futex: Fix potential use-after-free in FUTEX_REQUEUE_PI
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/timer.h>
54
55 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
56
57 EXPORT_SYMBOL(jiffies_64);
58
59 /*
60 * per-CPU timer vector definitions:
61 */
62 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
63 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
64 #define TVN_SIZE (1 << TVN_BITS)
65 #define TVR_SIZE (1 << TVR_BITS)
66 #define TVN_MASK (TVN_SIZE - 1)
67 #define TVR_MASK (TVR_SIZE - 1)
68 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
69
70 struct tvec {
71 struct list_head vec[TVN_SIZE];
72 };
73
74 struct tvec_root {
75 struct list_head vec[TVR_SIZE];
76 };
77
78 struct tvec_base {
79 spinlock_t lock;
80 struct timer_list *running_timer;
81 unsigned long timer_jiffies;
82 unsigned long next_timer;
83 unsigned long active_timers;
84 struct tvec_root tv1;
85 struct tvec tv2;
86 struct tvec tv3;
87 struct tvec tv4;
88 struct tvec tv5;
89 } ____cacheline_aligned;
90
91 struct tvec_base boot_tvec_bases;
92 EXPORT_SYMBOL(boot_tvec_bases);
93 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
94
95 /* Functions below help us manage 'deferrable' flag */
96 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
97 {
98 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
99 }
100
101 static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
102 {
103 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
104 }
105
106 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
107 {
108 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
109 }
110
111 static inline void
112 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
113 {
114 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
115
116 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
117 }
118
119 static unsigned long round_jiffies_common(unsigned long j, int cpu,
120 bool force_up)
121 {
122 int rem;
123 unsigned long original = j;
124
125 /*
126 * We don't want all cpus firing their timers at once hitting the
127 * same lock or cachelines, so we skew each extra cpu with an extra
128 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
129 * already did this.
130 * The skew is done by adding 3*cpunr, then round, then subtract this
131 * extra offset again.
132 */
133 j += cpu * 3;
134
135 rem = j % HZ;
136
137 /*
138 * If the target jiffie is just after a whole second (which can happen
139 * due to delays of the timer irq, long irq off times etc etc) then
140 * we should round down to the whole second, not up. Use 1/4th second
141 * as cutoff for this rounding as an extreme upper bound for this.
142 * But never round down if @force_up is set.
143 */
144 if (rem < HZ/4 && !force_up) /* round down */
145 j = j - rem;
146 else /* round up */
147 j = j - rem + HZ;
148
149 /* now that we have rounded, subtract the extra skew again */
150 j -= cpu * 3;
151
152 /*
153 * Make sure j is still in the future. Otherwise return the
154 * unmodified value.
155 */
156 return time_is_after_jiffies(j) ? j : original;
157 }
158
159 /**
160 * __round_jiffies - function to round jiffies to a full second
161 * @j: the time in (absolute) jiffies that should be rounded
162 * @cpu: the processor number on which the timeout will happen
163 *
164 * __round_jiffies() rounds an absolute time in the future (in jiffies)
165 * up or down to (approximately) full seconds. This is useful for timers
166 * for which the exact time they fire does not matter too much, as long as
167 * they fire approximately every X seconds.
168 *
169 * By rounding these timers to whole seconds, all such timers will fire
170 * at the same time, rather than at various times spread out. The goal
171 * of this is to have the CPU wake up less, which saves power.
172 *
173 * The exact rounding is skewed for each processor to avoid all
174 * processors firing at the exact same time, which could lead
175 * to lock contention or spurious cache line bouncing.
176 *
177 * The return value is the rounded version of the @j parameter.
178 */
179 unsigned long __round_jiffies(unsigned long j, int cpu)
180 {
181 return round_jiffies_common(j, cpu, false);
182 }
183 EXPORT_SYMBOL_GPL(__round_jiffies);
184
185 /**
186 * __round_jiffies_relative - function to round jiffies to a full second
187 * @j: the time in (relative) jiffies that should be rounded
188 * @cpu: the processor number on which the timeout will happen
189 *
190 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
191 * up or down to (approximately) full seconds. This is useful for timers
192 * for which the exact time they fire does not matter too much, as long as
193 * they fire approximately every X seconds.
194 *
195 * By rounding these timers to whole seconds, all such timers will fire
196 * at the same time, rather than at various times spread out. The goal
197 * of this is to have the CPU wake up less, which saves power.
198 *
199 * The exact rounding is skewed for each processor to avoid all
200 * processors firing at the exact same time, which could lead
201 * to lock contention or spurious cache line bouncing.
202 *
203 * The return value is the rounded version of the @j parameter.
204 */
205 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
206 {
207 unsigned long j0 = jiffies;
208
209 /* Use j0 because jiffies might change while we run */
210 return round_jiffies_common(j + j0, cpu, false) - j0;
211 }
212 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
213
214 /**
215 * round_jiffies - function to round jiffies to a full second
216 * @j: the time in (absolute) jiffies that should be rounded
217 *
218 * round_jiffies() rounds an absolute time in the future (in jiffies)
219 * up or down to (approximately) full seconds. This is useful for timers
220 * for which the exact time they fire does not matter too much, as long as
221 * they fire approximately every X seconds.
222 *
223 * By rounding these timers to whole seconds, all such timers will fire
224 * at the same time, rather than at various times spread out. The goal
225 * of this is to have the CPU wake up less, which saves power.
226 *
227 * The return value is the rounded version of the @j parameter.
228 */
229 unsigned long round_jiffies(unsigned long j)
230 {
231 return round_jiffies_common(j, raw_smp_processor_id(), false);
232 }
233 EXPORT_SYMBOL_GPL(round_jiffies);
234
235 /**
236 * round_jiffies_relative - function to round jiffies to a full second
237 * @j: the time in (relative) jiffies that should be rounded
238 *
239 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
240 * up or down to (approximately) full seconds. This is useful for timers
241 * for which the exact time they fire does not matter too much, as long as
242 * they fire approximately every X seconds.
243 *
244 * By rounding these timers to whole seconds, all such timers will fire
245 * at the same time, rather than at various times spread out. The goal
246 * of this is to have the CPU wake up less, which saves power.
247 *
248 * The return value is the rounded version of the @j parameter.
249 */
250 unsigned long round_jiffies_relative(unsigned long j)
251 {
252 return __round_jiffies_relative(j, raw_smp_processor_id());
253 }
254 EXPORT_SYMBOL_GPL(round_jiffies_relative);
255
256 /**
257 * __round_jiffies_up - function to round jiffies up to a full second
258 * @j: the time in (absolute) jiffies that should be rounded
259 * @cpu: the processor number on which the timeout will happen
260 *
261 * This is the same as __round_jiffies() except that it will never
262 * round down. This is useful for timeouts for which the exact time
263 * of firing does not matter too much, as long as they don't fire too
264 * early.
