages);
1169
1170 cpu_buffer->nr_pages = nr_pages;
1171
1172 rb_check_pages(cpu_buffer);
1173
1174 return 0;
1175 }
1176
1177 static struct ring_buffer_per_cpu *
1178 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1179 {
1180 struct ring_buffer_per_cpu *cpu_buffer;
1181 struct buffer_page *bpage;
1182 struct page *page;
1183 int ret;
1184
1185 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1186 GFP_KERNEL, cpu_to_node(cpu));
1187 if (!cpu_buffer)
1188 return NULL;
1189
1190 cpu_buffer->cpu = cpu;
1191 cpu_buffer->buffer = buffer;
1192 raw_spin_lock_init(&cpu_buffer->reader_lock);
1193 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1194 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1195 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1196 init_completion(&cpu_buffer->update_done);
1197 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1198 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1199
1200 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1201 GFP_KERNEL, cpu_to_node(cpu));
1202 if (!bpage)
1203 goto fail_free_buffer;
1204
1205 rb_check_bpage(cpu_buffer, bpage);
1206
1207 cpu_buffer->reader_page = bpage;
1208 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1209 if (!page)
1210 goto fail_free_reader;
1211 bpage->page = page_address(page);
1212 rb_init_page(bpage->page);
1213
1214 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1215 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1216
1217 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1218 if (ret < 0)
1219 goto fail_free_reader;
1220
1221 cpu_buffer->head_page
1222 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1223 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1224
1225 rb_head_page_activate(cpu_buffer);
1226
1227 return cpu_buffer;
1228
1229 fail_free_reader:
1230 free_buffer_page(cpu_buffer->reader_page);
1231
1232 fail_free_buffer:
1233 kfree(cpu_buffer);
1234 return NULL;
1235 }
1236
1237 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1238 {
1239 struct list_head *head = cpu_buffer->pages;
1240 struct buffer_page *bpage, *tmp;
1241
1242 free_buffer_page(cpu_buffer->reader_page);
1243
1244 rb_head_page_deactivate(cpu_buffer);
1245
1246 if (head) {
1247 list_for_each_entry_safe(bpage, tmp, head, list) {
1248 list_del_init(&bpage->list);
1249 free_buffer_page(bpage);
1250 }
1251 bpage = list_entry(head, struct buffer_page, list);
1252 free_buffer_page(bpage);
1253 }
1254
1255 kfree(cpu_buffer);
1256 }
1257
1258 #ifdef CONFIG_HOTPLUG_CPU
1259 static int rb_cpu_notify(struct notifier_block *self,
1260 unsigned long action, void *hcpu);
1261 #endif
1262
1263 /**
1264 * ring_buffer_alloc - allocate a new ring_buffer
1265 * @size: the size in bytes per cpu that is needed.
1266 * @flags: attributes to set for the ring buffer.
1267 *
1268 * Currently the only flag that is available is the RB_FL_OVERWRITE
1269 * flag. This flag means that the buffer will overwrite old data
1270 * when the buffer wraps. If this flag is not set, the buffer will
1271 * drop data when the tail hits the head.
1272 */
1273 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1274 struct lock_class_key *key)
1275 {
1276 struct ring_buffer *buffer;
1277 int bsize;
1278 int cpu, nr_pages;
1279
1280 /* keep it in its own cache line */
1281 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1282 GFP_KERNEL);
1283 if (!buffer)
1284 return NULL;
1285
1286 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1287 goto fail_free_buffer;
1288
1289 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1290 buffer->flags = flags;
1291 buffer->clock = trace_clock_local;
1292 buffer->reader_lock_key = key;
1293
1294 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1295 init_waitqueue_head(&buffer->irq_work.waiters);
1296
1297 /* need at least two pages */
1298 if (nr_pages < 2)
1299 nr_pages = 2;
1300
1301 /*
1302 * In case of non-hotplug cpu, if the ring-buffer is allocated
1303 * in early initcall, it will not be notified of secondary cpus.
1304 * In that off case, we need to allocate for all possible cpus.
1305 */
1306 #ifdef CONFIG_HOTPLUG_CPU
1307 get_online_cpus();
1308 cpumask_copy(buffer->cpumask, cpu_online_mask);
1309 #else
1310 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1311 #endif
1312 buffer->cpus = nr_cpu_ids;
1313
1314 bsize = sizeof(void *) * nr_cpu_ids;
1315 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1316 GFP_KERNEL);
1317 if (!buffer->buffers)
1318 goto fail_free_cpumask;
1319
1320 for_each_buffer_cpu(buffer, cpu) {
1321 buffer->buffers[cpu] =
1322 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1323 if (!buffer->buffers[cpu])
1324 goto fail_free_buffers;
1325 }
1326
1327 #ifdef CONFIG_HOTPLUG_CPU
1328 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1329 buffer->cpu_notify.priority = 0;
1330 register_cpu_notifier(&buffer->cpu_notify);
1331 #endif
1332
1333 put_online_cpus();
1334 mutex_init(&buffer->mutex);
1335
1336 return buffer;
1337
1338 fail_free_buffers:
1339 for_each_buffer_cpu(buffer, cpu) {
1340 if (buffer->buffers[cpu])
1341 rb_free_cpu_buffer(buffer->buffers[cpu]);
1342 }
1343 kfree(buffer->buffers);
1344
1345 fail_free_cpumask:
1346 free_cpumask_var(buffer->cpumask);
1347 put_online_cpus();
1348
1349 fail_free_buffer:
1350 kfree(buffer);
1351 return NULL;
1352 }
1353 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1354
1355 /**
1356 * ring_buffer_free - free a ring buffer.
1357 * @buffer: the buffer to free.
1358 */
1359 void
1360 ring_buffer_free(struct ring_buffer *buffer)
1361 {
1362 int cpu;
1363
1364 get_online_cpus();
1365
1366 #ifdef CONFIG_HOTPLUG_CPU
1367 unregister_cpu_notifier(&buffer->cpu_notify);
1368 #endif
1369
1370 for_each_buffer_cpu(buffer, cpu)
1371 rb_free_cpu_buffer(buffer->buffers[cpu]);
1372
1373 put_online_cpus();
1374
1375 kfree(buffer->buffers);
1376 free_cpumask_var(buffer->cpumask);
1377
1378 kfree(buffer);
1379 }
1380 EXPORT_SYMBOL_GPL(ring_buffer_free);
1381
1382 void ring_buffer_set_clock(struct ring_buffer *buffer,
1383 u64 (*clock)(void))
1384 {
1385 buffer->clock = clock;
1386 }
1387
1388 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1389
1390 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1391 {
1392 return local_read(&bpage->entries) & RB_WRITE_MASK;
1393 }
1394
1395 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1396 {
1397 return local_read(&bpage->write) & RB_WRITE_MASK;
1398 }
1399
1400 static int
1401 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1402 {
1403 struct list_head *tail_page, *to_remove, *next_page;
1404 struct buffer_page *to_remove_page, *tmp_iter_page;
1405 struct buffer_page *last_page, *first_page;
1406 unsigned int nr_removed;
1407 unsigned long head_bit;
1408 int page_entries;
1409
1410 head_bit = 0;
1411
1412 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1413 atomic_inc(&cpu_buffer->record_disabled);
1414 /*
1415 * We don't race with the readers since we have acquired the reader
1416 * lock. We also don't race with writers after disabling recording.
1417 * This makes it easy to figure out the first and the last page to be
1418 * removed from the list. We unlink all the pages in between including
1419 * the first and last pages. This is done in a busy loop so that we
1420 * lose the least number of traces.
1421 * The pages are freed after we restart recording and unlock readers.
1422 */
1423 tail_page = &cpu_buffer->tail_page->list;
1424
1425 /*
1426 * tail page might be on reader page, we remove the next page
1427 * from the ring buffer
1428 */
1429 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1430 tail_page = rb_list_head(tail_page->next);
1431 to_remove = tail_page;
1432
1433 /* start of pages to remove */
1434 first_page = list_entry(rb_list_head(to_remove->next),
1435 struct buffer_page, list);
1436
1437 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1438 to_remove = rb_list_head(to_remove)->next;
1439 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1440 }
1441
1442 next_page = rb_list_head(to_remove)->next;
1443
1444 /*
1445 * Now we remove all pages between tail_page and next_page.
1446 * Make sure that we have head_bit value preserved for the
1447 * next page
1448 */
1449 tail_page->next = (struct list_head *)((unsigned long)next_page |
1450 head_bit);
1451 next_page = rb_list_head(next_page);
1452 next_page->prev = tail_page;
1453
1454 /* make sure pages points to a valid page in the ring buffer */
1455 cpu_buffer->pages = next_page;
1456
1457 /* update head page */
1458 if (head_bit)
1459 cpu_buffer->head_page = list_entry(next_page,
1460 struct buffer_page, list);
1461
1462 /*
1463 * change read pointer to make sure any read iterators reset
1464 * themselves
1465 */
1466 cpu_buffer->read = 0;
1467
1468 /* pages are removed, resume tracing and then free the pages */
1469 atomic_dec(&cpu_buffer->record_disabled);
1470 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1471
1472 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1473
1474 /* last buffer page to remove */
1475 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1476 list);
1477 tmp_iter_page = first_page;
1478
1479 do {
1480 to_remove_page = tmp_iter_page;
1481 rb_inc_page(cpu_buffer, &tmp_iter_page);
1482
1483 /* update the counters */
1484 page_entries = rb_page_entries(to_remove_page);
1485 if (page_entries) {
1486 /*
1487 * If something was added to this page, it was full
1488 * since it is not the tail page. So we deduct the
1489 * bytes consumed in ring buffer from here.
1490 * Increment overrun to account for the lost events.
1491 */
1492 local_add(page_entries, &cpu_buffer->overrun);
1493 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1494 }
1495
1496 /*
1497 * We have already removed references to this list item, just
1498 * free up the buffer_page and its page
1499 */
1500 free_buffer_page(to_remove_page);
1501 nr_removed--;
1502
1503 } while (to_remove_page != last_page);
1504
1505 RB_WARN_ON(cpu_buffer, nr_removed);
1506
1507 return nr_removed == 0;
1508 }
1509
1510 static int
1511 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1512 {
1513 struct list_head *pages = &cpu_buffer->new_pages;
1514 int retries, success;
1515
1516 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1517 /*
1518 * We are holding the reader lock, so the reader page won't be swapped
1519 * in the ring buffer. Now we are racing with the writer trying to
1520 * move head page and the tail page.
1521 * We are going to adapt the reader page update process where:
1522 * 1. We first splice the start and end of list of new pages between
1523 * the head page and its previous page.
1524 * 2. We cmpxchg the prev_page->next to point from head page to the
1525 * start of new pages list.
1526 * 3. Finally, we update the head->prev to the end of new list.
1527 *
1528 * We will try this process 10 times, to make sure that we don't keep
1529 * spinning.
1530 */
1531 retries = 10;
1532 success = 0;
1533 while (retries--) {
1534 struct list_head *head_page, *prev_page, *r;
1535 struct list_head *last_page, *first_page;
1536 struct list_head *head_page_with_bit;
1537
1538 head_page = &rb_set_head_page(cpu_buffer)->list;
1539 if (!head_page)
1540 break;
1541 prev_page = head_page->prev;
1542
1543 first_page = pages->next;
1544 last_page = pages->prev;
1545
1546 head_page_with_bit = (struct list_head *)
1547 ((unsigned long)head_page | RB_PAGE_HEAD);
1548
1549 last_page->next = head_page_with_bit;
1550 first_page->prev = prev_page;
1551
1552 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1553
1554 if (r == head_page_with_bit) {
1555 /*
1556 * yay, we replaced the page pointer to our new list,
1557 * now, we just have to update to head page's prev
1558 * pointer to point to end of list
1559 */
1560 head_page->prev = last_page;
1561 success = 1;
1562 break;
1563 }
1564 }
1565
1566 if (success)
1567 INIT_LIST_HEAD(pages);
1568 /*
1569 * If we weren't successful in adding in new pages, warn and stop
1570 * tracing
1571 */
1572 RB_WARN_ON(cpu_buffer, !success);
1573 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1574
1575 /* free pages if they weren't inserted */
1576 if (!success) {
1577 struct buffer_page *bpage, *tmp;
1578 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1579 list) {
1580 list_del_init(&bpage->list);
1581 free_buffer_page(bpage);
1582 }
1583 }
1584 return success;
1585 }
1586
1587 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1588 {
1589 int success;
1590
1591 if (cpu_buffer->nr_pages_to_update > 0)
1592 success = rb_insert_pages(cpu_buffer);
1593 else
1594 success = rb_remove_pages(cpu_buffer,
1595 -cpu_buffer->nr_pages_to_update);
1596
1597 if (success)
1598 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1599 }
1600
1601 static void update_pages_handler(struct work_struct *work)
1602 {
1603 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1604 struct ring_buffer_per_cpu, update_pages_work);
1605 rb_update_pages(cpu_buffer);
1606 complete(&cpu_buffer->update_done);
1607 }
1608
1609 /**
1610 * ring_buffer_resize - resize the ring buffer
1611 * @buffer: the buffer to resize.
1612 * @size: the new size.
1613 *
1614 * Minimum size is 2 * BUF_PAGE_SIZE.
1615 *
1616 * Returns 0 on success and < 0 on failure.
1617 */
1618 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1619 int cpu_id)
1620 {
1621 struct ring_buffer_per_cpu *cpu_buffer;
1622 unsigned nr_pages;
1623 int cpu, err = 0;
1624
1625 /*
1626 * Always succeed at resizing a non-existent buffer:
1627 */
1628 if (!buffer)
1629 return size;
1630
1631 /* Make sure the requested buffer exists */
1632 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1633 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1634 return size;
1635
1636 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1637 size *= BUF_PAGE_SIZE;
1638
1639 /* we need a minimum of two pages */
1640 if (size < BUF_PAGE_SIZE * 2)
1641 size = BUF_PAGE_SIZE * 2;
1642
1643 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1644
1645 /*
1646 * Don't succeed if resizing is disabled, as a reader might be
1647 * manipulating the ring buffer and is expecting a sane state while
1648 * this is true.
