perf: Do the big rename: Performance Counters -> Performance Events
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_event.h>
41 #include <linux/sched.h>
42
43 #include <asm/uaccess.h>
44 #include <asm/unistd.h>
45 #include <asm/div64.h>
46 #include <asm/timex.h>
47 #include <asm/io.h>
48
49 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
50
51 EXPORT_SYMBOL(jiffies_64);
52
53 /*
54 * per-CPU timer vector definitions:
55 */
56 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
57 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
58 #define TVN_SIZE (1 << TVN_BITS)
59 #define TVR_SIZE (1 << TVR_BITS)
60 #define TVN_MASK (TVN_SIZE - 1)
61 #define TVR_MASK (TVR_SIZE - 1)
62
63 struct tvec {
64 struct list_head vec[TVN_SIZE];
65 };
66
67 struct tvec_root {
68 struct list_head vec[TVR_SIZE];
69 };
70
71 struct tvec_base {
72 spinlock_t lock;
73 struct timer_list *running_timer;
74 unsigned long timer_jiffies;
75 unsigned long next_timer;
76 struct tvec_root tv1;
77 struct tvec tv2;
78 struct tvec tv3;
79 struct tvec tv4;
80 struct tvec tv5;
81 } ____cacheline_aligned;
82
83 struct tvec_base boot_tvec_bases;
84 EXPORT_SYMBOL(boot_tvec_bases);
85 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
86
87 /*
88 * Note that all tvec_bases are 2 byte aligned and lower bit of
89 * base in timer_list is guaranteed to be zero. Use the LSB for
90 * the new flag to indicate whether the timer is deferrable
91 */
92 #define TBASE_DEFERRABLE_FLAG (0x1)
93
94 /* Functions below help us manage 'deferrable' flag */
95 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
96 {
97 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
98 }
99
100 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
101 {
102 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
103 }
104
105 static inline void timer_set_deferrable(struct timer_list *timer)
106 {
107 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
108 TBASE_DEFERRABLE_FLAG));
109 }
110
111 static inline void
112 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
113 {
114 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
115 tbase_get_deferrable(timer->base));
116 }
117
118 static unsigned long round_jiffies_common(unsigned long j, int cpu,
119 bool force_up)
120 {
121 int rem;
122 unsigned long original = j;
123
124 /*
125 * We don't want all cpus firing their timers at once hitting the
126 * same lock or cachelines, so we skew each extra cpu with an extra
127 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
128 * already did this.
129 * The skew is done by adding 3*cpunr, then round, then subtract this
130 * extra offset again.
131 */
132 j += cpu * 3;
133
134 rem = j % HZ;
135
136 /*
137 * If the target jiffie is just after a whole second (which can happen
138 * due to delays of the timer irq, long irq off times etc etc) then
139 * we should round down to the whole second, not up. Use 1/4th second
140 * as cutoff for this rounding as an extreme upper bound for this.
141 * But never round down if @force_up is set.
142 */
143 if (rem < HZ/4 && !force_up) /* round down */
144 j = j - rem;
145 else /* round up */
146 j = j - rem + HZ;
147
148 /* now that we have rounded, subtract the extra skew again */
149 j -= cpu * 3;
150
151 if (j <= jiffies) /* rounding ate our timeout entirely; */
152 return original;
153 return j;
154 }
155
156 /**
157 * __round_jiffies - function to round jiffies to a full second
158 * @j: the time in (absolute) jiffies that should be rounded
159 * @cpu: the processor number on which the timeout will happen
160 *
161 * __round_jiffies() rounds an absolute time in the future (in jiffies)
162 * up or down to (approximately) full seconds. This is useful for timers
163 * for which the exact time they fire does not matter too much, as long as
164 * they fire approximately every X seconds.
165 *
166 * By rounding these timers to whole seconds, all such timers will fire
167 * at the same time, rather than at various times spread out. The goal
168 * of this is to have the CPU wake up less, which saves power.
169 *
170 * The exact rounding is skewed for each processor to avoid all
171 * processors firing at the exact same time, which could lead
172 * to lock contention or spurious cache line bouncing.
173 *
174 * The return value is the rounded version of the @j parameter.
175 */
176 unsigned long __round_jiffies(unsigned long j, int cpu)
177 {
178 return round_jiffies_common(j, cpu, false);
179 }
180 EXPORT_SYMBOL_GPL(__round_jiffies);
181
182 /**
183 * __round_jiffies_relative - function to round jiffies to a full second
184 * @j: the time in (relative) jiffies that should be rounded
185 * @cpu: the processor number on which the timeout will happen
186 *
187 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
188 * up or down to (approximately) full seconds. This is useful for timers
189 * for which the exact time they fire does not matter too much, as long as
190 * they fire approximately every X seconds.
191 *
192 * By rounding these timers to whole seconds, all such timers will fire
193 * at the same time, rather than at various times spread out. The goal
194 * of this is to have the CPU wake up less, which saves power.
195 *
196 * The exact rounding is skewed for each processor to avoid all
197 * processors firing at the exact same time, which could lead
198 * to lock contention or spurious cache line bouncing.
199 *
200 * The return value is the rounded version of the @j parameter.
201 */
202 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
203 {
204 unsigned long j0 = jiffies;
205
206 /* Use j0 because jiffies might change while we run */
207 return round_jiffies_common(j + j0, cpu, false) - j0;
208 }
209 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
210
211 /**
212 * round_jiffies - function to round jiffies to a full second
213 * @j: the time in (absolute) jiffies that should be rounded
214 *
215 * round_jiffies() rounds an absolute time in the future (in jiffies)
216 * up or down to (approximately) full seconds. This is useful for timers
217 * for which the exact time they fire does not matter too much, as long as
218 * they fire approximately every X seconds.
219 *
220 * By rounding these timers to whole seconds, all such timers will fire
221 * at the same time, rather than at various times spread out. The goal
222 * of this is to have the CPU wake up less, which saves power.
223 *
224 * The return value is the rounded version of the @j parameter.
225 */
226 unsigned long round_jiffies(unsigned long j)
227 {
228 return round_jiffies_common(j, raw_smp_processor_id(), false);
229 }
230 EXPORT_SYMBOL_GPL(round_jiffies);
231
232 /**
233 * round_jiffies_relative - function to round jiffies to a full second
234 * @j: the time in (relative) jiffies that should be rounded
235 *
236 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
237 * up or down to (approximately) full seconds. This is useful for timers
238 * for which the exact time they fire does not matter too much, as long as
239 * they fire approximately every X seconds.
