Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_event.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
52
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55 EXPORT_SYMBOL(jiffies_64);
56
57 /*
58 * per-CPU timer vector definitions:
59 */
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
69 };
70
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
73 };
74
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
85 } ____cacheline_aligned;
86
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
90
91 /*
92 * Note that all tvec_bases are 2 byte aligned and lower bit of
93 * base in timer_list is guaranteed to be zero. Use the LSB for
94 * the new flag to indicate whether the timer is deferrable
95 */
96 #define TBASE_DEFERRABLE_FLAG (0x1)
97
98 /* Functions below help us manage 'deferrable' flag */
99 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
100 {
101 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
102 }
103
104 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
105 {
106 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
107 }
108
109 static inline void timer_set_deferrable(struct timer_list *timer)
110 {
111 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
112 TBASE_DEFERRABLE_FLAG));
113 }
114
115 static inline void
116 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
117 {
118 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
119 tbase_get_deferrable(timer->base));
120 }
121
122 static unsigned long round_jiffies_common(unsigned long j, int cpu,
123 bool force_up)
124 {
125 int rem;
126 unsigned long original = j;
127
128 /*
129 * We don't want all cpus firing their timers at once hitting the
130 * same lock or cachelines, so we skew each extra cpu with an extra
131 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
132 * already did this.
133 * The skew is done by adding 3*cpunr, then round, then subtract this
134 * extra offset again.
135 */
136 j += cpu * 3;
137
138 rem = j % HZ;
139
140 /*
141 * If the target jiffie is just after a whole second (which can happen
142 * due to delays of the timer irq, long irq off times etc etc) then
143 * we should round down to the whole second, not up. Use 1/4th second
144 * as cutoff for this rounding as an extreme upper bound for this.
145 * But never round down if @force_up is set.
146 */
147 if (rem < HZ/4 && !force_up) /* round down */
148 j = j - rem;
149 else /* round up */
150 j = j - rem + HZ;
151
152 /* now that we have rounded, subtract the extra skew again */
153 j -= cpu * 3;
154
155 if (j <= jiffies) /* rounding ate our timeout entirely; */
156 return original;
157 return j;
158 }
159
160 /**
161 * __round_jiffies - function to round jiffies to a full second
162 * @j: the time in (absolute) jiffies that should be rounded
163 * @cpu: the processor number on which the timeout will happen
164 *
165 * __round_jiffies() rounds an absolute time in the future (in jiffies)
166 * up or down to (approximately) full seconds. This is useful for timers
167 * for which the exact time they fire does not matter too much, as long as
168 * they fire approximately every X seconds.
169 *
170 * By rounding these timers to whole seconds, all such timers will fire
171 * at the same time, rather than at various times spread out. The goal
172 * of this is to have the CPU wake up less, which saves power.
173 *
174 * The exact rounding is skewed for each processor to avoid all
175 * processors firing at the exact same time, which could lead
176 * to lock contention or spurious cache line bouncing.
177 *
178 * The return value is the rounded version of the @j parameter.
179 */
180 unsigned long __round_jiffies(unsigned long j, int cpu)
181 {
182 return round_jiffies_common(j, cpu, false);
183 }
184 EXPORT_SYMBOL_GPL(__round_jiffies);
185
186 /**
187 * __round_jiffies_relative - function to round jiffies to a full second
188 * @j: the time in (relative) jiffies that should be rounded
189 * @cpu: the processor number on which the timeout will happen
190 *
191 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
192 * up or down to (approximately) full seconds. This is useful for timers
193 * for which the exact time they fire does not matter too much, as long as
194 * they fire approximately every X seconds.
195 *
196 * By rounding these timers to whole seconds, all such timers will fire
197 * at the same time, rather than at various times spread out. The goal
198 * of this is to have the CPU wake up less, which saves power.
199 *
200 * The exact rounding is skewed for each processor to avoid all
201 * processors firing at the exact same time, which could lead
202 * to lock contention or spurious cache line bouncing.
203 *
204 * The return value is the rounded version of the @j parameter.
205 */
206 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
207 {
208 unsigned long j0 = jiffies;
209
210 /* Use j0 because jiffies might change while we run */
211 return round_jiffies_common(j + j0, cpu, false) - j0;
212 }
213 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
214
215 /**
216 * round_jiffies - function to round jiffies to a full second
217 * @j: the time in (absolute) jiffies that should be rounded
218 *
219 * round_jiffies() rounds an absolute time in the future (in jiffies)
220 * up or down to (approximately) full seconds. This is useful for timers
221 * for which the exact time they fire does not matter too much, as long as
222 * they fire approximately every X seconds.
223 *
224 * By rounding these timers to whole seconds, all such timers will fire
225 * at the same time, rather than at various times spread out. The goal
226 * of this is to have the CPU wake up less, which saves power.
227 *
228 * The return value is the rounded version of the @j parameter.
229 */
230 unsigned long round_jiffies(unsigned long j)
231 {
232 return round_jiffies_common(j, raw_smp_processor_id(), false);
233 }
234 EXPORT_SYMBOL_GPL(round_jiffies);
235
236 /**
237 * round_jiffies_relative - function to round jiffies to a full second
238 * @j: the time in (relative) jiffies that should be rounded
239 *
240 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
241 * up or down to (approximately) full seconds. This is useful for timers
242 * for which the exact time they fire does not matter too much, as long as
243 * they fire approximately every X seconds.
244 *
245 * By rounding these timers to whole seconds, all such timers will fire
246 * at the same time, rather than at various times spread out. The goal
247 * of this is to have the CPU wake up less, which saves power.
248 *
249 * The return value is the rounded version of the @j parameter.
250 */
251 unsigned long round_jiffies_relative(unsigned long j)
252 {
253 return __round_jiffies_relative(j, raw_smp_processor_id());
254 }
255 EXPORT_SYMBOL_GPL(round_jiffies_relative);
256
257 /**
258 * __round_jiffies_up - function to round jiffies up to a full second
259 * @j: the time in (absolute) jiffies that should be rounded
260 * @cpu: the processor number on which the timeout will happen
261 *
262 * This is the same as __round_jiffies() except that it will never
263 * round down. This is useful for timeouts for which the exact time
264 * of firing does not matter too much, as long as they don't fire too
265 * early.
266 */
267 unsigned long __round_jiffies_up(unsigned long j, int cpu)
268 {
269 return round_jiffies_common(j, cpu, true);
270 }
271 EXPORT_SYMBOL_GPL(__round_jiffies_up);
272
273 /**
274 * __round_jiffies_up_relative - function to round jiffies up to a full second
275 * @j: the time in (relative) jiffies that should be rounded
276 * @cpu: the processor number on which the timeout will happen
277 *
278 * This is the same as __round_jiffies_relative() except that it will never
279 * round down. This is useful for timeouts for which the exact time
280 * of firing does not matter too much, as long as they don't fire too
281 * early.
