ACPI: Set hotplug _OST support bit to _OSC
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / tick-sched.c
1 /*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23
24 #include <asm/irq_regs.h>
25
26 #include "tick-internal.h"
27
28 /*
29 * Per cpu nohz control structure
30 */
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
32
33 /*
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
35 */
36 static ktime_t last_jiffies_update;
37
38 struct tick_sched *tick_get_tick_sched(int cpu)
39 {
40 return &per_cpu(tick_cpu_sched, cpu);
41 }
42
43 /*
44 * Must be called with interrupts disabled !
45 */
46 static void tick_do_update_jiffies64(ktime_t now)
47 {
48 unsigned long ticks = 0;
49 ktime_t delta;
50
51 /*
52 * Do a quick check without holding xtime_lock:
53 */
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 < tick_period.tv64)
56 return;
57
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock);
60
61 delta = ktime_sub(now, last_jiffies_update);
62 if (delta.tv64 >= tick_period.tv64) {
63
64 delta = ktime_sub(delta, tick_period);
65 last_jiffies_update = ktime_add(last_jiffies_update,
66 tick_period);
67
68 /* Slow path for long timeouts */
69 if (unlikely(delta.tv64 >= tick_period.tv64)) {
70 s64 incr = ktime_to_ns(tick_period);
71
72 ticks = ktime_divns(delta, incr);
73
74 last_jiffies_update = ktime_add_ns(last_jiffies_update,
75 incr * ticks);
76 }
77 do_timer(++ticks);
78
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period = ktime_add(last_jiffies_update, tick_period);
81 }
82 write_sequnlock(&xtime_lock);
83 }
84
85 /*
86 * Initialize and return retrieve the jiffies update.
87 */
88 static ktime_t tick_init_jiffy_update(void)
89 {
90 ktime_t period;
91
92 write_seqlock(&xtime_lock);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update.tv64 == 0)
95 last_jiffies_update = tick_next_period;
96 period = last_jiffies_update;
97 write_sequnlock(&xtime_lock);
98 return period;
99 }
100
101 /*
102 * NOHZ - aka dynamic tick functionality
103 */
104 #ifdef CONFIG_NO_HZ
105 /*
106 * NO HZ enabled ?
107 */
108 static int tick_nohz_enabled __read_mostly = 1;
109
110 /*
111 * Enable / Disable tickless mode
112 */
113 static int __init setup_tick_nohz(char *str)
114 {
115 if (!strcmp(str, "off"))
116 tick_nohz_enabled = 0;
117 else if (!strcmp(str, "on"))
118 tick_nohz_enabled = 1;
119 else
120 return 0;
121 return 1;
122 }
123
124 __setup("nohz=", setup_tick_nohz);
125
126 /**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136 static void tick_nohz_update_jiffies(ktime_t now)
137 {
138 int cpu = smp_processor_id();
139 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140 unsigned long flags;
141
142 ts->idle_waketime = now;
143
144 local_irq_save(flags);
145 tick_do_update_jiffies64(now);
146 local_irq_restore(flags);
147
148 touch_softlockup_watchdog();
149 }
150
151 /*
152 * Updates the per cpu time idle statistics counters
153 */
154 static void
155 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
156 {
157 ktime_t delta;
158
159 if (ts->idle_active) {
160 delta = ktime_sub(now, ts->idle_entrytime);
161 if (nr_iowait_cpu(cpu) > 0)
162 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
163 else
164 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
165 ts->idle_entrytime = now;
166 }
167
168 if (last_update_time)
169 *last_update_time = ktime_to_us(now);
170
171 }
172
173 static void tick_nohz_stop_idle(int cpu, ktime_t now)
174 {
175 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176
177 update_ts_time_stats(cpu, ts, now, NULL);
178 ts->idle_active = 0;
179
180 sched_clock_idle_wakeup_event(0);
181 }
182
183 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184 {
185 ktime_t now = ktime_get();
186
187 ts->idle_entrytime = now;
188 ts->idle_active = 1;
189 sched_clock_idle_sleep_event();
190 return now;
191 }
192
193 /**
194 * get_cpu_idle_time_us - get the total idle time of a cpu
195 * @cpu: CPU number to query
196 * @last_update_time: variable to store update time in. Do not update
197 * counters if NULL.
