cpumask: convert kernel time functions
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / tick-common.c
1 /*
2 * linux/kernel/time/tick-common.c
3 *
4 * This file contains the base functions to manage periodic tick
5 * related events.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22
23 #include <asm/irq_regs.h>
24
25 #include "tick-internal.h"
26
27 /*
28 * Tick devices
29 */
30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
31 /*
32 * Tick next event: keeps track of the tick time
33 */
34 ktime_t tick_next_period;
35 ktime_t tick_period;
36 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
37 DEFINE_SPINLOCK(tick_device_lock);
38
39 /*
40 * Debugging: see timer_list.c
41 */
42 struct tick_device *tick_get_device(int cpu)
43 {
44 return &per_cpu(tick_cpu_device, cpu);
45 }
46
47 /**
48 * tick_is_oneshot_available - check for a oneshot capable event device
49 */
50 int tick_is_oneshot_available(void)
51 {
52 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
53
54 return dev && (dev->features & CLOCK_EVT_FEAT_ONESHOT);
55 }
56
57 /*
58 * Periodic tick
59 */
60 static void tick_periodic(int cpu)
61 {
62 if (tick_do_timer_cpu == cpu) {
63 write_seqlock(&xtime_lock);
64
65 /* Keep track of the next tick event */
66 tick_next_period = ktime_add(tick_next_period, tick_period);
67
68 do_timer(1);
69 write_sequnlock(&xtime_lock);
70 }
71
72 update_process_times(user_mode(get_irq_regs()));
73 profile_tick(CPU_PROFILING);
74 }
75
76 /*
77 * Event handler for periodic ticks
78 */
79 void tick_handle_periodic(struct clock_event_device *dev)
80 {
81 int cpu = smp_processor_id();
82 ktime_t next;
83
84 tick_periodic(cpu);
85
86 if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
87 return;
88 /*
89 * Setup the next period for devices, which do not have
90 * periodic mode:
91 */
92 next = ktime_add(dev->next_event, tick_period);
93 for (;;) {
94 if (!clockevents_program_event(dev, next, ktime_get()))
95 return;
96 tick_periodic(cpu);
97 next = ktime_add(next, tick_period);
98 }
99 }
100
101 /*
102 * Setup the device for a periodic tick
103 */
104 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
105 {
106 tick_set_periodic_handler(dev, broadcast);
107
108 /* Broadcast setup ? */
109 if (!tick_device_is_functional(dev))
110 return;
111
112 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
113 !tick_broadcast_oneshot_active()) {
114 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
115 } else {
116 unsigned long seq;
117 ktime_t next;
118
119 do {
120 seq = read_seqbegin(&xtime_lock);
121 next = tick_next_period;
122 } while (read_seqretry(&xtime_lock, seq));
123
124 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
125
126 for (;;) {
127 if (!clockevents_program_event(dev, next, ktime_get()))
128 return;
129 next = ktime_add(next, tick_period);
130 }
131 }
132 }
133
134 /*
135 * Setup the tick device
136 */
137 static void tick_setup_device(struct tick_device *td,
138 struct clock_event_device *newdev, int cpu,
139 const struct cpumask *cpumask)
140 {
141 ktime_t next_event;
142 void (*handler)(struct clock_event_device *) = NULL;
143
144 /*
145 * First device setup ?
146 */
147 if (!td->evtdev) {
148 /*
149 * If no cpu took the do_timer update, assign it to
150 * this cpu:
151 */
152 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
153 tick_do_timer_cpu = cpu;
154 tick_next_period = ktime_get();
155 tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
156 }
157
158 /*
159 * Startup in periodic mode first.
160 */
161 td->mode = TICKDEV_MODE_PERIODIC;
162 } else {
163 handler = td->evtdev->event_handler;
164 next_event = td->evtdev->next_event;
165 td->evtdev->event_handler = clockevents_handle_noop;
166 }
167
168 td->evtdev = newdev;
169
170 /*
171 * When the device is not per cpu, pin the interrupt to the
172 * current cpu:
173 */
174 if (!cpumask_equal(newdev->cpumask, cpumask))
175 irq_set_affinity(newdev->irq, cpumask);
176
177 /*
178 * When global broadcasting is active, check if the current
179 * device is registered as a placeholder for broadcast mode.
180 * This allows us to handle this x86 misfeature in a generic
181 * way.
182 */
183 if (tick_device_uses_broadcast(newdev, cpu))
184 return;
185
186 if (td->mode == TICKDEV_MODE_PERIODIC)
187 tick_setup_periodic(newdev, 0);
188 else
189 tick_setup_oneshot(newdev, handler, next_event);
190 }
191
192 /*
193 * Check, if the new registered device should be used.
194 */
195 static int tick_check_new_device(struct clock_event_device *newdev)
196 {
197 struct clock_event_device *curdev;
198 struct tick_device *td;
199 int cpu, ret = NOTIFY_OK;
200 unsigned long flags;
201
202 spin_lock_irqsave(&tick_device_lock, flags);
203
204 cpu = smp_processor_id();
205 if (!cpumask_test_cpu(cpu, newdev->cpumask))
206 goto out_bc;
207
208 td = &per_cpu(tick_cpu_device, cpu);
209 curdev = td->evtdev;
210
211 /* cpu local device ? */
212 if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) {
213
214 /*
215 * If the cpu affinity of the device interrupt can not
216 * be set, ignore it.