282 */
283 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
284 {
285 unsigned long j0 = jiffies;
286
287 /* Use j0 because jiffies might change while we run */
288 return round_jiffies_common(j + j0, cpu, true) - j0;
289 }
290 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
291
292 /**
293 * round_jiffies_up - function to round jiffies up to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 *
296 * This is the same as round_jiffies() except that it will never
297 * round down. This is useful for timeouts for which the exact time
298 * of firing does not matter too much, as long as they don't fire too
299 * early.
300 */
301 unsigned long round_jiffies_up(unsigned long j)
302 {
303 return round_jiffies_common(j, raw_smp_processor_id(), true);
304 }
305 EXPORT_SYMBOL_GPL(round_jiffies_up);
306
307 /**
308 * round_jiffies_up_relative - function to round jiffies up to a full second
309 * @j: the time in (relative) jiffies that should be rounded
310 *
311 * This is the same as round_jiffies_relative() except that it will never
312 * round down. This is useful for timeouts for which the exact time
313 * of firing does not matter too much, as long as they don't fire too
314 * early.
315 */
316 unsigned long round_jiffies_up_relative(unsigned long j)
317 {
318 return __round_jiffies_up_relative(j, raw_smp_processor_id());
319 }
320 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
321
322 /**
323 * set_timer_slack - set the allowed slack for a timer
324 * @slack_hz: the amount of time (in jiffies) allowed for rounding
325 *
326 * Set the amount of time, in jiffies, that a certain timer has
327 * in terms of slack. By setting this value, the timer subsystem
328 * will schedule the actual timer somewhere between
329 * the time mod_timer() asks for, and that time plus the slack.
330 *
331 * By setting the slack to -1, a percentage of the delay is used
332 * instead.
333 */
334 void set_timer_slack(struct timer_list *timer, int slack_hz)
335 {
336 timer->slack = slack_hz;
337 }
338 EXPORT_SYMBOL_GPL(set_timer_slack);
339
340
341 static inline void set_running_timer(struct tvec_base *base,
342 struct timer_list *timer)
343 {
344 #ifdef CONFIG_SMP
345 base->running_timer = timer;
346 #endif
347 }
348
349 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
350 {
351 unsigned long expires = timer->expires;
352 unsigned long idx = expires - base->timer_jiffies;
353 struct list_head *vec;
354
355 if (idx < TVR_SIZE) {
356 int i = expires & TVR_MASK;
357 vec = base->tv1.vec + i;
358 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
359 int i = (expires >> TVR_BITS) & TVN_MASK;
360 vec = base->tv2.vec + i;
361 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
362 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
363 vec = base->tv3.vec + i;
364 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
365 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
366 vec = base->tv4.vec + i;
367 } else if ((signed long) idx < 0) {
368 /*
369 * Can happen if you add a timer with expires == jiffies,
370 * or you set a timer to go off in the past
371 */
372 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
373 } else {
374 int i;
375 /* If the timeout is larger than 0xffffffff on 64-bit
376 * architectures then we use the maximum timeout:
377 */
378 if (idx > 0xffffffffUL) {
379 idx = 0xffffffffUL;
380 expires = idx + base->timer_jiffies;
381 }
382 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
383 vec = base->tv5.vec + i;
384 }
385 /*
386 * Timers are FIFO:
387 */
388 list_add_tail(&timer->entry, vec);
389 }
390
391 #ifdef CONFIG_TIMER_STATS
392 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
393 {
394 if (timer->start_site)
395 return;
396
397 timer->start_site = addr;
398 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
399 timer->start_pid = current->pid;
400 }
401
402 static void timer_stats_account_timer(struct timer_list *timer)
403 {
404 unsigned int flag = 0;
405
406 if (likely(!timer->start_site))
407 return;
408 if (unlikely(tbase_get_deferrable(timer->base)))
409 flag |= TIMER_STATS_FLAG_DEFERRABLE;
410
411 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
412 timer->function, timer->start_comm, flag);
413 }
414
415 #else
416 static void timer_stats_account_timer(struct timer_list *timer) {}
417 #endif
418
419 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
420
421 static struct debug_obj_descr timer_debug_descr;
422
423 /*
424 * fixup_init is called when:
425 * - an active object is initialized
426 */
427 static int timer_fixup_init(void *addr, enum debug_obj_state state)
428 {
429 struct timer_list *timer = addr;
430
431 switch (state) {
432 case ODEBUG_STATE_ACTIVE:
433 del_timer_sync(timer);
434 debug_object_init(timer, &timer_debug_descr);
435 return 1;
436 default:
437 return 0;
438 }
439 }
440
441 /*
442 * fixup_activate is called when:
443 * - an active object is activated
444 * - an unknown object is activated (might be a statically initialized object)
445 */
446 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
447 {
448 struct timer_list *timer = addr;
449
450 switch (state) {
451
452 case ODEBUG_STATE_NOTAVAILABLE:
453 /*
454 * This is not really a fixup. The timer was
455 * statically initialized. We just make sure that it
456 * is tracked in the object tracker.