198 *
199 * Return the cummulative idle time (since boot) for a given
200 * CPU, in microseconds.
201 *
202 * This time is measured via accounting rather than sampling,
203 * and is as accurate as ktime_get() is.
204 *
205 * This function returns -1 if NOHZ is not enabled.
206 */
207 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
208 {
209 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
210 ktime_t now, idle;
211
212 if (!tick_nohz_enabled)
213 return -1;
214
215 now = ktime_get();
216 if (last_update_time) {
217 update_ts_time_stats(cpu, ts, now, last_update_time);
218 idle = ts->idle_sleeptime;
219 } else {
220 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
221 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
222
223 idle = ktime_add(ts->idle_sleeptime, delta);
224 } else {
225 idle = ts->idle_sleeptime;
226 }
227 }
228
229 return ktime_to_us(idle);
230
231 }
232 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
233
234 /**
235 * get_cpu_iowait_time_us - get the total iowait time of a cpu
236 * @cpu: CPU number to query
237 * @last_update_time: variable to store update time in. Do not update
238 * counters if NULL.
239 *
240 * Return the cummulative iowait time (since boot) for a given
241 * CPU, in microseconds.
242 *
243 * This time is measured via accounting rather than sampling,
244 * and is as accurate as ktime_get() is.
245 *
246 * This function returns -1 if NOHZ is not enabled.
247 */
248 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
249 {
250 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
251 ktime_t now, iowait;
252
253 if (!tick_nohz_enabled)
254 return -1;
255
256 now = ktime_get();
257 if (last_update_time) {
258 update_ts_time_stats(cpu, ts, now, last_update_time);
259 iowait = ts->iowait_sleeptime;
260 } else {
261 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
262 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
263
264 iowait = ktime_add(ts->iowait_sleeptime, delta);
265 } else {
266 iowait = ts->iowait_sleeptime;
267 }
268 }
269
270 return ktime_to_us(iowait);
271 }
272 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
273
274 static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
275 {
276 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
277 ktime_t last_update, expires, now;
278 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
279 u64 time_delta;
280 int cpu;
281
282 cpu = smp_processor_id();
283 ts = &per_cpu(tick_cpu_sched, cpu);
284
285 now = tick_nohz_start_idle(cpu, ts);
286
287 /*
288 * If this cpu is offline and it is the one which updates
289 * jiffies, then give up the assignment and let it be taken by
290 * the cpu which runs the tick timer next. If we don't drop
291 * this here the jiffies might be stale and do_timer() never
292 * invoked.
293 */
294 if (unlikely(!cpu_online(cpu))) {
295 if (cpu == tick_do_timer_cpu)
296 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
297 }
298
299 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
300 return;
301
302 if (need_resched())
303 return;
304
305 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
306 static int ratelimit;
307
308 if (ratelimit < 10) {
309 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
310 (unsigned int) local_softirq_pending());
311 ratelimit++;
312 }
313 return;
314 }
315
316 ts->idle_calls++;
317 /* Read jiffies and the time when jiffies were updated last */
318 do {
319 seq = read_seqbegin(&xtime_lock);
320 last_update = last_jiffies_update;
321 last_jiffies = jiffies;
322 time_delta = timekeeping_max_deferment();
323 } while (read_seqretry(&xtime_lock, seq));
324
325 if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
326 arch_needs_cpu(cpu)) {
327 next_jiffies = last_jiffies + 1;
328 delta_jiffies = 1;
329 } else {
330 /* Get the next timer wheel timer */
331 next_jiffies = get_next_timer_interrupt(last_jiffies);
332 delta_jiffies = next_jiffies - last_jiffies;
333 }
334 /*
335 * Do not stop the tick, if we are only one off
336 * or if the cpu is required for rcu
337 */
338 if (!ts->tick_stopped && delta_jiffies == 1)
339 goto out;
340
341 /* Schedule the tick, if we are at least one jiffie off */
342 if ((long)delta_jiffies >= 1) {
343
344 /*
345 * If this cpu is the one which updates jiffies, then
346 * give up the assignment and let it be taken by the
347 * cpu which runs the tick timer next, which might be
348 * this cpu as well. If we don't drop this here the
349 * jiffies might be stale and do_timer() never
350 * invoked. Keep track of the fact that it was the one
351 * which had the do_timer() duty last. If this cpu is
352 * the one which had the do_timer() duty last, we
353 * limit the sleep time to the timekeeping
354 * max_deferement value which we retrieved
355 * above. Otherwise we can sleep as long as we want.
