workqueue: implicit ordered attribute should be overridable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28
29 static struct timekeeper timekeeper;
30 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
31 static seqcount_t timekeeper_seq;
32 static struct timekeeper shadow_timekeeper;
33
34 /* flag for if timekeeping is suspended */
35 int __read_mostly timekeeping_suspended;
36
37 /* Flag for if there is a persistent clock on this platform */
38 bool __read_mostly persistent_clock_exist = false;
39
40 static inline void tk_normalize_xtime(struct timekeeper *tk)
41 {
42 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
43 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
44 tk->xtime_sec++;
45 }
46 }
47
48 static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
49 {
50 tk->xtime_sec = ts->tv_sec;
51 tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
52 }
53
54 static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
55 {
56 tk->xtime_sec += ts->tv_sec;
57 tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
58 tk_normalize_xtime(tk);
59 }
60
61 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
62 {
63 struct timespec tmp;
64
65 /*
66 * Verify consistency of: offset_real = -wall_to_monotonic
67 * before modifying anything
68 */
69 set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
70 -tk->wall_to_monotonic.tv_nsec);
71 WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
72 tk->wall_to_monotonic = wtm;
73 set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
74 tk->offs_real = timespec_to_ktime(tmp);
75 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
76 }
77
78 static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
79 {
80 /* Verify consistency before modifying */
81 WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);
82
83 tk->total_sleep_time = t;
84 tk->offs_boot = timespec_to_ktime(t);
85 }
86
87 /**
88 * timekeeper_setup_internals - Set up internals to use clocksource clock.
89 *
90 * @clock: Pointer to clocksource.
91 *
92 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
93 * pair and interval request.
94 *
95 * Unless you're the timekeeping code, you should not be using this!
96 */
97 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
98 {
99 cycle_t interval;
100 u64 tmp, ntpinterval;
101 struct clocksource *old_clock;
102
103 old_clock = tk->clock;
104 tk->clock = clock;
105 tk->cycle_last = clock->cycle_last = clock->read(clock);
106
107 /* Do the ns -> cycle conversion first, using original mult */
108 tmp = NTP_INTERVAL_LENGTH;
109 tmp <<= clock->shift;
110 ntpinterval = tmp;
111 tmp += clock->mult/2;
112 do_div(tmp, clock->mult);
113 if (tmp == 0)
114 tmp = 1;
115
116 interval = (cycle_t) tmp;
117 tk->cycle_interval = interval;
118
119 /* Go back from cycles -> shifted ns */
120 tk->xtime_interval = (u64) interval * clock->mult;
121 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
122 tk->raw_interval =
123 ((u64) interval * clock->mult) >> clock->shift;
124
125 /* if changing clocks, convert xtime_nsec shift units */
126 if (old_clock) {
127 int shift_change = clock->shift - old_clock->shift;
128 if (shift_change < 0)
129 tk->xtime_nsec >>= -shift_change;
130 else
131 tk->xtime_nsec <<= shift_change;
132 }
133 tk->shift = clock->shift;
134
135 tk->ntp_error = 0;
136 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
137
138 /*
139 * The timekeeper keeps its own mult values for the currently
140 * active clocksource. These value will be adjusted via NTP
141 * to counteract clock drifting.
142 */
143 tk->mult = clock->mult;
144 }
145
146 /* Timekeeper helper functions. */
147
148 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
149 u32 (*arch_gettimeoffset)(void);
150
151 u32 get_arch_timeoffset(void)
152 {
153 if (likely(arch_gettimeoffset))
154 return arch_gettimeoffset();
155 return 0;
156 }
157 #else
158 static inline u32 get_arch_timeoffset(void) { return 0; }
159 #endif
160
161 static inline s64 timekeeping_get_ns(struct timekeeper *tk)
162 {
163 cycle_t cycle_now, cycle_delta;
164 struct clocksource *clock;
165 s64 nsec;
166
167 /* read clocksource: */
168 clock = tk->clock;
169 cycle_now = clock->read(clock);
170
171 /* calculate the delta since the last update_wall_time: */
172 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
173
174 nsec = cycle_delta * tk->mult + tk->xtime_nsec;
175 nsec >>= tk->shift;
176
177 /* If arch requires, add in get_arch_timeoffset() */
178 return nsec + get_arch_timeoffset();
179 }
180
181 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
182 {
183 cycle_t cycle_now, cycle_delta;
184 struct clocksource *clock;
185 s64 nsec;
186
187 /* read clocksource: */
188 clock = tk->clock;
189 cycle_now = clock->read(clock);
190
191 /* calculate the delta since the last update_wall_time: */
192 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
193
194 /* convert delta to nanoseconds. */
195 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
196
197 /* If arch requires, add in get_arch_timeoffset() */
198 return nsec + get_arch_timeoffset();
199 }
200
201 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
202
203 static void update_pvclock_gtod(struct timekeeper *tk)
204 {
205 raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
206 }
207
208 /**
209 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
210 */
211 int pvclock_gtod_register_notifier(struct notifier_block *nb)
212 {
213 struct timekeeper *tk = &timekeeper;
214 unsigned long flags;
215 int ret;
216
217 raw_spin_lock_irqsave(&timekeeper_lock, flags);
218 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
219 update_pvclock_gtod(tk);
220 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
221
222 return ret;
223 }
224 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
225
226 /**
227 * pvclock_gtod_unregister_notifier - unregister a pvclock
228 * timedata update listener
229 */
230 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
231 {
232 unsigned long flags;
233 int ret;
234
235 raw_spin_lock_irqsave(&timekeeper_lock, flags);
236 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
237 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
238
239 return ret;
240 }
241 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
242
243 /* must hold timekeeper_lock */
244 static void timekeeping_update(struct timekeeper *tk, bool clearntp, bool mirror)
245 {
246 if (clearntp) {
247 tk->ntp_error = 0;
248 ntp_clear();
249 }
250 update_vsyscall(tk);
251 update_pvclock_gtod(tk);
252
253 if (mirror)
254 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
255 }
256
257 /**
258 * timekeeping_forward_now - update clock to the current time
259 *
260 * Forward the current clock to update its state since the last call to
261 * update_wall_time(). This is useful before significant clock changes,
262 * as it avoids having to deal with this time offset explicitly.
263 */
264 static void timekeeping_forward_now(struct timekeeper *tk)
265 {
266 cycle_t cycle_now, cycle_delta;
267 struct clocksource *clock;
268 s64 nsec;
269
270 clock = tk->clock;
271 cycle_now = clock->read(clock);
272 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
273 tk->cycle_last = clock->cycle_last = cycle_now;
274
275 tk->xtime_nsec += cycle_delta * tk->mult;
276
277 /* If arch requires, add in get_arch_timeoffset() */
278 tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
279
280 tk_normalize_xtime(tk);
281
282 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
283 timespec_add_ns(&tk->raw_time, nsec);
284 }
285
286 /**
287 * __getnstimeofday - Returns the time of day in a timespec.