457 */
458 if (timer->entry.next == NULL &&
459 timer->entry.prev == TIMER_ENTRY_STATIC) {
460 debug_object_init(timer, &timer_debug_descr);
461 debug_object_activate(timer, &timer_debug_descr);
462 return 0;
463 } else {
464 WARN_ON_ONCE(1);
465 }
466 return 0;
467
468 case ODEBUG_STATE_ACTIVE:
469 WARN_ON(1);
470
471 default:
472 return 0;
473 }
474 }
475
476 /*
477 * fixup_free is called when:
478 * - an active object is freed
479 */
480 static int timer_fixup_free(void *addr, enum debug_obj_state state)
481 {
482 struct timer_list *timer = addr;
483
484 switch (state) {
485 case ODEBUG_STATE_ACTIVE:
486 del_timer_sync(timer);
487 debug_object_free(timer, &timer_debug_descr);
488 return 1;
489 default:
490 return 0;
491 }
492 }
493
494 static struct debug_obj_descr timer_debug_descr = {
495 .name = "timer_list",
496 .fixup_init = timer_fixup_init,
497 .fixup_activate = timer_fixup_activate,
498 .fixup_free = timer_fixup_free,
499 };
500
501 static inline void debug_timer_init(struct timer_list *timer)
502 {
503 debug_object_init(timer, &timer_debug_descr);
504 }
505
506 static inline void debug_timer_activate(struct timer_list *timer)
507 {
508 debug_object_activate(timer, &timer_debug_descr);
509 }
510
511 static inline void debug_timer_deactivate(struct timer_list *timer)
512 {
513 debug_object_deactivate(timer, &timer_debug_descr);
514 }
515
516 static inline void debug_timer_free(struct timer_list *timer)
517 {
518 debug_object_free(timer, &timer_debug_descr);
519 }
520
521 static void __init_timer(struct timer_list *timer,
522 const char *name,
523 struct lock_class_key *key);
524
525 void init_timer_on_stack_key(struct timer_list *timer,
526 const char *name,
527 struct lock_class_key *key)
528 {
529 debug_object_init_on_stack(timer, &timer_debug_descr);
530 __init_timer(timer, name, key);
531 }
532 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
533
534 void destroy_timer_on_stack(struct timer_list *timer)
535 {
536 debug_object_free(timer, &timer_debug_descr);
537 }
538 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
539
540 #else
541 static inline void debug_timer_init(struct timer_list *timer) { }
542 static inline void debug_timer_activate(struct timer_list *timer) { }
543 static inline void debug_timer_deactivate(struct timer_list *timer) { }
544 #endif
545
546 static inline void debug_init(struct timer_list *timer)
547 {
548 debug_timer_init(timer);
549 trace_timer_init(timer);
550 }
551
552 static inline void
553 debug_activate(struct timer_list *timer, unsigned long expires)
554 {
555 debug_timer_activate(timer);
556 trace_timer_start(timer, expires);
557 }
558
559 static inline void debug_deactivate(struct timer_list *timer)
560 {
561 debug_timer_deactivate(timer);
562 trace_timer_cancel(timer);
563 }
564
565 static void __init_timer(struct timer_list *timer,
566 const char *name,
567 struct lock_class_key *key)
568 {
569 timer->entry.next = NULL;
570 timer->base = __raw_get_cpu_var(tvec_bases);
571 timer->slack = -1;
572 #ifdef CONFIG_TIMER_STATS
573 timer->start_site = NULL;
574 timer->start_pid = -1;
575 memset(timer->start_comm, 0, TASK_COMM_LEN);
576 #endif
577 lockdep_init_map(&timer->lockdep_map, name, key, 0);
578 }
579
580 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
581 const char *name,
582 struct lock_class_key *key,
583 void (*function)(unsigned long),
584 unsigned long data)
585 {
586 timer->function = function;
587 timer->data = data;
588 init_timer_on_stack_key(timer, name, key);
589 timer_set_deferrable(timer);
590 }
591 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
592
593 /**
594 * init_timer_key - initialize a timer
595 * @timer: the timer to be initialized
596 * @name: name of the timer
597 * @key: lockdep class key of the fake lock used for tracking timer
598 * sync lock dependencies
599 *
600 * init_timer_key() must be done to a timer prior calling *any* of the
601 * other timer functions.
602 */
603 void init_timer_key(struct timer_list *timer,
604 const char *name,
605 struct lock_class_key *key)
606 {
607 debug_init(timer);
608 __init_timer(timer, name, key);
609 }
610 EXPORT_SYMBOL(init_timer_key);
611
612 void init_timer_deferrable_key(struct timer_list *timer,
613 const char *name,
614 struct lock_class_key *key)
615 {
616 init_timer_key(timer, name, key);
617 timer_set_deferrable(timer);
618 }
619 EXPORT_SYMBOL(init_timer_deferrable_key);
620
621 static inline void detach_timer(struct timer_list *timer,
622 int clear_pending)
623 {
624 struct list_head *entry = &timer->entry;
625
626 debug_deactivate(timer);
627
628 __list_del(entry->prev, entry->next);
629 if (clear_pending)
630 entry->next = NULL;
631 entry->prev = LIST_POISON2;
632 }
633
634 /*
635 * We are using hashed locking: holding per_cpu(tvec_bases).lock
636 * means that all timers which are tied to this base via timer->base are
637 * locked, and the base itself is locked too.
638 *
639 * So __run_timers/migrate_timers can safely modify all timers which could
640 * be found on ->tvX lists.
641 *
642 * When the timer's base is locked, and the timer removed from list, it is
643 * possible to set timer->base = NULL and drop the lock: the timer remains
644 * locked.
645 */
646 static struct tvec_base *lock_timer_base(struct timer_list *timer,
647 unsigned long *flags)
648 __acquires(timer->base->lock)
649 {
650 struct tvec_base *base;
651
652 for (;;) {
653 struct tvec_base *prelock_base = timer->base;
654 base = tbase_get_base(prelock_base);
655 if (likely(base != NULL)) {
656 spin_lock_irqsave(&base->lock, *flags);
657 if (likely(prelock_base == timer->base))
658 return base;
659 /* The timer has migrated to another CPU */
660 spin_unlock_irqrestore(&base->lock, *flags);
661 }
662 cpu_relax();
663 }
664 }
665
666 static inline int
667 __mod_timer(struct timer_list *timer, unsigned long expires,
668 bool pending_only, int pinned)
669 {
670 struct tvec_base *base, *new_base;
671 unsigned long flags;
672 int ret = 0 , cpu;
673
674 timer_stats_timer_set_start_info(timer);
675 BUG_ON(!timer->function);
676
677 base = lock_timer_base(timer, &flags);
678
679 if (timer_pending(timer)) {
680 detach_timer(timer, 0);
681 if (timer->expires == base->next_timer &&
682 !tbase_get_deferrable(timer->base))
683 base->next_timer = base->timer_jiffies;
684 ret = 1;
685 } else {
686 if (pending_only)
687 goto out_unlock;
688 }
689
690 debug_activate(timer, expires);
691
692 cpu = smp_processor_id();
693
694 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
695 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
696 int preferred_cpu = get_nohz_load_balancer();
697
698 if (preferred_cpu >= 0)
699 cpu = preferred_cpu;
700 }
701 #endif
702 new_base = per_cpu(tvec_bases, cpu);
703
704 if (base != new_base) {
705 /*
706 * We are trying to schedule the timer on the local CPU.
707 * However we can't change timer's base while it is running,
708 * otherwise del_timer_sync() can't detect that the timer's
709 * handler yet has not finished. This also guarantees that
710 * the timer is serialized wrt itself.