356 */
357 if (cpu == tick_do_timer_cpu) {
358 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
359 ts->do_timer_last = 1;
360 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
361 time_delta = KTIME_MAX;
362 ts->do_timer_last = 0;
363 } else if (!ts->do_timer_last) {
364 time_delta = KTIME_MAX;
365 }
366
367 /*
368 * calculate the expiry time for the next timer wheel
369 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
370 * that there is no timer pending or at least extremely
371 * far into the future (12 days for HZ=1000). In this
372 * case we set the expiry to the end of time.
373 */
374 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
375 /*
376 * Calculate the time delta for the next timer event.
377 * If the time delta exceeds the maximum time delta
378 * permitted by the current clocksource then adjust
379 * the time delta accordingly to ensure the
380 * clocksource does not wrap.
381 */
382 time_delta = min_t(u64, time_delta,
383 tick_period.tv64 * delta_jiffies);
384 }
385
386 if (time_delta < KTIME_MAX)
387 expires = ktime_add_ns(last_update, time_delta);
388 else
389 expires.tv64 = KTIME_MAX;
390
391 /* Skip reprogram of event if its not changed */
392 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
393 goto out;
394
395 /*
396 * nohz_stop_sched_tick can be called several times before
397 * the nohz_restart_sched_tick is called. This happens when
398 * interrupts arrive which do not cause a reschedule. In the
399 * first call we save the current tick time, so we can restart
400 * the scheduler tick in nohz_restart_sched_tick.
401 */
402 if (!ts->tick_stopped) {
403 select_nohz_load_balancer(1);
404
405 ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
406 ts->tick_stopped = 1;
407 ts->idle_jiffies = last_jiffies;
408 }
409
410 ts->idle_sleeps++;
411
412 /* Mark expires */
413 ts->idle_expires = expires;
414
415 /*
416 * If the expiration time == KTIME_MAX, then
417 * in this case we simply stop the tick timer.
418 */
419 if (unlikely(expires.tv64 == KTIME_MAX)) {
420 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
421 hrtimer_cancel(&ts->sched_timer);
422 goto out;
423 }
424
425 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
426 hrtimer_start(&ts->sched_timer, expires,
427 HRTIMER_MODE_ABS_PINNED);
428 /* Check, if the timer was already in the past */
429 if (hrtimer_active(&ts->sched_timer))
430 goto out;
431 } else if (!tick_program_event(expires, 0))
432 goto out;
433 /*
434 * We are past the event already. So we crossed a
435 * jiffie boundary. Update jiffies and raise the
436 * softirq.
437 */
438 tick_do_update_jiffies64(ktime_get());
439 }
440 raise_softirq_irqoff(TIMER_SOFTIRQ);
441 out:
442 ts->next_jiffies = next_jiffies;
443 ts->last_jiffies = last_jiffies;
444 ts->sleep_length = ktime_sub(dev->next_event, now);
445 }
446
447 /**
448 * tick_nohz_idle_enter - stop the idle tick from the idle task
449 *
450 * When the next event is more than a tick into the future, stop the idle tick
451 * Called when we start the idle loop.
452 *
453 * The arch is responsible of calling:
454 *
455 * - rcu_idle_enter() after its last use of RCU before the CPU is put
456 * to sleep.
457 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
458 */
459 void tick_nohz_idle_enter(void)
460 {
461 struct tick_sched *ts;
462
463 WARN_ON_ONCE(irqs_disabled());
464
465 /*
466 * Update the idle state in the scheduler domain hierarchy
467 * when tick_nohz_stop_sched_tick() is called from the idle loop.
468 * State will be updated to busy during the first busy tick after
469 * exiting idle.
