[PATCH] NOMMU: move the fallback arch_vma_name() to a sensible place
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <asm/param.h>
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/siginfo.h>
30 #include "audit.h" /* audit_signal_info() */
31
32 /*
33 * SLAB caches for signal bits.
34 */
35
36 static kmem_cache_t *sigqueue_cachep;
37
38 /*
39 * In POSIX a signal is sent either to a specific thread (Linux task)
40 * or to the process as a whole (Linux thread group). How the signal
41 * is sent determines whether it's to one thread or the whole group,
42 * which determines which signal mask(s) are involved in blocking it
43 * from being delivered until later. When the signal is delivered,
44 * either it's caught or ignored by a user handler or it has a default
45 * effect that applies to the whole thread group (POSIX process).
46 *
47 * The possible effects an unblocked signal set to SIG_DFL can have are:
48 * ignore - Nothing Happens
49 * terminate - kill the process, i.e. all threads in the group,
50 * similar to exit_group. The group leader (only) reports
51 * WIFSIGNALED status to its parent.
52 * coredump - write a core dump file describing all threads using
53 * the same mm and then kill all those threads
54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
55 *
56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
57 * Other signals when not blocked and set to SIG_DFL behaves as follows.
58 * The job control signals also have other special effects.
59 *
60 * +--------------------+------------------+
61 * | POSIX signal | default action |
62 * +--------------------+------------------+
63 * | SIGHUP | terminate |
64 * | SIGINT | terminate |
65 * | SIGQUIT | coredump |
66 * | SIGILL | coredump |
67 * | SIGTRAP | coredump |
68 * | SIGABRT/SIGIOT | coredump |
69 * | SIGBUS | coredump |
70 * | SIGFPE | coredump |
71 * | SIGKILL | terminate(+) |
72 * | SIGUSR1 | terminate |
73 * | SIGSEGV | coredump |
74 * | SIGUSR2 | terminate |
75 * | SIGPIPE | terminate |
76 * | SIGALRM | terminate |
77 * | SIGTERM | terminate |
78 * | SIGCHLD | ignore |
79 * | SIGCONT | ignore(*) |
80 * | SIGSTOP | stop(*)(+) |
81 * | SIGTSTP | stop(*) |
82 * | SIGTTIN | stop(*) |
83 * | SIGTTOU | stop(*) |
84 * | SIGURG | ignore |
85 * | SIGXCPU | coredump |
86 * | SIGXFSZ | coredump |
87 * | SIGVTALRM | terminate |
88 * | SIGPROF | terminate |
89 * | SIGPOLL/SIGIO | terminate |
90 * | SIGSYS/SIGUNUSED | coredump |
91 * | SIGSTKFLT | terminate |
92 * | SIGWINCH | ignore |
93 * | SIGPWR | terminate |
94 * | SIGRTMIN-SIGRTMAX | terminate |
95 * +--------------------+------------------+
96 * | non-POSIX signal | default action |
97 * +--------------------+------------------+
98 * | SIGEMT | coredump |
99 * +--------------------+------------------+
100 *
101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
102 * (*) Special job control effects:
103 * When SIGCONT is sent, it resumes the process (all threads in the group)
104 * from TASK_STOPPED state and also clears any pending/queued stop signals
105 * (any of those marked with "stop(*)"). This happens regardless of blocking,
106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
107 * any pending/queued SIGCONT signals; this happens regardless of blocking,
108 * catching, or ignored the stop signal, though (except for SIGSTOP) the
109 * default action of stopping the process may happen later or never.
110 */
111
112 #ifdef SIGEMT
113 #define M_SIGEMT M(SIGEMT)
114 #else
115 #define M_SIGEMT 0
116 #endif
117
118 #if SIGRTMIN > BITS_PER_LONG
119 #define M(sig) (1ULL << ((sig)-1))
120 #else
121 #define M(sig) (1UL << ((sig)-1))
122 #endif
123 #define T(sig, mask) (M(sig) & (mask))
124
125 #define SIG_KERNEL_ONLY_MASK (\
126 M(SIGKILL) | M(SIGSTOP) )
127
128 #define SIG_KERNEL_STOP_MASK (\
129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
130
131 #define SIG_KERNEL_COREDUMP_MASK (\
132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
135
136 #define SIG_KERNEL_IGNORE_MASK (\
137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
138
139 #define sig_kernel_only(sig) \
140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
141 #define sig_kernel_coredump(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
143 #define sig_kernel_ignore(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
145 #define sig_kernel_stop(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
147
148 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
149
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157
158 static int sig_ignored(struct task_struct *t, int sig)
159 {
160 void __user * handler;
161
162 /*
163 * Tracers always want to know about signals..