711 */
712 if (likely(base->running_timer != timer)) {
713 /* See the comment in lock_timer_base() */
714 timer_set_base(timer, NULL);
715 spin_unlock(&base->lock);
716 base = new_base;
717 spin_lock(&base->lock);
718 timer_set_base(timer, base);
719 }
720 }
721
722 timer->expires = expires;
723 if (time_before(timer->expires, base->next_timer) &&
724 !tbase_get_deferrable(timer->base))
725 base->next_timer = timer->expires;
726 internal_add_timer(base, timer);
727
728 out_unlock:
729 spin_unlock_irqrestore(&base->lock, flags);
730
731 return ret;
732 }
733
734 /**
735 * mod_timer_pending - modify a pending timer's timeout
736 * @timer: the pending timer to be modified
737 * @expires: new timeout in jiffies
738 *
739 * mod_timer_pending() is the same for pending timers as mod_timer(),
740 * but will not re-activate and modify already deleted timers.
741 *
742 * It is useful for unserialized use of timers.
743 */
744 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
745 {
746 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
747 }
748 EXPORT_SYMBOL(mod_timer_pending);
749
750 /*
751 * Decide where to put the timer while taking the slack into account
752 *
753 * Algorithm:
754 * 1) calculate the maximum (absolute) time
755 * 2) calculate the highest bit where the expires and new max are different
756 * 3) use this bit to make a mask
757 * 4) use the bitmask to round down the maximum time, so that all last
758 * bits are zeros
759 */
760 static inline
761 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
762 {
763 unsigned long expires_limit, mask;
764 int bit;
765
766 expires_limit = expires;
767
768 if (timer->slack >= 0) {
769 expires_limit = expires + timer->slack;
770 } else {
771 unsigned long now = jiffies;
772
773 /* No slack, if already expired else auto slack 0.4% */
774 if (time_after(expires, now))
775 expires_limit = expires + (expires - now)/256;
776 }
777 mask = expires ^ expires_limit;
778 if (mask == 0)
779 return expires;
780
781 bit = find_last_bit(&mask, BITS_PER_LONG);
782
783 mask = (1 << bit) - 1;
784
785 expires_limit = expires_limit & ~(mask);
786
787 return expires_limit;
788 }
789
790 /**
791 * mod_timer - modify a timer's timeout
792 * @timer: the timer to be modified
793 * @expires: new timeout in jiffies
794 *
795 * mod_timer() is a more efficient way to update the expire field of an
796 * active timer (if the timer is inactive it will be activated)
797 *
798 * mod_timer(timer, expires) is equivalent to:
799 *
800 * del_timer(timer); timer->expires = expires; add_timer(timer);
801 *
802 * Note that if there are multiple unserialized concurrent users of the
803 * same timer, then mod_timer() is the only safe way to modify the timeout,
804 * since add_timer() cannot modify an already running timer.
805 *
806 * The function returns whether it has modified a pending timer or not.
807 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
808 * active timer returns 1.)
809 */
810 int mod_timer(struct timer_list *timer, unsigned long expires)
811 {
812 /*
813 * This is a common optimization triggered by the
814 * networking code - if the timer is re-modified
815 * to be the same thing then just return:
816 */
817 if (timer_pending(timer) && timer->expires == expires)
818 return 1;
819
820 expires = apply_slack(timer, expires);
821
822 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
823 }
824 EXPORT_SYMBOL(mod_timer);
825
826 /**
827 * mod_timer_pinned - modify a timer's timeout
828 * @timer: the timer to be modified
829 * @expires: new timeout in jiffies
830 *
831 * mod_timer_pinned() is a way to update the expire field of an
832 * active timer (if the timer is inactive it will be activated)
833 * and not allow the timer to be migrated to a different CPU.
834 *
835 * mod_timer_pinned(timer, expires) is equivalent to:
836 *
837 * del_timer(timer); timer->expires = expires; add_timer(timer);
838 */
839 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
840 {
841 if (timer->expires == expires && timer_pending(timer))
842 return 1;
843
844 return __mod_timer(timer, expires, false, TIMER_PINNED);
845 }
846 EXPORT_SYMBOL(mod_timer_pinned);
847
848 /**
849 * add_timer - start a timer
850 * @timer: the timer to be added
851 *
852 * The kernel will do a ->function(->data) callback from the
853 * timer interrupt at the ->expires point in the future. The
854 * current time is 'jiffies'.
855 *
856 * The timer's ->expires, ->function (and if the handler uses it, ->data)
857 * fields must be set prior calling this function.
858 *
859 * Timers with an ->expires field in the past will be executed in the next
860 * timer tick.
861 */
862 void add_timer(struct timer_list *timer)
863 {
864 BUG_ON(timer_pending(timer));
865 mod_timer(timer, timer->expires);
866 }
867 EXPORT_SYMBOL(add_timer);
868
869 /**
870 * add_timer_on - start a timer on a particular CPU
871 * @timer: the timer to be added
872 * @cpu: the CPU to start it on
873 *
874 * This is not very scalable on SMP. Double adds are not possible.
875 */
876 void add_timer_on(struct timer_list *timer, int cpu)
877 {
878 struct tvec_base *base = per_cpu(tvec_bases, cpu);
879 unsigned long flags;
880
881 timer_stats_timer_set_start_info(timer);
882 BUG_ON(timer_pending(timer) || !timer->function);
883 spin_lock_irqsave(&base->lock, flags);
884 timer_set_base(timer, base);
885 debug_activate(timer, timer->expires);
886 if (time_before(timer->expires, base->next_timer) &&
887 !tbase_get_deferrable(timer->base))
888 base->next_timer = timer->expires;
889 internal_add_timer(base, timer);
890 /*
891 * Check whether the other CPU is idle and needs to be
892 * triggered to reevaluate the timer wheel when nohz is
893 * active. We are protected against the other CPU fiddling
894 * with the timer by holding the timer base lock. This also
895 * makes sure that a CPU on the way to idle can not evaluate
896 * the timer wheel.
897 */
898 wake_up_idle_cpu(cpu);
899 spin_unlock_irqrestore(&base->lock, flags);
900 }
901 EXPORT_SYMBOL_GPL(add_timer_on);
902
903 /**
904 * del_timer - deactive a timer.
905 * @timer: the timer to be deactivated
906 *
907 * del_timer() deactivates a timer - this works on both active and inactive
908 * timers.
909 *
910 * The function returns whether it has deactivated a pending timer or not.
911 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
912 * active timer returns 1.)
913 */
914 int del_timer(struct timer_list *timer)
915 {
916 struct tvec_base *base;
917 unsigned long flags;
918 int ret = 0;
919
920 timer_stats_timer_clear_start_info(timer);
921 if (timer_pending(timer)) {
922 base = lock_timer_base(timer, &flags);
923 if (timer_pending(timer)) {
924 detach_timer(timer, 1);
925 if (timer->expires == base->next_timer &&
926 !tbase_get_deferrable(timer->base))
927 base->next_timer = base->timer_jiffies;
928 ret = 1;
929 }
930 spin_unlock_irqrestore(&base->lock, flags);
931 }
932
933 return ret;
934 }
935 EXPORT_SYMBOL(del_timer);
936
937 #ifdef CONFIG_SMP
938 /**
939 * try_to_del_timer_sync - Try to deactivate a timer
940 * @timer: timer do del
941 *
942 * This function tries to deactivate a timer. Upon successful (ret >= 0)
943 * exit the timer is not queued and the handler is not running on any CPU.
