Merge commit '8700c95adb03' into timers/nohz
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / tick-broadcast.c
1 /*
2 * linux/kernel/time/tick-broadcast.c
3 *
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22
23 #include "tick-internal.h"
24
25 /*
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
28 */
29
30 static struct tick_device tick_broadcast_device;
31 /* FIXME: Use cpumask_var_t. */
32 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
33 static DECLARE_BITMAP(tmpmask, NR_CPUS);
34 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
35 static int tick_broadcast_force;
36
37 #ifdef CONFIG_TICK_ONESHOT
38 static void tick_broadcast_clear_oneshot(int cpu);
39 #else
40 static inline void tick_broadcast_clear_oneshot(int cpu) { }
41 #endif
42
43 /*
44 * Debugging: see timer_list.c
45 */
46 struct tick_device *tick_get_broadcast_device(void)
47 {
48 return &tick_broadcast_device;
49 }
50
51 struct cpumask *tick_get_broadcast_mask(void)
52 {
53 return to_cpumask(tick_broadcast_mask);
54 }
55
56 /*
57 * Start the device in periodic mode
58 */
59 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
60 {
61 if (bc)
62 tick_setup_periodic(bc, 1);
63 }
64
65 /*
66 * Check, if the device can be utilized as broadcast device:
67 */
68 int tick_check_broadcast_device(struct clock_event_device *dev)
69 {
70 if ((dev->features & CLOCK_EVT_FEAT_DUMMY) ||
71 (tick_broadcast_device.evtdev &&
72 tick_broadcast_device.evtdev->rating >= dev->rating) ||
73 (dev->features & CLOCK_EVT_FEAT_C3STOP))
74 return 0;
75
76 clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
77 tick_broadcast_device.evtdev = dev;
78 if (!cpumask_empty(tick_get_broadcast_mask()))
79 tick_broadcast_start_periodic(dev);
80 return 1;
81 }
82
83 /*
84 * Check, if the device is the broadcast device
85 */
86 int tick_is_broadcast_device(struct clock_event_device *dev)
87 {
88 return (dev && tick_broadcast_device.evtdev == dev);
89 }
90
91 static void err_broadcast(const struct cpumask *mask)
92 {
93 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
94 }
95
96 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
97 {
98 if (!dev->broadcast)
99 dev->broadcast = tick_broadcast;
100 if (!dev->broadcast) {
101 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
102 dev->name);
103 dev->broadcast = err_broadcast;
104 }
105 }
106
107 /*
108 * Check, if the device is disfunctional and a place holder, which
109 * needs to be handled by the broadcast device.
110 */
111 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
112 {
113 unsigned long flags;
114 int ret = 0;
115
116 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
117
118 /*
119 * Devices might be registered with both periodic and oneshot
120 * mode disabled. This signals, that the device needs to be
121 * operated from the broadcast device and is a placeholder for
122 * the cpu local device.
123 */
124 if (!tick_device_is_functional(dev)) {
125 dev->event_handler = tick_handle_periodic;
126 tick_device_setup_broadcast_func(dev);
127 cpumask_set_cpu(cpu, tick_get_broadcast_mask());
128 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
129 ret = 1;
130 } else {
131 /*
132 * When the new device is not affected by the stop
133 * feature and the cpu is marked in the broadcast mask
134 * then clear the broadcast bit.
135 */
136 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
137 int cpu = smp_processor_id();
138 cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
139 tick_broadcast_clear_oneshot(cpu);
140 } else {
141 tick_device_setup_broadcast_func(dev);
142 }
143 }
144 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
145 return ret;
146 }
147
148 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
149 int tick_receive_broadcast(void)
150 {
151 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
152 struct clock_event_device *evt = td->evtdev;
153
154 if (!evt)
155 return -ENODEV;
156
157 if (!evt->event_handler)
158 return -EINVAL;
159
160 evt->event_handler(evt);
161 return 0;
162 }
163 #endif
164
165 /*
166 * Broadcast the event to the cpus, which are set in the mask (mangled).
