signal: fix __send_signal() false positive kmemcheck warning
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_counter.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/div64.h>
45 #include <asm/timex.h>
46 #include <asm/io.h>
47
48 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
49
50 EXPORT_SYMBOL(jiffies_64);
51
52 /*
53 * per-CPU timer vector definitions:
54 */
55 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
56 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
57 #define TVN_SIZE (1 << TVN_BITS)
58 #define TVR_SIZE (1 << TVR_BITS)
59 #define TVN_MASK (TVN_SIZE - 1)
60 #define TVR_MASK (TVR_SIZE - 1)
61
62 struct tvec {
63 struct list_head vec[TVN_SIZE];
64 };
65
66 struct tvec_root {
67 struct list_head vec[TVR_SIZE];
68 };
69
70 struct tvec_base {
71 spinlock_t lock;
72 struct timer_list *running_timer;
73 unsigned long timer_jiffies;
74 struct tvec_root tv1;
75 struct tvec tv2;
76 struct tvec tv3;
77 struct tvec tv4;
78 struct tvec tv5;
79 } ____cacheline_aligned;
80
81 struct tvec_base boot_tvec_bases;
82 EXPORT_SYMBOL(boot_tvec_bases);
83 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
84
85 /*
86 * Note that all tvec_bases are 2 byte aligned and lower bit of
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
89 */
90 #define TBASE_DEFERRABLE_FLAG (0x1)
91
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 {
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
96 }
97
98 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 {
100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
101 }
102
103 static inline void timer_set_deferrable(struct timer_list *timer)
104 {
105 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
106 TBASE_DEFERRABLE_FLAG));
107 }
108
109 static inline void
110 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
111 {
112 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
113 tbase_get_deferrable(timer->base));
114 }
115
116 static unsigned long round_jiffies_common(unsigned long j, int cpu,
117 bool force_up)
118 {
119 int rem;
120 unsigned long original = j;
121
122 /*
123 * We don't want all cpus firing their timers at once hitting the
124 * same lock or cachelines, so we skew each extra cpu with an extra
125 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * already did this.
127 * The skew is done by adding 3*cpunr, then round, then subtract this
128 * extra offset again.
129 */
130 j += cpu * 3;
131
132 rem = j % HZ;
133
134 /*
135 * If the target jiffie is just after a whole second (which can happen
136 * due to delays of the timer irq, long irq off times etc etc) then
137 * we should round down to the whole second, not up. Use 1/4th second
138 * as cutoff for this rounding as an extreme upper bound for this.
139 * But never round down if @force_up is set.
140 */
141 if (rem < HZ/4 && !force_up) /* round down */
142 j = j - rem;
143 else /* round up */
144 j = j - rem + HZ;
145
146 /* now that we have rounded, subtract the extra skew again */
147 j -= cpu * 3;
148
149 if (j <= jiffies) /* rounding ate our timeout entirely; */
150 return original;
151 return j;
152 }
153
154 /**
155 * __round_jiffies - function to round jiffies to a full second
156 * @j: the time in (absolute) jiffies that should be rounded
157 * @cpu: the processor number on which the timeout will happen
158 *
159 * __round_jiffies() rounds an absolute time in the future (in jiffies)
160 * up or down to (approximately) full seconds. This is useful for timers
161 * for which the exact time they fire does not matter too much, as long as
162 * they fire approximately every X seconds.
163 *
164 * By rounding these timers to whole seconds, all such timers will fire
165 * at the same time, rather than at various times spread out. The goal
166 * of this is to have the CPU wake up less, which saves power.
167 *
168 * The exact rounding is skewed for each processor to avoid all
169 * processors firing at the exact same time, which could lead
170 * to lock contention or spurious cache line bouncing.
171 *
172 * The return value is the rounded version of the @j parameter.
173 */
174 unsigned long __round_jiffies(unsigned long j, int cpu)
175 {
176 return round_jiffies_common(j, cpu, false);
177 }
178 EXPORT_SYMBOL_GPL(__round_jiffies);
179
180 /**
181 * __round_jiffies_relative - function to round jiffies to a full second
182 * @j: the time in (relative) jiffies that should be rounded
183 * @cpu: the processor number on which the timeout will happen
184 *
185 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
186 * up or down to (approximately) full seconds. This is useful for timers
187 * for which the exact time they fire does not matter too much, as long as
188 * they fire approximately every X seconds.
189 *
190 * By rounding these timers to whole seconds, all such timers will fire
191 * at the same time, rather than at various times spread out. The goal
192 * of this is to have the CPU wake up less, which saves power.
193 *
194 * The exact rounding is skewed for each processor to avoid all
195 * processors firing at the exact same time, which could lead
196 * to lock contention or spurious cache line bouncing.
197 *
198 * The return value is the rounded version of the @j parameter.
199 */
200 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
201 {
202 unsigned long j0 = jiffies;
203
204 /* Use j0 because jiffies might change while we run */
205 return round_jiffies_common(j + j0, cpu, false) - j0;
206 }
207 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
208
209 /**
210 * round_jiffies - function to round jiffies to a full second
211 * @j: the time in (absolute) jiffies that should be rounded
212 *
213 * round_jiffies() rounds an absolute time in the future (in jiffies)
214 * up or down to (approximately) full seconds. This is useful for timers
215 * for which the exact time they fire does not matter too much, as long as
216 * they fire approximately every X seconds.
217 *
218 * By rounding these timers to whole seconds, all such timers will fire
219 * at the same time, rather than at various times spread out. The goal
220 * of this is to have the CPU wake up less, which saves power.
221 *
222 * The return value is the rounded version of the @j parameter.
223 */
224 unsigned long round_jiffies(unsigned long j)
225 {
226 return round_jiffies_common(j, raw_smp_processor_id(), false);
227 }
228 EXPORT_SYMBOL_GPL(round_jiffies);
229
230 /**
231 * round_jiffies_relative - function to round jiffies to a full second
232 * @j: the time in (relative) jiffies that should be rounded
233 *
234 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
235 * up or down to (approximately) full seconds. This is useful for timers
236 * for which the exact time they fire does not matter too much, as long as
237 * they fire approximately every X seconds.
