Merge branch 'for-linus/2639/i2c-2' of git://git.fluff.org/bjdooks/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
33
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
39
40 /*
41 * SLAB caches for signal bits.
42 */
43
44 static struct kmem_cache *sigqueue_cachep;
45
46 int print_fatal_signals __read_mostly;
47
48 static void __user *sig_handler(struct task_struct *t, int sig)
49 {
50 return t->sighand->action[sig - 1].sa.sa_handler;
51 }
52
53 static int sig_handler_ignored(void __user *handler, int sig)
54 {
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
58 }
59
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
62 {
63 void __user *handler;
64
65 handler = sig_handler(t, sig);
66
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
70
71 return sig_handler_ignored(handler, sig);
72 }
73
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75 {
76 /*
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
80 */
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
83
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
86
87 /*
88 * Tracers may want to know about even ignored signals.
89 */
90 return !tracehook_consider_ignored_signal(t, sig);
91 }
92
93 /*
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
96 */
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98 {
99 unsigned long ready;
100 long i;
101
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
107
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
119 }
120 return ready != 0;
121 }
122
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124
125 static int recalc_sigpending_tsk(struct task_struct *t)
126 {
127 if (t->signal->group_stop_count > 0 ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
132 }
133 /*
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
137 */
138 return 0;
139 }
140
141 /*
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
144 */
145 void recalc_sigpending_and_wake(struct task_struct *t)
146 {
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
149 }
150
151 void recalc_sigpending(void)
152 {
153 if (unlikely(tracehook_force_sigpending()))
154 set_thread_flag(TIF_SIGPENDING);
155 else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
157
158 }
159
160 /* Given the mask, find the first available signal that should be serviced. */
161
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE))
165
166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 unsigned long i, *s, *m, x;
169 int sig = 0;
170
171 s = pending->signal.sig;
172 m = mask->sig;
173
174 /*
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
177 */
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
184 }
185
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
194 }
195 break;
196
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
203
204 case 1:
205 /* Nothing to do */
206 break;
207 }
208
209 return sig;
210 }
211
212 static inline void print_dropped_signal(int sig)
213 {
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215
216 if (!print_fatal_signals)
217 return;
218
219 if (!__ratelimit(&ratelimit_state))
220 return;
221
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
224 }
225
226 /*
227 * allocate a new signal queue record
228 * - this may be called without locks if and only if t == current, otherwise an
229 * appopriate lock must be held to stop the target task from exiting
230 */
231 static struct sigqueue *
232 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
233 {
234 struct sigqueue *q = NULL;
235 struct user_struct *user;
236
237 /*
238 * Protect access to @t credentials. This can go away when all
239 * callers hold rcu read lock.
240 */
241 rcu_read_lock();
242 user = get_uid(__task_cred(t)->user);
243 atomic_inc(&user->sigpending);
244 rcu_read_unlock();
245
246 if (override_rlimit ||
247 atomic_read(&user->sigpending) <=
248 task_rlimit(t, RLIMIT_SIGPENDING)) {
249 q = kmem_cache_alloc(sigqueue_cachep, flags);
250 } else {
251 print_dropped_signal(sig);
252 }
253
254 if (unlikely(q == NULL)) {
255 atomic_dec(&user->sigpending);
256 free_uid(user);
257 } else {
258 INIT_LIST_HEAD(&q->list);
259 q->flags = 0;
260 q->user = user;
261 }
262
263 return q;
264 }
265
266 static void __sigqueue_free(struct sigqueue *q)
267 {
268 if (q->flags & SIGQUEUE_PREALLOC)
269 return;
270 atomic_dec(&q->user->sigpending);
271 free_uid(q->user);
272 kmem_cache_free(sigqueue_cachep, q);
273 }
274
275 void flush_sigqueue(struct sigpending *queue)
276 {
277 struct sigqueue *q;
278
279 sigemptyset(&queue->signal);
280 while (!list_empty(&queue->list)) {
281 q = list_entry(queue->list.next, struct sigqueue , list);
282 list_del_init(&q->list);
283 __sigqueue_free(q);
284 }
285 }
286
287 /*
288 * Flush all pending signals for a task.
289 */
290 void __flush_signals(struct task_struct *t)
291 {
292 clear_tsk_thread_flag(t, TIF_SIGPENDING);
293 flush_sigqueue(&t->pending);
294 flush_sigqueue(&t->signal->shared_pending);
295 }
296
297 void flush_signals(struct task_struct *t)
298 {
299 unsigned long flags;
300
301 spin_lock_irqsave(&t->sighand->siglock, flags);
302 __flush_signals(t);
303 spin_unlock_irqrestore(&t->sighand->siglock, flags);
304 }
305
306 static void __flush_itimer_signals(struct sigpending *pending)
307 {
308 sigset_t signal, retain;
309 struct sigqueue *q, *n;
310
311 signal = pending->signal;
312 sigemptyset(&retain);
313
314 list_for_each_entry_safe(q, n, &pending->list, list) {
315 int sig = q->info.si_signo;
316
317 if (likely(q->info.si_code != SI_TIMER)) {
318 sigaddset(&retain, sig);
319 } else {
320 sigdelset(&signal, sig);
321 list_del_init(&q->list);
322 __sigqueue_free(q);
323 }
324 }
325
326 sigorsets(&pending->signal, &signal, &retain);
327 }
328
329 void flush_itimer_signals(void)
330 {
331 struct task_struct *tsk = current;
332 unsigned long flags;
333
334 spin_lock_irqsave(&tsk->sighand->siglock, flags);
335 __flush_itimer_signals(&tsk->pending);
336 __flush_itimer_signals(&tsk->signal->shared_pending);
337 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
338 }
339
340 void ignore_signals(struct task_struct *t)
341 {
342 int i;
343
344 for (i = 0; i < _NSIG; ++i)
345 t->sighand->action[i].sa.sa_handler = SIG_IGN;
346
347 flush_signals(t);
348 }
349
350 /*
351 * Flush all handlers for a task.
352 */
353
354 void
355 flush_signal_handlers(struct task_struct *t, int force_default)
356 {
357 int i;
358 struct k_sigaction *ka = &t->sighand->action[0];
359 for (i = _NSIG ; i != 0 ; i--) {
360 if (force_default || ka->sa.sa_handler != SIG_IGN)
361 ka->sa.sa_handler = SIG_DFL;
362 ka->sa.sa_flags = 0;
363 sigemptyset(&ka->sa.sa_mask);
364 ka++;
365 }
366 }
367
368 int unhandled_signal(struct task_struct *tsk, int sig)
369 {
370 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
371 if (is_global_init(tsk))
372 return 1;
373 if (handler != SIG_IGN && handler != SIG_DFL)
374 return 0;
375 return !tracehook_consider_fatal_signal(tsk, sig);
376 }
377
378
379 /* Notify the system that a driver wants to block all signals for this
380 * process, and wants to be notified if any signals at all were to be
381 * sent/acted upon. If the notifier routine returns non-zero, then the
382 * signal will be acted upon after all. If the notifier routine returns 0,
383 * then then signal will be blocked. Only one block per process is
384 * allowed. priv is a pointer to private data that the notifier routine
385 * can use to determine if the signal should be blocked or not. */
386
387 void
388 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
389 {
390 unsigned long flags;
391
392 spin_lock_irqsave(&current->sighand->siglock, flags);
393 current->notifier_mask = mask;
394 current->notifier_data = priv;
395 current->notifier = notifier;
396 spin_unlock_irqrestore(&current->sighand->siglock, flags);
397 }
398
399 /* Notify the system that blocking has ended. */
400
401 void
402 unblock_all_signals(void)
403 {
404 unsigned long flags;
405
406 spin_lock_irqsave(&current->sighand->siglock, flags);
407 current->notifier = NULL;
408 current->notifier_data = NULL;
409 recalc_sigpending();
410 spin_unlock_irqrestore(&current->sighand->siglock, flags);
411 }
412
413 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
414 {
415 struct sigqueue *q, *first = NULL;
416
417 /*
418 * Collect the siginfo appropriate to this signal. Check if
419 * there is another siginfo for the same signal.
420 */
421 list_for_each_entry(q, &list->list, list) {
422 if (q->info.si_signo == sig) {
423 if (first)
424 goto still_pending;
425 first = q;
426 }
427 }
428
429 sigdelset(&list->signal, sig);
430
431 if (first) {
432 still_pending:
433 list_del_init(&first->list);
434 copy_siginfo(info, &first->info);
435 __sigqueue_free(first);
436 } else {
437 /* Ok, it wasn't in the queue. This must be
438 a fast-pathed signal or we must have been
439 out of queue space. So zero out the info.
440 */
441 info->si_signo = sig;
442 info->si_errno = 0;
443 info->si_code = SI_USER;
444 info->si_pid = 0;
445 info->si_uid = 0;
446 }
447 }
448
449 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
450 siginfo_t *info)
451 {
452 int sig = next_signal(pending, mask);
453
454 if (sig) {
455 if (current->notifier) {
456 if (sigismember(current->notifier_mask, sig)) {
457 if (!(current->notifier)(current->notifier_data)) {
458 clear_thread_flag(TIF_SIGPENDING);
459 return 0;
460 }
461 }
462 }
463
464 collect_signal(sig, pending, info);
465 }
466
467 return sig;
468 }
469
470 /*
471 * Dequeue a signal and return the element to the caller, which is
472 * expected to free it.
473 *
474 * All callers have to hold the siglock.
475 */
476 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
477 {
478 int signr;
479
480 /* We only dequeue private signals from ourselves, we don't let
481 * signalfd steal them
482 */
483 signr = __dequeue_signal(&tsk->pending, mask, info);
484 if (!signr) {
485 signr = __dequeue_signal(&tsk->signal->shared_pending,
486 mask, info);
487 /*
488 * itimer signal ?
489 *
490 * itimers are process shared and we restart periodic
491 * itimers in the signal delivery path to prevent DoS
492 * attacks in the high resolution timer case. This is
493 * compliant with the old way of self restarting
494 * itimers, as the SIGALRM is a legacy signal and only
495 * queued once. Changing the restart behaviour to
496 * restart the timer in the signal dequeue path is
497 * reducing the timer noise on heavy loaded !highres
498 * systems too.