944 *
945 * It must not be called from interrupt contexts.
946 */
947 int try_to_del_timer_sync(struct timer_list *timer)
948 {
949 struct tvec_base *base;
950 unsigned long flags;
951 int ret = -1;
952
953 base = lock_timer_base(timer, &flags);
954
955 if (base->running_timer == timer)
956 goto out;
957
958 timer_stats_timer_clear_start_info(timer);
959 ret = 0;
960 if (timer_pending(timer)) {
961 detach_timer(timer, 1);
962 if (timer->expires == base->next_timer &&
963 !tbase_get_deferrable(timer->base))
964 base->next_timer = base->timer_jiffies;
965 ret = 1;
966 }
967 out:
968 spin_unlock_irqrestore(&base->lock, flags);
969
970 return ret;
971 }
972 EXPORT_SYMBOL(try_to_del_timer_sync);
973
974 /**
975 * del_timer_sync - deactivate a timer and wait for the handler to finish.
976 * @timer: the timer to be deactivated
977 *
978 * This function only differs from del_timer() on SMP: besides deactivating
979 * the timer it also makes sure the handler has finished executing on other
980 * CPUs.
981 *
982 * Synchronization rules: Callers must prevent restarting of the timer,
983 * otherwise this function is meaningless. It must not be called from
984 * interrupt contexts. The caller must not hold locks which would prevent
985 * completion of the timer's handler. The timer's handler must not call
986 * add_timer_on(). Upon exit the timer is not queued and the handler is
987 * not running on any CPU.
988 *
989 * The function returns whether it has deactivated a pending timer or not.
990 */
991 int del_timer_sync(struct timer_list *timer)
992 {
993 #ifdef CONFIG_LOCKDEP
994 unsigned long flags;
995
996 local_irq_save(flags);
997 lock_map_acquire(&timer->lockdep_map);
998 lock_map_release(&timer->lockdep_map);
999 local_irq_restore(flags);
1000 #endif
1001
1002 for (;;) {
1003 int ret = try_to_del_timer_sync(timer);
1004 if (ret >= 0)
1005 return ret;
1006 cpu_relax();
1007 }
1008 }
1009 EXPORT_SYMBOL(del_timer_sync);
1010 #endif
1011
1012 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1013 {
1014 /* cascade all the timers from tv up one level */
1015 struct timer_list *timer, *tmp;
1016 struct list_head tv_list;
1017
1018 list_replace_init(tv->vec + index, &tv_list);
1019
1020 /*
1021 * We are removing _all_ timers from the list, so we
1022 * don't have to detach them individually.
1023 */
1024 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1025 BUG_ON(tbase_get_base(timer->base) != base);
1026 internal_add_timer(base, timer);
1027 }
1028
1029 return index;
1030 }
1031
1032 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1033 unsigned long data)
1034 {
1035 int preempt_count = preempt_count();
1036
1037 #ifdef CONFIG_LOCKDEP
1038 /*
1039 * It is permissible to free the timer from inside the
1040 * function that is called from it, this we need to take into
1041 * account for lockdep too. To avoid bogus "held lock freed"
1042 * warnings as well as problems when looking into
1043 * timer->lockdep_map, make a copy and use that here.
1044 */
1045 struct lockdep_map lockdep_map = timer->lockdep_map;
1046 #endif
1047 /*
1048 * Couple the lock chain with the lock chain at
1049 * del_timer_sync() by acquiring the lock_map around the fn()
1050 * call here and in del_timer_sync().
1051 */
1052 lock_map_acquire(&lockdep_map);
1053
1054 trace_timer_expire_entry(timer);
1055 fn(data);
1056 trace_timer_expire_exit(timer);
1057
1058 lock_map_release(&lockdep_map);
1059
1060 if (preempt_count != preempt_count()) {
1061 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1062 fn, preempt_count, preempt_count());
1063 /*
1064 * Restore the preempt count. That gives us a decent
1065 * chance to survive and extract information. If the
1066 * callback kept a lock held, bad luck, but not worse
1067 * than the BUG() we had.
1068 */
1069 preempt_count() = preempt_count;
1070 }
1071 }
1072
1073 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1074
1075 /**
1076 * __run_timers - run all expired timers (if any) on this CPU.
1077 * @base: the timer vector to be processed.
1078 *
1079 * This function cascades all vectors and executes all expired timer
1080 * vectors.
1081 */
1082 static inline void __run_timers(struct tvec_base *base)
1083 {
1084 struct timer_list *timer;
1085
1086 spin_lock_irq(&base->lock);
1087 while (time_after_eq(jiffies, base->timer_jiffies)) {
1088 struct list_head work_list;
1089 struct list_head *head = &work_list;
1090 int index = base->timer_jiffies & TVR_MASK;
1091
1092 /*
1093 * Cascade timers:
1094 */
1095 if (!index &&
1096 (!cascade(base, &base->tv2, INDEX(0))) &&
1097 (!cascade(base, &base->tv3, INDEX(1))) &&
1098 !cascade(base, &base->tv4, INDEX(2)))
1099 cascade(base, &base->tv5, INDEX(3));
1100 ++base->timer_jiffies;
1101 list_replace_init(base->tv1.vec + index, &work_list);
1102 while (!list_empty(head)) {
1103 void (*fn)(unsigned long);
1104 unsigned long data;
1105
1106 timer = list_first_entry(head, struct timer_list,entry);
1107 fn = timer->function;
1108 data = timer->data;
1109
1110 timer_stats_account_timer(timer);
1111
1112 set_running_timer(base, timer);
1113 detach_timer(timer, 1);
1114
1115 spin_unlock_irq(&base->lock);
1116 call_timer_fn(timer, fn, data);
1117 spin_lock_irq(&base->lock);
1118 }
1119 }
1120 set_running_timer(base, NULL);
1121 spin_unlock_irq(&base->lock);
1122 }
1123
1124 #ifdef CONFIG_NO_HZ
1125 /*
1126 * Find out when the next timer event is due to happen. This
1127 * is used on S/390 to stop all activity when a CPU is idle.
1128 * This function needs to be called with interrupts disabled.
