6f27814e1323f9eecad38f62851505c4223408db
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / tick-broadcast.c
1 /*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
29 */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_force;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 #else
41 static inline void tick_broadcast_clear_oneshot(int cpu) { }
42 #endif
43
44 /*
45 * Debugging: see timer_list.c
46 */
47 struct tick_device *tick_get_broadcast_device(void)
48 {
49 return &tick_broadcast_device;
50 }
51
52 struct cpumask *tick_get_broadcast_mask(void)
53 {
54 return tick_broadcast_mask;
55 }
56
57 /*
58 * Start the device in periodic mode
59 */
60 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
61 {
62 if (bc)
63 tick_setup_periodic(bc, 1);
64 }
65
66 /*
67 * Check, if the device can be utilized as broadcast device:
68 */
69 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
70 struct clock_event_device *newdev)
71 {
72 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
73 (newdev->features & CLOCK_EVT_FEAT_C3STOP))
74 return false;
75
76 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
77 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
78 return false;
79
80 return !curdev || newdev->rating > curdev->rating;
81 }
82
83 /*
84 * Conditionally install/replace broadcast device
85 */
86 void tick_install_broadcast_device(struct clock_event_device *dev)
87 {
88 struct clock_event_device *cur = tick_broadcast_device.evtdev;
89
90 if (!tick_check_broadcast_device(cur, dev))
91 return;
92
93 if (!try_module_get(dev->owner))
94 return;
95
96 clockevents_exchange_device(cur, dev);
97 if (cur)
98 cur->event_handler = clockevents_handle_noop;
99 tick_broadcast_device.evtdev = dev;
100 if (!cpumask_empty(tick_broadcast_mask))
101 tick_broadcast_start_periodic(dev);
102 /*
103 * Inform all cpus about this. We might be in a situation
104 * where we did not switch to oneshot mode because the per cpu
105 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
106 * of a oneshot capable broadcast device. Without that
107 * notification the systems stays stuck in periodic mode
108 * forever.
109 */
110 if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
111 tick_clock_notify();
112 }
113
114 /*
115 * Check, if the device is the broadcast device
116 */
117 int tick_is_broadcast_device(struct clock_event_device *dev)
118 {
119 return (dev && tick_broadcast_device.evtdev == dev);
120 }
121
122 static void err_broadcast(const struct cpumask *mask)
123 {
124 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
125 }
126
127 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
128 {
129 if (!dev->broadcast)
130 dev->broadcast = tick_broadcast;
131 if (!dev->broadcast) {
132 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
133 dev->name);
134 dev->broadcast = err_broadcast;
135 }
136 }
137
138 /*
139 * Check, if the device is disfunctional and a place holder, which
140 * needs to be handled by the broadcast device.
141 */
142 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
143 {
144 struct clock_event_device *bc = tick_broadcast_device.evtdev;
145 unsigned long flags;
146 int ret;
147
148 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
149
150 /*
151 * Devices might be registered with both periodic and oneshot
152 * mode disabled. This signals, that the device needs to be
153 * operated from the broadcast device and is a placeholder for
154 * the cpu local device.
155 */
156 if (!tick_device_is_functional(dev)) {
157 dev->event_handler = tick_handle_periodic;
158 tick_device_setup_broadcast_func(dev);
159 cpumask_set_cpu(cpu, tick_broadcast_mask);
160 tick_broadcast_start_periodic(bc);
161 ret = 1;
162 } else {
163 /*
164 * Clear the broadcast bit for this cpu if the
165 * device is not power state affected.
166 */
167 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
168 cpumask_clear_cpu(cpu, tick_broadcast_mask);
169 else
170 tick_device_setup_broadcast_func(dev);
171
172 /*
173 * Clear the broadcast bit if the CPU is not in
174 * periodic broadcast on state.
175 */
176 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
177 cpumask_clear_cpu(cpu, tick_broadcast_mask);
178
179 switch (tick_broadcast_device.mode) {
180 case TICKDEV_MODE_ONESHOT:
181 /*
182 * If the system is in oneshot mode we can
183 * unconditionally clear the oneshot mask bit,
184 * because the CPU is running and therefore
185 * not in an idle state which causes the power
186 * state affected device to stop. Let the
187 * caller initialize the device.
188 */
189 tick_broadcast_clear_oneshot(cpu);
190 ret = 0;
191 break;
192
193 case TICKDEV_MODE_PERIODIC:
194 /*
195 * If the system is in periodic mode, check
196 * whether the broadcast device can be
197 * switched off now.