499 */
500 if (unlikely(signr == SIGALRM)) {
501 struct hrtimer *tmr = &tsk->signal->real_timer;
502
503 if (!hrtimer_is_queued(tmr) &&
504 tsk->signal->it_real_incr.tv64 != 0) {
505 hrtimer_forward(tmr, tmr->base->get_time(),
506 tsk->signal->it_real_incr);
507 hrtimer_restart(tmr);
508 }
509 }
510 }
511
512 recalc_sigpending();
513 if (!signr)
514 return 0;
515
516 if (unlikely(sig_kernel_stop(signr))) {
517 /*
518 * Set a marker that we have dequeued a stop signal. Our
519 * caller might release the siglock and then the pending
520 * stop signal it is about to process is no longer in the
521 * pending bitmasks, but must still be cleared by a SIGCONT
522 * (and overruled by a SIGKILL). So those cases clear this
523 * shared flag after we've set it. Note that this flag may
524 * remain set after the signal we return is ignored or
525 * handled. That doesn't matter because its only purpose
526 * is to alert stop-signal processing code when another
527 * processor has come along and cleared the flag.
528 */
529 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
530 }
531 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
532 /*
533 * Release the siglock to ensure proper locking order
534 * of timer locks outside of siglocks. Note, we leave
535 * irqs disabled here, since the posix-timers code is
536 * about to disable them again anyway.
537 */
538 spin_unlock(&tsk->sighand->siglock);
539 do_schedule_next_timer(info);
540 spin_lock(&tsk->sighand->siglock);
541 }
542 return signr;
543 }
544
545 /*
546 * Tell a process that it has a new active signal..
547 *
548 * NOTE! we rely on the previous spin_lock to
549 * lock interrupts for us! We can only be called with
550 * "siglock" held, and the local interrupt must
551 * have been disabled when that got acquired!
552 *
553 * No need to set need_resched since signal event passing
554 * goes through ->blocked
555 */
556 void signal_wake_up(struct task_struct *t, int resume)
557 {
558 unsigned int mask;
559
560 set_tsk_thread_flag(t, TIF_SIGPENDING);
561
562 /*
563 * For SIGKILL, we want to wake it up in the stopped/traced/killable
564 * case. We don't check t->state here because there is a race with it
565 * executing another processor and just now entering stopped state.
566 * By using wake_up_state, we ensure the process will wake up and
567 * handle its death signal.
568 */
569 mask = TASK_INTERRUPTIBLE;
570 if (resume)
571 mask |= TASK_WAKEKILL;
572 if (!wake_up_state(t, mask))
573 kick_process(t);
574 }
575
576 /*
577 * Remove signals in mask from the pending set and queue.
578 * Returns 1 if any signals were found.
579 *
580 * All callers must be holding the siglock.
581 *
582 * This version takes a sigset mask and looks at all signals,
583 * not just those in the first mask word.
584 */
585 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
586 {
587 struct sigqueue *q, *n;
588 sigset_t m;
589
590 sigandsets(&m, mask, &s->signal);
591 if (sigisemptyset(&m))
592 return 0;
593
594 signandsets(&s->signal, &s->signal, mask);
595 list_for_each_entry_safe(q, n, &s->list, list) {
596 if (sigismember(mask, q->info.si_signo)) {
597 list_del_init(&q->list);
598 __sigqueue_free(q);
599 }
600 }
601 return 1;
602 }
603 /*
604 * Remove signals in mask from the pending set and queue.
605 * Returns 1 if any signals were found.
606 *
607 * All callers must be holding the siglock.
608 */
609 static int rm_from_queue(unsigned long mask, struct sigpending *s)
610 {
611 struct sigqueue *q, *n;
612
613 if (!sigtestsetmask(&s->signal, mask))
614 return 0;
615
616 sigdelsetmask(&s->signal, mask);
617 list_for_each_entry_safe(q, n, &s->list, list) {
618 if (q->info.si_signo < SIGRTMIN &&
619 (mask & sigmask(q->info.si_signo))) {
620 list_del_init(&q->list);
621 __sigqueue_free(q);
622 }
623 }
624 return 1;
625 }
626
627 static inline int is_si_special(const struct siginfo *info)
628 {
629 return info <= SEND_SIG_FORCED;
630 }
631
632 static inline bool si_fromuser(const struct siginfo *info)
633 {
634 return info == SEND_SIG_NOINFO ||
635 (!is_si_special(info) && SI_FROMUSER(info));
636 }
637
638 /*
639 * Bad permissions for sending the signal
640 * - the caller must hold the RCU read lock
641 */
642 static int check_kill_permission(int sig, struct siginfo *info,
643 struct task_struct *t)
644 {
645 const struct cred *cred, *tcred;
646 struct pid *sid;
647 int error;
648
649 if (!valid_signal(sig))
650 return -EINVAL;
651
652 if (!si_fromuser(info))
653 return 0;
654
655 error = audit_signal_info(sig, t); /* Let audit system see the signal */
656 if (error)
657 return error;
658
659 cred = current_cred();
660 tcred = __task_cred(t);
661 if (!same_thread_group(current, t) &&
662 (cred->euid ^ tcred->suid) &&
663 (cred->euid ^ tcred->uid) &&
664 (cred->uid ^ tcred->suid) &&
665 (cred->uid ^ tcred->uid) &&
666 !capable(CAP_KILL)) {
667 switch (sig) {
668 case SIGCONT:
669 sid = task_session(t);
670 /*
671 * We don't return the error if sid == NULL. The
672 * task was unhashed, the caller must notice this.
673 */
674 if (!sid || sid == task_session(current))
675 break;
676 default:
677 return -EPERM;
678 }
679 }
680
681 return security_task_kill(t, info, sig, 0);
682 }
683
684 /*
685 * Handle magic process-wide effects of stop/continue signals. Unlike
686 * the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
690 *
691 * Returns true if the signal should be actually delivered, otherwise
692 * it should be dropped.
693 */
694 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
695 {
696 struct signal_struct *signal = p->signal;
697 struct task_struct *t;
698
699 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
700 /*
701 * The process is in the middle of dying, nothing to do.
702 */
703 } else if (sig_kernel_stop(sig)) {
704 /*
705 * This is a stop signal. Remove SIGCONT from all queues.
706 */
707 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
708 t = p;
709 do {
710 rm_from_queue(sigmask(SIGCONT), &t->pending);
711 } while_each_thread(p, t);
712 } else if (sig == SIGCONT) {
713 unsigned int why;
714 /*
715 * Remove all stop signals from all queues,
716 * and wake all threads.
717 */
718 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
719 t = p;
720 do {
721 unsigned int state;
722 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
723 /*
724 * If there is a handler for SIGCONT, we must make
725 * sure that no thread returns to user mode before
726 * we post the signal, in case it was the only
727 * thread eligible to run the signal handler--then
728 * it must not do anything between resuming and
729 * running the handler. With the TIF_SIGPENDING
730 * flag set, the thread will pause and acquire the
731 * siglock that we hold now and until we've queued
732 * the pending signal.
733 *
734 * Wake up the stopped thread _after_ setting
735 * TIF_SIGPENDING
736 */
737 state = __TASK_STOPPED;
738 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
739 set_tsk_thread_flag(t, TIF_SIGPENDING);
740 state |= TASK_INTERRUPTIBLE;
741 }
742 wake_up_state(t, state);
743 } while_each_thread(p, t);
744
745 /*
746 * Notify the parent with CLD_CONTINUED if we were stopped.
747 *
748 * If we were in the middle of a group stop, we pretend it
749 * was already finished, and then continued. Since SIGCHLD
750 * doesn't queue we report only CLD_STOPPED, as if the next
751 * CLD_CONTINUED was dropped.
752 */
753 why = 0;
754 if (signal->flags & SIGNAL_STOP_STOPPED)
755 why |= SIGNAL_CLD_CONTINUED;
756 else if (signal->group_stop_count)
757 why |= SIGNAL_CLD_STOPPED;
758
759 if (why) {
760 /*
761 * The first thread which returns from do_signal_stop()
762 * will take ->siglock, notice SIGNAL_CLD_MASK, and
763 * notify its parent. See get_signal_to_deliver().
764 */
765 signal->flags = why | SIGNAL_STOP_CONTINUED;
766 signal->group_stop_count = 0;
767 signal->group_exit_code = 0;
768 } else {
769 /*
770 * We are not stopped, but there could be a stop
771 * signal in the middle of being processed after
772 * being removed from the queue. Clear that too.
773 */
774 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
775 }
776 }
777
778 return !sig_ignored(p, sig, from_ancestor_ns);
779 }
780
781 /*
782 * Test if P wants to take SIG. After we've checked all threads with this,
783 * it's equivalent to finding no threads not blocking SIG. Any threads not
784 * blocking SIG were ruled out because they are not running and already
785 * have pending signals. Such threads will dequeue from the shared queue
786 * as soon as they're available, so putting the signal on the shared queue
787 * will be equivalent to sending it to one such thread.
788 */
789 static inline int wants_signal(int sig, struct task_struct *p)
790 {
791 if (sigismember(&p->blocked, sig))
792 return 0;
793 if (p->flags & PF_EXITING)
794 return 0;
795 if (sig == SIGKILL)
796 return 1;
797 if (task_is_stopped_or_traced(p))
798 return 0;
799 return task_curr(p) || !signal_pending(p);
800 }
801
802 static void complete_signal(int sig, struct task_struct *p, int group)
803 {
804 struct signal_struct *signal = p->signal;
805 struct task_struct *t;
806
807 /*
808 * Now find a thread we can wake up to take the signal off the queue.
809 *
810 * If the main thread wants the signal, it gets first crack.
811 * Probably the least surprising to the average bear.
812 */
813 if (wants_signal(sig, p))
814 t = p;
815 else if (!group || thread_group_empty(p))
816 /*
817 * There is just one thread and it does not need to be woken.
818 * It will dequeue unblocked signals before it runs again.
