Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time / alarmtimer.c
1 /*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28
29 /**
30 * struct alarm_base - Alarm timer bases
31 * @lock: Lock for syncrhonized access to the base
32 * @timerqueue: Timerqueue head managing the list of events
33 * @timer: hrtimer used to schedule events while running
34 * @gettime: Function to read the time correlating to the base
35 * @base_clockid: clockid for the base
36 */
37 static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 struct hrtimer timer;
41 ktime_t (*gettime)(void);
42 clockid_t base_clockid;
43 } alarm_bases[ALARM_NUMTYPE];
44
45 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
46 static ktime_t freezer_delta;
47 static DEFINE_SPINLOCK(freezer_delta_lock);
48
49 #ifdef CONFIG_RTC_CLASS
50 /* rtc timer and device for setting alarm wakeups at suspend */
51 static struct rtc_timer rtctimer;
52 static struct rtc_device *rtcdev;
53 static DEFINE_SPINLOCK(rtcdev_lock);
54
55 /**
56 * alarmtimer_get_rtcdev - Return selected rtcdevice
57 *
58 * This function returns the rtc device to use for wakealarms.
59 * If one has not already been chosen, it checks to see if a
60 * functional rtc device is available.
61 */
62 struct rtc_device *alarmtimer_get_rtcdev(void)
63 {
64 unsigned long flags;
65 struct rtc_device *ret;
66
67 spin_lock_irqsave(&rtcdev_lock, flags);
68 ret = rtcdev;
69 spin_unlock_irqrestore(&rtcdev_lock, flags);
70
71 return ret;
72 }
73
74
75 static int alarmtimer_rtc_add_device(struct device *dev,
76 struct class_interface *class_intf)
77 {
78 unsigned long flags;
79 struct rtc_device *rtc = to_rtc_device(dev);
80
81 if (rtcdev)
82 return -EBUSY;
83
84 if (!rtc->ops->set_alarm)
85 return -1;
86 if (!device_may_wakeup(rtc->dev.parent))
87 return -1;
88
89 spin_lock_irqsave(&rtcdev_lock, flags);
90 if (!rtcdev) {
91 rtcdev = rtc;
92 /* hold a reference so it doesn't go away */
93 get_device(dev);
94 }
95 spin_unlock_irqrestore(&rtcdev_lock, flags);
96 return 0;
97 }
98
99 static inline void alarmtimer_rtc_timer_init(void)
100 {
101 rtc_timer_init(&rtctimer, NULL, NULL);
102 }
103
104 static struct class_interface alarmtimer_rtc_interface = {
105 .add_dev = &alarmtimer_rtc_add_device,
106 };
107
108 static int alarmtimer_rtc_interface_setup(void)
109 {
110 alarmtimer_rtc_interface.class = rtc_class;
111 return class_interface_register(&alarmtimer_rtc_interface);
112 }
113 static void alarmtimer_rtc_interface_remove(void)
114 {
115 class_interface_unregister(&alarmtimer_rtc_interface);
116 }
117 #else
118 struct rtc_device *alarmtimer_get_rtcdev(void)
119 {
120 return NULL;
121 }
122 #define rtcdev (NULL)
123 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
124 static inline void alarmtimer_rtc_interface_remove(void) { }
125 static inline void alarmtimer_rtc_timer_init(void) { }
126 #endif
127
128 /**
129 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
130 * @base: pointer to the base where the timer is being run
131 * @alarm: pointer to alarm being enqueued.
132 *
133 * Adds alarm to a alarm_base timerqueue and if necessary sets
134 * an hrtimer to run.
135 *
136 * Must hold base->lock when calling.
137 */
138 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139 {
140 timerqueue_add(&base->timerqueue, &alarm->node);
141 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
142
143 if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
144 hrtimer_try_to_cancel(&base->timer);
145 hrtimer_start(&base->timer, alarm->node.expires,
146 HRTIMER_MODE_ABS);
147 }
148 }
149
150 /**
151 * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
152 * @base: pointer to the base where the timer is running
153 * @alarm: pointer to alarm being removed
154 *
155 * Removes alarm to a alarm_base timerqueue and if necessary sets
156 * a new timer to run.