1649 */
1650 if (atomic_read(&buffer->resize_disabled))
1651 return -EBUSY;
1652
1653 /* prevent another thread from changing buffer sizes */
1654 mutex_lock(&buffer->mutex);
1655
1656 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1657 /* calculate the pages to update */
1658 for_each_buffer_cpu(buffer, cpu) {
1659 cpu_buffer = buffer->buffers[cpu];
1660
1661 cpu_buffer->nr_pages_to_update = nr_pages -
1662 cpu_buffer->nr_pages;
1663 /*
1664 * nothing more to do for removing pages or no update
1665 */
1666 if (cpu_buffer->nr_pages_to_update <= 0)
1667 continue;
1668 /*
1669 * to add pages, make sure all new pages can be
1670 * allocated without receiving ENOMEM
1671 */
1672 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1673 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1674 &cpu_buffer->new_pages, cpu)) {
1675 /* not enough memory for new pages */
1676 err = -ENOMEM;
1677 goto out_err;
1678 }
1679 }
1680
1681 get_online_cpus();
1682 /*
1683 * Fire off all the required work handlers
1684 * We can't schedule on offline CPUs, but it's not necessary
1685 * since we can change their buffer sizes without any race.
1686 */
1687 for_each_buffer_cpu(buffer, cpu) {
1688 cpu_buffer = buffer->buffers[cpu];
1689 if (!cpu_buffer->nr_pages_to_update)
1690 continue;
1691
1692 /* The update must run on the CPU that is being updated. */
1693 preempt_disable();
1694 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1695 rb_update_pages(cpu_buffer);
1696 cpu_buffer->nr_pages_to_update = 0;
1697 } else {
1698 /*
1699 * Can not disable preemption for schedule_work_on()
1700 * on PREEMPT_RT.
1701 */
1702 preempt_enable();
1703 schedule_work_on(cpu,
1704 &cpu_buffer->update_pages_work);
1705 preempt_disable();
1706 }
1707 preempt_enable();
1708 }
1709
1710 /* wait for all the updates to complete */
1711 for_each_buffer_cpu(buffer, cpu) {
1712 cpu_buffer = buffer->buffers[cpu];
1713 if (!cpu_buffer->nr_pages_to_update)
1714 continue;
1715
1716 if (cpu_online(cpu))
1717 wait_for_completion(&cpu_buffer->update_done);
1718 cpu_buffer->nr_pages_to_update = 0;
1719 }
1720
1721 put_online_cpus();
1722 } else {
1723 /* Make sure this CPU has been intitialized */
1724 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1725 goto out;
1726
1727 cpu_buffer = buffer->buffers[cpu_id];
1728
1729 if (nr_pages == cpu_buffer->nr_pages)
1730 goto out;
1731
1732 cpu_buffer->nr_pages_to_update = nr_pages -
1733 cpu_buffer->nr_pages;
1734
1735 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1736 if (cpu_buffer->nr_pages_to_update > 0 &&
1737 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1738 &cpu_buffer->new_pages, cpu_id)) {
1739 err = -ENOMEM;
1740 goto out_err;
1741 }
1742
1743 get_online_cpus();
1744
1745 preempt_disable();
1746 /* The update must run on the CPU that is being updated. */
1747 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1748 rb_update_pages(cpu_buffer);
1749 else {
1750 /*
1751 * Can not disable preemption for schedule_work_on()
1752 * on PREEMPT_RT.
1753 */
1754 preempt_enable();
1755 schedule_work_on(cpu_id,
1756 &cpu_buffer->update_pages_work);
1757 wait_for_completion(&cpu_buffer->update_done);
1758 preempt_disable();
1759 }
1760 preempt_enable();
1761
1762 cpu_buffer->nr_pages_to_update = 0;
1763 put_online_cpus();
1764 }
1765
1766 out:
1767 /*
1768 * The ring buffer resize can happen with the ring buffer
1769 * enabled, so that the update disturbs the tracing as little
1770 * as possible. But if the buffer is disabled, we do not need
1771 * to worry about that, and we can take the time to verify
1772 * that the buffer is not corrupt.
1773 */
1774 if (atomic_read(&buffer->record_disabled)) {
1775 atomic_inc(&buffer->record_disabled);
1776 /*
1777 * Even though the buffer was disabled, we must make sure
1778 * that it is truly disabled before calling rb_check_pages.
1779 * There could have been a race between checking
1780 * record_disable and incrementing it.
1781 */
1782 synchronize_sched();
1783 for_each_buffer_cpu(buffer, cpu) {
1784 cpu_buffer = buffer->buffers[cpu];
1785 rb_check_pages(cpu_buffer);
1786 }
1787 atomic_dec(&buffer->record_disabled);
1788 }
1789
1790 mutex_unlock(&buffer->mutex);
1791 return size;
1792
1793 out_err:
1794 for_each_buffer_cpu(buffer, cpu) {
1795 struct buffer_page *bpage, *tmp;
1796
1797 cpu_buffer = buffer->buffers[cpu];
1798 cpu_buffer->nr_pages_to_update = 0;
1799
1800 if (list_empty(&cpu_buffer->new_pages))
1801 continue;
1802
1803 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1804 list) {
1805 list_del_init(&bpage->list);
1806 free_buffer_page(bpage);
1807 }
1808 }
1809 mutex_unlock(&buffer->mutex);
1810 return err;
1811 }
1812 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1813
1814 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1815 {
1816 mutex_lock(&buffer->mutex);
1817 if (val)
1818 buffer->flags |= RB_FL_OVERWRITE;
1819 else
1820 buffer->flags &= ~RB_FL_OVERWRITE;
1821 mutex_unlock(&buffer->mutex);
1822 }
1823 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1824
1825 static inline void *
1826 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1827 {
1828 return bpage->data + index;
1829 }
1830
1831 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1832 {
1833 return bpage->page->data + index;
1834 }
1835
1836 static inline struct ring_buffer_event *
1837 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1838 {
1839 return __rb_page_index(cpu_buffer->reader_page,
1840 cpu_buffer->reader_page->read);
1841 }
1842
1843 static inline struct ring_buffer_event *
1844 rb_iter_head_event(struct ring_buffer_iter *iter)
1845 {
1846 return __rb_page_index(iter->head_page, iter->head);
1847 }
1848
1849 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1850 {
1851 return local_read(&bpage->page->commit);
1852 }
1853
1854 /* Size is determined by what has been committed */
1855 static inline unsigned rb_page_size(struct buffer_page *bpage)
1856 {
1857 return rb_page_commit(bpage);
1858 }
1859
1860 static inline unsigned
1861 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1862 {
1863 return rb_page_commit(cpu_buffer->commit_page);
1864 }
1865
1866 static inline unsigned
1867 rb_event_index(struct ring_buffer_event *event)
1868 {
1869 unsigned long addr = (unsigned long)event;
1870
1871 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1872 }
1873
1874 static inline int
1875 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1876 struct ring_buffer_event *event)
1877 {
1878 unsigned long addr = (unsigned long)event;
1879 unsigned long index;
1880
1881 index = rb_event_index(event);
1882 addr &= PAGE_MASK;
1883
1884 return cpu_buffer->commit_page->page == (void *)addr &&
1885 rb_commit_index(cpu_buffer) == index;
1886 }
1887
1888 static void
1889 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1890 {
1891 unsigned long max_count;
1892
1893 /*
1894 * We only race with interrupts and NMIs on this CPU.
1895 * If we own the commit event, then we can commit
1896 * all others that interrupted us, since the interruptions
1897 * are in stack format (they finish before they come
1898 * back to us). This allows us to do a simple loop to
1899 * assign the commit to the tail.
1900 */
1901 again:
1902 max_count = cpu_buffer->nr_pages * 100;
1903
1904 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1905 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1906 return;
1907 if (RB_WARN_ON(cpu_buffer,
1908 rb_is_reader_page(cpu_buffer->tail_page)))
1909 return;
1910 local_set(&cpu_buffer->commit_page->page->commit,
1911 rb_page_write(cpu_buffer->commit_page));
1912 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1913 cpu_buffer->write_stamp =
1914 cpu_buffer->commit_page->page->time_stamp;
1915 /* add barrier to keep gcc from optimizing too much */
1916 barrier();
1917 }
1918 while (rb_commit_index(cpu_buffer) !=
1919 rb_page_write(cpu_buffer->commit_page)) {
1920
1921 local_set(&cpu_buffer->commit_page->page->commit,
1922 rb_page_write(cpu_buffer->commit_page));
1923 RB_WARN_ON(cpu_buffer,
1924 local_read(&cpu_buffer->commit_page->page->commit) &
1925 ~RB_WRITE_MASK);
1926 barrier();
1927 }
1928
1929 /* again, keep gcc from optimizing */
1930 barrier();
1931
1932 /*
1933 * If an interrupt came in just after the first while loop
1934 * and pushed the tail page forward, we will be left with
1935 * a dangling commit that will never go forward.
1936 */
1937 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1938 goto again;
1939 }
1940
1941 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1942 {
1943 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1944 cpu_buffer->reader_page->read = 0;
1945 }
1946
1947 static void rb_inc_iter(struct ring_buffer_iter *iter)
1948 {
1949 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950
1951 /*
1952 * The iterator could be on the reader page (it starts there).
1953 * But the head could have moved, since the reader was
1954 * found. Check for this case and assign the iterator
1955 * to the head page instead of next.
1956 */
1957 if (iter->head_page == cpu_buffer->reader_page)
1958 iter->head_page = rb_set_head_page(cpu_buffer);
1959 else
1960 rb_inc_page(cpu_buffer, &iter->head_page);
1961
1962 iter->read_stamp = iter->head_page->page->time_stamp;
1963 iter->head = 0;
1964 }
1965
1966 /* Slow path, do not inline */
1967 static noinline struct ring_buffer_event *
1968 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1969 {
1970 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1971
1972 /* Not the first event on the page? */
1973 if (rb_event_index(event)) {
1974 event->time_delta = delta & TS_MASK;
1975 event->array[0] = delta >> TS_SHIFT;
1976 } else {
1977 /* nope, just zero it */
1978 event->time_delta = 0;
1979 event->array[0] = 0;
1980 }
1981
1982 return skip_time_extend(event);
1983 }
1984
1985 /**
1986 * rb_update_event - update event type and data
1987 * @event: the even to update
1988 * @type: the type of event
1989 * @length: the size of the event field in the ring buffer
1990 *
1991 * Update the type and data fields of the event. The length
1992 * is the actual size that is written to the ring buffer,
1993 * and with this, we can determine what to place into the
1994 * data field.
1995 */
1996 static void
1997 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1998 struct ring_buffer_event *event, unsigned length,
1999 int add_timestamp, u64 delta)
2000 {
2001 /* Only a commit updates the timestamp */
2002 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2003 delta = 0;
2004
2005 /*
2006 * If we need to add a timestamp, then we
2007 * add it to the start of the resevered space.
2008 */
2009 if (unlikely(add_timestamp)) {
2010 event = rb_add_time_stamp(event, delta);
2011 length -= RB_LEN_TIME_EXTEND;
2012 delta = 0;
2013 }
2014
2015 event->time_delta = delta;
2016 length -= RB_EVNT_HDR_SIZE;
2017 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2018 event->type_len = 0;
2019 event->array[0] = length;
2020 } else
2021 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2022 }
2023
2024 /*
2025 * rb_handle_head_page - writer hit the head page
2026 *
2027 * Returns: +1 to retry page
2028 * 0 to continue
2029 * -1 on error
2030 */
2031 static int
2032 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2033 struct buffer_page *tail_page,
2034 struct buffer_page *next_page)
2035 {
2036 struct buffer_page *new_head;
2037 int entries;
2038 int type;
2039 int ret;
2040
2041 entries = rb_page_entries(next_page);
2042
2043 /*
2044 * The hard part is here. We need to move the head
2045 * forward, and protect against both readers on
2046 * other CPUs and writers coming in via interrupts.
2047 */
2048 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2049 RB_PAGE_HEAD);
2050
2051 /*
2052 * type can be one of four:
2053 * NORMAL - an interrupt already moved it for us
2054 * HEAD - we are the first to get here.
2055 * UPDATE - we are the interrupt interrupting
2056 * a current move.
2057 * MOVED - a reader on another CPU moved the next
2058 * pointer to its reader page. Give up
2059 * and try again.
2060 */
2061
2062 switch (type) {
2063 case RB_PAGE_HEAD:
2064 /*
2065 * We changed the head to UPDATE, thus
2066 * it is our responsibility to update
2067 * the counters.
2068 */
2069 local_add(entries, &cpu_buffer->overrun);
2070 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2071
2072 /*
2073 * The entries will be zeroed out when we move the
2074 * tail page.
2075 */
2076
2077 /* still more to do */
2078 break;
2079
2080 case RB_PAGE_UPDATE:
2081 /*
2082 * This is an interrupt that interrupt the
2083 * previous update. Still more to do.
2084 */
2085 break;
2086 case RB_PAGE_NORMAL:
2087 /*
2088 * An interrupt came in before the update
2089 * and processed this for us.
2090 * Nothing left to do.
2091 */
2092 return 1;
2093 case RB_PAGE_MOVED:
2094 /*
2095 * The reader is on another CPU and just did
2096 * a swap with our next_page.
2097 * Try again.
2098 */
2099 return 1;
2100 default:
2101 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2102 return -1;
2103 }
2104
2105 /*
2106 * Now that we are here, the old head pointer is
2107 * set to UPDATE. This will keep the reader from
2108 * swapping the head page with the reader page.
2109 * The reader (on another CPU) will spin till
2110 * we are finished.
2111 *
2112 * We just need to protect against interrupts
2113 * doing the job. We will set the next pointer
2114 * to HEAD. After that, we set the old pointer
2115 * to NORMAL, but only if it was HEAD before.
2116 * otherwise we are an interrupt, and only
2117 * want the outer most commit to reset it.