819 */
820 return;
821 else {
822 /*
823 * Otherwise try to find a suitable thread.
824 */
825 t = signal->curr_target;
826 while (!wants_signal(sig, t)) {
827 t = next_thread(t);
828 if (t == signal->curr_target)
829 /*
830 * No thread needs to be woken.
831 * Any eligible threads will see
832 * the signal in the queue soon.
833 */
834 return;
835 }
836 signal->curr_target = t;
837 }
838
839 /*
840 * Found a killable thread. If the signal will be fatal,
841 * then start taking the whole group down immediately.
842 */
843 if (sig_fatal(p, sig) &&
844 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
845 !sigismember(&t->real_blocked, sig) &&
846 (sig == SIGKILL ||
847 !tracehook_consider_fatal_signal(t, sig))) {
848 /*
849 * This signal will be fatal to the whole group.
850 */
851 if (!sig_kernel_coredump(sig)) {
852 /*
853 * Start a group exit and wake everybody up.
854 * This way we don't have other threads
855 * running and doing things after a slower
856 * thread has the fatal signal pending.
857 */
858 signal->flags = SIGNAL_GROUP_EXIT;
859 signal->group_exit_code = sig;
860 signal->group_stop_count = 0;
861 t = p;
862 do {
863 sigaddset(&t->pending.signal, SIGKILL);
864 signal_wake_up(t, 1);
865 } while_each_thread(p, t);
866 return;
867 }
868 }
869
870 /*
871 * The signal is already in the shared-pending queue.
872 * Tell the chosen thread to wake up and dequeue it.
873 */
874 signal_wake_up(t, sig == SIGKILL);
875 return;
876 }
877
878 static inline int legacy_queue(struct sigpending *signals, int sig)
879 {
880 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
881 }
882
883 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
884 int group, int from_ancestor_ns)
885 {
886 struct sigpending *pending;
887 struct sigqueue *q;
888 int override_rlimit;
889
890 trace_signal_generate(sig, info, t);
891
892 assert_spin_locked(&t->sighand->siglock);
893
894 if (!prepare_signal(sig, t, from_ancestor_ns))
895 return 0;
896
897 pending = group ? &t->signal->shared_pending : &t->pending;
898 /*
899 * Short-circuit ignored signals and support queuing
900 * exactly one non-rt signal, so that we can get more
901 * detailed information about the cause of the signal.
902 */
903 if (legacy_queue(pending, sig))
904 return 0;
905 /*
906 * fast-pathed signals for kernel-internal things like SIGSTOP
907 * or SIGKILL.
908 */
909 if (info == SEND_SIG_FORCED)
910 goto out_set;
911
912 /* Real-time signals must be queued if sent by sigqueue, or
913 some other real-time mechanism. It is implementation
914 defined whether kill() does so. We attempt to do so, on
915 the principle of least surprise, but since kill is not
916 allowed to fail with EAGAIN when low on memory we just
917 make sure at least one signal gets delivered and don't
918 pass on the info struct. */
919
920 if (sig < SIGRTMIN)
921 override_rlimit = (is_si_special(info) || info->si_code >= 0);
922 else
923 override_rlimit = 0;
924
925 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
926 override_rlimit);
927 if (q) {
928 list_add_tail(&q->list, &pending->list);
929 switch ((unsigned long) info) {
930 case (unsigned long) SEND_SIG_NOINFO:
931 q->info.si_signo = sig;
932 q->info.si_errno = 0;
933 q->info.si_code = SI_USER;
934 q->info.si_pid = task_tgid_nr_ns(current,
935 task_active_pid_ns(t));
936 q->info.si_uid = current_uid();
937 break;
938 case (unsigned long) SEND_SIG_PRIV:
939 q->info.si_signo = sig;
940 q->info.si_errno = 0;
941 q->info.si_code = SI_KERNEL;
942 q->info.si_pid = 0;
943 q->info.si_uid = 0;
944 break;
945 default:
946 copy_siginfo(&q->info, info);
947 if (from_ancestor_ns)
948 q->info.si_pid = 0;
949 break;
950 }
951 } else if (!is_si_special(info)) {
952 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
953 /*
954 * Queue overflow, abort. We may abort if the
955 * signal was rt and sent by user using something
956 * other than kill().
957 */
958 trace_signal_overflow_fail(sig, group, info);
959 return -EAGAIN;
960 } else {
961 /*
962 * This is a silent loss of information. We still
963 * send the signal, but the *info bits are lost.
964 */
965 trace_signal_lose_info(sig, group, info);
966 }
967 }
968
969 out_set:
970 signalfd_notify(t, sig);
971 sigaddset(&pending->signal, sig);
972 complete_signal(sig, t, group);
973 return 0;
974 }
975
976 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
977 int group)
978 {
979 int from_ancestor_ns = 0;
980
981 #ifdef CONFIG_PID_NS
982 from_ancestor_ns = si_fromuser(info) &&
983 !task_pid_nr_ns(current, task_active_pid_ns(t));
984 #endif
985
986 return __send_signal(sig, info, t, group, from_ancestor_ns);
987 }
988
989 static void print_fatal_signal(struct pt_regs *regs, int signr)
990 {
991 printk("%s/%d: potentially unexpected fatal signal %d.\n",
992 current->comm, task_pid_nr(current), signr);
993
994 #if defined(__i386__) && !defined(__arch_um__)
995 printk("code at %08lx: ", regs->ip);
996 {
997 int i;
998 for (i = 0; i < 16; i++) {
999 unsigned char insn;
1000
1001 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1002 break;
1003 printk("%02x ", insn);
1004 }
1005 }
1006 #endif
1007 printk("\n");
1008 preempt_disable();
1009 show_regs(regs);
1010 preempt_enable();
1011 }
1012
1013 static int __init setup_print_fatal_signals(char *str)
1014 {
1015 get_option (&str, &print_fatal_signals);
1016
1017 return 1;
1018 }
1019
1020 __setup("print-fatal-signals=", setup_print_fatal_signals);
1021
1022 int
1023 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1024 {
1025 return send_signal(sig, info, p, 1);
1026 }
1027
1028 static int
1029 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1030 {
1031 return send_signal(sig, info, t, 0);
1032 }
1033
1034 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1035 bool group)
1036 {
1037 unsigned long flags;
1038 int ret = -ESRCH;
1039
1040 if (lock_task_sighand(p, &flags)) {
1041 ret = send_signal(sig, info, p, group);
1042 unlock_task_sighand(p, &flags);
1043 }
1044
1045 return ret;
1046 }
1047
1048 /*
1049 * Force a signal that the process can't ignore: if necessary
1050 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1051 *
1052 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1053 * since we do not want to have a signal handler that was blocked
1054 * be invoked when user space had explicitly blocked it.
1055 *
1056 * We don't want to have recursive SIGSEGV's etc, for example,
1057 * that is why we also clear SIGNAL_UNKILLABLE.
1058 */
1059 int
1060 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1061 {
1062 unsigned long int flags;
1063 int ret, blocked, ignored;
1064 struct k_sigaction *action;
1065
1066 spin_lock_irqsave(&t->sighand->siglock, flags);
1067 action = &t->sighand->action[sig-1];
1068 ignored = action->sa.sa_handler == SIG_IGN;
1069 blocked = sigismember(&t->blocked, sig);
1070 if (blocked || ignored) {
1071 action->sa.sa_handler = SIG_DFL;
1072 if (blocked) {
1073 sigdelset(&t->blocked, sig);
1074 recalc_sigpending_and_wake(t);
1075 }
1076 }
1077 if (action->sa.sa_handler == SIG_DFL)
1078 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1079 ret = specific_send_sig_info(sig, info, t);
1080 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1081
1082 return ret;
1083 }
1084
1085 /*
1086 * Nuke all other threads in the group.
1087 */
1088 int zap_other_threads(struct task_struct *p)
1089 {
1090 struct task_struct *t = p;
1091 int count = 0;
1092
1093 p->signal->group_stop_count = 0;
1094
1095 while_each_thread(p, t) {
1096 count++;
1097
1098 /* Don't bother with already dead threads */
1099 if (t->exit_state)
1100 continue;
1101 sigaddset(&t->pending.signal, SIGKILL);
1102 signal_wake_up(t, 1);
1103 }
1104
1105 return count;
1106 }
1107
1108 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1109 unsigned long *flags)
1110 {
1111 struct sighand_struct *sighand;
1112
1113 rcu_read_lock();
1114 for (;;) {
1115 sighand = rcu_dereference(tsk->sighand);
1116 if (unlikely(sighand == NULL))
1117 break;
1118
1119 spin_lock_irqsave(&sighand->siglock, *flags);
1120 if (likely(sighand == tsk->sighand))
1121 break;
1122 spin_unlock_irqrestore(&sighand->siglock, *flags);
1123 }
1124 rcu_read_unlock();
1125
1126 return sighand;
1127 }
1128
1129 /*
1130 * send signal info to all the members of a group
1131 */
1132 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1133 {
1134 int ret;
1135
1136 rcu_read_lock();
1137 ret = check_kill_permission(sig, info, p);
1138 rcu_read_unlock();
1139
1140 if (!ret && sig)
1141 ret = do_send_sig_info(sig, info, p, true);
1142
1143 return ret;
1144 }
1145
1146 /*
1147 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1148 * control characters do (^C, ^Z etc)
1149 * - the caller must hold at least a readlock on tasklist_lock
1150 */
1151 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1152 {
1153 struct task_struct *p = NULL;
1154 int retval, success;
1155
1156 success = 0;
1157 retval = -ESRCH;
1158 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1159 int err = group_send_sig_info(sig, info, p);
1160 success |= !err;
1161 retval = err;
1162 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1163 return success ? 0 : retval;
1164 }
1165
1166 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1167 {
1168 int error = -ESRCH;
1169 struct task_struct *p;
1170
1171 rcu_read_lock();
1172 retry:
1173 p = pid_task(pid, PIDTYPE_PID);
1174 if (p) {
1175 error = group_send_sig_info(sig, info, p);
1176 if (unlikely(error == -ESRCH))
1177 /*
1178 * The task was unhashed in between, try again.