265 */
266 unsigned long __round_jiffies_up(unsigned long j, int cpu)
267 {
268 return round_jiffies_common(j, cpu, true);
269 }
270 EXPORT_SYMBOL_GPL(__round_jiffies_up);
271
272 /**
273 * __round_jiffies_up_relative - function to round jiffies up to a full second
274 * @j: the time in (relative) jiffies that should be rounded
275 * @cpu: the processor number on which the timeout will happen
276 *
277 * This is the same as __round_jiffies_relative() except that it will never
278 * round down. This is useful for timeouts for which the exact time
279 * of firing does not matter too much, as long as they don't fire too
280 * early.
281 */
282 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
283 {
284 unsigned long j0 = jiffies;
285
286 /* Use j0 because jiffies might change while we run */
287 return round_jiffies_common(j + j0, cpu, true) - j0;
288 }
289 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
290
291 /**
292 * round_jiffies_up - function to round jiffies up to a full second
293 * @j: the time in (absolute) jiffies that should be rounded
294 *
295 * This is the same as round_jiffies() except that it will never
296 * round down. This is useful for timeouts for which the exact time
297 * of firing does not matter too much, as long as they don't fire too
298 * early.
299 */
300 unsigned long round_jiffies_up(unsigned long j)
301 {
302 return round_jiffies_common(j, raw_smp_processor_id(), true);
303 }
304 EXPORT_SYMBOL_GPL(round_jiffies_up);
305
306 /**
307 * round_jiffies_up_relative - function to round jiffies up to a full second
308 * @j: the time in (relative) jiffies that should be rounded
309 *
310 * This is the same as round_jiffies_relative() except that it will never
311 * round down. This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
314 */
315 unsigned long round_jiffies_up_relative(unsigned long j)
316 {
317 return __round_jiffies_up_relative(j, raw_smp_processor_id());
318 }
319 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
320
321 /**
322 * set_timer_slack - set the allowed slack for a timer
323 * @timer: the timer to be modified
324 * @slack_hz: the amount of time (in jiffies) allowed for rounding
325 *
326 * Set the amount of time, in jiffies, that a certain timer has
327 * in terms of slack. By setting this value, the timer subsystem
328 * will schedule the actual timer somewhere between
329 * the time mod_timer() asks for, and that time plus the slack.
330 *
331 * By setting the slack to -1, a percentage of the delay is used
332 * instead.
333 */
334 void set_timer_slack(struct timer_list *timer, int slack_hz)
335 {
336 timer->slack = slack_hz;
337 }
338 EXPORT_SYMBOL_GPL(set_timer_slack);
339
340 static void
341 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
342 {
343 unsigned long expires = timer->expires;
344 unsigned long idx = expires - base->timer_jiffies;
345 struct list_head *vec;
346
347 if (idx < TVR_SIZE) {
348 int i = expires & TVR_MASK;
349 vec = base->tv1.vec + i;
350 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
351 int i = (expires >> TVR_BITS) & TVN_MASK;
352 vec = base->tv2.vec + i;
353 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
354 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
355 vec = base->tv3.vec + i;
356 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
357 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv4.vec + i;
359 } else if ((signed long) idx < 0) {
360 /*
361 * Can happen if you add a timer with expires == jiffies,
362 * or you set a timer to go off in the past
363 */
364 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
365 } else {
366 int i;
367 /* If the timeout is larger than MAX_TVAL (on 64-bit
368 * architectures or with CONFIG_BASE_SMALL=1) then we
369 * use the maximum timeout.
370 */
371 if (idx > MAX_TVAL) {
372 idx = MAX_TVAL;
373 expires = idx + base->timer_jiffies;
374 }
375 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
376 vec = base->tv5.vec + i;
377 }
378 /*
379 * Timers are FIFO:
380 */
381 list_add_tail(&timer->entry, vec);
382 }
383
384 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
385 {
386 __internal_add_timer(base, timer);
387 /*
388 * Update base->active_timers and base->next_timer
389 */
390 if (!tbase_get_deferrable(timer->base)) {
391 if (time_before(timer->expires, base->next_timer))
392 base->next_timer = timer->expires;
393 base->active_timers++;
394 }
395 }
396
397 #ifdef CONFIG_TIMER_STATS
398 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
399 {
400 if (timer->start_site)
401 return;
402
403 timer->start_site = addr;
404 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
405 timer->start_pid = current->pid;
406 }
407
408 static void timer_stats_account_timer(struct timer_list *timer)
409 {
410 unsigned int flag = 0;
411
412 if (likely(!timer->start_site))
413 return;
414 if (unlikely(tbase_get_deferrable(timer->base)))
415 flag |= TIMER_STATS_FLAG_DEFERRABLE;
416
417 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
418 timer->function, timer->start_comm, flag);
419 }
420
421 #else
422 static void timer_stats_account_timer(struct timer_list *timer) {}
423 #endif
424
425 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
426
427 static struct debug_obj_descr timer_debug_descr;
428
429 static void *timer_debug_hint(void *addr)
430 {
431 return ((struct timer_list *) addr)->function;
432 }
433
434 /*
435 * fixup_init is called when:
436 * - an active object is initialized
437 */
438 static int timer_fixup_init(void *addr, enum debug_obj_state state)
439 {
440 struct timer_list *timer = addr;
441
442 switch (state) {
443 case ODEBUG_STATE_ACTIVE:
444 del_timer_sync(timer);
445 debug_object_init(timer, &timer_debug_descr);
446 return 1;
447 default:
448 return 0;
449 }
450 }
451
452 /* Stub timer callback for improperly used timers. */
453 static void stub_timer(unsigned long data)
454 {
455 WARN_ON(1);
456 }
457
458 /*
459 * fixup_activate is called when:
460 * - an active object is activated
461 * - an unknown object is activated (might be a statically initialized object)
462 */
463 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
464 {
465 struct timer_list *timer = addr;
466
467 switch (state) {
468
469 case ODEBUG_STATE_NOTAVAILABLE:
470 /*
471 * This is not really a fixup. The timer was
472 * statically initialized. We just make sure that it
473 * is tracked in the object tracker.