2118 */
2119 new_head = next_page;
2120 rb_inc_page(cpu_buffer, &new_head);
2121
2122 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2123 RB_PAGE_NORMAL);
2124
2125 /*
2126 * Valid returns are:
2127 * HEAD - an interrupt came in and already set it.
2128 * NORMAL - One of two things:
2129 * 1) We really set it.
2130 * 2) A bunch of interrupts came in and moved
2131 * the page forward again.
2132 */
2133 switch (ret) {
2134 case RB_PAGE_HEAD:
2135 case RB_PAGE_NORMAL:
2136 /* OK */
2137 break;
2138 default:
2139 RB_WARN_ON(cpu_buffer, 1);
2140 return -1;
2141 }
2142
2143 /*
2144 * It is possible that an interrupt came in,
2145 * set the head up, then more interrupts came in
2146 * and moved it again. When we get back here,
2147 * the page would have been set to NORMAL but we
2148 * just set it back to HEAD.
2149 *
2150 * How do you detect this? Well, if that happened
2151 * the tail page would have moved.
2152 */
2153 if (ret == RB_PAGE_NORMAL) {
2154 /*
2155 * If the tail had moved passed next, then we need
2156 * to reset the pointer.
2157 */
2158 if (cpu_buffer->tail_page != tail_page &&
2159 cpu_buffer->tail_page != next_page)
2160 rb_head_page_set_normal(cpu_buffer, new_head,
2161 next_page,
2162 RB_PAGE_HEAD);
2163 }
2164
2165 /*
2166 * If this was the outer most commit (the one that
2167 * changed the original pointer from HEAD to UPDATE),
2168 * then it is up to us to reset it to NORMAL.
2169 */
2170 if (type == RB_PAGE_HEAD) {
2171 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2172 tail_page,
2173 RB_PAGE_UPDATE);
2174 if (RB_WARN_ON(cpu_buffer,
2175 ret != RB_PAGE_UPDATE))
2176 return -1;
2177 }
2178
2179 return 0;
2180 }
2181
2182 static unsigned rb_calculate_event_length(unsigned length)
2183 {
2184 struct ring_buffer_event event; /* Used only for sizeof array */
2185
2186 /* zero length can cause confusions */
2187 if (!length)
2188 length = 1;
2189
2190 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2191 length += sizeof(event.array[0]);
2192
2193 length += RB_EVNT_HDR_SIZE;
2194 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2195
2196 return length;
2197 }
2198
2199 static inline void
2200 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2201 struct buffer_page *tail_page,
2202 unsigned long tail, unsigned long length)
2203 {
2204 struct ring_buffer_event *event;
2205
2206 /*
2207 * Only the event that crossed the page boundary
2208 * must fill the old tail_page with padding.
2209 */
2210 if (tail >= BUF_PAGE_SIZE) {
2211 /*
2212 * If the page was filled, then we still need
2213 * to update the real_end. Reset it to zero
2214 * and the reader will ignore it.
2215 */
2216 if (tail == BUF_PAGE_SIZE)
2217 tail_page->real_end = 0;
2218
2219 local_sub(length, &tail_page->write);
2220 return;
2221 }
2222
2223 event = __rb_page_index(tail_page, tail);
2224 kmemcheck_annotate_bitfield(event, bitfield);
2225
2226 /* account for padding bytes */
2227 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2228
2229 /*
2230 * Save the original length to the meta data.
2231 * This will be used by the reader to add lost event
2232 * counter.
2233 */
2234 tail_page->real_end = tail;
2235
2236 /*
2237 * If this event is bigger than the minimum size, then
2238 * we need to be careful that we don't subtract the
2239 * write counter enough to allow another writer to slip
2240 * in on this page.
2241 * We put in a discarded commit instead, to make sure
2242 * that this space is not used again.
2243 *
2244 * If we are less than the minimum size, we don't need to
2245 * worry about it.
2246 */
2247 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2248 /* No room for any events */
2249
2250 /* Mark the rest of the page with padding */
2251 rb_event_set_padding(event);
2252
2253 /* Set the write back to the previous setting */
2254 local_sub(length, &tail_page->write);
2255 return;
2256 }
2257
2258 /* Put in a discarded event */
2259 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2260 event->type_len = RINGBUF_TYPE_PADDING;
2261 /* time delta must be non zero */
2262 event->time_delta = 1;
2263
2264 /* Set write to end of buffer */
2265 length = (tail + length) - BUF_PAGE_SIZE;
2266 local_sub(length, &tail_page->write);
2267 }
2268
2269 /*
2270 * This is the slow path, force gcc not to inline it.
2271 */
2272 static noinline struct ring_buffer_event *
2273 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2274 unsigned long length, unsigned long tail,
2275 struct buffer_page *tail_page, u64 ts)
2276 {
2277 struct buffer_page *commit_page = cpu_buffer->commit_page;
2278 struct ring_buffer *buffer = cpu_buffer->buffer;
2279 struct buffer_page *next_page;
2280 int ret;
2281
2282 next_page = tail_page;
2283
2284 rb_inc_page(cpu_buffer, &next_page);
2285
2286 /*
2287 * If for some reason, we had an interrupt storm that made
2288 * it all the way around the buffer, bail, and warn
2289 * about it.
2290 */
2291 if (unlikely(next_page == commit_page)) {
2292 local_inc(&cpu_buffer->commit_overrun);
2293 goto out_reset;
2294 }
2295
2296 /*
2297 * This is where the fun begins!
2298 *
2299 * We are fighting against races between a reader that
2300 * could be on another CPU trying to swap its reader
2301 * page with the buffer head.
2302 *
2303 * We are also fighting against interrupts coming in and
2304 * moving the head or tail on us as well.
2305 *
2306 * If the next page is the head page then we have filled
2307 * the buffer, unless the commit page is still on the
2308 * reader page.
2309 */
2310 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2311
2312 /*
2313 * If the commit is not on the reader page, then
2314 * move the header page.
2315 */
2316 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2317 /*
2318 * If we are not in overwrite mode,
2319 * this is easy, just stop here.
2320 */
2321 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2322 local_inc(&cpu_buffer->dropped_events);
2323 goto out_reset;
2324 }
2325
2326 ret = rb_handle_head_page(cpu_buffer,
2327 tail_page,
2328 next_page);
2329 if (ret < 0)
2330 goto out_reset;
2331 if (ret)
2332 goto out_again;
2333 } else {
2334 /*
2335 * We need to be careful here too. The
2336 * commit page could still be on the reader
2337 * page. We could have a small buffer, and
2338 * have filled up the buffer with events
2339 * from interrupts and such, and wrapped.
2340 *
2341 * Note, if the tail page is also the on the
2342 * reader_page, we let it move out.
2343 */
2344 if (unlikely((cpu_buffer->commit_page !=
2345 cpu_buffer->tail_page) &&
2346 (cpu_buffer->commit_page ==
2347 cpu_buffer->reader_page))) {
2348 local_inc(&cpu_buffer->commit_overrun);
2349 goto out_reset;
2350 }
2351 }
2352 }
2353
2354 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2355 if (ret) {
2356 /*
2357 * Nested commits always have zero deltas, so
2358 * just reread the time stamp
2359 */
2360 ts = rb_time_stamp(buffer);
2361 next_page->page->time_stamp = ts;
2362 }
2363
2364 out_again:
2365
2366 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2367
2368 /* fail and let the caller try again */
2369 return ERR_PTR(-EAGAIN);
2370
2371 out_reset:
2372 /* reset write */
2373 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2374
2375 return NULL;
2376 }
2377
2378 static struct ring_buffer_event *
2379 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2380 unsigned long length, u64 ts,
2381 u64 delta, int add_timestamp)
2382 {
2383 struct buffer_page *tail_page;
2384 struct ring_buffer_event *event;
2385 unsigned long tail, write;
2386
2387 /*
2388 * If the time delta since the last event is too big to
2389 * hold in the time field of the event, then we append a
2390 * TIME EXTEND event ahead of the data event.
2391 */
2392 if (unlikely(add_timestamp))
2393 length += RB_LEN_TIME_EXTEND;
2394
2395 tail_page = cpu_buffer->tail_page;
2396 write = local_add_return(length, &tail_page->write);
2397
2398 /* set write to only the index of the write */
2399 write &= RB_WRITE_MASK;
2400 tail = write - length;
2401
2402 /*
2403 * If this is the first commit on the page, then it has the same
2404 * timestamp as the page itself.
2405 */
2406 if (!tail)
2407 delta = 0;
2408
2409 /* See if we shot pass the end of this buffer page */
2410 if (unlikely(write > BUF_PAGE_SIZE))
2411 return rb_move_tail(cpu_buffer, length, tail,
2412 tail_page, ts);
2413
2414 /* We reserved something on the buffer */
2415
2416 event = __rb_page_index(tail_page, tail);
2417 kmemcheck_annotate_bitfield(event, bitfield);
2418 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2419
2420 local_inc(&tail_page->entries);
2421
2422 /*
2423 * If this is the first commit on the page, then update
2424 * its timestamp.
2425 */
2426 if (!tail)
2427 tail_page->page->time_stamp = ts;
2428
2429 /* account for these added bytes */
2430 local_add(length, &cpu_buffer->entries_bytes);
2431
2432 return event;
2433 }
2434
2435 static inline int
2436 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2437 struct ring_buffer_event *event)
2438 {
2439 unsigned long new_index, old_index;
2440 struct buffer_page *bpage;
2441 unsigned long index;
2442 unsigned long addr;
2443
2444 new_index = rb_event_index(event);
2445 old_index = new_index + rb_event_ts_length(event);
2446 addr = (unsigned long)event;
2447 addr &= PAGE_MASK;
2448
2449 bpage = cpu_buffer->tail_page;
2450
2451 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2452 unsigned long write_mask =
2453 local_read(&bpage->write) & ~RB_WRITE_MASK;
2454 unsigned long event_length = rb_event_length(event);
2455 /*
2456 * This is on the tail page. It is possible that
2457 * a write could come in and move the tail page
2458 * and write to the next page. That is fine
2459 * because we just shorten what is on this page.
2460 */
2461 old_index += write_mask;
2462 new_index += write_mask;
2463 index = local_cmpxchg(&bpage->write, old_index, new_index);
2464 if (index == old_index) {
2465 /* update counters */
2466 local_sub(event_length, &cpu_buffer->entries_bytes);
2467 return 1;
2468 }
2469 }
2470
2471 /* could not discard */
2472 return 0;
2473 }
2474
2475 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2476 {
2477 local_inc(&cpu_buffer->committing);
2478 local_inc(&cpu_buffer->commits);
2479 }
2480
2481 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2482 {
2483 unsigned long commits;
2484
2485 if (RB_WARN_ON(cpu_buffer,
2486 !local_read(&cpu_buffer->committing)))
2487 return;
2488
2489 again:
2490 commits = local_read(&cpu_buffer->commits);
2491 /* synchronize with interrupts */
2492 barrier();
2493 if (local_read(&cpu_buffer->committing) == 1)
2494 rb_set_commit_to_write(cpu_buffer);
2495
2496 local_dec(&cpu_buffer->committing);
2497
2498 /* synchronize with interrupts */
2499 barrier();
2500
2501 /*
2502 * Need to account for interrupts coming in between the
2503 * updating of the commit page and the clearing of the
2504 * committing counter.
2505 */
2506 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2507 !local_read(&cpu_buffer->committing)) {
2508 local_inc(&cpu_buffer->committing);
2509 goto again;
2510 }
2511 }
2512
2513 static struct ring_buffer_event *
2514 rb_reserve_next_event(struct ring_buffer *buffer,
2515 struct ring_buffer_per_cpu *cpu_buffer,
2516 unsigned long length)
2517 {
2518 struct ring_buffer_event *event;
2519 u64 ts, delta;
2520 int nr_loops = 0;
2521 int add_timestamp;
2522 u64 diff;
2523
2524 rb_start_commit(cpu_buffer);
2525
2526 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2527 /*
2528 * Due to the ability to swap a cpu buffer from a buffer
2529 * it is possible it was swapped before we committed.
2530 * (committing stops a swap). We check for it here and
2531 * if it happened, we have to fail the write.
2532 */
2533 barrier();
2534 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2535 local_dec(&cpu_buffer->committing);
2536 local_dec(&cpu_buffer->commits);
2537 return NULL;
2538 }
2539 #endif
2540
2541 length = rb_calculate_event_length(length);
2542 again:
2543 add_timestamp = 0;
2544 delta = 0;
2545
2546 /*
2547 * We allow for interrupts to reenter here and do a trace.
2548 * If one does, it will cause this original code to loop
2549 * back here. Even with heavy interrupts happening, this
2550 * should only happen a few times in a row. If this happens
2551 * 1000 times in a row, there must be either an interrupt
2552 * storm or we have something buggy.
2553 * Bail!
2554 */
2555 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2556 goto out_fail;
2557
2558 ts = rb_time_stamp(cpu_buffer->buffer);
2559 diff = ts - cpu_buffer->write_stamp;
2560
2561 /* make sure this diff is calculated here */
2562 barrier();
2563
2564 /* Did the write stamp get updated already? */
2565 if (likely(ts >= cpu_buffer->write_stamp)) {
2566 delta = diff;
2567 if (unlikely(test_time_stamp(delta))) {
2568 int local_clock_stable = 1;
2569 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2570 local_clock_stable = sched_clock_stable;
2571 #endif
2572 WARN_ONCE(delta > (1ULL << 59),
2573 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2574 (unsigned long long)delta,
2575 (unsigned long long)ts,
2576 (unsigned long long)cpu_buffer->write_stamp,
2577 local_clock_stable ? "" :
2578 "If you just came from a suspend/resume,\n"
2579 "please switch to the trace global clock:\n"
2580 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2581 add_timestamp = 1;
2582 }
2583 }
2584
2585 event = __rb_reserve_next(cpu_buffer, length, ts,
2586 delta, add_timestamp);
2587 if (unlikely(PTR_ERR(event) == -EAGAIN))
2588 goto again;
2589
2590 if (!event)
2591 goto out_fail;
2592
2593 return event;
2594
2595 out_fail:
2596 rb_end_commit(cpu_buffer);
2597 return NULL;
2598 }
2599
2600 #ifdef CONFIG_TRACING
2601
2602 /*
2603 * The lock and unlock are done within a preempt disable section.