167 */
168 static void tick_do_broadcast(struct cpumask *mask)
169 {
170 int cpu = smp_processor_id();
171 struct tick_device *td;
172
173 /*
174 * Check, if the current cpu is in the mask
175 */
176 if (cpumask_test_cpu(cpu, mask)) {
177 cpumask_clear_cpu(cpu, mask);
178 td = &per_cpu(tick_cpu_device, cpu);
179 td->evtdev->event_handler(td->evtdev);
180 }
181
182 if (!cpumask_empty(mask)) {
183 /*
184 * It might be necessary to actually check whether the devices
185 * have different broadcast functions. For now, just use the
186 * one of the first device. This works as long as we have this
187 * misfeature only on x86 (lapic)
188 */
189 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
190 td->evtdev->broadcast(mask);
191 }
192 }
193
194 /*
195 * Periodic broadcast:
196 * - invoke the broadcast handlers
197 */
198 static void tick_do_periodic_broadcast(void)
199 {
200 raw_spin_lock(&tick_broadcast_lock);
201
202 cpumask_and(to_cpumask(tmpmask),
203 cpu_online_mask, tick_get_broadcast_mask());
204 tick_do_broadcast(to_cpumask(tmpmask));
205
206 raw_spin_unlock(&tick_broadcast_lock);
207 }
208
209 /*
210 * Event handler for periodic broadcast ticks
211 */
212 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
213 {
214 ktime_t next;
215
216 tick_do_periodic_broadcast();
217
218 /*
219 * The device is in periodic mode. No reprogramming necessary:
220 */
221 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
222 return;
223
224 /*
225 * Setup the next period for devices, which do not have
226 * periodic mode. We read dev->next_event first and add to it
227 * when the event already expired. clockevents_program_event()
228 * sets dev->next_event only when the event is really
229 * programmed to the device.
230 */
231 for (next = dev->next_event; ;) {
232 next = ktime_add(next, tick_period);
233
234 if (!clockevents_program_event(dev, next, false))
235 return;
236 tick_do_periodic_broadcast();
237 }
238 }
239
240 /*
241 * Powerstate information: The system enters/leaves a state, where
242 * affected devices might stop
243 */
244 static void tick_do_broadcast_on_off(unsigned long *reason)
245 {
246 struct clock_event_device *bc, *dev;
247 struct tick_device *td;
248 unsigned long flags;
249 int cpu, bc_stopped;
250
251 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
252
253 cpu = smp_processor_id();
254 td = &per_cpu(tick_cpu_device, cpu);
255 dev = td->evtdev;
256 bc = tick_broadcast_device.evtdev;
257
258 /*
259 * Is the device not affected by the powerstate ?
260 */
261 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
262 goto out;
263
264 if (!tick_device_is_functional(dev))
265 goto out;
266
267 bc_stopped = cpumask_empty(tick_get_broadcast_mask());
268
269 switch (*reason) {
270 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
271 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
272 if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
273 cpumask_set_cpu(cpu, tick_get_broadcast_mask());
274 if (tick_broadcast_device.mode ==
275 TICKDEV_MODE_PERIODIC)
276 clockevents_shutdown(dev);
277 }
278 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
279 tick_broadcast_force = 1;
280 break;
281 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
282 if (!tick_broadcast_force &&
283 cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
284 cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
285 if (tick_broadcast_device.mode ==
286 TICKDEV_MODE_PERIODIC)
287 tick_setup_periodic(dev, 0);
288 }
289 break;
290 }
291
292 if (cpumask_empty(tick_get_broadcast_mask())) {
293 if (!bc_stopped)
294 clockevents_shutdown(bc);
295 } else if (bc_stopped) {
296 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
297 tick_broadcast_start_periodic(bc);
298 else
299 tick_broadcast_setup_oneshot(bc);
300 }
301 out:
302 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
303 }
304
305 /*
306 * Powerstate information: The system enters/leaves a state, where
307 * affected devices might stop.