157 *
158 * Must hold base->lock when calling.
159 */
160 static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
161 {
162 struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
163
164 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
165 return;
166
167 timerqueue_del(&base->timerqueue, &alarm->node);
168 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
169
170 if (next == &alarm->node) {
171 hrtimer_try_to_cancel(&base->timer);
172 next = timerqueue_getnext(&base->timerqueue);
173 if (!next)
174 return;
175 hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
176 }
177 }
178
179
180 /**
181 * alarmtimer_fired - Handles alarm hrtimer being fired.
182 * @timer: pointer to hrtimer being run
183 *
184 * When a alarm timer fires, this runs through the timerqueue to
185 * see which alarms expired, and runs those. If there are more alarm
186 * timers queued for the future, we set the hrtimer to fire when
187 * when the next future alarm timer expires.
188 */
189 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
190 {
191 struct alarm_base *base = container_of(timer, struct alarm_base, timer);
192 struct timerqueue_node *next;
193 unsigned long flags;
194 ktime_t now;
195 int ret = HRTIMER_NORESTART;
196 int restart = ALARMTIMER_NORESTART;
197
198 spin_lock_irqsave(&base->lock, flags);
199 now = base->gettime();
200 while ((next = timerqueue_getnext(&base->timerqueue))) {
201 struct alarm *alarm;
202 ktime_t expired = next->expires;
203
204 if (expired.tv64 > now.tv64)
205 break;
206
207 alarm = container_of(next, struct alarm, node);
208
209 timerqueue_del(&base->timerqueue, &alarm->node);
210 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
211
212 alarm->state |= ALARMTIMER_STATE_CALLBACK;
213 spin_unlock_irqrestore(&base->lock, flags);
214 if (alarm->function)
215 restart = alarm->function(alarm, now);
216 spin_lock_irqsave(&base->lock, flags);
217 alarm->state &= ~ALARMTIMER_STATE_CALLBACK;
218
219 if (restart != ALARMTIMER_NORESTART) {
220 timerqueue_add(&base->timerqueue, &alarm->node);
221 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
222 }
223 }
224
225 if (next) {
226 hrtimer_set_expires(&base->timer, next->expires);
227 ret = HRTIMER_RESTART;
228 }
229 spin_unlock_irqrestore(&base->lock, flags);
230
231 return ret;
232
233 }
234
235 #ifdef CONFIG_RTC_CLASS
236 /**
237 * alarmtimer_suspend - Suspend time callback
238 * @dev: unused
239 * @state: unused
240 *
241 * When we are going into suspend, we look through the bases
242 * to see which is the soonest timer to expire. We then
243 * set an rtc timer to fire that far into the future, which
244 * will wake us from suspend.