238 *
239 * By rounding these timers to whole seconds, all such timers will fire
240 * at the same time, rather than at various times spread out. The goal
241 * of this is to have the CPU wake up less, which saves power.
242 *
243 * The return value is the rounded version of the @j parameter.
244 */
245 unsigned long round_jiffies_relative(unsigned long j)
246 {
247 return __round_jiffies_relative(j, raw_smp_processor_id());
248 }
249 EXPORT_SYMBOL_GPL(round_jiffies_relative);
250
251 /**
252 * __round_jiffies_up - function to round jiffies up to a full second
253 * @j: the time in (absolute) jiffies that should be rounded
254 * @cpu: the processor number on which the timeout will happen
255 *
256 * This is the same as __round_jiffies() except that it will never
257 * round down. This is useful for timeouts for which the exact time
258 * of firing does not matter too much, as long as they don't fire too
259 * early.
260 */
261 unsigned long __round_jiffies_up(unsigned long j, int cpu)
262 {
263 return round_jiffies_common(j, cpu, true);
264 }
265 EXPORT_SYMBOL_GPL(__round_jiffies_up);
266
267 /**
268 * __round_jiffies_up_relative - function to round jiffies up to a full second
269 * @j: the time in (relative) jiffies that should be rounded
270 * @cpu: the processor number on which the timeout will happen
271 *
272 * This is the same as __round_jiffies_relative() except that it will never
273 * round down. This is useful for timeouts for which the exact time
274 * of firing does not matter too much, as long as they don't fire too
275 * early.
276 */
277 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
278 {
279 unsigned long j0 = jiffies;
280
281 /* Use j0 because jiffies might change while we run */
282 return round_jiffies_common(j + j0, cpu, true) - j0;
283 }
284 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
285
286 /**
287 * round_jiffies_up - function to round jiffies up to a full second
288 * @j: the time in (absolute) jiffies that should be rounded
289 *
290 * This is the same as round_jiffies() except that it will never
291 * round down. This is useful for timeouts for which the exact time
292 * of firing does not matter too much, as long as they don't fire too
293 * early.
294 */
295 unsigned long round_jiffies_up(unsigned long j)
296 {
297 return round_jiffies_common(j, raw_smp_processor_id(), true);
298 }
299 EXPORT_SYMBOL_GPL(round_jiffies_up);
300
301 /**
302 * round_jiffies_up_relative - function to round jiffies up to a full second
303 * @j: the time in (relative) jiffies that should be rounded
304 *
305 * This is the same as round_jiffies_relative() except that it will never
306 * round down. This is useful for timeouts for which the exact time
307 * of firing does not matter too much, as long as they don't fire too
308 * early.
309 */
310 unsigned long round_jiffies_up_relative(unsigned long j)
311 {
312 return __round_jiffies_up_relative(j, raw_smp_processor_id());
313 }
314 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
315
316
317 static inline void set_running_timer(struct tvec_base *base,
318 struct timer_list *timer)
319 {
320 #ifdef CONFIG_SMP
321 base->running_timer = timer;
322 #endif
323 }
324
325 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
326 {
327 unsigned long expires = timer->expires;
328 unsigned long idx = expires - base->timer_jiffies;
329 struct list_head *vec;
330
331 if (idx < TVR_SIZE) {
332 int i = expires & TVR_MASK;
333 vec = base->tv1.vec + i;
334 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
335 int i = (expires >> TVR_BITS) & TVN_MASK;
336 vec = base->tv2.vec + i;
337 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
338 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
339 vec = base->tv3.vec + i;
340 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
341 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
342 vec = base->tv4.vec + i;
343 } else if ((signed long) idx < 0) {
344 /*
345 * Can happen if you add a timer with expires == jiffies,
346 * or you set a timer to go off in the past
347 */
348 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
349 } else {
350 int i;
351 /* If the timeout is larger than 0xffffffff on 64-bit
352 * architectures then we use the maximum timeout:
353 */
354 if (idx > 0xffffffffUL) {
355 idx = 0xffffffffUL;
356 expires = idx + base->timer_jiffies;
357 }
358 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
359 vec = base->tv5.vec + i;
360 }
361 /*
362 * Timers are FIFO:
363 */
364 list_add_tail(&timer->entry, vec);
365 }
366
367 #ifdef CONFIG_TIMER_STATS
368 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
369 {
370 if (timer->start_site)
371 return;
372
373 timer->start_site = addr;
374 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
375 timer->start_pid = current->pid;
376 }
377
378 static void timer_stats_account_timer(struct timer_list *timer)
379 {
380 unsigned int flag = 0;
381
382 if (unlikely(tbase_get_deferrable(timer->base)))
383 flag |= TIMER_STATS_FLAG_DEFERRABLE;
384
385 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
386 timer->function, timer->start_comm, flag);
387 }
388
389 #else
390 static void timer_stats_account_timer(struct timer_list *timer) {}
391 #endif
392
393 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
394
395 static struct debug_obj_descr timer_debug_descr;
396
397 /*
398 * fixup_init is called when:
399 * - an active object is initialized
400 */
401 static int timer_fixup_init(void *addr, enum debug_obj_state state)
402 {
403 struct timer_list *timer = addr;
404
405 switch (state) {
406 case ODEBUG_STATE_ACTIVE:
407 del_timer_sync(timer);
408 debug_object_init(timer, &timer_debug_descr);
409 return 1;
410 default:
411 return 0;
412 }
413 }
414
415 /*
416 * fixup_activate is called when:
417 * - an active object is activated
418 * - an unknown object is activated (might be a statically initialized object)
419 */
420 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
421 {
422 struct timer_list *timer = addr;
423
424 switch (state) {
425
426 case ODEBUG_STATE_NOTAVAILABLE:
427 /*
428 * This is not really a fixup. The timer was
429 * statically initialized. We just make sure that it
430 * is tracked in the object tracker.