198 */
199 if (cpumask_empty(tick_broadcast_mask) && bc)
200 clockevents_shutdown(bc);
201 /*
202 * If we kept the cpu in the broadcast mask,
203 * tell the caller to leave the per cpu device
204 * in shutdown state. The periodic interrupt
205 * is delivered by the broadcast device.
206 */
207 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
208 break;
209 default:
210 /* Nothing to do */
211 ret = 0;
212 break;
213 }
214 }
215 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
216 return ret;
217 }
218
219 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
220 int tick_receive_broadcast(void)
221 {
222 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
223 struct clock_event_device *evt = td->evtdev;
224
225 if (!evt)
226 return -ENODEV;
227
228 if (!evt->event_handler)
229 return -EINVAL;
230
231 evt->event_handler(evt);
232 return 0;
233 }
234 #endif
235
236 /*
237 * Broadcast the event to the cpus, which are set in the mask (mangled).
238 */
239 static void tick_do_broadcast(struct cpumask *mask)
240 {
241 int cpu = smp_processor_id();
242 struct tick_device *td;
243
244 /*
245 * Check, if the current cpu is in the mask
246 */
247 if (cpumask_test_cpu(cpu, mask)) {
248 cpumask_clear_cpu(cpu, mask);
249 td = &per_cpu(tick_cpu_device, cpu);
250 td->evtdev->event_handler(td->evtdev);
251 }
252
253 if (!cpumask_empty(mask)) {
254 /*
255 * It might be necessary to actually check whether the devices
256 * have different broadcast functions. For now, just use the
257 * one of the first device. This works as long as we have this
258 * misfeature only on x86 (lapic)
259 */
260 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
261 td->evtdev->broadcast(mask);
262 }
263 }
264
265 /*
266 * Periodic broadcast:
267 * - invoke the broadcast handlers
268 */
269 static void tick_do_periodic_broadcast(void)
270 {
271 raw_spin_lock(&tick_broadcast_lock);
272
273 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
274 tick_do_broadcast(tmpmask);
275
276 raw_spin_unlock(&tick_broadcast_lock);
277 }
278
279 /*
280 * Event handler for periodic broadcast ticks
281 */
282 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
283 {
284 ktime_t next;
285
286 tick_do_periodic_broadcast();
287
288 /*
289 * The device is in periodic mode. No reprogramming necessary:
290 */
291 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
292 return;
293
294 /*
295 * Setup the next period for devices, which do not have
296 * periodic mode. We read dev->next_event first and add to it
297 * when the event already expired. clockevents_program_event()
298 * sets dev->next_event only when the event is really
299 * programmed to the device.
300 */
301 for (next = dev->next_event; ;) {
302 next = ktime_add(next, tick_period);
303
304 if (!clockevents_program_event(dev, next, false))
305 return;
306 tick_do_periodic_broadcast();
307 }
308 }
309
310 /*
311 * Powerstate information: The system enters/leaves a state, where
312 * affected devices might stop
313 */
314 static void tick_do_broadcast_on_off(unsigned long *reason)
315 {
316 struct clock_event_device *bc, *dev;
317 struct tick_device *td;
318 unsigned long flags;
319 int cpu, bc_stopped;
320
321 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
322
323 cpu = smp_processor_id();
324 td = &per_cpu(tick_cpu_device, cpu);
325 dev = td->evtdev;
326 bc = tick_broadcast_device.evtdev;
327
328 /*
329 * Is the device not affected by the powerstate ?
330 */
331 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
332 goto out;
333
334 if (!tick_device_is_functional(dev))
335 goto out;
336
337 bc_stopped = cpumask_empty(tick_broadcast_mask);
338
339 switch (*reason) {
340 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
341 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
342 cpumask_set_cpu(cpu, tick_broadcast_on);
343 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
344 if (tick_broadcast_device.mode ==
345 TICKDEV_MODE_PERIODIC)
346 clockevents_shutdown(dev);
347 }
348 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
349 tick_broadcast_force = 1;
350 break;
351 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
352 if (tick_broadcast_force)
353 break;
354 cpumask_clear_cpu(cpu, tick_broadcast_on);
355 if (!tick_device_is_functional(dev))
356 break;
357 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
358 if (tick_broadcast_device.mode ==
359 TICKDEV_MODE_PERIODIC)
360 tick_setup_periodic(dev, 0);
361 }
362 break;
363 }
364
365 if (cpumask_empty(tick_broadcast_mask)) {
366 if (!bc_stopped)
367 clockevents_shutdown(bc);
368 } else if (bc_stopped) {
369 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
370 tick_broadcast_start_periodic(bc);
371 else
372 tick_broadcast_setup_oneshot(bc);
373 }
374 out:
375 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
376 }
377
378 /*
379 * Powerstate information: The system enters/leaves a state, where
380 * affected devices might stop.