1129 */
1130 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1131 {
1132 unsigned long timer_jiffies = base->timer_jiffies;
1133 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1134 int index, slot, array, found = 0;
1135 struct timer_list *nte;
1136 struct tvec *varray[4];
1137
1138 /* Look for timer events in tv1. */
1139 index = slot = timer_jiffies & TVR_MASK;
1140 do {
1141 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1142 if (tbase_get_deferrable(nte->base))
1143 continue;
1144
1145 found = 1;
1146 expires = nte->expires;
1147 /* Look at the cascade bucket(s)? */
1148 if (!index || slot < index)
1149 goto cascade;
1150 return expires;
1151 }
1152 slot = (slot + 1) & TVR_MASK;
1153 } while (slot != index);
1154
1155 cascade:
1156 /* Calculate the next cascade event */
1157 if (index)
1158 timer_jiffies += TVR_SIZE - index;
1159 timer_jiffies >>= TVR_BITS;
1160
1161 /* Check tv2-tv5. */
1162 varray[0] = &base->tv2;
1163 varray[1] = &base->tv3;
1164 varray[2] = &base->tv4;
1165 varray[3] = &base->tv5;
1166
1167 for (array = 0; array < 4; array++) {
1168 struct tvec *varp = varray[array];
1169
1170 index = slot = timer_jiffies & TVN_MASK;
1171 do {
1172 list_for_each_entry(nte, varp->vec + slot, entry) {
1173 if (tbase_get_deferrable(nte->base))
1174 continue;
1175
1176 found = 1;
1177 if (time_before(nte->expires, expires))
1178 expires = nte->expires;
1179 }
1180 /*
1181 * Do we still search for the first timer or are
1182 * we looking up the cascade buckets ?
1183 */
1184 if (found) {
1185 /* Look at the cascade bucket(s)? */
1186 if (!index || slot < index)
1187 break;
1188 return expires;
1189 }
1190 slot = (slot + 1) & TVN_MASK;
1191 } while (slot != index);
1192
1193 if (index)
1194 timer_jiffies += TVN_SIZE - index;
1195 timer_jiffies >>= TVN_BITS;
1196 }
1197 return expires;
1198 }
1199
1200 /*
1201 * Check, if the next hrtimer event is before the next timer wheel
1202 * event:
1203 */
1204 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1205 unsigned long expires)
1206 {
1207 ktime_t hr_delta = hrtimer_get_next_event();
1208 struct timespec tsdelta;
1209 unsigned long delta;
1210
1211 if (hr_delta.tv64 == KTIME_MAX)
1212 return expires;
1213
1214 /*
1215 * Expired timer available, let it expire in the next tick
1216 */
1217 if (hr_delta.tv64 <= 0)
1218 return now + 1;
1219
1220 tsdelta = ktime_to_timespec(hr_delta);
1221 delta = timespec_to_jiffies(&tsdelta);
1222
1223 /*
1224 * Limit the delta to the max value, which is checked in
1225 * tick_nohz_stop_sched_tick():
1226 */
1227 if (delta > NEXT_TIMER_MAX_DELTA)
1228 delta = NEXT_TIMER_MAX_DELTA;
1229
1230 /*
1231 * Take rounding errors in to account and make sure, that it
1232 * expires in the next tick. Otherwise we go into an endless
1233 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1234 * the timer softirq
1235 */
1236 if (delta < 1)
1237 delta = 1;
1238 now += delta;
1239 if (time_before(now, expires))
1240 return now;
1241 return expires;
1242 }
1243
1244 /**
1245 * get_next_timer_interrupt - return the jiffy of the next pending timer
1246 * @now: current time (in jiffies)
1247 */
1248 unsigned long get_next_timer_interrupt(unsigned long now)
1249 {
1250 struct tvec_base *base = __get_cpu_var(tvec_bases);
1251 unsigned long expires;
1252
1253 spin_lock(&base->lock);
1254 if (time_before_eq(base->next_timer, base->timer_jiffies))
1255 base->next_timer = __next_timer_interrupt(base);
1256 expires = base->next_timer;
1257 spin_unlock(&base->lock);
1258
1259 if (time_before_eq(expires, now))
1260 return now;
1261
1262 return cmp_next_hrtimer_event(now, expires);
1263 }
1264 #endif
1265
1266 /*
1267 * Called from the timer interrupt handler to charge one tick to the current
1268 * process. user_tick is 1 if the tick is user time, 0 for system.
1269 */
1270 void update_process_times(int user_tick)
1271 {
1272 struct task_struct *p = current;
1273 int cpu = smp_processor_id();
1274
1275 /* Note: this timer irq context must be accounted for as well. */
1276 account_process_tick(p, user_tick);
1277 run_local_timers();
1278 rcu_check_callbacks(cpu, user_tick);
1279 printk_tick();
1280 perf_event_do_pending();
1281 scheduler_tick();
1282 run_posix_cpu_timers(p);
1283 }
1284
1285 /*
1286 * This function runs timers and the timer-tq in bottom half context.
1287 */
1288 static void run_timer_softirq(struct softirq_action *h)
1289 {
1290 struct tvec_base *base = __get_cpu_var(tvec_bases);
1291
1292 hrtimer_run_pending();
1293
1294 if (time_after_eq(jiffies, base->timer_jiffies))
1295 __run_timers(base);
1296 }
1297
1298 /*
1299 * Called by the local, per-CPU timer interrupt on SMP.
1300 */
1301 void run_local_timers(void)
1302 {
1303 hrtimer_run_queues();
1304 raise_softirq(TIMER_SOFTIRQ);
1305 softlockup_tick();
1306 }
1307
1308 /*
1309 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1310 * without sampling the sequence number in xtime_lock.
1311 * jiffies is defined in the linker script...
1312 */
1313
1314 void do_timer(unsigned long ticks)
1315 {
1316 jiffies_64 += ticks;
1317 update_wall_time();
1318 calc_global_load();
1319 }
1320
1321 #ifdef __ARCH_WANT_SYS_ALARM
1322
1323 /*
1324 * For backwards compatibility? This can be done in libc so Alpha
1325 * and all newer ports shouldn't need it.
1326 */
1327 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1328 {
1329 return alarm_setitimer(seconds);
1330 }
1331
1332 #endif
1333
1334 #ifndef __alpha__
1335
1336 /*
1337 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1338 * should be moved into arch/i386 instead?
1339 */
1340
1341 /**
1342 * sys_getpid - return the thread group id of the current process
1343 *
1344 * Note, despite the name, this returns the tgid not the pid. The tgid and
1345 * the pid are identical unless CLONE_THREAD was specified on clone() in
1346 * which case the tgid is the same in all threads of the same group.
1347 *
1348 * This is SMP safe as current->tgid does not change.
