ptrace: cleanup arch_ptrace() on xtensa
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
33
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
39
40 /*
41 * SLAB caches for signal bits.
42 */
43
44 static struct kmem_cache *sigqueue_cachep;
45
46 int print_fatal_signals __read_mostly;
47
48 static void __user *sig_handler(struct task_struct *t, int sig)
49 {
50 return t->sighand->action[sig - 1].sa.sa_handler;
51 }
52
53 static int sig_handler_ignored(void __user *handler, int sig)
54 {
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
58 }
59
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
62 {
63 void __user *handler;
64
65 handler = sig_handler(t, sig);
66
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
70
71 return sig_handler_ignored(handler, sig);
72 }
73
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75 {
76 /*
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
80 */
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
83
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
86
87 /*
88 * Tracers may want to know about even ignored signals.
89 */
90 return !tracehook_consider_ignored_signal(t, sig);
91 }
92
93 /*
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
96 */
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98 {
99 unsigned long ready;
100 long i;
101
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
107
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
119 }
120 return ready != 0;
121 }
122
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124
125 static int recalc_sigpending_tsk(struct task_struct *t)
126 {
127 if (t->signal->group_stop_count > 0 ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
132 }
133 /*
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
137 */
138 return 0;
139 }
140
141 /*
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
144 */
145 void recalc_sigpending_and_wake(struct task_struct *t)
146 {
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
149 }
150
151 void recalc_sigpending(void)
152 {
153 if (unlikely(tracehook_force_sigpending()))
154 set_thread_flag(TIF_SIGPENDING);
155 else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
157
158 }
159
160 /* Given the mask, find the first available signal that should be serviced. */
161
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE))
165
166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 unsigned long i, *s, *m, x;
169 int sig = 0;
170
171 s = pending->signal.sig;
172 m = mask->sig;
173
174 /*
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
177 */
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
184 }
185
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
194 }
195 break;
196
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
203
204 case 1:
205 /* Nothing to do */
206 break;
207 }
208
209 return sig;
210 }
211
212 static inline void print_dropped_signal(int sig)
213 {
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215
216 if (!print_fatal_signals)
217 return;
218
219 if (!__ratelimit(&ratelimit_state))
220 return;
221
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
224 }
225
226 /*
227 * allocate a new signal queue record
228 * - this may be called without locks if and only if t == current, otherwise an
229 * appopriate lock must be held to stop the target task from exiting
230 */
231 static struct sigqueue *
232 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
233 {
234 struct sigqueue *q = NULL;
235 struct user_struct *user;
236
237 /*
238 * Protect access to @t credentials. This can go away when all
239 * callers hold rcu read lock.
240 */
241 rcu_read_lock();
242 user = get_uid(__task_cred(t)->user);
243 atomic_inc(&user->sigpending);
244 rcu_read_unlock();
245
246 if (override_rlimit ||
247 atomic_read(&user->sigpending) <=
248 task_rlimit(t, RLIMIT_SIGPENDING)) {
249 q = kmem_cache_alloc(sigqueue_cachep, flags);
250 } else {
251 print_dropped_signal(sig);
252 }
253
254 if (unlikely(q == NULL)) {
255 atomic_dec(&user->sigpending);
256 free_uid(user);
257 } else {
258 INIT_LIST_HEAD(&q->list);
259 q->flags = 0;
260 q->user = user;
261 }
262
263 return q;
264 }
265
266 static void __sigqueue_free(struct sigqueue *q)
267 {
268 if (q->flags & SIGQUEUE_PREALLOC)
269 return;
270 atomic_dec(&q->user->sigpending);
271 free_uid(q->user);
272 kmem_cache_free(sigqueue_cachep, q);
273 }
274
275 void flush_sigqueue(struct sigpending *queue)
276 {
277 struct sigqueue *q;
278
279 sigemptyset(&queue->signal);
280 while (!list_empty(&queue->list)) {
281 q = list_entry(queue->list.next, struct sigqueue , list);
282 list_del_init(&q->list);
283 __sigqueue_free(q);
284 }
285 }
286
287 /*
288 * Flush all pending signals for a task.
289 */
290 void __flush_signals(struct task_struct *t)
291 {
292 clear_tsk_thread_flag(t, TIF_SIGPENDING);
293 flush_sigqueue(&t->pending);
294 flush_sigqueue(&t->signal->shared_pending);
295 }
296
297 void flush_signals(struct task_struct *t)
298 {
299 unsigned long flags;
300
301 spin_lock_irqsave(&t->sighand->siglock, flags);
302 __flush_signals(t);
303 spin_unlock_irqrestore(&t->sighand->siglock, flags);
304 }
305
306 static void __flush_itimer_signals(struct sigpending *pending)
307 {
308 sigset_t signal, retain;
309 struct sigqueue *q, *n;
310
311 signal = pending->signal;
312 sigemptyset(&retain);
313
314 list_for_each_entry_safe(q, n, &pending->list, list) {
315 int sig = q->info.si_signo;
316
317 if (likely(q->info.si_code != SI_TIMER)) {
318 sigaddset(&retain, sig);
319 } else {
320 sigdelset(&signal, sig);
321 list_del_init(&q->list);
322 __sigqueue_free(q);
323 }
324 }
325
326 sigorsets(&pending->signal, &signal, &retain);
327 }
328
329 void flush_itimer_signals(void)
330 {
331 struct task_struct *tsk = current;
332 unsigned long flags;
333
334 spin_lock_irqsave(&tsk->sighand->siglock, flags);
335 __flush_itimer_signals(&tsk->pending);
336 __flush_itimer_signals(&tsk->signal->shared_pending);
337 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
338 }
339
340 void ignore_signals(struct task_struct *t)
341 {
342 int i;
343
344 for (i = 0; i < _NSIG; ++i)
345 t->sighand->action[i].sa.sa_handler = SIG_IGN;
346
347 flush_signals(t);
348 }
349
350 /*
351 * Flush all handlers for a task.
352 */
353
354 void
355 flush_signal_handlers(struct task_struct *t, int force_default)
356 {
357 int i;
358 struct k_sigaction *ka = &t->sighand->action[0];
359 for (i = _NSIG ; i != 0 ; i--) {
360 if (force_default || ka->sa.sa_handler != SIG_IGN)
361 ka->sa.sa_handler = SIG_DFL;
362 ka->sa.sa_flags = 0;
363 sigemptyset(&ka->sa.sa_mask);
364 ka++;
365 }
366 }
367
368 int unhandled_signal(struct task_struct *tsk, int sig)
369 {
370 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
371 if (is_global_init(tsk))
372 return 1;
373 if (handler != SIG_IGN && handler != SIG_DFL)
374 return 0;
375 return !tracehook_consider_fatal_signal(tsk, sig);
376 }
377
378
379 /* Notify the system that a driver wants to block all signals for this
380 * process, and wants to be notified if any signals at all were to be
381 * sent/acted upon. If the notifier routine returns non-zero, then the
382 * signal will be acted upon after all. If the notifier routine returns 0,
383 * then then signal will be blocked. Only one block per process is
384 * allowed. priv is a pointer to private data that the notifier routine
385 * can use to determine if the signal should be blocked or not. */
386
387 void
388 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
389 {
390 unsigned long flags;
391
392 spin_lock_irqsave(&current->sighand->siglock, flags);
393 current->notifier_mask = mask;
394 current->notifier_data = priv;
395 current->notifier = notifier;
396 spin_unlock_irqrestore(&current->sighand->siglock, flags);
397 }
398
399 /* Notify the system that blocking has ended. */
400
401 void
402 unblock_all_signals(void)
403 {
404 unsigned long flags;
405
406 spin_lock_irqsave(&current->sighand->siglock, flags);
407 current->notifier = NULL;
408 current->notifier_data = NULL;
409 recalc_sigpending();
410 spin_unlock_irqrestore(&current->sighand->siglock, flags);
411 }
412
413 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
414 {
415 struct sigqueue *q, *first = NULL;
416
417 /*
418 * Collect the siginfo appropriate to this signal. Check if
419 * there is another siginfo for the same signal.
420 */
421 list_for_each_entry(q, &list->list, list) {
422 if (q->info.si_signo == sig) {
423 if (first)
424 goto still_pending;
425 first = q;
426 }
427 }
428
429 sigdelset(&list->signal, sig);
430
431 if (first) {
432 still_pending:
433 list_del_init(&first->list);
434 copy_siginfo(info, &first->info);
435 __sigqueue_free(first);
436 } else {
437 /* Ok, it wasn't in the queue. This must be
438 a fast-pathed signal or we must have been
439 out of queue space. So zero out the info.
440 */
441 info->si_signo = sig;
442 info->si_errno = 0;
443 info->si_code = SI_USER;
444 info->si_pid = 0;
445 info->si_uid = 0;
446 }
447 }
448
449 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
450 siginfo_t *info)
451 {
452 int sig = next_signal(pending, mask);
453
454 if (sig) {
455 if (current->notifier) {
456 if (sigismember(current->notifier_mask, sig)) {
457 if (!(current->notifier)(current->notifier_data)) {
458 clear_thread_flag(TIF_SIGPENDING);
459 return 0;
460 }
461 }
462 }
463
464 collect_signal(sig, pending, info);
465 }
466
467 return sig;
468 }
469
470 /*
471 * Dequeue a signal and return the element to the caller, which is
472 * expected to free it.
473 *
474 * All callers have to hold the siglock.
475 */
476 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
477 {
478 int signr;
479
480 /* We only dequeue private signals from ourselves, we don't let
481 * signalfd steal them
482 */
483 signr = __dequeue_signal(&tsk->pending, mask, info);
484 if (!signr) {
485 signr = __dequeue_signal(&tsk->signal->shared_pending,
486 mask, info);
487 /*
488 * itimer signal ?
489 *
490 * itimers are process shared and we restart periodic
491 * itimers in the signal delivery path to prevent DoS
492 * attacks in the high resolution timer case. This is
493 * compliant with the old way of self restarting
494 * itimers, as the SIGALRM is a legacy signal and only
495 * queued once. Changing the restart behaviour to
496 * restart the timer in the signal dequeue path is
497 * reducing the timer noise on heavy loaded !highres
498 * systems too.
