exit: change zap_other_threads() to count sub-threads
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
33
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
39
40 /*
41 * SLAB caches for signal bits.
42 */
43
44 static struct kmem_cache *sigqueue_cachep;
45
46 int print_fatal_signals __read_mostly;
47
48 static void __user *sig_handler(struct task_struct *t, int sig)
49 {
50 return t->sighand->action[sig - 1].sa.sa_handler;
51 }
52
53 static int sig_handler_ignored(void __user *handler, int sig)
54 {
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
58 }
59
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
62 {
63 void __user *handler;
64
65 handler = sig_handler(t, sig);
66
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
70
71 return sig_handler_ignored(handler, sig);
72 }
73
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75 {
76 /*
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
80 */
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
83
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
86
87 /*
88 * Tracers may want to know about even ignored signals.
89 */
90 return !tracehook_consider_ignored_signal(t, sig);
91 }
92
93 /*
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
96 */
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98 {
99 unsigned long ready;
100 long i;
101
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
107
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
119 }
120 return ready != 0;
121 }
122
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124
125 static int recalc_sigpending_tsk(struct task_struct *t)
126 {
127 if (t->signal->group_stop_count > 0 ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
132 }
133 /*
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
137 */
138 return 0;
139 }
140
141 /*
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
144 */
145 void recalc_sigpending_and_wake(struct task_struct *t)
146 {
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
149 }
150
151 void recalc_sigpending(void)
152 {
153 if (unlikely(tracehook_force_sigpending()))
154 set_thread_flag(TIF_SIGPENDING);
155 else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
157
158 }
159
160 /* Given the mask, find the first available signal that should be serviced. */
161
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE))
165
166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 unsigned long i, *s, *m, x;
169 int sig = 0;
170
171 s = pending->signal.sig;
172 m = mask->sig;
173
174 /*
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
177 */
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
184 }
185
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
194 }
195 break;
196
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
203
204 case 1:
205 /* Nothing to do */
206 break;
207 }
208
209 return sig;
210 }
211
212 static inline void print_dropped_signal(int sig)
213 {
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215
216 if (!print_fatal_signals)
217 return;
218
219 if (!__ratelimit(&ratelimit_state))
220 return;
221
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
224 }
225
226 /*
227 * allocate a new signal queue record
228 * - this may be called without locks if and only if t == current, otherwise an
229 * appopriate lock must be held to stop the target task from exiting
230 */
231 static struct sigqueue *
232 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
233 {
234 struct sigqueue *q = NULL;
235 struct user_struct *user;
236
237 /*
238 * Protect access to @t credentials. This can go away when all
239 * callers hold rcu read lock.
240 */
241 rcu_read_lock();
242 user = get_uid(__task_cred(t)->user);
243 atomic_inc(&user->sigpending);
244 rcu_read_unlock();
245
246 if (override_rlimit ||
247 atomic_read(&user->sigpending) <=
248 task_rlimit(t, RLIMIT_SIGPENDING)) {
249 q = kmem_cache_alloc(sigqueue_cachep, flags);
250 } else {
251 print_dropped_signal(sig);
252 }
253
254 if (unlikely(q == NULL)) {
255 atomic_dec(&user->sigpending);
256 free_uid(user);
257 } else {
258 INIT_LIST_HEAD(&q->list);
259 q->flags = 0;
260 q->user = user;
261 }
262
263 return q;
264 }
265
266 static void __sigqueue_free(struct sigqueue *q)
267 {
268 if (q->flags & SIGQUEUE_PREALLOC)
269 return;
270 atomic_dec(&q->user->sigpending);
271 free_uid(q->user);
272 kmem_cache_free(sigqueue_cachep, q);
273 }
274
275 void flush_sigqueue(struct sigpending *queue)
276 {
277 struct sigqueue *q;
278
279 sigemptyset(&queue->signal);
280 while (!list_empty(&queue->list)) {
281 q = list_entry(queue->list.next, struct sigqueue , list);
282 list_del_init(&q->list);
283 __sigqueue_free(q);
284 }
285 }
286
287 /*
288 * Flush all pending signals for a task.
289 */
290 void __flush_signals(struct task_struct *t)
291 {
292 clear_tsk_thread_flag(t, TIF_SIGPENDING);
293 flush_sigqueue(&t->pending);
294 flush_sigqueue(&t->signal->shared_pending);
295 }
296
297 void flush_signals(struct task_struct *t)
298 {
299 unsigned long flags;
300
301 spin_lock_irqsave(&t->sighand->siglock, flags);
302 __flush_signals(t);
303 spin_unlock_irqrestore(&t->sighand->siglock, flags);
304 }
305
306 static void __flush_itimer_signals(struct sigpending *pending)
307 {
308 sigset_t signal, retain;
309 struct sigqueue *q, *n;
310
311 signal = pending->signal;
312 sigemptyset(&retain);
313
314 list_for_each_entry_safe(q, n, &pending->list, list) {
315 int sig = q->info.si_signo;
316
317 if (likely(q->info.si_code != SI_TIMER)) {
318 sigaddset(&retain, sig);
319 } else {
320 sigdelset(&signal, sig);
321 list_del_init(&q->list);
322 __sigqueue_free(q);
323 }
324 }
325
326 sigorsets(&pending->signal, &signal, &retain);
327 }
328
329 void flush_itimer_signals(void)
330 {
331 struct task_struct *tsk = current;
332 unsigned long flags;
333
334 spin_lock_irqsave(&tsk->sighand->siglock, flags);
335 __flush_itimer_signals(&tsk->pending);
336 __flush_itimer_signals(&tsk->signal->shared_pending);
337 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
338 }
339
340 void ignore_signals(struct task_struct *t)
341 {
342 int i;
343
344 for (i = 0; i < _NSIG; ++i)
345 t->sighand->action[i].sa.sa_handler = SIG_IGN;
346
347 flush_signals(t);
348 }
349
350 /*
351 * Flush all handlers for a task.
352 */
353
354 void
355 flush_signal_handlers(struct task_struct *t, int force_default)
356 {
357 int i;
358 struct k_sigaction *ka = &t->sighand->action[0];
359 for (i = _NSIG ; i != 0 ; i--) {
360 if (force_default || ka->sa.sa_handler != SIG_IGN)
361 ka->sa.sa_handler = SIG_DFL;
362 ka->sa.sa_flags = 0;
363 sigemptyset(&ka->sa.sa_mask);
364 ka++;
365 }
366 }
367
368 int unhandled_signal(struct task_struct *tsk, int sig)
369 {
370 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
371 if (is_global_init(tsk))
372 return 1;
373 if (handler != SIG_IGN && handler != SIG_DFL)
374 return 0;
375 return !tracehook_consider_fatal_signal(tsk, sig);
376 }
377
378
379 /* Notify the system that a driver wants to block all signals for this
380 * process, and wants to be notified if any signals at all were to be
381 * sent/acted upon. If the notifier routine returns non-zero, then the
382 * signal will be acted upon after all. If the notifier routine returns 0,
383 * then then signal will be blocked. Only one block per process is
384 * allowed. priv is a pointer to private data that the notifier routine
385 * can use to determine if the signal should be blocked or not. */
386
387 void
388 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
389 {
390 unsigned long flags;
391
392 spin_lock_irqsave(&current->sighand->siglock, flags);
393 current->notifier_mask = mask;
394 current->notifier_data = priv;
395 current->notifier = notifier;
396 spin_unlock_irqrestore(&current->sighand->siglock, flags);
397 }
398
399 /* Notify the system that blocking has ended. */
400
401 void
402 unblock_all_signals(void)
403 {
404 unsigned long flags;
405
406 spin_lock_irqsave(&current->sighand->siglock, flags);
407 current->notifier = NULL;
408 current->notifier_data = NULL;
409 recalc_sigpending();
410 spin_unlock_irqrestore(&current->sighand->siglock, flags);
411 }
412
413 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
414 {
415 struct sigqueue *q, *first = NULL;
416
417 /*
418 * Collect the siginfo appropriate to this signal. Check if
419 * there is another siginfo for the same signal.
420 */
421 list_for_each_entry(q, &list->list, list) {
422 if (q->info.si_signo == sig) {
423 if (first)
424 goto still_pending;
425 first = q;
426 }
427 }
428
429 sigdelset(&list->signal, sig);
430
431 if (first) {
432 still_pending:
433 list_del_init(&first->list);
434 copy_siginfo(info, &first->info);
435 __sigqueue_free(first);
436 } else {
437 /* Ok, it wasn't in the queue. This must be
438 a fast-pathed signal or we must have been
439 out of queue space. So zero out the info.
440 */
441 info->si_signo = sig;
442 info->si_errno = 0;
443 info->si_code = SI_USER;
444 info->si_pid = 0;
445 info->si_uid = 0;
446 }
447 }
448
449 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
450 siginfo_t *info)
451 {
452 int sig = next_signal(pending, mask);
453
454 if (sig) {
455 if (current->notifier) {
456 if (sigismember(current->notifier_mask, sig)) {
457 if (!(current->notifier)(current->notifier_data)) {
458 clear_thread_flag(TIF_SIGPENDING);
459 return 0;
460 }
461 }
462 }
463
464 collect_signal(sig, pending, info);
465 }
466
467 return sig;
468 }
469
470 /*
471 * Dequeue a signal and return the element to the caller, which is
472 * expected to free it.
473 *
474 * All callers have to hold the siglock.
475 */
476 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
477 {
478 int signr;
479
480 /* We only dequeue private signals from ourselves, we don't let
481 * signalfd steal them
482 */
483 signr = __dequeue_signal(&tsk->pending, mask, info);
484 if (!signr) {
485 signr = __dequeue_signal(&tsk->signal->shared_pending,
486 mask, info);
487 /*
488 * itimer signal ?
489 *
490 * itimers are process shared and we restart periodic
491 * itimers in the signal delivery path to prevent DoS
492 * attacks in the high resolution timer case. This is
493 * compliant with the old way of self restarting
494 * itimers, as the SIGALRM is a legacy signal and only
495 * queued once. Changing the restart behaviour to
496 * restart the timer in the signal dequeue path is
497 * reducing the timer noise on heavy loaded !highres
498 * systems too.