431 */
432 if (timer->entry.next == NULL &&
433 timer->entry.prev == TIMER_ENTRY_STATIC) {
434 debug_object_init(timer, &timer_debug_descr);
435 debug_object_activate(timer, &timer_debug_descr);
436 return 0;
437 } else {
438 WARN_ON_ONCE(1);
439 }
440 return 0;
441
442 case ODEBUG_STATE_ACTIVE:
443 WARN_ON(1);
444
445 default:
446 return 0;
447 }
448 }
449
450 /*
451 * fixup_free is called when:
452 * - an active object is freed
453 */
454 static int timer_fixup_free(void *addr, enum debug_obj_state state)
455 {
456 struct timer_list *timer = addr;
457
458 switch (state) {
459 case ODEBUG_STATE_ACTIVE:
460 del_timer_sync(timer);
461 debug_object_free(timer, &timer_debug_descr);
462 return 1;
463 default:
464 return 0;
465 }
466 }
467
468 static struct debug_obj_descr timer_debug_descr = {
469 .name = "timer_list",
470 .fixup_init = timer_fixup_init,
471 .fixup_activate = timer_fixup_activate,
472 .fixup_free = timer_fixup_free,
473 };
474
475 static inline void debug_timer_init(struct timer_list *timer)
476 {
477 debug_object_init(timer, &timer_debug_descr);
478 }
479
480 static inline void debug_timer_activate(struct timer_list *timer)
481 {
482 debug_object_activate(timer, &timer_debug_descr);
483 }
484
485 static inline void debug_timer_deactivate(struct timer_list *timer)
486 {
487 debug_object_deactivate(timer, &timer_debug_descr);
488 }
489
490 static inline void debug_timer_free(struct timer_list *timer)
491 {
492 debug_object_free(timer, &timer_debug_descr);
493 }
494
495 static void __init_timer(struct timer_list *timer,
496 const char *name,
497 struct lock_class_key *key);
498
499 void init_timer_on_stack_key(struct timer_list *timer,
500 const char *name,
501 struct lock_class_key *key)
502 {
503 debug_object_init_on_stack(timer, &timer_debug_descr);
504 __init_timer(timer, name, key);
505 }
506 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
507
508 void destroy_timer_on_stack(struct timer_list *timer)
509 {
510 debug_object_free(timer, &timer_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
513
514 #else
515 static inline void debug_timer_init(struct timer_list *timer) { }
516 static inline void debug_timer_activate(struct timer_list *timer) { }
517 static inline void debug_timer_deactivate(struct timer_list *timer) { }
518 #endif
519
520 static void __init_timer(struct timer_list *timer,
521 const char *name,
522 struct lock_class_key *key)
523 {
524 timer->entry.next = NULL;
525 timer->base = __raw_get_cpu_var(tvec_bases);
526 #ifdef CONFIG_TIMER_STATS
527 timer->start_site = NULL;
528 timer->start_pid = -1;
529 memset(timer->start_comm, 0, TASK_COMM_LEN);
530 #endif
531 lockdep_init_map(&timer->lockdep_map, name, key, 0);
532 }
533
534 /**
535 * init_timer_key - initialize a timer
536 * @timer: the timer to be initialized
537 * @name: name of the timer
538 * @key: lockdep class key of the fake lock used for tracking timer
539 * sync lock dependencies
540 *
541 * init_timer_key() must be done to a timer prior calling *any* of the
542 * other timer functions.
543 */
544 void init_timer_key(struct timer_list *timer,
545 const char *name,
546 struct lock_class_key *key)
547 {
548 debug_timer_init(timer);
549 __init_timer(timer, name, key);
550 }
551 EXPORT_SYMBOL(init_timer_key);
552
553 void init_timer_deferrable_key(struct timer_list *timer,
554 const char *name,
555 struct lock_class_key *key)
556 {
557 init_timer_key(timer, name, key);
558 timer_set_deferrable(timer);
559 }
560 EXPORT_SYMBOL(init_timer_deferrable_key);
561
562 static inline void detach_timer(struct timer_list *timer,
563 int clear_pending)
564 {
565 struct list_head *entry = &timer->entry;
566
567 debug_timer_deactivate(timer);
568
569 __list_del(entry->prev, entry->next);
570 if (clear_pending)
571 entry->next = NULL;
572 entry->prev = LIST_POISON2;
573 }
574
575 /*
576 * We are using hashed locking: holding per_cpu(tvec_bases).lock
577 * means that all timers which are tied to this base via timer->base are
578 * locked, and the base itself is locked too.
579 *
580 * So __run_timers/migrate_timers can safely modify all timers which could
581 * be found on ->tvX lists.
582 *
583 * When the timer's base is locked, and the timer removed from list, it is
584 * possible to set timer->base = NULL and drop the lock: the timer remains
585 * locked.
586 */
587 static struct tvec_base *lock_timer_base(struct timer_list *timer,
588 unsigned long *flags)
589 __acquires(timer->base->lock)
590 {
591 struct tvec_base *base;
592
593 for (;;) {
594 struct tvec_base *prelock_base = timer->base;
595 base = tbase_get_base(prelock_base);
596 if (likely(base != NULL)) {
597 spin_lock_irqsave(&base->lock, *flags);
598 if (likely(prelock_base == timer->base))
599 return base;
600 /* The timer has migrated to another CPU */
601 spin_unlock_irqrestore(&base->lock, *flags);
602 }
603 cpu_relax();
604 }
605 }
606
607 static inline int
608 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
609 {
610 struct tvec_base *base, *new_base;
611 unsigned long flags;
612 int ret;
613
614 ret = 0;
615
616 timer_stats_timer_set_start_info(timer);
617 BUG_ON(!timer->function);
618
619 base = lock_timer_base(timer, &flags);
620
621 if (timer_pending(timer)) {
622 detach_timer(timer, 0);
623 ret = 1;
624 } else {
625 if (pending_only)
626 goto out_unlock;
627 }
628
629 debug_timer_activate(timer);
630
631 new_base = __get_cpu_var(tvec_bases);
632
633 if (base != new_base) {
634 /*
635 * We are trying to schedule the timer on the local CPU.