499 */
500 if (unlikely(signr == SIGALRM)) {
501 struct hrtimer *tmr = &tsk->signal->real_timer;
502
503 if (!hrtimer_is_queued(tmr) &&
504 tsk->signal->it_real_incr.tv64 != 0) {
505 hrtimer_forward(tmr, tmr->base->get_time(),
506 tsk->signal->it_real_incr);
507 hrtimer_restart(tmr);
508 }
509 }
510 }
511
512 recalc_sigpending();
513 if (!signr)
514 return 0;
515
516 if (unlikely(sig_kernel_stop(signr))) {
517 /*
518 * Set a marker that we have dequeued a stop signal. Our
519 * caller might release the siglock and then the pending
520 * stop signal it is about to process is no longer in the
521 * pending bitmasks, but must still be cleared by a SIGCONT
522 * (and overruled by a SIGKILL). So those cases clear this
523 * shared flag after we've set it. Note that this flag may
524 * remain set after the signal we return is ignored or
525 * handled. That doesn't matter because its only purpose
526 * is to alert stop-signal processing code when another
527 * processor has come along and cleared the flag.
528 */
529 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
530 }
531 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
532 /*
533 * Release the siglock to ensure proper locking order
534 * of timer locks outside of siglocks. Note, we leave
535 * irqs disabled here, since the posix-timers code is
536 * about to disable them again anyway.
537 */
538 spin_unlock(&tsk->sighand->siglock);
539 do_schedule_next_timer(info);
540 spin_lock(&tsk->sighand->siglock);
541 }
542 return signr;
543 }
544
545 /*
546 * Tell a process that it has a new active signal..
547 *
548 * NOTE! we rely on the previous spin_lock to
549 * lock interrupts for us! We can only be called with
550 * "siglock" held, and the local interrupt must
551 * have been disabled when that got acquired!
552 *
553 * No need to set need_resched since signal event passing
554 * goes through ->blocked
555 */
556 void signal_wake_up(struct task_struct *t, int resume)
557 {
558 unsigned int mask;
559
560 set_tsk_thread_flag(t, TIF_SIGPENDING);
561
562 /*
563 * For SIGKILL, we want to wake it up in the stopped/traced/killable
564 * case. We don't check t->state here because there is a race with it
565 * executing another processor and just now entering stopped state.
566 * By using wake_up_state, we ensure the process will wake up and
567 * handle its death signal.
568 */
569 mask = TASK_INTERRUPTIBLE;
570 if (resume)
571 mask |= TASK_WAKEKILL;
572 if (!wake_up_state(t, mask))
573 kick_process(t);
574 }
575
576 /*
577 * Remove signals in mask from the pending set and queue.
578 * Returns 1 if any signals were found.
579 *
580 * All callers must be holding the siglock.
581 *
582 * This version takes a sigset mask and looks at all signals,
583 * not just those in the first mask word.
584 */
585 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
586 {
587 struct sigqueue *q, *n;
588 sigset_t m;
589
590 sigandsets(&m, mask, &s->signal);
591 if (sigisemptyset(&m))
592 return 0;
593
594 signandsets(&s->signal, &s->signal, mask);
595 list_for_each_entry_safe(q, n, &s->list, list) {
596 if (sigismember(mask, q->info.si_signo)) {
597 list_del_init(&q->list);
598 __sigqueue_free(q);
599 }
600 }
601 return 1;
602 }
603 /*
604 * Remove signals in mask from the pending set and queue.
605 * Returns 1 if any signals were found.
606 *
607 * All callers must be holding the siglock.
608 */
609 static int rm_from_queue(unsigned long mask, struct sigpending *s)
610 {
611 struct sigqueue *q, *n;
612
613 if (!sigtestsetmask(&s->signal, mask))
614 return 0;
615
616 sigdelsetmask(&s->signal, mask);
617 list_for_each_entry_safe(q, n, &s->list, list) {
618 if (q->info.si_signo < SIGRTMIN &&
619 (mask & sigmask(q->info.si_signo))) {
620 list_del_init(&q->list);
621 __sigqueue_free(q);
622 }
623 }
624 return 1;
625 }
626
627 static inline int is_si_special(const struct siginfo *info)
628 {
629 return info <= SEND_SIG_FORCED;
630 }
631
632 static inline bool si_fromuser(const struct siginfo *info)
633 {
634 return info == SEND_SIG_NOINFO ||
635 (!is_si_special(info) && SI_FROMUSER(info));
636 }
637
638 /*
639 * Bad permissions for sending the signal
640 * - the caller must hold the RCU read lock
641 */
642 static int check_kill_permission(int sig, struct siginfo *info,
643 struct task_struct *t)
644 {
645 const struct cred *cred, *tcred;
646 struct pid *sid;
647 int error;
648
649 if (!valid_signal(sig))
650 return -EINVAL;
651
652 if (!si_fromuser(info))
653 return 0;
654
655 error = audit_signal_info(sig, t); /* Let audit system see the signal */
656 if (error)
657 return error;
658
659 cred = current_cred();
660 tcred = __task_cred(t);
661 if (!same_thread_group(current, t) &&
662 (cred->euid ^ tcred->suid) &&
663 (cred->euid ^ tcred->uid) &&
664 (cred->uid ^ tcred->suid) &&
665 (cred->uid ^ tcred->uid) &&
666 !capable(CAP_KILL)) {
667 switch (sig) {
668 case SIGCONT:
669 sid = task_session(t);
670 /*
671 * We don't return the error if sid == NULL. The
672 * task was unhashed, the caller must notice this.
673 */
674 if (!sid || sid == task_session(current))
675 break;
676 default:
677 return -EPERM;
678 }
679 }
680
681 return security_task_kill(t, info, sig, 0);
682 }
683
684 /*
685 * Handle magic process-wide effects of stop/continue signals. Unlike
686 * the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
690 *
691 * Returns true if the signal should be actually delivered, otherwise
692 * it should be dropped.
693 */
694 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
695 {
696 struct signal_struct *signal = p->signal;
697 struct task_struct *t;
698
699 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
700 /*
701 * The process is in the middle of dying, nothing to do.
702 */
703 } else if (sig_kernel_stop(sig)) {
704 /*
705 * This is a stop signal. Remove SIGCONT from all queues.
706 */
707 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
708 t = p;
709 do {
710 rm_from_queue(sigmask(SIGCONT), &t->pending);
711 } while_each_thread(p, t);
712 } else if (sig == SIGCONT) {
713 unsigned int why;
714 /*
715 * Remove all stop signals from all queues,
716 * and wake all threads.
717 */
718 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
719 t = p;
720 do {
721 unsigned int state;
722 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
723 /*
724 * If there is a handler for SIGCONT, we must make
725 * sure that no thread returns to user mode before
726 * we post the signal, in case it was the only
727 * thread eligible to run the signal handler--then
728 * it must not do anything between resuming and
729 * running the handler. With the TIF_SIGPENDING
730 * flag set, the thread will pause and acquire the
731 * siglock that we hold now and until we've queued
732 * the pending signal.
733 *
734 * Wake up the stopped thread _after_ setting
735 * TIF_SIGPENDING
736 */
737 state = __TASK_STOPPED;
738 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
739 set_tsk_thread_flag(t, TIF_SIGPENDING);
740 state |= TASK_INTERRUPTIBLE;
741 }
742 wake_up_state(t, state);
743 } while_each_thread(p, t);
744
745 /*
746 * Notify the parent with CLD_CONTINUED if we were stopped.
747 *
748 * If we were in the middle of a group stop, we pretend it
749 * was already finished, and then continued. Since SIGCHLD
750 * doesn't queue we report only CLD_STOPPED, as if the next
751 * CLD_CONTINUED was dropped.
752 */
753 why = 0;
754 if (signal->flags & SIGNAL_STOP_STOPPED)
755 why |= SIGNAL_CLD_CONTINUED;
756 else if (signal->group_stop_count)
757 why |= SIGNAL_CLD_STOPPED;
758
759 if (why) {
760 /*
761 * The first thread which returns from do_signal_stop()
762 * will take ->siglock, notice SIGNAL_CLD_MASK, and
763 * notify its parent. See get_signal_to_deliver().
764 */
765 signal->flags = why | SIGNAL_STOP_CONTINUED;
766 signal->group_stop_count = 0;
767 signal->group_exit_code = 0;
768 } else {
769 /*
770 * We are not stopped, but there could be a stop
771 * signal in the middle of being processed after
772 * being removed from the queue. Clear that too.
773 */
774 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
775 }
776 }
777
778 return !sig_ignored(p, sig, from_ancestor_ns);
779 }
780
781 /*
782 * Test if P wants to take SIG. After we've checked all threads with this,
783 * it's equivalent to finding no threads not blocking SIG. Any threads not
784 * blocking SIG were ruled out because they are not running and already
785 * have pending signals. Such threads will dequeue from the shared queue
786 * as soon as they're available, so putting the signal on the shared queue
787 * will be equivalent to sending it to one such thread.
788 */
789 static inline int wants_signal(int sig, struct task_struct *p)
790 {
791 if (sigismember(&p->blocked, sig))
792 return 0;
793 if (p->flags & PF_EXITING)
794 return 0;
795 if (sig == SIGKILL)
796 return 1;
797 if (task_is_stopped_or_traced(p))
798 return 0;
799 return task_curr(p) || !signal_pending(p);
800 }
801
802 static void complete_signal(int sig, struct task_struct *p, int group)
803 {
804 struct signal_struct *signal = p->signal;
805 struct task_struct *t;
806
807 /*
808 * Now find a thread we can wake up to take the signal off the queue.
809 *
810 * If the main thread wants the signal, it gets first crack.
811 * Probably the least surprising to the average bear.
812 */
813 if (wants_signal(sig, p))
814 t = p;
815 else if (!group || thread_group_empty(p))
816 /*
817 * There is just one thread and it does not need to be woken.
818 * It will dequeue unblocked signals before it runs again.