1179 * If it is dead, pid_task() will return NULL,
1180 * if we race with de_thread() it will find the
1181 * new leader.
1182 */
1183 goto retry;
1184 }
1185 rcu_read_unlock();
1186
1187 return error;
1188 }
1189
1190 int
1191 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1192 {
1193 int error;
1194 rcu_read_lock();
1195 error = kill_pid_info(sig, info, find_vpid(pid));
1196 rcu_read_unlock();
1197 return error;
1198 }
1199
1200 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1201 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1202 uid_t uid, uid_t euid, u32 secid)
1203 {
1204 int ret = -EINVAL;
1205 struct task_struct *p;
1206 const struct cred *pcred;
1207 unsigned long flags;
1208
1209 if (!valid_signal(sig))
1210 return ret;
1211
1212 rcu_read_lock();
1213 p = pid_task(pid, PIDTYPE_PID);
1214 if (!p) {
1215 ret = -ESRCH;
1216 goto out_unlock;
1217 }
1218 pcred = __task_cred(p);
1219 if (si_fromuser(info) &&
1220 euid != pcred->suid && euid != pcred->uid &&
1221 uid != pcred->suid && uid != pcred->uid) {
1222 ret = -EPERM;
1223 goto out_unlock;
1224 }
1225 ret = security_task_kill(p, info, sig, secid);
1226 if (ret)
1227 goto out_unlock;
1228
1229 if (sig) {
1230 if (lock_task_sighand(p, &flags)) {
1231 ret = __send_signal(sig, info, p, 1, 0);
1232 unlock_task_sighand(p, &flags);
1233 } else
1234 ret = -ESRCH;
1235 }
1236 out_unlock:
1237 rcu_read_unlock();
1238 return ret;
1239 }
1240 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1241
1242 /*
1243 * kill_something_info() interprets pid in interesting ways just like kill(2).
1244 *
1245 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1246 * is probably wrong. Should make it like BSD or SYSV.
1247 */
1248
1249 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1250 {
1251 int ret;
1252
1253 if (pid > 0) {
1254 rcu_read_lock();
1255 ret = kill_pid_info(sig, info, find_vpid(pid));
1256 rcu_read_unlock();
1257 return ret;
1258 }
1259
1260 read_lock(&tasklist_lock);
1261 if (pid != -1) {
1262 ret = __kill_pgrp_info(sig, info,
1263 pid ? find_vpid(-pid) : task_pgrp(current));
1264 } else {
1265 int retval = 0, count = 0;
1266 struct task_struct * p;
1267
1268 for_each_process(p) {
1269 if (task_pid_vnr(p) > 1 &&
1270 !same_thread_group(p, current)) {
1271 int err = group_send_sig_info(sig, info, p);
1272 ++count;
1273 if (err != -EPERM)
1274 retval = err;
1275 }
1276 }
1277 ret = count ? retval : -ESRCH;
1278 }
1279 read_unlock(&tasklist_lock);
1280
1281 return ret;
1282 }
1283
1284 /*
1285 * These are for backward compatibility with the rest of the kernel source.
1286 */
1287
1288 int
1289 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1290 {
1291 /*
1292 * Make sure legacy kernel users don't send in bad values
1293 * (normal paths check this in check_kill_permission).
1294 */
1295 if (!valid_signal(sig))
1296 return -EINVAL;
1297
1298 return do_send_sig_info(sig, info, p, false);
1299 }
1300
1301 #define __si_special(priv) \
1302 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1303
1304 int
1305 send_sig(int sig, struct task_struct *p, int priv)
1306 {
1307 return send_sig_info(sig, __si_special(priv), p);
1308 }
1309
1310 void
1311 force_sig(int sig, struct task_struct *p)
1312 {
1313 force_sig_info(sig, SEND_SIG_PRIV, p);
1314 }
1315
1316 /*
1317 * When things go south during signal handling, we
1318 * will force a SIGSEGV. And if the signal that caused
1319 * the problem was already a SIGSEGV, we'll want to
1320 * make sure we don't even try to deliver the signal..
1321 */
1322 int
1323 force_sigsegv(int sig, struct task_struct *p)
1324 {
1325 if (sig == SIGSEGV) {
1326 unsigned long flags;
1327 spin_lock_irqsave(&p->sighand->siglock, flags);
1328 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1329 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1330 }
1331 force_sig(SIGSEGV, p);
1332 return 0;
1333 }
1334
1335 int kill_pgrp(struct pid *pid, int sig, int priv)
1336 {
1337 int ret;
1338
1339 read_lock(&tasklist_lock);
1340 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1341 read_unlock(&tasklist_lock);
1342
1343 return ret;
1344 }
1345 EXPORT_SYMBOL(kill_pgrp);
1346
1347 int kill_pid(struct pid *pid, int sig, int priv)
1348 {
1349 return kill_pid_info(sig, __si_special(priv), pid);
1350 }
1351 EXPORT_SYMBOL(kill_pid);
1352
1353 /*
1354 * These functions support sending signals using preallocated sigqueue
1355 * structures. This is needed "because realtime applications cannot
1356 * afford to lose notifications of asynchronous events, like timer
1357 * expirations or I/O completions". In the case of Posix Timers
1358 * we allocate the sigqueue structure from the timer_create. If this
1359 * allocation fails we are able to report the failure to the application
1360 * with an EAGAIN error.
1361 */
1362 struct sigqueue *sigqueue_alloc(void)
1363 {
1364 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1365
1366 if (q)
1367 q->flags |= SIGQUEUE_PREALLOC;
1368
1369 return q;
1370 }
1371
1372 void sigqueue_free(struct sigqueue *q)
1373 {
1374 unsigned long flags;
1375 spinlock_t *lock = &current->sighand->siglock;
1376
1377 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1378 /*
1379 * We must hold ->siglock while testing q->list
1380 * to serialize with collect_signal() or with
1381 * __exit_signal()->flush_sigqueue().
1382 */
1383 spin_lock_irqsave(lock, flags);
1384 q->flags &= ~SIGQUEUE_PREALLOC;
1385 /*
1386 * If it is queued it will be freed when dequeued,
1387 * like the "regular" sigqueue.
1388 */
1389 if (!list_empty(&q->list))
1390 q = NULL;
1391 spin_unlock_irqrestore(lock, flags);
1392
1393 if (q)
1394 __sigqueue_free(q);
1395 }
1396
1397 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1398 {
1399 int sig = q->info.si_signo;
1400 struct sigpending *pending;
1401 unsigned long flags;
1402 int ret;
1403
1404 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1405
1406 ret = -1;
1407 if (!likely(lock_task_sighand(t, &flags)))
1408 goto ret;
1409
1410 ret = 1; /* the signal is ignored */
1411 if (!prepare_signal(sig, t, 0))
1412 goto out;
1413
1414 ret = 0;
1415 if (unlikely(!list_empty(&q->list))) {
1416 /*
1417 * If an SI_TIMER entry is already queue just increment
1418 * the overrun count.
1419 */
1420 BUG_ON(q->info.si_code != SI_TIMER);
1421 q->info.si_overrun++;
1422 goto out;
1423 }
1424 q->info.si_overrun = 0;
1425
1426 signalfd_notify(t, sig);
1427 pending = group ? &t->signal->shared_pending : &t->pending;
1428 list_add_tail(&q->list, &pending->list);
1429 sigaddset(&pending->signal, sig);
1430 complete_signal(sig, t, group);
1431 out:
1432 unlock_task_sighand(t, &flags);
1433 ret:
1434 return ret;
1435 }
1436
1437 /*
1438 * Let a parent know about the death of a child.
1439 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1440 *
1441 * Returns -1 if our parent ignored us and so we've switched to
1442 * self-reaping, or else @sig.
1443 */
1444 int do_notify_parent(struct task_struct *tsk, int sig)
1445 {
1446 struct siginfo info;
1447 unsigned long flags;
1448 struct sighand_struct *psig;
1449 int ret = sig;
1450
1451 BUG_ON(sig == -1);
1452
1453 /* do_notify_parent_cldstop should have been called instead. */
1454 BUG_ON(task_is_stopped_or_traced(tsk));
1455
1456 BUG_ON(!task_ptrace(tsk) &&
1457 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1458
1459 info.si_signo = sig;
1460 info.si_errno = 0;
1461 /*
1462 * we are under tasklist_lock here so our parent is tied to
1463 * us and cannot exit and release its namespace.
1464 *
1465 * the only it can is to switch its nsproxy with sys_unshare,
1466 * bu uncharing pid namespaces is not allowed, so we'll always
1467 * see relevant namespace
1468 *
1469 * write_lock() currently calls preempt_disable() which is the
1470 * same as rcu_read_lock(), but according to Oleg, this is not
1471 * correct to rely on this
1472 */
1473 rcu_read_lock();
1474 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1475 info.si_uid = __task_cred(tsk)->uid;
1476 rcu_read_unlock();
1477
1478 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1479 tsk->signal->utime));
1480 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1481 tsk->signal->stime));
1482
1483 info.si_status = tsk->exit_code & 0x7f;
1484 if (tsk->exit_code & 0x80)
1485 info.si_code = CLD_DUMPED;
1486 else if (tsk->exit_code & 0x7f)
1487 info.si_code = CLD_KILLED;
1488 else {
1489 info.si_code = CLD_EXITED;
1490 info.si_status = tsk->exit_code >> 8;
1491 }
1492
1493 psig = tsk->parent->sighand;
1494 spin_lock_irqsave(&psig->siglock, flags);
1495 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1496 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1497 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1498 /*
1499 * We are exiting and our parent doesn't care. POSIX.1
1500 * defines special semantics for setting SIGCHLD to SIG_IGN
1501 * or setting the SA_NOCLDWAIT flag: we should be reaped
1502 * automatically and not left for our parent's wait4 call.
1503 * Rather than having the parent do it as a magic kind of
1504 * signal handler, we just set this to tell do_exit that we
1505 * can be cleaned up without becoming a zombie. Note that
1506 * we still call __wake_up_parent in this case, because a
1507 * blocked sys_wait4 might now return -ECHILD.