636 * However we can't change timer's base while it is running,
637 * otherwise del_timer_sync() can't detect that the timer's
638 * handler yet has not finished. This also guarantees that
639 * the timer is serialized wrt itself.
640 */
641 if (likely(base->running_timer != timer)) {
642 /* See the comment in lock_timer_base() */
643 timer_set_base(timer, NULL);
644 spin_unlock(&base->lock);
645 base = new_base;
646 spin_lock(&base->lock);
647 timer_set_base(timer, base);
648 }
649 }
650
651 timer->expires = expires;
652 internal_add_timer(base, timer);
653
654 out_unlock:
655 spin_unlock_irqrestore(&base->lock, flags);
656
657 return ret;
658 }
659
660 /**
661 * mod_timer_pending - modify a pending timer's timeout
662 * @timer: the pending timer to be modified
663 * @expires: new timeout in jiffies
664 *
665 * mod_timer_pending() is the same for pending timers as mod_timer(),
666 * but will not re-activate and modify already deleted timers.
667 *
668 * It is useful for unserialized use of timers.
669 */
670 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
671 {
672 return __mod_timer(timer, expires, true);
673 }
674 EXPORT_SYMBOL(mod_timer_pending);
675
676 /**
677 * mod_timer - modify a timer's timeout
678 * @timer: the timer to be modified
679 * @expires: new timeout in jiffies
680 *
681 * mod_timer() is a more efficient way to update the expire field of an
682 * active timer (if the timer is inactive it will be activated)
683 *
684 * mod_timer(timer, expires) is equivalent to:
685 *
686 * del_timer(timer); timer->expires = expires; add_timer(timer);
687 *
688 * Note that if there are multiple unserialized concurrent users of the
689 * same timer, then mod_timer() is the only safe way to modify the timeout,
690 * since add_timer() cannot modify an already running timer.
691 *
692 * The function returns whether it has modified a pending timer or not.
693 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
694 * active timer returns 1.)
695 */
696 int mod_timer(struct timer_list *timer, unsigned long expires)
697 {
698 /*
699 * This is a common optimization triggered by the
700 * networking code - if the timer is re-modified
701 * to be the same thing then just return:
702 */
703 if (timer->expires == expires && timer_pending(timer))
704 return 1;
705
706 return __mod_timer(timer, expires, false);
707 }
708 EXPORT_SYMBOL(mod_timer);
709
710 /**
711 * add_timer - start a timer
712 * @timer: the timer to be added
713 *
714 * The kernel will do a ->function(->data) callback from the
715 * timer interrupt at the ->expires point in the future. The
716 * current time is 'jiffies'.
717 *
718 * The timer's ->expires, ->function (and if the handler uses it, ->data)
719 * fields must be set prior calling this function.
720 *
721 * Timers with an ->expires field in the past will be executed in the next
722 * timer tick.
723 */
724 void add_timer(struct timer_list *timer)
725 {
726 BUG_ON(timer_pending(timer));
727 mod_timer(timer, timer->expires);
728 }
729 EXPORT_SYMBOL(add_timer);
730
731 /**
732 * add_timer_on - start a timer on a particular CPU
733 * @timer: the timer to be added
734 * @cpu: the CPU to start it on
735 *
736 * This is not very scalable on SMP. Double adds are not possible.
737 */
738 void add_timer_on(struct timer_list *timer, int cpu)
739 {
740 struct tvec_base *base = per_cpu(tvec_bases, cpu);
741 unsigned long flags;
742
743 timer_stats_timer_set_start_info(timer);
744 BUG_ON(timer_pending(timer) || !timer->function);
745 spin_lock_irqsave(&base->lock, flags);
746 timer_set_base(timer, base);
747 debug_timer_activate(timer);
748 internal_add_timer(base, timer);
749 /*
750 * Check whether the other CPU is idle and needs to be
751 * triggered to reevaluate the timer wheel when nohz is
752 * active. We are protected against the other CPU fiddling
753 * with the timer by holding the timer base lock. This also
754 * makes sure that a CPU on the way to idle can not evaluate
755 * the timer wheel.
756 */
757 wake_up_idle_cpu(cpu);
758 spin_unlock_irqrestore(&base->lock, flags);
759 }
760
761 /**
762 * del_timer - deactive a timer.
763 * @timer: the timer to be deactivated
764 *
765 * del_timer() deactivates a timer - this works on both active and inactive
766 * timers.
767 *
768 * The function returns whether it has deactivated a pending timer or not.
769 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
770 * active timer returns 1.)
771 */
772 int del_timer(struct timer_list *timer)
773 {
774 struct tvec_base *base;
775 unsigned long flags;
776 int ret = 0;
777
778 timer_stats_timer_clear_start_info(timer);
779 if (timer_pending(timer)) {
780 base = lock_timer_base(timer, &flags);
781 if (timer_pending(timer)) {
782 detach_timer(timer, 1);
783 ret = 1;
784 }
785 spin_unlock_irqrestore(&base->lock, flags);
786 }
787
788 return ret;
789 }
790 EXPORT_SYMBOL(del_timer);
791
792 #ifdef CONFIG_SMP
793 /**
794 * try_to_del_timer_sync - Try to deactivate a timer
795 * @timer: timer do del
796 *
797 * This function tries to deactivate a timer. Upon successful (ret >= 0)
798 * exit the timer is not queued and the handler is not running on any CPU.
799 *
800 * It must not be called from interrupt contexts.
801 */
802 int try_to_del_timer_sync(struct timer_list *timer)
803 {
804 struct tvec_base *base;
805 unsigned long flags;
806 int ret = -1;
807
808 base = lock_timer_base(timer, &flags);
809
810 if (base->running_timer == timer)
811 goto out;
812
813 ret = 0;
814 if (timer_pending(timer)) {
815 detach_timer(timer, 1);
816 ret = 1;
817 }
818 out:
819 spin_unlock_irqrestore(&base->lock, flags);
820
821 return ret;
822 }
823 EXPORT_SYMBOL(try_to_del_timer_sync);
824
825 /**
826 * del_timer_sync - deactivate a timer and wait for the handler to finish.