245 */
246 static int alarmtimer_suspend(struct device *dev)
247 {
248 struct rtc_time tm;
249 ktime_t min, now;
250 unsigned long flags;
251 struct rtc_device *rtc;
252 int i;
253
254 spin_lock_irqsave(&freezer_delta_lock, flags);
255 min = freezer_delta;
256 freezer_delta = ktime_set(0, 0);
257 spin_unlock_irqrestore(&freezer_delta_lock, flags);
258
259 rtc = alarmtimer_get_rtcdev();
260 /* If we have no rtcdev, just return */
261 if (!rtc)
262 return 0;
263
264 /* Find the soonest timer to expire*/
265 for (i = 0; i < ALARM_NUMTYPE; i++) {
266 struct alarm_base *base = &alarm_bases[i];
267 struct timerqueue_node *next;
268 ktime_t delta;
269
270 spin_lock_irqsave(&base->lock, flags);
271 next = timerqueue_getnext(&base->timerqueue);
272 spin_unlock_irqrestore(&base->lock, flags);
273 if (!next)
274 continue;
275 delta = ktime_sub(next->expires, base->gettime());
276 if (!min.tv64 || (delta.tv64 < min.tv64))
277 min = delta;
278 }
279 if (min.tv64 == 0)
280 return 0;
281
282 /* XXX - Should we enforce a minimum sleep time? */
283 WARN_ON(min.tv64 < NSEC_PER_SEC);
284
285 /* Setup an rtc timer to fire that far in the future */
286 rtc_timer_cancel(rtc, &rtctimer);
287 rtc_read_time(rtc, &tm);
288 now = rtc_tm_to_ktime(tm);
289 now = ktime_add(now, min);
290
291 rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
292
293 return 0;
294 }
295 #else
296 static int alarmtimer_suspend(struct device *dev)
297 {
298 return 0;
299 }
300 #endif
301
302 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
303 {
304 ktime_t delta;
305 unsigned long flags;
306 struct alarm_base *base = &alarm_bases[type];
307
308 delta = ktime_sub(absexp, base->gettime());
309
310 spin_lock_irqsave(&freezer_delta_lock, flags);
311 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
312 freezer_delta = delta;
313 spin_unlock_irqrestore(&freezer_delta_lock, flags);
314 }
315
316
317 /**
318 * alarm_init - Initialize an alarm structure
319 * @alarm: ptr to alarm to be initialized
320 * @type: the type of the alarm
321 * @function: callback that is run when the alarm fires
322 */
323 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
325 {
326 timerqueue_init(&alarm->node);
327 alarm->function = function;
328 alarm->type = type;
329 alarm->state = ALARMTIMER_STATE_INACTIVE;
330 }
331
332 /**
333 * alarm_start - Sets an alarm to fire
334 * @alarm: ptr to alarm to set
335 * @start: time to run the alarm
336 */
337 void alarm_start(struct alarm *alarm, ktime_t start)
338 {
339 struct alarm_base *base = &alarm_bases[alarm->type];
340 unsigned long flags;
341
342 spin_lock_irqsave(&base->lock, flags);
343 if (alarmtimer_active(alarm))
344 alarmtimer_remove(base, alarm);
345 alarm->node.expires = start;
346 alarmtimer_enqueue(base, alarm);
347 spin_unlock_irqrestore(&base->lock, flags);
348 }
349
350 /**
351 * alarm_try_to_cancel - Tries to cancel an alarm timer
352 * @alarm: ptr to alarm to be canceled
353 *
354 * Returns 1 if the timer was canceled, 0 if it was not running,
355 * and -1 if the callback was running
356 */
357 int alarm_try_to_cancel(struct alarm *alarm)
358 {
359 struct alarm_base *base = &alarm_bases[alarm->type];
360 unsigned long flags;
361 int ret = -1;
362 spin_lock_irqsave(&base->lock, flags);
363
364 if (alarmtimer_callback_running(alarm))
365 goto out;
366
367 if (alarmtimer_is_queued(alarm)) {
368 alarmtimer_remove(base, alarm);
369 ret = 1;
370 } else
371 ret = 0;
372 out:
373 spin_unlock_irqrestore(&base->lock, flags);
374 return ret;
375 }
376
377
378 /**
379 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
380 * @alarm: ptr to alarm to be canceled
381 *
382 * Returns 1 if the timer was canceled, 0 if it was not active.
383 */
384 int alarm_cancel(struct alarm *alarm)
385 {
386 for (;;) {
387 int ret = alarm_try_to_cancel(alarm);
388 if (ret >= 0)
389 return ret;
390 cpu_relax();
391 }
392 }
393
394
395 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
396 {
397 u64 overrun = 1;
398 ktime_t delta;
399
400 delta = ktime_sub(now, alarm->node.expires);
401
402 if (delta.tv64 < 0)
403 return 0;
404
405 if (unlikely(delta.tv64 >= interval.tv64)) {
406 s64 incr = ktime_to_ns(interval);
407
408 overrun = ktime_divns(delta, incr);
409
410 alarm->node.expires = ktime_add_ns(alarm->node.expires,
411 incr*overrun);
412
413 if (alarm->node.expires.tv64 > now.tv64)
414 return overrun;
415 /*
416 * This (and the ktime_add() below) is the
417 * correction for exact:
418 */
419 overrun++;
420 }
421
422 alarm->node.expires = ktime_add(alarm->node.expires, interval);
423 return overrun;
424 }
425
426
427
428
429 /**
430 * clock2alarm - helper that converts from clockid to alarmtypes
431 * @clockid: clockid.