2604 * The current_context per_cpu variable can only be modified
2605 * by the current task between lock and unlock. But it can
2606 * be modified more than once via an interrupt. To pass this
2607 * information from the lock to the unlock without having to
2608 * access the 'in_interrupt()' functions again (which do show
2609 * a bit of overhead in something as critical as function tracing,
2610 * we use a bitmask trick.
2611 *
2612 * bit 0 = NMI context
2613 * bit 1 = IRQ context
2614 * bit 2 = SoftIRQ context
2615 * bit 3 = normal context.
2616 *
2617 * This works because this is the order of contexts that can
2618 * preempt other contexts. A SoftIRQ never preempts an IRQ
2619 * context.
2620 *
2621 * When the context is determined, the corresponding bit is
2622 * checked and set (if it was set, then a recursion of that context
2623 * happened).
2624 *
2625 * On unlock, we need to clear this bit. To do so, just subtract
2626 * 1 from the current_context and AND it to itself.
2627 *
2628 * (binary)
2629 * 101 - 1 = 100
2630 * 101 & 100 = 100 (clearing bit zero)
2631 *
2632 * 1010 - 1 = 1001
2633 * 1010 & 1001 = 1000 (clearing bit 1)
2634 *
2635 * The least significant bit can be cleared this way, and it
2636 * just so happens that it is the same bit corresponding to
2637 * the current context.
2638 */
2639 static DEFINE_PER_CPU(unsigned int, current_context);
2640
2641 static __always_inline int trace_recursive_lock(void)
2642 {
2643 unsigned int val = this_cpu_read(current_context);
2644 int bit;
2645
2646 if (in_interrupt()) {
2647 if (in_nmi())
2648 bit = 0;
2649 else if (in_irq())
2650 bit = 1;
2651 else
2652 bit = 2;
2653 } else
2654 bit = 3;
2655
2656 if (unlikely(val & (1 << bit)))
2657 return 1;
2658
2659 val |= (1 << bit);
2660 this_cpu_write(current_context, val);
2661
2662 return 0;
2663 }
2664
2665 static __always_inline void trace_recursive_unlock(void)
2666 {
2667 unsigned int val = this_cpu_read(current_context);
2668
2669 val--;
2670 val &= this_cpu_read(current_context);
2671 this_cpu_write(current_context, val);
2672 }
2673
2674 #else
2675
2676 #define trace_recursive_lock() (0)
2677 #define trace_recursive_unlock() do { } while (0)
2678
2679 #endif
2680
2681 /**
2682 * ring_buffer_lock_reserve - reserve a part of the buffer
2683 * @buffer: the ring buffer to reserve from
2684 * @length: the length of the data to reserve (excluding event header)
2685 *
2686 * Returns a reseverd event on the ring buffer to copy directly to.
2687 * The user of this interface will need to get the body to write into
2688 * and can use the ring_buffer_event_data() interface.
2689 *
2690 * The length is the length of the data needed, not the event length
2691 * which also includes the event header.
2692 *
2693 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2694 * If NULL is returned, then nothing has been allocated or locked.
2695 */
2696 struct ring_buffer_event *
2697 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2698 {
2699 struct ring_buffer_per_cpu *cpu_buffer;
2700 struct ring_buffer_event *event;
2701 int cpu;
2702
2703 if (ring_buffer_flags != RB_BUFFERS_ON)
2704 return NULL;
2705
2706 /* If we are tracing schedule, we don't want to recurse */
2707 preempt_disable_notrace();
2708
2709 if (atomic_read(&buffer->record_disabled))
2710 goto out_nocheck;
2711
2712 if (trace_recursive_lock())
2713 goto out_nocheck;
2714
2715 cpu = raw_smp_processor_id();
2716
2717 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2718 goto out;
2719
2720 cpu_buffer = buffer->buffers[cpu];
2721
2722 if (atomic_read(&cpu_buffer->record_disabled))
2723 goto out;
2724
2725 if (length > BUF_MAX_DATA_SIZE)
2726 goto out;
2727
2728 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2729 if (!event)
2730 goto out;
2731
2732 return event;
2733
2734 out:
2735 trace_recursive_unlock();
2736
2737 out_nocheck:
2738 preempt_enable_notrace();
2739 return NULL;
2740 }
2741 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2742
2743 static void
2744 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2745 struct ring_buffer_event *event)
2746 {
2747 u64 delta;
2748
2749 /*
2750 * The event first in the commit queue updates the
2751 * time stamp.
2752 */
2753 if (rb_event_is_commit(cpu_buffer, event)) {
2754 /*
2755 * A commit event that is first on a page
2756 * updates the write timestamp with the page stamp
2757 */
2758 if (!rb_event_index(event))
2759 cpu_buffer->write_stamp =
2760 cpu_buffer->commit_page->page->time_stamp;
2761 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2762 delta = event->array[0];
2763 delta <<= TS_SHIFT;
2764 delta += event->time_delta;
2765 cpu_buffer->write_stamp += delta;
2766 } else
2767 cpu_buffer->write_stamp += event->time_delta;
2768 }
2769 }
2770
2771 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2772 struct ring_buffer_event *event)
2773 {
2774 local_inc(&cpu_buffer->entries);
2775 rb_update_write_stamp(cpu_buffer, event);
2776 rb_end_commit(cpu_buffer);
2777 }
2778
2779 static __always_inline void
2780 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2781 {
2782 if (buffer->irq_work.waiters_pending) {
2783 buffer->irq_work.waiters_pending = false;
2784 /* irq_work_queue() supplies it's own memory barriers */
2785 irq_work_queue(&buffer->irq_work.work);
2786 }
2787
2788 if (cpu_buffer->irq_work.waiters_pending) {
2789 cpu_buffer->irq_work.waiters_pending = false;
2790 /* irq_work_queue() supplies it's own memory barriers */
2791 irq_work_queue(&cpu_buffer->irq_work.work);
2792 }
2793 }
2794
2795 /**
2796 * ring_buffer_unlock_commit - commit a reserved
2797 * @buffer: The buffer to commit to
2798 * @event: The event pointer to commit.
2799 *
2800 * This commits the data to the ring buffer, and releases any locks held.
2801 *
2802 * Must be paired with ring_buffer_lock_reserve.
2803 */
2804 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2805 struct ring_buffer_event *event)
2806 {
2807 struct ring_buffer_per_cpu *cpu_buffer;
2808 int cpu = raw_smp_processor_id();
2809
2810 cpu_buffer = buffer->buffers[cpu];
2811
2812 rb_commit(cpu_buffer, event);
2813
2814 rb_wakeups(buffer, cpu_buffer);
2815
2816 trace_recursive_unlock();
2817
2818 preempt_enable_notrace();
2819
2820 return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2823
2824 static inline void rb_event_discard(struct ring_buffer_event *event)
2825 {
2826 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2827 event = skip_time_extend(event);
2828
2829 /* array[0] holds the actual length for the discarded event */
2830 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2831 event->type_len = RINGBUF_TYPE_PADDING;
2832 /* time delta must be non zero */
2833 if (!event->time_delta)
2834 event->time_delta = 1;
2835 }
2836
2837 /*
2838 * Decrement the entries to the page that an event is on.
2839 * The event does not even need to exist, only the pointer
2840 * to the page it is on. This may only be called before the commit
2841 * takes place.
2842 */
2843 static inline void
2844 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2845 struct ring_buffer_event *event)
2846 {
2847 unsigned long addr = (unsigned long)event;
2848 struct buffer_page *bpage = cpu_buffer->commit_page;
2849 struct buffer_page *start;
2850
2851 addr &= PAGE_MASK;
2852
2853 /* Do the likely case first */
2854 if (likely(bpage->page == (void *)addr)) {
2855 local_dec(&bpage->entries);
2856 return;
2857 }
2858
2859 /*
2860 * Because the commit page may be on the reader page we
2861 * start with the next page and check the end loop there.
2862 */
2863 rb_inc_page(cpu_buffer, &bpage);
2864 start = bpage;
2865 do {
2866 if (bpage->page == (void *)addr) {
2867 local_dec(&bpage->entries);
2868 return;
2869 }
2870 rb_inc_page(cpu_buffer, &bpage);
2871 } while (bpage != start);
2872
2873 /* commit not part of this buffer?? */
2874 RB_WARN_ON(cpu_buffer, 1);
2875 }
2876
2877 /**
2878 * ring_buffer_commit_discard - discard an event that has not been committed
2879 * @buffer: the ring buffer
2880 * @event: non committed event to discard
2881 *
2882 * Sometimes an event that is in the ring buffer needs to be ignored.
2883 * This function lets the user discard an event in the ring buffer
2884 * and then that event will not be read later.
2885 *
2886 * This function only works if it is called before the the item has been
2887 * committed. It will try to free the event from the ring buffer
2888 * if another event has not been added behind it.
2889 *
2890 * If another event has been added behind it, it will set the event
2891 * up as discarded, and perform the commit.
2892 *
2893 * If this function is called, do not call ring_buffer_unlock_commit on
2894 * the event.
2895 */
2896 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2897 struct ring_buffer_event *event)
2898 {
2899 struct ring_buffer_per_cpu *cpu_buffer;
2900 int cpu;
2901
2902 /* The event is discarded regardless */
2903 rb_event_discard(event);
2904
2905 cpu = smp_processor_id();
2906 cpu_buffer = buffer->buffers[cpu];
2907
2908 /*
2909 * This must only be called if the event has not been
2910 * committed yet. Thus we can assume that preemption
2911 * is still disabled.
2912 */
2913 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2914
2915 rb_decrement_entry(cpu_buffer, event);
2916 if (rb_try_to_discard(cpu_buffer, event))
2917 goto out;
2918
2919 /*
2920 * The commit is still visible by the reader, so we
2921 * must still update the timestamp.
2922 */
2923 rb_update_write_stamp(cpu_buffer, event);
2924 out:
2925 rb_end_commit(cpu_buffer);
2926
2927 trace_recursive_unlock();
2928
2929 preempt_enable_notrace();
2930
2931 }
2932 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2933
2934 /**
2935 * ring_buffer_write - write data to the buffer without reserving
2936 * @buffer: The ring buffer to write to.
2937 * @length: The length of the data being written (excluding the event header)
2938 * @data: The data to write to the buffer.
2939 *
2940 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2941 * one function. If you already have the data to write to the buffer, it
2942 * may be easier to simply call this function.
2943 *
2944 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2945 * and not the length of the event which would hold the header.
2946 */
2947 int ring_buffer_write(struct ring_buffer *buffer,
2948 unsigned long length,
2949 void *data)
2950 {
2951 struct ring_buffer_per_cpu *cpu_buffer;
2952 struct ring_buffer_event *event;
2953 void *body;
2954 int ret = -EBUSY;
2955 int cpu;
2956
2957 if (ring_buffer_flags != RB_BUFFERS_ON)
2958 return -EBUSY;
2959
2960 preempt_disable_notrace();
2961
2962 if (atomic_read(&buffer->record_disabled))
2963 goto out;
2964
2965 cpu = raw_smp_processor_id();
2966
2967 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968 goto out;
2969
2970 cpu_buffer = buffer->buffers[cpu];
2971
2972 if (atomic_read(&cpu_buffer->record_disabled))
2973 goto out;
2974
2975 if (length > BUF_MAX_DATA_SIZE)
2976 goto out;
2977
2978 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2979 if (!event)
2980 goto out;
2981
2982 body = rb_event_data(event);
2983
2984 memcpy(body, data, length);
2985
2986 rb_commit(cpu_buffer, event);
2987
2988 rb_wakeups(buffer, cpu_buffer);
2989
2990 ret = 0;
2991 out:
2992 preempt_enable_notrace();
2993
2994 return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(ring_buffer_write);
2997
2998 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2999 {
3000 struct buffer_page *reader = cpu_buffer->reader_page;
3001 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3002 struct buffer_page *commit = cpu_buffer->commit_page;
3003
3004 /* In case of error, head will be NULL */
3005 if (unlikely(!head))
3006 return 1;
3007
3008 return reader->read == rb_page_commit(reader) &&
3009 (commit == reader ||
3010 (commit == head &&
3011 head->read == rb_page_commit(commit)));
3012 }
3013
3014 /**
3015 * ring_buffer_record_disable - stop all writes into the buffer
3016 * @buffer: The ring buffer to stop writes to.
3017 *
3018 * This prevents all writes to the buffer. Any attempt to write
3019 * to the buffer after this will fail and return NULL.
3020 *
3021 * The caller should call synchronize_sched() after this.
3022 */
3023 void ring_buffer_record_disable(struct ring_buffer *buffer)
3024 {
3025 atomic_inc(&buffer->record_disabled);
3026 }
3027 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3028
3029 /**
3030 * ring_buffer_record_enable - enable writes to the buffer
3031 * @buffer: The ring buffer to enable writes
3032 *
3033 * Note, multiple disables will need the same number of enables
3034 * to truly enable the writing (much like preempt_disable).
3035 */
3036 void ring_buffer_record_enable(struct ring_buffer *buffer)
3037 {
3038 atomic_dec(&buffer->record_disabled);
3039 }
3040 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3041
3042 /**
3043 * ring_buffer_record_off - stop all writes into the buffer
3044 * @buffer: The ring buffer to stop writes to.
3045 *
3046 * This prevents all writes to the buffer. Any attempt to write
3047 * to the buffer after this will fail and return NULL.
3048 *
3049 * This is different than ring_buffer_record_disable() as
3050 * it works like an on/off switch, where as the disable() version
3051 * must be paired with a enable().
3052 */
3053 void ring_buffer_record_off(struct ring_buffer *buffer)
3054 {
3055 unsigned int rd;
3056 unsigned int new_rd;
3057
3058 do {
3059 rd = atomic_read(&buffer->record_disabled);
3060 new_rd = rd | RB_BUFFER_OFF;
3061 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3062 }
3063 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3064
3065 /**
3066 * ring_buffer_record_on - restart writes into the buffer
3067 * @buffer: The ring buffer to start writes to.