1349 */
1350 SYSCALL_DEFINE0(getpid)
1351 {
1352 return task_tgid_vnr(current);
1353 }
1354
1355 /*
1356 * Accessing ->real_parent is not SMP-safe, it could
1357 * change from under us. However, we can use a stale
1358 * value of ->real_parent under rcu_read_lock(), see
1359 * release_task()->call_rcu(delayed_put_task_struct).
1360 */
1361 SYSCALL_DEFINE0(getppid)
1362 {
1363 int pid;
1364
1365 rcu_read_lock();
1366 pid = task_tgid_vnr(current->real_parent);
1367 rcu_read_unlock();
1368
1369 return pid;
1370 }
1371
1372 SYSCALL_DEFINE0(getuid)
1373 {
1374 /* Only we change this so SMP safe */
1375 return current_uid();
1376 }
1377
1378 SYSCALL_DEFINE0(geteuid)
1379 {
1380 /* Only we change this so SMP safe */
1381 return current_euid();
1382 }
1383
1384 SYSCALL_DEFINE0(getgid)
1385 {
1386 /* Only we change this so SMP safe */
1387 return current_gid();
1388 }
1389
1390 SYSCALL_DEFINE0(getegid)
1391 {
1392 /* Only we change this so SMP safe */
1393 return current_egid();
1394 }
1395
1396 #endif
1397
1398 static void process_timeout(unsigned long __data)
1399 {
1400 wake_up_process((struct task_struct *)__data);
1401 }
1402
1403 /**
1404 * schedule_timeout - sleep until timeout
1405 * @timeout: timeout value in jiffies
1406 *
1407 * Make the current task sleep until @timeout jiffies have
1408 * elapsed. The routine will return immediately unless
1409 * the current task state has been set (see set_current_state()).
1410 *
1411 * You can set the task state as follows -
1412 *
1413 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1414 * pass before the routine returns. The routine will return 0
1415 *
1416 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1417 * delivered to the current task. In this case the remaining time
1418 * in jiffies will be returned, or 0 if the timer expired in time
1419 *
1420 * The current task state is guaranteed to be TASK_RUNNING when this
1421 * routine returns.
1422 *
1423 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1424 * the CPU away without a bound on the timeout. In this case the return
1425 * value will be %MAX_SCHEDULE_TIMEOUT.
1426 *
1427 * In all cases the return value is guaranteed to be non-negative.
1428 */
1429 signed long __sched schedule_timeout(signed long timeout)
1430 {
1431 struct timer_list timer;
1432 unsigned long expire;
1433
1434 switch (timeout)
1435 {
1436 case MAX_SCHEDULE_TIMEOUT:
1437 /*
1438 * These two special cases are useful to be comfortable
1439 * in the caller. Nothing more. We could take
1440 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1441 * but I' d like to return a valid offset (>=0) to allow
1442 * the caller to do everything it want with the retval.
1443 */
1444 schedule();
1445 goto out;
1446 default:
1447 /*
1448 * Another bit of PARANOID. Note that the retval will be
1449 * 0 since no piece of kernel is supposed to do a check
1450 * for a negative retval of schedule_timeout() (since it
1451 * should never happens anyway). You just have the printk()
1452 * that will tell you if something is gone wrong and where.
1453 */
1454 if (timeout < 0) {
1455 printk(KERN_ERR "schedule_timeout: wrong timeout "
1456 "value %lx\n", timeout);
1457 dump_stack();
1458 current->state = TASK_RUNNING;
1459 goto out;
1460 }
1461 }
1462
1463 expire = timeout + jiffies;
1464
1465 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1466 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1467 schedule();
1468 del_singleshot_timer_sync(&timer);
1469
1470 /* Remove the timer from the object tracker */
1471 destroy_timer_on_stack(&timer);
1472
1473 timeout = expire - jiffies;
1474
1475 out:
1476 return timeout < 0 ? 0 : timeout;
1477 }
1478 EXPORT_SYMBOL(schedule_timeout);
1479
1480 /*
1481 * We can use __set_current_state() here because schedule_timeout() calls
1482 * schedule() unconditionally.
1483 */
1484 signed long __sched schedule_timeout_interruptible(signed long timeout)
1485 {
1486 __set_current_state(TASK_INTERRUPTIBLE);
1487 return schedule_timeout(timeout);
1488 }
1489 EXPORT_SYMBOL(schedule_timeout_interruptible);
1490
1491 signed long __sched schedule_timeout_killable(signed long timeout)
1492 {
1493 __set_current_state(TASK_KILLABLE);
1494 return schedule_timeout(timeout);
1495 }
1496 EXPORT_SYMBOL(schedule_timeout_killable);
1497
1498 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1499 {
1500 __set_current_state(TASK_UNINTERRUPTIBLE);
1501 return schedule_timeout(timeout);
1502 }
1503 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1504
1505 /* Thread ID - the internal kernel "pid" */
1506 SYSCALL_DEFINE0(gettid)
1507 {
1508 return task_pid_vnr(current);
1509 }
1510
1511 /**
1512 * do_sysinfo - fill in sysinfo struct
1513 * @info: pointer to buffer to fill
1514 */
1515 int do_sysinfo(struct sysinfo *info)
1516 {
1517 unsigned long mem_total, sav_total;
1518 unsigned int mem_unit, bitcount;
1519 struct timespec tp;
1520
1521 memset(info, 0, sizeof(struct sysinfo));
1522
1523 ktime_get_ts(&tp);
1524 monotonic_to_bootbased(&tp);
1525 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1526
1527 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1528
1529 info->procs = nr_threads;
1530
1531 si_meminfo(info);
1532 si_swapinfo(info);
1533
1534 /*
1535 * If the sum of all the available memory (i.e. ram + swap)
1536 * is less than can be stored in a 32 bit unsigned long then
1537 * we can be binary compatible with 2.2.x kernels. If not,
1538 * well, in that case 2.2.x was broken anyways...
1539 *
1540 * -Erik Andersen <andersee@debian.org>
1541 */
1542
1543 mem_total = info->totalram + info->totalswap;
1544 if (mem_total < info->totalram || mem_total < info->totalswap)
1545 goto out;
1546 bitcount = 0;
1547 mem_unit = info->mem_unit;
1548 while (mem_unit > 1) {
1549 bitcount++;
1550 mem_unit >>= 1;
1551 sav_total = mem_total;
1552 mem_total <<= 1;
1553 if (mem_total < sav_total)
1554 goto out;
1555 }
1556
1557 /*
1558 * If mem_total did not overflow, multiply all memory values by
1559 * info->mem_unit and set it to 1. This leaves things compatible
1560 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1561 * kernels...