1508 *
1509 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1510 * is implementation-defined: we do (if you don't want
1511 * it, just use SIG_IGN instead).
1512 */
1513 ret = tsk->exit_signal = -1;
1514 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1515 sig = -1;
1516 }
1517 if (valid_signal(sig) && sig > 0)
1518 __group_send_sig_info(sig, &info, tsk->parent);
1519 __wake_up_parent(tsk, tsk->parent);
1520 spin_unlock_irqrestore(&psig->siglock, flags);
1521
1522 return ret;
1523 }
1524
1525 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1526 {
1527 struct siginfo info;
1528 unsigned long flags;
1529 struct task_struct *parent;
1530 struct sighand_struct *sighand;
1531
1532 if (task_ptrace(tsk))
1533 parent = tsk->parent;
1534 else {
1535 tsk = tsk->group_leader;
1536 parent = tsk->real_parent;
1537 }
1538
1539 info.si_signo = SIGCHLD;
1540 info.si_errno = 0;
1541 /*
1542 * see comment in do_notify_parent() abot the following 3 lines
1543 */
1544 rcu_read_lock();
1545 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1546 info.si_uid = __task_cred(tsk)->uid;
1547 rcu_read_unlock();
1548
1549 info.si_utime = cputime_to_clock_t(tsk->utime);
1550 info.si_stime = cputime_to_clock_t(tsk->stime);
1551
1552 info.si_code = why;
1553 switch (why) {
1554 case CLD_CONTINUED:
1555 info.si_status = SIGCONT;
1556 break;
1557 case CLD_STOPPED:
1558 info.si_status = tsk->signal->group_exit_code & 0x7f;
1559 break;
1560 case CLD_TRAPPED:
1561 info.si_status = tsk->exit_code & 0x7f;
1562 break;
1563 default:
1564 BUG();
1565 }
1566
1567 sighand = parent->sighand;
1568 spin_lock_irqsave(&sighand->siglock, flags);
1569 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1570 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1571 __group_send_sig_info(SIGCHLD, &info, parent);
1572 /*
1573 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1574 */
1575 __wake_up_parent(tsk, parent);
1576 spin_unlock_irqrestore(&sighand->siglock, flags);
1577 }
1578
1579 static inline int may_ptrace_stop(void)
1580 {
1581 if (!likely(task_ptrace(current)))
1582 return 0;
1583 /*
1584 * Are we in the middle of do_coredump?
1585 * If so and our tracer is also part of the coredump stopping
1586 * is a deadlock situation, and pointless because our tracer
1587 * is dead so don't allow us to stop.
1588 * If SIGKILL was already sent before the caller unlocked
1589 * ->siglock we must see ->core_state != NULL. Otherwise it
1590 * is safe to enter schedule().
1591 */
1592 if (unlikely(current->mm->core_state) &&
1593 unlikely(current->mm == current->parent->mm))
1594 return 0;
1595
1596 return 1;
1597 }
1598
1599 /*
1600 * Return nonzero if there is a SIGKILL that should be waking us up.
1601 * Called with the siglock held.
1602 */
1603 static int sigkill_pending(struct task_struct *tsk)
1604 {
1605 return sigismember(&tsk->pending.signal, SIGKILL) ||
1606 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1607 }
1608
1609 /*
1610 * This must be called with current->sighand->siglock held.
1611 *
1612 * This should be the path for all ptrace stops.
1613 * We always set current->last_siginfo while stopped here.
1614 * That makes it a way to test a stopped process for
1615 * being ptrace-stopped vs being job-control-stopped.
1616 *
1617 * If we actually decide not to stop at all because the tracer
1618 * is gone, we keep current->exit_code unless clear_code.
1619 */
1620 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1621 __releases(&current->sighand->siglock)
1622 __acquires(&current->sighand->siglock)
1623 {
1624 if (arch_ptrace_stop_needed(exit_code, info)) {
1625 /*
1626 * The arch code has something special to do before a
1627 * ptrace stop. This is allowed to block, e.g. for faults
1628 * on user stack pages. We can't keep the siglock while
1629 * calling arch_ptrace_stop, so we must release it now.
1630 * To preserve proper semantics, we must do this before
1631 * any signal bookkeeping like checking group_stop_count.
1632 * Meanwhile, a SIGKILL could come in before we retake the
1633 * siglock. That must prevent us from sleeping in TASK_TRACED.
1634 * So after regaining the lock, we must check for SIGKILL.
1635 */
1636 spin_unlock_irq(&current->sighand->siglock);
1637 arch_ptrace_stop(exit_code, info);
1638 spin_lock_irq(&current->sighand->siglock);
1639 if (sigkill_pending(current))
1640 return;
1641 }
1642
1643 /*
1644 * If there is a group stop in progress,
1645 * we must participate in the bookkeeping.
1646 */
1647 if (current->signal->group_stop_count > 0)
1648 --current->signal->group_stop_count;
1649
1650 current->last_siginfo = info;
1651 current->exit_code = exit_code;
1652
1653 /* Let the debugger run. */
1654 __set_current_state(TASK_TRACED);
1655 spin_unlock_irq(&current->sighand->siglock);
1656 read_lock(&tasklist_lock);
1657 if (may_ptrace_stop()) {
1658 do_notify_parent_cldstop(current, CLD_TRAPPED);
1659 /*
1660 * Don't want to allow preemption here, because
1661 * sys_ptrace() needs this task to be inactive.
1662 *
1663 * XXX: implement read_unlock_no_resched().
1664 */
1665 preempt_disable();
1666 read_unlock(&tasklist_lock);
1667 preempt_enable_no_resched();
1668 schedule();
1669 } else {
1670 /*
1671 * By the time we got the lock, our tracer went away.
1672 * Don't drop the lock yet, another tracer may come.
1673 */
1674 __set_current_state(TASK_RUNNING);
1675 if (clear_code)
1676 current->exit_code = 0;
1677 read_unlock(&tasklist_lock);
1678 }
1679
1680 /*
1681 * While in TASK_TRACED, we were considered "frozen enough".
1682 * Now that we woke up, it's crucial if we're supposed to be
1683 * frozen that we freeze now before running anything substantial.
1684 */
1685 try_to_freeze();
1686
1687 /*
1688 * We are back. Now reacquire the siglock before touching
1689 * last_siginfo, so that we are sure to have synchronized with
1690 * any signal-sending on another CPU that wants to examine it.
1691 */
1692 spin_lock_irq(&current->sighand->siglock);
1693 current->last_siginfo = NULL;
1694
1695 /*
1696 * Queued signals ignored us while we were stopped for tracing.
1697 * So check for any that we should take before resuming user mode.
1698 * This sets TIF_SIGPENDING, but never clears it.
1699 */
1700 recalc_sigpending_tsk(current);
1701 }
1702
1703 void ptrace_notify(int exit_code)
1704 {
1705 siginfo_t info;
1706
1707 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1708
1709 memset(&info, 0, sizeof info);
1710 info.si_signo = SIGTRAP;
1711 info.si_code = exit_code;
1712 info.si_pid = task_pid_vnr(current);
1713 info.si_uid = current_uid();
1714
1715 /* Let the debugger run. */
1716 spin_lock_irq(&current->sighand->siglock);
1717 ptrace_stop(exit_code, 1, &info);
1718 spin_unlock_irq(&current->sighand->siglock);
1719 }
1720
1721 /*
1722 * This performs the stopping for SIGSTOP and other stop signals.
1723 * We have to stop all threads in the thread group.
1724 * Returns nonzero if we've actually stopped and released the siglock.
1725 * Returns zero if we didn't stop and still hold the siglock.
1726 */
1727 static int do_signal_stop(int signr)
1728 {
1729 struct signal_struct *sig = current->signal;
1730 int notify;
1731
1732 if (!sig->group_stop_count) {
1733 struct task_struct *t;
1734
1735 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1736 unlikely(signal_group_exit(sig)))
1737 return 0;
1738 /*
1739 * There is no group stop already in progress.
1740 * We must initiate one now.
1741 */
1742 sig->group_exit_code = signr;
1743
1744 sig->group_stop_count = 1;
1745 for (t = next_thread(current); t != current; t = next_thread(t))
1746 /*
1747 * Setting state to TASK_STOPPED for a group
1748 * stop is always done with the siglock held,
1749 * so this check has no races.
1750 */
1751 if (!(t->flags & PF_EXITING) &&
1752 !task_is_stopped_or_traced(t)) {
1753 sig->group_stop_count++;
1754 signal_wake_up(t, 0);
1755 }
1756 }
1757 /*
1758 * If there are no other threads in the group, or if there is
1759 * a group stop in progress and we are the last to stop, report
1760 * to the parent. When ptraced, every thread reports itself.
1761 */
1762 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1763 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1764 /*
1765 * tracehook_notify_jctl() can drop and reacquire siglock, so
1766 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1767 * or SIGKILL comes in between ->group_stop_count == 0.
1768 */
1769 if (sig->group_stop_count) {
1770 if (!--sig->group_stop_count)
1771 sig->flags = SIGNAL_STOP_STOPPED;
1772 current->exit_code = sig->group_exit_code;
1773 __set_current_state(TASK_STOPPED);
1774 }
1775 spin_unlock_irq(&current->sighand->siglock);
1776
1777 if (notify) {
1778 read_lock(&tasklist_lock);
1779 do_notify_parent_cldstop(current, notify);
1780 read_unlock(&tasklist_lock);
1781 }
1782
1783 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1784 do {
1785 schedule();
1786 } while (try_to_freeze());
1787
1788 tracehook_finish_jctl();
1789 current->exit_code = 0;
1790
1791 return 1;
1792 }
1793
1794 static int ptrace_signal(int signr, siginfo_t *info,
1795 struct pt_regs *regs, void *cookie)
1796 {
1797 if (!task_ptrace(current))
1798 return signr;
1799
1800 ptrace_signal_deliver(regs, cookie);
1801
1802 /* Let the debugger run. */
1803 ptrace_stop(signr, 0, info);
1804
1805 /* We're back. Did the debugger cancel the sig? */
1806 signr = current->exit_code;
1807 if (signr == 0)
1808 return signr;
1809
1810 current->exit_code = 0;
1811
1812 /* Update the siginfo structure if the signal has
1813 changed. If the debugger wanted something
1814 specific in the siginfo structure then it should
1815 have updated *info via PTRACE_SETSIGINFO. */
1816 if (signr != info->si_signo) {
1817 info->si_signo = signr;
1818 info->si_errno = 0;
1819 info->si_code = SI_USER;
1820 info->si_pid = task_pid_vnr(current->parent);
1821 info->si_uid = task_uid(current->parent);
1822 }
1823
1824 /* If the (new) signal is now blocked, requeue it. */
1825 if (sigismember(&current->blocked, signr)) {
1826 specific_send_sig_info(signr, info, current);
1827 signr = 0;
1828 }
1829
1830 return signr;
1831 }
1832
1833 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1834 struct pt_regs *regs, void *cookie)
1835 {
1836 struct sighand_struct *sighand = current->sighand;
1837 struct signal_struct *signal = current->signal;
1838 int signr;
1839
1840 relock:
1841 /*
1842 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1843 * While in TASK_STOPPED, we were considered "frozen enough".