432 */
433 static enum alarmtimer_type clock2alarm(clockid_t clockid)
434 {
435 if (clockid == CLOCK_REALTIME_ALARM)
436 return ALARM_REALTIME;
437 if (clockid == CLOCK_BOOTTIME_ALARM)
438 return ALARM_BOOTTIME;
439 return -1;
440 }
441
442 /**
443 * alarm_handle_timer - Callback for posix timers
444 * @alarm: alarm that fired
445 *
446 * Posix timer callback for expired alarm timers.
447 */
448 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
449 ktime_t now)
450 {
451 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
452 it.alarm.alarmtimer);
453 if (posix_timer_event(ptr, 0) != 0)
454 ptr->it_overrun++;
455
456 /* Re-add periodic timers */
457 if (ptr->it.alarm.interval.tv64) {
458 ptr->it_overrun += alarm_forward(alarm, now,
459 ptr->it.alarm.interval);
460 return ALARMTIMER_RESTART;
461 }
462 return ALARMTIMER_NORESTART;
463 }
464
465 /**
466 * alarm_clock_getres - posix getres interface
467 * @which_clock: clockid
468 * @tp: timespec to fill
469 *
470 * Returns the granularity of underlying alarm base clock
471 */
472 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
473 {
474 clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
475
476 if (!alarmtimer_get_rtcdev())
477 return -ENOTSUPP;
478
479 return hrtimer_get_res(baseid, tp);
480 }
481
482 /**
483 * alarm_clock_get - posix clock_get interface
484 * @which_clock: clockid
485 * @tp: timespec to fill.
486 *
487 * Provides the underlying alarm base time.
488 */
489 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
490 {
491 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
492
493 if (!alarmtimer_get_rtcdev())
494 return -ENOTSUPP;
495
496 *tp = ktime_to_timespec(base->gettime());
497 return 0;
498 }
499
500 /**
501 * alarm_timer_create - posix timer_create interface
502 * @new_timer: k_itimer pointer to manage
503 *
504 * Initializes the k_itimer structure.
505 */
506 static int alarm_timer_create(struct k_itimer *new_timer)
507 {
508 enum alarmtimer_type type;
509 struct alarm_base *base;
510
511 if (!alarmtimer_get_rtcdev())
512 return -ENOTSUPP;
513
514 if (!capable(CAP_WAKE_ALARM))
515 return -EPERM;
516
517 type = clock2alarm(new_timer->it_clock);
518 base = &alarm_bases[type];
519 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
520 return 0;
521 }
522
523 /**
524 * alarm_timer_get - posix timer_get interface
525 * @new_timer: k_itimer pointer
526 * @cur_setting: itimerspec data to fill
527 *
528 * Copies the itimerspec data out from the k_itimer
529 */
530 static void alarm_timer_get(struct k_itimer *timr,
531 struct itimerspec *cur_setting)
532 {
533 memset(cur_setting, 0, sizeof(struct itimerspec));
534
535 cur_setting->it_interval =
536 ktime_to_timespec(timr->it.alarm.interval);
537 cur_setting->it_value =
538 ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
539 return;
540 }
541
542 /**
543 * alarm_timer_del - posix timer_del interface
544 * @timr: k_itimer pointer to be deleted
545 *
546 * Cancels any programmed alarms for the given timer.