240 *
241 * By rounding these timers to whole seconds, all such timers will fire
242 * at the same time, rather than at various times spread out. The goal
243 * of this is to have the CPU wake up less, which saves power.
244 *
245 * The return value is the rounded version of the @j parameter.
246 */
247 unsigned long round_jiffies_relative(unsigned long j)
248 {
249 return __round_jiffies_relative(j, raw_smp_processor_id());
250 }
251 EXPORT_SYMBOL_GPL(round_jiffies_relative);
252
253 /**
254 * __round_jiffies_up - function to round jiffies up to a full second
255 * @j: the time in (absolute) jiffies that should be rounded
256 * @cpu: the processor number on which the timeout will happen
257 *
258 * This is the same as __round_jiffies() except that it will never
259 * round down. This is useful for timeouts for which the exact time
260 * of firing does not matter too much, as long as they don't fire too
261 * early.
262 */
263 unsigned long __round_jiffies_up(unsigned long j, int cpu)
264 {
265 return round_jiffies_common(j, cpu, true);
266 }
267 EXPORT_SYMBOL_GPL(__round_jiffies_up);
268
269 /**
270 * __round_jiffies_up_relative - function to round jiffies up to a full second
271 * @j: the time in (relative) jiffies that should be rounded
272 * @cpu: the processor number on which the timeout will happen
273 *
274 * This is the same as __round_jiffies_relative() except that it will never
275 * round down. This is useful for timeouts for which the exact time
276 * of firing does not matter too much, as long as they don't fire too
277 * early.
278 */
279 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
280 {
281 unsigned long j0 = jiffies;
282
283 /* Use j0 because jiffies might change while we run */
284 return round_jiffies_common(j + j0, cpu, true) - j0;
285 }
286 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
287
288 /**
289 * round_jiffies_up - function to round jiffies up to a full second
290 * @j: the time in (absolute) jiffies that should be rounded
291 *
292 * This is the same as round_jiffies() except that it will never
293 * round down. This is useful for timeouts for which the exact time
294 * of firing does not matter too much, as long as they don't fire too
295 * early.
296 */
297 unsigned long round_jiffies_up(unsigned long j)
298 {
299 return round_jiffies_common(j, raw_smp_processor_id(), true);
300 }
301 EXPORT_SYMBOL_GPL(round_jiffies_up);
302
303 /**
304 * round_jiffies_up_relative - function to round jiffies up to a full second
305 * @j: the time in (relative) jiffies that should be rounded
306 *
307 * This is the same as round_jiffies_relative() except that it will never
308 * round down. This is useful for timeouts for which the exact time
309 * of firing does not matter too much, as long as they don't fire too
310 * early.
311 */
312 unsigned long round_jiffies_up_relative(unsigned long j)
313 {
314 return __round_jiffies_up_relative(j, raw_smp_processor_id());
315 }
316 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
317
318
319 static inline void set_running_timer(struct tvec_base *base,
320 struct timer_list *timer)
321 {
322 #ifdef CONFIG_SMP
323 base->running_timer = timer;
324 #endif
325 }
326
327 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
328 {
329 unsigned long expires = timer->expires;
330 unsigned long idx = expires - base->timer_jiffies;
331 struct list_head *vec;
332
333 if (idx < TVR_SIZE) {
334 int i = expires & TVR_MASK;
335 vec = base->tv1.vec + i;
336 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
337 int i = (expires >> TVR_BITS) & TVN_MASK;
338 vec = base->tv2.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
341 vec = base->tv3.vec + i;
342 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
343 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
344 vec = base->tv4.vec + i;
345 } else if ((signed long) idx < 0) {
346 /*
347 * Can happen if you add a timer with expires == jiffies,
348 * or you set a timer to go off in the past
349 */
350 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
351 } else {
352 int i;
353 /* If the timeout is larger than 0xffffffff on 64-bit
354 * architectures then we use the maximum timeout:
355 */
356 if (idx > 0xffffffffUL) {
357 idx = 0xffffffffUL;
358 expires = idx + base->timer_jiffies;
359 }
360 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
361 vec = base->tv5.vec + i;
362 }
363 /*
364 * Timers are FIFO:
365 */
366 list_add_tail(&timer->entry, vec);
367 }
368
369 #ifdef CONFIG_TIMER_STATS
370 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
371 {
372 if (timer->start_site)
373 return;
374
375 timer->start_site = addr;
376 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
377 timer->start_pid = current->pid;
378 }
379
380 static void timer_stats_account_timer(struct timer_list *timer)
381 {
382 unsigned int flag = 0;
383
384 if (likely(!timer->start_site))
385 return;
386 if (unlikely(tbase_get_deferrable(timer->base)))
387 flag |= TIMER_STATS_FLAG_DEFERRABLE;
388
389 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
390 timer->function, timer->start_comm, flag);
391 }
392
393 #else
394 static void timer_stats_account_timer(struct timer_list *timer) {}
395 #endif
396
397 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
398
399 static struct debug_obj_descr timer_debug_descr;
400
401 /*
402 * fixup_init is called when:
403 * - an active object is initialized
404 */
405 static int timer_fixup_init(void *addr, enum debug_obj_state state)
406 {
407 struct timer_list *timer = addr;
408
409 switch (state) {
410 case ODEBUG_STATE_ACTIVE:
411 del_timer_sync(timer);
412 debug_object_init(timer, &timer_debug_descr);
413 return 1;
414 default:
415 return 0;
416 }
417 }
418
419 /*
420 * fixup_activate is called when:
421 * - an active object is activated
422 * - an unknown object is activated (might be a statically initialized object)
423 */
424 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
425 {
426 struct timer_list *timer = addr;
427
428 switch (state) {
429
430 case ODEBUG_STATE_NOTAVAILABLE:
431 /*
432 * This is not really a fixup. The timer was
433 * statically initialized. We just make sure that it
434 * is tracked in the object tracker.