827 * @timer: the timer to be deactivated
828 *
829 * This function only differs from del_timer() on SMP: besides deactivating
830 * the timer it also makes sure the handler has finished executing on other
831 * CPUs.
832 *
833 * Synchronization rules: Callers must prevent restarting of the timer,
834 * otherwise this function is meaningless. It must not be called from
835 * interrupt contexts. The caller must not hold locks which would prevent
836 * completion of the timer's handler. The timer's handler must not call
837 * add_timer_on(). Upon exit the timer is not queued and the handler is
838 * not running on any CPU.
839 *
840 * The function returns whether it has deactivated a pending timer or not.
841 */
842 int del_timer_sync(struct timer_list *timer)
843 {
844 #ifdef CONFIG_LOCKDEP
845 unsigned long flags;
846
847 local_irq_save(flags);
848 lock_map_acquire(&timer->lockdep_map);
849 lock_map_release(&timer->lockdep_map);
850 local_irq_restore(flags);
851 #endif
852
853 for (;;) {
854 int ret = try_to_del_timer_sync(timer);
855 if (ret >= 0)
856 return ret;
857 cpu_relax();
858 }
859 }
860 EXPORT_SYMBOL(del_timer_sync);
861 #endif
862
863 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
864 {
865 /* cascade all the timers from tv up one level */
866 struct timer_list *timer, *tmp;
867 struct list_head tv_list;
868
869 list_replace_init(tv->vec + index, &tv_list);
870
871 /*
872 * We are removing _all_ timers from the list, so we
873 * don't have to detach them individually.
874 */
875 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
876 BUG_ON(tbase_get_base(timer->base) != base);
877 internal_add_timer(base, timer);
878 }
879
880 return index;
881 }
882
883 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
884
885 /**
886 * __run_timers - run all expired timers (if any) on this CPU.
887 * @base: the timer vector to be processed.
888 *
889 * This function cascades all vectors and executes all expired timer
890 * vectors.
891 */
892 static inline void __run_timers(struct tvec_base *base)
893 {
894 struct timer_list *timer;
895
896 spin_lock_irq(&base->lock);
897 while (time_after_eq(jiffies, base->timer_jiffies)) {
898 struct list_head work_list;
899 struct list_head *head = &work_list;
900 int index = base->timer_jiffies & TVR_MASK;
901
902 /*
903 * Cascade timers:
904 */
905 if (!index &&
906 (!cascade(base, &base->tv2, INDEX(0))) &&
907 (!cascade(base, &base->tv3, INDEX(1))) &&
908 !cascade(base, &base->tv4, INDEX(2)))
909 cascade(base, &base->tv5, INDEX(3));
910 ++base->timer_jiffies;
911 list_replace_init(base->tv1.vec + index, &work_list);
912 while (!list_empty(head)) {
913 void (*fn)(unsigned long);
914 unsigned long data;
915
916 timer = list_first_entry(head, struct timer_list,entry);
917 fn = timer->function;
918 data = timer->data;
919
920 timer_stats_account_timer(timer);
921
922 set_running_timer(base, timer);
923 detach_timer(timer, 1);
924
925 spin_unlock_irq(&base->lock);
926 {
927 int preempt_count = preempt_count();
928
929 #ifdef CONFIG_LOCKDEP
930 /*
931 * It is permissible to free the timer from
932 * inside the function that is called from
933 * it, this we need to take into account for
934 * lockdep too. To avoid bogus "held lock
935 * freed" warnings as well as problems when
936 * looking into timer->lockdep_map, make a
937 * copy and use that here.
938 */
939 struct lockdep_map lockdep_map =
940 timer->lockdep_map;
941 #endif
942 /*
943 * Couple the lock chain with the lock chain at
944 * del_timer_sync() by acquiring the lock_map
945 * around the fn() call here and in
946 * del_timer_sync().
947 */
948 lock_map_acquire(&lockdep_map);
949
950 fn(data);
951
952 lock_map_release(&lockdep_map);
953
954 if (preempt_count != preempt_count()) {
955 printk(KERN_ERR "huh, entered %p "
956 "with preempt_count %08x, exited"
957 " with %08x?\n",
958 fn, preempt_count,
959 preempt_count());
960 BUG();
961 }
962 }
963 spin_lock_irq(&base->lock);
964 }
965 }
966 set_running_timer(base, NULL);
967 spin_unlock_irq(&base->lock);
968 }
969
970 #ifdef CONFIG_NO_HZ
971 /*
972 * Find out when the next timer event is due to happen. This
973 * is used on S/390 to stop all activity when a cpus is idle.
974 * This functions needs to be called disabled.
975 */
976 static unsigned long __next_timer_interrupt(struct tvec_base *base)
977 {
978 unsigned long timer_jiffies = base->timer_jiffies;
979 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
980 int index, slot, array, found = 0;
981 struct timer_list *nte;
982 struct tvec *varray[4];
983
984 /* Look for timer events in tv1. */
985 index = slot = timer_jiffies & TVR_MASK;
986 do {
987 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
988 if (tbase_get_deferrable(nte->base))
989 continue;
990
991 found = 1;
992 expires = nte->expires;
993 /* Look at the cascade bucket(s)? */
994 if (!index || slot < index)
995 goto cascade;
996 return expires;
997 }
998 slot = (slot + 1) & TVR_MASK;
999 } while (slot != index);
1000
1001 cascade:
1002 /* Calculate the next cascade event */
1003 if (index)
1004 timer_jiffies += TVR_SIZE - index;
1005 timer_jiffies >>= TVR_BITS;
1006
1007 /* Check tv2-tv5. */
1008 varray[0] = &base->tv2;
1009 varray[1] = &base->tv3;
1010 varray[2] = &base->tv4;
1011 varray[3] = &base->tv5;
1012
1013 for (array = 0; array < 4; array++) {
1014 struct tvec *varp = varray[array];
1015
1016 index = slot = timer_jiffies & TVN_MASK;
1017 do {
1018 list_for_each_entry(nte, varp->vec + slot, entry) {
1019 found = 1;
1020 if (time_before(nte->expires, expires))
1021 expires = nte->expires;
1022 }
1023 /*
1024 * Do we still search for the first timer or are
1025 * we looking up the cascade buckets ?