819 */
820 return;
821 else {
822 /*
823 * Otherwise try to find a suitable thread.
824 */
825 t = signal->curr_target;
826 while (!wants_signal(sig, t)) {
827 t = next_thread(t);
828 if (t == signal->curr_target)
829 /*
830 * No thread needs to be woken.
831 * Any eligible threads will see
832 * the signal in the queue soon.
833 */
834 return;
835 }
836 signal->curr_target = t;
837 }
838
839 /*
840 * Found a killable thread. If the signal will be fatal,
841 * then start taking the whole group down immediately.
842 */
843 if (sig_fatal(p, sig) &&
844 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
845 !sigismember(&t->real_blocked, sig) &&
846 (sig == SIGKILL ||
847 !tracehook_consider_fatal_signal(t, sig))) {
848 /*
849 * This signal will be fatal to the whole group.
850 */
851 if (!sig_kernel_coredump(sig)) {
852 /*
853 * Start a group exit and wake everybody up.
854 * This way we don't have other threads
855 * running and doing things after a slower
856 * thread has the fatal signal pending.
857 */
858 signal->flags = SIGNAL_GROUP_EXIT;
859 signal->group_exit_code = sig;
860 signal->group_stop_count = 0;
861 t = p;
862 do {
863 sigaddset(&t->pending.signal, SIGKILL);
864 signal_wake_up(t, 1);
865 } while_each_thread(p, t);
866 return;
867 }
868 }
869
870 /*
871 * The signal is already in the shared-pending queue.
872 * Tell the chosen thread to wake up and dequeue it.
873 */
874 signal_wake_up(t, sig == SIGKILL);
875 return;
876 }
877
878 static inline int legacy_queue(struct sigpending *signals, int sig)
879 {
880 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
881 }
882
883 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
884 int group, int from_ancestor_ns)
885 {
886 struct sigpending *pending;
887 struct sigqueue *q;
888 int override_rlimit;
889
890 trace_signal_generate(sig, info, t);
891
892 assert_spin_locked(&t->sighand->siglock);
893
894 if (!prepare_signal(sig, t, from_ancestor_ns))
895 return 0;
896
897 pending = group ? &t->signal->shared_pending : &t->pending;
898 /*
899 * Short-circuit ignored signals and support queuing
900 * exactly one non-rt signal, so that we can get more
901 * detailed information about the cause of the signal.
902 */
903 if (legacy_queue(pending, sig))
904 return 0;
905 /*
906 * fast-pathed signals for kernel-internal things like SIGSTOP
907 * or SIGKILL.
908 */
909 if (info == SEND_SIG_FORCED)
910 goto out_set;
911
912 /* Real-time signals must be queued if sent by sigqueue, or
913 some other real-time mechanism. It is implementation
914 defined whether kill() does so. We attempt to do so, on
915 the principle of least surprise, but since kill is not
916 allowed to fail with EAGAIN when low on memory we just
917 make sure at least one signal gets delivered and don't
918 pass on the info struct. */
919
920 if (sig < SIGRTMIN)
921 override_rlimit = (is_si_special(info) || info->si_code >= 0);
922 else
923 override_rlimit = 0;
924
925 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
926 override_rlimit);
927 if (q) {
928 list_add_tail(&q->list, &pending->list);
929 switch ((unsigned long) info) {
930 case (unsigned long) SEND_SIG_NOINFO:
931 q->info.si_signo = sig;
932 q->info.si_errno = 0;
933 q->info.si_code = SI_USER;
934 q->info.si_pid = task_tgid_nr_ns(current,
935 task_active_pid_ns(t));
936 q->info.si_uid = current_uid();
937 break;
938 case (unsigned long) SEND_SIG_PRIV:
939 q->info.si_signo = sig;
940 q->info.si_errno = 0;
941 q->info.si_code = SI_KERNEL;
942 q->info.si_pid = 0;
943 q->info.si_uid = 0;
944 break;
945 default:
946 copy_siginfo(&q->info, info);
947 if (from_ancestor_ns)
948 q->info.si_pid = 0;
949 break;
950 }
951 } else if (!is_si_special(info)) {
952 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
953 /*
954 * Queue overflow, abort. We may abort if the
955 * signal was rt and sent by user using something
956 * other than kill().
957 */
958 trace_signal_overflow_fail(sig, group, info);
959 return -EAGAIN;
960 } else {
961 /*
962 * This is a silent loss of information. We still
963 * send the signal, but the *info bits are lost.
964 */
965 trace_signal_lose_info(sig, group, info);
966 }
967 }
968
969 out_set:
970 signalfd_notify(t, sig);
971 sigaddset(&pending->signal, sig);
972 complete_signal(sig, t, group);
973 return 0;
974 }
975
976 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
977 int group)
978 {
979 int from_ancestor_ns = 0;
980
981 #ifdef CONFIG_PID_NS
982 from_ancestor_ns = si_fromuser(info) &&
983 !task_pid_nr_ns(current, task_active_pid_ns(t));
984 #endif
985
986 return __send_signal(sig, info, t, group, from_ancestor_ns);
987 }
988
989 static void print_fatal_signal(struct pt_regs *regs, int signr)
990 {
991 printk("%s/%d: potentially unexpected fatal signal %d.\n",
992 current->comm, task_pid_nr(current), signr);
993
994 #if defined(__i386__) && !defined(__arch_um__)
995 printk("code at %08lx: ", regs->ip);
996 {
997 int i;
998 for (i = 0; i < 16; i++) {
999 unsigned char insn;
1000
1001 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1002 break;
1003 printk("%02x ", insn);
1004 }
1005 }
1006 #endif
1007 printk("\n");
1008 preempt_disable();
1009 show_regs(regs);
1010 preempt_enable();
1011 }
1012
1013 static int __init setup_print_fatal_signals(char *str)
1014 {
1015 get_option (&str, &print_fatal_signals);
1016
1017 return 1;
1018 }
1019
1020 __setup("print-fatal-signals=", setup_print_fatal_signals);
1021
1022 int
1023 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1024 {
1025 return send_signal(sig, info, p, 1);
1026 }
1027
1028 static int
1029 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1030 {
1031 return send_signal(sig, info, t, 0);
1032 }
1033
1034 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1035 bool group)
1036 {
1037 unsigned long flags;
1038 int ret = -ESRCH;
1039
1040 if (lock_task_sighand(p, &flags)) {
1041 ret = send_signal(sig, info, p, group);
1042 unlock_task_sighand(p, &flags);
1043 }
1044
1045 return ret;
1046 }
1047
1048 /*
1049 * Force a signal that the process can't ignore: if necessary
1050 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1051 *
1052 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1053 * since we do not want to have a signal handler that was blocked
1054 * be invoked when user space had explicitly blocked it.
1055 *
1056 * We don't want to have recursive SIGSEGV's etc, for example,
1057 * that is why we also clear SIGNAL_UNKILLABLE.
1058 */
1059 int
1060 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1061 {
1062 unsigned long int flags;
1063 int ret, blocked, ignored;
1064 struct k_sigaction *action;
1065
1066 spin_lock_irqsave(&t->sighand->siglock, flags);
1067 action = &t->sighand->action[sig-1];
1068 ignored = action->sa.sa_handler == SIG_IGN;
1069 blocked = sigismember(&t->blocked, sig);
1070 if (blocked || ignored) {
1071 action->sa.sa_handler = SIG_DFL;
1072 if (blocked) {
1073 sigdelset(&t->blocked, sig);
1074 recalc_sigpending_and_wake(t);
1075 }
1076 }
1077 if (action->sa.sa_handler == SIG_DFL)
1078 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1079 ret = specific_send_sig_info(sig, info, t);
1080 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1081
1082 return ret;
1083 }
1084
1085 /*
1086 * Nuke all other threads in the group.
1087 */
1088 int zap_other_threads(struct task_struct *p)
1089 {
1090 struct task_struct *t = p;
1091 int count = 0;
1092
1093 p->signal->group_stop_count = 0;
1094
1095 while_each_thread(p, t) {
1096 count++;
1097
1098 /* Don't bother with already dead threads */
1099 if (t->exit_state)
1100 continue;
1101 sigaddset(&t->pending.signal, SIGKILL);
1102 signal_wake_up(t, 1);
1103 }
1104
1105 return count;
1106 }
1107
1108 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1109 {
1110 struct sighand_struct *sighand;
1111
1112 rcu_read_lock();
1113 for (;;) {
1114 sighand = rcu_dereference(tsk->sighand);
1115 if (unlikely(sighand == NULL))
1116 break;
1117
1118 spin_lock_irqsave(&sighand->siglock, *flags);
1119 if (likely(sighand == tsk->sighand))
1120 break;
1121 spin_unlock_irqrestore(&sighand->siglock, *flags);
1122 }
1123 rcu_read_unlock();
1124
1125 return sighand;
1126 }
1127
1128 /*
1129 * send signal info to all the members of a group
1130 */
1131 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1132 {
1133 int ret;
1134
1135 rcu_read_lock();
1136 ret = check_kill_permission(sig, info, p);
1137 rcu_read_unlock();
1138
1139 if (!ret && sig)
1140 ret = do_send_sig_info(sig, info, p, true);
1141
1142 return ret;
1143 }
1144
1145 /*
1146 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1147 * control characters do (^C, ^Z etc)
1148 * - the caller must hold at least a readlock on tasklist_lock
1149 */
1150 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1151 {
1152 struct task_struct *p = NULL;
1153 int retval, success;
1154
1155 success = 0;
1156 retval = -ESRCH;
1157 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1158 int err = group_send_sig_info(sig, info, p);
1159 success |= !err;
1160 retval = err;
1161 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1162 return success ? 0 : retval;
1163 }
1164
1165 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1166 {
1167 int error = -ESRCH;
1168 struct task_struct *p;
1169
1170 rcu_read_lock();
1171 retry:
1172 p = pid_task(pid, PIDTYPE_PID);
1173 if (p) {
1174 error = group_send_sig_info(sig, info, p);
1175 if (unlikely(error == -ESRCH))
1176 /*
1177 * The task was unhashed in between, try again.