217 */
218 if (!irq_can_set_affinity(newdev->irq))
219 goto out_bc;
220
221 /*
222 * If we have a cpu local device already, do not replace it
223 * by a non cpu local device
224 */
225 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
226 goto out_bc;
227 }
228
229 /*
230 * If we have an active device, then check the rating and the oneshot
231 * feature.
232 */
233 if (curdev) {
234 /*
235 * Prefer one shot capable devices !
236 */
237 if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) &&
238 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
239 goto out_bc;
240 /*
241 * Check the rating
242 */
243 if (curdev->rating >= newdev->rating)
244 goto out_bc;
245 }
246
247 /*
248 * Replace the eventually existing device by the new
249 * device. If the current device is the broadcast device, do
250 * not give it back to the clockevents layer !
251 */
252 if (tick_is_broadcast_device(curdev)) {
253 clockevents_shutdown(curdev);
254 curdev = NULL;
255 }
256 clockevents_exchange_device(curdev, newdev);
257 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
258 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
259 tick_oneshot_notify();
260
261 spin_unlock_irqrestore(&tick_device_lock, flags);
262 return NOTIFY_STOP;
263
264 out_bc:
265 /*
266 * Can the new device be used as a broadcast device ?
267 */
268 if (tick_check_broadcast_device(newdev))
269 ret = NOTIFY_STOP;
270
271 spin_unlock_irqrestore(&tick_device_lock, flags);
272
273 return ret;
274 }
275
276 /*
277 * Shutdown an event device on a given cpu:
278 *
279 * This is called on a life CPU, when a CPU is dead. So we cannot
280 * access the hardware device itself.
281 * We just set the mode and remove it from the lists.
282 */
283 static void tick_shutdown(unsigned int *cpup)
284 {
285 struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
286 struct clock_event_device *dev = td->evtdev;
287 unsigned long flags;
288
289 spin_lock_irqsave(&tick_device_lock, flags);
290 td->mode = TICKDEV_MODE_PERIODIC;
291 if (dev) {
292 /*
293 * Prevent that the clock events layer tries to call
294 * the set mode function!
295 */
296 dev->mode = CLOCK_EVT_MODE_UNUSED;
297 clockevents_exchange_device(dev, NULL);
298 td->evtdev = NULL;
299 }
300 /* Transfer the do_timer job away from this cpu */
301 if (*cpup == tick_do_timer_cpu) {
302 int cpu = cpumask_first(cpu_online_mask);
303
304 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
305 TICK_DO_TIMER_NONE;
306 }
307 spin_unlock_irqrestore(&tick_device_lock, flags);
308 }
309
310 static void tick_suspend(void)
311 {
312 struct tick_device *td = &__get_cpu_var(tick_cpu_device);
313 unsigned long flags;
314
315 spin_lock_irqsave(&tick_device_lock, flags);
316 clockevents_shutdown(td->evtdev);
317 spin_unlock_irqrestore(&tick_device_lock, flags);
318 }
319
320 static void tick_resume(void)
321 {
322 struct tick_device *td = &__get_cpu_var(tick_cpu_device);
323 unsigned long flags;
324 int broadcast = tick_resume_broadcast();
325
326 spin_lock_irqsave(&tick_device_lock, flags);
327 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
328
329 if (!broadcast) {
330 if (td->mode == TICKDEV_MODE_PERIODIC)
331 tick_setup_periodic(td->evtdev, 0);
332 else
333 tick_resume_oneshot();
334 }
335 spin_unlock_irqrestore(&tick_device_lock, flags);
336 }
337
338 /*
339 * Notification about clock event devices
340 */
341 static int tick_notify(struct notifier_block *nb, unsigned long reason,
342 void *dev)
343 {
344 switch (reason) {
345
346 case CLOCK_EVT_NOTIFY_ADD:
347 return tick_check_new_device(dev);
348
349 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
350 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
351 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
352 tick_broadcast_on_off(reason, dev);
353 break;
354
355 case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
356 case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
357 tick_broadcast_oneshot_control(reason);
358 break;
359
360 case CLOCK_EVT_NOTIFY_CPU_DEAD:
361 tick_shutdown_broadcast_oneshot(dev);
362 tick_shutdown_broadcast(dev);
363 tick_shutdown(dev);
364 break;
365
366 case CLOCK_EVT_NOTIFY_SUSPEND:
367 tick_suspend();
368 tick_suspend_broadcast();
369 break;
370
371 case CLOCK_EVT_NOTIFY_RESUME:
372 tick_resume();
373 break;
374
375 default:
376 break;
377 }
378
379 return NOTIFY_OK;
380 }
381
382 static struct notifier_block tick_notifier = {
383 .notifier_call = tick_notify,
384 };
385
386 /**
387 * tick_init - initialize the tick control
388 *
389 * Register the notifier with the clockevents framework
390 */
391 void __init tick_init(void)
392 {
393 clockevents_register_notifier(&tick_notifier);
394 }