474 */
475 if (timer->entry.next == NULL &&
476 timer->entry.prev == TIMER_ENTRY_STATIC) {
477 debug_object_init(timer, &timer_debug_descr);
478 debug_object_activate(timer, &timer_debug_descr);
479 return 0;
480 } else {
481 setup_timer(timer, stub_timer, 0);
482 return 1;
483 }
484 return 0;
485
486 case ODEBUG_STATE_ACTIVE:
487 WARN_ON(1);
488
489 default:
490 return 0;
491 }
492 }
493
494 /*
495 * fixup_free is called when:
496 * - an active object is freed
497 */
498 static int timer_fixup_free(void *addr, enum debug_obj_state state)
499 {
500 struct timer_list *timer = addr;
501
502 switch (state) {
503 case ODEBUG_STATE_ACTIVE:
504 del_timer_sync(timer);
505 debug_object_free(timer, &timer_debug_descr);
506 return 1;
507 default:
508 return 0;
509 }
510 }
511
512 /*
513 * fixup_assert_init is called when:
514 * - an untracked/uninit-ed object is found
515 */
516 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
517 {
518 struct timer_list *timer = addr;
519
520 switch (state) {
521 case ODEBUG_STATE_NOTAVAILABLE:
522 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
523 /*
524 * This is not really a fixup. The timer was
525 * statically initialized. We just make sure that it
526 * is tracked in the object tracker.
527 */
528 debug_object_init(timer, &timer_debug_descr);
529 return 0;
530 } else {
531 setup_timer(timer, stub_timer, 0);
532 return 1;
533 }
534 default:
535 return 0;
536 }
537 }
538
539 static struct debug_obj_descr timer_debug_descr = {
540 .name = "timer_list",
541 .debug_hint = timer_debug_hint,
542 .fixup_init = timer_fixup_init,
543 .fixup_activate = timer_fixup_activate,
544 .fixup_free = timer_fixup_free,
545 .fixup_assert_init = timer_fixup_assert_init,
546 };
547
548 static inline void debug_timer_init(struct timer_list *timer)
549 {
550 debug_object_init(timer, &timer_debug_descr);
551 }
552
553 static inline void debug_timer_activate(struct timer_list *timer)
554 {
555 debug_object_activate(timer, &timer_debug_descr);
556 }
557
558 static inline void debug_timer_deactivate(struct timer_list *timer)
559 {
560 debug_object_deactivate(timer, &timer_debug_descr);
561 }
562
563 static inline void debug_timer_free(struct timer_list *timer)
564 {
565 debug_object_free(timer, &timer_debug_descr);
566 }
567
568 static inline void debug_timer_assert_init(struct timer_list *timer)
569 {
570 debug_object_assert_init(timer, &timer_debug_descr);
571 }
572
573 static void do_init_timer(struct timer_list *timer, unsigned int flags,
574 const char *name, struct lock_class_key *key);
575
576 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
577 const char *name, struct lock_class_key *key)
578 {
579 debug_object_init_on_stack(timer, &timer_debug_descr);
580 do_init_timer(timer, flags, name, key);
581 }
582 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
583
584 void destroy_timer_on_stack(struct timer_list *timer)
585 {
586 debug_object_free(timer, &timer_debug_descr);
587 }
588 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
589
590 #else
591 static inline void debug_timer_init(struct timer_list *timer) { }
592 static inline void debug_timer_activate(struct timer_list *timer) { }
593 static inline void debug_timer_deactivate(struct timer_list *timer) { }
594 static inline void debug_timer_assert_init(struct timer_list *timer) { }
595 #endif
596
597 static inline void debug_init(struct timer_list *timer)
598 {
599 debug_timer_init(timer);
600 trace_timer_init(timer);
601 }
602
603 static inline void
604 debug_activate(struct timer_list *timer, unsigned long expires)
605 {
606 debug_timer_activate(timer);
607 trace_timer_start(timer, expires);
608 }
609
610 static inline void debug_deactivate(struct timer_list *timer)
611 {
612 debug_timer_deactivate(timer);
613 trace_timer_cancel(timer);
614 }
615
616 static inline void debug_assert_init(struct timer_list *timer)
617 {
618 debug_timer_assert_init(timer);
619 }
620
621 static void do_init_timer(struct timer_list *timer, unsigned int flags,
622 const char *name, struct lock_class_key *key)
623 {
624 struct tvec_base *base = __raw_get_cpu_var(tvec_bases);
625
626 timer->entry.next = NULL;
627 timer->base = (void *)((unsigned long)base | flags);
628 timer->slack = -1;
629 #ifdef CONFIG_TIMER_STATS
630 timer->start_site = NULL;
631 timer->start_pid = -1;
632 memset(timer->start_comm, 0, TASK_COMM_LEN);
633 #endif
634 lockdep_init_map(&timer->lockdep_map, name, key, 0);
635 }
636
637 /**
638 * init_timer_key - initialize a timer
639 * @timer: the timer to be initialized
640 * @flags: timer flags
641 * @name: name of the timer
642 * @key: lockdep class key of the fake lock used for tracking timer
643 * sync lock dependencies
644 *
645 * init_timer_key() must be done to a timer prior calling *any* of the
646 * other timer functions.
647 */
648 void init_timer_key(struct timer_list *timer, unsigned int flags,
649 const char *name, struct lock_class_key *key)
650 {
651 debug_init(timer);
652 do_init_timer(timer, flags, name, key);
653 }
654 EXPORT_SYMBOL(init_timer_key);
655
656 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
657 {
658 struct list_head *entry = &timer->entry;
659
660 debug_deactivate(timer);
661
662 __list_del(entry->prev, entry->next);
663 if (clear_pending)
664 entry->next = NULL;
665 entry->prev = LIST_POISON2;
666 }
667
668 static inline void
669 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
670 {
671 detach_timer(timer, true);
672 if (!tbase_get_deferrable(timer->base))
673 base->active_timers--;
674 }
675
676 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
677 bool clear_pending)
678 {
679 if (!timer_pending(timer))
680 return 0;
681
682 detach_timer(timer, clear_pending);
683 if (!tbase_get_deferrable(timer->base)) {
684 base->active_timers--;
685 if (timer->expires == base->next_timer)
686 base->next_timer = base->timer_jiffies;
687 }
688 return 1;
689 }
690
691 /*
692 * We are using hashed locking: holding per_cpu(tvec_bases).lock
693 * means that all timers which are tied to this base via timer->base are
694 * locked, and the base itself is locked too.
695 *
696 * So __run_timers/migrate_timers can safely modify all timers which could
697 * be found on ->tvX lists.
698 *
699 * When the timer's base is locked, and the timer removed from list, it is
700 * possible to set timer->base = NULL and drop the lock: the timer remains
701 * locked.