3068 *
3069 * This enables all writes to the buffer that was disabled by
3070 * ring_buffer_record_off().
3071 *
3072 * This is different than ring_buffer_record_enable() as
3073 * it works like an on/off switch, where as the enable() version
3074 * must be paired with a disable().
3075 */
3076 void ring_buffer_record_on(struct ring_buffer *buffer)
3077 {
3078 unsigned int rd;
3079 unsigned int new_rd;
3080
3081 do {
3082 rd = atomic_read(&buffer->record_disabled);
3083 new_rd = rd & ~RB_BUFFER_OFF;
3084 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3085 }
3086 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3087
3088 /**
3089 * ring_buffer_record_is_on - return true if the ring buffer can write
3090 * @buffer: The ring buffer to see if write is enabled
3091 *
3092 * Returns true if the ring buffer is in a state that it accepts writes.
3093 */
3094 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3095 {
3096 return !atomic_read(&buffer->record_disabled);
3097 }
3098
3099 /**
3100 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3101 * @buffer: The ring buffer to stop writes to.
3102 * @cpu: The CPU buffer to stop
3103 *
3104 * This prevents all writes to the buffer. Any attempt to write
3105 * to the buffer after this will fail and return NULL.
3106 *
3107 * The caller should call synchronize_sched() after this.
3108 */
3109 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3110 {
3111 struct ring_buffer_per_cpu *cpu_buffer;
3112
3113 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3114 return;
3115
3116 cpu_buffer = buffer->buffers[cpu];
3117 atomic_inc(&cpu_buffer->record_disabled);
3118 }
3119 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3120
3121 /**
3122 * ring_buffer_record_enable_cpu - enable writes to the buffer
3123 * @buffer: The ring buffer to enable writes
3124 * @cpu: The CPU to enable.
3125 *
3126 * Note, multiple disables will need the same number of enables
3127 * to truly enable the writing (much like preempt_disable).
3128 */
3129 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3130 {
3131 struct ring_buffer_per_cpu *cpu_buffer;
3132
3133 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3134 return;
3135
3136 cpu_buffer = buffer->buffers[cpu];
3137 atomic_dec(&cpu_buffer->record_disabled);
3138 }
3139 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3140
3141 /*
3142 * The total entries in the ring buffer is the running counter
3143 * of entries entered into the ring buffer, minus the sum of
3144 * the entries read from the ring buffer and the number of
3145 * entries that were overwritten.
3146 */
3147 static inline unsigned long
3148 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3149 {
3150 return local_read(&cpu_buffer->entries) -
3151 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3152 }
3153
3154 /**
3155 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3156 * @buffer: The ring buffer
3157 * @cpu: The per CPU buffer to read from.
3158 */
3159 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3160 {
3161 unsigned long flags;
3162 struct ring_buffer_per_cpu *cpu_buffer;
3163 struct buffer_page *bpage;
3164 u64 ret = 0;
3165
3166 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3167 return 0;
3168
3169 cpu_buffer = buffer->buffers[cpu];
3170 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3171 /*
3172 * if the tail is on reader_page, oldest time stamp is on the reader
3173 * page
3174 */
3175 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3176 bpage = cpu_buffer->reader_page;
3177 else
3178 bpage = rb_set_head_page(cpu_buffer);
3179 if (bpage)
3180 ret = bpage->page->time_stamp;
3181 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3182
3183 return ret;
3184 }
3185 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3186
3187 /**
3188 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3189 * @buffer: The ring buffer
3190 * @cpu: The per CPU buffer to read from.
3191 */
3192 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3193 {
3194 struct ring_buffer_per_cpu *cpu_buffer;
3195 unsigned long ret;
3196
3197 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198 return 0;
3199
3200 cpu_buffer = buffer->buffers[cpu];
3201 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3202
3203 return ret;
3204 }
3205 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3206
3207 /**
3208 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3209 * @buffer: The ring buffer
3210 * @cpu: The per CPU buffer to get the entries from.
3211 */
3212 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3213 {
3214 struct ring_buffer_per_cpu *cpu_buffer;
3215
3216 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3217 return 0;
3218
3219 cpu_buffer = buffer->buffers[cpu];
3220
3221 return rb_num_of_entries(cpu_buffer);
3222 }
3223 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3224
3225 /**
3226 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3227 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3228 * @buffer: The ring buffer
3229 * @cpu: The per CPU buffer to get the number of overruns from
3230 */
3231 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3232 {
3233 struct ring_buffer_per_cpu *cpu_buffer;
3234 unsigned long ret;
3235
3236 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3237 return 0;
3238
3239 cpu_buffer = buffer->buffers[cpu];
3240 ret = local_read(&cpu_buffer->overrun);
3241
3242 return ret;
3243 }
3244 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3245
3246 /**
3247 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3248 * commits failing due to the buffer wrapping around while there are uncommitted
3249 * events, such as during an interrupt storm.
3250 * @buffer: The ring buffer
3251 * @cpu: The per CPU buffer to get the number of overruns from
3252 */
3253 unsigned long
3254 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3255 {
3256 struct ring_buffer_per_cpu *cpu_buffer;
3257 unsigned long ret;
3258
3259 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3260 return 0;
3261
3262 cpu_buffer = buffer->buffers[cpu];
3263 ret = local_read(&cpu_buffer->commit_overrun);
3264
3265 return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3268
3269 /**
3270 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3271 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3272 * @buffer: The ring buffer
3273 * @cpu: The per CPU buffer to get the number of overruns from
3274 */
3275 unsigned long
3276 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3277 {
3278 struct ring_buffer_per_cpu *cpu_buffer;
3279 unsigned long ret;
3280
3281 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282 return 0;
3283
3284 cpu_buffer = buffer->buffers[cpu];
3285 ret = local_read(&cpu_buffer->dropped_events);
3286
3287 return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3290
3291 /**
3292 * ring_buffer_read_events_cpu - get the number of events successfully read
3293 * @buffer: The ring buffer
3294 * @cpu: The per CPU buffer to get the number of events read
3295 */
3296 unsigned long
3297 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3298 {
3299 struct ring_buffer_per_cpu *cpu_buffer;
3300
3301 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302 return 0;
3303
3304 cpu_buffer = buffer->buffers[cpu];
3305 return cpu_buffer->read;
3306 }
3307 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3308
3309 /**
3310 * ring_buffer_entries - get the number of entries in a buffer
3311 * @buffer: The ring buffer
3312 *
3313 * Returns the total number of entries in the ring buffer
3314 * (all CPU entries)
3315 */
3316 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3317 {
3318 struct ring_buffer_per_cpu *cpu_buffer;
3319 unsigned long entries = 0;
3320 int cpu;
3321
3322 /* if you care about this being correct, lock the buffer */
3323 for_each_buffer_cpu(buffer, cpu) {
3324 cpu_buffer = buffer->buffers[cpu];
3325 entries += rb_num_of_entries(cpu_buffer);
3326 }
3327
3328 return entries;
3329 }
3330 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3331
3332 /**
3333 * ring_buffer_overruns - get the number of overruns in buffer
3334 * @buffer: The ring buffer
3335 *
3336 * Returns the total number of overruns in the ring buffer
3337 * (all CPU entries)
3338 */
3339 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3340 {
3341 struct ring_buffer_per_cpu *cpu_buffer;
3342 unsigned long overruns = 0;
3343 int cpu;
3344
3345 /* if you care about this being correct, lock the buffer */
3346 for_each_buffer_cpu(buffer, cpu) {
3347 cpu_buffer = buffer->buffers[cpu];
3348 overruns += local_read(&cpu_buffer->overrun);
3349 }
3350
3351 return overruns;
3352 }
3353 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3354
3355 static void rb_iter_reset(struct ring_buffer_iter *iter)
3356 {
3357 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3358
3359 /* Iterator usage is expected to have record disabled */
3360 if (list_empty(&cpu_buffer->reader_page->list)) {
3361 iter->head_page = rb_set_head_page(cpu_buffer);
3362 if (unlikely(!iter->head_page))
3363 return;
3364 iter->head = iter->head_page->read;
3365 } else {
3366 iter->head_page = cpu_buffer->reader_page;
3367 iter->head = cpu_buffer->reader_page->read;
3368 }
3369 if (iter->head)
3370 iter->read_stamp = cpu_buffer->read_stamp;
3371 else
3372 iter->read_stamp = iter->head_page->page->time_stamp;
3373 iter->cache_reader_page = cpu_buffer->reader_page;
3374 iter->cache_read = cpu_buffer->read;
3375 }
3376
3377 /**
3378 * ring_buffer_iter_reset - reset an iterator
3379 * @iter: The iterator to reset
3380 *
3381 * Resets the iterator, so that it will start from the beginning
3382 * again.
3383 */
3384 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3385 {
3386 struct ring_buffer_per_cpu *cpu_buffer;
3387 unsigned long flags;
3388
3389 if (!iter)
3390 return;
3391
3392 cpu_buffer = iter->cpu_buffer;
3393
3394 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3395 rb_iter_reset(iter);
3396 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3397 }
3398 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3399
3400 /**
3401 * ring_buffer_iter_empty - check if an iterator has no more to read
3402 * @iter: The iterator to check
3403 */
3404 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3405 {
3406 struct ring_buffer_per_cpu *cpu_buffer;
3407
3408 cpu_buffer = iter->cpu_buffer;
3409
3410 return iter->head_page == cpu_buffer->commit_page &&
3411 iter->head == rb_commit_index(cpu_buffer);
3412 }
3413 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3414
3415 static void
3416 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3417 struct ring_buffer_event *event)
3418 {
3419 u64 delta;
3420
3421 switch (event->type_len) {
3422 case RINGBUF_TYPE_PADDING:
3423 return;
3424
3425 case RINGBUF_TYPE_TIME_EXTEND:
3426 delta = event->array[0];
3427 delta <<= TS_SHIFT;
3428 delta += event->time_delta;
3429 cpu_buffer->read_stamp += delta;
3430 return;
3431
3432 case RINGBUF_TYPE_TIME_STAMP:
3433 /* FIXME: not implemented */
3434 return;
3435
3436 case RINGBUF_TYPE_DATA:
3437 cpu_buffer->read_stamp += event->time_delta;
3438 return;
3439
3440 default:
3441 BUG();
3442 }
3443 return;
3444 }
3445
3446 static void
3447 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3448 struct ring_buffer_event *event)
3449 {
3450 u64 delta;
3451
3452 switch (event->type_len) {
3453 case RINGBUF_TYPE_PADDING:
3454 return;
3455
3456 case RINGBUF_TYPE_TIME_EXTEND:
3457 delta = event->array[0];
3458 delta <<= TS_SHIFT;
3459 delta += event->time_delta;
3460 iter->read_stamp += delta;
3461 return;
3462
3463 case RINGBUF_TYPE_TIME_STAMP:
3464 /* FIXME: not implemented */
3465 return;
3466
3467 case RINGBUF_TYPE_DATA:
3468 iter->read_stamp += event->time_delta;
3469 return;
3470
3471 default:
3472 BUG();
3473 }
3474 return;
3475 }
3476
3477 static struct buffer_page *
3478 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3479 {
3480 struct buffer_page *reader = NULL;
3481 unsigned long overwrite;
3482 unsigned long flags;
3483 int nr_loops = 0;
3484 int ret;
3485
3486 local_irq_save(flags);
3487 arch_spin_lock(&cpu_buffer->lock);
3488
3489 again:
3490 /*
3491 * This should normally only loop twice. But because the
3492 * start of the reader inserts an empty page, it causes
3493 * a case where we will loop three times. There should be no
3494 * reason to loop four times (that I know of).
3495 */
3496 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3497 reader = NULL;
3498 goto out;
3499 }
3500
3501 reader = cpu_buffer->reader_page;
3502
3503 /* If there's more to read, return this page */
3504 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3505 goto out;
3506
3507 /* Never should we have an index greater than the size */
3508 if (RB_WARN_ON(cpu_buffer,
3509 cpu_buffer->reader_page->read > rb_page_size(reader)))
3510 goto out;
3511
3512 /* check if we caught up to the tail */
3513 reader = NULL;
3514 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3515 goto out;
3516
3517 /* Don't bother swapping if the ring buffer is empty */
3518 if (rb_num_of_entries(cpu_buffer) == 0)
3519 goto out;
3520
3521 /*
3522 * Reset the reader page to size zero.
3523 */
3524 local_set(&cpu_buffer->reader_page->write, 0);
3525 local_set(&cpu_buffer->reader_page->entries, 0);
3526 local_set(&cpu_buffer->reader_page->page->commit, 0);
3527 cpu_buffer->reader_page->real_end = 0;
3528
3529 spin:
3530 /*
3531 * Splice the empty reader page into the list around the head.
3532 */
3533 reader = rb_set_head_page(cpu_buffer);
3534 if (!reader)
3535 goto out;
3536 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3537 cpu_buffer->reader_page->list.prev = reader->list.prev;
3538
3539 /*
3540 * cpu_buffer->pages just needs to point to the buffer, it
3541 * has no specific buffer page to point to. Lets move it out
3542 * of our way so we don't accidentally swap it.
3543 */
3544 cpu_buffer->pages = reader->list.prev;
3545
3546 /* The reader page will be pointing to the new head */
3547 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3548
3549 /*
3550 * We want to make sure we read the overruns after we set up our
3551 * pointers to the next object. The writer side does a
3552 * cmpxchg to cross pages which acts as the mb on the writer
3553 * side. Note, the reader will constantly fail the swap
3554 * while the writer is updating the pointers, so this
3555 * guarantees that the overwrite recorded here is the one we
3556 * want to compare with the last_overrun.
3557 */
3558 smp_mb();
3559 overwrite = local_read(&(cpu_buffer->overrun));
3560
3561 /*
3562 * Here's the tricky part.
3563 *
3564 * We need to move the pointer past the header page.
3565 * But we can only do that if a writer is not currently
3566 * moving it. The page before the header page has the
3567 * flag bit '1' set if it is pointing to the page we want.