288 * @ts: pointer to the timespec to be set
289 *
290 * Updates the time of day in the timespec.
291 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
292 */
293 int __getnstimeofday(struct timespec *ts)
294 {
295 struct timekeeper *tk = &timekeeper;
296 unsigned long seq;
297 s64 nsecs = 0;
298
299 do {
300 seq = read_seqcount_begin(&timekeeper_seq);
301
302 ts->tv_sec = tk->xtime_sec;
303 nsecs = timekeeping_get_ns(tk);
304
305 } while (read_seqcount_retry(&timekeeper_seq, seq));
306
307 ts->tv_nsec = 0;
308 timespec_add_ns(ts, nsecs);
309
310 /*
311 * Do not bail out early, in case there were callers still using
312 * the value, even in the face of the WARN_ON.
313 */
314 if (unlikely(timekeeping_suspended))
315 return -EAGAIN;
316 return 0;
317 }
318 EXPORT_SYMBOL(__getnstimeofday);
319
320 /**
321 * getnstimeofday - Returns the time of day in a timespec.
322 * @ts: pointer to the timespec to be set
323 *
324 * Returns the time of day in a timespec (WARN if suspended).
325 */
326 void getnstimeofday(struct timespec *ts)
327 {
328 WARN_ON(__getnstimeofday(ts));
329 }
330 EXPORT_SYMBOL(getnstimeofday);
331
332 ktime_t ktime_get(void)
333 {
334 struct timekeeper *tk = &timekeeper;
335 unsigned int seq;
336 s64 secs, nsecs;
337
338 WARN_ON(timekeeping_suspended);
339
340 do {
341 seq = read_seqcount_begin(&timekeeper_seq);
342 secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
343 nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
344
345 } while (read_seqcount_retry(&timekeeper_seq, seq));
346 /*
347 * Use ktime_set/ktime_add_ns to create a proper ktime on
348 * 32-bit architectures without CONFIG_KTIME_SCALAR.
349 */
350 return ktime_add_ns(ktime_set(secs, 0), nsecs);
351 }
352 EXPORT_SYMBOL_GPL(ktime_get);
353
354 /**
355 * ktime_get_ts - get the monotonic clock in timespec format
356 * @ts: pointer to timespec variable
357 *
358 * The function calculates the monotonic clock from the realtime
359 * clock and the wall_to_monotonic offset and stores the result
360 * in normalized timespec format in the variable pointed to by @ts.
361 */
362 void ktime_get_ts(struct timespec *ts)
363 {
364 struct timekeeper *tk = &timekeeper;
365 struct timespec tomono;
366 s64 nsec;
367 unsigned int seq;
368
369 WARN_ON(timekeeping_suspended);
370
371 do {
372 seq = read_seqcount_begin(&timekeeper_seq);
373 ts->tv_sec = tk->xtime_sec;
374 nsec = timekeeping_get_ns(tk);
375 tomono = tk->wall_to_monotonic;
376
377 } while (read_seqcount_retry(&timekeeper_seq, seq));
378
379 ts->tv_sec += tomono.tv_sec;
380 ts->tv_nsec = 0;
381 timespec_add_ns(ts, nsec + tomono.tv_nsec);
382 }
383 EXPORT_SYMBOL_GPL(ktime_get_ts);
384
385
386 /**
387 * timekeeping_clocktai - Returns the TAI time of day in a timespec
388 * @ts: pointer to the timespec to be set
389 *
390 * Returns the time of day in a timespec.
391 */
392 void timekeeping_clocktai(struct timespec *ts)
393 {
394 struct timekeeper *tk = &timekeeper;
395 unsigned long seq;
396 u64 nsecs;
397
398 WARN_ON(timekeeping_suspended);
399
400 do {
401 seq = read_seqcount_begin(&timekeeper_seq);
402
403 ts->tv_sec = tk->xtime_sec + tk->tai_offset;
404 nsecs = timekeeping_get_ns(tk);
405
406 } while (read_seqcount_retry(&timekeeper_seq, seq));
407
408 ts->tv_nsec = 0;
409 timespec_add_ns(ts, nsecs);
410
411 }
412 EXPORT_SYMBOL(timekeeping_clocktai);
413
414
415 /**
416 * ktime_get_clocktai - Returns the TAI time of day in a ktime
417 *
418 * Returns the time of day in a ktime.
419 */
420 ktime_t ktime_get_clocktai(void)
421 {
422 struct timespec ts;
423
424 timekeeping_clocktai(&ts);
425 return timespec_to_ktime(ts);
426 }
427 EXPORT_SYMBOL(ktime_get_clocktai);
428
429 #ifdef CONFIG_NTP_PPS
430
431 /**
432 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
433 * @ts_raw: pointer to the timespec to be set to raw monotonic time
434 * @ts_real: pointer to the timespec to be set to the time of day
435 *
436 * This function reads both the time of day and raw monotonic time at the
437 * same time atomically and stores the resulting timestamps in timespec
438 * format.
439 */
440 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
441 {
442 struct timekeeper *tk = &timekeeper;
443 unsigned long seq;
444 s64 nsecs_raw, nsecs_real;
445
446 WARN_ON_ONCE(timekeeping_suspended);
447
448 do {
449 seq = read_seqcount_begin(&timekeeper_seq);
450
451 *ts_raw = tk->raw_time;
452 ts_real->tv_sec = tk->xtime_sec;
453 ts_real->tv_nsec = 0;
454
455 nsecs_raw = timekeeping_get_ns_raw(tk);
456 nsecs_real = timekeeping_get_ns(tk);
457
458 } while (read_seqcount_retry(&timekeeper_seq, seq));
459
460 timespec_add_ns(ts_raw, nsecs_raw);
461 timespec_add_ns(ts_real, nsecs_real);
462 }
463 EXPORT_SYMBOL(getnstime_raw_and_real);
464
465 #endif /* CONFIG_NTP_PPS */
466
467 /**
468 * do_gettimeofday - Returns the time of day in a timeval
469 * @tv: pointer to the timeval to be set
470 *
471 * NOTE: Users should be converted to using getnstimeofday()
472 */
473 void do_gettimeofday(struct timeval *tv)
474 {
475 struct timespec now;
476
477 getnstimeofday(&now);
478 tv->tv_sec = now.tv_sec;
479 tv->tv_usec = now.tv_nsec/1000;
480 }
481 EXPORT_SYMBOL(do_gettimeofday);
482
483 /**
484 * do_settimeofday - Sets the time of day
485 * @tv: pointer to the timespec variable containing the new time
486 *
487 * Sets the time of day to the new time and update NTP and notify hrtimers
488 */
489 int do_settimeofday(const struct timespec *tv)
490 {
491 struct timekeeper *tk = &timekeeper;
492 struct timespec ts_delta, xt;
493 unsigned long flags;
494
495 if (!timespec_valid_strict(tv))
496 return -EINVAL;
497
498 raw_spin_lock_irqsave(&timekeeper_lock, flags);
499 write_seqcount_begin(&timekeeper_seq);
500
501 timekeeping_forward_now(tk);
502
503 xt = tk_xtime(tk);
504 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
505 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
506
507 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
508
509 tk_set_xtime(tk, tv);
510
511 timekeeping_update(tk, true, true);
512
513 write_seqcount_end(&timekeeper_seq);
514 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
515
516 /* signal hrtimers about time change */
517 clock_was_set();
518
519 return 0;
520 }
521 EXPORT_SYMBOL(do_settimeofday);
522
523 /**
524 * timekeeping_inject_offset - Adds or subtracts from the current time.