702 */
703 static struct tvec_base *lock_timer_base(struct timer_list *timer,
704 unsigned long *flags)
705 __acquires(timer->base->lock)
706 {
707 struct tvec_base *base;
708
709 for (;;) {
710 struct tvec_base *prelock_base = timer->base;
711 base = tbase_get_base(prelock_base);
712 if (likely(base != NULL)) {
713 spin_lock_irqsave(&base->lock, *flags);
714 if (likely(prelock_base == timer->base))
715 return base;
716 /* The timer has migrated to another CPU */
717 spin_unlock_irqrestore(&base->lock, *flags);
718 }
719 cpu_relax();
720 }
721 }
722
723 static inline int
724 __mod_timer(struct timer_list *timer, unsigned long expires,
725 bool pending_only, int pinned)
726 {
727 struct tvec_base *base, *new_base;
728 unsigned long flags;
729 int ret = 0 , cpu;
730
731 timer_stats_timer_set_start_info(timer);
732 BUG_ON(!timer->function);
733
734 base = lock_timer_base(timer, &flags);
735
736 ret = detach_if_pending(timer, base, false);
737 if (!ret && pending_only)
738 goto out_unlock;
739
740 debug_activate(timer, expires);
741
742 cpu = smp_processor_id();
743
744 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
745 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
746 cpu = get_nohz_timer_target();
747 #endif
748 new_base = per_cpu(tvec_bases, cpu);
749
750 if (base != new_base) {
751 /*
752 * We are trying to schedule the timer on the local CPU.
753 * However we can't change timer's base while it is running,
754 * otherwise del_timer_sync() can't detect that the timer's
755 * handler yet has not finished. This also guarantees that
756 * the timer is serialized wrt itself.
757 */
758 if (likely(base->running_timer != timer)) {
759 /* See the comment in lock_timer_base() */
760 timer_set_base(timer, NULL);
761 spin_unlock(&base->lock);
762 base = new_base;
763 spin_lock(&base->lock);
764 timer_set_base(timer, base);
765 }
766 }
767
768 timer->expires = expires;
769 internal_add_timer(base, timer);
770
771 out_unlock:
772 spin_unlock_irqrestore(&base->lock, flags);
773
774 return ret;
775 }
776
777 /**
778 * mod_timer_pending - modify a pending timer's timeout
779 * @timer: the pending timer to be modified
780 * @expires: new timeout in jiffies
781 *
782 * mod_timer_pending() is the same for pending timers as mod_timer(),
783 * but will not re-activate and modify already deleted timers.
784 *
785 * It is useful for unserialized use of timers.
786 */
787 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
788 {
789 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
790 }
791 EXPORT_SYMBOL(mod_timer_pending);
792
793 /*
794 * Decide where to put the timer while taking the slack into account
795 *
796 * Algorithm:
797 * 1) calculate the maximum (absolute) time
798 * 2) calculate the highest bit where the expires and new max are different
799 * 3) use this bit to make a mask
800 * 4) use the bitmask to round down the maximum time, so that all last
801 * bits are zeros
802 */
803 static inline
804 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
805 {
806 unsigned long expires_limit, mask;
807 int bit;
808
809 if (timer->slack >= 0) {
810 expires_limit = expires + timer->slack;
811 } else {
812 long delta = expires - jiffies;
813
814 if (delta < 256)
815 return expires;
816
817 expires_limit = expires + delta / 256;
818 }
819 mask = expires ^ expires_limit;
820 if (mask == 0)
821 return expires;
822
823 bit = find_last_bit(&mask, BITS_PER_LONG);
824
825 mask = (1UL << bit) - 1;
826
827 expires_limit = expires_limit & ~(mask);
828
829 return expires_limit;
830 }
831
832 /**
833 * mod_timer - modify a timer's timeout
834 * @timer: the timer to be modified
835 * @expires: new timeout in jiffies
836 *
837 * mod_timer() is a more efficient way to update the expire field of an
838 * active timer (if the timer is inactive it will be activated)
839 *
840 * mod_timer(timer, expires) is equivalent to:
841 *
842 * del_timer(timer); timer->expires = expires; add_timer(timer);
843 *
844 * Note that if there are multiple unserialized concurrent users of the
845 * same timer, then mod_timer() is the only safe way to modify the timeout,
846 * since add_timer() cannot modify an already running timer.
847 *
848 * The function returns whether it has modified a pending timer or not.
849 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
850 * active timer returns 1.)
851 */
852 int mod_timer(struct timer_list *timer, unsigned long expires)
853 {
854 expires = apply_slack(timer, expires);
855
856 /*
857 * This is a common optimization triggered by the
858 * networking code - if the timer is re-modified
859 * to be the same thing then just return:
860 */
861 if (timer_pending(timer) && timer->expires == expires)
862 return 1;
863
864 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
865 }
866 EXPORT_SYMBOL(mod_timer);
867
868 /**
869 * mod_timer_pinned - modify a timer's timeout
870 * @timer: the timer to be modified
871 * @expires: new timeout in jiffies
872 *
873 * mod_timer_pinned() is a way to update the expire field of an
874 * active timer (if the timer is inactive it will be activated)
875 * and to ensure that the timer is scheduled on the current CPU.
876 *
877 * Note that this does not prevent the timer from being migrated
878 * when the current CPU goes offline. If this is a problem for
879 * you, use CPU-hotplug notifiers to handle it correctly, for
880 * example, cancelling the timer when the corresponding CPU goes
881 * offline.
882 *
883 * mod_timer_pinned(timer, expires) is equivalent to:
884 *
885 * del_timer(timer); timer->expires = expires; add_timer(timer);
886 */
887 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
888 {
889 if (timer->expires == expires && timer_pending(timer))
890 return 1;
891
892 return __mod_timer(timer, expires, false, TIMER_PINNED);
893 }
894 EXPORT_SYMBOL(mod_timer_pinned);
895
896 /**
897 * add_timer - start a timer
898 * @timer: the timer to be added
899 *
900 * The kernel will do a ->function(->data) callback from the
901 * timer interrupt at the ->expires point in the future. The
902 * current time is 'jiffies'.
903 *
904 * The timer's ->expires, ->function (and if the handler uses it, ->data)
905 * fields must be set prior calling this function.
906 *
907 * Timers with an ->expires field in the past will be executed in the next
908 * timer tick.
909 */
910 void add_timer(struct timer_list *timer)
911 {
912 BUG_ON(timer_pending(timer));
913 mod_timer(timer, timer->expires);
914 }
915 EXPORT_SYMBOL(add_timer);
916
917 /**
918 * add_timer_on - start a timer on a particular CPU
919 * @timer: the timer to be added
920 * @cpu: the CPU to start it on
921 *
922 * This is not very scalable on SMP. Double adds are not possible.