3568 * but if the writer is in the process of moving it
3569 * than it will be '2' or already moved '0'.
3570 */
3571
3572 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3573
3574 /*
3575 * If we did not convert it, then we must try again.
3576 */
3577 if (!ret)
3578 goto spin;
3579
3580 /*
3581 * Yeah! We succeeded in replacing the page.
3582 *
3583 * Now make the new head point back to the reader page.
3584 */
3585 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3586 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3587
3588 /* Finally update the reader page to the new head */
3589 cpu_buffer->reader_page = reader;
3590 rb_reset_reader_page(cpu_buffer);
3591
3592 if (overwrite != cpu_buffer->last_overrun) {
3593 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3594 cpu_buffer->last_overrun = overwrite;
3595 }
3596
3597 goto again;
3598
3599 out:
3600 arch_spin_unlock(&cpu_buffer->lock);
3601 local_irq_restore(flags);
3602
3603 return reader;
3604 }
3605
3606 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3607 {
3608 struct ring_buffer_event *event;
3609 struct buffer_page *reader;
3610 unsigned length;
3611
3612 reader = rb_get_reader_page(cpu_buffer);
3613
3614 /* This function should not be called when buffer is empty */
3615 if (RB_WARN_ON(cpu_buffer, !reader))
3616 return;
3617
3618 event = rb_reader_event(cpu_buffer);
3619
3620 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3621 cpu_buffer->read++;
3622
3623 rb_update_read_stamp(cpu_buffer, event);
3624
3625 length = rb_event_length(event);
3626 cpu_buffer->reader_page->read += length;
3627 }
3628
3629 static void rb_advance_iter(struct ring_buffer_iter *iter)
3630 {
3631 struct ring_buffer_per_cpu *cpu_buffer;
3632 struct ring_buffer_event *event;
3633 unsigned length;
3634
3635 cpu_buffer = iter->cpu_buffer;
3636
3637 /*
3638 * Check if we are at the end of the buffer.
3639 */
3640 if (iter->head >= rb_page_size(iter->head_page)) {
3641 /* discarded commits can make the page empty */
3642 if (iter->head_page == cpu_buffer->commit_page)
3643 return;
3644 rb_inc_iter(iter);
3645 return;
3646 }
3647
3648 event = rb_iter_head_event(iter);
3649
3650 length = rb_event_length(event);
3651
3652 /*
3653 * This should not be called to advance the header if we are
3654 * at the tail of the buffer.
3655 */
3656 if (RB_WARN_ON(cpu_buffer,
3657 (iter->head_page == cpu_buffer->commit_page) &&
3658 (iter->head + length > rb_commit_index(cpu_buffer))))
3659 return;
3660
3661 rb_update_iter_read_stamp(iter, event);
3662
3663 iter->head += length;
3664
3665 /* check for end of page padding */
3666 if ((iter->head >= rb_page_size(iter->head_page)) &&
3667 (iter->head_page != cpu_buffer->commit_page))
3668 rb_inc_iter(iter);
3669 }
3670
3671 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3672 {
3673 return cpu_buffer->lost_events;
3674 }
3675
3676 static struct ring_buffer_event *
3677 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3678 unsigned long *lost_events)
3679 {
3680 struct ring_buffer_event *event;
3681 struct buffer_page *reader;
3682 int nr_loops = 0;
3683
3684 again:
3685 /*
3686 * We repeat when a time extend is encountered.
3687 * Since the time extend is always attached to a data event,
3688 * we should never loop more than once.
3689 * (We never hit the following condition more than twice).
3690 */
3691 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3692 return NULL;
3693
3694 reader = rb_get_reader_page(cpu_buffer);
3695 if (!reader)
3696 return NULL;
3697
3698 event = rb_reader_event(cpu_buffer);
3699
3700 switch (event->type_len) {
3701 case RINGBUF_TYPE_PADDING:
3702 if (rb_null_event(event))
3703 RB_WARN_ON(cpu_buffer, 1);
3704 /*
3705 * Because the writer could be discarding every
3706 * event it creates (which would probably be bad)
3707 * if we were to go back to "again" then we may never
3708 * catch up, and will trigger the warn on, or lock
3709 * the box. Return the padding, and we will release
3710 * the current locks, and try again.
3711 */
3712 return event;
3713
3714 case RINGBUF_TYPE_TIME_EXTEND:
3715 /* Internal data, OK to advance */
3716 rb_advance_reader(cpu_buffer);
3717 goto again;
3718
3719 case RINGBUF_TYPE_TIME_STAMP:
3720 /* FIXME: not implemented */
3721 rb_advance_reader(cpu_buffer);
3722 goto again;
3723
3724 case RINGBUF_TYPE_DATA:
3725 if (ts) {
3726 *ts = cpu_buffer->read_stamp + event->time_delta;
3727 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3728 cpu_buffer->cpu, ts);
3729 }
3730 if (lost_events)
3731 *lost_events = rb_lost_events(cpu_buffer);
3732 return event;
3733
3734 default:
3735 BUG();
3736 }
3737
3738 return NULL;
3739 }
3740 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3741
3742 static struct ring_buffer_event *
3743 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3744 {
3745 struct ring_buffer *buffer;
3746 struct ring_buffer_per_cpu *cpu_buffer;
3747 struct ring_buffer_event *event;
3748 int nr_loops = 0;
3749
3750 cpu_buffer = iter->cpu_buffer;
3751 buffer = cpu_buffer->buffer;
3752
3753 /*
3754 * Check if someone performed a consuming read to
3755 * the buffer. A consuming read invalidates the iterator
3756 * and we need to reset the iterator in this case.
3757 */
3758 if (unlikely(iter->cache_read != cpu_buffer->read ||
3759 iter->cache_reader_page != cpu_buffer->reader_page))
3760 rb_iter_reset(iter);
3761
3762 again:
3763 if (ring_buffer_iter_empty(iter))
3764 return NULL;
3765
3766 /*
3767 * We repeat when a time extend is encountered.
3768 * Since the time extend is always attached to a data event,
3769 * we should never loop more than once.
3770 * (We never hit the following condition more than twice).
3771 */
3772 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3773 return NULL;
3774
3775 if (rb_per_cpu_empty(cpu_buffer))
3776 return NULL;
3777
3778 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3779 rb_inc_iter(iter);
3780 goto again;
3781 }
3782
3783 event = rb_iter_head_event(iter);
3784
3785 switch (event->type_len) {
3786 case RINGBUF_TYPE_PADDING:
3787 if (rb_null_event(event)) {
3788 rb_inc_iter(iter);
3789 goto again;
3790 }
3791 rb_advance_iter(iter);
3792 return event;
3793
3794 case RINGBUF_TYPE_TIME_EXTEND:
3795 /* Internal data, OK to advance */
3796 rb_advance_iter(iter);
3797 goto again;
3798
3799 case RINGBUF_TYPE_TIME_STAMP:
3800 /* FIXME: not implemented */
3801 rb_advance_iter(iter);
3802 goto again;
3803
3804 case RINGBUF_TYPE_DATA:
3805 if (ts) {
3806 *ts = iter->read_stamp + event->time_delta;
3807 ring_buffer_normalize_time_stamp(buffer,
3808 cpu_buffer->cpu, ts);
3809 }
3810 return event;
3811
3812 default:
3813 BUG();
3814 }
3815
3816 return NULL;
3817 }
3818 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3819
3820 static inline int rb_ok_to_lock(void)
3821 {
3822 /*
3823 * If an NMI die dumps out the content of the ring buffer
3824 * do not grab locks. We also permanently disable the ring
3825 * buffer too. A one time deal is all you get from reading
3826 * the ring buffer from an NMI.
3827 */
3828 if (likely(!in_nmi()))
3829 return 1;
3830
3831 tracing_off_permanent();
3832 return 0;
3833 }
3834
3835 /**
3836 * ring_buffer_peek - peek at the next event to be read
3837 * @buffer: The ring buffer to read
3838 * @cpu: The cpu to peak at
3839 * @ts: The timestamp counter of this event.
3840 * @lost_events: a variable to store if events were lost (may be NULL)
3841 *
3842 * This will return the event that will be read next, but does
3843 * not consume the data.
3844 */
3845 struct ring_buffer_event *
3846 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3847 unsigned long *lost_events)
3848 {
3849 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3850 struct ring_buffer_event *event;
3851 unsigned long flags;
3852 int dolock;
3853
3854 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3855 return NULL;
3856
3857 dolock = rb_ok_to_lock();
3858 again:
3859 local_irq_save(flags);
3860 if (dolock)
3861 raw_spin_lock(&cpu_buffer->reader_lock);
3862 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3863 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3864 rb_advance_reader(cpu_buffer);
3865 if (dolock)
3866 raw_spin_unlock(&cpu_buffer->reader_lock);
3867 local_irq_restore(flags);
3868
3869 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3870 goto again;
3871
3872 return event;
3873 }
3874
3875 /**
3876 * ring_buffer_iter_peek - peek at the next event to be read
3877 * @iter: The ring buffer iterator
3878 * @ts: The timestamp counter of this event.
3879 *
3880 * This will return the event that will be read next, but does
3881 * not increment the iterator.
3882 */
3883 struct ring_buffer_event *
3884 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3885 {
3886 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3887 struct ring_buffer_event *event;
3888 unsigned long flags;
3889
3890 again:
3891 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3892 event = rb_iter_peek(iter, ts);
3893 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3894
3895 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896 goto again;
3897
3898 return event;
3899 }
3900
3901 /**
3902 * ring_buffer_consume - return an event and consume it
3903 * @buffer: The ring buffer to get the next event from
3904 * @cpu: the cpu to read the buffer from
3905 * @ts: a variable to store the timestamp (may be NULL)
3906 * @lost_events: a variable to store if events were lost (may be NULL)
3907 *
3908 * Returns the next event in the ring buffer, and that event is consumed.
3909 * Meaning, that sequential reads will keep returning a different event,
3910 * and eventually empty the ring buffer if the producer is slower.
3911 */
3912 struct ring_buffer_event *
3913 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3914 unsigned long *lost_events)
3915 {
3916 struct ring_buffer_per_cpu *cpu_buffer;
3917 struct ring_buffer_event *event = NULL;
3918 unsigned long flags;
3919 int dolock;
3920
3921 dolock = rb_ok_to_lock();
3922
3923 again:
3924 /* might be called in atomic */
3925 preempt_disable();
3926
3927 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3928 goto out;
3929
3930 cpu_buffer = buffer->buffers[cpu];
3931 local_irq_save(flags);
3932 if (dolock)
3933 raw_spin_lock(&cpu_buffer->reader_lock);
3934
3935 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3936 if (event) {
3937 cpu_buffer->lost_events = 0;
3938 rb_advance_reader(cpu_buffer);
3939 }
3940
3941 if (dolock)
3942 raw_spin_unlock(&cpu_buffer->reader_lock);
3943 local_irq_restore(flags);
3944
3945 out:
3946 preempt_enable();
3947
3948 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3949 goto again;
3950
3951 return event;
3952 }
3953 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3954
3955 /**
3956 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3957 * @buffer: The ring buffer to read from
3958 * @cpu: The cpu buffer to iterate over
3959 *
3960 * This performs the initial preparations necessary to iterate
3961 * through the buffer. Memory is allocated, buffer recording
3962 * is disabled, and the iterator pointer is returned to the caller.
3963 *
3964 * Disabling buffer recordng prevents the reading from being
3965 * corrupted. This is not a consuming read, so a producer is not
3966 * expected.
3967 *
3968 * After a sequence of ring_buffer_read_prepare calls, the user is
3969 * expected to make at least one call to ring_buffer_prepare_sync.
3970 * Afterwards, ring_buffer_read_start is invoked to get things going
3971 * for real.
3972 *
3973 * This overall must be paired with ring_buffer_finish.
3974 */
3975 struct ring_buffer_iter *
3976 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3977 {
3978 struct ring_buffer_per_cpu *cpu_buffer;
3979 struct ring_buffer_iter *iter;
3980
3981 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982 return NULL;
3983
3984 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3985 if (!iter)
3986 return NULL;
3987
3988 cpu_buffer = buffer->buffers[cpu];
3989
3990 iter->cpu_buffer = cpu_buffer;
3991
3992 atomic_inc(&buffer->resize_disabled);
3993 atomic_inc(&cpu_buffer->record_disabled);
3994
3995 return iter;
3996 }
3997 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3998
3999 /**
4000 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4001 *
4002 * All previously invoked ring_buffer_read_prepare calls to prepare
4003 * iterators will be synchronized. Afterwards, read_buffer_read_start
4004 * calls on those iterators are allowed.
4005 */
4006 void
4007 ring_buffer_read_prepare_sync(void)
4008 {
4009 synchronize_sched();
4010 }
4011 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4012
4013 /**
4014 * ring_buffer_read_start - start a non consuming read of the buffer
4015 * @iter: The iterator returned by ring_buffer_read_prepare
4016 *
4017 * This finalizes the startup of an iteration through the buffer.
4018 * The iterator comes from a call to ring_buffer_read_prepare and
4019 * an intervening ring_buffer_read_prepare_sync must have been
4020 * performed.
4021 *
4022 * Must be paired with ring_buffer_finish.
4023 */
4024 void
4025 ring_buffer_read_start(struct ring_buffer_iter *iter)
4026 {
4027 struct ring_buffer_per_cpu *cpu_buffer;
4028 unsigned long flags;
4029
4030 if (!iter)
4031 return;
4032
4033 cpu_buffer = iter->cpu_buffer;
4034
4035 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4036 arch_spin_lock(&cpu_buffer->lock);
4037 rb_iter_reset(iter);
4038 arch_spin_unlock(&cpu_buffer->lock);
4039 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4042
4043 /**
4044 * ring_buffer_finish - finish reading the iterator of the buffer
4045 * @iter: The iterator retrieved by ring_buffer_start
4046 *
4047 * This re-enables the recording to the buffer, and frees the
4048 * iterator.