547 */
548 static int alarm_timer_del(struct k_itimer *timr)
549 {
550 if (!rtcdev)
551 return -ENOTSUPP;
552
553 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
554 return TIMER_RETRY;
555
556 return 0;
557 }
558
559 /**
560 * alarm_timer_set - posix timer_set interface
561 * @timr: k_itimer pointer to be deleted
562 * @flags: timer flags
563 * @new_setting: itimerspec to be used
564 * @old_setting: itimerspec being replaced
565 *
566 * Sets the timer to new_setting, and starts the timer.
567 */
568 static int alarm_timer_set(struct k_itimer *timr, int flags,
569 struct itimerspec *new_setting,
570 struct itimerspec *old_setting)
571 {
572 if (!rtcdev)
573 return -ENOTSUPP;
574
575 if (old_setting)
576 alarm_timer_get(timr, old_setting);
577
578 /* If the timer was already set, cancel it */
579 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
580 return TIMER_RETRY;
581
582 /* start the timer */
583 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
584 alarm_start(&timr->it.alarm.alarmtimer,
585 timespec_to_ktime(new_setting->it_value));
586 return 0;
587 }
588
589 /**
590 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
591 * @alarm: ptr to alarm that fired
592 *
593 * Wakes up the task that set the alarmtimer
594 */
595 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
596 ktime_t now)
597 {
598 struct task_struct *task = (struct task_struct *)alarm->data;
599
600 alarm->data = NULL;
601 if (task)
602 wake_up_process(task);
603 return ALARMTIMER_NORESTART;
604 }
605
606 /**
607 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
608 * @alarm: ptr to alarmtimer
609 * @absexp: absolute expiration time
610 *
611 * Sets the alarm timer and sleeps until it is fired or interrupted.
612 */
613 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
614 {
615 alarm->data = (void *)current;
616 do {
617 set_current_state(TASK_INTERRUPTIBLE);
618 alarm_start(alarm, absexp);
619 if (likely(alarm->data))
620 schedule();
621
622 alarm_cancel(alarm);
623 } while (alarm->data && !signal_pending(current));
624
625 __set_current_state(TASK_RUNNING);
626
627 return (alarm->data == NULL);
628 }
629
630
631 /**
632 * update_rmtp - Update remaining timespec value
633 * @exp: expiration time
634 * @type: timer type
635 * @rmtp: user pointer to remaining timepsec value
636 *
637 * Helper function that fills in rmtp value with time between
638 * now and the exp value
639 */
640 static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
641 struct timespec __user *rmtp)
642 {
643 struct timespec rmt;
644 ktime_t rem;
645
646 rem = ktime_sub(exp, alarm_bases[type].gettime());
647
648 if (rem.tv64 <= 0)
649 return 0;
650 rmt = ktime_to_timespec(rem);
651
652 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
653 return -EFAULT;
654
655 return 1;
656
657 }
658
659 /**
660 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
661 * @restart: ptr to restart block
662 *
663 * Handles restarted clock_nanosleep calls
664 */
665 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
666 {
667 enum alarmtimer_type type = restart->nanosleep.clockid;
668 ktime_t exp;
669 struct timespec __user *rmtp;
670 struct alarm alarm;
671 int ret = 0;
672
673 exp.tv64 = restart->nanosleep.expires;
674 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
675
676 if (alarmtimer_do_nsleep(&alarm, exp))
677 goto out;
678
679 if (freezing(current))
680 alarmtimer_freezerset(exp, type);
681
682 rmtp = restart->nanosleep.rmtp;
683 if (rmtp) {
684 ret = update_rmtp(exp, type, rmtp);
685 if (ret <= 0)
686 goto out;
687 }
688
689
690 /* The other values in restart are already filled in */
691 ret = -ERESTART_RESTARTBLOCK;
692 out:
693 return ret;
694 }
695