381 */
382 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
383 {
384 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
385 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
386 "offline CPU #%d\n", *oncpu);
387 else
388 tick_do_broadcast_on_off(&reason);
389 }
390
391 /*
392 * Set the periodic handler depending on broadcast on/off
393 */
394 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
395 {
396 if (!broadcast)
397 dev->event_handler = tick_handle_periodic;
398 else
399 dev->event_handler = tick_handle_periodic_broadcast;
400 }
401
402 /*
403 * Remove a CPU from broadcasting
404 */
405 void tick_shutdown_broadcast(unsigned int *cpup)
406 {
407 struct clock_event_device *bc;
408 unsigned long flags;
409 unsigned int cpu = *cpup;
410
411 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
412
413 bc = tick_broadcast_device.evtdev;
414 cpumask_clear_cpu(cpu, tick_broadcast_mask);
415 cpumask_clear_cpu(cpu, tick_broadcast_on);
416
417 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
418 if (bc && cpumask_empty(tick_broadcast_mask))
419 clockevents_shutdown(bc);
420 }
421
422 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
423 }
424
425 void tick_suspend_broadcast(void)
426 {
427 struct clock_event_device *bc;
428 unsigned long flags;
429
430 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
431
432 bc = tick_broadcast_device.evtdev;
433 if (bc)
434 clockevents_shutdown(bc);
435
436 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
437 }
438
439 int tick_resume_broadcast(void)
440 {
441 struct clock_event_device *bc;
442 unsigned long flags;
443 int broadcast = 0;
444
445 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
446
447 bc = tick_broadcast_device.evtdev;
448
449 if (bc) {
450 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
451
452 switch (tick_broadcast_device.mode) {
453 case TICKDEV_MODE_PERIODIC:
454 if (!cpumask_empty(tick_broadcast_mask))
455 tick_broadcast_start_periodic(bc);
456 broadcast = cpumask_test_cpu(smp_processor_id(),
457 tick_broadcast_mask);
458 break;
459 case TICKDEV_MODE_ONESHOT:
460 if (!cpumask_empty(tick_broadcast_mask))
461 broadcast = tick_resume_broadcast_oneshot(bc);
462 break;
463 }
464 }
465 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
466
467 return broadcast;
468 }
469
470
471 #ifdef CONFIG_TICK_ONESHOT
472
473 static cpumask_var_t tick_broadcast_oneshot_mask;
474 static cpumask_var_t tick_broadcast_pending_mask;
475 static cpumask_var_t tick_broadcast_force_mask;
476
477 /*
478 * Exposed for debugging: see timer_list.c
479 */
480 struct cpumask *tick_get_broadcast_oneshot_mask(void)
481 {
482 return tick_broadcast_oneshot_mask;
483 }
484
485 /*
486 * Called before going idle with interrupts disabled. Checks whether a
487 * broadcast event from the other core is about to happen. We detected
488 * that in tick_broadcast_oneshot_control(). The callsite can use this
489 * to avoid a deep idle transition as we are about to get the
490 * broadcast IPI right away.
491 */
492 int tick_check_broadcast_expired(void)
493 {
494 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
495 }
496
497 /*
498 * Set broadcast interrupt affinity
499 */
500 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
501 const struct cpumask *cpumask)
502 {
503 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
504 return;
505
506 if (cpumask_equal(bc->cpumask, cpumask))
507 return;
508
509 bc->cpumask = cpumask;
510 irq_set_affinity(bc->irq, bc->cpumask);
511 }
512
513 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
514 ktime_t expires, int force)
515 {
516 int ret;
517
518 if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
519 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
520
521 ret = clockevents_program_event(bc, expires, force);
522 if (!ret)
523 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
524 return ret;
525 }
526
527 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
528 {
529 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
530 return 0;
531 }
532
533 /*
534 * Called from irq_enter() when idle was interrupted to reenable the
535 * per cpu device.
536 */
537 void tick_check_oneshot_broadcast(int cpu)
538 {
539 if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
540 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
541
542 /*
543 * We might be in the middle of switching over from
544 * periodic to oneshot. If the CPU has not yet
545 * switched over, leave the device alone.