1562 */
1563
1564 info->mem_unit = 1;
1565 info->totalram <<= bitcount;
1566 info->freeram <<= bitcount;
1567 info->sharedram <<= bitcount;
1568 info->bufferram <<= bitcount;
1569 info->totalswap <<= bitcount;
1570 info->freeswap <<= bitcount;
1571 info->totalhigh <<= bitcount;
1572 info->freehigh <<= bitcount;
1573
1574 out:
1575 return 0;
1576 }
1577
1578 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1579 {
1580 struct sysinfo val;
1581
1582 do_sysinfo(&val);
1583
1584 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1585 return -EFAULT;
1586
1587 return 0;
1588 }
1589
1590 static int __cpuinit init_timers_cpu(int cpu)
1591 {
1592 int j;
1593 struct tvec_base *base;
1594 static char __cpuinitdata tvec_base_done[NR_CPUS];
1595
1596 if (!tvec_base_done[cpu]) {
1597 static char boot_done;
1598
1599 if (boot_done) {
1600 /*
1601 * The APs use this path later in boot
1602 */
1603 base = kmalloc_node(sizeof(*base),
1604 GFP_KERNEL | __GFP_ZERO,
1605 cpu_to_node(cpu));
1606 if (!base)
1607 return -ENOMEM;
1608
1609 /* Make sure that tvec_base is 2 byte aligned */
1610 if (tbase_get_deferrable(base)) {
1611 WARN_ON(1);
1612 kfree(base);
1613 return -ENOMEM;
1614 }
1615 per_cpu(tvec_bases, cpu) = base;
1616 } else {
1617 /*
1618 * This is for the boot CPU - we use compile-time
1619 * static initialisation because per-cpu memory isn't
1620 * ready yet and because the memory allocators are not
1621 * initialised either.
1622 */
1623 boot_done = 1;
1624 base = &boot_tvec_bases;
1625 }
1626 tvec_base_done[cpu] = 1;
1627 } else {
1628 base = per_cpu(tvec_bases, cpu);
1629 }
1630
1631 spin_lock_init(&base->lock);
1632
1633 for (j = 0; j < TVN_SIZE; j++) {
1634 INIT_LIST_HEAD(base->tv5.vec + j);
1635 INIT_LIST_HEAD(base->tv4.vec + j);
1636 INIT_LIST_HEAD(base->tv3.vec + j);
1637 INIT_LIST_HEAD(base->tv2.vec + j);
1638 }
1639 for (j = 0; j < TVR_SIZE; j++)
1640 INIT_LIST_HEAD(base->tv1.vec + j);
1641
1642 base->timer_jiffies = jiffies;
1643 base->next_timer = base->timer_jiffies;
1644 return 0;
1645 }
1646
1647 #ifdef CONFIG_HOTPLUG_CPU
1648 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1649 {
1650 struct timer_list *timer;
1651
1652 while (!list_empty(head)) {
1653 timer = list_first_entry(head, struct timer_list, entry);
1654 detach_timer(timer, 0);
1655 timer_set_base(timer, new_base);
1656 if (time_before(timer->expires, new_base->next_timer) &&
1657 !tbase_get_deferrable(timer->base))
1658 new_base->next_timer = timer->expires;
1659 internal_add_timer(new_base, timer);
1660 }
1661 }
1662
1663 static void __cpuinit migrate_timers(int cpu)
1664 {
1665 struct tvec_base *old_base;
1666 struct tvec_base *new_base;
1667 int i;
1668
1669 BUG_ON(cpu_online(cpu));
1670 old_base = per_cpu(tvec_bases, cpu);
1671 new_base = get_cpu_var(tvec_bases);
1672 /*
1673 * The caller is globally serialized and nobody else
1674 * takes two locks at once, deadlock is not possible.
1675 */
1676 spin_lock_irq(&new_base->lock);
1677 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1678
1679 BUG_ON(old_base->running_timer);
1680
1681 for (i = 0; i < TVR_SIZE; i++)
1682 migrate_timer_list(new_base, old_base->tv1.vec + i);
1683 for (i = 0; i < TVN_SIZE; i++) {
1684 migrate_timer_list(new_base, old_base->tv2.vec + i);
1685 migrate_timer_list(new_base, old_base->tv3.vec + i);
1686 migrate_timer_list(new_base, old_base->tv4.vec + i);
1687 migrate_timer_list(new_base, old_base->tv5.vec + i);
1688 }
1689
1690 spin_unlock(&old_base->lock);
1691 spin_unlock_irq(&new_base->lock);
1692 put_cpu_var(tvec_bases);
1693 }
1694 #endif /* CONFIG_HOTPLUG_CPU */
1695
1696 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1697 unsigned long action, void *hcpu)
1698 {
1699 long cpu = (long)hcpu;
1700 int err;
1701
1702 switch(action) {
1703 case CPU_UP_PREPARE:
1704 case CPU_UP_PREPARE_FROZEN:
1705 err = init_timers_cpu(cpu);
1706 if (err < 0)
1707 return notifier_from_errno(err);
1708 break;
1709 #ifdef CONFIG_HOTPLUG_CPU
1710 case CPU_DEAD:
1711 case CPU_DEAD_FROZEN:
1712 migrate_timers(cpu);
1713 break;
1714 #endif
1715 default:
1716 break;
1717 }
1718 return NOTIFY_OK;
1719 }
1720
1721 static struct notifier_block __cpuinitdata timers_nb = {
1722 .notifier_call = timer_cpu_notify,
1723 };
1724
1725
1726 void __init init_timers(void)
1727 {
1728 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1729 (void *)(long)smp_processor_id());
1730
1731 init_timer_stats();
1732
1733 BUG_ON(err != NOTIFY_OK);
1734 register_cpu_notifier(&timers_nb);
1735 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1736 }
1737
1738 /**
1739 * msleep - sleep safely even with waitqueue interruptions
1740 * @msecs: Time in milliseconds to sleep for
1741 */
1742 void msleep(unsigned int msecs)
1743 {
1744 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1745
1746 while (timeout)
1747 timeout = schedule_timeout_uninterruptible(timeout);
1748 }
1749
1750 EXPORT_SYMBOL(msleep);
1751
1752 /**
1753 * msleep_interruptible - sleep waiting for signals
1754 * @msecs: Time in milliseconds to sleep for
1755 */
1756 unsigned long msleep_interruptible(unsigned int msecs)
1757 {
1758 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1759
1760 while (timeout && !signal_pending(current))
1761 timeout = schedule_timeout_interruptible(timeout);
1762 return jiffies_to_msecs(timeout);
1763 }
1764
1765 EXPORT_SYMBOL(msleep_interruptible);