470 */
471 set_cpu_sd_state_idle();
472
473 local_irq_disable();
474
475 ts = &__get_cpu_var(tick_cpu_sched);
476 /*
477 * set ts->inidle unconditionally. even if the system did not
478 * switch to nohz mode the cpu frequency governers rely on the
479 * update of the idle time accounting in tick_nohz_start_idle().
480 */
481 ts->inidle = 1;
482 tick_nohz_stop_sched_tick(ts);
483
484 local_irq_enable();
485 }
486
487 /**
488 * tick_nohz_irq_exit - update next tick event from interrupt exit
489 *
490 * When an interrupt fires while we are idle and it doesn't cause
491 * a reschedule, it may still add, modify or delete a timer, enqueue
492 * an RCU callback, etc...
493 * So we need to re-calculate and reprogram the next tick event.
494 */
495 void tick_nohz_irq_exit(void)
496 {
497 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
498
499 if (!ts->inidle)
500 return;
501
502 tick_nohz_stop_sched_tick(ts);
503 }
504
505 /**
506 * tick_nohz_get_sleep_length - return the length of the current sleep
507 *
508 * Called from power state control code with interrupts disabled
509 */
510 ktime_t tick_nohz_get_sleep_length(void)
511 {
512 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
513
514 return ts->sleep_length;
515 }
516
517 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
518 {
519 hrtimer_cancel(&ts->sched_timer);
520 hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
521
522 while (1) {
523 /* Forward the time to expire in the future */
524 hrtimer_forward(&ts->sched_timer, now, tick_period);
525
526 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
527 hrtimer_start_expires(&ts->sched_timer,
528 HRTIMER_MODE_ABS_PINNED);
529 /* Check, if the timer was already in the past */
530 if (hrtimer_active(&ts->sched_timer))
531 break;
532 } else {
533 if (!tick_program_event(
534 hrtimer_get_expires(&ts->sched_timer), 0))
535 break;
536 }
537 /* Reread time and update jiffies */
538 now = ktime_get();
539 tick_do_update_jiffies64(now);
540 }
541 }
542
543 /**
544 * tick_nohz_idle_exit - restart the idle tick from the idle task
545 *
546 * Restart the idle tick when the CPU is woken up from idle
547 * This also exit the RCU extended quiescent state. The CPU
548 * can use RCU again after this function is called.
549 */
550 void tick_nohz_idle_exit(void)
551 {
552 int cpu = smp_processor_id();
553 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
554 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
555 unsigned long ticks;
556 #endif
557 ktime_t now;
558
559 local_irq_disable();
560
561 WARN_ON_ONCE(!ts->inidle);
562
563 ts->inidle = 0;
564
565 if (ts->idle_active || ts->tick_stopped)
566 now = ktime_get();
567
568 if (ts->idle_active)
569 tick_nohz_stop_idle(cpu, now);
570
571 if (!ts->tick_stopped) {
572 local_irq_enable();
573 return;
574 }
575
576 /* Update jiffies first */
577 select_nohz_load_balancer(0);
578 tick_do_update_jiffies64(now);
579
580 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
581 /*
582 * We stopped the tick in idle. Update process times would miss the
583 * time we slept as update_process_times does only a 1 tick
584 * accounting. Enforce that this is accounted to idle !
585 */
586 ticks = jiffies - ts->idle_jiffies;
587 /*
588 * We might be one off. Do not randomly account a huge number of ticks!
589 */
590 if (ticks && ticks < LONG_MAX)
591 account_idle_ticks(ticks);
592 #endif
593
594 touch_softlockup_watchdog();
595 /*
596 * Cancel the scheduled timer and restore the tick
597 */
598 ts->tick_stopped = 0;
599 ts->idle_exittime = now;
600
601 tick_nohz_restart(ts, now);
602
603 local_irq_enable();
604 }
605
606 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
607 {
608 hrtimer_forward(&ts->sched_timer, now, tick_period);
609 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
610 }
611
612 /*
613 * The nohz low res interrupt handler
614 */
615 static void tick_nohz_handler(struct clock_event_device *dev)
616 {
617 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
618 struct pt_regs *regs = get_irq_regs();
619 int cpu = smp_processor_id();
620 ktime_t now = ktime_get();
621
622 dev->next_event.tv64 = KTIME_MAX;
623
624 /*
625 * Check if the do_timer duty was dropped. We don't care about
626 * concurrency: This happens only when the cpu in charge went
627 * into a long sleep. If two cpus happen to assign themself to
628 * this duty, then the jiffies update is still serialized by
629 * xtime_lock.