525 * @tv: pointer to the timespec variable containing the offset
526 *
527 * Adds or subtracts an offset value from the current time.
528 */
529 int timekeeping_inject_offset(struct timespec *ts)
530 {
531 struct timekeeper *tk = &timekeeper;
532 unsigned long flags;
533 struct timespec tmp;
534 int ret = 0;
535
536 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
537 return -EINVAL;
538
539 raw_spin_lock_irqsave(&timekeeper_lock, flags);
540 write_seqcount_begin(&timekeeper_seq);
541
542 timekeeping_forward_now(tk);
543
544 /* Make sure the proposed value is valid */
545 tmp = timespec_add(tk_xtime(tk), *ts);
546 if (!timespec_valid_strict(&tmp)) {
547 ret = -EINVAL;
548 goto error;
549 }
550
551 tk_xtime_add(tk, ts);
552 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
553
554 error: /* even if we error out, we forwarded the time, so call update */
555 timekeeping_update(tk, true, true);
556
557 write_seqcount_end(&timekeeper_seq);
558 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
559
560 /* signal hrtimers about time change */
561 clock_was_set();
562
563 return ret;
564 }
565 EXPORT_SYMBOL(timekeeping_inject_offset);
566
567
568 /**
569 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
570 *
571 */
572 s32 timekeeping_get_tai_offset(void)
573 {
574 struct timekeeper *tk = &timekeeper;
575 unsigned int seq;
576 s32 ret;
577
578 do {
579 seq = read_seqcount_begin(&timekeeper_seq);
580 ret = tk->tai_offset;
581 } while (read_seqcount_retry(&timekeeper_seq, seq));
582
583 return ret;
584 }
585
586 /**
587 * __timekeeping_set_tai_offset - Lock free worker function
588 *
589 */
590 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
591 {
592 tk->tai_offset = tai_offset;
593 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
594 }
595
596 /**
597 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
598 *
599 */
600 void timekeeping_set_tai_offset(s32 tai_offset)
601 {
602 struct timekeeper *tk = &timekeeper;
603 unsigned long flags;
604
605 raw_spin_lock_irqsave(&timekeeper_lock, flags);
606 write_seqcount_begin(&timekeeper_seq);
607 __timekeeping_set_tai_offset(tk, tai_offset);
608 timekeeping_update(tk, false, true);
609 write_seqcount_end(&timekeeper_seq);
610 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
611 clock_was_set();
612 }
613
614 /**
615 * change_clocksource - Swaps clocksources if a new one is available
616 *
617 * Accumulates current time interval and initializes new clocksource
618 */
619 static int change_clocksource(void *data)
620 {
621 struct timekeeper *tk = &timekeeper;
622 struct clocksource *new, *old;
623 unsigned long flags;
624
625 new = (struct clocksource *) data;
626
627 raw_spin_lock_irqsave(&timekeeper_lock, flags);
628 write_seqcount_begin(&timekeeper_seq);
629
630 timekeeping_forward_now(tk);
631 if (!new->enable || new->enable(new) == 0) {
632 old = tk->clock;
633 tk_setup_internals(tk, new);
634 if (old->disable)
635 old->disable(old);
636 }
637 timekeeping_update(tk, true, true);
638
639 write_seqcount_end(&timekeeper_seq);
640 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
641
642 return 0;
643 }
644
645 /**
646 * timekeeping_notify - Install a new clock source
647 * @clock: pointer to the clock source
648 *
649 * This function is called from clocksource.c after a new, better clock
650 * source has been registered. The caller holds the clocksource_mutex.
651 */
652 void timekeeping_notify(struct clocksource *clock)
653 {
654 struct timekeeper *tk = &timekeeper;
655
656 if (tk->clock == clock)
657 return;
658 stop_machine(change_clocksource, clock, NULL);
659 tick_clock_notify();
660 }
661
662 /**
663 * ktime_get_real - get the real (wall-) time in ktime_t format
664 *
665 * returns the time in ktime_t format
666 */
667 ktime_t ktime_get_real(void)
668 {
669 struct timespec now;
670
671 getnstimeofday(&now);
672
673 return timespec_to_ktime(now);
674 }
675 EXPORT_SYMBOL_GPL(ktime_get_real);
676
677 /**
678 * getrawmonotonic - Returns the raw monotonic time in a timespec
679 * @ts: pointer to the timespec to be set
680 *
681 * Returns the raw monotonic time (completely un-modified by ntp)
682 */
683 void getrawmonotonic(struct timespec *ts)
684 {
685 struct timekeeper *tk = &timekeeper;
686 unsigned long seq;
687 s64 nsecs;
688
689 do {
690 seq = read_seqcount_begin(&timekeeper_seq);
691 nsecs = timekeeping_get_ns_raw(tk);
692 *ts = tk->raw_time;
693
694 } while (read_seqcount_retry(&timekeeper_seq, seq));
695
696 timespec_add_ns(ts, nsecs);
697 }
698 EXPORT_SYMBOL(getrawmonotonic);
699
700 /**
701 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
702 */
703 int timekeeping_valid_for_hres(void)
704 {
705 struct timekeeper *tk = &timekeeper;
706 unsigned long seq;
707 int ret;
708
709 do {
710 seq = read_seqcount_begin(&timekeeper_seq);
711
712 ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
713
714 } while (read_seqcount_retry(&timekeeper_seq, seq));
715
716 return ret;
717 }
718
719 /**
720 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
721 */
722 u64 timekeeping_max_deferment(void)
723 {
724 struct timekeeper *tk = &timekeeper;
725 unsigned long seq;
726 u64 ret;
727
728 do {
729 seq = read_seqcount_begin(&timekeeper_seq);
730
731 ret = tk->clock->max_idle_ns;
732
733 } while (read_seqcount_retry(&timekeeper_seq, seq));
734
735 return ret;
736 }
737
738 /**
739 * read_persistent_clock - Return time from the persistent clock.