923 */
924 void add_timer_on(struct timer_list *timer, int cpu)
925 {
926 struct tvec_base *new_base = per_cpu(tvec_bases, cpu);
927 struct tvec_base *base;
928 unsigned long flags;
929
930 timer_stats_timer_set_start_info(timer);
931 BUG_ON(timer_pending(timer) || !timer->function);
932
933 /*
934 * If @timer was on a different CPU, it should be migrated with the
935 * old base locked to prevent other operations proceeding with the
936 * wrong base locked. See lock_timer_base().
937 */
938 base = lock_timer_base(timer, &flags);
939 if (base != new_base) {
940 timer_set_base(timer, NULL);
941 spin_unlock(&base->lock);
942 base = new_base;
943 spin_lock(&base->lock);
944 timer_set_base(timer, base);
945 }
946 debug_activate(timer, timer->expires);
947 internal_add_timer(base, timer);
948 /*
949 * Check whether the other CPU is in dynticks mode and needs
950 * to be triggered to reevaluate the timer wheel.
951 * We are protected against the other CPU fiddling
952 * with the timer by holding the timer base lock. This also
953 * makes sure that a CPU on the way to stop its tick can not
954 * evaluate the timer wheel.
955 */
956 wake_up_nohz_cpu(cpu);
957 spin_unlock_irqrestore(&base->lock, flags);
958 }
959 EXPORT_SYMBOL_GPL(add_timer_on);
960
961 /**
962 * del_timer - deactive a timer.
963 * @timer: the timer to be deactivated
964 *
965 * del_timer() deactivates a timer - this works on both active and inactive
966 * timers.
967 *
968 * The function returns whether it has deactivated a pending timer or not.
969 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
970 * active timer returns 1.)
971 */
972 int del_timer(struct timer_list *timer)
973 {
974 struct tvec_base *base;
975 unsigned long flags;
976 int ret = 0;
977
978 debug_assert_init(timer);
979
980 timer_stats_timer_clear_start_info(timer);
981 if (timer_pending(timer)) {
982 base = lock_timer_base(timer, &flags);
983 ret = detach_if_pending(timer, base, true);
984 spin_unlock_irqrestore(&base->lock, flags);
985 }
986
987 return ret;
988 }
989 EXPORT_SYMBOL(del_timer);
990
991 /**
992 * try_to_del_timer_sync - Try to deactivate a timer
993 * @timer: timer do del
994 *
995 * This function tries to deactivate a timer. Upon successful (ret >= 0)
996 * exit the timer is not queued and the handler is not running on any CPU.
997 */
998 int try_to_del_timer_sync(struct timer_list *timer)
999 {
1000 struct tvec_base *base;
1001 unsigned long flags;
1002 int ret = -1;
1003
1004 debug_assert_init(timer);
1005
1006 base = lock_timer_base(timer, &flags);
1007
1008 if (base->running_timer != timer) {
1009 timer_stats_timer_clear_start_info(timer);
1010 ret = detach_if_pending(timer, base, true);
1011 }
1012 spin_unlock_irqrestore(&base->lock, flags);
1013
1014 return ret;
1015 }
1016 EXPORT_SYMBOL(try_to_del_timer_sync);
1017
1018 #ifdef CONFIG_SMP
1019 /**
1020 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1021 * @timer: the timer to be deactivated
1022 *
1023 * This function only differs from del_timer() on SMP: besides deactivating
1024 * the timer it also makes sure the handler has finished executing on other
1025 * CPUs.
1026 *
1027 * Synchronization rules: Callers must prevent restarting of the timer,
1028 * otherwise this function is meaningless. It must not be called from
1029 * interrupt contexts unless the timer is an irqsafe one. The caller must
1030 * not hold locks which would prevent completion of the timer's
1031 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1032 * timer is not queued and the handler is not running on any CPU.
1033 *
1034 * Note: For !irqsafe timers, you must not hold locks that are held in
1035 * interrupt context while calling this function. Even if the lock has
1036 * nothing to do with the timer in question. Here's why:
1037 *
1038 * CPU0 CPU1
1039 * ---- ----
1040 * <SOFTIRQ>
1041 * call_timer_fn();
1042 * base->running_timer = mytimer;
1043 * spin_lock_irq(somelock);
1044 * <IRQ>
1045 * spin_lock(somelock);
1046 * del_timer_sync(mytimer);
1047 * while (base->running_timer == mytimer);
1048 *
1049 * Now del_timer_sync() will never return and never release somelock.
1050 * The interrupt on the other CPU is waiting to grab somelock but
1051 * it has interrupted the softirq that CPU0 is waiting to finish.
1052 *
1053 * The function returns whether it has deactivated a pending timer or not.
1054 */
1055 int del_timer_sync(struct timer_list *timer)
1056 {
1057 #ifdef CONFIG_LOCKDEP
1058 unsigned long flags;
1059
1060 /*
1061 * If lockdep gives a backtrace here, please reference
1062 * the synchronization rules above.
1063 */
1064 local_irq_save(flags);
1065 lock_map_acquire(&timer->lockdep_map);
1066 lock_map_release(&timer->lockdep_map);
1067 local_irq_restore(flags);
1068 #endif
1069 /*
1070 * don't use it in hardirq context, because it
1071 * could lead to deadlock.
1072 */
1073 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
1074 for (;;) {
1075 int ret = try_to_del_timer_sync(timer);
1076 if (ret >= 0)
1077 return ret;
1078 cpu_relax();
1079 }
1080 }
1081 EXPORT_SYMBOL(del_timer_sync);
1082 #endif
1083
1084 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1085 {
1086 /* cascade all the timers from tv up one level */
1087 struct timer_list *timer, *tmp;
1088 struct list_head tv_list;
1089
1090 list_replace_init(tv->vec + index, &tv_list);
1091
1092 /*
1093 * We are removing _all_ timers from the list, so we
1094 * don't have to detach them individually.
1095 */
1096 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1097 BUG_ON(tbase_get_base(timer->base) != base);
1098 /* No accounting, while moving them */
1099 __internal_add_timer(base, timer);
1100 }
1101
1102 return index;
1103 }
1104
1105 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1106 unsigned long data)
1107 {
1108 int preempt_count = preempt_count();
1109
1110 #ifdef CONFIG_LOCKDEP
1111 /*
1112 * It is permissible to free the timer from inside the
1113 * function that is called from it, this we need to take into
1114 * account for lockdep too. To avoid bogus "held lock freed"
1115 * warnings as well as problems when looking into
1116 * timer->lockdep_map, make a copy and use that here.