1844 * Now that we woke up, it's crucial if we're supposed to be
1845 * frozen that we freeze now before running anything substantial.
1846 */
1847 try_to_freeze();
1848
1849 spin_lock_irq(&sighand->siglock);
1850 /*
1851 * Every stopped thread goes here after wakeup. Check to see if
1852 * we should notify the parent, prepare_signal(SIGCONT) encodes
1853 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1854 */
1855 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1856 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1857 ? CLD_CONTINUED : CLD_STOPPED;
1858 signal->flags &= ~SIGNAL_CLD_MASK;
1859
1860 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1861 spin_unlock_irq(&sighand->siglock);
1862
1863 if (why) {
1864 read_lock(&tasklist_lock);
1865 do_notify_parent_cldstop(current->group_leader, why);
1866 read_unlock(&tasklist_lock);
1867 }
1868 goto relock;
1869 }
1870
1871 for (;;) {
1872 struct k_sigaction *ka;
1873 /*
1874 * Tracing can induce an artifical signal and choose sigaction.
1875 * The return value in @signr determines the default action,
1876 * but @info->si_signo is the signal number we will report.
1877 */
1878 signr = tracehook_get_signal(current, regs, info, return_ka);
1879 if (unlikely(signr < 0))
1880 goto relock;
1881 if (unlikely(signr != 0))
1882 ka = return_ka;
1883 else {
1884 if (unlikely(signal->group_stop_count > 0) &&
1885 do_signal_stop(0))
1886 goto relock;
1887
1888 signr = dequeue_signal(current, &current->blocked,
1889 info);
1890
1891 if (!signr)
1892 break; /* will return 0 */
1893
1894 if (signr != SIGKILL) {
1895 signr = ptrace_signal(signr, info,
1896 regs, cookie);
1897 if (!signr)
1898 continue;
1899 }
1900
1901 ka = &sighand->action[signr-1];
1902 }
1903
1904 /* Trace actually delivered signals. */
1905 trace_signal_deliver(signr, info, ka);
1906
1907 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1908 continue;
1909 if (ka->sa.sa_handler != SIG_DFL) {
1910 /* Run the handler. */
1911 *return_ka = *ka;
1912
1913 if (ka->sa.sa_flags & SA_ONESHOT)
1914 ka->sa.sa_handler = SIG_DFL;
1915
1916 break; /* will return non-zero "signr" value */
1917 }
1918
1919 /*
1920 * Now we are doing the default action for this signal.
1921 */
1922 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1923 continue;
1924
1925 /*
1926 * Global init gets no signals it doesn't want.
1927 * Container-init gets no signals it doesn't want from same
1928 * container.
1929 *
1930 * Note that if global/container-init sees a sig_kernel_only()
1931 * signal here, the signal must have been generated internally
1932 * or must have come from an ancestor namespace. In either
1933 * case, the signal cannot be dropped.
1934 */
1935 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1936 !sig_kernel_only(signr))
1937 continue;
1938
1939 if (sig_kernel_stop(signr)) {
1940 /*
1941 * The default action is to stop all threads in
1942 * the thread group. The job control signals
1943 * do nothing in an orphaned pgrp, but SIGSTOP
1944 * always works. Note that siglock needs to be
1945 * dropped during the call to is_orphaned_pgrp()
1946 * because of lock ordering with tasklist_lock.
1947 * This allows an intervening SIGCONT to be posted.
1948 * We need to check for that and bail out if necessary.
1949 */
1950 if (signr != SIGSTOP) {
1951 spin_unlock_irq(&sighand->siglock);
1952
1953 /* signals can be posted during this window */
1954
1955 if (is_current_pgrp_orphaned())
1956 goto relock;
1957
1958 spin_lock_irq(&sighand->siglock);
1959 }
1960
1961 if (likely(do_signal_stop(info->si_signo))) {
1962 /* It released the siglock. */
1963 goto relock;
1964 }
1965
1966 /*
1967 * We didn't actually stop, due to a race
1968 * with SIGCONT or something like that.
1969 */
1970 continue;
1971 }
1972
1973 spin_unlock_irq(&sighand->siglock);
1974
1975 /*
1976 * Anything else is fatal, maybe with a core dump.
1977 */
1978 current->flags |= PF_SIGNALED;
1979
1980 if (sig_kernel_coredump(signr)) {
1981 if (print_fatal_signals)
1982 print_fatal_signal(regs, info->si_signo);
1983 /*
1984 * If it was able to dump core, this kills all
1985 * other threads in the group and synchronizes with
1986 * their demise. If we lost the race with another
1987 * thread getting here, it set group_exit_code
1988 * first and our do_group_exit call below will use
1989 * that value and ignore the one we pass it.
1990 */
1991 do_coredump(info->si_signo, info->si_signo, regs);
1992 }
1993
1994 /*
1995 * Death signals, no core dump.
1996 */
1997 do_group_exit(info->si_signo);
1998 /* NOTREACHED */
1999 }
2000 spin_unlock_irq(&sighand->siglock);
2001 return signr;
2002 }
2003
2004 void exit_signals(struct task_struct *tsk)
2005 {
2006 int group_stop = 0;
2007 struct task_struct *t;
2008
2009 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2010 tsk->flags |= PF_EXITING;
2011 return;
2012 }
2013
2014 spin_lock_irq(&tsk->sighand->siglock);
2015 /*
2016 * From now this task is not visible for group-wide signals,
2017 * see wants_signal(), do_signal_stop().
2018 */
2019 tsk->flags |= PF_EXITING;
2020 if (!signal_pending(tsk))
2021 goto out;
2022
2023 /* It could be that __group_complete_signal() choose us to
2024 * notify about group-wide signal. Another thread should be
2025 * woken now to take the signal since we will not.
2026 */
2027 for (t = tsk; (t = next_thread(t)) != tsk; )
2028 if (!signal_pending(t) && !(t->flags & PF_EXITING))
2029 recalc_sigpending_and_wake(t);
2030
2031 if (unlikely(tsk->signal->group_stop_count) &&
2032 !--tsk->signal->group_stop_count) {
2033 tsk->signal->flags = SIGNAL_STOP_STOPPED;
2034 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2035 }
2036 out:
2037 spin_unlock_irq(&tsk->sighand->siglock);
2038
2039 if (unlikely(group_stop)) {
2040 read_lock(&tasklist_lock);
2041 do_notify_parent_cldstop(tsk, group_stop);
2042 read_unlock(&tasklist_lock);
2043 }
2044 }
2045
2046 EXPORT_SYMBOL(recalc_sigpending);
2047 EXPORT_SYMBOL_GPL(dequeue_signal);
2048 EXPORT_SYMBOL(flush_signals);
2049 EXPORT_SYMBOL(force_sig);
2050 EXPORT_SYMBOL(send_sig);
2051 EXPORT_SYMBOL(send_sig_info);
2052 EXPORT_SYMBOL(sigprocmask);
2053 EXPORT_SYMBOL(block_all_signals);
2054 EXPORT_SYMBOL(unblock_all_signals);
2055
2056
2057 /*
2058 * System call entry points.
2059 */
2060
2061 SYSCALL_DEFINE0(restart_syscall)
2062 {
2063 struct restart_block *restart = &current_thread_info()->restart_block;
2064 return restart->fn(restart);
2065 }
2066
2067 long do_no_restart_syscall(struct restart_block *param)
2068 {
2069 return -EINTR;
2070 }
2071
2072 /*
2073 * We don't need to get the kernel lock - this is all local to this
2074 * particular thread.. (and that's good, because this is _heavily_
2075 * used by various programs)
2076 */
2077
2078 /*
2079 * This is also useful for kernel threads that want to temporarily
2080 * (or permanently) block certain signals.
2081 *
2082 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2083 * interface happily blocks "unblockable" signals like SIGKILL
2084 * and friends.