164 */
165 if (t->ptrace & PT_PTRACED)
166 return 0;
167
168 /*
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
171 * unblocked.
172 */
173 if (sigismember(&t->blocked, sig))
174 return 0;
175
176 /* Is it explicitly or implicitly ignored? */
177 handler = t->sighand->action[sig-1].sa.sa_handler;
178 return handler == SIG_IGN ||
179 (handler == SIG_DFL && sig_kernel_ignore(sig));
180 }
181
182 /*
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
185 */
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
187 {
188 unsigned long ready;
189 long i;
190
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 ready |= signal->sig[i] &~ blocked->sig[i];
195 break;
196
197 case 4: ready = signal->sig[3] &~ blocked->sig[3];
198 ready |= signal->sig[2] &~ blocked->sig[2];
199 ready |= signal->sig[1] &~ blocked->sig[1];
200 ready |= signal->sig[0] &~ blocked->sig[0];
201 break;
202
203 case 2: ready = signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
206
207 case 1: ready = signal->sig[0] &~ blocked->sig[0];
208 }
209 return ready != 0;
210 }
211
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 {
216 if (t->signal->group_stop_count > 0 ||
217 (freezing(t)) ||
218 PENDING(&t->pending, &t->blocked) ||
219 PENDING(&t->signal->shared_pending, &t->blocked))
220 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 else
222 clear_tsk_thread_flag(t, TIF_SIGPENDING);
223 }
224
225 void recalc_sigpending(void)
226 {
227 recalc_sigpending_tsk(current);
228 }
229
230 /* Given the mask, find the first available signal that should be serviced. */
231
232 static int
233 next_signal(struct sigpending *pending, sigset_t *mask)
234 {
235 unsigned long i, *s, *m, x;
236 int sig = 0;
237
238 s = pending->signal.sig;
239 m = mask->sig;
240 switch (_NSIG_WORDS) {
241 default:
242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 if ((x = *s &~ *m) != 0) {
244 sig = ffz(~x) + i*_NSIG_BPW + 1;
245 break;
246 }
247 break;
248
249 case 2: if ((x = s[0] &~ m[0]) != 0)
250 sig = 1;
251 else if ((x = s[1] &~ m[1]) != 0)
252 sig = _NSIG_BPW + 1;
253 else
254 break;
255 sig += ffz(~x);
256 break;
257
258 case 1: if ((x = *s &~ *m) != 0)
259 sig = ffz(~x) + 1;
260 break;
261 }
262
263 return sig;
264 }
265
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
267 int override_rlimit)
268 {
269 struct sigqueue *q = NULL;
270
271 atomic_inc(&t->user->sigpending);
272 if (override_rlimit ||
273 atomic_read(&t->user->sigpending) <=
274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
275 q = kmem_cache_alloc(sigqueue_cachep, flags);
276 if (unlikely(q == NULL)) {
277 atomic_dec(&t->user->sigpending);
278 } else {
279 INIT_LIST_HEAD(&q->list);
280 q->flags = 0;
281 q->user = get_uid(t->user);
282 }
283 return(q);
284 }
285
286 static void __sigqueue_free(struct sigqueue *q)
287 {
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
293 }
294
295 void flush_sigqueue(struct sigpending *queue)
296 {
297 struct sigqueue *q;
298
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
304 }
305 }
306
307 /*
308 * Flush all pending signals for a task.
309 */
310 void flush_signals(struct task_struct *t)
311 {
312 unsigned long flags;
313
314 spin_lock_irqsave(&t->sighand->siglock, flags);
315 clear_tsk_thread_flag(t,TIF_SIGPENDING);
316 flush_sigqueue(&t->pending);
317 flush_sigqueue(&t->signal->shared_pending);
318 spin_unlock_irqrestore(&t->sighand->siglock, flags);
319 }
320
321 /*
322 * Flush all handlers for a task.