435 */
436 if (timer->entry.next == NULL &&
437 timer->entry.prev == TIMER_ENTRY_STATIC) {
438 debug_object_init(timer, &timer_debug_descr);
439 debug_object_activate(timer, &timer_debug_descr);
440 return 0;
441 } else {
442 WARN_ON_ONCE(1);
443 }
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452 }
453
454 /*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458 static int timer_fixup_free(void *addr, enum debug_obj_state state)
459 {
460 struct timer_list *timer = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 del_timer_sync(timer);
465 debug_object_free(timer, &timer_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470 }
471
472 static struct debug_obj_descr timer_debug_descr = {
473 .name = "timer_list",
474 .fixup_init = timer_fixup_init,
475 .fixup_activate = timer_fixup_activate,
476 .fixup_free = timer_fixup_free,
477 };
478
479 static inline void debug_timer_init(struct timer_list *timer)
480 {
481 debug_object_init(timer, &timer_debug_descr);
482 }
483
484 static inline void debug_timer_activate(struct timer_list *timer)
485 {
486 debug_object_activate(timer, &timer_debug_descr);
487 }
488
489 static inline void debug_timer_deactivate(struct timer_list *timer)
490 {
491 debug_object_deactivate(timer, &timer_debug_descr);
492 }
493
494 static inline void debug_timer_free(struct timer_list *timer)
495 {
496 debug_object_free(timer, &timer_debug_descr);
497 }
498
499 static void __init_timer(struct timer_list *timer,
500 const char *name,
501 struct lock_class_key *key);
502
503 void init_timer_on_stack_key(struct timer_list *timer,
504 const char *name,
505 struct lock_class_key *key)
506 {
507 debug_object_init_on_stack(timer, &timer_debug_descr);
508 __init_timer(timer, name, key);
509 }
510 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
511
512 void destroy_timer_on_stack(struct timer_list *timer)
513 {
514 debug_object_free(timer, &timer_debug_descr);
515 }
516 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
517
518 #else
519 static inline void debug_timer_init(struct timer_list *timer) { }
520 static inline void debug_timer_activate(struct timer_list *timer) { }
521 static inline void debug_timer_deactivate(struct timer_list *timer) { }
522 #endif
523
524 static void __init_timer(struct timer_list *timer,
525 const char *name,
526 struct lock_class_key *key)
527 {
528 timer->entry.next = NULL;
529 timer->base = __raw_get_cpu_var(tvec_bases);
530 #ifdef CONFIG_TIMER_STATS
531 timer->start_site = NULL;
532 timer->start_pid = -1;
533 memset(timer->start_comm, 0, TASK_COMM_LEN);
534 #endif
535 lockdep_init_map(&timer->lockdep_map, name, key, 0);
536 }
537
538 /**
539 * init_timer_key - initialize a timer
540 * @timer: the timer to be initialized
541 * @name: name of the timer
542 * @key: lockdep class key of the fake lock used for tracking timer
543 * sync lock dependencies
544 *
545 * init_timer_key() must be done to a timer prior calling *any* of the
546 * other timer functions.
547 */
548 void init_timer_key(struct timer_list *timer,
549 const char *name,
550 struct lock_class_key *key)
551 {
552 debug_timer_init(timer);
553 __init_timer(timer, name, key);
554 }
555 EXPORT_SYMBOL(init_timer_key);
556
557 void init_timer_deferrable_key(struct timer_list *timer,
558 const char *name,
559 struct lock_class_key *key)
560 {
561 init_timer_key(timer, name, key);
562 timer_set_deferrable(timer);
563 }
564 EXPORT_SYMBOL(init_timer_deferrable_key);
565
566 static inline void detach_timer(struct timer_list *timer,
567 int clear_pending)
568 {
569 struct list_head *entry = &timer->entry;
570
571 debug_timer_deactivate(timer);
572
573 __list_del(entry->prev, entry->next);
574 if (clear_pending)
575 entry->next = NULL;
576 entry->prev = LIST_POISON2;
577 }
578
579 /*
580 * We are using hashed locking: holding per_cpu(tvec_bases).lock
581 * means that all timers which are tied to this base via timer->base are
582 * locked, and the base itself is locked too.
583 *
584 * So __run_timers/migrate_timers can safely modify all timers which could
585 * be found on ->tvX lists.
586 *
587 * When the timer's base is locked, and the timer removed from list, it is
588 * possible to set timer->base = NULL and drop the lock: the timer remains
589 * locked.
590 */
591 static struct tvec_base *lock_timer_base(struct timer_list *timer,
592 unsigned long *flags)
593 __acquires(timer->base->lock)
594 {
595 struct tvec_base *base;
596
597 for (;;) {
598 struct tvec_base *prelock_base = timer->base;
599 base = tbase_get_base(prelock_base);
600 if (likely(base != NULL)) {
601 spin_lock_irqsave(&base->lock, *flags);
602 if (likely(prelock_base == timer->base))
603 return base;
604 /* The timer has migrated to another CPU */
605 spin_unlock_irqrestore(&base->lock, *flags);
606 }
607 cpu_relax();
608 }
609 }
610
611 static inline int
612 __mod_timer(struct timer_list *timer, unsigned long expires,
613 bool pending_only, int pinned)
614 {
615 struct tvec_base *base, *new_base;
616 unsigned long flags;
617 int ret = 0 , cpu;
618
619 timer_stats_timer_set_start_info(timer);
620 BUG_ON(!timer->function);
621
622 base = lock_timer_base(timer, &flags);
623
624 if (timer_pending(timer)) {
625 detach_timer(timer, 0);
626 if (timer->expires == base->next_timer &&
627 !tbase_get_deferrable(timer->base))
628 base->next_timer = base->timer_jiffies;
629 ret = 1;
630 } else {
631 if (pending_only)
632 goto out_unlock;
633 }
634
635 debug_timer_activate(timer);
636
637 new_base = __get_cpu_var(tvec_bases);
638
639 cpu = smp_processor_id();
640
641 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
642 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
643 int preferred_cpu = get_nohz_load_balancer();
644
645 if (preferred_cpu >= 0)
646 cpu = preferred_cpu;
647 }
648 #endif
649 new_base = per_cpu(tvec_bases, cpu);
650
651 if (base != new_base) {
652 /*
653 * We are trying to schedule the timer on the local CPU.
654 * However we can't change timer's base while it is running,
655 * otherwise del_timer_sync() can't detect that the timer's
656 * handler yet has not finished. This also guarantees that
657 * the timer is serialized wrt itself.