1026 */
1027 if (found) {
1028 /* Look at the cascade bucket(s)? */
1029 if (!index || slot < index)
1030 break;
1031 return expires;
1032 }
1033 slot = (slot + 1) & TVN_MASK;
1034 } while (slot != index);
1035
1036 if (index)
1037 timer_jiffies += TVN_SIZE - index;
1038 timer_jiffies >>= TVN_BITS;
1039 }
1040 return expires;
1041 }
1042
1043 /*
1044 * Check, if the next hrtimer event is before the next timer wheel
1045 * event:
1046 */
1047 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1048 unsigned long expires)
1049 {
1050 ktime_t hr_delta = hrtimer_get_next_event();
1051 struct timespec tsdelta;
1052 unsigned long delta;
1053
1054 if (hr_delta.tv64 == KTIME_MAX)
1055 return expires;
1056
1057 /*
1058 * Expired timer available, let it expire in the next tick
1059 */
1060 if (hr_delta.tv64 <= 0)
1061 return now + 1;
1062
1063 tsdelta = ktime_to_timespec(hr_delta);
1064 delta = timespec_to_jiffies(&tsdelta);
1065
1066 /*
1067 * Limit the delta to the max value, which is checked in
1068 * tick_nohz_stop_sched_tick():
1069 */
1070 if (delta > NEXT_TIMER_MAX_DELTA)
1071 delta = NEXT_TIMER_MAX_DELTA;
1072
1073 /*
1074 * Take rounding errors in to account and make sure, that it
1075 * expires in the next tick. Otherwise we go into an endless
1076 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1077 * the timer softirq
1078 */
1079 if (delta < 1)
1080 delta = 1;
1081 now += delta;
1082 if (time_before(now, expires))
1083 return now;
1084 return expires;
1085 }
1086
1087 /**
1088 * get_next_timer_interrupt - return the jiffy of the next pending timer
1089 * @now: current time (in jiffies)
1090 */
1091 unsigned long get_next_timer_interrupt(unsigned long now)
1092 {
1093 struct tvec_base *base = __get_cpu_var(tvec_bases);
1094 unsigned long expires;
1095
1096 spin_lock(&base->lock);
1097 expires = __next_timer_interrupt(base);
1098 spin_unlock(&base->lock);
1099
1100 if (time_before_eq(expires, now))
1101 return now;
1102
1103 return cmp_next_hrtimer_event(now, expires);
1104 }
1105 #endif
1106
1107 /*
1108 * Called from the timer interrupt handler to charge one tick to the current
1109 * process. user_tick is 1 if the tick is user time, 0 for system.
1110 */
1111 void update_process_times(int user_tick)
1112 {
1113 struct task_struct *p = current;
1114 int cpu = smp_processor_id();
1115
1116 /* Note: this timer irq context must be accounted for as well. */
1117 account_process_tick(p, user_tick);
1118 run_local_timers();
1119 if (rcu_pending(cpu))
1120 rcu_check_callbacks(cpu, user_tick);
1121 printk_tick();
1122 scheduler_tick();
1123 run_posix_cpu_timers(p);
1124 }
1125
1126 /*
1127 * This function runs timers and the timer-tq in bottom half context.
1128 */
1129 static void run_timer_softirq(struct softirq_action *h)
1130 {
1131 struct tvec_base *base = __get_cpu_var(tvec_bases);
1132
1133 perf_counter_do_pending();
1134
1135 hrtimer_run_pending();
1136
1137 if (time_after_eq(jiffies, base->timer_jiffies))
1138 __run_timers(base);
1139 }
1140
1141 /*
1142 * Called by the local, per-CPU timer interrupt on SMP.
1143 */
1144 void run_local_timers(void)
1145 {
1146 hrtimer_run_queues();
1147 raise_softirq(TIMER_SOFTIRQ);
1148 softlockup_tick();
1149 }
1150
1151 /*
1152 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1153 * without sampling the sequence number in xtime_lock.
1154 * jiffies is defined in the linker script...
1155 */
1156
1157 void do_timer(unsigned long ticks)
1158 {
1159 jiffies_64 += ticks;
1160 update_wall_time();
1161 calc_global_load();
1162 }
1163
1164 #ifdef __ARCH_WANT_SYS_ALARM
1165
1166 /*
1167 * For backwards compatibility? This can be done in libc so Alpha
1168 * and all newer ports shouldn't need it.
1169 */
1170 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1171 {
1172 return alarm_setitimer(seconds);
1173 }
1174
1175 #endif
1176
1177 #ifndef __alpha__
1178
1179 /*
1180 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1181 * should be moved into arch/i386 instead?
1182 */
1183
1184 /**
1185 * sys_getpid - return the thread group id of the current process
1186 *
1187 * Note, despite the name, this returns the tgid not the pid. The tgid and
1188 * the pid are identical unless CLONE_THREAD was specified on clone() in
1189 * which case the tgid is the same in all threads of the same group.
1190 *
1191 * This is SMP safe as current->tgid does not change.
1192 */
1193 SYSCALL_DEFINE0(getpid)
1194 {
1195 return task_tgid_vnr(current);
1196 }
1197
1198 /*
1199 * Accessing ->real_parent is not SMP-safe, it could
1200 * change from under us. However, we can use a stale
1201 * value of ->real_parent under rcu_read_lock(), see
1202 * release_task()->call_rcu(delayed_put_task_struct).