740 *
741 * Weak dummy function for arches that do not yet support it.
742 * Reads the time from the battery backed persistent clock.
743 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
744 *
745 * XXX - Do be sure to remove it once all arches implement it.
746 */
747 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
748 {
749 ts->tv_sec = 0;
750 ts->tv_nsec = 0;
751 }
752
753 /**
754 * read_boot_clock - Return time of the system start.
755 *
756 * Weak dummy function for arches that do not yet support it.
757 * Function to read the exact time the system has been started.
758 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
759 *
760 * XXX - Do be sure to remove it once all arches implement it.
761 */
762 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
763 {
764 ts->tv_sec = 0;
765 ts->tv_nsec = 0;
766 }
767
768 /*
769 * timekeeping_init - Initializes the clocksource and common timekeeping values
770 */
771 void __init timekeeping_init(void)
772 {
773 struct timekeeper *tk = &timekeeper;
774 struct clocksource *clock;
775 unsigned long flags;
776 struct timespec now, boot, tmp;
777
778 read_persistent_clock(&now);
779
780 if (!timespec_valid_strict(&now)) {
781 pr_warn("WARNING: Persistent clock returned invalid value!\n"
782 " Check your CMOS/BIOS settings.\n");
783 now.tv_sec = 0;
784 now.tv_nsec = 0;
785 } else if (now.tv_sec || now.tv_nsec)
786 persistent_clock_exist = true;
787
788 read_boot_clock(&boot);
789 if (!timespec_valid_strict(&boot)) {
790 pr_warn("WARNING: Boot clock returned invalid value!\n"
791 " Check your CMOS/BIOS settings.\n");
792 boot.tv_sec = 0;
793 boot.tv_nsec = 0;
794 }
795
796 raw_spin_lock_irqsave(&timekeeper_lock, flags);
797 write_seqcount_begin(&timekeeper_seq);
798 ntp_init();
799
800 clock = clocksource_default_clock();
801 if (clock->enable)
802 clock->enable(clock);
803 tk_setup_internals(tk, clock);
804
805 tk_set_xtime(tk, &now);
806 tk->raw_time.tv_sec = 0;
807 tk->raw_time.tv_nsec = 0;
808 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
809 boot = tk_xtime(tk);
810
811 set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
812 tk_set_wall_to_mono(tk, tmp);
813
814 tmp.tv_sec = 0;
815 tmp.tv_nsec = 0;
816 tk_set_sleep_time(tk, tmp);
817
818 memcpy(&shadow_timekeeper, &timekeeper, sizeof(timekeeper));
819
820 write_seqcount_end(&timekeeper_seq);
821 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
822 }
823
824 /* time in seconds when suspend began */
825 static struct timespec timekeeping_suspend_time;
826
827 /**
828 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
829 * @delta: pointer to a timespec delta value
830 *
831 * Takes a timespec offset measuring a suspend interval and properly
832 * adds the sleep offset to the timekeeping variables.
833 */
834 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
835 struct timespec *delta)
836 {
837 if (!timespec_valid_strict(delta)) {
838 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
839 "sleep delta value!\n");
840 return;
841 }
842 tk_xtime_add(tk, delta);
843 tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
844 tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
845 }
846
847 /**
848 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
849 * @delta: pointer to a timespec delta value
850 *
851 * This hook is for architectures that cannot support read_persistent_clock
852 * because their RTC/persistent clock is only accessible when irqs are enabled.
853 *
854 * This function should only be called by rtc_resume(), and allows
855 * a suspend offset to be injected into the timekeeping values.
856 */
857 void timekeeping_inject_sleeptime(struct timespec *delta)
858 {
859 struct timekeeper *tk = &timekeeper;
860 unsigned long flags;
861
862 /*
863 * Make sure we don't set the clock twice, as timekeeping_resume()
864 * already did it
865 */
866 if (has_persistent_clock())
867 return;
868
869 raw_spin_lock_irqsave(&timekeeper_lock, flags);
870 write_seqcount_begin(&timekeeper_seq);
871
872 timekeeping_forward_now(tk);
873
874 __timekeeping_inject_sleeptime(tk, delta);
875
876 timekeeping_update(tk, true, true);
877
878 write_seqcount_end(&timekeeper_seq);
879 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
880
881 /* signal hrtimers about time change */
882 clock_was_set();
883 }
884
885 /**
886 * timekeeping_resume - Resumes the generic timekeeping subsystem.
887 *
888 * This is for the generic clocksource timekeeping.
889 * xtime/wall_to_monotonic/jiffies/etc are
890 * still managed by arch specific suspend/resume code.
891 */
892 static void timekeeping_resume(void)
893 {
894 struct timekeeper *tk = &timekeeper;
895 struct clocksource *clock = tk->clock;
896 unsigned long flags;
897 struct timespec ts_new, ts_delta;
898 cycle_t cycle_now, cycle_delta;
899 bool suspendtime_found = false;
900
901 read_persistent_clock(&ts_new);
902
903 clockevents_resume();
904 clocksource_resume();
905
906 raw_spin_lock_irqsave(&timekeeper_lock, flags);
907 write_seqcount_begin(&timekeeper_seq);
908
909 /*
910 * After system resumes, we need to calculate the suspended time and
911 * compensate it for the OS time. There are 3 sources that could be
912 * used: Nonstop clocksource during suspend, persistent clock and rtc
913 * device.
914 *
915 * One specific platform may have 1 or 2 or all of them, and the
916 * preference will be:
917 * suspend-nonstop clocksource -> persistent clock -> rtc
918 * The less preferred source will only be tried if there is no better
919 * usable source. The rtc part is handled separately in rtc core code.