658 */
659 if (likely(base->running_timer != timer)) {
660 /* See the comment in lock_timer_base() */
661 timer_set_base(timer, NULL);
662 spin_unlock(&base->lock);
663 base = new_base;
664 spin_lock(&base->lock);
665 timer_set_base(timer, base);
666 }
667 }
668
669 timer->expires = expires;
670 if (time_before(timer->expires, base->next_timer) &&
671 !tbase_get_deferrable(timer->base))
672 base->next_timer = timer->expires;
673 internal_add_timer(base, timer);
674
675 out_unlock:
676 spin_unlock_irqrestore(&base->lock, flags);
677
678 return ret;
679 }
680
681 /**
682 * mod_timer_pending - modify a pending timer's timeout
683 * @timer: the pending timer to be modified
684 * @expires: new timeout in jiffies
685 *
686 * mod_timer_pending() is the same for pending timers as mod_timer(),
687 * but will not re-activate and modify already deleted timers.
688 *
689 * It is useful for unserialized use of timers.
690 */
691 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
692 {
693 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
694 }
695 EXPORT_SYMBOL(mod_timer_pending);
696
697 /**
698 * mod_timer - modify a timer's timeout
699 * @timer: the timer to be modified
700 * @expires: new timeout in jiffies
701 *
702 * mod_timer() is a more efficient way to update the expire field of an
703 * active timer (if the timer is inactive it will be activated)
704 *
705 * mod_timer(timer, expires) is equivalent to:
706 *
707 * del_timer(timer); timer->expires = expires; add_timer(timer);
708 *
709 * Note that if there are multiple unserialized concurrent users of the
710 * same timer, then mod_timer() is the only safe way to modify the timeout,
711 * since add_timer() cannot modify an already running timer.
712 *
713 * The function returns whether it has modified a pending timer or not.
714 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
715 * active timer returns 1.)
716 */
717 int mod_timer(struct timer_list *timer, unsigned long expires)
718 {
719 /*
720 * This is a common optimization triggered by the
721 * networking code - if the timer is re-modified
722 * to be the same thing then just return:
723 */
724 if (timer_pending(timer) && timer->expires == expires)
725 return 1;
726
727 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
728 }
729 EXPORT_SYMBOL(mod_timer);
730
731 /**
732 * mod_timer_pinned - modify a timer's timeout
733 * @timer: the timer to be modified
734 * @expires: new timeout in jiffies
735 *
736 * mod_timer_pinned() is a way to update the expire field of an
737 * active timer (if the timer is inactive it will be activated)
738 * and not allow the timer to be migrated to a different CPU.
739 *
740 * mod_timer_pinned(timer, expires) is equivalent to:
741 *
742 * del_timer(timer); timer->expires = expires; add_timer(timer);
743 */
744 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
745 {
746 if (timer->expires == expires && timer_pending(timer))
747 return 1;
748
749 return __mod_timer(timer, expires, false, TIMER_PINNED);
750 }
751 EXPORT_SYMBOL(mod_timer_pinned);
752
753 /**
754 * add_timer - start a timer
755 * @timer: the timer to be added
756 *
757 * The kernel will do a ->function(->data) callback from the
758 * timer interrupt at the ->expires point in the future. The
759 * current time is 'jiffies'.
760 *
761 * The timer's ->expires, ->function (and if the handler uses it, ->data)
762 * fields must be set prior calling this function.
763 *
764 * Timers with an ->expires field in the past will be executed in the next
765 * timer tick.
766 */
767 void add_timer(struct timer_list *timer)
768 {
769 BUG_ON(timer_pending(timer));
770 mod_timer(timer, timer->expires);
771 }
772 EXPORT_SYMBOL(add_timer);
773
774 /**
775 * add_timer_on - start a timer on a particular CPU
776 * @timer: the timer to be added
777 * @cpu: the CPU to start it on
778 *
779 * This is not very scalable on SMP. Double adds are not possible.
780 */
781 void add_timer_on(struct timer_list *timer, int cpu)
782 {
783 struct tvec_base *base = per_cpu(tvec_bases, cpu);
784 unsigned long flags;
785
786 timer_stats_timer_set_start_info(timer);
787 BUG_ON(timer_pending(timer) || !timer->function);
788 spin_lock_irqsave(&base->lock, flags);
789 timer_set_base(timer, base);
790 debug_timer_activate(timer);
791 if (time_before(timer->expires, base->next_timer) &&
792 !tbase_get_deferrable(timer->base))
793 base->next_timer = timer->expires;
794 internal_add_timer(base, timer);
795 /*
796 * Check whether the other CPU is idle and needs to be
797 * triggered to reevaluate the timer wheel when nohz is
798 * active. We are protected against the other CPU fiddling
799 * with the timer by holding the timer base lock. This also
800 * makes sure that a CPU on the way to idle can not evaluate
801 * the timer wheel.
802 */
803 wake_up_idle_cpu(cpu);
804 spin_unlock_irqrestore(&base->lock, flags);
805 }
806 EXPORT_SYMBOL_GPL(add_timer_on);
807
808 /**
809 * del_timer - deactive a timer.
810 * @timer: the timer to be deactivated
811 *
812 * del_timer() deactivates a timer - this works on both active and inactive
813 * timers.
814 *
815 * The function returns whether it has deactivated a pending timer or not.
816 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
817 * active timer returns 1.)
818 */
819 int del_timer(struct timer_list *timer)
820 {
821 struct tvec_base *base;
822 unsigned long flags;
823 int ret = 0;
824
825 timer_stats_timer_clear_start_info(timer);
826 if (timer_pending(timer)) {
827 base = lock_timer_base(timer, &flags);
828 if (timer_pending(timer)) {
829 detach_timer(timer, 1);
830 if (timer->expires == base->next_timer &&
831 !tbase_get_deferrable(timer->base))
832 base->next_timer = base->timer_jiffies;
833 ret = 1;
834 }
835 spin_unlock_irqrestore(&base->lock, flags);
836 }
837
838 return ret;
839 }
840 EXPORT_SYMBOL(del_timer);
841
842 #ifdef CONFIG_SMP
843 /**
844 * try_to_del_timer_sync - Try to deactivate a timer
845 * @timer: timer do del
846 *
847 * This function tries to deactivate a timer. Upon successful (ret >= 0)
848 * exit the timer is not queued and the handler is not running on any CPU.
849 *
850 * It must not be called from interrupt contexts.