1178 * If it is dead, pid_task() will return NULL,
1179 * if we race with de_thread() it will find the
1180 * new leader.
1181 */
1182 goto retry;
1183 }
1184 rcu_read_unlock();
1185
1186 return error;
1187 }
1188
1189 int
1190 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1191 {
1192 int error;
1193 rcu_read_lock();
1194 error = kill_pid_info(sig, info, find_vpid(pid));
1195 rcu_read_unlock();
1196 return error;
1197 }
1198
1199 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1200 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1201 uid_t uid, uid_t euid, u32 secid)
1202 {
1203 int ret = -EINVAL;
1204 struct task_struct *p;
1205 const struct cred *pcred;
1206 unsigned long flags;
1207
1208 if (!valid_signal(sig))
1209 return ret;
1210
1211 rcu_read_lock();
1212 p = pid_task(pid, PIDTYPE_PID);
1213 if (!p) {
1214 ret = -ESRCH;
1215 goto out_unlock;
1216 }
1217 pcred = __task_cred(p);
1218 if (si_fromuser(info) &&
1219 euid != pcred->suid && euid != pcred->uid &&
1220 uid != pcred->suid && uid != pcred->uid) {
1221 ret = -EPERM;
1222 goto out_unlock;
1223 }
1224 ret = security_task_kill(p, info, sig, secid);
1225 if (ret)
1226 goto out_unlock;
1227
1228 if (sig) {
1229 if (lock_task_sighand(p, &flags)) {
1230 ret = __send_signal(sig, info, p, 1, 0);
1231 unlock_task_sighand(p, &flags);
1232 } else
1233 ret = -ESRCH;
1234 }
1235 out_unlock:
1236 rcu_read_unlock();
1237 return ret;
1238 }
1239 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1240
1241 /*
1242 * kill_something_info() interprets pid in interesting ways just like kill(2).
1243 *
1244 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1245 * is probably wrong. Should make it like BSD or SYSV.
1246 */
1247
1248 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1249 {
1250 int ret;
1251
1252 if (pid > 0) {
1253 rcu_read_lock();
1254 ret = kill_pid_info(sig, info, find_vpid(pid));
1255 rcu_read_unlock();
1256 return ret;
1257 }
1258
1259 read_lock(&tasklist_lock);
1260 if (pid != -1) {
1261 ret = __kill_pgrp_info(sig, info,
1262 pid ? find_vpid(-pid) : task_pgrp(current));
1263 } else {
1264 int retval = 0, count = 0;
1265 struct task_struct * p;
1266
1267 for_each_process(p) {
1268 if (task_pid_vnr(p) > 1 &&
1269 !same_thread_group(p, current)) {
1270 int err = group_send_sig_info(sig, info, p);
1271 ++count;
1272 if (err != -EPERM)
1273 retval = err;
1274 }
1275 }
1276 ret = count ? retval : -ESRCH;
1277 }
1278 read_unlock(&tasklist_lock);
1279
1280 return ret;
1281 }
1282
1283 /*
1284 * These are for backward compatibility with the rest of the kernel source.
1285 */
1286
1287 int
1288 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1289 {
1290 /*
1291 * Make sure legacy kernel users don't send in bad values
1292 * (normal paths check this in check_kill_permission).
1293 */
1294 if (!valid_signal(sig))
1295 return -EINVAL;
1296
1297 return do_send_sig_info(sig, info, p, false);
1298 }
1299
1300 #define __si_special(priv) \
1301 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1302
1303 int
1304 send_sig(int sig, struct task_struct *p, int priv)
1305 {
1306 return send_sig_info(sig, __si_special(priv), p);
1307 }
1308
1309 void
1310 force_sig(int sig, struct task_struct *p)
1311 {
1312 force_sig_info(sig, SEND_SIG_PRIV, p);
1313 }
1314
1315 /*
1316 * When things go south during signal handling, we
1317 * will force a SIGSEGV. And if the signal that caused
1318 * the problem was already a SIGSEGV, we'll want to
1319 * make sure we don't even try to deliver the signal..
1320 */
1321 int
1322 force_sigsegv(int sig, struct task_struct *p)
1323 {
1324 if (sig == SIGSEGV) {
1325 unsigned long flags;
1326 spin_lock_irqsave(&p->sighand->siglock, flags);
1327 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1328 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1329 }
1330 force_sig(SIGSEGV, p);
1331 return 0;
1332 }
1333
1334 int kill_pgrp(struct pid *pid, int sig, int priv)
1335 {
1336 int ret;
1337
1338 read_lock(&tasklist_lock);
1339 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1340 read_unlock(&tasklist_lock);
1341
1342 return ret;
1343 }
1344 EXPORT_SYMBOL(kill_pgrp);
1345
1346 int kill_pid(struct pid *pid, int sig, int priv)
1347 {
1348 return kill_pid_info(sig, __si_special(priv), pid);
1349 }
1350 EXPORT_SYMBOL(kill_pid);
1351
1352 /*
1353 * These functions support sending signals using preallocated sigqueue
1354 * structures. This is needed "because realtime applications cannot
1355 * afford to lose notifications of asynchronous events, like timer
1356 * expirations or I/O completions". In the case of Posix Timers
1357 * we allocate the sigqueue structure from the timer_create. If this
1358 * allocation fails we are able to report the failure to the application
1359 * with an EAGAIN error.
1360 */
1361 struct sigqueue *sigqueue_alloc(void)
1362 {
1363 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1364
1365 if (q)
1366 q->flags |= SIGQUEUE_PREALLOC;
1367
1368 return q;
1369 }
1370
1371 void sigqueue_free(struct sigqueue *q)
1372 {
1373 unsigned long flags;
1374 spinlock_t *lock = &current->sighand->siglock;
1375
1376 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1377 /*
1378 * We must hold ->siglock while testing q->list
1379 * to serialize with collect_signal() or with
1380 * __exit_signal()->flush_sigqueue().
1381 */
1382 spin_lock_irqsave(lock, flags);
1383 q->flags &= ~SIGQUEUE_PREALLOC;
1384 /*
1385 * If it is queued it will be freed when dequeued,
1386 * like the "regular" sigqueue.
1387 */
1388 if (!list_empty(&q->list))
1389 q = NULL;
1390 spin_unlock_irqrestore(lock, flags);
1391
1392 if (q)
1393 __sigqueue_free(q);
1394 }
1395
1396 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1397 {
1398 int sig = q->info.si_signo;
1399 struct sigpending *pending;
1400 unsigned long flags;
1401 int ret;
1402
1403 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1404
1405 ret = -1;
1406 if (!likely(lock_task_sighand(t, &flags)))
1407 goto ret;
1408
1409 ret = 1; /* the signal is ignored */
1410 if (!prepare_signal(sig, t, 0))
1411 goto out;
1412
1413 ret = 0;
1414 if (unlikely(!list_empty(&q->list))) {
1415 /*
1416 * If an SI_TIMER entry is already queue just increment
1417 * the overrun count.
1418 */
1419 BUG_ON(q->info.si_code != SI_TIMER);
1420 q->info.si_overrun++;
1421 goto out;
1422 }
1423 q->info.si_overrun = 0;
1424
1425 signalfd_notify(t, sig);
1426 pending = group ? &t->signal->shared_pending : &t->pending;
1427 list_add_tail(&q->list, &pending->list);
1428 sigaddset(&pending->signal, sig);
1429 complete_signal(sig, t, group);
1430 out:
1431 unlock_task_sighand(t, &flags);
1432 ret:
1433 return ret;
1434 }
1435
1436 /*
1437 * Let a parent know about the death of a child.
1438 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1439 *
1440 * Returns -1 if our parent ignored us and so we've switched to
1441 * self-reaping, or else @sig.
1442 */
1443 int do_notify_parent(struct task_struct *tsk, int sig)
1444 {
1445 struct siginfo info;
1446 unsigned long flags;
1447 struct sighand_struct *psig;
1448 int ret = sig;
1449
1450 BUG_ON(sig == -1);
1451
1452 /* do_notify_parent_cldstop should have been called instead. */
1453 BUG_ON(task_is_stopped_or_traced(tsk));
1454
1455 BUG_ON(!task_ptrace(tsk) &&
1456 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1457
1458 info.si_signo = sig;
1459 info.si_errno = 0;
1460 /*
1461 * we are under tasklist_lock here so our parent is tied to
1462 * us and cannot exit and release its namespace.
1463 *
1464 * the only it can is to switch its nsproxy with sys_unshare,
1465 * bu uncharing pid namespaces is not allowed, so we'll always
1466 * see relevant namespace
1467 *
1468 * write_lock() currently calls preempt_disable() which is the
1469 * same as rcu_read_lock(), but according to Oleg, this is not
1470 * correct to rely on this
1471 */
1472 rcu_read_lock();
1473 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1474 info.si_uid = __task_cred(tsk)->uid;
1475 rcu_read_unlock();
1476
1477 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1478 tsk->signal->utime));
1479 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1480 tsk->signal->stime));
1481
1482 info.si_status = tsk->exit_code & 0x7f;
1483 if (tsk->exit_code & 0x80)
1484 info.si_code = CLD_DUMPED;
1485 else if (tsk->exit_code & 0x7f)
1486 info.si_code = CLD_KILLED;
1487 else {
1488 info.si_code = CLD_EXITED;
1489 info.si_status = tsk->exit_code >> 8;
1490 }
1491
1492 psig = tsk->parent->sighand;
1493 spin_lock_irqsave(&psig->siglock, flags);
1494 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1495 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1496 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1497 /*
1498 * We are exiting and our parent doesn't care. POSIX.1
1499 * defines special semantics for setting SIGCHLD to SIG_IGN
1500 * or setting the SA_NOCLDWAIT flag: we should be reaped
1501 * automatically and not left for our parent's wait4 call.
1502 * Rather than having the parent do it as a magic kind of
1503 * signal handler, we just set this to tell do_exit that we
1504 * can be cleaned up without becoming a zombie. Note that
1505 * we still call __wake_up_parent in this case, because a
1506 * blocked sys_wait4 might now return -ECHILD.