308 */
309 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
310 {
311 if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
312 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
313 "offline CPU #%d\n", *oncpu);
314 else
315 tick_do_broadcast_on_off(&reason);
316 }
317
318 /*
319 * Set the periodic handler depending on broadcast on/off
320 */
321 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
322 {
323 if (!broadcast)
324 dev->event_handler = tick_handle_periodic;
325 else
326 dev->event_handler = tick_handle_periodic_broadcast;
327 }
328
329 /*
330 * Remove a CPU from broadcasting
331 */
332 void tick_shutdown_broadcast(unsigned int *cpup)
333 {
334 struct clock_event_device *bc;
335 unsigned long flags;
336 unsigned int cpu = *cpup;
337
338 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
339
340 bc = tick_broadcast_device.evtdev;
341 cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
342
343 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
344 if (bc && cpumask_empty(tick_get_broadcast_mask()))
345 clockevents_shutdown(bc);
346 }
347
348 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
349 }
350
351 void tick_suspend_broadcast(void)
352 {
353 struct clock_event_device *bc;
354 unsigned long flags;
355
356 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
357
358 bc = tick_broadcast_device.evtdev;
359 if (bc)
360 clockevents_shutdown(bc);
361
362 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
363 }
364
365 int tick_resume_broadcast(void)
366 {
367 struct clock_event_device *bc;
368 unsigned long flags;
369 int broadcast = 0;
370
371 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
372
373 bc = tick_broadcast_device.evtdev;
374
375 if (bc) {
376 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
377
378 switch (tick_broadcast_device.mode) {
379 case TICKDEV_MODE_PERIODIC:
380 if (!cpumask_empty(tick_get_broadcast_mask()))
381 tick_broadcast_start_periodic(bc);
382 broadcast = cpumask_test_cpu(smp_processor_id(),
383 tick_get_broadcast_mask());
384 break;
385 case TICKDEV_MODE_ONESHOT:
386 if (!cpumask_empty(tick_get_broadcast_mask()))
387 broadcast = tick_resume_broadcast_oneshot(bc);
388 break;
389 }
390 }
391 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
392
393 return broadcast;
394 }
395
396
397 #ifdef CONFIG_TICK_ONESHOT
398
399 /* FIXME: use cpumask_var_t. */
400 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
401
402 /*
403 * Exposed for debugging: see timer_list.c
404 */
405 struct cpumask *tick_get_broadcast_oneshot_mask(void)
406 {
407 return to_cpumask(tick_broadcast_oneshot_mask);
408 }
409
410 static int tick_broadcast_set_event(ktime_t expires, int force)
411 {
412 struct clock_event_device *bc = tick_broadcast_device.evtdev;
413
414 if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
415 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
416
417 return clockevents_program_event(bc, expires, force);
418 }
419
420 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
421 {
422 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
423 return 0;
424 }
425
426 /*
427 * Called from irq_enter() when idle was interrupted to reenable the
428 * per cpu device.
429 */
430 void tick_check_oneshot_broadcast(int cpu)
431 {
432 if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
433 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
434
435 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
436 }
437 }
438
439 /*
440 * Handle oneshot mode broadcasting
441 */
442 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
443 {
444 struct tick_device *td;
445 ktime_t now, next_event;
446 int cpu;
447
448 raw_spin_lock(&tick_broadcast_lock);
449 again:
450 dev->next_event.tv64 = KTIME_MAX;
451 next_event.tv64 = KTIME_MAX;
452 cpumask_clear(to_cpumask(tmpmask));
453 now = ktime_get();
454 /* Find all expired events */
455 for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
456 td = &per_cpu(tick_cpu_device, cpu);
457 if (td->evtdev->next_event.tv64 <= now.tv64)
458 cpumask_set_cpu(cpu, to_cpumask(tmpmask));
459 else if (td->evtdev->next_event.tv64 < next_event.tv64)
460 next_event.tv64 = td->evtdev->next_event.tv64;
461 }
462
463 /*
464 * Wakeup the cpus which have an expired event.
465 */
466 tick_do_broadcast(to_cpumask(tmpmask));
467
468 /*
469 * Two reasons for reprogram:
470 *
471 * - The global event did not expire any CPU local
472 * events. This happens in dyntick mode, as the maximum PIT
473 * delta is quite small.
474 *
475 * - There are pending events on sleeping CPUs which were not
476 * in the event mask
477 */
478 if (next_event.tv64 != KTIME_MAX) {
479 /*
480 * Rearm the broadcast device. If event expired,
481 * repeat the above
482 */
483 if (tick_broadcast_set_event(next_event, 0))
484 goto again;
485 }
486 raw_spin_unlock(&tick_broadcast_lock);
487 }
488
489 /*
490 * Powerstate information: The system enters/leaves a state, where
491 * affected devices might stop
492 */
493 void tick_broadcast_oneshot_control(unsigned long reason)
494 {
495 struct clock_event_device *bc, *dev;
496 struct tick_device *td;
497 unsigned long flags;
498 int cpu;
499
500 /*
501 * Periodic mode does not care about the enter/exit of power
502 * states
503 */
504 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
505 return;
506
507 /*
508 * We are called with preemtion disabled from the depth of the
509 * idle code, so we can't be moved away.