1117 */
1118 struct lockdep_map lockdep_map;
1119
1120 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1121 #endif
1122 /*
1123 * Couple the lock chain with the lock chain at
1124 * del_timer_sync() by acquiring the lock_map around the fn()
1125 * call here and in del_timer_sync().
1126 */
1127 lock_map_acquire(&lockdep_map);
1128
1129 trace_timer_expire_entry(timer);
1130 fn(data);
1131 trace_timer_expire_exit(timer);
1132
1133 lock_map_release(&lockdep_map);
1134
1135 if (preempt_count != preempt_count()) {
1136 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1137 fn, preempt_count, preempt_count());
1138 /*
1139 * Restore the preempt count. That gives us a decent
1140 * chance to survive and extract information. If the
1141 * callback kept a lock held, bad luck, but not worse
1142 * than the BUG() we had.
1143 */
1144 preempt_count() = preempt_count;
1145 }
1146 }
1147
1148 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1149
1150 /**
1151 * __run_timers - run all expired timers (if any) on this CPU.
1152 * @base: the timer vector to be processed.
1153 *
1154 * This function cascades all vectors and executes all expired timer
1155 * vectors.
1156 */
1157 static inline void __run_timers(struct tvec_base *base)
1158 {
1159 struct timer_list *timer;
1160
1161 spin_lock_irq(&base->lock);
1162 while (time_after_eq(jiffies, base->timer_jiffies)) {
1163 struct list_head work_list;
1164 struct list_head *head = &work_list;
1165 int index = base->timer_jiffies & TVR_MASK;
1166
1167 /*
1168 * Cascade timers:
1169 */
1170 if (!index &&
1171 (!cascade(base, &base->tv2, INDEX(0))) &&
1172 (!cascade(base, &base->tv3, INDEX(1))) &&
1173 !cascade(base, &base->tv4, INDEX(2)))
1174 cascade(base, &base->tv5, INDEX(3));
1175 ++base->timer_jiffies;
1176 list_replace_init(base->tv1.vec + index, &work_list);
1177 while (!list_empty(head)) {
1178 void (*fn)(unsigned long);
1179 unsigned long data;
1180 bool irqsafe;
1181
1182 timer = list_first_entry(head, struct timer_list,entry);
1183 fn = timer->function;
1184 data = timer->data;
1185 irqsafe = tbase_get_irqsafe(timer->base);
1186
1187 timer_stats_account_timer(timer);
1188
1189 base->running_timer = timer;
1190 detach_expired_timer(timer, base);
1191
1192 if (irqsafe) {
1193 spin_unlock(&base->lock);
1194 call_timer_fn(timer, fn, data);
1195 spin_lock(&base->lock);
1196 } else {
1197 spin_unlock_irq(&base->lock);
1198 call_timer_fn(timer, fn, data);
1199 spin_lock_irq(&base->lock);
1200 }
1201 }
1202 }
1203 base->running_timer = NULL;
1204 spin_unlock_irq(&base->lock);
1205 }
1206
1207 #ifdef CONFIG_NO_HZ_COMMON
1208 /*
1209 * Find out when the next timer event is due to happen. This
1210 * is used on S/390 to stop all activity when a CPU is idle.
1211 * This function needs to be called with interrupts disabled.
1212 */
1213 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1214 {
1215 unsigned long timer_jiffies = base->timer_jiffies;
1216 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1217 int index, slot, array, found = 0;
1218 struct timer_list *nte;
1219 struct tvec *varray[4];
1220
1221 /* Look for timer events in tv1. */
1222 index = slot = timer_jiffies & TVR_MASK;
1223 do {
1224 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1225 if (tbase_get_deferrable(nte->base))
1226 continue;
1227
1228 found = 1;
1229 expires = nte->expires;
1230 /* Look at the cascade bucket(s)? */
1231 if (!index || slot < index)
1232 goto cascade;
1233 return expires;
1234 }
1235 slot = (slot + 1) & TVR_MASK;
1236 } while (slot != index);
1237
1238 cascade:
1239 /* Calculate the next cascade event */
1240 if (index)
1241 timer_jiffies += TVR_SIZE - index;
1242 timer_jiffies >>= TVR_BITS;
1243
1244 /* Check tv2-tv5. */
1245 varray[0] = &base->tv2;
1246 varray[1] = &base->tv3;
1247 varray[2] = &base->tv4;
1248 varray[3] = &base->tv5;
1249
1250 for (array = 0; array < 4; array++) {
1251 struct tvec *varp = varray[array];
1252
1253 index = slot = timer_jiffies & TVN_MASK;
1254 do {
1255 list_for_each_entry(nte, varp->vec + slot, entry) {
1256 if (tbase_get_deferrable(nte->base))
1257 continue;
1258
1259 found = 1;
1260 if (time_before(nte->expires, expires))
1261 expires = nte->expires;
1262 }
1263 /*
1264 * Do we still search for the first timer or are
1265 * we looking up the cascade buckets ?
1266 */
1267 if (found) {
1268 /* Look at the cascade bucket(s)? */
1269 if (!index || slot < index)
1270 break;
1271 return expires;
1272 }
1273 slot = (slot + 1) & TVN_MASK;
1274 } while (slot != index);
1275
1276 if (index)
1277 timer_jiffies += TVN_SIZE - index;
1278 timer_jiffies >>= TVN_BITS;
1279 }
1280 return expires;
1281 }
1282
1283 /*
1284 * Check, if the next hrtimer event is before the next timer wheel
1285 * event:
1286 */
1287 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1288 unsigned long expires)
1289 {
1290 ktime_t hr_delta = hrtimer_get_next_event();
1291 struct timespec tsdelta;
1292 unsigned long delta;
1293
1294 if (hr_delta.tv64 == KTIME_MAX)
1295 return expires;
1296
1297 /*
1298 * Expired timer available, let it expire in the next tick
1299 */
1300 if (hr_delta.tv64 <= 0)
1301 return now + 1;
1302
1303 tsdelta = ktime_to_timespec(hr_delta);
1304 delta = timespec_to_jiffies(&tsdelta);
1305
1306 /*
1307 * Limit the delta to the max value, which is checked in
1308 * tick_nohz_stop_sched_tick():
1309 */
1310 if (delta > NEXT_TIMER_MAX_DELTA)
1311 delta = NEXT_TIMER_MAX_DELTA;
1312
1313 /*
1314 * Take rounding errors in to account and make sure, that it
1315 * expires in the next tick. Otherwise we go into an endless
1316 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1317 * the timer softirq
1318 */
1319 if (delta < 1)
1320 delta = 1;
1321 now += delta;
1322 if (time_before(now, expires))
1323 return now;
1324 return expires;
1325 }
1326
1327 /**
1328 * get_next_timer_interrupt - return the jiffy of the next pending timer
1329 * @now: current time (in jiffies)
1330 */
1331 unsigned long get_next_timer_interrupt(unsigned long now)
1332 {
1333 struct tvec_base *base = __this_cpu_read(tvec_bases);
1334 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1335
1336 /*
1337 * Pretend that there is no timer pending if the cpu is offline.