630 */
631 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
632 tick_do_timer_cpu = cpu;
633
634 /* Check, if the jiffies need an update */
635 if (tick_do_timer_cpu == cpu)
636 tick_do_update_jiffies64(now);
637
638 /*
639 * When we are idle and the tick is stopped, we have to touch
640 * the watchdog as we might not schedule for a really long
641 * time. This happens on complete idle SMP systems while
642 * waiting on the login prompt. We also increment the "start
643 * of idle" jiffy stamp so the idle accounting adjustment we
644 * do when we go busy again does not account too much ticks.
645 */
646 if (ts->tick_stopped) {
647 touch_softlockup_watchdog();
648 ts->idle_jiffies++;
649 }
650
651 update_process_times(user_mode(regs));
652 profile_tick(CPU_PROFILING);
653
654 while (tick_nohz_reprogram(ts, now)) {
655 now = ktime_get();
656 tick_do_update_jiffies64(now);
657 }
658 }
659
660 /**
661 * tick_nohz_switch_to_nohz - switch to nohz mode
662 */
663 static void tick_nohz_switch_to_nohz(void)
664 {
665 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
666 ktime_t next;
667
668 if (!tick_nohz_enabled)
669 return;
670
671 local_irq_disable();
672 if (tick_switch_to_oneshot(tick_nohz_handler)) {
673 local_irq_enable();
674 return;
675 }
676
677 ts->nohz_mode = NOHZ_MODE_LOWRES;
678
679 /*
680 * Recycle the hrtimer in ts, so we can share the
681 * hrtimer_forward with the highres code.
682 */
683 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
684 /* Get the next period */
685 next = tick_init_jiffy_update();
686
687 for (;;) {
688 hrtimer_set_expires(&ts->sched_timer, next);
689 if (!tick_program_event(next, 0))
690 break;
691 next = ktime_add(next, tick_period);
692 }
693 local_irq_enable();
694 }
695
696 /*
697 * When NOHZ is enabled and the tick is stopped, we need to kick the
698 * tick timer from irq_enter() so that the jiffies update is kept
699 * alive during long running softirqs. That's ugly as hell, but
700 * correctness is key even if we need to fix the offending softirq in
701 * the first place.
702 *
703 * Note, this is different to tick_nohz_restart. We just kick the
704 * timer and do not touch the other magic bits which need to be done
705 * when idle is left.
706 */
707 static void tick_nohz_kick_tick(int cpu, ktime_t now)
708 {
709 #if 0
710 /* Switch back to 2.6.27 behaviour */
711
712 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
713 ktime_t delta;
714
715 /*
716 * Do not touch the tick device, when the next expiry is either
717 * already reached or less/equal than the tick period.
718 */
719 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
720 if (delta.tv64 <= tick_period.tv64)
721 return;
722
723 tick_nohz_restart(ts, now);
724 #endif
725 }
726
727 static inline void tick_check_nohz(int cpu)
728 {
729 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
730 ktime_t now;
731
732 if (!ts->idle_active && !ts->tick_stopped)
733 return;
734 now = ktime_get();
735 if (ts->idle_active)
736 tick_nohz_stop_idle(cpu, now);
737 if (ts->tick_stopped) {
738 tick_nohz_update_jiffies(now);
739 tick_nohz_kick_tick(cpu, now);
740 }
741 }
742
743 #else
744
745 static inline void tick_nohz_switch_to_nohz(void) { }
746 static inline void tick_check_nohz(int cpu) { }
747
748 #endif /* NO_HZ */
749
750 /*
751 * Called from irq_enter to notify about the possible interruption of idle()
752 */
753 void tick_check_idle(int cpu)
754 {
755 tick_check_oneshot_broadcast(cpu);
756 tick_check_nohz(cpu);
757 }
758
759 /*
760 * High resolution timer specific code
761 */
762 #ifdef CONFIG_HIGH_RES_TIMERS
763 /*
764 * We rearm the timer until we get disabled by the idle code.