1507 *
1508 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1509 * is implementation-defined: we do (if you don't want
1510 * it, just use SIG_IGN instead).
1511 */
1512 ret = tsk->exit_signal = -1;
1513 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1514 sig = -1;
1515 }
1516 if (valid_signal(sig) && sig > 0)
1517 __group_send_sig_info(sig, &info, tsk->parent);
1518 __wake_up_parent(tsk, tsk->parent);
1519 spin_unlock_irqrestore(&psig->siglock, flags);
1520
1521 return ret;
1522 }
1523
1524 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1525 {
1526 struct siginfo info;
1527 unsigned long flags;
1528 struct task_struct *parent;
1529 struct sighand_struct *sighand;
1530
1531 if (task_ptrace(tsk))
1532 parent = tsk->parent;
1533 else {
1534 tsk = tsk->group_leader;
1535 parent = tsk->real_parent;
1536 }
1537
1538 info.si_signo = SIGCHLD;
1539 info.si_errno = 0;
1540 /*
1541 * see comment in do_notify_parent() abot the following 3 lines
1542 */
1543 rcu_read_lock();
1544 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1545 info.si_uid = __task_cred(tsk)->uid;
1546 rcu_read_unlock();
1547
1548 info.si_utime = cputime_to_clock_t(tsk->utime);
1549 info.si_stime = cputime_to_clock_t(tsk->stime);
1550
1551 info.si_code = why;
1552 switch (why) {
1553 case CLD_CONTINUED:
1554 info.si_status = SIGCONT;
1555 break;
1556 case CLD_STOPPED:
1557 info.si_status = tsk->signal->group_exit_code & 0x7f;
1558 break;
1559 case CLD_TRAPPED:
1560 info.si_status = tsk->exit_code & 0x7f;
1561 break;
1562 default:
1563 BUG();
1564 }
1565
1566 sighand = parent->sighand;
1567 spin_lock_irqsave(&sighand->siglock, flags);
1568 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1569 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1570 __group_send_sig_info(SIGCHLD, &info, parent);
1571 /*
1572 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1573 */
1574 __wake_up_parent(tsk, parent);
1575 spin_unlock_irqrestore(&sighand->siglock, flags);
1576 }
1577
1578 static inline int may_ptrace_stop(void)
1579 {
1580 if (!likely(task_ptrace(current)))
1581 return 0;
1582 /*
1583 * Are we in the middle of do_coredump?
1584 * If so and our tracer is also part of the coredump stopping
1585 * is a deadlock situation, and pointless because our tracer
1586 * is dead so don't allow us to stop.
1587 * If SIGKILL was already sent before the caller unlocked
1588 * ->siglock we must see ->core_state != NULL. Otherwise it
1589 * is safe to enter schedule().
1590 */
1591 if (unlikely(current->mm->core_state) &&
1592 unlikely(current->mm == current->parent->mm))
1593 return 0;
1594
1595 return 1;
1596 }
1597
1598 /*
1599 * Return nonzero if there is a SIGKILL that should be waking us up.
1600 * Called with the siglock held.
1601 */
1602 static int sigkill_pending(struct task_struct *tsk)
1603 {
1604 return sigismember(&tsk->pending.signal, SIGKILL) ||
1605 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1606 }
1607
1608 /*
1609 * This must be called with current->sighand->siglock held.
1610 *
1611 * This should be the path for all ptrace stops.
1612 * We always set current->last_siginfo while stopped here.
1613 * That makes it a way to test a stopped process for
1614 * being ptrace-stopped vs being job-control-stopped.
1615 *
1616 * If we actually decide not to stop at all because the tracer
1617 * is gone, we keep current->exit_code unless clear_code.
1618 */
1619 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1620 {
1621 if (arch_ptrace_stop_needed(exit_code, info)) {
1622 /*
1623 * The arch code has something special to do before a
1624 * ptrace stop. This is allowed to block, e.g. for faults
1625 * on user stack pages. We can't keep the siglock while
1626 * calling arch_ptrace_stop, so we must release it now.
1627 * To preserve proper semantics, we must do this before
1628 * any signal bookkeeping like checking group_stop_count.
1629 * Meanwhile, a SIGKILL could come in before we retake the
1630 * siglock. That must prevent us from sleeping in TASK_TRACED.
1631 * So after regaining the lock, we must check for SIGKILL.
1632 */
1633 spin_unlock_irq(&current->sighand->siglock);
1634 arch_ptrace_stop(exit_code, info);
1635 spin_lock_irq(&current->sighand->siglock);
1636 if (sigkill_pending(current))
1637 return;
1638 }
1639
1640 /*
1641 * If there is a group stop in progress,
1642 * we must participate in the bookkeeping.
1643 */
1644 if (current->signal->group_stop_count > 0)
1645 --current->signal->group_stop_count;
1646
1647 current->last_siginfo = info;
1648 current->exit_code = exit_code;
1649
1650 /* Let the debugger run. */
1651 __set_current_state(TASK_TRACED);
1652 spin_unlock_irq(&current->sighand->siglock);
1653 read_lock(&tasklist_lock);
1654 if (may_ptrace_stop()) {
1655 do_notify_parent_cldstop(current, CLD_TRAPPED);
1656 /*
1657 * Don't want to allow preemption here, because
1658 * sys_ptrace() needs this task to be inactive.
1659 *
1660 * XXX: implement read_unlock_no_resched().
1661 */
1662 preempt_disable();
1663 read_unlock(&tasklist_lock);
1664 preempt_enable_no_resched();
1665 schedule();
1666 } else {
1667 /*
1668 * By the time we got the lock, our tracer went away.
1669 * Don't drop the lock yet, another tracer may come.
1670 */
1671 __set_current_state(TASK_RUNNING);
1672 if (clear_code)
1673 current->exit_code = 0;
1674 read_unlock(&tasklist_lock);
1675 }
1676
1677 /*
1678 * While in TASK_TRACED, we were considered "frozen enough".
1679 * Now that we woke up, it's crucial if we're supposed to be
1680 * frozen that we freeze now before running anything substantial.
1681 */
1682 try_to_freeze();
1683
1684 /*
1685 * We are back. Now reacquire the siglock before touching
1686 * last_siginfo, so that we are sure to have synchronized with
1687 * any signal-sending on another CPU that wants to examine it.
1688 */
1689 spin_lock_irq(&current->sighand->siglock);
1690 current->last_siginfo = NULL;
1691
1692 /*
1693 * Queued signals ignored us while we were stopped for tracing.
1694 * So check for any that we should take before resuming user mode.
1695 * This sets TIF_SIGPENDING, but never clears it.
1696 */
1697 recalc_sigpending_tsk(current);
1698 }
1699
1700 void ptrace_notify(int exit_code)
1701 {
1702 siginfo_t info;
1703
1704 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1705
1706 memset(&info, 0, sizeof info);
1707 info.si_signo = SIGTRAP;
1708 info.si_code = exit_code;
1709 info.si_pid = task_pid_vnr(current);
1710 info.si_uid = current_uid();
1711
1712 /* Let the debugger run. */
1713 spin_lock_irq(&current->sighand->siglock);
1714 ptrace_stop(exit_code, 1, &info);
1715 spin_unlock_irq(&current->sighand->siglock);
1716 }
1717
1718 /*
1719 * This performs the stopping for SIGSTOP and other stop signals.
1720 * We have to stop all threads in the thread group.
1721 * Returns nonzero if we've actually stopped and released the siglock.
1722 * Returns zero if we didn't stop and still hold the siglock.
1723 */
1724 static int do_signal_stop(int signr)
1725 {
1726 struct signal_struct *sig = current->signal;
1727 int notify;
1728
1729 if (!sig->group_stop_count) {
1730 struct task_struct *t;
1731
1732 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1733 unlikely(signal_group_exit(sig)))
1734 return 0;
1735 /*
1736 * There is no group stop already in progress.
1737 * We must initiate one now.
1738 */
1739 sig->group_exit_code = signr;
1740
1741 sig->group_stop_count = 1;
1742 for (t = next_thread(current); t != current; t = next_thread(t))
1743 /*
1744 * Setting state to TASK_STOPPED for a group
1745 * stop is always done with the siglock held,
1746 * so this check has no races.
1747 */
1748 if (!(t->flags & PF_EXITING) &&
1749 !task_is_stopped_or_traced(t)) {
1750 sig->group_stop_count++;
1751 signal_wake_up(t, 0);
1752 }
1753 }
1754 /*
1755 * If there are no other threads in the group, or if there is
1756 * a group stop in progress and we are the last to stop, report
1757 * to the parent. When ptraced, every thread reports itself.
1758 */
1759 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1760 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1761 /*
1762 * tracehook_notify_jctl() can drop and reacquire siglock, so
1763 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1764 * or SIGKILL comes in between ->group_stop_count == 0.
1765 */
1766 if (sig->group_stop_count) {
1767 if (!--sig->group_stop_count)
1768 sig->flags = SIGNAL_STOP_STOPPED;
1769 current->exit_code = sig->group_exit_code;
1770 __set_current_state(TASK_STOPPED);
1771 }
1772 spin_unlock_irq(&current->sighand->siglock);
1773
1774 if (notify) {
1775 read_lock(&tasklist_lock);
1776 do_notify_parent_cldstop(current, notify);
1777 read_unlock(&tasklist_lock);
1778 }
1779
1780 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1781 do {
1782 schedule();
1783 } while (try_to_freeze());
1784
1785 tracehook_finish_jctl();
1786 current->exit_code = 0;
1787
1788 return 1;
1789 }
1790
1791 static int ptrace_signal(int signr, siginfo_t *info,
1792 struct pt_regs *regs, void *cookie)
1793 {
1794 if (!task_ptrace(current))
1795 return signr;
1796
1797 ptrace_signal_deliver(regs, cookie);
1798
1799 /* Let the debugger run. */
1800 ptrace_stop(signr, 0, info);
1801
1802 /* We're back. Did the debugger cancel the sig? */
1803 signr = current->exit_code;
1804 if (signr == 0)
1805 return signr;
1806
1807 current->exit_code = 0;
1808
1809 /* Update the siginfo structure if the signal has
1810 changed. If the debugger wanted something
1811 specific in the siginfo structure then it should
1812 have updated *info via PTRACE_SETSIGINFO. */
1813 if (signr != info->si_signo) {
1814 info->si_signo = signr;
1815 info->si_errno = 0;
1816 info->si_code = SI_USER;
1817 info->si_pid = task_pid_vnr(current->parent);
1818 info->si_uid = task_uid(current->parent);
1819 }
1820
1821 /* If the (new) signal is now blocked, requeue it. */
1822 if (sigismember(&current->blocked, signr)) {
1823 specific_send_sig_info(signr, info, current);
1824 signr = 0;
1825 }
1826
1827 return signr;
1828 }
1829
1830 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1831 struct pt_regs *regs, void *cookie)
1832 {
1833 struct sighand_struct *sighand = current->sighand;
1834 struct signal_struct *signal = current->signal;
1835 int signr;
1836
1837 relock:
1838 /*
1839 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1840 * While in TASK_STOPPED, we were considered "frozen enough".