1203 */
1204 SYSCALL_DEFINE0(getppid)
1205 {
1206 int pid;
1207
1208 rcu_read_lock();
1209 pid = task_tgid_vnr(current->real_parent);
1210 rcu_read_unlock();
1211
1212 return pid;
1213 }
1214
1215 SYSCALL_DEFINE0(getuid)
1216 {
1217 /* Only we change this so SMP safe */
1218 return current_uid();
1219 }
1220
1221 SYSCALL_DEFINE0(geteuid)
1222 {
1223 /* Only we change this so SMP safe */
1224 return current_euid();
1225 }
1226
1227 SYSCALL_DEFINE0(getgid)
1228 {
1229 /* Only we change this so SMP safe */
1230 return current_gid();
1231 }
1232
1233 SYSCALL_DEFINE0(getegid)
1234 {
1235 /* Only we change this so SMP safe */
1236 return current_egid();
1237 }
1238
1239 #endif
1240
1241 static void process_timeout(unsigned long __data)
1242 {
1243 wake_up_process((struct task_struct *)__data);
1244 }
1245
1246 /**
1247 * schedule_timeout - sleep until timeout
1248 * @timeout: timeout value in jiffies
1249 *
1250 * Make the current task sleep until @timeout jiffies have
1251 * elapsed. The routine will return immediately unless
1252 * the current task state has been set (see set_current_state()).
1253 *
1254 * You can set the task state as follows -
1255 *
1256 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1257 * pass before the routine returns. The routine will return 0
1258 *
1259 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1260 * delivered to the current task. In this case the remaining time
1261 * in jiffies will be returned, or 0 if the timer expired in time
1262 *
1263 * The current task state is guaranteed to be TASK_RUNNING when this
1264 * routine returns.
1265 *
1266 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1267 * the CPU away without a bound on the timeout. In this case the return
1268 * value will be %MAX_SCHEDULE_TIMEOUT.
1269 *
1270 * In all cases the return value is guaranteed to be non-negative.
1271 */
1272 signed long __sched schedule_timeout(signed long timeout)
1273 {
1274 struct timer_list timer;
1275 unsigned long expire;
1276
1277 switch (timeout)
1278 {
1279 case MAX_SCHEDULE_TIMEOUT:
1280 /*
1281 * These two special cases are useful to be comfortable
1282 * in the caller. Nothing more. We could take
1283 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1284 * but I' d like to return a valid offset (>=0) to allow
1285 * the caller to do everything it want with the retval.
1286 */
1287 schedule();
1288 goto out;
1289 default:
1290 /*
1291 * Another bit of PARANOID. Note that the retval will be
1292 * 0 since no piece of kernel is supposed to do a check
1293 * for a negative retval of schedule_timeout() (since it
1294 * should never happens anyway). You just have the printk()
1295 * that will tell you if something is gone wrong and where.
1296 */
1297 if (timeout < 0) {
1298 printk(KERN_ERR "schedule_timeout: wrong timeout "
1299 "value %lx\n", timeout);
1300 dump_stack();
1301 current->state = TASK_RUNNING;
1302 goto out;
1303 }
1304 }
1305
1306 expire = timeout + jiffies;
1307
1308 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1309 __mod_timer(&timer, expire, false);
1310 schedule();
1311 del_singleshot_timer_sync(&timer);
1312
1313 /* Remove the timer from the object tracker */
1314 destroy_timer_on_stack(&timer);
1315
1316 timeout = expire - jiffies;
1317
1318 out:
1319 return timeout < 0 ? 0 : timeout;
1320 }
1321 EXPORT_SYMBOL(schedule_timeout);
1322
1323 /*
1324 * We can use __set_current_state() here because schedule_timeout() calls
1325 * schedule() unconditionally.
1326 */
1327 signed long __sched schedule_timeout_interruptible(signed long timeout)
1328 {
1329 __set_current_state(TASK_INTERRUPTIBLE);
1330 return schedule_timeout(timeout);
1331 }
1332 EXPORT_SYMBOL(schedule_timeout_interruptible);
1333
1334 signed long __sched schedule_timeout_killable(signed long timeout)
1335 {
1336 __set_current_state(TASK_KILLABLE);
1337 return schedule_timeout(timeout);
1338 }
1339 EXPORT_SYMBOL(schedule_timeout_killable);
1340
1341 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1342 {
1343 __set_current_state(TASK_UNINTERRUPTIBLE);
1344 return schedule_timeout(timeout);
1345 }
1346 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1347
1348 /* Thread ID - the internal kernel "pid" */
1349 SYSCALL_DEFINE0(gettid)
1350 {
1351 return task_pid_vnr(current);
1352 }
1353
1354 /**
1355 * do_sysinfo - fill in sysinfo struct
1356 * @info: pointer to buffer to fill
1357 */
1358 int do_sysinfo(struct sysinfo *info)
1359 {
1360 unsigned long mem_total, sav_total;
1361 unsigned int mem_unit, bitcount;
1362 struct timespec tp;
1363
1364 memset(info, 0, sizeof(struct sysinfo));
1365
1366 ktime_get_ts(&tp);
1367 monotonic_to_bootbased(&tp);
1368 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1369
1370 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1371
1372 info->procs = nr_threads;
1373
1374 si_meminfo(info);
1375 si_swapinfo(info);
1376
1377 /*
1378 * If the sum of all the available memory (i.e. ram + swap)
1379 * is less than can be stored in a 32 bit unsigned long then
1380 * we can be binary compatible with 2.2.x kernels. If not,
1381 * well, in that case 2.2.x was broken anyways...
1382 *
1383 * -Erik Andersen <andersee@debian.org>
1384 */
1385
1386 mem_total = info->totalram + info->totalswap;
1387 if (mem_total < info->totalram || mem_total < info->totalswap)
1388 goto out;
1389 bitcount = 0;
1390 mem_unit = info->mem_unit;
1391 while (mem_unit > 1) {
1392 bitcount++;
1393 mem_unit >>= 1;
1394 sav_total = mem_total;
1395 mem_total <<= 1;
1396 if (mem_total < sav_total)
1397 goto out;
1398 }
1399
1400 /*
1401 * If mem_total did not overflow, multiply all memory values by
1402 * info->mem_unit and set it to 1. This leaves things compatible
1403 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1404 * kernels...