323 */
324
325 void
326 flush_signal_handlers(struct task_struct *t, int force_default)
327 {
328 int i;
329 struct k_sigaction *ka = &t->sighand->action[0];
330 for (i = _NSIG ; i != 0 ; i--) {
331 if (force_default || ka->sa.sa_handler != SIG_IGN)
332 ka->sa.sa_handler = SIG_DFL;
333 ka->sa.sa_flags = 0;
334 sigemptyset(&ka->sa.sa_mask);
335 ka++;
336 }
337 }
338
339
340 /* Notify the system that a driver wants to block all signals for this
341 * process, and wants to be notified if any signals at all were to be
342 * sent/acted upon. If the notifier routine returns non-zero, then the
343 * signal will be acted upon after all. If the notifier routine returns 0,
344 * then then signal will be blocked. Only one block per process is
345 * allowed. priv is a pointer to private data that the notifier routine
346 * can use to determine if the signal should be blocked or not. */
347
348 void
349 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
350 {
351 unsigned long flags;
352
353 spin_lock_irqsave(&current->sighand->siglock, flags);
354 current->notifier_mask = mask;
355 current->notifier_data = priv;
356 current->notifier = notifier;
357 spin_unlock_irqrestore(&current->sighand->siglock, flags);
358 }
359
360 /* Notify the system that blocking has ended. */
361
362 void
363 unblock_all_signals(void)
364 {
365 unsigned long flags;
366
367 spin_lock_irqsave(&current->sighand->siglock, flags);
368 current->notifier = NULL;
369 current->notifier_data = NULL;
370 recalc_sigpending();
371 spin_unlock_irqrestore(&current->sighand->siglock, flags);
372 }
373
374 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
375 {
376 struct sigqueue *q, *first = NULL;
377 int still_pending = 0;
378
379 if (unlikely(!sigismember(&list->signal, sig)))
380 return 0;
381
382 /*
383 * Collect the siginfo appropriate to this signal. Check if
384 * there is another siginfo for the same signal.
385 */
386 list_for_each_entry(q, &list->list, list) {
387 if (q->info.si_signo == sig) {
388 if (first) {
389 still_pending = 1;
390 break;
391 }
392 first = q;
393 }
394 }
395 if (first) {
396 list_del_init(&first->list);
397 copy_siginfo(info, &first->info);
398 __sigqueue_free(first);
399 if (!still_pending)
400 sigdelset(&list->signal, sig);
401 } else {
402
403 /* Ok, it wasn't in the queue. This must be
404 a fast-pathed signal or we must have been
405 out of queue space. So zero out the info.
406 */
407 sigdelset(&list->signal, sig);
408 info->si_signo = sig;
409 info->si_errno = 0;
410 info->si_code = 0;
411 info->si_pid = 0;
412 info->si_uid = 0;
413 }
414 return 1;
415 }
416
417 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
418 siginfo_t *info)
419 {
420 int sig = 0;
421
422 sig = next_signal(pending, mask);
423 if (sig) {
424 if (current->notifier) {
425 if (sigismember(current->notifier_mask, sig)) {
426 if (!(current->notifier)(current->notifier_data)) {
427 clear_thread_flag(TIF_SIGPENDING);
428 return 0;
429 }
430 }
431 }
432
433 if (!collect_signal(sig, pending, info))
434 sig = 0;
435
436 }
437 recalc_sigpending();
438
439 return sig;
440 }
441
442 /*
443 * Dequeue a signal and return the element to the caller, which is
444 * expected to free it.
445 *
446 * All callers have to hold the siglock.
447 */
448 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
449 {
450 int signr = __dequeue_signal(&tsk->pending, mask, info);
451 if (!signr)
452 signr = __dequeue_signal(&tsk->signal->shared_pending,
453 mask, info);
454 if (signr && unlikely(sig_kernel_stop(signr))) {
455 /*
456 * Set a marker that we have dequeued a stop signal. Our
457 * caller might release the siglock and then the pending
458 * stop signal it is about to process is no longer in the
459 * pending bitmasks, but must still be cleared by a SIGCONT
460 * (and overruled by a SIGKILL). So those cases clear this
461 * shared flag after we've set it. Note that this flag may
462 * remain set after the signal we return is ignored or
463 * handled. That doesn't matter because its only purpose
464 * is to alert stop-signal processing code when another
465 * processor has come along and cleared the flag.
466 */
467 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
468 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
469 }
470 if ( signr &&
471 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
472 info->si_sys_private){
473 /*
474 * Release the siglock to ensure proper locking order
475 * of timer locks outside of siglocks. Note, we leave
476 * irqs disabled here, since the posix-timers code is
477 * about to disable them again anyway.
478 */
479 spin_unlock(&tsk->sighand->siglock);
480 do_schedule_next_timer(info);
481 spin_lock(&tsk->sighand->siglock);
482 }
483 return signr;
484 }
485
486 /*
487 * Tell a process that it has a new active signal..