510 */
511 cpu = smp_processor_id();
512 td = &per_cpu(tick_cpu_device, cpu);
513 dev = td->evtdev;
514
515 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
516 return;
517
518 bc = tick_broadcast_device.evtdev;
519
520 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
521 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
522 if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
523 cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
524 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
525 if (dev->next_event.tv64 < bc->next_event.tv64)
526 tick_broadcast_set_event(dev->next_event, 1);
527 }
528 } else {
529 if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
530 cpumask_clear_cpu(cpu,
531 tick_get_broadcast_oneshot_mask());
532 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
533 if (dev->next_event.tv64 != KTIME_MAX)
534 tick_program_event(dev->next_event, 1);
535 }
536 }
537 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
538 }
539
540 /*
541 * Reset the one shot broadcast for a cpu
542 *
543 * Called with tick_broadcast_lock held
544 */
545 static void tick_broadcast_clear_oneshot(int cpu)
546 {
547 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
548 }
549
550 static void tick_broadcast_init_next_event(struct cpumask *mask,
551 ktime_t expires)
552 {
553 struct tick_device *td;
554 int cpu;
555
556 for_each_cpu(cpu, mask) {
557 td = &per_cpu(tick_cpu_device, cpu);
558 if (td->evtdev)
559 td->evtdev->next_event = expires;
560 }
561 }
562
563 /**
564 * tick_broadcast_setup_oneshot - setup the broadcast device
565 */
566 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
567 {
568 int cpu = smp_processor_id();
569
570 /* Set it up only once ! */
571 if (bc->event_handler != tick_handle_oneshot_broadcast) {
572 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
573
574 bc->event_handler = tick_handle_oneshot_broadcast;
575
576 /* Take the do_timer update */
577 if (!tick_nohz_full_cpu(cpu))
578 tick_do_timer_cpu = cpu;
579
580 /*
581 * We must be careful here. There might be other CPUs
582 * waiting for periodic broadcast. We need to set the
583 * oneshot_mask bits for those and program the
584 * broadcast device to fire.
585 */
586 cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
587 cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
588 cpumask_or(tick_get_broadcast_oneshot_mask(),
589 tick_get_broadcast_oneshot_mask(),
590 to_cpumask(tmpmask));
591
592 if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
593 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
594 tick_broadcast_init_next_event(to_cpumask(tmpmask),
595 tick_next_period);
596 tick_broadcast_set_event(tick_next_period, 1);
597 } else
598 bc->next_event.tv64 = KTIME_MAX;
599 } else {
600 /*
601 * The first cpu which switches to oneshot mode sets
602 * the bit for all other cpus which are in the general
603 * (periodic) broadcast mask. So the bit is set and
604 * would prevent the first broadcast enter after this
605 * to program the bc device.
606 */
607 tick_broadcast_clear_oneshot(cpu);
608 }
609 }
610
611 /*
612 * Select oneshot operating mode for the broadcast device
613 */
614 void tick_broadcast_switch_to_oneshot(void)
615 {
616 struct clock_event_device *bc;
617 unsigned long flags;
618
619 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
620
621 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
622 bc = tick_broadcast_device.evtdev;
623 if (bc)
624 tick_broadcast_setup_oneshot(bc);
625
626 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
627 }
628
629
630 /*
631 * Remove a dead CPU from broadcasting
632 */
633 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
634 {
635 unsigned long flags;
636 unsigned int cpu = *cpup;
637
638 raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
639
640 /*
641 * Clear the broadcast mask flag for the dead cpu, but do not
642 * stop the broadcast device!
643 */
644 cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
645
646 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
647 }
648
649 /*
650 * Check, whether the broadcast device is in one shot mode
651 */
652 int tick_broadcast_oneshot_active(void)
653 {
654 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
655 }
656
657 /*
658 * Check whether the broadcast device supports oneshot.
659 */
660 bool tick_broadcast_oneshot_available(void)
661 {
662 struct clock_event_device *bc = tick_broadcast_device.evtdev;
663
664 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
665 }
666
667 #endif