920 */
921 cycle_now = clock->read(clock);
922 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
923 cycle_now > clock->cycle_last) {
924 u64 num, max = ULLONG_MAX;
925 u32 mult = clock->mult;
926 u32 shift = clock->shift;
927 s64 nsec = 0;
928
929 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
930
931 /*
932 * "cycle_delta * mutl" may cause 64 bits overflow, if the
933 * suspended time is too long. In that case we need do the
934 * 64 bits math carefully
935 */
936 do_div(max, mult);
937 if (cycle_delta > max) {
938 num = div64_u64(cycle_delta, max);
939 nsec = (((u64) max * mult) >> shift) * num;
940 cycle_delta -= num * max;
941 }
942 nsec += ((u64) cycle_delta * mult) >> shift;
943
944 ts_delta = ns_to_timespec(nsec);
945 suspendtime_found = true;
946 } else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
947 ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
948 suspendtime_found = true;
949 }
950
951 if (suspendtime_found)
952 __timekeeping_inject_sleeptime(tk, &ts_delta);
953
954 /* Re-base the last cycle value */
955 tk->cycle_last = clock->cycle_last = cycle_now;
956 tk->ntp_error = 0;
957 timekeeping_suspended = 0;
958 timekeeping_update(tk, false, true);
959 write_seqcount_end(&timekeeper_seq);
960 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
961
962 touch_softlockup_watchdog();
963
964 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
965
966 /* Resume hrtimers */
967 hrtimers_resume();
968 }
969
970 static int timekeeping_suspend(void)
971 {
972 struct timekeeper *tk = &timekeeper;
973 unsigned long flags;
974 struct timespec delta, delta_delta;
975 static struct timespec old_delta;
976
977 read_persistent_clock(&timekeeping_suspend_time);
978
979 /*
980 * On some systems the persistent_clock can not be detected at
981 * timekeeping_init by its return value, so if we see a valid
982 * value returned, update the persistent_clock_exists flag.
983 */
984 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
985 persistent_clock_exist = true;
986
987 raw_spin_lock_irqsave(&timekeeper_lock, flags);
988 write_seqcount_begin(&timekeeper_seq);
989 timekeeping_forward_now(tk);
990 timekeeping_suspended = 1;
991
992 /*
993 * To avoid drift caused by repeated suspend/resumes,
994 * which each can add ~1 second drift error,
995 * try to compensate so the difference in system time
996 * and persistent_clock time stays close to constant.
997 */
998 delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
999 delta_delta = timespec_sub(delta, old_delta);
1000 if (abs(delta_delta.tv_sec) >= 2) {
1001 /*
1002 * if delta_delta is too large, assume time correction
1003 * has occured and set old_delta to the current delta.
1004 */
1005 old_delta = delta;
1006 } else {
1007 /* Otherwise try to adjust old_system to compensate */
1008 timekeeping_suspend_time =
1009 timespec_add(timekeeping_suspend_time, delta_delta);
1010 }
1011
1012 timekeeping_update(tk, false, true);
1013 write_seqcount_end(&timekeeper_seq);
1014 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1015
1016 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1017 clocksource_suspend();
1018 clockevents_suspend();
1019
1020 return 0;
1021 }
1022
1023 /* sysfs resume/suspend bits for timekeeping */
1024 static struct syscore_ops timekeeping_syscore_ops = {
1025 .resume = timekeeping_resume,
1026 .suspend = timekeeping_suspend,
1027 };
1028
1029 static int __init timekeeping_init_ops(void)
1030 {
1031 register_syscore_ops(&timekeeping_syscore_ops);
1032 return 0;
1033 }
1034
1035 device_initcall(timekeeping_init_ops);
1036
1037 /*
1038 * If the error is already larger, we look ahead even further
1039 * to compensate for late or lost adjustments.
1040 */
1041 static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
1042 s64 error, s64 *interval,
1043 s64 *offset)
1044 {
1045 s64 tick_error, i;
1046 u32 look_ahead, adj;
1047 s32 error2, mult;
1048
1049 /*
1050 * Use the current error value to determine how much to look ahead.
1051 * The larger the error the slower we adjust for it to avoid problems
1052 * with losing too many ticks, otherwise we would overadjust and
1053 * produce an even larger error. The smaller the adjustment the
1054 * faster we try to adjust for it, as lost ticks can do less harm
1055 * here. This is tuned so that an error of about 1 msec is adjusted
1056 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1057 */
1058 error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
1059 error2 = abs(error2);
1060 for (look_ahead = 0; error2 > 0; look_ahead++)
1061 error2 >>= 2;
1062
1063 /*
1064 * Now calculate the error in (1 << look_ahead) ticks, but first
1065 * remove the single look ahead already included in the error.
1066 */
1067 tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
1068 tick_error -= tk->xtime_interval >> 1;
1069 error = ((error - tick_error) >> look_ahead) + tick_error;
1070
1071 /* Finally calculate the adjustment shift value. */
1072 i = *interval;
1073 mult = 1;
1074 if (error < 0) {
1075 error = -error;
1076 *interval = -*interval;
1077 *offset = -*offset;
1078 mult = -1;
1079 }
1080 for (adj = 0; error > i; adj++)
1081 error >>= 1;
1082
1083 *interval <<= adj;
1084 *offset <<= adj;
1085 return mult << adj;
1086 }
1087
1088 /*
1089 * Adjust the multiplier to reduce the error value,
1090 * this is optimized for the most common adjustments of -1,0,1,
1091 * for other values we can do a bit more work.
1092 */
1093 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1094 {
1095 s64 error, interval = tk->cycle_interval;
1096 int adj;
1097
1098 /*
1099 * The point of this is to check if the error is greater than half
1100 * an interval.
1101 *
1102 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
1103 *
1104 * Note we subtract one in the shift, so that error is really error*2.
1105 * This "saves" dividing(shifting) interval twice, but keeps the
1106 * (error > interval) comparison as still measuring if error is
1107 * larger than half an interval.
1108 *
1109 * Note: It does not "save" on aggravation when reading the code.
1110 */
1111 error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1112 if (error > interval) {
1113 /*
1114 * We now divide error by 4(via shift), which checks if
1115 * the error is greater than twice the interval.
1116 * If it is greater, we need a bigadjust, if its smaller,
1117 * we can adjust by 1.
1118 */
1119 error >>= 2;
1120 /*
1121 * XXX - In update_wall_time, we round up to the next
1122 * nanosecond, and store the amount rounded up into
1123 * the error. This causes the likely below to be unlikely.
1124 *
1125 * The proper fix is to avoid rounding up by using
1126 * the high precision tk->xtime_nsec instead of
1127 * xtime.tv_nsec everywhere. Fixing this will take some
1128 * time.