851 */
852 int try_to_del_timer_sync(struct timer_list *timer)
853 {
854 struct tvec_base *base;
855 unsigned long flags;
856 int ret = -1;
857
858 base = lock_timer_base(timer, &flags);
859
860 if (base->running_timer == timer)
861 goto out;
862
863 ret = 0;
864 if (timer_pending(timer)) {
865 detach_timer(timer, 1);
866 if (timer->expires == base->next_timer &&
867 !tbase_get_deferrable(timer->base))
868 base->next_timer = base->timer_jiffies;
869 ret = 1;
870 }
871 out:
872 spin_unlock_irqrestore(&base->lock, flags);
873
874 return ret;
875 }
876 EXPORT_SYMBOL(try_to_del_timer_sync);
877
878 /**
879 * del_timer_sync - deactivate a timer and wait for the handler to finish.
880 * @timer: the timer to be deactivated
881 *
882 * This function only differs from del_timer() on SMP: besides deactivating
883 * the timer it also makes sure the handler has finished executing on other
884 * CPUs.
885 *
886 * Synchronization rules: Callers must prevent restarting of the timer,
887 * otherwise this function is meaningless. It must not be called from
888 * interrupt contexts. The caller must not hold locks which would prevent
889 * completion of the timer's handler. The timer's handler must not call
890 * add_timer_on(). Upon exit the timer is not queued and the handler is
891 * not running on any CPU.
892 *
893 * The function returns whether it has deactivated a pending timer or not.
894 */
895 int del_timer_sync(struct timer_list *timer)
896 {
897 #ifdef CONFIG_LOCKDEP
898 unsigned long flags;
899
900 local_irq_save(flags);
901 lock_map_acquire(&timer->lockdep_map);
902 lock_map_release(&timer->lockdep_map);
903 local_irq_restore(flags);
904 #endif
905
906 for (;;) {
907 int ret = try_to_del_timer_sync(timer);
908 if (ret >= 0)
909 return ret;
910 cpu_relax();
911 }
912 }
913 EXPORT_SYMBOL(del_timer_sync);
914 #endif
915
916 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
917 {
918 /* cascade all the timers from tv up one level */
919 struct timer_list *timer, *tmp;
920 struct list_head tv_list;
921
922 list_replace_init(tv->vec + index, &tv_list);
923
924 /*
925 * We are removing _all_ timers from the list, so we
926 * don't have to detach them individually.
927 */
928 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
929 BUG_ON(tbase_get_base(timer->base) != base);
930 internal_add_timer(base, timer);
931 }
932
933 return index;
934 }
935
936 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
937
938 /**
939 * __run_timers - run all expired timers (if any) on this CPU.
940 * @base: the timer vector to be processed.
941 *
942 * This function cascades all vectors and executes all expired timer
943 * vectors.
944 */
945 static inline void __run_timers(struct tvec_base *base)
946 {
947 struct timer_list *timer;
948
949 spin_lock_irq(&base->lock);
950 while (time_after_eq(jiffies, base->timer_jiffies)) {
951 struct list_head work_list;
952 struct list_head *head = &work_list;
953 int index = base->timer_jiffies & TVR_MASK;
954
955 /*
956 * Cascade timers:
957 */
958 if (!index &&
959 (!cascade(base, &base->tv2, INDEX(0))) &&
960 (!cascade(base, &base->tv3, INDEX(1))) &&
961 !cascade(base, &base->tv4, INDEX(2)))
962 cascade(base, &base->tv5, INDEX(3));
963 ++base->timer_jiffies;
964 list_replace_init(base->tv1.vec + index, &work_list);
965 while (!list_empty(head)) {
966 void (*fn)(unsigned long);
967 unsigned long data;
968
969 timer = list_first_entry(head, struct timer_list,entry);
970 fn = timer->function;
971 data = timer->data;
972
973 timer_stats_account_timer(timer);
974
975 set_running_timer(base, timer);
976 detach_timer(timer, 1);
977
978 spin_unlock_irq(&base->lock);
979 {
980 int preempt_count = preempt_count();
981
982 #ifdef CONFIG_LOCKDEP
983 /*
984 * It is permissible to free the timer from
985 * inside the function that is called from
986 * it, this we need to take into account for
987 * lockdep too. To avoid bogus "held lock
988 * freed" warnings as well as problems when
989 * looking into timer->lockdep_map, make a
990 * copy and use that here.
991 */
992 struct lockdep_map lockdep_map =
993 timer->lockdep_map;
994 #endif
995 /*
996 * Couple the lock chain with the lock chain at
997 * del_timer_sync() by acquiring the lock_map
998 * around the fn() call here and in
999 * del_timer_sync().
1000 */
1001 lock_map_acquire(&lockdep_map);
1002
1003 fn(data);
1004
1005 lock_map_release(&lockdep_map);
1006
1007 if (preempt_count != preempt_count()) {
1008 printk(KERN_ERR "huh, entered %p "
1009 "with preempt_count %08x, exited"
1010 " with %08x?\n",
1011 fn, preempt_count,
1012 preempt_count());
1013 BUG();
1014 }
1015 }
1016 spin_lock_irq(&base->lock);
1017 }
1018 }
1019 set_running_timer(base, NULL);
1020 spin_unlock_irq(&base->lock);
1021 }
1022
1023 #ifdef CONFIG_NO_HZ
1024 /*
1025 * Find out when the next timer event is due to happen. This
1026 * is used on S/390 to stop all activity when a CPU is idle.
1027 * This function needs to be called with interrupts disabled.
1028 */
1029 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1030 {
1031 unsigned long timer_jiffies = base->timer_jiffies;
1032 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1033 int index, slot, array, found = 0;
1034 struct timer_list *nte;
1035 struct tvec *varray[4];
1036
1037 /* Look for timer events in tv1. */
1038 index = slot = timer_jiffies & TVR_MASK;
1039 do {
1040 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1041 if (tbase_get_deferrable(nte->base))
1042 continue;
1043
1044 found = 1;
1045 expires = nte->expires;
1046 /* Look at the cascade bucket(s)? */
1047 if (!index || slot < index)
1048 goto cascade;
1049 return expires;
1050 }
1051 slot = (slot + 1) & TVR_MASK;
1052 } while (slot != index);
1053
1054 cascade:
1055 /* Calculate the next cascade event */
1056 if (index)
1057 timer_jiffies += TVR_SIZE - index;
1058 timer_jiffies >>= TVR_BITS;
1059
1060 /* Check tv2-tv5. */
1061 varray[0] = &base->tv2;
1062 varray[1] = &base->tv3;
1063 varray[2] = &base->tv4;
1064 varray[3] = &base->tv5;
1065
1066 for (array = 0; array < 4; array++) {
1067 struct tvec *varp = varray[array];
1068
1069 index = slot = timer_jiffies & TVN_MASK;
1070 do {
1071 list_for_each_entry(nte, varp->vec + slot, entry) {
1072 if (tbase_get_deferrable(nte->base))
1073 continue;
1074
1075 found = 1;
1076 if (time_before(nte->expires, expires))
1077 expires = nte->expires;
1078 }
1079 /*
1080 * Do we still search for the first timer or are
1081 * we looking up the cascade buckets ?