2085 */
2086 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2087 {
2088 int error;
2089
2090 spin_lock_irq(&current->sighand->siglock);
2091 if (oldset)
2092 *oldset = current->blocked;
2093
2094 error = 0;
2095 switch (how) {
2096 case SIG_BLOCK:
2097 sigorsets(&current->blocked, &current->blocked, set);
2098 break;
2099 case SIG_UNBLOCK:
2100 signandsets(&current->blocked, &current->blocked, set);
2101 break;
2102 case SIG_SETMASK:
2103 current->blocked = *set;
2104 break;
2105 default:
2106 error = -EINVAL;
2107 }
2108 recalc_sigpending();
2109 spin_unlock_irq(&current->sighand->siglock);
2110
2111 return error;
2112 }
2113
2114 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2115 sigset_t __user *, oset, size_t, sigsetsize)
2116 {
2117 int error = -EINVAL;
2118 sigset_t old_set, new_set;
2119
2120 /* XXX: Don't preclude handling different sized sigset_t's. */
2121 if (sigsetsize != sizeof(sigset_t))
2122 goto out;
2123
2124 if (set) {
2125 error = -EFAULT;
2126 if (copy_from_user(&new_set, set, sizeof(*set)))
2127 goto out;
2128 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2129
2130 error = sigprocmask(how, &new_set, &old_set);
2131 if (error)
2132 goto out;
2133 if (oset)
2134 goto set_old;
2135 } else if (oset) {
2136 spin_lock_irq(&current->sighand->siglock);
2137 old_set = current->blocked;
2138 spin_unlock_irq(&current->sighand->siglock);
2139
2140 set_old:
2141 error = -EFAULT;
2142 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2143 goto out;
2144 }
2145 error = 0;
2146 out:
2147 return error;
2148 }
2149
2150 long do_sigpending(void __user *set, unsigned long sigsetsize)
2151 {
2152 long error = -EINVAL;
2153 sigset_t pending;
2154
2155 if (sigsetsize > sizeof(sigset_t))
2156 goto out;
2157
2158 spin_lock_irq(&current->sighand->siglock);
2159 sigorsets(&pending, &current->pending.signal,
2160 &current->signal->shared_pending.signal);
2161 spin_unlock_irq(&current->sighand->siglock);
2162
2163 /* Outside the lock because only this thread touches it. */
2164 sigandsets(&pending, &current->blocked, &pending);
2165
2166 error = -EFAULT;
2167 if (!copy_to_user(set, &pending, sigsetsize))
2168 error = 0;
2169
2170 out:
2171 return error;
2172 }
2173
2174 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2175 {
2176 return do_sigpending(set, sigsetsize);
2177 }
2178
2179 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2180
2181 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2182 {
2183 int err;
2184
2185 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2186 return -EFAULT;
2187 if (from->si_code < 0)
2188 return __copy_to_user(to, from, sizeof(siginfo_t))
2189 ? -EFAULT : 0;
2190 /*
2191 * If you change siginfo_t structure, please be sure
2192 * this code is fixed accordingly.
2193 * Please remember to update the signalfd_copyinfo() function
2194 * inside fs/signalfd.c too, in case siginfo_t changes.
2195 * It should never copy any pad contained in the structure
2196 * to avoid security leaks, but must copy the generic
2197 * 3 ints plus the relevant union member.
2198 */
2199 err = __put_user(from->si_signo, &to->si_signo);
2200 err |= __put_user(from->si_errno, &to->si_errno);
2201 err |= __put_user((short)from->si_code, &to->si_code);
2202 switch (from->si_code & __SI_MASK) {
2203 case __SI_KILL:
2204 err |= __put_user(from->si_pid, &to->si_pid);
2205 err |= __put_user(from->si_uid, &to->si_uid);
2206 break;
2207 case __SI_TIMER:
2208 err |= __put_user(from->si_tid, &to->si_tid);
2209 err |= __put_user(from->si_overrun, &to->si_overrun);
2210 err |= __put_user(from->si_ptr, &to->si_ptr);
2211 break;
2212 case __SI_POLL:
2213 err |= __put_user(from->si_band, &to->si_band);
2214 err |= __put_user(from->si_fd, &to->si_fd);
2215 break;
2216 case __SI_FAULT:
2217 err |= __put_user(from->si_addr, &to->si_addr);
2218 #ifdef __ARCH_SI_TRAPNO
2219 err |= __put_user(from->si_trapno, &to->si_trapno);
2220 #endif
2221 #ifdef BUS_MCEERR_AO
2222 /*
2223 * Other callers might not initialize the si_lsb field,
2224 * so check explicitely for the right codes here.
2225 */
2226 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2227 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2228 #endif
2229 break;
2230 case __SI_CHLD:
2231 err |= __put_user(from->si_pid, &to->si_pid);
2232 err |= __put_user(from->si_uid, &to->si_uid);
2233 err |= __put_user(from->si_status, &to->si_status);
2234 err |= __put_user(from->si_utime, &to->si_utime);
2235 err |= __put_user(from->si_stime, &to->si_stime);
2236 break;
2237 case __SI_RT: /* This is not generated by the kernel as of now. */
2238 case __SI_MESGQ: /* But this is */
2239 err |= __put_user(from->si_pid, &to->si_pid);
2240 err |= __put_user(from->si_uid, &to->si_uid);
2241 err |= __put_user(from->si_ptr, &to->si_ptr);
2242 break;
2243 default: /* this is just in case for now ... */
2244 err |= __put_user(from->si_pid, &to->si_pid);
2245 err |= __put_user(from->si_uid, &to->si_uid);
2246 break;
2247 }
2248 return err;
2249 }
2250
2251 #endif
2252
2253 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2254 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2255 size_t, sigsetsize)
2256 {
2257 int ret, sig;
2258 sigset_t these;
2259 struct timespec ts;
2260 siginfo_t info;
2261 long timeout = 0;
2262
2263 /* XXX: Don't preclude handling different sized sigset_t's. */
2264 if (sigsetsize != sizeof(sigset_t))
2265 return -EINVAL;
2266
2267 if (copy_from_user(&these, uthese, sizeof(these)))
2268 return -EFAULT;
2269
2270 /*
2271 * Invert the set of allowed signals to get those we
2272 * want to block.
2273 */
2274 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2275 signotset(&these);
2276
2277 if (uts) {
2278 if (copy_from_user(&ts, uts, sizeof(ts)))
2279 return -EFAULT;
2280 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2281 || ts.tv_sec < 0)
2282 return -EINVAL;
2283 }
2284
2285 spin_lock_irq(&current->sighand->siglock);
2286 sig = dequeue_signal(current, &these, &info);
2287 if (!sig) {
2288 timeout = MAX_SCHEDULE_TIMEOUT;
2289 if (uts)
2290 timeout = (timespec_to_jiffies(&ts)
2291 + (ts.tv_sec || ts.tv_nsec));
2292
2293 if (timeout) {
2294 /* None ready -- temporarily unblock those we're
2295 * interested while we are sleeping in so that we'll
2296 * be awakened when they arrive. */
2297 current->real_blocked = current->blocked;
2298 sigandsets(&current->blocked, &current->blocked, &these);
2299 recalc_sigpending();
2300 spin_unlock_irq(&current->sighand->siglock);
2301
2302 timeout = schedule_timeout_interruptible(timeout);
2303
2304 spin_lock_irq(&current->sighand->siglock);
2305 sig = dequeue_signal(current, &these, &info);
2306 current->blocked = current->real_blocked;
2307 siginitset(&current->real_blocked, 0);
2308 recalc_sigpending();
2309 }
2310 }
2311 spin_unlock_irq(&current->sighand->siglock);
2312
2313 if (sig) {
2314 ret = sig;
2315 if (uinfo) {
2316 if (copy_siginfo_to_user(uinfo, &info))
2317 ret = -EFAULT;
2318 }
2319 } else {
2320 ret = -EAGAIN;
2321 if (timeout)
2322 ret = -EINTR;
2323 }
2324
2325 return ret;
2326 }
2327
2328 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2329 {
2330 struct siginfo info;
2331
2332 info.si_signo = sig;
2333 info.si_errno = 0;
2334 info.si_code = SI_USER;
2335 info.si_pid = task_tgid_vnr(current);
2336 info.si_uid = current_uid();
2337
2338 return kill_something_info(sig, &info, pid);
2339 }
2340
2341 static int
2342 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2343 {
2344 struct task_struct *p;
2345 int error = -ESRCH;
2346
2347 rcu_read_lock();
2348 p = find_task_by_vpid(pid);
2349 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2350 error = check_kill_permission(sig, info, p);
2351 /*
2352 * The null signal is a permissions and process existence
2353 * probe. No signal is actually delivered.
2354 */
2355 if (!error && sig) {
2356 error = do_send_sig_info(sig, info, p, false);
2357 /*
2358 * If lock_task_sighand() failed we pretend the task
2359 * dies after receiving the signal. The window is tiny,
2360 * and the signal is private anyway.
2361 */
2362 if (unlikely(error == -ESRCH))
2363 error = 0;
2364 }
2365 }
2366 rcu_read_unlock();
2367
2368 return error;
2369 }
2370
2371 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2372 {
2373 struct siginfo info;
2374
2375 info.si_signo = sig;
2376 info.si_errno = 0;
2377 info.si_code = SI_TKILL;
2378 info.si_pid = task_tgid_vnr(current);
2379 info.si_uid = current_uid();
2380
2381 return do_send_specific(tgid, pid, sig, &info);
2382 }
2383
2384 /**
2385 * sys_tgkill - send signal to one specific thread
2386 * @tgid: the thread group ID of the thread
2387 * @pid: the PID of the thread
2388 * @sig: signal to be sent
2389 *
2390 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2391 * exists but it's not belonging to the target process anymore. This
2392 * method solves the problem of threads exiting and PIDs getting reused.
2393 */
2394 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2395 {
2396 /* This is only valid for single tasks */
2397 if (pid <= 0 || tgid <= 0)
2398 return -EINVAL;
2399
2400 return do_tkill(tgid, pid, sig);
2401 }
2402
2403 /*
2404 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2405 */
2406 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2407 {
2408 /* This is only valid for single tasks */
2409 if (pid <= 0)
2410 return -EINVAL;
2411
2412 return do_tkill(0, pid, sig);
2413 }
2414
2415 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2416 siginfo_t __user *, uinfo)
2417 {
2418 siginfo_t info;
2419
2420 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2421 return -EFAULT;
2422
2423 /* Not even root can pretend to send signals from the kernel.
2424 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2425 */
2426 if (info.si_code != SI_QUEUE) {
2427 /* We used to allow any < 0 si_code */
2428 WARN_ON_ONCE(info.si_code < 0);
2429 return -EPERM;
2430 }
2431 info.si_signo = sig;
2432
2433 /* POSIX.1b doesn't mention process groups. */
2434 return kill_proc_info(sig, &info, pid);
2435 }
2436
2437 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2438 {
2439 /* This is only valid for single tasks */
2440 if (pid <= 0 || tgid <= 0)
2441 return -EINVAL;
2442
2443 /* Not even root can pretend to send signals from the kernel.