696 /**
697 * alarm_timer_nsleep - alarmtimer nanosleep
698 * @which_clock: clockid
699 * @flags: determins abstime or relative
700 * @tsreq: requested sleep time (abs or rel)
701 * @rmtp: remaining sleep time saved
702 *
703 * Handles clock_nanosleep calls against _ALARM clockids
704 */
705 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
706 struct timespec *tsreq, struct timespec __user *rmtp)
707 {
708 enum alarmtimer_type type = clock2alarm(which_clock);
709 struct alarm alarm;
710 ktime_t exp;
711 int ret = 0;
712 struct restart_block *restart;
713
714 if (!alarmtimer_get_rtcdev())
715 return -ENOTSUPP;
716
717 if (!capable(CAP_WAKE_ALARM))
718 return -EPERM;
719
720 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
721
722 exp = timespec_to_ktime(*tsreq);
723 /* Convert (if necessary) to absolute time */
724 if (flags != TIMER_ABSTIME) {
725 ktime_t now = alarm_bases[type].gettime();
726 exp = ktime_add(now, exp);
727 }
728
729 if (alarmtimer_do_nsleep(&alarm, exp))
730 goto out;
731
732 if (freezing(current))
733 alarmtimer_freezerset(exp, type);
734
735 /* abs timers don't set remaining time or restart */
736 if (flags == TIMER_ABSTIME) {
737 ret = -ERESTARTNOHAND;
738 goto out;
739 }
740
741 if (rmtp) {
742 ret = update_rmtp(exp, type, rmtp);
743 if (ret <= 0)
744 goto out;
745 }
746
747 restart = &current_thread_info()->restart_block;
748 restart->fn = alarm_timer_nsleep_restart;
749 restart->nanosleep.clockid = type;
750 restart->nanosleep.expires = exp.tv64;
751 restart->nanosleep.rmtp = rmtp;
752 ret = -ERESTART_RESTARTBLOCK;
753
754 out:
755 return ret;
756 }
757
758
759 /* Suspend hook structures */
760 static const struct dev_pm_ops alarmtimer_pm_ops = {
761 .suspend = alarmtimer_suspend,
762 };
763
764 static struct platform_driver alarmtimer_driver = {
765 .driver = {
766 .name = "alarmtimer",
767 .pm = &alarmtimer_pm_ops,
768 }
769 };
770
771 /**
772 * alarmtimer_init - Initialize alarm timer code
773 *
774 * This function initializes the alarm bases and registers
775 * the posix clock ids.
776 */
777 static int __init alarmtimer_init(void)
778 {
779 struct platform_device *pdev;
780 int error = 0;
781 int i;
782 struct k_clock alarm_clock = {
783 .clock_getres = alarm_clock_getres,
784 .clock_get = alarm_clock_get,
785 .timer_create = alarm_timer_create,
786 .timer_set = alarm_timer_set,
787 .timer_del = alarm_timer_del,
788 .timer_get = alarm_timer_get,
789 .nsleep = alarm_timer_nsleep,
790 };
791
792 alarmtimer_rtc_timer_init();
793
794 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
795 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
796
797 /* Initialize alarm bases */
798 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
799 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
800 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
801 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
802 for (i = 0; i < ALARM_NUMTYPE; i++) {
803 timerqueue_init_head(&alarm_bases[i].timerqueue);
804 spin_lock_init(&alarm_bases[i].lock);
805 hrtimer_init(&alarm_bases[i].timer,
806 alarm_bases[i].base_clockid,
807 HRTIMER_MODE_ABS);
808 alarm_bases[i].timer.function = alarmtimer_fired;
809 }
810
811 error = alarmtimer_rtc_interface_setup();
812 if (error)
813 return error;
814
815 error = platform_driver_register(&alarmtimer_driver);
816 if (error)
817 goto out_if;
818
819 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
820 if (IS_ERR(pdev)) {
821 error = PTR_ERR(pdev);
822 goto out_drv;
823 }
824 return 0;
825
826 out_drv:
827 platform_driver_unregister(&alarmtimer_driver);
828 out_if:
829 alarmtimer_rtc_interface_remove();
830 return error;
831 }
832 device_initcall(alarmtimer_init);