1129 */
1130 if (likely(error <= interval))
1131 adj = 1;
1132 else
1133 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1134 } else {
1135 if (error < -interval) {
1136 /* See comment above, this is just switched for the negative */
1137 error >>= 2;
1138 if (likely(error >= -interval)) {
1139 adj = -1;
1140 interval = -interval;
1141 offset = -offset;
1142 } else {
1143 adj = timekeeping_bigadjust(tk, error, &interval, &offset);
1144 }
1145 } else {
1146 goto out_adjust;
1147 }
1148 }
1149
1150 if (unlikely(tk->clock->maxadj &&
1151 (tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1152 printk_once(KERN_WARNING
1153 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1154 tk->clock->name, (long)tk->mult + adj,
1155 (long)tk->clock->mult + tk->clock->maxadj);
1156 }
1157 /*
1158 * So the following can be confusing.
1159 *
1160 * To keep things simple, lets assume adj == 1 for now.
1161 *
1162 * When adj != 1, remember that the interval and offset values
1163 * have been appropriately scaled so the math is the same.
1164 *
1165 * The basic idea here is that we're increasing the multiplier
1166 * by one, this causes the xtime_interval to be incremented by
1167 * one cycle_interval. This is because:
1168 * xtime_interval = cycle_interval * mult
1169 * So if mult is being incremented by one:
1170 * xtime_interval = cycle_interval * (mult + 1)
1171 * Its the same as:
1172 * xtime_interval = (cycle_interval * mult) + cycle_interval
1173 * Which can be shortened to:
1174 * xtime_interval += cycle_interval
1175 *
1176 * So offset stores the non-accumulated cycles. Thus the current
1177 * time (in shifted nanoseconds) is:
1178 * now = (offset * adj) + xtime_nsec
1179 * Now, even though we're adjusting the clock frequency, we have
1180 * to keep time consistent. In other words, we can't jump back
1181 * in time, and we also want to avoid jumping forward in time.
1182 *
1183 * So given the same offset value, we need the time to be the same
1184 * both before and after the freq adjustment.
1185 * now = (offset * adj_1) + xtime_nsec_1
1186 * now = (offset * adj_2) + xtime_nsec_2
1187 * So:
1188 * (offset * adj_1) + xtime_nsec_1 =
1189 * (offset * adj_2) + xtime_nsec_2
1190 * And we know:
1191 * adj_2 = adj_1 + 1
1192 * So:
1193 * (offset * adj_1) + xtime_nsec_1 =
1194 * (offset * (adj_1+1)) + xtime_nsec_2
1195 * (offset * adj_1) + xtime_nsec_1 =
1196 * (offset * adj_1) + offset + xtime_nsec_2
1197 * Canceling the sides:
1198 * xtime_nsec_1 = offset + xtime_nsec_2
1199 * Which gives us:
1200 * xtime_nsec_2 = xtime_nsec_1 - offset
1201 * Which simplfies to:
1202 * xtime_nsec -= offset
1203 *
1204 * XXX - TODO: Doc ntp_error calculation.
1205 */
1206 tk->mult += adj;
1207 tk->xtime_interval += interval;
1208 tk->xtime_nsec -= offset;
1209 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1210
1211 out_adjust:
1212 /*
1213 * It may be possible that when we entered this function, xtime_nsec
1214 * was very small. Further, if we're slightly speeding the clocksource
1215 * in the code above, its possible the required corrective factor to
1216 * xtime_nsec could cause it to underflow.
1217 *
1218 * Now, since we already accumulated the second, cannot simply roll
1219 * the accumulated second back, since the NTP subsystem has been
1220 * notified via second_overflow. So instead we push xtime_nsec forward
1221 * by the amount we underflowed, and add that amount into the error.
1222 *
1223 * We'll correct this error next time through this function, when
1224 * xtime_nsec is not as small.
1225 */
1226 if (unlikely((s64)tk->xtime_nsec < 0)) {
1227 s64 neg = -(s64)tk->xtime_nsec;
1228 tk->xtime_nsec = 0;
1229 tk->ntp_error += neg << tk->ntp_error_shift;
1230 }
1231
1232 }
1233
1234 /**
1235 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1236 *
1237 * Helper function that accumulates a the nsecs greater then a second
1238 * from the xtime_nsec field to the xtime_secs field.
1239 * It also calls into the NTP code to handle leapsecond processing.
1240 *
1241 */
1242 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1243 {
1244 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1245 unsigned int clock_set = 0;
1246
1247 while (tk->xtime_nsec >= nsecps) {
1248 int leap;
1249
1250 tk->xtime_nsec -= nsecps;
1251 tk->xtime_sec++;
1252
1253 /* Figure out if its a leap sec and apply if needed */
1254 leap = second_overflow(tk->xtime_sec);
1255 if (unlikely(leap)) {
1256 struct timespec ts;
1257
1258 tk->xtime_sec += leap;
1259
1260 ts.tv_sec = leap;
1261 ts.tv_nsec = 0;
1262 tk_set_wall_to_mono(tk,
1263 timespec_sub(tk->wall_to_monotonic, ts));
1264
1265 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1266
1267 clock_set = 1;
1268 }
1269 }
1270 return clock_set;
1271 }
1272
1273 /**
1274 * logarithmic_accumulation - shifted accumulation of cycles
1275 *
1276 * This functions accumulates a shifted interval of cycles into
1277 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1278 * loop.
1279 *
1280 * Returns the unconsumed cycles.
1281 */
1282 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1283 u32 shift,
1284 unsigned int *clock_set)
1285 {
1286 cycle_t interval = tk->cycle_interval << shift;
1287 u64 raw_nsecs;
1288
1289 /* If the offset is smaller then a shifted interval, do nothing */
1290 if (offset < interval)
1291 return offset;
1292
1293 /* Accumulate one shifted interval */
1294 offset -= interval;
1295 tk->cycle_last += interval;
1296
1297 tk->xtime_nsec += tk->xtime_interval << shift;
1298 *clock_set |= accumulate_nsecs_to_secs(tk);
1299
1300 /* Accumulate raw time */
1301 raw_nsecs = (u64)tk->raw_interval << shift;
1302 raw_nsecs += tk->raw_time.tv_nsec;
1303 if (raw_nsecs >= NSEC_PER_SEC) {
1304 u64 raw_secs = raw_nsecs;
1305 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1306 tk->raw_time.tv_sec += raw_secs;
1307 }
1308 tk->raw_time.tv_nsec = raw_nsecs;
1309
1310 /* Accumulate error between NTP and clock interval */
1311 tk->ntp_error += ntp_tick_length() << shift;
1312 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1313 (tk->ntp_error_shift + shift);
1314
1315 return offset;
1316 }
1317
1318 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
1319 static inline void old_vsyscall_fixup(struct timekeeper *tk)
1320 {
1321 s64 remainder;
1322
1323 /*
1324 * Store only full nanoseconds into xtime_nsec after rounding
1325 * it up and add the remainder to the error difference.