499 */
500 if (unlikely(signr == SIGALRM)) {
501 struct hrtimer *tmr = &tsk->signal->real_timer;
502
503 if (!hrtimer_is_queued(tmr) &&
504 tsk->signal->it_real_incr.tv64 != 0) {
505 hrtimer_forward(tmr, tmr->base->get_time(),
506 tsk->signal->it_real_incr);
507 hrtimer_restart(tmr);
508 }
509 }
510 }
511
512 recalc_sigpending();
513 if (!signr)
514 return 0;
515
516 if (unlikely(sig_kernel_stop(signr))) {
517 /*
518 * Set a marker that we have dequeued a stop signal. Our
519 * caller might release the siglock and then the pending
520 * stop signal it is about to process is no longer in the
521 * pending bitmasks, but must still be cleared by a SIGCONT
522 * (and overruled by a SIGKILL). So those cases clear this
523 * shared flag after we've set it. Note that this flag may
524 * remain set after the signal we return is ignored or
525 * handled. That doesn't matter because its only purpose
526 * is to alert stop-signal processing code when another
527 * processor has come along and cleared the flag.
528 */
529 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
530 }
531 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
532 /*
533 * Release the siglock to ensure proper locking order
534 * of timer locks outside of siglocks. Note, we leave
535 * irqs disabled here, since the posix-timers code is
536 * about to disable them again anyway.
537 */
538 spin_unlock(&tsk->sighand->siglock);
539 do_schedule_next_timer(info);
540 spin_lock(&tsk->sighand->siglock);
541 }
542 return signr;
543 }
544
545 /*
546 * Tell a process that it has a new active signal..
547 *
548 * NOTE! we rely on the previous spin_lock to
549 * lock interrupts for us! We can only be called with
550 * "siglock" held, and the local interrupt must
551 * have been disabled when that got acquired!
552 *
553 * No need to set need_resched since signal event passing
554 * goes through ->blocked
555 */
556 void signal_wake_up(struct task_struct *t, int resume)
557 {
558 unsigned int mask;
559
560 set_tsk_thread_flag(t, TIF_SIGPENDING);
561
562 /*
563 * For SIGKILL, we want to wake it up in the stopped/traced/killable
564 * case. We don't check t->state here because there is a race with it
565 * executing another processor and just now entering stopped state.
566 * By using wake_up_state, we ensure the process will wake up and
567 * handle its death signal.
568 */
569 mask = TASK_INTERRUPTIBLE;
570 if (resume)
571 mask |= TASK_WAKEKILL;
572 if (!wake_up_state(t, mask))
573 kick_process(t);
574 }
575
576 /*
577 * Remove signals in mask from the pending set and queue.
578 * Returns 1 if any signals were found.
579 *
580 * All callers must be holding the siglock.
581 *
582 * This version takes a sigset mask and looks at all signals,
583 * not just those in the first mask word.
584 */
585 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
586 {
587 struct sigqueue *q, *n;
588 sigset_t m;
589
590 sigandsets(&m, mask, &s->signal);
591 if (sigisemptyset(&m))
592 return 0;
593
594 signandsets(&s->signal, &s->signal, mask);
595 list_for_each_entry_safe(q, n, &s->list, list) {
596 if (sigismember(mask, q->info.si_signo)) {
597 list_del_init(&q->list);
598 __sigqueue_free(q);
599 }
600 }
601 return 1;
602 }
603 /*
604 * Remove signals in mask from the pending set and queue.
605 * Returns 1 if any signals were found.
606 *
607 * All callers must be holding the siglock.
608 */
609 static int rm_from_queue(unsigned long mask, struct sigpending *s)
610 {
611 struct sigqueue *q, *n;
612
613 if (!sigtestsetmask(&s->signal, mask))
614 return 0;
615
616 sigdelsetmask(&s->signal, mask);
617 list_for_each_entry_safe(q, n, &s->list, list) {
618 if (q->info.si_signo < SIGRTMIN &&
619 (mask & sigmask(q->info.si_signo))) {
620 list_del_init(&q->list);
621 __sigqueue_free(q);
622 }
623 }
624 return 1;
625 }
626
627 static inline int is_si_special(const struct siginfo *info)
628 {
629 return info <= SEND_SIG_FORCED;
630 }
631
632 static inline bool si_fromuser(const struct siginfo *info)
633 {
634 return info == SEND_SIG_NOINFO ||
635 (!is_si_special(info) && SI_FROMUSER(info));
636 }
637
638 /*
639 * Bad permissions for sending the signal
640 * - the caller must hold at least the RCU read lock
641 */
642 static int check_kill_permission(int sig, struct siginfo *info,
643 struct task_struct *t)
644 {
645 const struct cred *cred, *tcred;
646 struct pid *sid;
647 int error;
648
649 if (!valid_signal(sig))
650 return -EINVAL;
651
652 if (!si_fromuser(info))
653 return 0;
654
655 error = audit_signal_info(sig, t); /* Let audit system see the signal */
656 if (error)
657 return error;
658
659 cred = current_cred();
660 tcred = __task_cred(t);
661 if (!same_thread_group(current, t) &&
662 (cred->euid ^ tcred->suid) &&
663 (cred->euid ^ tcred->uid) &&
664 (cred->uid ^ tcred->suid) &&
665 (cred->uid ^ tcred->uid) &&
666 !capable(CAP_KILL)) {
667 switch (sig) {
668 case SIGCONT:
669 sid = task_session(t);
670 /*
671 * We don't return the error if sid == NULL. The
672 * task was unhashed, the caller must notice this.
673 */
674 if (!sid || sid == task_session(current))
675 break;
676 default:
677 return -EPERM;
678 }
679 }
680
681 return security_task_kill(t, info, sig, 0);
682 }
683
684 /*
685 * Handle magic process-wide effects of stop/continue signals. Unlike
686 * the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
690 *
691 * Returns true if the signal should be actually delivered, otherwise
692 * it should be dropped.
693 */
694 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
695 {
696 struct signal_struct *signal = p->signal;
697 struct task_struct *t;
698
699 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
700 /*
701 * The process is in the middle of dying, nothing to do.
702 */
703 } else if (sig_kernel_stop(sig)) {
704 /*
705 * This is a stop signal. Remove SIGCONT from all queues.
706 */
707 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
708 t = p;
709 do {
710 rm_from_queue(sigmask(SIGCONT), &t->pending);
711 } while_each_thread(p, t);
712 } else if (sig == SIGCONT) {
713 unsigned int why;
714 /*
715 * Remove all stop signals from all queues,
716 * and wake all threads.
717 */
718 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
719 t = p;
720 do {
721 unsigned int state;
722 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
723 /*
724 * If there is a handler for SIGCONT, we must make
725 * sure that no thread returns to user mode before
726 * we post the signal, in case it was the only
727 * thread eligible to run the signal handler--then
728 * it must not do anything between resuming and
729 * running the handler. With the TIF_SIGPENDING
730 * flag set, the thread will pause and acquire the
731 * siglock that we hold now and until we've queued
732 * the pending signal.
733 *
734 * Wake up the stopped thread _after_ setting
735 * TIF_SIGPENDING
736 */
737 state = __TASK_STOPPED;
738 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
739 set_tsk_thread_flag(t, TIF_SIGPENDING);
740 state |= TASK_INTERRUPTIBLE;
741 }
742 wake_up_state(t, state);
743 } while_each_thread(p, t);
744
745 /*
746 * Notify the parent with CLD_CONTINUED if we were stopped.
747 *
748 * If we were in the middle of a group stop, we pretend it
749 * was already finished, and then continued. Since SIGCHLD
750 * doesn't queue we report only CLD_STOPPED, as if the next
751 * CLD_CONTINUED was dropped.
752 */
753 why = 0;
754 if (signal->flags & SIGNAL_STOP_STOPPED)
755 why |= SIGNAL_CLD_CONTINUED;
756 else if (signal->group_stop_count)
757 why |= SIGNAL_CLD_STOPPED;
758
759 if (why) {
760 /*
761 * The first thread which returns from do_signal_stop()
762 * will take ->siglock, notice SIGNAL_CLD_MASK, and
763 * notify its parent. See get_signal_to_deliver().
764 */
765 signal->flags = why | SIGNAL_STOP_CONTINUED;
766 signal->group_stop_count = 0;
767 signal->group_exit_code = 0;
768 } else {
769 /*
770 * We are not stopped, but there could be a stop
771 * signal in the middle of being processed after
772 * being removed from the queue. Clear that too.
773 */
774 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
775 }
776 }
777
778 return !sig_ignored(p, sig, from_ancestor_ns);
779 }
780
781 /*
782 * Test if P wants to take SIG. After we've checked all threads with this,
783 * it's equivalent to finding no threads not blocking SIG. Any threads not
784 * blocking SIG were ruled out because they are not running and already
785 * have pending signals. Such threads will dequeue from the shared queue
786 * as soon as they're available, so putting the signal on the shared queue
787 * will be equivalent to sending it to one such thread.
788 */
789 static inline int wants_signal(int sig, struct task_struct *p)
790 {
791 if (sigismember(&p->blocked, sig))
792 return 0;
793 if (p->flags & PF_EXITING)
794 return 0;
795 if (sig == SIGKILL)
796 return 1;
797 if (task_is_stopped_or_traced(p))
798 return 0;
799 return task_curr(p) || !signal_pending(p);
800 }
801
802 static void complete_signal(int sig, struct task_struct *p, int group)
803 {
804 struct signal_struct *signal = p->signal;
805 struct task_struct *t;
806
807 /*
808 * Now find a thread we can wake up to take the signal off the queue.
809 *
810 * If the main thread wants the signal, it gets first crack.
811 * Probably the least surprising to the average bear.
812 */
813 if (wants_signal(sig, p))
814 t = p;
815 else if (!group || thread_group_empty(p))
816 /*
817 * There is just one thread and it does not need to be woken.