488 *
489 * NOTE! we rely on the previous spin_lock to
490 * lock interrupts for us! We can only be called with
491 * "siglock" held, and the local interrupt must
492 * have been disabled when that got acquired!
493 *
494 * No need to set need_resched since signal event passing
495 * goes through ->blocked
496 */
497 void signal_wake_up(struct task_struct *t, int resume)
498 {
499 unsigned int mask;
500
501 set_tsk_thread_flag(t, TIF_SIGPENDING);
502
503 /*
504 * For SIGKILL, we want to wake it up in the stopped/traced case.
505 * We don't check t->state here because there is a race with it
506 * executing another processor and just now entering stopped state.
507 * By using wake_up_state, we ensure the process will wake up and
508 * handle its death signal.
509 */
510 mask = TASK_INTERRUPTIBLE;
511 if (resume)
512 mask |= TASK_STOPPED | TASK_TRACED;
513 if (!wake_up_state(t, mask))
514 kick_process(t);
515 }
516
517 /*
518 * Remove signals in mask from the pending set and queue.
519 * Returns 1 if any signals were found.
520 *
521 * All callers must be holding the siglock.
522 *
523 * This version takes a sigset mask and looks at all signals,
524 * not just those in the first mask word.
525 */
526 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
527 {
528 struct sigqueue *q, *n;
529 sigset_t m;
530
531 sigandsets(&m, mask, &s->signal);
532 if (sigisemptyset(&m))
533 return 0;
534
535 signandsets(&s->signal, &s->signal, mask);
536 list_for_each_entry_safe(q, n, &s->list, list) {
537 if (sigismember(mask, q->info.si_signo)) {
538 list_del_init(&q->list);
539 __sigqueue_free(q);
540 }
541 }
542 return 1;
543 }
544 /*
545 * Remove signals in mask from the pending set and queue.
546 * Returns 1 if any signals were found.
547 *
548 * All callers must be holding the siglock.
549 */
550 static int rm_from_queue(unsigned long mask, struct sigpending *s)
551 {
552 struct sigqueue *q, *n;
553
554 if (!sigtestsetmask(&s->signal, mask))
555 return 0;
556
557 sigdelsetmask(&s->signal, mask);
558 list_for_each_entry_safe(q, n, &s->list, list) {
559 if (q->info.si_signo < SIGRTMIN &&
560 (mask & sigmask(q->info.si_signo))) {
561 list_del_init(&q->list);
562 __sigqueue_free(q);
563 }
564 }
565 return 1;
566 }
567
568 /*
569 * Bad permissions for sending the signal
570 */
571 static int check_kill_permission(int sig, struct siginfo *info,
572 struct task_struct *t)
573 {
574 int error = -EINVAL;
575 if (!valid_signal(sig))
576 return error;
577 error = -EPERM;
578 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
579 && ((sig != SIGCONT) ||
580 (current->signal->session != t->signal->session))
581 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
582 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
583 && !capable(CAP_KILL))
584 return error;
585
586 error = security_task_kill(t, info, sig, 0);
587 if (!error)
588 audit_signal_info(sig, t); /* Let audit system see the signal */
589 return error;
590 }
591
592 /* forward decl */
593 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
594
595 /*
596 * Handle magic process-wide effects of stop/continue signals.
597 * Unlike the signal actions, these happen immediately at signal-generation
598 * time regardless of blocking, ignoring, or handling. This does the
599 * actual continuing for SIGCONT, but not the actual stopping for stop
600 * signals. The process stop is done as a signal action for SIG_DFL.
601 */
602 static void handle_stop_signal(int sig, struct task_struct *p)
603 {
604 struct task_struct *t;
605
606 if (p->signal->flags & SIGNAL_GROUP_EXIT)
607 /*
608 * The process is in the middle of dying already.
609 */
610 return;
611
612 if (sig_kernel_stop(sig)) {
613 /*
614 * This is a stop signal. Remove SIGCONT from all queues.
615 */
616 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
617 t = p;
618 do {
619 rm_from_queue(sigmask(SIGCONT), &t->pending);
620 t = next_thread(t);
621 } while (t != p);
622 } else if (sig == SIGCONT) {
623 /*
624 * Remove all stop signals from all queues,
625 * and wake all threads.