1841 * Now that we woke up, it's crucial if we're supposed to be
1842 * frozen that we freeze now before running anything substantial.
1843 */
1844 try_to_freeze();
1845
1846 spin_lock_irq(&sighand->siglock);
1847 /*
1848 * Every stopped thread goes here after wakeup. Check to see if
1849 * we should notify the parent, prepare_signal(SIGCONT) encodes
1850 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1851 */
1852 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1853 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1854 ? CLD_CONTINUED : CLD_STOPPED;
1855 signal->flags &= ~SIGNAL_CLD_MASK;
1856
1857 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1858 spin_unlock_irq(&sighand->siglock);
1859
1860 if (why) {
1861 read_lock(&tasklist_lock);
1862 do_notify_parent_cldstop(current->group_leader, why);
1863 read_unlock(&tasklist_lock);
1864 }
1865 goto relock;
1866 }
1867
1868 for (;;) {
1869 struct k_sigaction *ka;
1870 /*
1871 * Tracing can induce an artifical signal and choose sigaction.
1872 * The return value in @signr determines the default action,
1873 * but @info->si_signo is the signal number we will report.
1874 */
1875 signr = tracehook_get_signal(current, regs, info, return_ka);
1876 if (unlikely(signr < 0))
1877 goto relock;
1878 if (unlikely(signr != 0))
1879 ka = return_ka;
1880 else {
1881 if (unlikely(signal->group_stop_count > 0) &&
1882 do_signal_stop(0))
1883 goto relock;
1884
1885 signr = dequeue_signal(current, &current->blocked,
1886 info);
1887
1888 if (!signr)
1889 break; /* will return 0 */
1890
1891 if (signr != SIGKILL) {
1892 signr = ptrace_signal(signr, info,
1893 regs, cookie);
1894 if (!signr)
1895 continue;
1896 }
1897
1898 ka = &sighand->action[signr-1];
1899 }
1900
1901 /* Trace actually delivered signals. */
1902 trace_signal_deliver(signr, info, ka);
1903
1904 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1905 continue;
1906 if (ka->sa.sa_handler != SIG_DFL) {
1907 /* Run the handler. */
1908 *return_ka = *ka;
1909
1910 if (ka->sa.sa_flags & SA_ONESHOT)
1911 ka->sa.sa_handler = SIG_DFL;
1912
1913 break; /* will return non-zero "signr" value */
1914 }
1915
1916 /*
1917 * Now we are doing the default action for this signal.
1918 */
1919 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1920 continue;
1921
1922 /*
1923 * Global init gets no signals it doesn't want.
1924 * Container-init gets no signals it doesn't want from same
1925 * container.
1926 *
1927 * Note that if global/container-init sees a sig_kernel_only()
1928 * signal here, the signal must have been generated internally
1929 * or must have come from an ancestor namespace. In either
1930 * case, the signal cannot be dropped.
1931 */
1932 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1933 !sig_kernel_only(signr))
1934 continue;
1935
1936 if (sig_kernel_stop(signr)) {
1937 /*
1938 * The default action is to stop all threads in
1939 * the thread group. The job control signals
1940 * do nothing in an orphaned pgrp, but SIGSTOP
1941 * always works. Note that siglock needs to be
1942 * dropped during the call to is_orphaned_pgrp()
1943 * because of lock ordering with tasklist_lock.
1944 * This allows an intervening SIGCONT to be posted.
1945 * We need to check for that and bail out if necessary.
1946 */
1947 if (signr != SIGSTOP) {
1948 spin_unlock_irq(&sighand->siglock);
1949
1950 /* signals can be posted during this window */
1951
1952 if (is_current_pgrp_orphaned())
1953 goto relock;
1954
1955 spin_lock_irq(&sighand->siglock);
1956 }
1957
1958 if (likely(do_signal_stop(info->si_signo))) {
1959 /* It released the siglock. */
1960 goto relock;
1961 }
1962
1963 /*
1964 * We didn't actually stop, due to a race
1965 * with SIGCONT or something like that.
1966 */
1967 continue;
1968 }
1969
1970 spin_unlock_irq(&sighand->siglock);
1971
1972 /*
1973 * Anything else is fatal, maybe with a core dump.
1974 */
1975 current->flags |= PF_SIGNALED;
1976
1977 if (sig_kernel_coredump(signr)) {
1978 if (print_fatal_signals)
1979 print_fatal_signal(regs, info->si_signo);
1980 /*
1981 * If it was able to dump core, this kills all
1982 * other threads in the group and synchronizes with
1983 * their demise. If we lost the race with another
1984 * thread getting here, it set group_exit_code
1985 * first and our do_group_exit call below will use
1986 * that value and ignore the one we pass it.
1987 */
1988 do_coredump(info->si_signo, info->si_signo, regs);
1989 }
1990
1991 /*
1992 * Death signals, no core dump.
1993 */
1994 do_group_exit(info->si_signo);
1995 /* NOTREACHED */
1996 }
1997 spin_unlock_irq(&sighand->siglock);
1998 return signr;
1999 }
2000
2001 void exit_signals(struct task_struct *tsk)
2002 {
2003 int group_stop = 0;
2004 struct task_struct *t;
2005
2006 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2007 tsk->flags |= PF_EXITING;
2008 return;
2009 }
2010
2011 spin_lock_irq(&tsk->sighand->siglock);
2012 /*
2013 * From now this task is not visible for group-wide signals,
2014 * see wants_signal(), do_signal_stop().
2015 */
2016 tsk->flags |= PF_EXITING;
2017 if (!signal_pending(tsk))
2018 goto out;
2019
2020 /* It could be that __group_complete_signal() choose us to
2021 * notify about group-wide signal. Another thread should be
2022 * woken now to take the signal since we will not.
2023 */
2024 for (t = tsk; (t = next_thread(t)) != tsk; )
2025 if (!signal_pending(t) && !(t->flags & PF_EXITING))
2026 recalc_sigpending_and_wake(t);
2027
2028 if (unlikely(tsk->signal->group_stop_count) &&
2029 !--tsk->signal->group_stop_count) {
2030 tsk->signal->flags = SIGNAL_STOP_STOPPED;
2031 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2032 }
2033 out:
2034 spin_unlock_irq(&tsk->sighand->siglock);
2035
2036 if (unlikely(group_stop)) {
2037 read_lock(&tasklist_lock);
2038 do_notify_parent_cldstop(tsk, group_stop);
2039 read_unlock(&tasklist_lock);
2040 }
2041 }
2042
2043 EXPORT_SYMBOL(recalc_sigpending);
2044 EXPORT_SYMBOL_GPL(dequeue_signal);
2045 EXPORT_SYMBOL(flush_signals);
2046 EXPORT_SYMBOL(force_sig);
2047 EXPORT_SYMBOL(send_sig);
2048 EXPORT_SYMBOL(send_sig_info);
2049 EXPORT_SYMBOL(sigprocmask);
2050 EXPORT_SYMBOL(block_all_signals);
2051 EXPORT_SYMBOL(unblock_all_signals);
2052
2053
2054 /*
2055 * System call entry points.
2056 */
2057
2058 SYSCALL_DEFINE0(restart_syscall)
2059 {
2060 struct restart_block *restart = &current_thread_info()->restart_block;
2061 return restart->fn(restart);
2062 }
2063
2064 long do_no_restart_syscall(struct restart_block *param)
2065 {
2066 return -EINTR;
2067 }
2068
2069 /*
2070 * We don't need to get the kernel lock - this is all local to this
2071 * particular thread.. (and that's good, because this is _heavily_
2072 * used by various programs)
2073 */
2074
2075 /*
2076 * This is also useful for kernel threads that want to temporarily
2077 * (or permanently) block certain signals.
2078 *
2079 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2080 * interface happily blocks "unblockable" signals like SIGKILL
2081 * and friends.