1338 * Possible pending timers will be migrated later to an active cpu.
1339 */
1340 if (cpu_is_offline(smp_processor_id()))
1341 return expires;
1342
1343 spin_lock(&base->lock);
1344 if (base->active_timers) {
1345 if (time_before_eq(base->next_timer, base->timer_jiffies))
1346 base->next_timer = __next_timer_interrupt(base);
1347 expires = base->next_timer;
1348 }
1349 spin_unlock(&base->lock);
1350
1351 if (time_before_eq(expires, now))
1352 return now;
1353
1354 return cmp_next_hrtimer_event(now, expires);
1355 }
1356 #endif
1357
1358 /*
1359 * Called from the timer interrupt handler to charge one tick to the current
1360 * process. user_tick is 1 if the tick is user time, 0 for system.
1361 */
1362 void update_process_times(int user_tick)
1363 {
1364 struct task_struct *p = current;
1365 int cpu = smp_processor_id();
1366
1367 /* Note: this timer irq context must be accounted for as well. */
1368 account_process_tick(p, user_tick);
1369 run_local_timers();
1370 rcu_check_callbacks(cpu, user_tick);
1371 #ifdef CONFIG_IRQ_WORK
1372 if (in_irq())
1373 irq_work_run();
1374 #endif
1375 scheduler_tick();
1376 run_posix_cpu_timers(p);
1377 }
1378
1379 /*
1380 * This function runs timers and the timer-tq in bottom half context.
1381 */
1382 static void run_timer_softirq(struct softirq_action *h)
1383 {
1384 struct tvec_base *base = __this_cpu_read(tvec_bases);
1385
1386 hrtimer_run_pending();
1387
1388 if (time_after_eq(jiffies, base->timer_jiffies))
1389 __run_timers(base);
1390 }
1391
1392 /*
1393 * Called by the local, per-CPU timer interrupt on SMP.
1394 */
1395 void run_local_timers(void)
1396 {
1397 hrtimer_run_queues();
1398 raise_softirq(TIMER_SOFTIRQ);
1399 }
1400
1401 #ifdef __ARCH_WANT_SYS_ALARM
1402
1403 /*
1404 * For backwards compatibility? This can be done in libc so Alpha
1405 * and all newer ports shouldn't need it.
1406 */
1407 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1408 {
1409 return alarm_setitimer(seconds);
1410 }
1411
1412 #endif
1413
1414 static void process_timeout(unsigned long __data)
1415 {
1416 wake_up_process((struct task_struct *)__data);
1417 }
1418
1419 /**
1420 * schedule_timeout - sleep until timeout
1421 * @timeout: timeout value in jiffies
1422 *
1423 * Make the current task sleep until @timeout jiffies have
1424 * elapsed. The routine will return immediately unless
1425 * the current task state has been set (see set_current_state()).
1426 *
1427 * You can set the task state as follows -
1428 *
1429 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1430 * pass before the routine returns. The routine will return 0
1431 *
1432 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1433 * delivered to the current task. In this case the remaining time
1434 * in jiffies will be returned, or 0 if the timer expired in time
1435 *
1436 * The current task state is guaranteed to be TASK_RUNNING when this
1437 * routine returns.
1438 *
1439 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1440 * the CPU away without a bound on the timeout. In this case the return
1441 * value will be %MAX_SCHEDULE_TIMEOUT.
1442 *
1443 * In all cases the return value is guaranteed to be non-negative.
1444 */
1445 signed long __sched schedule_timeout(signed long timeout)
1446 {
1447 struct timer_list timer;
1448 unsigned long expire;
1449
1450 switch (timeout)
1451 {
1452 case MAX_SCHEDULE_TIMEOUT:
1453 /*
1454 * These two special cases are useful to be comfortable
1455 * in the caller. Nothing more. We could take
1456 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1457 * but I' d like to return a valid offset (>=0) to allow
1458 * the caller to do everything it want with the retval.
1459 */
1460 schedule();
1461 goto out;
1462 default:
1463 /*
1464 * Another bit of PARANOID. Note that the retval will be
1465 * 0 since no piece of kernel is supposed to do a check
1466 * for a negative retval of schedule_timeout() (since it
1467 * should never happens anyway). You just have the printk()
1468 * that will tell you if something is gone wrong and where.
1469 */
1470 if (timeout < 0) {
1471 printk(KERN_ERR "schedule_timeout: wrong timeout "
1472 "value %lx\n", timeout);
1473 dump_stack();
1474 current->state = TASK_RUNNING;
1475 goto out;
1476 }
1477 }
1478
1479 expire = timeout + jiffies;
1480
1481 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1482 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1483 schedule();
1484 del_singleshot_timer_sync(&timer);
1485
1486 /* Remove the timer from the object tracker */
1487 destroy_timer_on_stack(&timer);
1488
1489 timeout = expire - jiffies;
1490
1491 out:
1492 return timeout < 0 ? 0 : timeout;
1493 }
1494 EXPORT_SYMBOL(schedule_timeout);
1495
1496 /*
1497 * We can use __set_current_state() here because schedule_timeout() calls
1498 * schedule() unconditionally.