818 * It will dequeue unblocked signals before it runs again.
819 */
820 return;
821 else {
822 /*
823 * Otherwise try to find a suitable thread.
824 */
825 t = signal->curr_target;
826 while (!wants_signal(sig, t)) {
827 t = next_thread(t);
828 if (t == signal->curr_target)
829 /*
830 * No thread needs to be woken.
831 * Any eligible threads will see
832 * the signal in the queue soon.
833 */
834 return;
835 }
836 signal->curr_target = t;
837 }
838
839 /*
840 * Found a killable thread. If the signal will be fatal,
841 * then start taking the whole group down immediately.
842 */
843 if (sig_fatal(p, sig) &&
844 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
845 !sigismember(&t->real_blocked, sig) &&
846 (sig == SIGKILL ||
847 !tracehook_consider_fatal_signal(t, sig))) {
848 /*
849 * This signal will be fatal to the whole group.
850 */
851 if (!sig_kernel_coredump(sig)) {
852 /*
853 * Start a group exit and wake everybody up.
854 * This way we don't have other threads
855 * running and doing things after a slower
856 * thread has the fatal signal pending.
857 */
858 signal->flags = SIGNAL_GROUP_EXIT;
859 signal->group_exit_code = sig;
860 signal->group_stop_count = 0;
861 t = p;
862 do {
863 sigaddset(&t->pending.signal, SIGKILL);
864 signal_wake_up(t, 1);
865 } while_each_thread(p, t);
866 return;
867 }
868 }
869
870 /*
871 * The signal is already in the shared-pending queue.
872 * Tell the chosen thread to wake up and dequeue it.
873 */
874 signal_wake_up(t, sig == SIGKILL);
875 return;
876 }
877
878 static inline int legacy_queue(struct sigpending *signals, int sig)
879 {
880 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
881 }
882
883 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
884 int group, int from_ancestor_ns)
885 {
886 struct sigpending *pending;
887 struct sigqueue *q;
888 int override_rlimit;
889
890 trace_signal_generate(sig, info, t);
891
892 assert_spin_locked(&t->sighand->siglock);
893
894 if (!prepare_signal(sig, t, from_ancestor_ns))
895 return 0;
896
897 pending = group ? &t->signal->shared_pending : &t->pending;
898 /*
899 * Short-circuit ignored signals and support queuing
900 * exactly one non-rt signal, so that we can get more
901 * detailed information about the cause of the signal.
902 */
903 if (legacy_queue(pending, sig))
904 return 0;
905 /*
906 * fast-pathed signals for kernel-internal things like SIGSTOP
907 * or SIGKILL.
908 */
909 if (info == SEND_SIG_FORCED)
910 goto out_set;
911
912 /* Real-time signals must be queued if sent by sigqueue, or
913 some other real-time mechanism. It is implementation
914 defined whether kill() does so. We attempt to do so, on
915 the principle of least surprise, but since kill is not
916 allowed to fail with EAGAIN when low on memory we just
917 make sure at least one signal gets delivered and don't
918 pass on the info struct. */
919
920 if (sig < SIGRTMIN)
921 override_rlimit = (is_si_special(info) || info->si_code >= 0);
922 else
923 override_rlimit = 0;
924
925 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
926 override_rlimit);
927 if (q) {
928 list_add_tail(&q->list, &pending->list);
929 switch ((unsigned long) info) {
930 case (unsigned long) SEND_SIG_NOINFO:
931 q->info.si_signo = sig;
932 q->info.si_errno = 0;
933 q->info.si_code = SI_USER;
934 q->info.si_pid = task_tgid_nr_ns(current,
935 task_active_pid_ns(t));
936 q->info.si_uid = current_uid();
937 break;
938 case (unsigned long) SEND_SIG_PRIV:
939 q->info.si_signo = sig;
940 q->info.si_errno = 0;
941 q->info.si_code = SI_KERNEL;
942 q->info.si_pid = 0;
943 q->info.si_uid = 0;
944 break;
945 default:
946 copy_siginfo(&q->info, info);
947 if (from_ancestor_ns)
948 q->info.si_pid = 0;
949 break;
950 }
951 } else if (!is_si_special(info)) {
952 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
953 /*
954 * Queue overflow, abort. We may abort if the
955 * signal was rt and sent by user using something
956 * other than kill().
957 */
958 trace_signal_overflow_fail(sig, group, info);
959 return -EAGAIN;
960 } else {
961 /*
962 * This is a silent loss of information. We still
963 * send the signal, but the *info bits are lost.
964 */
965 trace_signal_lose_info(sig, group, info);
966 }
967 }
968
969 out_set:
970 signalfd_notify(t, sig);
971 sigaddset(&pending->signal, sig);
972 complete_signal(sig, t, group);
973 return 0;
974 }
975
976 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
977 int group)
978 {
979 int from_ancestor_ns = 0;
980
981 #ifdef CONFIG_PID_NS
982 from_ancestor_ns = si_fromuser(info) &&
983 !task_pid_nr_ns(current, task_active_pid_ns(t));
984 #endif
985
986 return __send_signal(sig, info, t, group, from_ancestor_ns);
987 }
988
989 static void print_fatal_signal(struct pt_regs *regs, int signr)
990 {
991 printk("%s/%d: potentially unexpected fatal signal %d.\n",
992 current->comm, task_pid_nr(current), signr);
993
994 #if defined(__i386__) && !defined(__arch_um__)
995 printk("code at %08lx: ", regs->ip);
996 {
997 int i;
998 for (i = 0; i < 16; i++) {
999 unsigned char insn;
1000
1001 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1002 break;
1003 printk("%02x ", insn);
1004 }
1005 }
1006 #endif
1007 printk("\n");
1008 preempt_disable();
1009 show_regs(regs);
1010 preempt_enable();
1011 }
1012
1013 static int __init setup_print_fatal_signals(char *str)
1014 {
1015 get_option (&str, &print_fatal_signals);
1016
1017 return 1;
1018 }
1019
1020 __setup("print-fatal-signals=", setup_print_fatal_signals);
1021
1022 int
1023 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1024 {
1025 return send_signal(sig, info, p, 1);
1026 }
1027
1028 static int
1029 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1030 {
1031 return send_signal(sig, info, t, 0);
1032 }
1033
1034 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1035 bool group)
1036 {
1037 unsigned long flags;
1038 int ret = -ESRCH;
1039
1040 if (lock_task_sighand(p, &flags)) {
1041 ret = send_signal(sig, info, p, group);
1042 unlock_task_sighand(p, &flags);
1043 }
1044
1045 return ret;
1046 }
1047
1048 /*
1049 * Force a signal that the process can't ignore: if necessary
1050 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1051 *
1052 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1053 * since we do not want to have a signal handler that was blocked
1054 * be invoked when user space had explicitly blocked it.
1055 *
1056 * We don't want to have recursive SIGSEGV's etc, for example,
1057 * that is why we also clear SIGNAL_UNKILLABLE.
1058 */
1059 int
1060 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1061 {
1062 unsigned long int flags;
1063 int ret, blocked, ignored;
1064 struct k_sigaction *action;
1065
1066 spin_lock_irqsave(&t->sighand->siglock, flags);
1067 action = &t->sighand->action[sig-1];
1068 ignored = action->sa.sa_handler == SIG_IGN;
1069 blocked = sigismember(&t->blocked, sig);
1070 if (blocked || ignored) {
1071 action->sa.sa_handler = SIG_DFL;
1072 if (blocked) {
1073 sigdelset(&t->blocked, sig);
1074 recalc_sigpending_and_wake(t);
1075 }
1076 }
1077 if (action->sa.sa_handler == SIG_DFL)
1078 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1079 ret = specific_send_sig_info(sig, info, t);
1080 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1081
1082 return ret;
1083 }
1084
1085 /*
1086 * Nuke all other threads in the group.
1087 */
1088 int zap_other_threads(struct task_struct *p)
1089 {
1090 struct task_struct *t = p;
1091 int count = 0;
1092
1093 p->signal->group_stop_count = 0;
1094
1095 while_each_thread(p, t) {
1096 count++;
1097
1098 /* Don't bother with already dead threads */
1099 if (t->exit_state)
1100 continue;
1101 sigaddset(&t->pending.signal, SIGKILL);
1102 signal_wake_up(t, 1);
1103 }
1104
1105 return count;
1106 }
1107
1108 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1109 {
1110 struct sighand_struct *sighand;
1111
1112 rcu_read_lock();
1113 for (;;) {
1114 sighand = rcu_dereference(tsk->sighand);
1115 if (unlikely(sighand == NULL))
1116 break;
1117
1118 spin_lock_irqsave(&sighand->siglock, *flags);
1119 if (likely(sighand == tsk->sighand))
1120 break;
1121 spin_unlock_irqrestore(&sighand->siglock, *flags);
1122 }
1123 rcu_read_unlock();
1124
1125 return sighand;
1126 }
1127
1128 /*
1129 * send signal info to all the members of a group
1130 * - the caller must hold the RCU read lock at least
1131 */
1132 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1133 {
1134 int ret = check_kill_permission(sig, info, p);
1135
1136 if (!ret && sig)
1137 ret = do_send_sig_info(sig, info, p, true);
1138
1139 return ret;
1140 }
1141
1142 /*
1143 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1144 * control characters do (^C, ^Z etc)
1145 * - the caller must hold at least a readlock on tasklist_lock
1146 */
1147 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1148 {
1149 struct task_struct *p = NULL;
1150 int retval, success;
1151
1152 success = 0;
1153 retval = -ESRCH;
1154 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1155 int err = group_send_sig_info(sig, info, p);
1156 success |= !err;
1157 retval = err;
1158 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1159 return success ? 0 : retval;
1160 }
1161
1162 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1163 {
1164 int error = -ESRCH;
1165 struct task_struct *p;
1166
1167 rcu_read_lock();
1168 retry:
1169 p = pid_task(pid, PIDTYPE_PID);
1170 if (p) {
1171 error = group_send_sig_info(sig, info, p);
1172 if (unlikely(error == -ESRCH))
1173 /*
1174 * The task was unhashed in between, try again.