1405 */
1406
1407 info->mem_unit = 1;
1408 info->totalram <<= bitcount;
1409 info->freeram <<= bitcount;
1410 info->sharedram <<= bitcount;
1411 info->bufferram <<= bitcount;
1412 info->totalswap <<= bitcount;
1413 info->freeswap <<= bitcount;
1414 info->totalhigh <<= bitcount;
1415 info->freehigh <<= bitcount;
1416
1417 out:
1418 return 0;
1419 }
1420
1421 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1422 {
1423 struct sysinfo val;
1424
1425 do_sysinfo(&val);
1426
1427 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1428 return -EFAULT;
1429
1430 return 0;
1431 }
1432
1433 static int __cpuinit init_timers_cpu(int cpu)
1434 {
1435 int j;
1436 struct tvec_base *base;
1437 static char __cpuinitdata tvec_base_done[NR_CPUS];
1438
1439 if (!tvec_base_done[cpu]) {
1440 static char boot_done;
1441
1442 if (boot_done) {
1443 /*
1444 * The APs use this path later in boot
1445 */
1446 base = kmalloc_node(sizeof(*base),
1447 GFP_KERNEL | __GFP_ZERO,
1448 cpu_to_node(cpu));
1449 if (!base)
1450 return -ENOMEM;
1451
1452 /* Make sure that tvec_base is 2 byte aligned */
1453 if (tbase_get_deferrable(base)) {
1454 WARN_ON(1);
1455 kfree(base);
1456 return -ENOMEM;
1457 }
1458 per_cpu(tvec_bases, cpu) = base;
1459 } else {
1460 /*
1461 * This is for the boot CPU - we use compile-time
1462 * static initialisation because per-cpu memory isn't
1463 * ready yet and because the memory allocators are not
1464 * initialised either.
1465 */
1466 boot_done = 1;
1467 base = &boot_tvec_bases;
1468 }
1469 tvec_base_done[cpu] = 1;
1470 } else {
1471 base = per_cpu(tvec_bases, cpu);
1472 }
1473
1474 spin_lock_init(&base->lock);
1475
1476 for (j = 0; j < TVN_SIZE; j++) {
1477 INIT_LIST_HEAD(base->tv5.vec + j);
1478 INIT_LIST_HEAD(base->tv4.vec + j);
1479 INIT_LIST_HEAD(base->tv3.vec + j);
1480 INIT_LIST_HEAD(base->tv2.vec + j);
1481 }
1482 for (j = 0; j < TVR_SIZE; j++)
1483 INIT_LIST_HEAD(base->tv1.vec + j);
1484
1485 base->timer_jiffies = jiffies;
1486 return 0;
1487 }
1488
1489 #ifdef CONFIG_HOTPLUG_CPU
1490 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1491 {
1492 struct timer_list *timer;
1493
1494 while (!list_empty(head)) {
1495 timer = list_first_entry(head, struct timer_list, entry);
1496 detach_timer(timer, 0);
1497 timer_set_base(timer, new_base);
1498 internal_add_timer(new_base, timer);
1499 }
1500 }
1501
1502 static void __cpuinit migrate_timers(int cpu)
1503 {
1504 struct tvec_base *old_base;
1505 struct tvec_base *new_base;
1506 int i;
1507
1508 BUG_ON(cpu_online(cpu));
1509 old_base = per_cpu(tvec_bases, cpu);
1510 new_base = get_cpu_var(tvec_bases);
1511 /*
1512 * The caller is globally serialized and nobody else
1513 * takes two locks at once, deadlock is not possible.
1514 */
1515 spin_lock_irq(&new_base->lock);
1516 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1517
1518 BUG_ON(old_base->running_timer);
1519
1520 for (i = 0; i < TVR_SIZE; i++)
1521 migrate_timer_list(new_base, old_base->tv1.vec + i);
1522 for (i = 0; i < TVN_SIZE; i++) {
1523 migrate_timer_list(new_base, old_base->tv2.vec + i);
1524 migrate_timer_list(new_base, old_base->tv3.vec + i);
1525 migrate_timer_list(new_base, old_base->tv4.vec + i);
1526 migrate_timer_list(new_base, old_base->tv5.vec + i);
1527 }
1528
1529 spin_unlock(&old_base->lock);
1530 spin_unlock_irq(&new_base->lock);
1531 put_cpu_var(tvec_bases);
1532 }
1533 #endif /* CONFIG_HOTPLUG_CPU */
1534
1535 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1536 unsigned long action, void *hcpu)
1537 {
1538 long cpu = (long)hcpu;
1539 switch(action) {
1540 case CPU_UP_PREPARE:
1541 case CPU_UP_PREPARE_FROZEN:
1542 if (init_timers_cpu(cpu) < 0)
1543 return NOTIFY_BAD;
1544 break;
1545 #ifdef CONFIG_HOTPLUG_CPU
1546 case CPU_DEAD:
1547 case CPU_DEAD_FROZEN:
1548 migrate_timers(cpu);
1549 break;
1550 #endif
1551 default:
1552 break;
1553 }
1554 return NOTIFY_OK;
1555 }
1556
1557 static struct notifier_block __cpuinitdata timers_nb = {
1558 .notifier_call = timer_cpu_notify,
1559 };
1560
1561
1562 void __init init_timers(void)
1563 {
1564 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1565 (void *)(long)smp_processor_id());
1566
1567 init_timer_stats();
1568
1569 BUG_ON(err == NOTIFY_BAD);
1570 register_cpu_notifier(&timers_nb);
1571 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1572 }
1573
1574 /**
1575 * msleep - sleep safely even with waitqueue interruptions
1576 * @msecs: Time in milliseconds to sleep for
1577 */
1578 void msleep(unsigned int msecs)
1579 {
1580 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1581
1582 while (timeout)
1583 timeout = schedule_timeout_uninterruptible(timeout);
1584 }
1585
1586 EXPORT_SYMBOL(msleep);
1587
1588 /**
1589 * msleep_interruptible - sleep waiting for signals
1590 * @msecs: Time in milliseconds to sleep for
1591 */
1592 unsigned long msleep_interruptible(unsigned int msecs)
1593 {
1594 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1595
1596 while (timeout && !signal_pending(current))
1597 timeout = schedule_timeout_interruptible(timeout);
1598 return jiffies_to_msecs(timeout);
1599 }
1600
1601 EXPORT_SYMBOL(msleep_interruptible);