2082 */
2083 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2084 {
2085 int error;
2086
2087 spin_lock_irq(&current->sighand->siglock);
2088 if (oldset)
2089 *oldset = current->blocked;
2090
2091 error = 0;
2092 switch (how) {
2093 case SIG_BLOCK:
2094 sigorsets(&current->blocked, &current->blocked, set);
2095 break;
2096 case SIG_UNBLOCK:
2097 signandsets(&current->blocked, &current->blocked, set);
2098 break;
2099 case SIG_SETMASK:
2100 current->blocked = *set;
2101 break;
2102 default:
2103 error = -EINVAL;
2104 }
2105 recalc_sigpending();
2106 spin_unlock_irq(&current->sighand->siglock);
2107
2108 return error;
2109 }
2110
2111 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2112 sigset_t __user *, oset, size_t, sigsetsize)
2113 {
2114 int error = -EINVAL;
2115 sigset_t old_set, new_set;
2116
2117 /* XXX: Don't preclude handling different sized sigset_t's. */
2118 if (sigsetsize != sizeof(sigset_t))
2119 goto out;
2120
2121 if (set) {
2122 error = -EFAULT;
2123 if (copy_from_user(&new_set, set, sizeof(*set)))
2124 goto out;
2125 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2126
2127 error = sigprocmask(how, &new_set, &old_set);
2128 if (error)
2129 goto out;
2130 if (oset)
2131 goto set_old;
2132 } else if (oset) {
2133 spin_lock_irq(&current->sighand->siglock);
2134 old_set = current->blocked;
2135 spin_unlock_irq(&current->sighand->siglock);
2136
2137 set_old:
2138 error = -EFAULT;
2139 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2140 goto out;
2141 }
2142 error = 0;
2143 out:
2144 return error;
2145 }
2146
2147 long do_sigpending(void __user *set, unsigned long sigsetsize)
2148 {
2149 long error = -EINVAL;
2150 sigset_t pending;
2151
2152 if (sigsetsize > sizeof(sigset_t))
2153 goto out;
2154
2155 spin_lock_irq(&current->sighand->siglock);
2156 sigorsets(&pending, &current->pending.signal,
2157 &current->signal->shared_pending.signal);
2158 spin_unlock_irq(&current->sighand->siglock);
2159
2160 /* Outside the lock because only this thread touches it. */
2161 sigandsets(&pending, &current->blocked, &pending);
2162
2163 error = -EFAULT;
2164 if (!copy_to_user(set, &pending, sigsetsize))
2165 error = 0;
2166
2167 out:
2168 return error;
2169 }
2170
2171 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2172 {
2173 return do_sigpending(set, sigsetsize);
2174 }
2175
2176 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2177
2178 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2179 {
2180 int err;
2181
2182 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2183 return -EFAULT;
2184 if (from->si_code < 0)
2185 return __copy_to_user(to, from, sizeof(siginfo_t))
2186 ? -EFAULT : 0;
2187 /*
2188 * If you change siginfo_t structure, please be sure
2189 * this code is fixed accordingly.
2190 * Please remember to update the signalfd_copyinfo() function
2191 * inside fs/signalfd.c too, in case siginfo_t changes.
2192 * It should never copy any pad contained in the structure
2193 * to avoid security leaks, but must copy the generic
2194 * 3 ints plus the relevant union member.
2195 */
2196 err = __put_user(from->si_signo, &to->si_signo);
2197 err |= __put_user(from->si_errno, &to->si_errno);
2198 err |= __put_user((short)from->si_code, &to->si_code);
2199 switch (from->si_code & __SI_MASK) {
2200 case __SI_KILL:
2201 err |= __put_user(from->si_pid, &to->si_pid);
2202 err |= __put_user(from->si_uid, &to->si_uid);
2203 break;
2204 case __SI_TIMER:
2205 err |= __put_user(from->si_tid, &to->si_tid);
2206 err |= __put_user(from->si_overrun, &to->si_overrun);
2207 err |= __put_user(from->si_ptr, &to->si_ptr);
2208 break;
2209 case __SI_POLL:
2210 err |= __put_user(from->si_band, &to->si_band);
2211 err |= __put_user(from->si_fd, &to->si_fd);
2212 break;
2213 case __SI_FAULT:
2214 err |= __put_user(from->si_addr, &to->si_addr);
2215 #ifdef __ARCH_SI_TRAPNO
2216 err |= __put_user(from->si_trapno, &to->si_trapno);
2217 #endif
2218 #ifdef BUS_MCEERR_AO
2219 /*
2220 * Other callers might not initialize the si_lsb field,
2221 * so check explicitely for the right codes here.
2222 */
2223 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2224 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2225 #endif
2226 break;
2227 case __SI_CHLD:
2228 err |= __put_user(from->si_pid, &to->si_pid);
2229 err |= __put_user(from->si_uid, &to->si_uid);
2230 err |= __put_user(from->si_status, &to->si_status);
2231 err |= __put_user(from->si_utime, &to->si_utime);
2232 err |= __put_user(from->si_stime, &to->si_stime);
2233 break;
2234 case __SI_RT: /* This is not generated by the kernel as of now. */
2235 case __SI_MESGQ: /* But this is */
2236 err |= __put_user(from->si_pid, &to->si_pid);
2237 err |= __put_user(from->si_uid, &to->si_uid);
2238 err |= __put_user(from->si_ptr, &to->si_ptr);
2239 break;
2240 default: /* this is just in case for now ... */
2241 err |= __put_user(from->si_pid, &to->si_pid);
2242 err |= __put_user(from->si_uid, &to->si_uid);
2243 break;
2244 }
2245 return err;
2246 }
2247
2248 #endif
2249
2250 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2251 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2252 size_t, sigsetsize)
2253 {
2254 int ret, sig;
2255 sigset_t these;
2256 struct timespec ts;
2257 siginfo_t info;
2258 long timeout = 0;
2259
2260 /* XXX: Don't preclude handling different sized sigset_t's. */
2261 if (sigsetsize != sizeof(sigset_t))
2262 return -EINVAL;
2263
2264 if (copy_from_user(&these, uthese, sizeof(these)))
2265 return -EFAULT;
2266
2267 /*
2268 * Invert the set of allowed signals to get those we
2269 * want to block.
2270 */
2271 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2272 signotset(&these);
2273
2274 if (uts) {
2275 if (copy_from_user(&ts, uts, sizeof(ts)))
2276 return -EFAULT;
2277 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2278 || ts.tv_sec < 0)
2279 return -EINVAL;
2280 }
2281
2282 spin_lock_irq(&current->sighand->siglock);
2283 sig = dequeue_signal(current, &these, &info);
2284 if (!sig) {
2285 timeout = MAX_SCHEDULE_TIMEOUT;
2286 if (uts)
2287 timeout = (timespec_to_jiffies(&ts)
2288 + (ts.tv_sec || ts.tv_nsec));
2289
2290 if (timeout) {
2291 /* None ready -- temporarily unblock those we're
2292 * interested while we are sleeping in so that we'll
2293 * be awakened when they arrive. */
2294 current->real_blocked = current->blocked;
2295 sigandsets(&current->blocked, &current->blocked, &these);
2296 recalc_sigpending();
2297 spin_unlock_irq(&current->sighand->siglock);
2298
2299 timeout = schedule_timeout_interruptible(timeout);
2300
2301 spin_lock_irq(&current->sighand->siglock);
2302 sig = dequeue_signal(current, &these, &info);
2303 current->blocked = current->real_blocked;
2304 siginitset(&current->real_blocked, 0);
2305 recalc_sigpending();
2306 }
2307 }
2308 spin_unlock_irq(&current->sighand->siglock);
2309
2310 if (sig) {
2311 ret = sig;
2312 if (uinfo) {
2313 if (copy_siginfo_to_user(uinfo, &info))
2314 ret = -EFAULT;
2315 }
2316 } else {
2317 ret = -EAGAIN;
2318 if (timeout)
2319 ret = -EINTR;
2320 }
2321
2322 return ret;
2323 }
2324
2325 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2326 {
2327 struct siginfo info;
2328
2329 info.si_signo = sig;
2330 info.si_errno = 0;
2331 info.si_code = SI_USER;
2332 info.si_pid = task_tgid_vnr(current);
2333 info.si_uid = current_uid();
2334
2335 return kill_something_info(sig, &info, pid);
2336 }
2337
2338 static int
2339 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2340 {
2341 struct task_struct *p;
2342 int error = -ESRCH;
2343
2344 rcu_read_lock();
2345 p = find_task_by_vpid(pid);
2346 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2347 error = check_kill_permission(sig, info, p);
2348 /*
2349 * The null signal is a permissions and process existence
2350 * probe. No signal is actually delivered.
2351 */
2352 if (!error && sig) {
2353 error = do_send_sig_info(sig, info, p, false);
2354 /*
2355 * If lock_task_sighand() failed we pretend the task
2356 * dies after receiving the signal. The window is tiny,
2357 * and the signal is private anyway.
2358 */
2359 if (unlikely(error == -ESRCH))
2360 error = 0;
2361 }
2362 }
2363 rcu_read_unlock();
2364
2365 return error;
2366 }
2367
2368 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2369 {
2370 struct siginfo info;
2371
2372 info.si_signo = sig;
2373 info.si_errno = 0;
2374 info.si_code = SI_TKILL;
2375 info.si_pid = task_tgid_vnr(current);
2376 info.si_uid = current_uid();
2377
2378 return do_send_specific(tgid, pid, sig, &info);
2379 }
2380
2381 /**
2382 * sys_tgkill - send signal to one specific thread
2383 * @tgid: the thread group ID of the thread
2384 * @pid: the PID of the thread
2385 * @sig: signal to be sent
2386 *
2387 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2388 * exists but it's not belonging to the target process anymore. This
2389 * method solves the problem of threads exiting and PIDs getting reused.
2390 */
2391 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2392 {
2393 /* This is only valid for single tasks */
2394 if (pid <= 0 || tgid <= 0)
2395 return -EINVAL;
2396
2397 return do_tkill(tgid, pid, sig);
2398 }
2399
2400 /*
2401 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2402 */
2403 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2404 {
2405 /* This is only valid for single tasks */
2406 if (pid <= 0)
2407 return -EINVAL;
2408
2409 return do_tkill(0, pid, sig);
2410 }
2411
2412 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2413 siginfo_t __user *, uinfo)
2414 {
2415 siginfo_t info;
2416
2417 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2418 return -EFAULT;
2419
2420 /* Not even root can pretend to send signals from the kernel.
2421 Nor can they impersonate a kill(), which adds source info. */
2422 if (info.si_code >= 0)
2423 return -EPERM;
2424 info.si_signo = sig;
2425
2426 /* POSIX.1b doesn't mention process groups. */
2427 return kill_proc_info(sig, &info, pid);
2428 }
2429
2430 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2431 {
2432 /* This is only valid for single tasks */
2433 if (pid <= 0 || tgid <= 0)
2434 return -EINVAL;
2435
2436 /* Not even root can pretend to send signals from the kernel.