2444 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2445 */
2446 if (info->si_code != SI_QUEUE) {
2447 /* We used to allow any < 0 si_code */
2448 WARN_ON_ONCE(info->si_code < 0);
2449 return -EPERM;
2450 }
2451 info->si_signo = sig;
2452
2453 return do_send_specific(tgid, pid, sig, info);
2454 }
2455
2456 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2457 siginfo_t __user *, uinfo)
2458 {
2459 siginfo_t info;
2460
2461 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2462 return -EFAULT;
2463
2464 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2465 }
2466
2467 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2468 {
2469 struct task_struct *t = current;
2470 struct k_sigaction *k;
2471 sigset_t mask;
2472
2473 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2474 return -EINVAL;
2475
2476 k = &t->sighand->action[sig-1];
2477
2478 spin_lock_irq(&current->sighand->siglock);
2479 if (oact)
2480 *oact = *k;
2481
2482 if (act) {
2483 sigdelsetmask(&act->sa.sa_mask,
2484 sigmask(SIGKILL) | sigmask(SIGSTOP));
2485 *k = *act;
2486 /*
2487 * POSIX 3.3.1.3:
2488 * "Setting a signal action to SIG_IGN for a signal that is
2489 * pending shall cause the pending signal to be discarded,
2490 * whether or not it is blocked."
2491 *
2492 * "Setting a signal action to SIG_DFL for a signal that is
2493 * pending and whose default action is to ignore the signal
2494 * (for example, SIGCHLD), shall cause the pending signal to
2495 * be discarded, whether or not it is blocked"
2496 */
2497 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2498 sigemptyset(&mask);
2499 sigaddset(&mask, sig);
2500 rm_from_queue_full(&mask, &t->signal->shared_pending);
2501 do {
2502 rm_from_queue_full(&mask, &t->pending);
2503 t = next_thread(t);
2504 } while (t != current);
2505 }
2506 }
2507
2508 spin_unlock_irq(&current->sighand->siglock);
2509 return 0;
2510 }
2511
2512 int
2513 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2514 {
2515 stack_t oss;
2516 int error;
2517
2518 oss.ss_sp = (void __user *) current->sas_ss_sp;
2519 oss.ss_size = current->sas_ss_size;
2520 oss.ss_flags = sas_ss_flags(sp);
2521
2522 if (uss) {
2523 void __user *ss_sp;
2524 size_t ss_size;
2525 int ss_flags;
2526
2527 error = -EFAULT;
2528 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2529 goto out;
2530 error = __get_user(ss_sp, &uss->ss_sp) |
2531 __get_user(ss_flags, &uss->ss_flags) |
2532 __get_user(ss_size, &uss->ss_size);
2533 if (error)
2534 goto out;
2535
2536 error = -EPERM;
2537 if (on_sig_stack(sp))
2538 goto out;
2539
2540 error = -EINVAL;
2541 /*
2542 *
2543 * Note - this code used to test ss_flags incorrectly
2544 * old code may have been written using ss_flags==0
2545 * to mean ss_flags==SS_ONSTACK (as this was the only
2546 * way that worked) - this fix preserves that older
2547 * mechanism
2548 */
2549 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2550 goto out;
2551
2552 if (ss_flags == SS_DISABLE) {
2553 ss_size = 0;
2554 ss_sp = NULL;
2555 } else {
2556 error = -ENOMEM;
2557 if (ss_size < MINSIGSTKSZ)
2558 goto out;
2559 }
2560
2561 current->sas_ss_sp = (unsigned long) ss_sp;
2562 current->sas_ss_size = ss_size;
2563 }
2564
2565 error = 0;
2566 if (uoss) {
2567 error = -EFAULT;
2568 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2569 goto out;
2570 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2571 __put_user(oss.ss_size, &uoss->ss_size) |
2572 __put_user(oss.ss_flags, &uoss->ss_flags);
2573 }
2574
2575 out:
2576 return error;
2577 }
2578
2579 #ifdef __ARCH_WANT_SYS_SIGPENDING
2580
2581 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2582 {
2583 return do_sigpending(set, sizeof(*set));
2584 }
2585
2586 #endif
2587
2588 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2589 /* Some platforms have their own version with special arguments others
2590 support only sys_rt_sigprocmask. */
2591
2592 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2593 old_sigset_t __user *, oset)
2594 {
2595 int error;
2596 old_sigset_t old_set, new_set;
2597
2598 if (set) {
2599 error = -EFAULT;
2600 if (copy_from_user(&new_set, set, sizeof(*set)))
2601 goto out;
2602 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2603
2604 spin_lock_irq(&current->sighand->siglock);
2605 old_set = current->blocked.sig[0];
2606
2607 error = 0;
2608 switch (how) {
2609 default:
2610 error = -EINVAL;
2611 break;
2612 case SIG_BLOCK:
2613 sigaddsetmask(&current->blocked, new_set);
2614 break;
2615 case SIG_UNBLOCK:
2616 sigdelsetmask(&current->blocked, new_set);
2617 break;
2618 case SIG_SETMASK:
2619 current->blocked.sig[0] = new_set;
2620 break;
2621 }
2622
2623 recalc_sigpending();
2624 spin_unlock_irq(&current->sighand->siglock);
2625 if (error)
2626 goto out;
2627 if (oset)
2628 goto set_old;
2629 } else if (oset) {
2630 old_set = current->blocked.sig[0];
2631 set_old:
2632 error = -EFAULT;
2633 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2634 goto out;
2635 }
2636 error = 0;
2637 out:
2638 return error;
2639 }
2640 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2641
2642 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2643 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2644 const struct sigaction __user *, act,
2645 struct sigaction __user *, oact,
2646 size_t, sigsetsize)
2647 {
2648 struct k_sigaction new_sa, old_sa;
2649 int ret = -EINVAL;
2650
2651 /* XXX: Don't preclude handling different sized sigset_t's. */
2652 if (sigsetsize != sizeof(sigset_t))
2653 goto out;
2654
2655 if (act) {
2656 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2657 return -EFAULT;
2658 }
2659
2660 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2661
2662 if (!ret && oact) {
2663 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2664 return -EFAULT;
2665 }
2666 out:
2667 return ret;
2668 }
2669 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2670
2671 #ifdef __ARCH_WANT_SYS_SGETMASK
2672
2673 /*
2674 * For backwards compatibility. Functionality superseded by sigprocmask.
2675 */
2676 SYSCALL_DEFINE0(sgetmask)
2677 {
2678 /* SMP safe */
2679 return current->blocked.sig[0];
2680 }
2681
2682 SYSCALL_DEFINE1(ssetmask, int, newmask)
2683 {
2684 int old;
2685
2686 spin_lock_irq(&current->sighand->siglock);
2687 old = current->blocked.sig[0];
2688
2689 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2690 sigmask(SIGSTOP)));
2691 recalc_sigpending();
2692 spin_unlock_irq(&current->sighand->siglock);
2693
2694 return old;
2695 }
2696 #endif /* __ARCH_WANT_SGETMASK */
2697
2698 #ifdef __ARCH_WANT_SYS_SIGNAL
2699 /*
2700 * For backwards compatibility. Functionality superseded by sigaction.
2701 */
2702 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2703 {
2704 struct k_sigaction new_sa, old_sa;
2705 int ret;
2706
2707 new_sa.sa.sa_handler = handler;
2708 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2709 sigemptyset(&new_sa.sa.sa_mask);
2710
2711 ret = do_sigaction(sig, &new_sa, &old_sa);
2712
2713 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2714 }
2715 #endif /* __ARCH_WANT_SYS_SIGNAL */
2716
2717 #ifdef __ARCH_WANT_SYS_PAUSE
2718
2719 SYSCALL_DEFINE0(pause)
2720 {
2721 current->state = TASK_INTERRUPTIBLE;
2722 schedule();
2723 return -ERESTARTNOHAND;
2724 }
2725
2726 #endif
2727
2728 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2729 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2730 {
2731 sigset_t newset;
2732
2733 /* XXX: Don't preclude handling different sized sigset_t's. */
2734 if (sigsetsize != sizeof(sigset_t))
2735 return -EINVAL;
2736
2737 if (copy_from_user(&newset, unewset, sizeof(newset)))
2738 return -EFAULT;
2739 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2740
2741 spin_lock_irq(&current->sighand->siglock);
2742 current->saved_sigmask = current->blocked;
2743 current->blocked = newset;
2744 recalc_sigpending();
2745 spin_unlock_irq(&current->sighand->siglock);
2746
2747 current->state = TASK_INTERRUPTIBLE;
2748 schedule();
2749 set_restore_sigmask();
2750 return -ERESTARTNOHAND;
2751 }
2752 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2753
2754 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2755 {
2756 return NULL;
2757 }
2758
2759 void __init signals_init(void)
2760 {
2761 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2762 }
2763
2764 #ifdef CONFIG_KGDB_KDB
2765 #include <linux/kdb.h>
2766 /*
2767 * kdb_send_sig_info - Allows kdb to send signals without exposing
2768 * signal internals. This function checks if the required locks are
2769 * available before calling the main signal code, to avoid kdb
2770 * deadlocks.
2771 */
2772 void
2773 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
2774 {
2775 static struct task_struct *kdb_prev_t;
2776 int sig, new_t;
2777 if (!spin_trylock(&t->sighand->siglock)) {
2778 kdb_printf("Can't do kill command now.\n"
2779 "The sigmask lock is held somewhere else in "
2780 "kernel, try again later\n");
2781 return;
2782 }
2783 spin_unlock(&t->sighand->siglock);
2784 new_t = kdb_prev_t != t;
2785 kdb_prev_t = t;
2786 if (t->state != TASK_RUNNING && new_t) {
2787 kdb_printf("Process is not RUNNING, sending a signal from "
2788 "kdb risks deadlock\n"
2789 "on the run queue locks. "
2790 "The signal has _not_ been sent.\n"
2791 "Reissue the kill command if you want to risk "
2792 "the deadlock.\n");
2793 return;
2794 }
2795 sig = info->si_signo;
2796 if (send_sig_info(sig, info, t))
2797 kdb_printf("Fail to deliver Signal %d to process %d.\n",
2798 sig, t->pid);
2799 else
2800 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
2801 }
2802 #endif /* CONFIG_KGDB_KDB */