1326 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
1327 * by truncating the remainder in vsyscalls. However, it causes
1328 * additional work to be done in timekeeping_adjust(). Once
1329 * the vsyscall implementations are converted to use xtime_nsec
1330 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
1331 * users are removed, this can be killed.
1332 */
1333 remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1334 tk->xtime_nsec -= remainder;
1335 tk->xtime_nsec += 1ULL << tk->shift;
1336 tk->ntp_error += remainder << tk->ntp_error_shift;
1337 tk->ntp_error -= (1ULL << tk->shift) << tk->ntp_error_shift;
1338 }
1339 #else
1340 #define old_vsyscall_fixup(tk)
1341 #endif
1342
1343
1344
1345 /**
1346 * update_wall_time - Uses the current clocksource to increment the wall time
1347 *
1348 */
1349 static void update_wall_time(void)
1350 {
1351 struct clocksource *clock;
1352 struct timekeeper *real_tk = &timekeeper;
1353 struct timekeeper *tk = &shadow_timekeeper;
1354 cycle_t offset;
1355 int shift = 0, maxshift;
1356 unsigned int clock_set = 0;
1357 unsigned long flags;
1358
1359 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1360
1361 /* Make sure we're fully resumed: */
1362 if (unlikely(timekeeping_suspended))
1363 goto out;
1364
1365 clock = real_tk->clock;
1366
1367 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1368 offset = real_tk->cycle_interval;
1369 #else
1370 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1371 #endif
1372
1373 /* Check if there's really nothing to do */
1374 if (offset < real_tk->cycle_interval)
1375 goto out;
1376
1377 /*
1378 * With NO_HZ we may have to accumulate many cycle_intervals
1379 * (think "ticks") worth of time at once. To do this efficiently,
1380 * we calculate the largest doubling multiple of cycle_intervals
1381 * that is smaller than the offset. We then accumulate that
1382 * chunk in one go, and then try to consume the next smaller
1383 * doubled multiple.
1384 */
1385 shift = ilog2(offset) - ilog2(tk->cycle_interval);
1386 shift = max(0, shift);
1387 /* Bound shift to one less than what overflows tick_length */
1388 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1389 shift = min(shift, maxshift);
1390 while (offset >= tk->cycle_interval) {
1391 offset = logarithmic_accumulation(tk, offset, shift,
1392 &clock_set);
1393 if (offset < tk->cycle_interval<<shift)
1394 shift--;
1395 }
1396
1397 /* correct the clock when NTP error is too big */
1398 timekeeping_adjust(tk, offset);
1399
1400 /*
1401 * XXX This can be killed once everyone converts
1402 * to the new update_vsyscall.
1403 */
1404 old_vsyscall_fixup(tk);
1405
1406 /*
1407 * Finally, make sure that after the rounding
1408 * xtime_nsec isn't larger than NSEC_PER_SEC
1409 */
1410 clock_set |= accumulate_nsecs_to_secs(tk);
1411
1412 write_seqcount_begin(&timekeeper_seq);
1413 /* Update clock->cycle_last with the new value */
1414 clock->cycle_last = tk->cycle_last;
1415 /*
1416 * Update the real timekeeper.
1417 *
1418 * We could avoid this memcpy by switching pointers, but that
1419 * requires changes to all other timekeeper usage sites as
1420 * well, i.e. move the timekeeper pointer getter into the
1421 * spinlocked/seqcount protected sections. And we trade this
1422 * memcpy under the timekeeper_seq against one before we start
1423 * updating.
1424 */
1425 memcpy(real_tk, tk, sizeof(*tk));
1426 timekeeping_update(real_tk, false, false);
1427 write_seqcount_end(&timekeeper_seq);
1428 out:
1429 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1430 if (clock_set)
1431 /* have to call outside the timekeeper_seq */
1432 clock_was_set_delayed();
1433
1434 }
1435
1436 /**
1437 * getboottime - Return the real time of system boot.
1438 * @ts: pointer to the timespec to be set
1439 *
1440 * Returns the wall-time of boot in a timespec.
1441 *
1442 * This is based on the wall_to_monotonic offset and the total suspend
1443 * time. Calls to settimeofday will affect the value returned (which
1444 * basically means that however wrong your real time clock is at boot time,
1445 * you get the right time here).
1446 */
1447 void getboottime(struct timespec *ts)
1448 {
1449 struct timekeeper *tk = &timekeeper;
1450 struct timespec boottime = {
1451 .tv_sec = tk->wall_to_monotonic.tv_sec +
1452 tk->total_sleep_time.tv_sec,
1453 .tv_nsec = tk->wall_to_monotonic.tv_nsec +
1454 tk->total_sleep_time.tv_nsec
1455 };
1456
1457 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1458 }
1459 EXPORT_SYMBOL_GPL(getboottime);
1460
1461 /**
1462 * get_monotonic_boottime - Returns monotonic time since boot
1463 * @ts: pointer to the timespec to be set
1464 *
1465 * Returns the monotonic time since boot in a timespec.
1466 *
1467 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1468 * includes the time spent in suspend.
1469 */
1470 void get_monotonic_boottime(struct timespec *ts)
1471 {
1472 struct timekeeper *tk = &timekeeper;
1473 struct timespec tomono, sleep;
1474 s64 nsec;
1475 unsigned int seq;
1476
1477 WARN_ON(timekeeping_suspended);
1478
1479 do {
1480 seq = read_seqcount_begin(&timekeeper_seq);
1481 ts->tv_sec = tk->xtime_sec;
1482 nsec = timekeeping_get_ns(tk);
1483 tomono = tk->wall_to_monotonic;
1484 sleep = tk->total_sleep_time;
1485
1486 } while (read_seqcount_retry(&timekeeper_seq, seq));
1487
1488 ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
1489 ts->tv_nsec = 0;
1490 timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1491 }
1492 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1493
1494 /**
1495 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1496 *
1497 * Returns the monotonic time since boot in a ktime
1498 *
1499 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1500 * includes the time spent in suspend.