546 */
547 if (td->mode == TICKDEV_MODE_ONESHOT) {
548 clockevents_set_mode(td->evtdev,
549 CLOCK_EVT_MODE_ONESHOT);
550 }
551 }
552 }
553
554 /*
555 * Handle oneshot mode broadcasting
556 */
557 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
558 {
559 struct tick_device *td;
560 ktime_t now, next_event;
561 int cpu, next_cpu = 0;
562
563 raw_spin_lock(&tick_broadcast_lock);
564 again:
565 dev->next_event.tv64 = KTIME_MAX;
566 next_event.tv64 = KTIME_MAX;
567 cpumask_clear(tmpmask);
568 now = ktime_get();
569 /* Find all expired events */
570 for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
571 td = &per_cpu(tick_cpu_device, cpu);
572 if (td->evtdev->next_event.tv64 <= now.tv64) {
573 cpumask_set_cpu(cpu, tmpmask);
574 /*
575 * Mark the remote cpu in the pending mask, so
576 * it can avoid reprogramming the cpu local
577 * timer in tick_broadcast_oneshot_control().
578 */
579 cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
580 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
581 next_event.tv64 = td->evtdev->next_event.tv64;
582 next_cpu = cpu;
583 }
584 }
585
586 /*
587 * Remove the current cpu from the pending mask. The event is
588 * delivered immediately in tick_do_broadcast() !
589 */
590 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
591
592 /* Take care of enforced broadcast requests */
593 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
594 cpumask_clear(tick_broadcast_force_mask);
595
596 /*
597 * Sanity check. Catch the case where we try to broadcast to
598 * offline cpus.
599 */
600 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
601 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
602
603 /*
604 * Wakeup the cpus which have an expired event.
605 */
606 tick_do_broadcast(tmpmask);
607
608 /*
609 * Two reasons for reprogram:
610 *
611 * - The global event did not expire any CPU local
612 * events. This happens in dyntick mode, as the maximum PIT
613 * delta is quite small.
614 *
615 * - There are pending events on sleeping CPUs which were not
616 * in the event mask
617 */
618 if (next_event.tv64 != KTIME_MAX) {
619 /*
620 * Rearm the broadcast device. If event expired,
621 * repeat the above
622 */
623 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
624 goto again;
625 }
626 raw_spin_unlock(&tick_broadcast_lock);
627 }
628
629 /*
630 * Powerstate information: The system enters/leaves a state, where
631 * affected devices might stop
632 */
633 void tick_broadcast_oneshot_control(unsigned long reason)
634 {
635 struct clock_event_device *bc, *dev;
636 struct tick_device *td;
637 unsigned long flags;
638 ktime_t now;
639 int cpu;
640
641 /*
642 * Periodic mode does not care about the enter/exit of power
643 * states
644 */
645 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
646 return;
647
648 /*
649 * We are called with preemtion disabled from the depth of the
650 * idle code, so we can't be moved away.
651 */
652 cpu = smp_processor_id();
653 td = &per_cpu(tick_cpu_device, cpu);
654 dev = td->evtdev;
655
656 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
657 return;
658
659 bc = tick_broadcast_device.evtdev;
660
661 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
662 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
663 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
664 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
665 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
666 /*
667 * We only reprogram the broadcast timer if we
668 * did not mark ourself in the force mask and
669 * if the cpu local event is earlier than the
670 * broadcast event. If the current CPU is in
671 * the force mask, then we are going to be
672 * woken by the IPI right away.
673 */
674 if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
675 dev->next_event.tv64 < bc->next_event.tv64)
676 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
677 }
678 } else {
679 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
680 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
681 /*
682 * The cpu which was handling the broadcast
683 * timer marked this cpu in the broadcast
684 * pending mask and fired the broadcast
685 * IPI. So we are going to handle the expired
686 * event anyway via the broadcast IPI
687 * handler. No need to reprogram the timer
688 * with an already expired event.
689 */
690 if (cpumask_test_and_clear_cpu(cpu,
691 tick_broadcast_pending_mask))
692 goto out;
693
694 /*
695 * Bail out if there is no next event.
696 */
697 if (dev->next_event.tv64 == KTIME_MAX)
698 goto out;
699 /*
700 * If the pending bit is not set, then we are
701 * either the CPU handling the broadcast
702 * interrupt or we got woken by something else.
703 *
704 * We are not longer in the broadcast mask, so
705 * if the cpu local expiry time is already
706 * reached, we would reprogram the cpu local
707 * timer with an already expired event.