1082 */
1083 if (found) {
1084 /* Look at the cascade bucket(s)? */
1085 if (!index || slot < index)
1086 break;
1087 return expires;
1088 }
1089 slot = (slot + 1) & TVN_MASK;
1090 } while (slot != index);
1091
1092 if (index)
1093 timer_jiffies += TVN_SIZE - index;
1094 timer_jiffies >>= TVN_BITS;
1095 }
1096 return expires;
1097 }
1098
1099 /*
1100 * Check, if the next hrtimer event is before the next timer wheel
1101 * event:
1102 */
1103 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1104 unsigned long expires)
1105 {
1106 ktime_t hr_delta = hrtimer_get_next_event();
1107 struct timespec tsdelta;
1108 unsigned long delta;
1109
1110 if (hr_delta.tv64 == KTIME_MAX)
1111 return expires;
1112
1113 /*
1114 * Expired timer available, let it expire in the next tick
1115 */
1116 if (hr_delta.tv64 <= 0)
1117 return now + 1;
1118
1119 tsdelta = ktime_to_timespec(hr_delta);
1120 delta = timespec_to_jiffies(&tsdelta);
1121
1122 /*
1123 * Limit the delta to the max value, which is checked in
1124 * tick_nohz_stop_sched_tick():
1125 */
1126 if (delta > NEXT_TIMER_MAX_DELTA)
1127 delta = NEXT_TIMER_MAX_DELTA;
1128
1129 /*
1130 * Take rounding errors in to account and make sure, that it
1131 * expires in the next tick. Otherwise we go into an endless
1132 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1133 * the timer softirq
1134 */
1135 if (delta < 1)
1136 delta = 1;
1137 now += delta;
1138 if (time_before(now, expires))
1139 return now;
1140 return expires;
1141 }
1142
1143 /**
1144 * get_next_timer_interrupt - return the jiffy of the next pending timer
1145 * @now: current time (in jiffies)
1146 */
1147 unsigned long get_next_timer_interrupt(unsigned long now)
1148 {
1149 struct tvec_base *base = __get_cpu_var(tvec_bases);
1150 unsigned long expires;
1151
1152 spin_lock(&base->lock);
1153 if (time_before_eq(base->next_timer, base->timer_jiffies))
1154 base->next_timer = __next_timer_interrupt(base);
1155 expires = base->next_timer;
1156 spin_unlock(&base->lock);
1157
1158 if (time_before_eq(expires, now))
1159 return now;
1160
1161 return cmp_next_hrtimer_event(now, expires);
1162 }
1163 #endif
1164
1165 /*
1166 * Called from the timer interrupt handler to charge one tick to the current
1167 * process. user_tick is 1 if the tick is user time, 0 for system.
1168 */
1169 void update_process_times(int user_tick)
1170 {
1171 struct task_struct *p = current;
1172 int cpu = smp_processor_id();
1173
1174 /* Note: this timer irq context must be accounted for as well. */
1175 account_process_tick(p, user_tick);
1176 run_local_timers();
1177 rcu_check_callbacks(cpu, user_tick);
1178 printk_tick();
1179 scheduler_tick();
1180 run_posix_cpu_timers(p);
1181 }
1182
1183 /*
1184 * This function runs timers and the timer-tq in bottom half context.
1185 */
1186 static void run_timer_softirq(struct softirq_action *h)
1187 {
1188 struct tvec_base *base = __get_cpu_var(tvec_bases);
1189
1190 perf_event_do_pending();
1191
1192 hrtimer_run_pending();
1193
1194 if (time_after_eq(jiffies, base->timer_jiffies))
1195 __run_timers(base);
1196 }
1197
1198 /*
1199 * Called by the local, per-CPU timer interrupt on SMP.
1200 */
1201 void run_local_timers(void)
1202 {
1203 hrtimer_run_queues();
1204 raise_softirq(TIMER_SOFTIRQ);
1205 softlockup_tick();
1206 }
1207
1208 /*
1209 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1210 * without sampling the sequence number in xtime_lock.
1211 * jiffies is defined in the linker script...
1212 */
1213
1214 void do_timer(unsigned long ticks)
1215 {
1216 jiffies_64 += ticks;
1217 update_wall_time();
1218 calc_global_load();
1219 }
1220
1221 #ifdef __ARCH_WANT_SYS_ALARM
1222
1223 /*
1224 * For backwards compatibility? This can be done in libc so Alpha
1225 * and all newer ports shouldn't need it.
1226 */
1227 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1228 {
1229 return alarm_setitimer(seconds);
1230 }
1231
1232 #endif
1233
1234 #ifndef __alpha__
1235
1236 /*
1237 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1238 * should be moved into arch/i386 instead?
1239 */
1240
1241 /**
1242 * sys_getpid - return the thread group id of the current process
1243 *
1244 * Note, despite the name, this returns the tgid not the pid. The tgid and
1245 * the pid are identical unless CLONE_THREAD was specified on clone() in
1246 * which case the tgid is the same in all threads of the same group.
1247 *
1248 * This is SMP safe as current->tgid does not change.
1249 */
1250 SYSCALL_DEFINE0(getpid)
1251 {
1252 return task_tgid_vnr(current);
1253 }
1254
1255 /*
1256 * Accessing ->real_parent is not SMP-safe, it could
1257 * change from under us. However, we can use a stale
1258 * value of ->real_parent under rcu_read_lock(), see
1259 * release_task()->call_rcu(delayed_put_task_struct).