1499 */
1500 signed long __sched schedule_timeout_interruptible(signed long timeout)
1501 {
1502 __set_current_state(TASK_INTERRUPTIBLE);
1503 return schedule_timeout(timeout);
1504 }
1505 EXPORT_SYMBOL(schedule_timeout_interruptible);
1506
1507 signed long __sched schedule_timeout_killable(signed long timeout)
1508 {
1509 __set_current_state(TASK_KILLABLE);
1510 return schedule_timeout(timeout);
1511 }
1512 EXPORT_SYMBOL(schedule_timeout_killable);
1513
1514 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1515 {
1516 __set_current_state(TASK_UNINTERRUPTIBLE);
1517 return schedule_timeout(timeout);
1518 }
1519 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1520
1521 static int __cpuinit init_timers_cpu(int cpu)
1522 {
1523 int j;
1524 struct tvec_base *base;
1525 static char __cpuinitdata tvec_base_done[NR_CPUS];
1526
1527 if (!tvec_base_done[cpu]) {
1528 static char boot_done;
1529
1530 if (boot_done) {
1531 /*
1532 * The APs use this path later in boot
1533 */
1534 base = kmalloc_node(sizeof(*base),
1535 GFP_KERNEL | __GFP_ZERO,
1536 cpu_to_node(cpu));
1537 if (!base)
1538 return -ENOMEM;
1539
1540 /* Make sure that tvec_base is 2 byte aligned */
1541 if (tbase_get_deferrable(base)) {
1542 WARN_ON(1);
1543 kfree(base);
1544 return -ENOMEM;
1545 }
1546 per_cpu(tvec_bases, cpu) = base;
1547 } else {
1548 /*
1549 * This is for the boot CPU - we use compile-time
1550 * static initialisation because per-cpu memory isn't
1551 * ready yet and because the memory allocators are not
1552 * initialised either.
1553 */
1554 boot_done = 1;
1555 base = &boot_tvec_bases;
1556 }
1557 spin_lock_init(&base->lock);
1558 tvec_base_done[cpu] = 1;
1559 } else {
1560 base = per_cpu(tvec_bases, cpu);
1561 }
1562
1563
1564 for (j = 0; j < TVN_SIZE; j++) {
1565 INIT_LIST_HEAD(base->tv5.vec + j);
1566 INIT_LIST_HEAD(base->tv4.vec + j);
1567 INIT_LIST_HEAD(base->tv3.vec + j);
1568 INIT_LIST_HEAD(base->tv2.vec + j);
1569 }
1570 for (j = 0; j < TVR_SIZE; j++)
1571 INIT_LIST_HEAD(base->tv1.vec + j);
1572
1573 base->timer_jiffies = jiffies;
1574 base->next_timer = base->timer_jiffies;
1575 base->active_timers = 0;
1576 return 0;
1577 }
1578
1579 #ifdef CONFIG_HOTPLUG_CPU
1580 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1581 {
1582 struct timer_list *timer;
1583
1584 while (!list_empty(head)) {
1585 timer = list_first_entry(head, struct timer_list, entry);
1586 /* We ignore the accounting on the dying cpu */
1587 detach_timer(timer, false);
1588 timer_set_base(timer, new_base);
1589 internal_add_timer(new_base, timer);
1590 }
1591 }
1592
1593 static void __cpuinit migrate_timers(int cpu)
1594 {
1595 struct tvec_base *old_base;
1596 struct tvec_base *new_base;
1597 int i;
1598
1599 BUG_ON(cpu_online(cpu));
1600 old_base = per_cpu(tvec_bases, cpu);
1601 new_base = get_cpu_var(tvec_bases);
1602 /*
1603 * The caller is globally serialized and nobody else
1604 * takes two locks at once, deadlock is not possible.
1605 */
1606 spin_lock_irq(&new_base->lock);
1607 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1608
1609 BUG_ON(old_base->running_timer);
1610
1611 for (i = 0; i < TVR_SIZE; i++)
1612 migrate_timer_list(new_base, old_base->tv1.vec + i);
1613 for (i = 0; i < TVN_SIZE; i++) {
1614 migrate_timer_list(new_base, old_base->tv2.vec + i);
1615 migrate_timer_list(new_base, old_base->tv3.vec + i);
1616 migrate_timer_list(new_base, old_base->tv4.vec + i);
1617 migrate_timer_list(new_base, old_base->tv5.vec + i);
1618 }
1619
1620 spin_unlock(&old_base->lock);
1621 spin_unlock_irq(&new_base->lock);
1622 put_cpu_var(tvec_bases);
1623 }
1624 #endif /* CONFIG_HOTPLUG_CPU */
1625
1626 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1627 unsigned long action, void *hcpu)
1628 {
1629 long cpu = (long)hcpu;
1630 int err;
1631
1632 switch(action) {
1633 case CPU_UP_PREPARE:
1634 case CPU_UP_PREPARE_FROZEN:
1635 err = init_timers_cpu(cpu);
1636 if (err < 0)
1637 return notifier_from_errno(err);
1638 break;
1639 #ifdef CONFIG_HOTPLUG_CPU
1640 case CPU_DEAD:
1641 case CPU_DEAD_FROZEN:
1642 migrate_timers(cpu);
1643 break;
1644 #endif
1645 default:
1646 break;
1647 }
1648 return NOTIFY_OK;
1649 }
1650
1651 static struct notifier_block __cpuinitdata timers_nb = {
1652 .notifier_call = timer_cpu_notify,
1653 };
1654
1655
1656 void __init init_timers(void)
1657 {
1658 int err;
1659
1660 /* ensure there are enough low bits for flags in timer->base pointer */
1661 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
1662
1663 err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1664 (void *)(long)smp_processor_id());
1665 init_timer_stats();
1666
1667 BUG_ON(err != NOTIFY_OK);
1668 register_cpu_notifier(&timers_nb);
1669 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1670 }
1671
1672 /**
1673 * msleep - sleep safely even with waitqueue interruptions
1674 * @msecs: Time in milliseconds to sleep for
1675 */
1676 void msleep(unsigned int msecs)
1677 {
1678 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1679
1680 while (timeout)
1681 timeout = schedule_timeout_uninterruptible(timeout);
1682 }
1683
1684 EXPORT_SYMBOL(msleep);
1685
1686 /**
1687 * msleep_interruptible - sleep waiting for signals
1688 * @msecs: Time in milliseconds to sleep for
1689 */
1690 unsigned long msleep_interruptible(unsigned int msecs)
1691 {
1692 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1693
1694 while (timeout && !signal_pending(current))
1695 timeout = schedule_timeout_interruptible(timeout);
1696 return jiffies_to_msecs(timeout);
1697 }
1698
1699 EXPORT_SYMBOL(msleep_interruptible);
1700
1701 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1702 {
1703 ktime_t kmin;
1704 unsigned long delta;
1705
1706 kmin = ktime_set(0, min * NSEC_PER_USEC);
1707 delta = (max - min) * NSEC_PER_USEC;
1708 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1709 }
1710
1711 /**
1712 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1713 * @min: Minimum time in usecs to sleep
1714 * @max: Maximum time in usecs to sleep
1715 */
1716 void usleep_range(unsigned long min, unsigned long max)
1717 {
1718 __set_current_state(TASK_UNINTERRUPTIBLE);
1719 do_usleep_range(min, max);
1720 }
1721 EXPORT_SYMBOL(usleep_range);