765 * Called with interrupts disabled and timer->base->cpu_base->lock held.
766 */
767 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
768 {
769 struct tick_sched *ts =
770 container_of(timer, struct tick_sched, sched_timer);
771 struct pt_regs *regs = get_irq_regs();
772 ktime_t now = ktime_get();
773 int cpu = smp_processor_id();
774
775 #ifdef CONFIG_NO_HZ
776 /*
777 * Check if the do_timer duty was dropped. We don't care about
778 * concurrency: This happens only when the cpu in charge went
779 * into a long sleep. If two cpus happen to assign themself to
780 * this duty, then the jiffies update is still serialized by
781 * xtime_lock.
782 */
783 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
784 tick_do_timer_cpu = cpu;
785 #endif
786
787 /* Check, if the jiffies need an update */
788 if (tick_do_timer_cpu == cpu)
789 tick_do_update_jiffies64(now);
790
791 /*
792 * Do not call, when we are not in irq context and have
793 * no valid regs pointer
794 */
795 if (regs) {
796 /*
797 * When we are idle and the tick is stopped, we have to touch
798 * the watchdog as we might not schedule for a really long
799 * time. This happens on complete idle SMP systems while
800 * waiting on the login prompt. We also increment the "start of
801 * idle" jiffy stamp so the idle accounting adjustment we do
802 * when we go busy again does not account too much ticks.
803 */
804 if (ts->tick_stopped) {
805 touch_softlockup_watchdog();
806 ts->idle_jiffies++;
807 }
808 update_process_times(user_mode(regs));
809 profile_tick(CPU_PROFILING);
810 }
811
812 hrtimer_forward(timer, now, tick_period);
813
814 return HRTIMER_RESTART;
815 }
816
817 /**
818 * tick_setup_sched_timer - setup the tick emulation timer
819 */
820 void tick_setup_sched_timer(void)
821 {
822 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
823 ktime_t now = ktime_get();
824
825 /*
826 * Emulate tick processing via per-CPU hrtimers:
827 */
828 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
829 ts->sched_timer.function = tick_sched_timer;
830
831 /* Get the next period (per cpu) */
832 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
833
834 for (;;) {
835 hrtimer_forward(&ts->sched_timer, now, tick_period);
836 hrtimer_start_expires(&ts->sched_timer,
837 HRTIMER_MODE_ABS_PINNED);
838 /* Check, if the timer was already in the past */
839 if (hrtimer_active(&ts->sched_timer))
840 break;
841 now = ktime_get();
842 }
843
844 #ifdef CONFIG_NO_HZ
845 if (tick_nohz_enabled)
846 ts->nohz_mode = NOHZ_MODE_HIGHRES;
847 #endif
848 }
849 #endif /* HIGH_RES_TIMERS */
850
851 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
852 void tick_cancel_sched_timer(int cpu)
853 {
854 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
855
856 # ifdef CONFIG_HIGH_RES_TIMERS
857 if (ts->sched_timer.base)
858 hrtimer_cancel(&ts->sched_timer);
859 # endif
860
861 ts->nohz_mode = NOHZ_MODE_INACTIVE;
862 }
863 #endif
864
865 /**
866 * Async notification about clocksource changes
867 */
868 void tick_clock_notify(void)
869 {
870 int cpu;
871
872 for_each_possible_cpu(cpu)
873 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
874 }
875
876 /*
877 * Async notification about clock event changes
878 */
879 void tick_oneshot_notify(void)
880 {
881 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
882
883 set_bit(0, &ts->check_clocks);
884 }
885
886 /**
887 * Check, if a change happened, which makes oneshot possible.
888 *
889 * Called cyclic from the hrtimer softirq (driven by the timer
890 * softirq) allow_nohz signals, that we can switch into low-res nohz
891 * mode, because high resolution timers are disabled (either compile
892 * or runtime).
893 */
894 int tick_check_oneshot_change(int allow_nohz)
895 {
896 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
897
898 if (!test_and_clear_bit(0, &ts->check_clocks))
899 return 0;
900
901 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
902 return 0;
903
904 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
905 return 0;
906
907 if (!allow_nohz)
908 return 1;
909
910 tick_nohz_switch_to_nohz();
911 return 0;
912 }