1260 */
1261 SYSCALL_DEFINE0(getppid)
1262 {
1263 int pid;
1264
1265 rcu_read_lock();
1266 pid = task_tgid_vnr(current->real_parent);
1267 rcu_read_unlock();
1268
1269 return pid;
1270 }
1271
1272 SYSCALL_DEFINE0(getuid)
1273 {
1274 /* Only we change this so SMP safe */
1275 return current_uid();
1276 }
1277
1278 SYSCALL_DEFINE0(geteuid)
1279 {
1280 /* Only we change this so SMP safe */
1281 return current_euid();
1282 }
1283
1284 SYSCALL_DEFINE0(getgid)
1285 {
1286 /* Only we change this so SMP safe */
1287 return current_gid();
1288 }
1289
1290 SYSCALL_DEFINE0(getegid)
1291 {
1292 /* Only we change this so SMP safe */
1293 return current_egid();
1294 }
1295
1296 #endif
1297
1298 static void process_timeout(unsigned long __data)
1299 {
1300 wake_up_process((struct task_struct *)__data);
1301 }
1302
1303 /**
1304 * schedule_timeout - sleep until timeout
1305 * @timeout: timeout value in jiffies
1306 *
1307 * Make the current task sleep until @timeout jiffies have
1308 * elapsed. The routine will return immediately unless
1309 * the current task state has been set (see set_current_state()).
1310 *
1311 * You can set the task state as follows -
1312 *
1313 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1314 * pass before the routine returns. The routine will return 0
1315 *
1316 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1317 * delivered to the current task. In this case the remaining time
1318 * in jiffies will be returned, or 0 if the timer expired in time
1319 *
1320 * The current task state is guaranteed to be TASK_RUNNING when this
1321 * routine returns.
1322 *
1323 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1324 * the CPU away without a bound on the timeout. In this case the return
1325 * value will be %MAX_SCHEDULE_TIMEOUT.
1326 *
1327 * In all cases the return value is guaranteed to be non-negative.
1328 */
1329 signed long __sched schedule_timeout(signed long timeout)
1330 {
1331 struct timer_list timer;
1332 unsigned long expire;
1333
1334 switch (timeout)
1335 {
1336 case MAX_SCHEDULE_TIMEOUT:
1337 /*
1338 * These two special cases are useful to be comfortable
1339 * in the caller. Nothing more. We could take
1340 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1341 * but I' d like to return a valid offset (>=0) to allow
1342 * the caller to do everything it want with the retval.
1343 */
1344 schedule();
1345 goto out;
1346 default:
1347 /*
1348 * Another bit of PARANOID. Note that the retval will be
1349 * 0 since no piece of kernel is supposed to do a check
1350 * for a negative retval of schedule_timeout() (since it
1351 * should never happens anyway). You just have the printk()
1352 * that will tell you if something is gone wrong and where.
1353 */
1354 if (timeout < 0) {
1355 printk(KERN_ERR "schedule_timeout: wrong timeout "
1356 "value %lx\n", timeout);
1357 dump_stack();
1358 current->state = TASK_RUNNING;
1359 goto out;
1360 }
1361 }
1362
1363 expire = timeout + jiffies;
1364
1365 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1366 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1367 schedule();
1368 del_singleshot_timer_sync(&timer);
1369
1370 /* Remove the timer from the object tracker */
1371 destroy_timer_on_stack(&timer);
1372
1373 timeout = expire - jiffies;
1374
1375 out:
1376 return timeout < 0 ? 0 : timeout;
1377 }
1378 EXPORT_SYMBOL(schedule_timeout);
1379
1380 /*
1381 * We can use __set_current_state() here because schedule_timeout() calls
1382 * schedule() unconditionally.
1383 */
1384 signed long __sched schedule_timeout_interruptible(signed long timeout)
1385 {
1386 __set_current_state(TASK_INTERRUPTIBLE);
1387 return schedule_timeout(timeout);
1388 }
1389 EXPORT_SYMBOL(schedule_timeout_interruptible);
1390
1391 signed long __sched schedule_timeout_killable(signed long timeout)
1392 {
1393 __set_current_state(TASK_KILLABLE);
1394 return schedule_timeout(timeout);
1395 }
1396 EXPORT_SYMBOL(schedule_timeout_killable);
1397
1398 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1399 {
1400 __set_current_state(TASK_UNINTERRUPTIBLE);
1401 return schedule_timeout(timeout);
1402 }
1403 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1404
1405 /* Thread ID - the internal kernel "pid" */
1406 SYSCALL_DEFINE0(gettid)
1407 {
1408 return task_pid_vnr(current);
1409 }
1410
1411 /**
1412 * do_sysinfo - fill in sysinfo struct
1413 * @info: pointer to buffer to fill
1414 */
1415 int do_sysinfo(struct sysinfo *info)
1416 {
1417 unsigned long mem_total, sav_total;
1418 unsigned int mem_unit, bitcount;
1419 struct timespec tp;
1420
1421 memset(info, 0, sizeof(struct sysinfo));
1422
1423 ktime_get_ts(&tp);
1424 monotonic_to_bootbased(&tp);
1425 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1426
1427 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1428
1429 info->procs = nr_threads;
1430
1431 si_meminfo(info);
1432 si_swapinfo(info);
1433
1434 /*
1435 * If the sum of all the available memory (i.e. ram + swap)
1436 * is less than can be stored in a 32 bit unsigned long then
1437 * we can be binary compatible with 2.2.x kernels. If not,
1438 * well, in that case 2.2.x was broken anyways...
1439 *
1440 * -Erik Andersen <andersee@debian.org>
1441 */
1442
1443 mem_total = info->totalram + info->totalswap;
1444 if (mem_total < info->totalram || mem_total < info->totalswap)
1445 goto out;
1446 bitcount = 0;
1447 mem_unit = info->mem_unit;
1448 while (mem_unit > 1) {
1449 bitcount++;
1450 mem_unit >>= 1;
1451 sav_total = mem_total;
1452 mem_total <<= 1;
1453 if (mem_total < sav_total)
1454 goto out;
1455 }
1456
1457 /*
1458 * If mem_total did not overflow, multiply all memory values by
1459 * info->mem_unit and set it to 1. This leaves things compatible
1460 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1461 * kernels...