2437 Nor can they impersonate a kill(), which adds source info. */
2438 if (info->si_code >= 0)
2439 return -EPERM;
2440 info->si_signo = sig;
2441
2442 return do_send_specific(tgid, pid, sig, info);
2443 }
2444
2445 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2446 siginfo_t __user *, uinfo)
2447 {
2448 siginfo_t info;
2449
2450 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2451 return -EFAULT;
2452
2453 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2454 }
2455
2456 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2457 {
2458 struct task_struct *t = current;
2459 struct k_sigaction *k;
2460 sigset_t mask;
2461
2462 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2463 return -EINVAL;
2464
2465 k = &t->sighand->action[sig-1];
2466
2467 spin_lock_irq(&current->sighand->siglock);
2468 if (oact)
2469 *oact = *k;
2470
2471 if (act) {
2472 sigdelsetmask(&act->sa.sa_mask,
2473 sigmask(SIGKILL) | sigmask(SIGSTOP));
2474 *k = *act;
2475 /*
2476 * POSIX 3.3.1.3:
2477 * "Setting a signal action to SIG_IGN for a signal that is
2478 * pending shall cause the pending signal to be discarded,
2479 * whether or not it is blocked."
2480 *
2481 * "Setting a signal action to SIG_DFL for a signal that is
2482 * pending and whose default action is to ignore the signal
2483 * (for example, SIGCHLD), shall cause the pending signal to
2484 * be discarded, whether or not it is blocked"
2485 */
2486 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2487 sigemptyset(&mask);
2488 sigaddset(&mask, sig);
2489 rm_from_queue_full(&mask, &t->signal->shared_pending);
2490 do {
2491 rm_from_queue_full(&mask, &t->pending);
2492 t = next_thread(t);
2493 } while (t != current);
2494 }
2495 }
2496
2497 spin_unlock_irq(&current->sighand->siglock);
2498 return 0;
2499 }
2500
2501 int
2502 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2503 {
2504 stack_t oss;
2505 int error;
2506
2507 oss.ss_sp = (void __user *) current->sas_ss_sp;
2508 oss.ss_size = current->sas_ss_size;
2509 oss.ss_flags = sas_ss_flags(sp);
2510
2511 if (uss) {
2512 void __user *ss_sp;
2513 size_t ss_size;
2514 int ss_flags;
2515
2516 error = -EFAULT;
2517 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2518 goto out;
2519 error = __get_user(ss_sp, &uss->ss_sp) |
2520 __get_user(ss_flags, &uss->ss_flags) |
2521 __get_user(ss_size, &uss->ss_size);
2522 if (error)
2523 goto out;
2524
2525 error = -EPERM;
2526 if (on_sig_stack(sp))
2527 goto out;
2528
2529 error = -EINVAL;
2530 /*
2531 *
2532 * Note - this code used to test ss_flags incorrectly
2533 * old code may have been written using ss_flags==0
2534 * to mean ss_flags==SS_ONSTACK (as this was the only
2535 * way that worked) - this fix preserves that older
2536 * mechanism
2537 */
2538 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2539 goto out;
2540
2541 if (ss_flags == SS_DISABLE) {
2542 ss_size = 0;
2543 ss_sp = NULL;
2544 } else {
2545 error = -ENOMEM;
2546 if (ss_size < MINSIGSTKSZ)
2547 goto out;
2548 }
2549
2550 current->sas_ss_sp = (unsigned long) ss_sp;
2551 current->sas_ss_size = ss_size;
2552 }
2553
2554 error = 0;
2555 if (uoss) {
2556 error = -EFAULT;
2557 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2558 goto out;
2559 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2560 __put_user(oss.ss_size, &uoss->ss_size) |
2561 __put_user(oss.ss_flags, &uoss->ss_flags);
2562 }
2563
2564 out:
2565 return error;
2566 }
2567
2568 #ifdef __ARCH_WANT_SYS_SIGPENDING
2569
2570 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2571 {
2572 return do_sigpending(set, sizeof(*set));
2573 }
2574
2575 #endif
2576
2577 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2578 /* Some platforms have their own version with special arguments others
2579 support only sys_rt_sigprocmask. */
2580
2581 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2582 old_sigset_t __user *, oset)
2583 {
2584 int error;
2585 old_sigset_t old_set, new_set;
2586
2587 if (set) {
2588 error = -EFAULT;
2589 if (copy_from_user(&new_set, set, sizeof(*set)))
2590 goto out;
2591 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2592
2593 spin_lock_irq(&current->sighand->siglock);
2594 old_set = current->blocked.sig[0];
2595
2596 error = 0;
2597 switch (how) {
2598 default:
2599 error = -EINVAL;
2600 break;
2601 case SIG_BLOCK:
2602 sigaddsetmask(&current->blocked, new_set);
2603 break;
2604 case SIG_UNBLOCK:
2605 sigdelsetmask(&current->blocked, new_set);
2606 break;
2607 case SIG_SETMASK:
2608 current->blocked.sig[0] = new_set;
2609 break;
2610 }
2611
2612 recalc_sigpending();
2613 spin_unlock_irq(&current->sighand->siglock);
2614 if (error)
2615 goto out;
2616 if (oset)
2617 goto set_old;
2618 } else if (oset) {
2619 old_set = current->blocked.sig[0];
2620 set_old:
2621 error = -EFAULT;
2622 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2623 goto out;
2624 }
2625 error = 0;
2626 out:
2627 return error;
2628 }
2629 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2630
2631 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2632 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2633 const struct sigaction __user *, act,
2634 struct sigaction __user *, oact,
2635 size_t, sigsetsize)
2636 {
2637 struct k_sigaction new_sa, old_sa;
2638 int ret = -EINVAL;
2639
2640 /* XXX: Don't preclude handling different sized sigset_t's. */
2641 if (sigsetsize != sizeof(sigset_t))
2642 goto out;
2643
2644 if (act) {
2645 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2646 return -EFAULT;
2647 }
2648
2649 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2650
2651 if (!ret && oact) {
2652 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2653 return -EFAULT;
2654 }
2655 out:
2656 return ret;
2657 }
2658 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2659
2660 #ifdef __ARCH_WANT_SYS_SGETMASK
2661
2662 /*
2663 * For backwards compatibility. Functionality superseded by sigprocmask.
2664 */
2665 SYSCALL_DEFINE0(sgetmask)
2666 {
2667 /* SMP safe */
2668 return current->blocked.sig[0];
2669 }
2670
2671 SYSCALL_DEFINE1(ssetmask, int, newmask)
2672 {
2673 int old;
2674
2675 spin_lock_irq(&current->sighand->siglock);
2676 old = current->blocked.sig[0];
2677
2678 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2679 sigmask(SIGSTOP)));
2680 recalc_sigpending();
2681 spin_unlock_irq(&current->sighand->siglock);
2682
2683 return old;
2684 }
2685 #endif /* __ARCH_WANT_SGETMASK */
2686
2687 #ifdef __ARCH_WANT_SYS_SIGNAL
2688 /*
2689 * For backwards compatibility. Functionality superseded by sigaction.
2690 */
2691 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2692 {
2693 struct k_sigaction new_sa, old_sa;
2694 int ret;
2695
2696 new_sa.sa.sa_handler = handler;
2697 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2698 sigemptyset(&new_sa.sa.sa_mask);
2699
2700 ret = do_sigaction(sig, &new_sa, &old_sa);
2701
2702 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2703 }
2704 #endif /* __ARCH_WANT_SYS_SIGNAL */
2705
2706 #ifdef __ARCH_WANT_SYS_PAUSE
2707
2708 SYSCALL_DEFINE0(pause)
2709 {
2710 current->state = TASK_INTERRUPTIBLE;
2711 schedule();
2712 return -ERESTARTNOHAND;
2713 }
2714
2715 #endif
2716
2717 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2718 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2719 {
2720 sigset_t newset;
2721
2722 /* XXX: Don't preclude handling different sized sigset_t's. */
2723 if (sigsetsize != sizeof(sigset_t))
2724 return -EINVAL;
2725
2726 if (copy_from_user(&newset, unewset, sizeof(newset)))
2727 return -EFAULT;
2728 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2729
2730 spin_lock_irq(&current->sighand->siglock);
2731 current->saved_sigmask = current->blocked;
2732 current->blocked = newset;
2733 recalc_sigpending();
2734 spin_unlock_irq(&current->sighand->siglock);
2735
2736 current->state = TASK_INTERRUPTIBLE;
2737 schedule();
2738 set_restore_sigmask();
2739 return -ERESTARTNOHAND;
2740 }
2741 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2742
2743 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2744 {
2745 return NULL;
2746 }
2747
2748 void __init signals_init(void)
2749 {
2750 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2751 }
2752
2753 #ifdef CONFIG_KGDB_KDB
2754 #include <linux/kdb.h>
2755 /*
2756 * kdb_send_sig_info - Allows kdb to send signals without exposing
2757 * signal internals. This function checks if the required locks are
2758 * available before calling the main signal code, to avoid kdb
2759 * deadlocks.
2760 */
2761 void
2762 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
2763 {
2764 static struct task_struct *kdb_prev_t;
2765 int sig, new_t;
2766 if (!spin_trylock(&t->sighand->siglock)) {
2767 kdb_printf("Can't do kill command now.\n"
2768 "The sigmask lock is held somewhere else in "
2769 "kernel, try again later\n");
2770 return;
2771 }
2772 spin_unlock(&t->sighand->siglock);
2773 new_t = kdb_prev_t != t;
2774 kdb_prev_t = t;
2775 if (t->state != TASK_RUNNING && new_t) {
2776 kdb_printf("Process is not RUNNING, sending a signal from "
2777 "kdb risks deadlock\n"
2778 "on the run queue locks. "
2779 "The signal has _not_ been sent.\n"
2780 "Reissue the kill command if you want to risk "
2781 "the deadlock.\n");
2782 return;
2783 }
2784 sig = info->si_signo;
2785 if (send_sig_info(sig, info, t))
2786 kdb_printf("Fail to deliver Signal %d to process %d.\n",
2787 sig, t->pid);
2788 else
2789 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
2790 }
2791 #endif /* CONFIG_KGDB_KDB */