1501 */
1502 ktime_t ktime_get_boottime(void)
1503 {
1504 struct timespec ts;
1505
1506 get_monotonic_boottime(&ts);
1507 return timespec_to_ktime(ts);
1508 }
1509 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1510
1511 /**
1512 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1513 * @ts: pointer to the timespec to be converted
1514 */
1515 void monotonic_to_bootbased(struct timespec *ts)
1516 {
1517 struct timekeeper *tk = &timekeeper;
1518
1519 *ts = timespec_add(*ts, tk->total_sleep_time);
1520 }
1521 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1522
1523 unsigned long get_seconds(void)
1524 {
1525 struct timekeeper *tk = &timekeeper;
1526
1527 return tk->xtime_sec;
1528 }
1529 EXPORT_SYMBOL(get_seconds);
1530
1531 struct timespec __current_kernel_time(void)
1532 {
1533 struct timekeeper *tk = &timekeeper;
1534
1535 return tk_xtime(tk);
1536 }
1537
1538 struct timespec current_kernel_time(void)
1539 {
1540 struct timekeeper *tk = &timekeeper;
1541 struct timespec now;
1542 unsigned long seq;
1543
1544 do {
1545 seq = read_seqcount_begin(&timekeeper_seq);
1546
1547 now = tk_xtime(tk);
1548 } while (read_seqcount_retry(&timekeeper_seq, seq));
1549
1550 return now;
1551 }
1552 EXPORT_SYMBOL(current_kernel_time);
1553
1554 struct timespec get_monotonic_coarse(void)
1555 {
1556 struct timekeeper *tk = &timekeeper;
1557 struct timespec now, mono;
1558 unsigned long seq;
1559
1560 do {
1561 seq = read_seqcount_begin(&timekeeper_seq);
1562
1563 now = tk_xtime(tk);
1564 mono = tk->wall_to_monotonic;
1565 } while (read_seqcount_retry(&timekeeper_seq, seq));
1566
1567 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1568 now.tv_nsec + mono.tv_nsec);
1569 return now;
1570 }
1571
1572 /*
1573 * Must hold jiffies_lock
1574 */
1575 void do_timer(unsigned long ticks)
1576 {
1577 jiffies_64 += ticks;
1578 update_wall_time();
1579 calc_global_load(ticks);
1580 }
1581
1582 /**
1583 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1584 * and sleep offsets.
1585 * @xtim: pointer to timespec to be set with xtime
1586 * @wtom: pointer to timespec to be set with wall_to_monotonic
1587 * @sleep: pointer to timespec to be set with time in suspend
1588 */
1589 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1590 struct timespec *wtom, struct timespec *sleep)
1591 {
1592 struct timekeeper *tk = &timekeeper;
1593 unsigned long seq;
1594
1595 do {
1596 seq = read_seqcount_begin(&timekeeper_seq);
1597 *xtim = tk_xtime(tk);
1598 *wtom = tk->wall_to_monotonic;
1599 *sleep = tk->total_sleep_time;
1600 } while (read_seqcount_retry(&timekeeper_seq, seq));
1601 }
1602
1603 #ifdef CONFIG_HIGH_RES_TIMERS
1604 /**
1605 * ktime_get_update_offsets - hrtimer helper
1606 * @offs_real: pointer to storage for monotonic -> realtime offset
1607 * @offs_boot: pointer to storage for monotonic -> boottime offset
1608 *
1609 * Returns current monotonic time and updates the offsets
1610 * Called from hrtimer_interupt() or retrigger_next_event()
1611 */
1612 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot,
1613 ktime_t *offs_tai)
1614 {
1615 struct timekeeper *tk = &timekeeper;
1616 ktime_t now;
1617 unsigned int seq;
1618 u64 secs, nsecs;
1619
1620 do {
1621 seq = read_seqcount_begin(&timekeeper_seq);
1622
1623 secs = tk->xtime_sec;
1624 nsecs = timekeeping_get_ns(tk);
1625
1626 *offs_real = tk->offs_real;
1627 *offs_boot = tk->offs_boot;
1628 *offs_tai = tk->offs_tai;
1629 } while (read_seqcount_retry(&timekeeper_seq, seq));
1630
1631 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1632 now = ktime_sub(now, *offs_real);
1633 return now;
1634 }
1635 #endif
1636
1637 /**
1638 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1639 */
1640 ktime_t ktime_get_monotonic_offset(void)
1641 {
1642 struct timekeeper *tk = &timekeeper;
1643 unsigned long seq;
1644 struct timespec wtom;
1645
1646 do {
1647 seq = read_seqcount_begin(&timekeeper_seq);
1648 wtom = tk->wall_to_monotonic;
1649 } while (read_seqcount_retry(&timekeeper_seq, seq));
1650
1651 return timespec_to_ktime(wtom);
1652 }
1653 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1654
1655 /**
1656 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1657 */
1658 int do_adjtimex(struct timex *txc)
1659 {
1660 struct timekeeper *tk = &timekeeper;
1661 unsigned long flags;
1662 struct timespec ts;
1663 s32 orig_tai, tai;
1664 int ret;
1665
1666 /* Validate the data before disabling interrupts */
1667 ret = ntp_validate_timex(txc);
1668 if (ret)
1669 return ret;
1670
1671 if (txc->modes & ADJ_SETOFFSET) {
1672 struct timespec delta;
1673 delta.tv_sec = txc->time.tv_sec;
1674 delta.tv_nsec = txc->time.tv_usec;
1675 if (!(txc->modes & ADJ_NANO))
1676 delta.tv_nsec *= 1000;
1677 ret = timekeeping_inject_offset(&delta);
1678 if (ret)
1679 return ret;
1680 }
1681
1682 getnstimeofday(&ts);
1683
1684 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1685 write_seqcount_begin(&timekeeper_seq);
1686
1687 orig_tai = tai = tk->tai_offset;
1688 ret = __do_adjtimex(txc, &ts, &tai);
1689
1690 if (tai != orig_tai) {
1691 __timekeeping_set_tai_offset(tk, tai);
1692 timekeeping_update(tk, false, true);
1693 }
1694 write_seqcount_end(&timekeeper_seq);
1695 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1696
1697 if (tai != orig_tai)
1698 clock_was_set();
1699
1700 ntp_notify_cmos_timer();
1701
1702 return ret;
1703 }
1704
1705 #ifdef CONFIG_NTP_PPS
1706 /**
1707 * hardpps() - Accessor function to NTP __hardpps function
1708 */
1709 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1710 {
1711 unsigned long flags;
1712
1713 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1714 write_seqcount_begin(&timekeeper_seq);
1715
1716 __hardpps(phase_ts, raw_ts);
1717
1718 write_seqcount_end(&timekeeper_seq);
1719 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1720 }
1721 EXPORT_SYMBOL(hardpps);
1722 #endif
1723
1724 /**
1725 * xtime_update() - advances the timekeeping infrastructure
1726 * @ticks: number of ticks, that have elapsed since the last call.
1727 *
1728 * Must be called with interrupts disabled.
1729 */
1730 void xtime_update(unsigned long ticks)
1731 {
1732 write_seqlock(&jiffies_lock);
1733 do_timer(ticks);
1734 write_sequnlock(&jiffies_lock);
1735 }