626 */
627 if (unlikely(p->signal->group_stop_count > 0)) {
628 /*
629 * There was a group stop in progress. We'll
630 * pretend it finished before we got here. We are
631 * obliged to report it to the parent: if the
632 * SIGSTOP happened "after" this SIGCONT, then it
633 * would have cleared this pending SIGCONT. If it
634 * happened "before" this SIGCONT, then the parent
635 * got the SIGCHLD about the stop finishing before
636 * the continue happened. We do the notification
637 * now, and it's as if the stop had finished and
638 * the SIGCHLD was pending on entry to this kill.
639 */
640 p->signal->group_stop_count = 0;
641 p->signal->flags = SIGNAL_STOP_CONTINUED;
642 spin_unlock(&p->sighand->siglock);
643 do_notify_parent_cldstop(p, CLD_STOPPED);
644 spin_lock(&p->sighand->siglock);
645 }
646 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
647 t = p;
648 do {
649 unsigned int state;
650 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
651
652 /*
653 * If there is a handler for SIGCONT, we must make
654 * sure that no thread returns to user mode before
655 * we post the signal, in case it was the only
656 * thread eligible to run the signal handler--then
657 * it must not do anything between resuming and
658 * running the handler. With the TIF_SIGPENDING
659 * flag set, the thread will pause and acquire the
660 * siglock that we hold now and until we've queued
661 * the pending signal.
662 *
663 * Wake up the stopped thread _after_ setting
664 * TIF_SIGPENDING
665 */
666 state = TASK_STOPPED;
667 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
668 set_tsk_thread_flag(t, TIF_SIGPENDING);
669 state |= TASK_INTERRUPTIBLE;
670 }
671 wake_up_state(t, state);
672
673 t = next_thread(t);
674 } while (t != p);
675
676 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
677 /*
678 * We were in fact stopped, and are now continued.
679 * Notify the parent with CLD_CONTINUED.
680 */
681 p->signal->flags = SIGNAL_STOP_CONTINUED;
682 p->signal->group_exit_code = 0;
683 spin_unlock(&p->sighand->siglock);
684 do_notify_parent_cldstop(p, CLD_CONTINUED);
685 spin_lock(&p->sighand->siglock);
686 } else {
687 /*
688 * We are not stopped, but there could be a stop
689 * signal in the middle of being processed after
690 * being removed from the queue. Clear that too.
691 */
692 p->signal->flags = 0;
693 }
694 } else if (sig == SIGKILL) {
695 /*
696 * Make sure that any pending stop signal already dequeued
697 * is undone by the wakeup for SIGKILL.
698 */
699 p->signal->flags = 0;
700 }
701 }
702
703 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
704 struct sigpending *signals)
705 {
706 struct sigqueue * q = NULL;
707 int ret = 0;
708
709 /*
710 * fast-pathed signals for kernel-internal things like SIGSTOP
711 * or SIGKILL.
712 */
713 if (info == SEND_SIG_FORCED)
714 goto out_set;
715
716 /* Real-time signals must be queued if sent by sigqueue, or
717 some other real-time mechanism. It is implementation
718 defined whether kill() does so. We attempt to do so, on
719 the principle of least surprise, but since kill is not
720 allowed to fail with EAGAIN when low on memory we just
721 make sure at least one signal gets delivered and don't
722 pass on the info struct. */
723
724 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
725 (is_si_special(info) ||
726 info->si_code >= 0)));
727 if (q) {
728 list_add_tail(&q->list, &signals->list);
729 switch ((unsigned long) info) {
730 case (unsigned long) SEND_SIG_NOINFO:
731 q->info.si_signo = sig;
732 q->info.si_errno = 0;
733 q->info.si_code = SI_USER;
734 q->info.si_pid = current->pid;
735 q->info.si_uid = current->uid;
736 break;
737 case (unsigned long) SEND_SIG_PRIV:
738 q->info.si_signo = sig;
739 q->info.si_errno = 0;
740 q->info.si_code = SI_KERNEL;
741 q->info.si_pid = 0;
742 q->info.si_uid = 0;
743 break;
744 default:
745 copy_siginfo(&q->info, info);
746 break;
747 }
748 } else if (!is_si_special(info)) {
749 if (sig >= SIGRTMIN && info->si_code != SI_USER)
750 /*
751 * Queue overflow, abort. We may abort if the signal was rt
752 * and sent by user using something other than kill().