1462 */
1463
1464 info->mem_unit = 1;
1465 info->totalram <<= bitcount;
1466 info->freeram <<= bitcount;
1467 info->sharedram <<= bitcount;
1468 info->bufferram <<= bitcount;
1469 info->totalswap <<= bitcount;
1470 info->freeswap <<= bitcount;
1471 info->totalhigh <<= bitcount;
1472 info->freehigh <<= bitcount;
1473
1474 out:
1475 return 0;
1476 }
1477
1478 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1479 {
1480 struct sysinfo val;
1481
1482 do_sysinfo(&val);
1483
1484 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1485 return -EFAULT;
1486
1487 return 0;
1488 }
1489
1490 static int __cpuinit init_timers_cpu(int cpu)
1491 {
1492 int j;
1493 struct tvec_base *base;
1494 static char __cpuinitdata tvec_base_done[NR_CPUS];
1495
1496 if (!tvec_base_done[cpu]) {
1497 static char boot_done;
1498
1499 if (boot_done) {
1500 /*
1501 * The APs use this path later in boot
1502 */
1503 base = kmalloc_node(sizeof(*base),
1504 GFP_KERNEL | __GFP_ZERO,
1505 cpu_to_node(cpu));
1506 if (!base)
1507 return -ENOMEM;
1508
1509 /* Make sure that tvec_base is 2 byte aligned */
1510 if (tbase_get_deferrable(base)) {
1511 WARN_ON(1);
1512 kfree(base);
1513 return -ENOMEM;
1514 }
1515 per_cpu(tvec_bases, cpu) = base;
1516 } else {
1517 /*
1518 * This is for the boot CPU - we use compile-time
1519 * static initialisation because per-cpu memory isn't
1520 * ready yet and because the memory allocators are not
1521 * initialised either.
1522 */
1523 boot_done = 1;
1524 base = &boot_tvec_bases;
1525 }
1526 tvec_base_done[cpu] = 1;
1527 } else {
1528 base = per_cpu(tvec_bases, cpu);
1529 }
1530
1531 spin_lock_init(&base->lock);
1532
1533 for (j = 0; j < TVN_SIZE; j++) {
1534 INIT_LIST_HEAD(base->tv5.vec + j);
1535 INIT_LIST_HEAD(base->tv4.vec + j);
1536 INIT_LIST_HEAD(base->tv3.vec + j);
1537 INIT_LIST_HEAD(base->tv2.vec + j);
1538 }
1539 for (j = 0; j < TVR_SIZE; j++)
1540 INIT_LIST_HEAD(base->tv1.vec + j);
1541
1542 base->timer_jiffies = jiffies;
1543 base->next_timer = base->timer_jiffies;
1544 return 0;
1545 }
1546
1547 #ifdef CONFIG_HOTPLUG_CPU
1548 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1549 {
1550 struct timer_list *timer;
1551
1552 while (!list_empty(head)) {
1553 timer = list_first_entry(head, struct timer_list, entry);
1554 detach_timer(timer, 0);
1555 timer_set_base(timer, new_base);
1556 if (time_before(timer->expires, new_base->next_timer) &&
1557 !tbase_get_deferrable(timer->base))
1558 new_base->next_timer = timer->expires;
1559 internal_add_timer(new_base, timer);
1560 }
1561 }
1562
1563 static void __cpuinit migrate_timers(int cpu)
1564 {
1565 struct tvec_base *old_base;
1566 struct tvec_base *new_base;
1567 int i;
1568
1569 BUG_ON(cpu_online(cpu));
1570 old_base = per_cpu(tvec_bases, cpu);
1571 new_base = get_cpu_var(tvec_bases);
1572 /*
1573 * The caller is globally serialized and nobody else
1574 * takes two locks at once, deadlock is not possible.
1575 */
1576 spin_lock_irq(&new_base->lock);
1577 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1578
1579 BUG_ON(old_base->running_timer);
1580
1581 for (i = 0; i < TVR_SIZE; i++)
1582 migrate_timer_list(new_base, old_base->tv1.vec + i);
1583 for (i = 0; i < TVN_SIZE; i++) {
1584 migrate_timer_list(new_base, old_base->tv2.vec + i);
1585 migrate_timer_list(new_base, old_base->tv3.vec + i);
1586 migrate_timer_list(new_base, old_base->tv4.vec + i);
1587 migrate_timer_list(new_base, old_base->tv5.vec + i);
1588 }
1589
1590 spin_unlock(&old_base->lock);
1591 spin_unlock_irq(&new_base->lock);
1592 put_cpu_var(tvec_bases);
1593 }
1594 #endif /* CONFIG_HOTPLUG_CPU */
1595
1596 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1597 unsigned long action, void *hcpu)
1598 {
1599 long cpu = (long)hcpu;
1600 switch(action) {
1601 case CPU_UP_PREPARE:
1602 case CPU_UP_PREPARE_FROZEN:
1603 if (init_timers_cpu(cpu) < 0)
1604 return NOTIFY_BAD;
1605 break;
1606 #ifdef CONFIG_HOTPLUG_CPU
1607 case CPU_DEAD:
1608 case CPU_DEAD_FROZEN:
1609 migrate_timers(cpu);
1610 break;
1611 #endif
1612 default:
1613 break;
1614 }
1615 return NOTIFY_OK;
1616 }
1617
1618 static struct notifier_block __cpuinitdata timers_nb = {
1619 .notifier_call = timer_cpu_notify,
1620 };
1621
1622
1623 void __init init_timers(void)
1624 {
1625 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1626 (void *)(long)smp_processor_id());
1627
1628 init_timer_stats();
1629
1630 BUG_ON(err == NOTIFY_BAD);
1631 register_cpu_notifier(&timers_nb);
1632 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1633 }
1634
1635 /**
1636 * msleep - sleep safely even with waitqueue interruptions
1637 * @msecs: Time in milliseconds to sleep for
1638 */
1639 void msleep(unsigned int msecs)
1640 {
1641 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1642
1643 while (timeout)
1644 timeout = schedule_timeout_uninterruptible(timeout);
1645 }
1646
1647 EXPORT_SYMBOL(msleep);
1648
1649 /**
1650 * msleep_interruptible - sleep waiting for signals
1651 * @msecs: Time in milliseconds to sleep for
1652 */
1653 unsigned long msleep_interruptible(unsigned int msecs)
1654 {
1655 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1656
1657 while (timeout && !signal_pending(current))
1658 timeout = schedule_timeout_interruptible(timeout);
1659 return jiffies_to_msecs(timeout);
1660 }
1661
1662 EXPORT_SYMBOL(msleep_interruptible);