1175 * If it is dead, pid_task() will return NULL,
1176 * if we race with de_thread() it will find the
1177 * new leader.
1178 */
1179 goto retry;
1180 }
1181 rcu_read_unlock();
1182
1183 return error;
1184 }
1185
1186 int
1187 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1188 {
1189 int error;
1190 rcu_read_lock();
1191 error = kill_pid_info(sig, info, find_vpid(pid));
1192 rcu_read_unlock();
1193 return error;
1194 }
1195
1196 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1197 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1198 uid_t uid, uid_t euid, u32 secid)
1199 {
1200 int ret = -EINVAL;
1201 struct task_struct *p;
1202 const struct cred *pcred;
1203 unsigned long flags;
1204
1205 if (!valid_signal(sig))
1206 return ret;
1207
1208 rcu_read_lock();
1209 p = pid_task(pid, PIDTYPE_PID);
1210 if (!p) {
1211 ret = -ESRCH;
1212 goto out_unlock;
1213 }
1214 pcred = __task_cred(p);
1215 if (si_fromuser(info) &&
1216 euid != pcred->suid && euid != pcred->uid &&
1217 uid != pcred->suid && uid != pcred->uid) {
1218 ret = -EPERM;
1219 goto out_unlock;
1220 }
1221 ret = security_task_kill(p, info, sig, secid);
1222 if (ret)
1223 goto out_unlock;
1224
1225 if (sig) {
1226 if (lock_task_sighand(p, &flags)) {
1227 ret = __send_signal(sig, info, p, 1, 0);
1228 unlock_task_sighand(p, &flags);
1229 } else
1230 ret = -ESRCH;
1231 }
1232 out_unlock:
1233 rcu_read_unlock();
1234 return ret;
1235 }
1236 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1237
1238 /*
1239 * kill_something_info() interprets pid in interesting ways just like kill(2).
1240 *
1241 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1242 * is probably wrong. Should make it like BSD or SYSV.
1243 */
1244
1245 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1246 {
1247 int ret;
1248
1249 if (pid > 0) {
1250 rcu_read_lock();
1251 ret = kill_pid_info(sig, info, find_vpid(pid));
1252 rcu_read_unlock();
1253 return ret;
1254 }
1255
1256 read_lock(&tasklist_lock);
1257 if (pid != -1) {
1258 ret = __kill_pgrp_info(sig, info,
1259 pid ? find_vpid(-pid) : task_pgrp(current));
1260 } else {
1261 int retval = 0, count = 0;
1262 struct task_struct * p;
1263
1264 for_each_process(p) {
1265 if (task_pid_vnr(p) > 1 &&
1266 !same_thread_group(p, current)) {
1267 int err = group_send_sig_info(sig, info, p);
1268 ++count;
1269 if (err != -EPERM)
1270 retval = err;
1271 }
1272 }
1273 ret = count ? retval : -ESRCH;
1274 }
1275 read_unlock(&tasklist_lock);
1276
1277 return ret;
1278 }
1279
1280 /*
1281 * These are for backward compatibility with the rest of the kernel source.
1282 */
1283
1284 int
1285 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1286 {
1287 /*
1288 * Make sure legacy kernel users don't send in bad values
1289 * (normal paths check this in check_kill_permission).
1290 */
1291 if (!valid_signal(sig))
1292 return -EINVAL;
1293
1294 return do_send_sig_info(sig, info, p, false);
1295 }
1296
1297 #define __si_special(priv) \
1298 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1299
1300 int
1301 send_sig(int sig, struct task_struct *p, int priv)
1302 {
1303 return send_sig_info(sig, __si_special(priv), p);
1304 }
1305
1306 void
1307 force_sig(int sig, struct task_struct *p)
1308 {
1309 force_sig_info(sig, SEND_SIG_PRIV, p);
1310 }
1311
1312 /*
1313 * When things go south during signal handling, we
1314 * will force a SIGSEGV. And if the signal that caused
1315 * the problem was already a SIGSEGV, we'll want to
1316 * make sure we don't even try to deliver the signal..
1317 */
1318 int
1319 force_sigsegv(int sig, struct task_struct *p)
1320 {
1321 if (sig == SIGSEGV) {
1322 unsigned long flags;
1323 spin_lock_irqsave(&p->sighand->siglock, flags);
1324 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1325 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1326 }
1327 force_sig(SIGSEGV, p);
1328 return 0;
1329 }
1330
1331 int kill_pgrp(struct pid *pid, int sig, int priv)
1332 {
1333 int ret;
1334
1335 read_lock(&tasklist_lock);
1336 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1337 read_unlock(&tasklist_lock);
1338
1339 return ret;
1340 }
1341 EXPORT_SYMBOL(kill_pgrp);
1342
1343 int kill_pid(struct pid *pid, int sig, int priv)
1344 {
1345 return kill_pid_info(sig, __si_special(priv), pid);
1346 }
1347 EXPORT_SYMBOL(kill_pid);
1348
1349 /*
1350 * These functions support sending signals using preallocated sigqueue
1351 * structures. This is needed "because realtime applications cannot
1352 * afford to lose notifications of asynchronous events, like timer
1353 * expirations or I/O completions". In the case of Posix Timers
1354 * we allocate the sigqueue structure from the timer_create. If this
1355 * allocation fails we are able to report the failure to the application
1356 * with an EAGAIN error.
1357 */
1358 struct sigqueue *sigqueue_alloc(void)
1359 {
1360 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1361
1362 if (q)
1363 q->flags |= SIGQUEUE_PREALLOC;
1364
1365 return q;
1366 }
1367
1368 void sigqueue_free(struct sigqueue *q)
1369 {
1370 unsigned long flags;
1371 spinlock_t *lock = &current->sighand->siglock;
1372
1373 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1374 /*
1375 * We must hold ->siglock while testing q->list
1376 * to serialize with collect_signal() or with
1377 * __exit_signal()->flush_sigqueue().
1378 */
1379 spin_lock_irqsave(lock, flags);
1380 q->flags &= ~SIGQUEUE_PREALLOC;
1381 /*
1382 * If it is queued it will be freed when dequeued,
1383 * like the "regular" sigqueue.
1384 */
1385 if (!list_empty(&q->list))
1386 q = NULL;
1387 spin_unlock_irqrestore(lock, flags);
1388
1389 if (q)
1390 __sigqueue_free(q);
1391 }
1392
1393 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1394 {
1395 int sig = q->info.si_signo;
1396 struct sigpending *pending;
1397 unsigned long flags;
1398 int ret;
1399
1400 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1401
1402 ret = -1;
1403 if (!likely(lock_task_sighand(t, &flags)))
1404 goto ret;
1405
1406 ret = 1; /* the signal is ignored */
1407 if (!prepare_signal(sig, t, 0))
1408 goto out;
1409
1410 ret = 0;
1411 if (unlikely(!list_empty(&q->list))) {
1412 /*
1413 * If an SI_TIMER entry is already queue just increment
1414 * the overrun count.
1415 */
1416 BUG_ON(q->info.si_code != SI_TIMER);
1417 q->info.si_overrun++;
1418 goto out;
1419 }
1420 q->info.si_overrun = 0;
1421
1422 signalfd_notify(t, sig);
1423 pending = group ? &t->signal->shared_pending : &t->pending;
1424 list_add_tail(&q->list, &pending->list);
1425 sigaddset(&pending->signal, sig);
1426 complete_signal(sig, t, group);
1427 out:
1428 unlock_task_sighand(t, &flags);
1429 ret:
1430 return ret;
1431 }
1432
1433 /*
1434 * Let a parent know about the death of a child.
1435 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1436 *
1437 * Returns -1 if our parent ignored us and so we've switched to
1438 * self-reaping, or else @sig.
1439 */
1440 int do_notify_parent(struct task_struct *tsk, int sig)
1441 {
1442 struct siginfo info;
1443 unsigned long flags;
1444 struct sighand_struct *psig;
1445 int ret = sig;
1446
1447 BUG_ON(sig == -1);
1448
1449 /* do_notify_parent_cldstop should have been called instead. */
1450 BUG_ON(task_is_stopped_or_traced(tsk));
1451
1452 BUG_ON(!task_ptrace(tsk) &&
1453 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1454
1455 info.si_signo = sig;
1456 info.si_errno = 0;
1457 /*
1458 * we are under tasklist_lock here so our parent is tied to
1459 * us and cannot exit and release its namespace.
1460 *
1461 * the only it can is to switch its nsproxy with sys_unshare,
1462 * bu uncharing pid namespaces is not allowed, so we'll always
1463 * see relevant namespace
1464 *
1465 * write_lock() currently calls preempt_disable() which is the
1466 * same as rcu_read_lock(), but according to Oleg, this is not
1467 * correct to rely on this
1468 */
1469 rcu_read_lock();
1470 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1471 info.si_uid = __task_cred(tsk)->uid;
1472 rcu_read_unlock();
1473
1474 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1475 tsk->signal->utime));
1476 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1477 tsk->signal->stime));
1478
1479 info.si_status = tsk->exit_code & 0x7f;
1480 if (tsk->exit_code & 0x80)
1481 info.si_code = CLD_DUMPED;
1482 else if (tsk->exit_code & 0x7f)
1483 info.si_code = CLD_KILLED;
1484 else {
1485 info.si_code = CLD_EXITED;
1486 info.si_status = tsk->exit_code >> 8;
1487 }
1488
1489 psig = tsk->parent->sighand;
1490 spin_lock_irqsave(&psig->siglock, flags);
1491 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1492 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1493 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1494 /*
1495 * We are exiting and our parent doesn't care. POSIX.1
1496 * defines special semantics for setting SIGCHLD to SIG_IGN
1497 * or setting the SA_NOCLDWAIT flag: we should be reaped
1498 * automatically and not left for our parent's wait4 call.