708 *
709 * This can lead to a ping-pong when we return
710 * to idle and therefor rearm the broadcast
711 * timer before the cpu local timer was able
712 * to fire. This happens because the forced
713 * reprogramming makes sure that the event
714 * will happen in the future and depending on
715 * the min_delta setting this might be far
716 * enough out that the ping-pong starts.
717 *
718 * If the cpu local next_event has expired
719 * then we know that the broadcast timer
720 * next_event has expired as well and
721 * broadcast is about to be handled. So we
722 * avoid reprogramming and enforce that the
723 * broadcast handler, which did not run yet,
724 * will invoke the cpu local handler.
725 *
726 * We cannot call the handler directly from
727 * here, because we might be in a NOHZ phase
728 * and we did not go through the irq_enter()
729 * nohz fixups.
730 */
731 now = ktime_get();
732 if (dev->next_event.tv64 <= now.tv64) {
733 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
734 goto out;
735 }
736 /*
737 * We got woken by something else. Reprogram
738 * the cpu local timer device.
739 */
740 tick_program_event(dev->next_event, 1);
741 }
742 }
743 out:
744 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
745 }
746
747 /*
748 * Reset the one shot broadcast for a cpu
749 *
750 * Called with tick_broadcast_lock held
751 */
752 static void tick_broadcast_clear_oneshot(int cpu)
753 {
754 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
755 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
756 }
757
758 static void tick_broadcast_init_next_event(struct cpumask *mask,
759 ktime_t expires)
760 {
761 struct tick_device *td;
762 int cpu;
763
764 for_each_cpu(cpu, mask) {
765 td = &per_cpu(tick_cpu_device, cpu);
766 if (td->evtdev)
767 td->evtdev->next_event = expires;
768 }
769 }
770
771 /**
772 * tick_broadcast_setup_oneshot - setup the broadcast device
773 */
774 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
775 {
776 int cpu = smp_processor_id();
777
778 if (!bc)
779 return;
780
781 /* Set it up only once ! */
782 if (bc->event_handler != tick_handle_oneshot_broadcast) {
783 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
784
785 bc->event_handler = tick_handle_oneshot_broadcast;
786
787 /*
788 * We must be careful here. There might be other CPUs
789 * waiting for periodic broadcast. We need to set the
790 * oneshot_mask bits for those and program the
791 * broadcast device to fire.
792 */
793 cpumask_copy(tmpmask, tick_broadcast_mask);
794 cpumask_clear_cpu(cpu, tmpmask);
795 cpumask_or(tick_broadcast_oneshot_mask,
796 tick_broadcast_oneshot_mask, tmpmask);
797
798 if (was_periodic && !cpumask_empty(tmpmask)) {
799 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
800 tick_broadcast_init_next_event(tmpmask,
801 tick_next_period);
802 tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
803 } else
804 bc->next_event.tv64 = KTIME_MAX;
805 } else {
806 /*
807 * The first cpu which switches to oneshot mode sets
808 * the bit for all other cpus which are in the general
809 * (periodic) broadcast mask. So the bit is set and
810 * would prevent the first broadcast enter after this
811 * to program the bc device.
812 */
813 tick_broadcast_clear_oneshot(cpu);
814 }
815 }
816
817 /*
818 * Select oneshot operating mode for the broadcast device
819 */
820 void tick_broadcast_switch_to_oneshot(void)
821 {
822 struct clock_event_device *bc;
823 unsigned long flags;
824
825 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
826
827 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
828 bc = tick_broadcast_device.evtdev;
829 if (bc)
830 tick_broadcast_setup_oneshot(bc);
831
832 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
833 }
834
835
836 /*
837 * Remove a dead CPU from broadcasting
838 */
839 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
840 {
841 unsigned long flags;
842 unsigned int cpu = *cpup;
843
844 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
845
846 /*
847 * Clear the broadcast masks for the dead cpu, but do not stop
848 * the broadcast device!
849 */
850 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
851 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
852 cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
853
854 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
855 }
856
857 /*
858 * Check, whether the broadcast device is in one shot mode
859 */
860 int tick_broadcast_oneshot_active(void)
861 {
862 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
863 }
864
865 /*
866 * Check whether the broadcast device supports oneshot.
867 */
868 bool tick_broadcast_oneshot_available(void)
869 {
870 struct clock_event_device *bc = tick_broadcast_device.evtdev;
871
872 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
873 }
874
875 #endif
876
877 void __init tick_broadcast_init(void)
878 {
879 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
880 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
881 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
882 #ifdef CONFIG_TICK_ONESHOT
883 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
884 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
885 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
886 #endif
887 }