4049 */
4050 void
4051 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4052 {
4053 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4054 unsigned long flags;
4055
4056 /*
4057 * Ring buffer is disabled from recording, here's a good place
4058 * to check the integrity of the ring buffer.
4059 * Must prevent readers from trying to read, as the check
4060 * clears the HEAD page and readers require it.
4061 */
4062 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4063 rb_check_pages(cpu_buffer);
4064 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4065
4066 atomic_dec(&cpu_buffer->record_disabled);
4067 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4068 kfree(iter);
4069 }
4070 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4071
4072 /**
4073 * ring_buffer_read - read the next item in the ring buffer by the iterator
4074 * @iter: The ring buffer iterator
4075 * @ts: The time stamp of the event read.
4076 *
4077 * This reads the next event in the ring buffer and increments the iterator.
4078 */
4079 struct ring_buffer_event *
4080 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4081 {
4082 struct ring_buffer_event *event;
4083 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4084 unsigned long flags;
4085
4086 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4087 again:
4088 event = rb_iter_peek(iter, ts);
4089 if (!event)
4090 goto out;
4091
4092 if (event->type_len == RINGBUF_TYPE_PADDING)
4093 goto again;
4094
4095 rb_advance_iter(iter);
4096 out:
4097 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4098
4099 return event;
4100 }
4101 EXPORT_SYMBOL_GPL(ring_buffer_read);
4102
4103 /**
4104 * ring_buffer_size - return the size of the ring buffer (in bytes)
4105 * @buffer: The ring buffer.
4106 */
4107 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4108 {
4109 /*
4110 * Earlier, this method returned
4111 * BUF_PAGE_SIZE * buffer->nr_pages
4112 * Since the nr_pages field is now removed, we have converted this to
4113 * return the per cpu buffer value.
4114 */
4115 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4116 return 0;
4117
4118 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4119 }
4120 EXPORT_SYMBOL_GPL(ring_buffer_size);
4121
4122 static void
4123 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4124 {
4125 rb_head_page_deactivate(cpu_buffer);
4126
4127 cpu_buffer->head_page
4128 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4129 local_set(&cpu_buffer->head_page->write, 0);
4130 local_set(&cpu_buffer->head_page->entries, 0);
4131 local_set(&cpu_buffer->head_page->page->commit, 0);
4132
4133 cpu_buffer->head_page->read = 0;
4134
4135 cpu_buffer->tail_page = cpu_buffer->head_page;
4136 cpu_buffer->commit_page = cpu_buffer->head_page;
4137
4138 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4139 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4140 local_set(&cpu_buffer->reader_page->write, 0);
4141 local_set(&cpu_buffer->reader_page->entries, 0);
4142 local_set(&cpu_buffer->reader_page->page->commit, 0);
4143 cpu_buffer->reader_page->read = 0;
4144
4145 local_set(&cpu_buffer->entries_bytes, 0);
4146 local_set(&cpu_buffer->overrun, 0);
4147 local_set(&cpu_buffer->commit_overrun, 0);
4148 local_set(&cpu_buffer->dropped_events, 0);
4149 local_set(&cpu_buffer->entries, 0);
4150 local_set(&cpu_buffer->committing, 0);
4151 local_set(&cpu_buffer->commits, 0);
4152 cpu_buffer->read = 0;
4153 cpu_buffer->read_bytes = 0;
4154
4155 cpu_buffer->write_stamp = 0;
4156 cpu_buffer->read_stamp = 0;
4157
4158 cpu_buffer->lost_events = 0;
4159 cpu_buffer->last_overrun = 0;
4160
4161 rb_head_page_activate(cpu_buffer);
4162 }
4163
4164 /**
4165 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4166 * @buffer: The ring buffer to reset a per cpu buffer of
4167 * @cpu: The CPU buffer to be reset
4168 */
4169 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4170 {
4171 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4172 unsigned long flags;
4173
4174 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4175 return;
4176
4177 atomic_inc(&buffer->resize_disabled);
4178 atomic_inc(&cpu_buffer->record_disabled);
4179
4180 /* Make sure all commits have finished */
4181 synchronize_sched();
4182
4183 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4184
4185 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4186 goto out;
4187
4188 arch_spin_lock(&cpu_buffer->lock);
4189
4190 rb_reset_cpu(cpu_buffer);
4191
4192 arch_spin_unlock(&cpu_buffer->lock);
4193
4194 out:
4195 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4196
4197 atomic_dec(&cpu_buffer->record_disabled);
4198 atomic_dec(&buffer->resize_disabled);
4199 }
4200 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4201
4202 /**
4203 * ring_buffer_reset - reset a ring buffer
4204 * @buffer: The ring buffer to reset all cpu buffers
4205 */
4206 void ring_buffer_reset(struct ring_buffer *buffer)
4207 {
4208 int cpu;
4209
4210 for_each_buffer_cpu(buffer, cpu)
4211 ring_buffer_reset_cpu(buffer, cpu);
4212 }
4213 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4214
4215 /**
4216 * rind_buffer_empty - is the ring buffer empty?
4217 * @buffer: The ring buffer to test
4218 */
4219 int ring_buffer_empty(struct ring_buffer *buffer)
4220 {
4221 struct ring_buffer_per_cpu *cpu_buffer;
4222 unsigned long flags;
4223 int dolock;
4224 int cpu;
4225 int ret;
4226
4227 dolock = rb_ok_to_lock();
4228
4229 /* yes this is racy, but if you don't like the race, lock the buffer */
4230 for_each_buffer_cpu(buffer, cpu) {
4231 cpu_buffer = buffer->buffers[cpu];
4232 local_irq_save(flags);
4233 if (dolock)
4234 raw_spin_lock(&cpu_buffer->reader_lock);
4235 ret = rb_per_cpu_empty(cpu_buffer);
4236 if (dolock)
4237 raw_spin_unlock(&cpu_buffer->reader_lock);
4238 local_irq_restore(flags);
4239
4240 if (!ret)
4241 return 0;
4242 }
4243
4244 return 1;
4245 }
4246 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4247
4248 /**
4249 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4250 * @buffer: The ring buffer
4251 * @cpu: The CPU buffer to test
4252 */
4253 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4254 {
4255 struct ring_buffer_per_cpu *cpu_buffer;
4256 unsigned long flags;
4257 int dolock;
4258 int ret;
4259
4260 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4261 return 1;
4262
4263 dolock = rb_ok_to_lock();
4264
4265 cpu_buffer = buffer->buffers[cpu];
4266 local_irq_save(flags);
4267 if (dolock)
4268 raw_spin_lock(&cpu_buffer->reader_lock);
4269 ret = rb_per_cpu_empty(cpu_buffer);
4270 if (dolock)
4271 raw_spin_unlock(&cpu_buffer->reader_lock);
4272 local_irq_restore(flags);
4273
4274 return ret;
4275 }
4276 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4277
4278 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4279 /**
4280 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4281 * @buffer_a: One buffer to swap with
4282 * @buffer_b: The other buffer to swap with
4283 *
4284 * This function is useful for tracers that want to take a "snapshot"
4285 * of a CPU buffer and has another back up buffer lying around.
4286 * it is expected that the tracer handles the cpu buffer not being
4287 * used at the moment.
4288 */
4289 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4290 struct ring_buffer *buffer_b, int cpu)
4291 {
4292 struct ring_buffer_per_cpu *cpu_buffer_a;
4293 struct ring_buffer_per_cpu *cpu_buffer_b;
4294 int ret = -EINVAL;
4295
4296 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4297 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4298 goto out;
4299
4300 cpu_buffer_a = buffer_a->buffers[cpu];
4301 cpu_buffer_b = buffer_b->buffers[cpu];
4302
4303 /* At least make sure the two buffers are somewhat the same */
4304 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4305 goto out;
4306
4307 ret = -EAGAIN;
4308
4309 if (ring_buffer_flags != RB_BUFFERS_ON)
4310 goto out;
4311
4312 if (atomic_read(&buffer_a->record_disabled))
4313 goto out;
4314
4315 if (atomic_read(&buffer_b->record_disabled))
4316 goto out;
4317
4318 if (atomic_read(&cpu_buffer_a->record_disabled))
4319 goto out;
4320
4321 if (atomic_read(&cpu_buffer_b->record_disabled))
4322 goto out;
4323
4324 /*
4325 * We can't do a synchronize_sched here because this
4326 * function can be called in atomic context.
4327 * Normally this will be called from the same CPU as cpu.
4328 * If not it's up to the caller to protect this.
4329 */
4330 atomic_inc(&cpu_buffer_a->record_disabled);
4331 atomic_inc(&cpu_buffer_b->record_disabled);
4332
4333 ret = -EBUSY;
4334 if (local_read(&cpu_buffer_a->committing))
4335 goto out_dec;
4336 if (local_read(&cpu_buffer_b->committing))
4337 goto out_dec;
4338
4339 buffer_a->buffers[cpu] = cpu_buffer_b;
4340 buffer_b->buffers[cpu] = cpu_buffer_a;
4341
4342 cpu_buffer_b->buffer = buffer_a;
4343 cpu_buffer_a->buffer = buffer_b;
4344
4345 ret = 0;
4346
4347 out_dec:
4348 atomic_dec(&cpu_buffer_a->record_disabled);
4349 atomic_dec(&cpu_buffer_b->record_disabled);
4350 out:
4351 return ret;
4352 }
4353 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4354 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4355
4356 /**
4357 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4358 * @buffer: the buffer to allocate for.
4359 *
4360 * This function is used in conjunction with ring_buffer_read_page.
4361 * When reading a full page from the ring buffer, these functions
4362 * can be used to speed up the process. The calling function should
4363 * allocate a few pages first with this function. Then when it
4364 * needs to get pages from the ring buffer, it passes the result
4365 * of this function into ring_buffer_read_page, which will swap
4366 * the page that was allocated, with the read page of the buffer.
4367 *
4368 * Returns:
4369 * The page allocated, or NULL on error.
4370 */
4371 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4372 {
4373 struct buffer_data_page *bpage;
4374 struct page *page;
4375
4376 page = alloc_pages_node(cpu_to_node(cpu),
4377 GFP_KERNEL | __GFP_NORETRY, 0);
4378 if (!page)
4379 return NULL;
4380
4381 bpage = page_address(page);
4382
4383 rb_init_page(bpage);
4384
4385 return bpage;
4386 }
4387 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4388
4389 /**
4390 * ring_buffer_free_read_page - free an allocated read page
4391 * @buffer: the buffer the page was allocate for
4392 * @data: the page to free
4393 *
4394 * Free a page allocated from ring_buffer_alloc_read_page.
4395 */
4396 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4397 {
4398 free_page((unsigned long)data);
4399 }
4400 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4401
4402 /**
4403 * ring_buffer_read_page - extract a page from the ring buffer
4404 * @buffer: buffer to extract from
4405 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4406 * @len: amount to extract
4407 * @cpu: the cpu of the buffer to extract
4408 * @full: should the extraction only happen when the page is full.
4409 *
4410 * This function will pull out a page from the ring buffer and consume it.
4411 * @data_page must be the address of the variable that was returned
4412 * from ring_buffer_alloc_read_page. This is because the page might be used
4413 * to swap with a page in the ring buffer.
4414 *
4415 * for example:
4416 * rpage = ring_buffer_alloc_read_page(buffer);
4417 * if (!rpage)
4418 * return error;
4419 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4420 * if (ret >= 0)
4421 * process_page(rpage, ret);
4422 *
4423 * When @full is set, the function will not return true unless
4424 * the writer is off the reader page.
4425 *
4426 * Note: it is up to the calling functions to handle sleeps and wakeups.
4427 * The ring buffer can be used anywhere in the kernel and can not
4428 * blindly call wake_up. The layer that uses the ring buffer must be
4429 * responsible for that.
4430 *
4431 * Returns:
4432 * >=0 if data has been transferred, returns the offset of consumed data.
4433 * <0 if no data has been transferred.
4434 */
4435 int ring_buffer_read_page(struct ring_buffer *buffer,
4436 void **data_page, size_t len, int cpu, int full)
4437 {
4438 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4439 struct ring_buffer_event *event;
4440 struct buffer_data_page *bpage;
4441 struct buffer_page *reader;
4442 unsigned long missed_events;
4443 unsigned long flags;
4444 unsigned int commit;
4445 unsigned int read;
4446 u64 save_timestamp;
4447 int ret = -1;
4448
4449 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4450 goto out;
4451
4452 /*
4453 * If len is not big enough to hold the page header, then
4454 * we can not copy anything.
4455 */
4456 if (len <= BUF_PAGE_HDR_SIZE)
4457 goto out;
4458
4459 len -= BUF_PAGE_HDR_SIZE;
4460
4461 if (!data_page)
4462 goto out;
4463
4464 bpage = *data_page;
4465 if (!bpage)
4466 goto out;
4467
4468 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4469
4470 reader = rb_get_reader_page(cpu_buffer);
4471 if (!reader)
4472 goto out_unlock;
4473
4474 event = rb_reader_event(cpu_buffer);
4475
4476 read = reader->read;
4477 commit = rb_page_commit(reader);
4478
4479 /* Check if any events were dropped */
4480 missed_events = cpu_buffer->lost_events;
4481
4482 /*
4483 * If this page has been partially read or
4484 * if len is not big enough to read the rest of the page or
4485 * a writer is still on the page, then
4486 * we must copy the data from the page to the buffer.
4487 * Otherwise, we can simply swap the page with the one passed in.
4488 */
4489 if (read || (len < (commit - read)) ||
4490 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4491 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4492 unsigned int rpos = read;
4493 unsigned int pos = 0;
4494 unsigned int size;
4495
4496 if (full)
4497 goto out_unlock;
4498
4499 if (len > (commit - read))
4500 len = (commit - read);
4501
4502 /* Always keep the time extend and data together */
4503 size = rb_event_ts_length(event);
4504
4505 if (len < size)
4506 goto out_unlock;
4507
4508 /* save the current timestamp, since the user will need it */
4509 save_timestamp = cpu_buffer->read_stamp;
4510
4511 /* Need to copy one event at a time */
4512 do {
4513 /* We need the size of one event, because
4514 * rb_advance_reader only advances by one event,
4515 * whereas rb_event_ts_length may include the size of
4516 * one or two events.