1499 * Rather than having the parent do it as a magic kind of
1500 * signal handler, we just set this to tell do_exit that we
1501 * can be cleaned up without becoming a zombie. Note that
1502 * we still call __wake_up_parent in this case, because a
1503 * blocked sys_wait4 might now return -ECHILD.
1504 *
1505 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1506 * is implementation-defined: we do (if you don't want
1507 * it, just use SIG_IGN instead).
1508 */
1509 ret = tsk->exit_signal = -1;
1510 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1511 sig = -1;
1512 }
1513 if (valid_signal(sig) && sig > 0)
1514 __group_send_sig_info(sig, &info, tsk->parent);
1515 __wake_up_parent(tsk, tsk->parent);
1516 spin_unlock_irqrestore(&psig->siglock, flags);
1517
1518 return ret;
1519 }
1520
1521 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1522 {
1523 struct siginfo info;
1524 unsigned long flags;
1525 struct task_struct *parent;
1526 struct sighand_struct *sighand;
1527
1528 if (task_ptrace(tsk))
1529 parent = tsk->parent;
1530 else {
1531 tsk = tsk->group_leader;
1532 parent = tsk->real_parent;
1533 }
1534
1535 info.si_signo = SIGCHLD;
1536 info.si_errno = 0;
1537 /*
1538 * see comment in do_notify_parent() abot the following 3 lines
1539 */
1540 rcu_read_lock();
1541 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1542 info.si_uid = __task_cred(tsk)->uid;
1543 rcu_read_unlock();
1544
1545 info.si_utime = cputime_to_clock_t(tsk->utime);
1546 info.si_stime = cputime_to_clock_t(tsk->stime);
1547
1548 info.si_code = why;
1549 switch (why) {
1550 case CLD_CONTINUED:
1551 info.si_status = SIGCONT;
1552 break;
1553 case CLD_STOPPED:
1554 info.si_status = tsk->signal->group_exit_code & 0x7f;
1555 break;
1556 case CLD_TRAPPED:
1557 info.si_status = tsk->exit_code & 0x7f;
1558 break;
1559 default:
1560 BUG();
1561 }
1562
1563 sighand = parent->sighand;
1564 spin_lock_irqsave(&sighand->siglock, flags);
1565 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1566 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1567 __group_send_sig_info(SIGCHLD, &info, parent);
1568 /*
1569 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1570 */
1571 __wake_up_parent(tsk, parent);
1572 spin_unlock_irqrestore(&sighand->siglock, flags);
1573 }
1574
1575 static inline int may_ptrace_stop(void)
1576 {
1577 if (!likely(task_ptrace(current)))
1578 return 0;
1579 /*
1580 * Are we in the middle of do_coredump?
1581 * If so and our tracer is also part of the coredump stopping
1582 * is a deadlock situation, and pointless because our tracer
1583 * is dead so don't allow us to stop.
1584 * If SIGKILL was already sent before the caller unlocked
1585 * ->siglock we must see ->core_state != NULL. Otherwise it
1586 * is safe to enter schedule().
1587 */
1588 if (unlikely(current->mm->core_state) &&
1589 unlikely(current->mm == current->parent->mm))
1590 return 0;
1591
1592 return 1;
1593 }
1594
1595 /*
1596 * Return nonzero if there is a SIGKILL that should be waking us up.
1597 * Called with the siglock held.
1598 */
1599 static int sigkill_pending(struct task_struct *tsk)
1600 {
1601 return sigismember(&tsk->pending.signal, SIGKILL) ||
1602 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1603 }
1604
1605 /*
1606 * This must be called with current->sighand->siglock held.
1607 *
1608 * This should be the path for all ptrace stops.
1609 * We always set current->last_siginfo while stopped here.
1610 * That makes it a way to test a stopped process for
1611 * being ptrace-stopped vs being job-control-stopped.
1612 *
1613 * If we actually decide not to stop at all because the tracer
1614 * is gone, we keep current->exit_code unless clear_code.
1615 */
1616 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1617 {
1618 if (arch_ptrace_stop_needed(exit_code, info)) {
1619 /*
1620 * The arch code has something special to do before a
1621 * ptrace stop. This is allowed to block, e.g. for faults
1622 * on user stack pages. We can't keep the siglock while
1623 * calling arch_ptrace_stop, so we must release it now.
1624 * To preserve proper semantics, we must do this before
1625 * any signal bookkeeping like checking group_stop_count.
1626 * Meanwhile, a SIGKILL could come in before we retake the
1627 * siglock. That must prevent us from sleeping in TASK_TRACED.
1628 * So after regaining the lock, we must check for SIGKILL.
1629 */
1630 spin_unlock_irq(&current->sighand->siglock);
1631 arch_ptrace_stop(exit_code, info);
1632 spin_lock_irq(&current->sighand->siglock);
1633 if (sigkill_pending(current))
1634 return;
1635 }
1636
1637 /*
1638 * If there is a group stop in progress,
1639 * we must participate in the bookkeeping.
1640 */
1641 if (current->signal->group_stop_count > 0)
1642 --current->signal->group_stop_count;
1643
1644 current->last_siginfo = info;
1645 current->exit_code = exit_code;
1646
1647 /* Let the debugger run. */
1648 __set_current_state(TASK_TRACED);
1649 spin_unlock_irq(&current->sighand->siglock);
1650 read_lock(&tasklist_lock);
1651 if (may_ptrace_stop()) {
1652 do_notify_parent_cldstop(current, CLD_TRAPPED);
1653 /*
1654 * Don't want to allow preemption here, because
1655 * sys_ptrace() needs this task to be inactive.
1656 *
1657 * XXX: implement read_unlock_no_resched().
1658 */
1659 preempt_disable();
1660 read_unlock(&tasklist_lock);
1661 preempt_enable_no_resched();
1662 schedule();
1663 } else {
1664 /*
1665 * By the time we got the lock, our tracer went away.
1666 * Don't drop the lock yet, another tracer may come.
1667 */
1668 __set_current_state(TASK_RUNNING);
1669 if (clear_code)
1670 current->exit_code = 0;
1671 read_unlock(&tasklist_lock);
1672 }
1673
1674 /*
1675 * While in TASK_TRACED, we were considered "frozen enough".
1676 * Now that we woke up, it's crucial if we're supposed to be
1677 * frozen that we freeze now before running anything substantial.
1678 */
1679 try_to_freeze();
1680
1681 /*
1682 * We are back. Now reacquire the siglock before touching
1683 * last_siginfo, so that we are sure to have synchronized with
1684 * any signal-sending on another CPU that wants to examine it.
1685 */
1686 spin_lock_irq(&current->sighand->siglock);
1687 current->last_siginfo = NULL;
1688
1689 /*
1690 * Queued signals ignored us while we were stopped for tracing.
1691 * So check for any that we should take before resuming user mode.
1692 * This sets TIF_SIGPENDING, but never clears it.
1693 */
1694 recalc_sigpending_tsk(current);
1695 }
1696
1697 void ptrace_notify(int exit_code)
1698 {
1699 siginfo_t info;
1700
1701 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1702
1703 memset(&info, 0, sizeof info);
1704 info.si_signo = SIGTRAP;
1705 info.si_code = exit_code;
1706 info.si_pid = task_pid_vnr(current);
1707 info.si_uid = current_uid();
1708
1709 /* Let the debugger run. */
1710 spin_lock_irq(&current->sighand->siglock);
1711 ptrace_stop(exit_code, 1, &info);
1712 spin_unlock_irq(&current->sighand->siglock);
1713 }
1714
1715 /*
1716 * This performs the stopping for SIGSTOP and other stop signals.
1717 * We have to stop all threads in the thread group.
1718 * Returns nonzero if we've actually stopped and released the siglock.
1719 * Returns zero if we didn't stop and still hold the siglock.
1720 */
1721 static int do_signal_stop(int signr)
1722 {
1723 struct signal_struct *sig = current->signal;
1724 int notify;
1725
1726 if (!sig->group_stop_count) {
1727 struct task_struct *t;
1728
1729 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1730 unlikely(signal_group_exit(sig)))
1731 return 0;
1732 /*
1733 * There is no group stop already in progress.
1734 * We must initiate one now.
1735 */
1736 sig->group_exit_code = signr;
1737
1738 sig->group_stop_count = 1;
1739 for (t = next_thread(current); t != current; t = next_thread(t))
1740 /*
1741 * Setting state to TASK_STOPPED for a group
1742 * stop is always done with the siglock held,
1743 * so this check has no races.
1744 */
1745 if (!(t->flags & PF_EXITING) &&
1746 !task_is_stopped_or_traced(t)) {
1747 sig->group_stop_count++;
1748 signal_wake_up(t, 0);
1749 }
1750 }
1751 /*
1752 * If there are no other threads in the group, or if there is
1753 * a group stop in progress and we are the last to stop, report
1754 * to the parent. When ptraced, every thread reports itself.
1755 */
1756 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1757 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1758 /*
1759 * tracehook_notify_jctl() can drop and reacquire siglock, so
1760 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1761 * or SIGKILL comes in between ->group_stop_count == 0.
1762 */
1763 if (sig->group_stop_count) {
1764 if (!--sig->group_stop_count)
1765 sig->flags = SIGNAL_STOP_STOPPED;
1766 current->exit_code = sig->group_exit_code;
1767 __set_current_state(TASK_STOPPED);
1768 }
1769 spin_unlock_irq(&current->sighand->siglock);
1770
1771 if (notify) {
1772 read_lock(&tasklist_lock);
1773 do_notify_parent_cldstop(current, notify);
1774 read_unlock(&tasklist_lock);
1775 }
1776
1777 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1778 do {
1779 schedule();
1780 } while (try_to_freeze());
1781
1782 tracehook_finish_jctl();
1783 current->exit_code = 0;
1784
1785 return 1;
1786 }
1787
1788 static int ptrace_signal(int signr, siginfo_t *info,
1789 struct pt_regs *regs, void *cookie)
1790 {
1791 if (!task_ptrace(current))
1792 return signr;
1793
1794 ptrace_signal_deliver(regs, cookie);
1795
1796 /* Let the debugger run. */
1797 ptrace_stop(signr, 0, info);
1798
1799 /* We're back. Did the debugger cancel the sig? */
1800 signr = current->exit_code;
1801 if (signr == 0)
1802 return signr;
1803
1804 current->exit_code = 0;
1805
1806 /* Update the siginfo structure if the signal has
1807 changed. If the debugger wanted something
1808 specific in the siginfo structure then it should
1809 have updated *info via PTRACE_SETSIGINFO. */
1810 if (signr != info->si_signo) {
1811 info->si_signo = signr;
1812 info->si_errno = 0;
1813 info->si_code = SI_USER;
1814 info->si_pid = task_pid_vnr(current->parent);
1815 info->si_uid = task_uid(current->parent);
1816 }
1817
1818 /* If the (new) signal is now blocked, requeue it. */
1819 if (sigismember(&current->blocked, signr)) {
1820 specific_send_sig_info(signr, info, current);
1821 signr = 0;
1822 }
1823
1824 return signr;
1825 }
1826
1827 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1828 struct pt_regs *regs, void *cookie)
1829 {
1830 struct sighand_struct *sighand = current->sighand;
1831 struct signal_struct *signal = current->signal;
1832 int signr;
1833
1834 relock:
1835 /*
1836 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1837 * While in TASK_STOPPED, we were considered "frozen enough".
1838 * Now that we woke up, it's crucial if we're supposed to be
1839 * frozen that we freeze now before running anything substantial.
1840 */
1841 try_to_freeze();
1842
1843 spin_lock_irq(&sighand->siglock);
1844 /*
1845 * Every stopped thread goes here after wakeup. Check to see if
1846 * we should notify the parent, prepare_signal(SIGCONT) encodes
1847 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1848 */
1849 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1850 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1851 ? CLD_CONTINUED : CLD_STOPPED;
1852 signal->flags &= ~SIGNAL_CLD_MASK;
1853
1854 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1855 spin_unlock_irq(&sighand->siglock);
1856
1857 if (why) {
1858 read_lock(&tasklist_lock);
1859 do_notify_parent_cldstop(current->group_leader, why);
1860 read_unlock(&tasklist_lock);
1861 }
1862 goto relock;
1863 }
1864
1865 for (;;) {
1866 struct k_sigaction *ka;
1867 /*
1868 * Tracing can induce an artifical signal and choose sigaction.
1869 * The return value in @signr determines the default action,
1870 * but @info->si_signo is the signal number we will report.
1871 */
1872 signr = tracehook_get_signal(current, regs, info, return_ka);
1873 if (unlikely(signr < 0))
1874 goto relock;
1875 if (unlikely(signr != 0))
1876 ka = return_ka;
1877 else {
1878 if (unlikely(signal->group_stop_count > 0) &&
1879 do_signal_stop(0))
1880 goto relock;
1881
1882 signr = dequeue_signal(current, &current->blocked,
1883 info);
1884
1885 if (!signr)
1886 break; /* will return 0 */
1887
1888 if (signr != SIGKILL) {
1889 signr = ptrace_signal(signr, info,
1890 regs, cookie);
1891 if (!signr)
1892 continue;
1893 }
1894
1895 ka = &sighand->action[signr-1];
1896 }
1897
1898 /* Trace actually delivered signals. */
1899 trace_signal_deliver(signr, info, ka);
1900
1901 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1902 continue;
1903 if (ka->sa.sa_handler != SIG_DFL) {
1904 /* Run the handler. */
1905 *return_ka = *ka;
1906
1907 if (ka->sa.sa_flags & SA_ONESHOT)
1908 ka->sa.sa_handler = SIG_DFL;
1909
1910 break; /* will return non-zero "signr" value */
1911 }
1912
1913 /*
1914 * Now we are doing the default action for this signal.
1915 */
1916 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1917 continue;
1918
1919 /*
1920 * Global init gets no signals it doesn't want.
1921 * Container-init gets no signals it doesn't want from same
1922 * container.
1923 *
1924 * Note that if global/container-init sees a sig_kernel_only()
1925 * signal here, the signal must have been generated internally
1926 * or must have come from an ancestor namespace. In either
1927 * case, the signal cannot be dropped.
1928 */
1929 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1930 !sig_kernel_only(signr))
1931 continue;
1932
1933 if (sig_kernel_stop(signr)) {
1934 /*
1935 * The default action is to stop all threads in
1936 * the thread group. The job control signals
1937 * do nothing in an orphaned pgrp, but SIGSTOP
1938 * always works. Note that siglock needs to be
1939 * dropped during the call to is_orphaned_pgrp()
1940 * because of lock ordering with tasklist_lock.
1941 * This allows an intervening SIGCONT to be posted.
1942 * We need to check for that and bail out if necessary.
1943 */
1944 if (signr != SIGSTOP) {
1945 spin_unlock_irq(&sighand->siglock);
1946
1947 /* signals can be posted during this window */
1948
1949 if (is_current_pgrp_orphaned())
1950 goto relock;
1951
1952 spin_lock_irq(&sighand->siglock);
1953 }
1954
1955 if (likely(do_signal_stop(info->si_signo))) {
1956 /* It released the siglock. */
1957 goto relock;
1958 }
1959
1960 /*
1961 * We didn't actually stop, due to a race
1962 * with SIGCONT or something like that.
1963 */
1964 continue;
1965 }
1966
1967 spin_unlock_irq(&sighand->siglock);
1968
1969 /*
1970 * Anything else is fatal, maybe with a core dump.
1971 */
1972 current->flags |= PF_SIGNALED;
1973
1974 if (sig_kernel_coredump(signr)) {
1975 if (print_fatal_signals)
1976 print_fatal_signal(regs, info->si_signo);
1977 /*
1978 * If it was able to dump core, this kills all
1979 * other threads in the group and synchronizes with
1980 * their demise. If we lost the race with another
1981 * thread getting here, it set group_exit_code
1982 * first and our do_group_exit call below will use
1983 * that value and ignore the one we pass it.
1984 */
1985 do_coredump(info->si_signo, info->si_signo, regs);
1986 }
1987
1988 /*
1989 * Death signals, no core dump.
1990 */
1991 do_group_exit(info->si_signo);
1992 /* NOTREACHED */
1993 }
1994 spin_unlock_irq(&sighand->siglock);
1995 return signr;
1996 }
1997
1998 void exit_signals(struct task_struct *tsk)
1999 {
2000 int group_stop = 0;
2001 struct task_struct *t;
2002
2003 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2004 tsk->flags |= PF_EXITING;
2005 return;
2006 }
2007
2008 spin_lock_irq(&tsk->sighand->siglock);
2009 /*
2010 * From now this task is not visible for group-wide signals,
2011 * see wants_signal(), do_signal_stop().
2012 */
2013 tsk->flags |= PF_EXITING;
2014 if (!signal_pending(tsk))
2015 goto out;
2016
2017 /* It could be that __group_complete_signal() choose us to
2018 * notify about group-wide signal. Another thread should be
2019 * woken now to take the signal since we will not.
2020 */
2021 for (t = tsk; (t = next_thread(t)) != tsk; )
2022 if (!signal_pending(t) && !(t->flags & PF_EXITING))
2023 recalc_sigpending_and_wake(t);
2024
2025 if (unlikely(tsk->signal->group_stop_count) &&
2026 !--tsk->signal->group_stop_count) {
2027 tsk->signal->flags = SIGNAL_STOP_STOPPED;
2028 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2029 }
2030 out:
2031 spin_unlock_irq(&tsk->sighand->siglock);
2032
2033 if (unlikely(group_stop)) {
2034 read_lock(&tasklist_lock);
2035 do_notify_parent_cldstop(tsk, group_stop);
2036 read_unlock(&tasklist_lock);
2037 }
2038 }
2039
2040 EXPORT_SYMBOL(recalc_sigpending);
2041 EXPORT_SYMBOL_GPL(dequeue_signal);
2042 EXPORT_SYMBOL(flush_signals);
2043 EXPORT_SYMBOL(force_sig);
2044 EXPORT_SYMBOL(send_sig);
2045 EXPORT_SYMBOL(send_sig_info);
2046 EXPORT_SYMBOL(sigprocmask);
2047 EXPORT_SYMBOL(block_all_signals);
2048 EXPORT_SYMBOL(unblock_all_signals);
2049
2050
2051 /*
2052 * System call entry points.
2053 */
2054
2055 SYSCALL_DEFINE0(restart_syscall)
2056 {
2057 struct restart_block *restart = &current_thread_info()->restart_block;
2058 return restart->fn(restart);
2059 }
2060
2061 long do_no_restart_syscall(struct restart_block *param)
2062 {
2063 return -EINTR;
2064 }
2065
2066 /*
2067 * We don't need to get the kernel lock - this is all local to this
2068 * particular thread.. (and that's good, because this is _heavily_
2069 * used by various programs)
2070 */
2071
2072 /*
2073 * This is also useful for kernel threads that want to temporarily
2074 * (or permanently) block certain signals.
2075 *
2076 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2077 * interface happily blocks "unblockable" signals like SIGKILL
2078 * and friends.
2079 */
2080 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2081 {
2082 int error;
2083
2084 spin_lock_irq(&current->sighand->siglock);
2085 if (oldset)
2086 *oldset = current->blocked;
2087
2088 error = 0;
2089 switch (how) {
2090 case SIG_BLOCK:
2091 sigorsets(&current->blocked, &current->blocked, set);
2092 break;
2093 case SIG_UNBLOCK:
2094 signandsets(&current->blocked, &current->blocked, set);
2095 break;
2096 case SIG_SETMASK:
2097 current->blocked = *set;
2098 break;
2099 default:
2100 error = -EINVAL;
2101 }
2102 recalc_sigpending();
2103 spin_unlock_irq(&current->sighand->siglock);
2104
2105 return error;
2106 }
2107
2108 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2109 sigset_t __user *, oset, size_t, sigsetsize)
2110 {
2111 int error = -EINVAL;
2112 sigset_t old_set, new_set;
2113
2114 /* XXX: Don't preclude handling different sized sigset_t's. */
2115 if (sigsetsize != sizeof(sigset_t))
2116 goto out;
2117
2118 if (set) {
2119 error = -EFAULT;
2120 if (copy_from_user(&new_set, set, sizeof(*set)))
2121 goto out;
2122 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2123
2124 error = sigprocmask(how, &new_set, &old_set);
2125 if (error)
2126 goto out;
2127 if (oset)
2128 goto set_old;
2129 } else if (oset) {
2130 spin_lock_irq(&current->sighand->siglock);
2131 old_set = current->blocked;
2132 spin_unlock_irq(&current->sighand->siglock);
2133
2134 set_old:
2135 error = -EFAULT;
2136 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2137 goto out;
2138 }
2139 error = 0;
2140 out:
2141 return error;
2142 }
2143
2144 long do_sigpending(void __user *set, unsigned long sigsetsize)
2145 {
2146 long error = -EINVAL;
2147 sigset_t pending;
2148
2149 if (sigsetsize > sizeof(sigset_t))
2150 goto out;
2151
2152 spin_lock_irq(&current->sighand->siglock);
2153 sigorsets(&pending, &current->pending.signal,
2154 &current->signal->shared_pending.signal);
2155 spin_unlock_irq(&current->sighand->siglock);
2156
2157 /* Outside the lock because only this thread touches it. */
2158 sigandsets(&pending, &current->blocked, &pending);
2159
2160 error = -EFAULT;
2161 if (!copy_to_user(set, &pending, sigsetsize))
2162 error = 0;
2163
2164 out:
2165 return error;
2166 }
2167
2168 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2169 {
2170 return do_sigpending(set, sigsetsize);
2171 }
2172
2173 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2174
2175 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2176 {
2177 int err;
2178
2179 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2180 return -EFAULT;
2181 if (from->si_code < 0)
2182 return __copy_to_user(to, from, sizeof(siginfo_t))
2183 ? -EFAULT : 0;
2184 /*
2185 * If you change siginfo_t structure, please be sure
2186 * this code is fixed accordingly.
2187 * Please remember to update the signalfd_copyinfo() function
2188 * inside fs/signalfd.c too, in case siginfo_t changes.
2189 * It should never copy any pad contained in the structure
2190 * to avoid security leaks, but must copy the generic
2191 * 3 ints plus the relevant union member.
2192 */
2193 err = __put_user(from->si_signo, &to->si_signo);
2194 err |= __put_user(from->si_errno, &to->si_errno);
2195 err |= __put_user((short)from->si_code, &to->si_code);
2196 switch (from->si_code & __SI_MASK) {
2197 case __SI_KILL:
2198 err |= __put_user(from->si_pid, &to->si_pid);
2199 err |= __put_user(from->si_uid, &to->si_uid);
2200 break;
2201 case __SI_TIMER:
2202 err |= __put_user(from->si_tid, &to->si_tid);
2203 err |= __put_user(from->si_overrun, &to->si_overrun);
2204 err |= __put_user(from->si_ptr, &to->si_ptr);
2205 break;
2206 case __SI_POLL:
2207 err |= __put_user(from->si_band, &to->si_band);
2208 err |= __put_user(from->si_fd, &to->si_fd);
2209 break;
2210 case __SI_FAULT:
2211 err |= __put_user(from->si_addr, &to->si_addr);
2212 #ifdef __ARCH_SI_TRAPNO
2213 err |= __put_user(from->si_trapno, &to->si_trapno);
2214 #endif
2215 break;
2216 case __SI_CHLD:
2217 err |= __put_user(from->si_pid, &to->si_pid);
2218 err |= __put_user(from->si_uid, &to->si_uid);
2219 err |= __put_user(from->si_status, &to->si_status);
2220 err |= __put_user(from->si_utime, &to->si_utime);
2221 err |= __put_user(from->si_stime, &to->si_stime);
2222 break;
2223 case __SI_RT: /* This is not generated by the kernel as of now. */
2224 case __SI_MESGQ: /* But this is */
2225 err |= __put_user(from->si_pid, &to->si_pid);
2226 err |= __put_user(from->si_uid, &to->si_uid);
2227 err |= __put_user(from->si_ptr, &to->si_ptr);
2228 break;
2229 default: /* this is just in case for now ... */
2230 err |= __put_user(from->si_pid, &to->si_pid);
2231 err |= __put_user(from->si_uid, &to->si_uid);
2232 break;
2233 }
2234 return err;
2235 }
2236
2237 #endif
2238
2239 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2240 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2241 size_t, sigsetsize)
2242 {
2243 int ret, sig;
2244 sigset_t these;
2245 struct timespec ts;
2246 siginfo_t info;
2247 long timeout = 0;
2248
2249 /* XXX: Don't preclude handling different sized sigset_t's. */
2250 if (sigsetsize != sizeof(sigset_t))
2251 return -EINVAL;
2252
2253 if (copy_from_user(&these, uthese, sizeof(these)))
2254 return -EFAULT;
2255
2256 /*
2257 * Invert the set of allowed signals to get those we
2258 * want to block.
2259 */
2260 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2261 signotset(&these);
2262
2263 if (uts) {
2264 if (copy_from_user(&ts, uts, sizeof(ts)))
2265 return -EFAULT;
2266 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2267 || ts.tv_sec < 0)
2268 return -EINVAL;
2269 }
2270
2271 spin_lock_irq(&current->sighand->siglock);
2272 sig = dequeue_signal(current, &these, &info);
2273 if (!sig) {
2274 timeout = MAX_SCHEDULE_TIMEOUT;
2275 if (uts)
2276 timeout = (timespec_to_jiffies(&ts)
2277 + (ts.tv_sec || ts.tv_nsec));
2278
2279 if (timeout) {
2280 /* None ready -- temporarily unblock those we're
2281 * interested while we are sleeping in so that we'll
2282 * be awakened when they arrive. */
2283 current->real_blocked = current->blocked;
2284 sigandsets(&current->blocked, &current->blocked, &these);
2285 recalc_sigpending();
2286 spin_unlock_irq(&current->sighand->siglock);
2287
2288 timeout = schedule_timeout_interruptible(timeout);
2289
2290 spin_lock_irq(&current->sighand->siglock);
2291 sig = dequeue_signal(current, &these, &info);
2292 current->blocked = current->real_blocked;
2293 siginitset(&current->real_blocked, 0);
2294 recalc_sigpending();
2295 }
2296 }
2297 spin_unlock_irq(&current->sighand->siglock);
2298
2299 if (sig) {
2300 ret = sig;
2301 if (uinfo) {
2302 if (copy_siginfo_to_user(uinfo, &info))
2303 ret = -EFAULT;
2304 }
2305 } else {
2306 ret = -EAGAIN;
2307 if (timeout)
2308 ret = -EINTR;
2309 }
2310
2311 return ret;
2312 }
2313
2314 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2315 {
2316 struct siginfo info;
2317
2318 info.si_signo = sig;
2319 info.si_errno = 0;
2320 info.si_code = SI_USER;
2321 info.si_pid = task_tgid_vnr(current);
2322 info.si_uid = current_uid();
2323
2324 return kill_something_info(sig, &info, pid);
2325 }
2326
2327 static int
2328 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2329 {
2330 struct task_struct *p;
2331 int error = -ESRCH;
2332
2333 rcu_read_lock();
2334 p = find_task_by_vpid(pid);
2335 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2336 error = check_kill_permission(sig, info, p);
2337 /*
2338 * The null signal is a permissions and process existence
2339 * probe. No signal is actually delivered.
2340 */
2341 if (!error && sig) {
2342 error = do_send_sig_info(sig, info, p, false);
2343 /*
2344 * If lock_task_sighand() failed we pretend the task
2345 * dies after receiving the signal. The window is tiny,
2346 * and the signal is private anyway.
2347 */
2348 if (unlikely(error == -ESRCH))
2349 error = 0;
2350 }
2351 }
2352 rcu_read_unlock();
2353
2354 return error;
2355 }
2356
2357 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2358 {
2359 struct siginfo info;
2360
2361 info.si_signo = sig;
2362 info.si_errno = 0;
2363 info.si_code = SI_TKILL;
2364 info.si_pid = task_tgid_vnr(current);
2365 info.si_uid = current_uid();
2366
2367 return do_send_specific(tgid, pid, sig, &info);
2368 }
2369
2370 /**
2371 * sys_tgkill - send signal to one specific thread
2372 * @tgid: the thread group ID of the thread
2373 * @pid: the PID of the thread
2374 * @sig: signal to be sent
2375 *
2376 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2377 * exists but it's not belonging to the target process anymore. This
2378 * method solves the problem of threads exiting and PIDs getting reused.
2379 */
2380 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2381 {
2382 /* This is only valid for single tasks */
2383 if (pid <= 0 || tgid <= 0)
2384 return -EINVAL;
2385
2386 return do_tkill(tgid, pid, sig);
2387 }
2388
2389 /*
2390 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2391 */
2392 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2393 {
2394 /* This is only valid for single tasks */
2395 if (pid <= 0)
2396 return -EINVAL;
2397
2398 return do_tkill(0, pid, sig);
2399 }
2400
2401 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2402 siginfo_t __user *, uinfo)
2403 {
2404 siginfo_t info;
2405
2406 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2407 return -EFAULT;
2408
2409 /* Not even root can pretend to send signals from the kernel.
2410 Nor can they impersonate a kill(), which adds source info. */
2411 if (info.si_code >= 0)
2412 return -EPERM;
2413 info.si_signo = sig;
2414
2415 /* POSIX.1b doesn't mention process groups. */
2416 return kill_proc_info(sig, &info, pid);
2417 }
2418
2419 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2420 {
2421 /* This is only valid for single tasks */
2422 if (pid <= 0 || tgid <= 0)
2423 return -EINVAL;
2424
2425 /* Not even root can pretend to send signals from the kernel.
2426 Nor can they impersonate a kill(), which adds source info. */
2427 if (info->si_code >= 0)
2428 return -EPERM;
2429 info->si_signo = sig;
2430
2431 return do_send_specific(tgid, pid, sig, info);
2432 }
2433
2434 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2435 siginfo_t __user *, uinfo)
2436 {
2437 siginfo_t info;
2438
2439 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2440 return -EFAULT;
2441
2442 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2443 }
2444
2445 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2446 {
2447 struct task_struct *t = current;
2448 struct k_sigaction *k;
2449 sigset_t mask;
2450
2451 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2452 return -EINVAL;
2453
2454 k = &t->sighand->action[sig-1];
2455
2456 spin_lock_irq(&current->sighand->siglock);
2457 if (oact)
2458 *oact = *k;
2459
2460 if (act) {
2461 sigdelsetmask(&act->sa.sa_mask,
2462 sigmask(SIGKILL) | sigmask(SIGSTOP));
2463 *k = *act;
2464 /*
2465 * POSIX 3.3.1.3:
2466 * "Setting a signal action to SIG_IGN for a signal that is
2467 * pending shall cause the pending signal to be discarded,
2468 * whether or not it is blocked."
2469 *
2470 * "Setting a signal action to SIG_DFL for a signal that is
2471 * pending and whose default action is to ignore the signal
2472 * (for example, SIGCHLD), shall cause the pending signal to
2473 * be discarded, whether or not it is blocked"
2474 */
2475 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2476 sigemptyset(&mask);
2477 sigaddset(&mask, sig);
2478 rm_from_queue_full(&mask, &t->signal->shared_pending);
2479 do {
2480 rm_from_queue_full(&mask, &t->pending);
2481 t = next_thread(t);
2482 } while (t != current);
2483 }
2484 }
2485
2486 spin_unlock_irq(&current->sighand->siglock);
2487 return 0;
2488 }
2489
2490 int
2491 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2492 {
2493 stack_t oss;
2494 int error;
2495
2496 oss.ss_sp = (void __user *) current->sas_ss_sp;
2497 oss.ss_size = current->sas_ss_size;
2498 oss.ss_flags = sas_ss_flags(sp);
2499
2500 if (uss) {
2501 void __user *ss_sp;
2502 size_t ss_size;
2503 int ss_flags;
2504
2505 error = -EFAULT;
2506 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2507 goto out;
2508 error = __get_user(ss_sp, &uss->ss_sp) |
2509 __get_user(ss_flags, &uss->ss_flags) |
2510 __get_user(ss_size, &uss->ss_size);
2511 if (error)
2512 goto out;
2513
2514 error = -EPERM;
2515 if (on_sig_stack(sp))
2516 goto out;
2517
2518 error = -EINVAL;
2519 /*
2520 *
2521 * Note - this code used to test ss_flags incorrectly
2522 * old code may have been written using ss_flags==0
2523 * to mean ss_flags==SS_ONSTACK (as this was the only
2524 * way that worked) - this fix preserves that older
2525 * mechanism
2526 */
2527 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2528 goto out;
2529
2530 if (ss_flags == SS_DISABLE) {
2531 ss_size = 0;
2532 ss_sp = NULL;
2533 } else {
2534 error = -ENOMEM;
2535 if (ss_size < MINSIGSTKSZ)
2536 goto out;
2537 }
2538
2539 current->sas_ss_sp = (unsigned long) ss_sp;
2540 current->sas_ss_size = ss_size;
2541 }
2542
2543 error = 0;
2544 if (uoss) {
2545 error = -EFAULT;
2546 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2547 goto out;
2548 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2549 __put_user(oss.ss_size, &uoss->ss_size) |
2550 __put_user(oss.ss_flags, &uoss->ss_flags);
2551 }
2552
2553 out:
2554 return error;
2555 }
2556
2557 #ifdef __ARCH_WANT_SYS_SIGPENDING
2558
2559 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2560 {
2561 return do_sigpending(set, sizeof(*set));
2562 }
2563
2564 #endif
2565
2566 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2567 /* Some platforms have their own version with special arguments others
2568 support only sys_rt_sigprocmask. */
2569
2570 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2571 old_sigset_t __user *, oset)
2572 {
2573 int error;
2574 old_sigset_t old_set, new_set;
2575
2576 if (set) {
2577 error = -EFAULT;
2578 if (copy_from_user(&new_set, set, sizeof(*set)))
2579 goto out;
2580 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2581
2582 spin_lock_irq(&current->sighand->siglock);
2583 old_set = current->blocked.sig[0];
2584
2585 error = 0;
2586 switch (how) {
2587 default:
2588 error = -EINVAL;
2589 break;
2590 case SIG_BLOCK:
2591 sigaddsetmask(&current->blocked, new_set);
2592 break;
2593 case SIG_UNBLOCK:
2594 sigdelsetmask(&current->blocked, new_set);
2595 break;
2596 case SIG_SETMASK:
2597 current->blocked.sig[0] = new_set;
2598 break;
2599 }
2600
2601 recalc_sigpending();
2602 spin_unlock_irq(&current->sighand->siglock);
2603 if (error)
2604 goto out;
2605 if (oset)
2606 goto set_old;
2607 } else if (oset) {
2608 old_set = current->blocked.sig[0];
2609 set_old:
2610 error = -EFAULT;
2611 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2612 goto out;
2613 }
2614 error = 0;
2615 out:
2616 return error;
2617 }
2618 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2619
2620 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2621 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2622 const struct sigaction __user *, act,
2623 struct sigaction __user *, oact,
2624 size_t, sigsetsize)
2625 {
2626 struct k_sigaction new_sa, old_sa;
2627 int ret = -EINVAL;
2628
2629 /* XXX: Don't preclude handling different sized sigset_t's. */
2630 if (sigsetsize != sizeof(sigset_t))
2631 goto out;
2632
2633 if (act) {
2634 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2635 return -EFAULT;
2636 }
2637
2638 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2639
2640 if (!ret && oact) {
2641 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2642 return -EFAULT;
2643 }
2644 out:
2645 return ret;
2646 }
2647 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2648
2649 #ifdef __ARCH_WANT_SYS_SGETMASK
2650
2651 /*
2652 * For backwards compatibility. Functionality superseded by sigprocmask.
2653 */
2654 SYSCALL_DEFINE0(sgetmask)
2655 {
2656 /* SMP safe */
2657 return current->blocked.sig[0];
2658 }
2659
2660 SYSCALL_DEFINE1(ssetmask, int, newmask)
2661 {
2662 int old;
2663
2664 spin_lock_irq(&current->sighand->siglock);
2665 old = current->blocked.sig[0];
2666
2667 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2668 sigmask(SIGSTOP)));
2669 recalc_sigpending();
2670 spin_unlock_irq(&current->sighand->siglock);
2671
2672 return old;
2673 }
2674 #endif /* __ARCH_WANT_SGETMASK */
2675
2676 #ifdef __ARCH_WANT_SYS_SIGNAL
2677 /*
2678 * For backwards compatibility. Functionality superseded by sigaction.
2679 */
2680 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2681 {
2682 struct k_sigaction new_sa, old_sa;
2683 int ret;
2684
2685 new_sa.sa.sa_handler = handler;
2686 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2687 sigemptyset(&new_sa.sa.sa_mask);
2688
2689 ret = do_sigaction(sig, &new_sa, &old_sa);
2690
2691 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2692 }
2693 #endif /* __ARCH_WANT_SYS_SIGNAL */
2694
2695 #ifdef __ARCH_WANT_SYS_PAUSE
2696
2697 SYSCALL_DEFINE0(pause)
2698 {
2699 current->state = TASK_INTERRUPTIBLE;
2700 schedule();
2701 return -ERESTARTNOHAND;
2702 }
2703
2704 #endif
2705
2706 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2707 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2708 {
2709 sigset_t newset;
2710
2711 /* XXX: Don't preclude handling different sized sigset_t's. */
2712 if (sigsetsize != sizeof(sigset_t))
2713 return -EINVAL;
2714
2715 if (copy_from_user(&newset, unewset, sizeof(newset)))
2716 return -EFAULT;
2717 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2718
2719 spin_lock_irq(&current->sighand->siglock);
2720 current->saved_sigmask = current->blocked;
2721 current->blocked = newset;
2722 recalc_sigpending();
2723 spin_unlock_irq(&current->sighand->siglock);
2724
2725 current->state = TASK_INTERRUPTIBLE;
2726 schedule();
2727 set_restore_sigmask();
2728 return -ERESTARTNOHAND;
2729 }
2730 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2731
2732 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2733 {
2734 return NULL;
2735 }
2736
2737 void __init signals_init(void)
2738 {
2739 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2740 }
2741
2742 #ifdef CONFIG_KGDB_KDB
2743 #include <linux/kdb.h>
2744 /*
2745 * kdb_send_sig_info - Allows kdb to send signals without exposing
2746 * signal internals. This function checks if the required locks are
2747 * available before calling the main signal code, to avoid kdb
2748 * deadlocks.
2749 */
2750 void
2751 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
2752 {
2753 static struct task_struct *kdb_prev_t;
2754 int sig, new_t;
2755 if (!spin_trylock(&t->sighand->siglock)) {
2756 kdb_printf("Can't do kill command now.\n"
2757 "The sigmask lock is held somewhere else in "
2758 "kernel, try again later\n");
2759 return;
2760 }
2761 spin_unlock(&t->sighand->siglock);
2762 new_t = kdb_prev_t != t;
2763 kdb_prev_t = t;
2764 if (t->state != TASK_RUNNING && new_t) {
2765 kdb_printf("Process is not RUNNING, sending a signal from "
2766 "kdb risks deadlock\n"
2767 "on the run queue locks. "
2768 "The signal has _not_ been sent.\n"
2769 "Reissue the kill command if you want to risk "
2770 "the deadlock.\n");
2771 return;
2772 }
2773 sig = info->si_signo;
2774 if (send_sig_info(sig, info, t))
2775 kdb_printf("Fail to deliver Signal %d to process %d.\n",
2776 sig, t->pid);
2777 else
2778 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
2779 }
2780 #endif /* CONFIG_KGDB_KDB */