Merge tag 'v3.10.98' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / sched_clock.c
1 /*
2 * sched_clock.c: support for extending counters to full 64-bit ns counter
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8 #include <linux/clocksource.h>
9 #include <linux/init.h>
10 #include <linux/jiffies.h>
11 #include <linux/ktime.h>
12 #include <linux/kernel.h>
13 #include <linux/moduleparam.h>
14 #include <linux/sched.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
20
21 struct clock_data {
22 ktime_t wrap_kt;
23 u64 epoch_ns;
24 u64 epoch_cyc;
25 u64 epoch_cyc_copy; /*add this to protect read & write share data (cd.epoch_ns/cd.epoch_cyc) sync (same as arch/arm/sched_clock.c)*/
26 seqcount_t seq;
27 unsigned long rate;
28 u32 mult;
29 u32 shift;
30 bool suspended;
31 };
32
33 static struct hrtimer sched_clock_timer;
34 static int irqtime = -1;
35
36 core_param(irqtime, irqtime, int, 0400);
37
38 static struct clock_data cd = {
39 .mult = NSEC_PER_SEC / HZ,
40 };
41
42 static u64 __read_mostly sched_clock_mask;
43
44 static u64 notrace jiffy_sched_clock_read(void)
45 {
46 /*
47 * We don't need to use get_jiffies_64 on 32-bit arches here
48 * because we register with BITS_PER_LONG
49 */
50 return (u64)(jiffies - INITIAL_JIFFIES);
51 }
52
53 static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
54
55 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
56 {
57 return (cyc * mult) >> shift;
58 }
59
60 unsigned long long notrace sched_clock(void)
61 {
62 u64 epoch_ns;
63 u64 epoch_cyc;
64 u64 cyc;
65 unsigned long seq;
66
67 if (cd.suspended)
68 return cd.epoch_ns;
69 /*
70 * used cd.epoch_cyc_copy instead of read/write seqcount
71 * because of read/write seqcount cannot sync the read/write flow
72 * race condition will happen for epoch_cyc/epoch_ns
73 */
74 do {
75 //seq = raw_read_seqcount_begin(&cd.seq);
76 //seq = read_seqcount_begin(&cd.seq);
77 epoch_cyc = cd.epoch_cyc;
78 smp_rmb();
79 epoch_ns = cd.epoch_ns;
80 smp_rmb();
81 } while (epoch_cyc != cd.epoch_cyc_copy);
82
83 cyc = read_sched_clock();
84 cyc = (cyc - epoch_cyc) & sched_clock_mask;
85 return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
86 }
87
88 /*
89 * Atomically update the sched_clock epoch.
90 */
91 static void notrace update_sched_clock(void)
92 {
93 unsigned long flags;
94 u64 cyc;
95 u64 ns;
96
97 cyc = read_sched_clock();
98 ns = cd.epoch_ns +
99 cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
100 cd.mult, cd.shift);
101
102 raw_local_irq_save(flags);
103 /*
104 * same with sched_clock() comment
105 */
106
107 //raw_write_seqcount_begin(&cd.seq);
108 //write_seqcount_begin(&cd.seq);
109 cd.epoch_cyc_copy = cyc;
110 smp_wmb();
111 cd.epoch_ns = ns;
112 smp_wmb();
113 cd.epoch_cyc = cyc;
114 //raw_write_seqcount_end(&cd.seq);
115 //write_seqcount_end(&cd.seq);
116 raw_local_irq_restore(flags);
117 }
118
119 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
120 {
121 update_sched_clock();
122 hrtimer_forward_now(hrt, cd.wrap_kt);
123 return HRTIMER_RESTART;
124 }
125
126 void __init sched_clock_register(u64 (*read)(void), int bits,
127 unsigned long rate)
128 {
129 u64 res, wrap, new_mask, new_epoch, cyc, ns;
130 u32 new_mult, new_shift;
131 ktime_t new_wrap_kt;
132 unsigned long r;
133 char r_unit;
134
135 if (cd.rate > rate)
136 return;
137
138 WARN_ON(!irqs_disabled());
139
140 /* calculate the mult/shift to convert counter ticks to ns. */
141 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 0);
142
143 //new_mask = CLOCKSOURCE_MASK(bits);
144 /* calculate how many ns until we wrap */
145 //wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
146
147 //under kernel 3.10
148 new_mask = (1ULL<<(bits))-1;
149 wrap = cyc_to_ns((1ULL << bits) - 1, new_mult, new_shift);
150
151 new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
152
153 /* update epoch for new counter and update epoch_ns from old counter*/
154 new_epoch = read();
155 cyc = read_sched_clock();
156 ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
157 cd.mult, cd.shift);
158
159 //raw_write_seqcount_begin(&cd.seq);
160 write_seqcount_begin(&cd.seq);
161 read_sched_clock = read;
162 sched_clock_mask = new_mask;
163 cd.rate = rate;
164 cd.wrap_kt = new_wrap_kt;
165 cd.mult = new_mult;
166 cd.shift = new_shift;
167 cd.epoch_cyc = new_epoch;
168 cd.epoch_ns = ns;
169 //raw_write_seqcount_end(&cd.seq);
170 write_seqcount_end(&cd.seq);
171
172 r = rate;
173 if (r >= 4000000) {
174 r /= 1000000;
175 r_unit = 'M';
176 } else if (r >= 1000) {
177 r /= 1000;
178 r_unit = 'k';
179 } else
180 r_unit = ' ';
181
182 /* calculate the ns resolution of this counter */
183 res = cyc_to_ns(1ULL, new_mult, new_shift);
184
185 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
186 bits, r, r_unit, res, wrap);
187
188 /* Enable IRQ time accounting if we have a fast enough sched_clock */
189 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
190 enable_sched_clock_irqtime();
191
192 pr_debug("Registered %pF as sched_clock source\n", read);
193 }
194
195 void __init sched_clock_postinit(void)
196 {
197 /*
198 * If no sched_clock function has been provided at that point,
199 * make it the final one one.
200 */
201 if (read_sched_clock == jiffy_sched_clock_read)
202 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
203
204 update_sched_clock();
205
206 /*
207 * Start the timer to keep sched_clock() properly updated and
208 * sets the initial epoch.
209 */
210 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 sched_clock_timer.function = sched_clock_poll;
212 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
213 }
214
215 static int sched_clock_suspend(void)
216 {
217 update_sched_clock();
218 hrtimer_cancel(&sched_clock_timer);
219 cd.suspended = true;
220 return 0;
221 }
222
223 static void sched_clock_resume(void)
224 {
225 cd.epoch_cyc = read_sched_clock();
226 cd.epoch_cyc_copy = cd.epoch_cyc;
227 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
228 cd.suspended = false;
229 }
230
231 static struct syscore_ops sched_clock_ops = {
232 .suspend = sched_clock_suspend,
233 .resume = sched_clock_resume,
234 };
235
236 static int __init sched_clock_syscore_init(void)
237 {
238 register_syscore_ops(&sched_clock_ops);
239 return 0;
240 }
241 device_initcall(sched_clock_syscore_init);