4517 * We have already ensured there's enough space if this
4518 * is a time extend. */
4519 size = rb_event_length(event);
4520 memcpy(bpage->data + pos, rpage->data + rpos, size);
4521
4522 len -= size;
4523
4524 rb_advance_reader(cpu_buffer);
4525 rpos = reader->read;
4526 pos += size;
4527
4528 if (rpos >= commit)
4529 break;
4530
4531 event = rb_reader_event(cpu_buffer);
4532 /* Always keep the time extend and data together */
4533 size = rb_event_ts_length(event);
4534 } while (len >= size);
4535
4536 /* update bpage */
4537 local_set(&bpage->commit, pos);
4538 bpage->time_stamp = save_timestamp;
4539
4540 /* we copied everything to the beginning */
4541 read = 0;
4542 } else {
4543 /* update the entry counter */
4544 cpu_buffer->read += rb_page_entries(reader);
4545 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4546
4547 /* swap the pages */
4548 rb_init_page(bpage);
4549 bpage = reader->page;
4550 reader->page = *data_page;
4551 local_set(&reader->write, 0);
4552 local_set(&reader->entries, 0);
4553 reader->read = 0;
4554 *data_page = bpage;
4555
4556 /*
4557 * Use the real_end for the data size,
4558 * This gives us a chance to store the lost events
4559 * on the page.
4560 */
4561 if (reader->real_end)
4562 local_set(&bpage->commit, reader->real_end);
4563 }
4564 ret = read;
4565
4566 cpu_buffer->lost_events = 0;
4567
4568 commit = local_read(&bpage->commit);
4569 /*
4570 * Set a flag in the commit field if we lost events
4571 */
4572 if (missed_events) {
4573 /* If there is room at the end of the page to save the
4574 * missed events, then record it there.
4575 */
4576 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4577 memcpy(&bpage->data[commit], &missed_events,
4578 sizeof(missed_events));
4579 local_add(RB_MISSED_STORED, &bpage->commit);
4580 commit += sizeof(missed_events);
4581 }
4582 local_add(RB_MISSED_EVENTS, &bpage->commit);
4583 }
4584
4585 /*
4586 * This page may be off to user land. Zero it out here.
4587 */
4588 if (commit < BUF_PAGE_SIZE)
4589 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4590
4591 out_unlock:
4592 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4593
4594 out:
4595 return ret;
4596 }
4597 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4598
4599 #ifdef CONFIG_HOTPLUG_CPU
4600 static int rb_cpu_notify(struct notifier_block *self,
4601 unsigned long action, void *hcpu)
4602 {
4603 struct ring_buffer *buffer =
4604 container_of(self, struct ring_buffer, cpu_notify);
4605 long cpu = (long)hcpu;
4606 int cpu_i, nr_pages_same;
4607 unsigned int nr_pages;
4608
4609 switch (action) {
4610 case CPU_UP_PREPARE:
4611 case CPU_UP_PREPARE_FROZEN:
4612 if (cpumask_test_cpu(cpu, buffer->cpumask))
4613 return NOTIFY_OK;
4614
4615 nr_pages = 0;
4616 nr_pages_same = 1;
4617 /* check if all cpu sizes are same */
4618 for_each_buffer_cpu(buffer, cpu_i) {
4619 /* fill in the size from first enabled cpu */
4620 if (nr_pages == 0)
4621 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4622 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4623 nr_pages_same = 0;
4624 break;
4625 }
4626 }
4627 /* allocate minimum pages, user can later expand it */
4628 if (!nr_pages_same)
4629 nr_pages = 2;
4630 buffer->buffers[cpu] =
4631 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4632 if (!buffer->buffers[cpu]) {
4633 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4634 cpu);
4635 return NOTIFY_OK;
4636 }
4637 smp_wmb();
4638 cpumask_set_cpu(cpu, buffer->cpumask);
4639 break;
4640 case CPU_DOWN_PREPARE:
4641 case CPU_DOWN_PREPARE_FROZEN:
4642 /*
4643 * Do nothing.
4644 * If we were to free the buffer, then the user would
4645 * lose any trace that was in the buffer.
4646 */
4647 break;
4648 default:
4649 break;
4650 }
4651 return NOTIFY_OK;
4652 }
4653 #endif
4654
4655 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4656 /*
4657 * This is a basic integrity check of the ring buffer.
4658 * Late in the boot cycle this test will run when configured in.
4659 * It will kick off a thread per CPU that will go into a loop
4660 * writing to the per cpu ring buffer various sizes of data.
4661 * Some of the data will be large items, some small.
4662 *
4663 * Another thread is created that goes into a spin, sending out
4664 * IPIs to the other CPUs to also write into the ring buffer.
4665 * this is to test the nesting ability of the buffer.
4666 *
4667 * Basic stats are recorded and reported. If something in the
4668 * ring buffer should happen that's not expected, a big warning
4669 * is displayed and all ring buffers are disabled.
4670 */
4671 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4672
4673 struct rb_test_data {
4674 struct ring_buffer *buffer;
4675 unsigned long events;
4676 unsigned long bytes_written;
4677 unsigned long bytes_alloc;
4678 unsigned long bytes_dropped;
4679 unsigned long events_nested;
4680 unsigned long bytes_written_nested;
4681 unsigned long bytes_alloc_nested;
4682 unsigned long bytes_dropped_nested;
4683 int min_size_nested;
4684 int max_size_nested;
4685 int max_size;
4686 int min_size;
4687 int cpu;
4688 int cnt;
4689 };
4690
4691 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4692
4693 /* 1 meg per cpu */
4694 #define RB_TEST_BUFFER_SIZE 1048576
4695
4696 static char rb_string[] __initdata =
4697 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4698 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4699 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4700
4701 static bool rb_test_started __initdata;
4702
4703 struct rb_item {
4704 int size;
4705 char str[];
4706 };
4707
4708 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4709 {
4710 struct ring_buffer_event *event;
4711 struct rb_item *item;
4712 bool started;
4713 int event_len;
4714 int size;
4715 int len;
4716 int cnt;
4717
4718 /* Have nested writes different that what is written */
4719 cnt = data->cnt + (nested ? 27 : 0);
4720
4721 /* Multiply cnt by ~e, to make some unique increment */
4722 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4723
4724 len = size + sizeof(struct rb_item);
4725
4726 started = rb_test_started;
4727 /* read rb_test_started before checking buffer enabled */
4728 smp_rmb();
4729
4730 event = ring_buffer_lock_reserve(data->buffer, len);
4731 if (!event) {
4732 /* Ignore dropped events before test starts. */
4733 if (started) {
4734 if (nested)
4735 data->bytes_dropped += len;
4736 else
4737 data->bytes_dropped_nested += len;
4738 }
4739 return len;
4740 }
4741
4742 event_len = ring_buffer_event_length(event);
4743
4744 if (RB_WARN_ON(data->buffer, event_len < len))
4745 goto out;
4746
4747 item = ring_buffer_event_data(event);
4748 item->size = size;
4749 memcpy(item->str, rb_string, size);
4750
4751 if (nested) {
4752 data->bytes_alloc_nested += event_len;
4753 data->bytes_written_nested += len;
4754 data->events_nested++;
4755 if (!data->min_size_nested || len < data->min_size_nested)
4756 data->min_size_nested = len;
4757 if (len > data->max_size_nested)
4758 data->max_size_nested = len;
4759 } else {
4760 data->bytes_alloc += event_len;
4761 data->bytes_written += len;
4762 data->events++;
4763 if (!data->min_size || len < data->min_size)
4764 data->max_size = len;
4765 if (len > data->max_size)
4766 data->max_size = len;
4767 }
4768
4769 out:
4770 ring_buffer_unlock_commit(data->buffer, event);
4771
4772 return 0;
4773 }
4774
4775 static __init int rb_test(void *arg)
4776 {
4777 struct rb_test_data *data = arg;
4778
4779 while (!kthread_should_stop()) {
4780 rb_write_something(data, false);
4781 data->cnt++;
4782
4783 set_current_state(TASK_INTERRUPTIBLE);
4784 /* Now sleep between a min of 100-300us and a max of 1ms */
4785 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4786 }
4787
4788 return 0;
4789 }
4790
4791 static __init void rb_ipi(void *ignore)
4792 {
4793 struct rb_test_data *data;
4794 int cpu = smp_processor_id();
4795
4796 data = &rb_data[cpu];
4797 rb_write_something(data, true);
4798 }
4799
4800 static __init int rb_hammer_test(void *arg)
4801 {
4802 while (!kthread_should_stop()) {
4803
4804 /* Send an IPI to all cpus to write data! */
4805 smp_call_function(rb_ipi, NULL, 1);
4806 /* No sleep, but for non preempt, let others run */
4807 schedule();
4808 }
4809
4810 return 0;
4811 }
4812
4813 static __init int test_ringbuffer(void)
4814 {
4815 struct task_struct *rb_hammer;
4816 struct ring_buffer *buffer;
4817 int cpu;
4818 int ret = 0;
4819
4820 pr_info("Running ring buffer tests...\n");
4821
4822 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4823 if (WARN_ON(!buffer))
4824 return 0;
4825
4826 /* Disable buffer so that threads can't write to it yet */
4827 ring_buffer_record_off(buffer);
4828
4829 for_each_online_cpu(cpu) {
4830 rb_data[cpu].buffer = buffer;
4831 rb_data[cpu].cpu = cpu;
4832 rb_data[cpu].cnt = cpu;
4833 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4834 "rbtester/%d", cpu);
4835 if (WARN_ON(!rb_threads[cpu])) {
4836 pr_cont("FAILED\n");
4837 ret = -1;
4838 goto out_free;
4839 }
4840
4841 kthread_bind(rb_threads[cpu], cpu);
4842 wake_up_process(rb_threads[cpu]);
4843 }
4844
4845 /* Now create the rb hammer! */
4846 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4847 if (WARN_ON(!rb_hammer)) {
4848 pr_cont("FAILED\n");
4849 ret = -1;
4850 goto out_free;
4851 }
4852
4853 ring_buffer_record_on(buffer);
4854 /*
4855 * Show buffer is enabled before setting rb_test_started.
4856 * Yes there's a small race window where events could be
4857 * dropped and the thread wont catch it. But when a ring
4858 * buffer gets enabled, there will always be some kind of
4859 * delay before other CPUs see it. Thus, we don't care about
4860 * those dropped events. We care about events dropped after
4861 * the threads see that the buffer is active.
4862 */
4863 smp_wmb();
4864 rb_test_started = true;
4865
4866 set_current_state(TASK_INTERRUPTIBLE);
4867 /* Just run for 10 seconds */;
4868 schedule_timeout(10 * HZ);
4869
4870 kthread_stop(rb_hammer);
4871
4872 out_free:
4873 for_each_online_cpu(cpu) {
4874 if (!rb_threads[cpu])
4875 break;
4876 kthread_stop(rb_threads[cpu]);
4877 }
4878 if (ret) {
4879 ring_buffer_free(buffer);
4880 return ret;
4881 }
4882
4883 /* Report! */
4884 pr_info("finished\n");
4885 for_each_online_cpu(cpu) {
4886 struct ring_buffer_event *event;
4887 struct rb_test_data *data = &rb_data[cpu];
4888 struct rb_item *item;
4889 unsigned long total_events;
4890 unsigned long total_dropped;
4891 unsigned long total_written;
4892 unsigned long total_alloc;
4893 unsigned long total_read = 0;
4894 unsigned long total_size = 0;
4895 unsigned long total_len = 0;
4896 unsigned long total_lost = 0;
4897 unsigned long lost;
4898 int big_event_size;
4899 int small_event_size;
4900
4901 ret = -1;
4902
4903 total_events = data->events + data->events_nested;
4904 total_written = data->bytes_written + data->bytes_written_nested;
4905 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4906 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4907
4908 big_event_size = data->max_size + data->max_size_nested;
4909 small_event_size = data->min_size + data->min_size_nested;
4910
4911 pr_info("CPU %d:\n", cpu);
4912 pr_info(" events: %ld\n", total_events);
4913 pr_info(" dropped bytes: %ld\n", total_dropped);
4914 pr_info(" alloced bytes: %ld\n", total_alloc);
4915 pr_info(" written bytes: %ld\n", total_written);
4916 pr_info(" biggest event: %d\n", big_event_size);
4917 pr_info(" smallest event: %d\n", small_event_size);
4918
4919 if (RB_WARN_ON(buffer, total_dropped))
4920 break;
4921
4922 ret = 0;
4923
4924 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4925 total_lost += lost;
4926 item = ring_buffer_event_data(event);
4927 total_len += ring_buffer_event_length(event);
4928 total_size += item->size + sizeof(struct rb_item);
4929 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4930 pr_info("FAILED!\n");
4931 pr_info("buffer had: %.*s\n", item->size, item->str);
4932 pr_info("expected: %.*s\n", item->size, rb_string);
4933 RB_WARN_ON(buffer, 1);
4934 ret = -1;
4935 break;
4936 }
4937 total_read++;
4938 }
4939 if (ret)
4940 break;
4941
4942 ret = -1;
4943
4944 pr_info(" read events: %ld\n", total_read);
4945 pr_info(" lost events: %ld\n", total_lost);
4946 pr_info(" total events: %ld\n", total_lost + total_read);
4947 pr_info(" recorded len bytes: %ld\n", total_len);
4948 pr_info(" recorded size bytes: %ld\n", total_size);
4949 if (total_lost)
4950 pr_info(" With dropped events, record len and size may not match\n"
4951 " alloced and written from above\n");
4952 if (!total_lost) {
4953 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4954 total_size != total_written))
4955 break;
4956 }
4957 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4958 break;
4959
4960 ret = 0;
4961 }
4962 if (!ret)
4963 pr_info("Ring buffer PASSED!\n");
4964
4965 ring_buffer_free(buffer);
4966 return 0;
4967 }
4968
4969 late_initcall(test_ringbuffer);
4970 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */