drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / time.c
1 /*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10 /*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43
44 #include "timeconst.h"
45
46 /*
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50 struct timezone sys_tz;
51
52 EXPORT_SYMBOL(sys_tz);
53
54 #ifdef __ARCH_WANT_SYS_TIME
55
56 /*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
63 {
64 time_t i = get_seconds();
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
69 }
70 force_successful_syscall_return();
71 return i;
72 }
73
74 /*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82 {
83 struct timespec tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday(&tv);
96 return 0;
97 }
98
99 #endif /* __ARCH_WANT_SYS_TIME */
100
101 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 struct timezone __user *, tz)
103 {
104 if (likely(tv != NULL)) {
105 struct timeval ktv;
106 do_gettimeofday(&ktv);
107 if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 return -EFAULT;
109 }
110 if (unlikely(tz != NULL)) {
111 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 return -EFAULT;
113 }
114 return 0;
115 }
116
117 /*
118 * Indicates if there is an offset between the system clock and the hardware
119 * clock/persistent clock/rtc.
120 */
121 int persistent_clock_is_local;
122
123 /*
124 * Adjust the time obtained from the CMOS to be UTC time instead of
125 * local time.
126 *
127 * This is ugly, but preferable to the alternatives. Otherwise we
128 * would either need to write a program to do it in /etc/rc (and risk
129 * confusion if the program gets run more than once; it would also be
130 * hard to make the program warp the clock precisely n hours) or
131 * compile in the timezone information into the kernel. Bad, bad....
132 *
133 * - TYT, 1992-01-01
134 *
135 * The best thing to do is to keep the CMOS clock in universal time (UTC)
136 * as real UNIX machines always do it. This avoids all headaches about
137 * daylight saving times and warping kernel clocks.
138 */
139 static inline void warp_clock(void)
140 {
141 if (sys_tz.tz_minuteswest != 0) {
142 struct timespec adjust;
143
144 persistent_clock_is_local = 1;
145 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
146 adjust.tv_nsec = 0;
147 timekeeping_inject_offset(&adjust);
148 }
149 }
150
151 /*
152 * In case for some reason the CMOS clock has not already been running
153 * in UTC, but in some local time: The first time we set the timezone,
154 * we will warp the clock so that it is ticking UTC time instead of
155 * local time. Presumably, if someone is setting the timezone then we
156 * are running in an environment where the programs understand about
157 * timezones. This should be done at boot time in the /etc/rc script,
158 * as soon as possible, so that the clock can be set right. Otherwise,
159 * various programs will get confused when the clock gets warped.
160 */
161
162 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
163 {
164 static int firsttime = 1;
165 int error = 0;
166
167 if (tv && !timespec_valid(tv))
168 return -EINVAL;
169
170 error = security_settime(tv, tz);
171 if (error)
172 return error;
173
174 if (tz) {
175 sys_tz = *tz;
176 update_vsyscall_tz();
177 if (firsttime) {
178 firsttime = 0;
179 if (!tv)
180 warp_clock();
181 }
182 }
183 if (tv)
184 return do_settimeofday(tv);
185 return 0;
186 }
187
188 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
189 struct timezone __user *, tz)
190 {
191 struct timeval user_tv;
192 struct timespec new_ts;
193 struct timezone new_tz;
194
195 if (tv) {
196 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
197 return -EFAULT;
198
199 if (!timeval_valid(&user_tv))
200 return -EINVAL;
201
202 new_ts.tv_sec = user_tv.tv_sec;
203 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
204 }
205 if (tz) {
206 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
207 return -EFAULT;
208 }
209
210 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
211 }
212
213 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
214 {
215 struct timex txc; /* Local copy of parameter */
216 int ret;
217
218 /* Copy the user data space into the kernel copy
219 * structure. But bear in mind that the structures
220 * may change
221 */
222 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
223 return -EFAULT;
224 ret = do_adjtimex(&txc);
225 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
226 }
227
228 /**
229 * current_fs_time - Return FS time
230 * @sb: Superblock.
231 *
232 * Return the current time truncated to the time granularity supported by
233 * the fs.
234 */
235 struct timespec current_fs_time(struct super_block *sb)
236 {
237 struct timespec now = current_kernel_time();
238 return timespec_trunc(now, sb->s_time_gran);
239 }
240 EXPORT_SYMBOL(current_fs_time);
241
242 /*
243 * Convert jiffies to milliseconds and back.
244 *
245 * Avoid unnecessary multiplications/divisions in the
246 * two most common HZ cases:
247 */
248 unsigned int jiffies_to_msecs(const unsigned long j)
249 {
250 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
251 return (MSEC_PER_SEC / HZ) * j;
252 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
253 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
254 #else
255 # if BITS_PER_LONG == 32
256 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
257 # else
258 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
259 # endif
260 #endif
261 }
262 EXPORT_SYMBOL(jiffies_to_msecs);
263
264 unsigned int jiffies_to_usecs(const unsigned long j)
265 {
266 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
267 return (USEC_PER_SEC / HZ) * j;
268 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
269 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
270 #else
271 # if BITS_PER_LONG == 32
272 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
273 # else
274 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
275 # endif
276 #endif
277 }
278 EXPORT_SYMBOL(jiffies_to_usecs);
279
280 /**
281 * timespec_trunc - Truncate timespec to a granularity
282 * @t: Timespec
283 * @gran: Granularity in ns.
284 *
285 * Truncate a timespec to a granularity. gran must be smaller than a second.
286 * Always rounds down.
287 *
288 * This function should be only used for timestamps returned by
289 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
290 * it doesn't handle the better resolution of the latter.
291 */
292 struct timespec timespec_trunc(struct timespec t, unsigned gran)
293 {
294 /*
295 * Division is pretty slow so avoid it for common cases.
296 * Currently current_kernel_time() never returns better than
297 * jiffies resolution. Exploit that.
298 */
299 if (gran <= jiffies_to_usecs(1) * 1000) {
300 /* nothing */
301 } else if (gran == 1000000000) {
302 t.tv_nsec = 0;
303 } else {
304 t.tv_nsec -= t.tv_nsec % gran;
305 }
306 return t;
307 }
308 EXPORT_SYMBOL(timespec_trunc);
309
310 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
311 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
312 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
313 *
314 * [For the Julian calendar (which was used in Russia before 1917,
315 * Britain & colonies before 1752, anywhere else before 1582,
316 * and is still in use by some communities) leave out the
317 * -year/100+year/400 terms, and add 10.]
318 *
319 * This algorithm was first published by Gauss (I think).
320 *
321 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
322 * machines where long is 32-bit! (However, as time_t is signed, we
323 * will already get problems at other places on 2038-01-19 03:14:08)
324 */
325 unsigned long
326 mktime(const unsigned int year0, const unsigned int mon0,
327 const unsigned int day, const unsigned int hour,
328 const unsigned int min, const unsigned int sec)
329 {
330 unsigned int mon = mon0, year = year0;
331
332 /* 1..12 -> 11,12,1..10 */
333 if (0 >= (int) (mon -= 2)) {
334 mon += 12; /* Puts Feb last since it has leap day */
335 year -= 1;
336 }
337
338 return ((((unsigned long)
339 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
340 year*365 - 719499
341 )*24 + hour /* now have hours */
342 )*60 + min /* now have minutes */
343 )*60 + sec; /* finally seconds */
344 }
345
346 EXPORT_SYMBOL(mktime);
347
348 /**
349 * set_normalized_timespec - set timespec sec and nsec parts and normalize
350 *
351 * @ts: pointer to timespec variable to be set
352 * @sec: seconds to set
353 * @nsec: nanoseconds to set
354 *
355 * Set seconds and nanoseconds field of a timespec variable and
356 * normalize to the timespec storage format
357 *
358 * Note: The tv_nsec part is always in the range of
359 * 0 <= tv_nsec < NSEC_PER_SEC
360 * For negative values only the tv_sec field is negative !
361 */
362 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
363 {
364 while (nsec >= NSEC_PER_SEC) {
365 /*
366 * The following asm() prevents the compiler from
367 * optimising this loop into a modulo operation. See
368 * also __iter_div_u64_rem() in include/linux/time.h
369 */
370 asm("" : "+rm"(nsec));
371 nsec -= NSEC_PER_SEC;
372 ++sec;
373 }
374 while (nsec < 0) {
375 asm("" : "+rm"(nsec));
376 nsec += NSEC_PER_SEC;
377 --sec;
378 }
379 ts->tv_sec = sec;
380 ts->tv_nsec = nsec;
381 }
382 EXPORT_SYMBOL(set_normalized_timespec);
383
384 /**
385 * ns_to_timespec - Convert nanoseconds to timespec
386 * @nsec: the nanoseconds value to be converted
387 *
388 * Returns the timespec representation of the nsec parameter.
389 */
390 struct timespec ns_to_timespec(const s64 nsec)
391 {
392 struct timespec ts;
393 s32 rem;
394
395 if (!nsec)
396 return (struct timespec) {0, 0};
397
398 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
399 if (unlikely(rem < 0)) {
400 ts.tv_sec--;
401 rem += NSEC_PER_SEC;
402 }
403 ts.tv_nsec = rem;
404
405 return ts;
406 }
407 EXPORT_SYMBOL(ns_to_timespec);
408
409 /**
410 * ns_to_timeval - Convert nanoseconds to timeval
411 * @nsec: the nanoseconds value to be converted
412 *
413 * Returns the timeval representation of the nsec parameter.
414 */
415 struct timeval ns_to_timeval(const s64 nsec)
416 {
417 struct timespec ts = ns_to_timespec(nsec);
418 struct timeval tv;
419
420 tv.tv_sec = ts.tv_sec;
421 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
422
423 return tv;
424 }
425 EXPORT_SYMBOL(ns_to_timeval);
426
427 /*
428 * When we convert to jiffies then we interpret incoming values
429 * the following way:
430 *
431 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
432 *
433 * - 'too large' values [that would result in larger than
434 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
435 *
436 * - all other values are converted to jiffies by either multiplying
437 * the input value by a factor or dividing it with a factor
438 *
439 * We must also be careful about 32-bit overflows.
440 */
441 unsigned long msecs_to_jiffies(const unsigned int m)
442 {
443 /*
444 * Negative value, means infinite timeout:
445 */
446 if ((int)m < 0)
447 return MAX_JIFFY_OFFSET;
448
449 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
450 /*
451 * HZ is equal to or smaller than 1000, and 1000 is a nice
452 * round multiple of HZ, divide with the factor between them,
453 * but round upwards:
454 */
455 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
456 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
457 /*
458 * HZ is larger than 1000, and HZ is a nice round multiple of
459 * 1000 - simply multiply with the factor between them.
460 *
461 * But first make sure the multiplication result cannot
462 * overflow:
463 */
464 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
465 return MAX_JIFFY_OFFSET;
466
467 return m * (HZ / MSEC_PER_SEC);
468 #else
469 /*
470 * Generic case - multiply, round and divide. But first
471 * check that if we are doing a net multiplication, that
472 * we wouldn't overflow:
473 */
474 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
475 return MAX_JIFFY_OFFSET;
476
477 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
478 >> MSEC_TO_HZ_SHR32;
479 #endif
480 }
481 EXPORT_SYMBOL(msecs_to_jiffies);
482
483 unsigned long usecs_to_jiffies(const unsigned int u)
484 {
485 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
486 return MAX_JIFFY_OFFSET;
487 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
488 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
489 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
490 return u * (HZ / USEC_PER_SEC);
491 #else
492 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
493 >> USEC_TO_HZ_SHR32;
494 #endif
495 }
496 EXPORT_SYMBOL(usecs_to_jiffies);
497
498 /*
499 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
500 * that a remainder subtract here would not do the right thing as the
501 * resolution values don't fall on second boundries. I.e. the line:
502 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
503 * Note that due to the small error in the multiplier here, this
504 * rounding is incorrect for sufficiently large values of tv_nsec, but
505 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
506 * OK.
507 *
508 * Rather, we just shift the bits off the right.
509 *
510 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
511 * value to a scaled second value.
512 */
513 static unsigned long
514 __timespec_to_jiffies(unsigned long sec, long nsec)
515 {
516 nsec = nsec + TICK_NSEC - 1;
517
518 if (sec >= MAX_SEC_IN_JIFFIES){
519 sec = MAX_SEC_IN_JIFFIES;
520 nsec = 0;
521 }
522 return (((u64)sec * SEC_CONVERSION) +
523 (((u64)nsec * NSEC_CONVERSION) >>
524 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
525
526 }
527
528 unsigned long
529 timespec_to_jiffies(const struct timespec *value)
530 {
531 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
532 }
533
534 EXPORT_SYMBOL(timespec_to_jiffies);
535
536 void
537 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
538 {
539 /*
540 * Convert jiffies to nanoseconds and separate with
541 * one divide.
542 */
543 u32 rem;
544 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
545 NSEC_PER_SEC, &rem);
546 value->tv_nsec = rem;
547 }
548 EXPORT_SYMBOL(jiffies_to_timespec);
549
550 /*
551 * We could use a similar algorithm to timespec_to_jiffies (with a
552 * different multiplier for usec instead of nsec). But this has a
553 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
554 * usec value, since it's not necessarily integral.
555 *
556 * We could instead round in the intermediate scaled representation
557 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
558 * perilous: the scaling introduces a small positive error, which
559 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
560 * units to the intermediate before shifting) leads to accidental
561 * overflow and overestimates.
562 *
563 * At the cost of one additional multiplication by a constant, just
564 * use the timespec implementation.
565 */
566 unsigned long
567 timeval_to_jiffies(const struct timeval *value)
568 {
569 return __timespec_to_jiffies(value->tv_sec,
570 value->tv_usec * NSEC_PER_USEC);
571 }
572 EXPORT_SYMBOL(timeval_to_jiffies);
573
574 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
575 {
576 /*
577 * Convert jiffies to nanoseconds and separate with
578 * one divide.
579 */
580 u32 rem;
581
582 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
583 NSEC_PER_SEC, &rem);
584 value->tv_usec = rem / NSEC_PER_USEC;
585 }
586 EXPORT_SYMBOL(jiffies_to_timeval);
587
588 /*
589 * Convert jiffies/jiffies_64 to clock_t and back.
590 */
591 clock_t jiffies_to_clock_t(unsigned long x)
592 {
593 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
594 # if HZ < USER_HZ
595 return x * (USER_HZ / HZ);
596 # else
597 return x / (HZ / USER_HZ);
598 # endif
599 #else
600 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
601 #endif
602 }
603 EXPORT_SYMBOL(jiffies_to_clock_t);
604
605 unsigned long clock_t_to_jiffies(unsigned long x)
606 {
607 #if (HZ % USER_HZ)==0
608 if (x >= ~0UL / (HZ / USER_HZ))
609 return ~0UL;
610 return x * (HZ / USER_HZ);
611 #else
612 /* Don't worry about loss of precision here .. */
613 if (x >= ~0UL / HZ * USER_HZ)
614 return ~0UL;
615
616 /* .. but do try to contain it here */
617 return div_u64((u64)x * HZ, USER_HZ);
618 #endif
619 }
620 EXPORT_SYMBOL(clock_t_to_jiffies);
621
622 u64 jiffies_64_to_clock_t(u64 x)
623 {
624 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
625 # if HZ < USER_HZ
626 x = div_u64(x * USER_HZ, HZ);
627 # elif HZ > USER_HZ
628 x = div_u64(x, HZ / USER_HZ);
629 # else
630 /* Nothing to do */
631 # endif
632 #else
633 /*
634 * There are better ways that don't overflow early,
635 * but even this doesn't overflow in hundreds of years
636 * in 64 bits, so..
637 */
638 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
639 #endif
640 return x;
641 }
642 EXPORT_SYMBOL(jiffies_64_to_clock_t);
643
644 u64 nsec_to_clock_t(u64 x)
645 {
646 #if (NSEC_PER_SEC % USER_HZ) == 0
647 return div_u64(x, NSEC_PER_SEC / USER_HZ);
648 #elif (USER_HZ % 512) == 0
649 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
650 #else
651 /*
652 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
653 * overflow after 64.99 years.
654 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
655 */
656 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
657 #endif
658 }
659
660 /**
661 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
662 *
663 * @n: nsecs in u64
664 *
665 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
666 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
667 * for scheduler, not for use in device drivers to calculate timeout value.
668 *
669 * note:
670 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
671 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
672 */
673 u64 nsecs_to_jiffies64(u64 n)
674 {
675 #if (NSEC_PER_SEC % HZ) == 0
676 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
677 return div_u64(n, NSEC_PER_SEC / HZ);
678 #elif (HZ % 512) == 0
679 /* overflow after 292 years if HZ = 1024 */
680 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
681 #else
682 /*
683 * Generic case - optimized for cases where HZ is a multiple of 3.
684 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
685 */
686 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
687 #endif
688 }
689
690 /**
691 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
692 *
693 * @n: nsecs in u64
694 *
695 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
696 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
697 * for scheduler, not for use in device drivers to calculate timeout value.
698 *
699 * note:
700 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
701 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
702 */
703 unsigned long nsecs_to_jiffies(u64 n)
704 {
705 return (unsigned long)nsecs_to_jiffies64(n);
706 }
707
708 /*
709 * Add two timespec values and do a safety check for overflow.
710 * It's assumed that both values are valid (>= 0)
711 */
712 struct timespec timespec_add_safe(const struct timespec lhs,
713 const struct timespec rhs)
714 {
715 struct timespec res;
716
717 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
718 lhs.tv_nsec + rhs.tv_nsec);
719
720 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
721 res.tv_sec = TIME_T_MAX;
722
723 return res;
724 }