753 */
754 return -EAGAIN;
755 }
756
757 out_set:
758 sigaddset(&signals->signal, sig);
759 return ret;
760 }
761
762 #define LEGACY_QUEUE(sigptr, sig) \
763 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
764
765
766 static int
767 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
768 {
769 int ret = 0;
770
771 BUG_ON(!irqs_disabled());
772 assert_spin_locked(&t->sighand->siglock);
773
774 /* Short-circuit ignored signals. */
775 if (sig_ignored(t, sig))
776 goto out;
777
778 /* Support queueing exactly one non-rt signal, so that we
779 can get more detailed information about the cause of
780 the signal. */
781 if (LEGACY_QUEUE(&t->pending, sig))
782 goto out;
783
784 ret = send_signal(sig, info, t, &t->pending);
785 if (!ret && !sigismember(&t->blocked, sig))
786 signal_wake_up(t, sig == SIGKILL);
787 out:
788 return ret;
789 }
790
791 /*
792 * Force a signal that the process can't ignore: if necessary
793 * we unblock the signal and change any SIG_IGN to SIG_DFL.
794 *
795 * Note: If we unblock the signal, we always reset it to SIG_DFL,
796 * since we do not want to have a signal handler that was blocked
797 * be invoked when user space had explicitly blocked it.
798 *
799 * We don't want to have recursive SIGSEGV's etc, for example.
800 */
801 int
802 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
803 {
804 unsigned long int flags;
805 int ret, blocked, ignored;
806 struct k_sigaction *action;
807
808 spin_lock_irqsave(&t->sighand->siglock, flags);
809 action = &t->sighand->action[sig-1];
810 ignored = action->sa.sa_handler == SIG_IGN;
811 blocked = sigismember(&t->blocked, sig);
812 if (blocked || ignored) {
813 action->sa.sa_handler = SIG_DFL;
814 if (blocked) {
815 sigdelset(&t->blocked, sig);
816 recalc_sigpending_tsk(t);
817 }
818 }
819 ret = specific_send_sig_info(sig, info, t);
820 spin_unlock_irqrestore(&t->sighand->siglock, flags);
821
822 return ret;
823 }
824
825 void
826 force_sig_specific(int sig, struct task_struct *t)
827 {
828 force_sig_info(sig, SEND_SIG_FORCED, t);
829 }
830
831 /*
832 * Test if P wants to take SIG. After we've checked all threads with this,
833 * it's equivalent to finding no threads not blocking SIG. Any threads not
834 * blocking SIG were ruled out because they are not running and already
835 * have pending signals. Such threads will dequeue from the shared queue
836 * as soon as they're available, so putting the signal on the shared queue
837 * will be equivalent to sending it to one such thread.
838 */
839 static inline int wants_signal(int sig, struct task_struct *p)
840 {
841 if (sigismember(&p->blocked, sig))
842 return 0;
843 if (p->flags & PF_EXITING)
844 return 0;
845 if (sig == SIGKILL)
846 return 1;
847 if (p->state & (TASK_STOPPED | TASK_TRACED))
848 return 0;
849 return task_curr(p) || !signal_pending(p);
850 }
851
852 static void
853 __group_complete_signal(int sig, struct task_struct *p)
854 {
855 struct task_struct *t;
856
857 /*
858 * Now find a thread we can wake up to take the signal off the queue.
859 *
860 * If the main thread wants the signal, it gets first crack.
861 * Probably the least surprising to the average bear.
862 */
863 if (wants_signal(sig, p))
864 t = p;
865 else if (thread_group_empty(p))
866 /*
867 * There is just one thread and it does not need to be woken.
868 * It will dequeue unblocked signals before it runs again.
869 */
870 return;
871 else {
872 /*
873 * Otherwise try to find a suitable thread.
874 */
875 t = p->signal->curr_target;
876 if (t == NULL)
877 /* restart balancing at this thread */
878 t = p->signal->curr_target = p;
879
880 while (!wants_signal(sig, t)) {
881 t = next_thread(t);
882 if (t == p->signal->curr_target)
883 /*
884 * No thread needs to be woken.
885 * Any eligible threads will see
886 * the signal in the queue soon.
887 */
888 return;
889 }
890 p->signal->curr_target = t;
891 }
892
893 /*
894 * Found a killable thread. If the signal will be fatal,
895 * then start taking the whole group down immediately.
896 */
897 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
898 !sigismember(&t->real_blocked, sig) &&
899 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
900 /*
901 * This signal will be fatal to the whole group.
902 */
903 if (!sig_kernel_coredump(sig)) {
904 /*
905 * Start a group exit and wake everybody up.
906 * This way we don't have other threads
907 * running and doing things after a slower
908 * thread has the fatal signal pending.
909 */
910 p->signal->flags = SIGNAL_GROUP_EXIT;
911 p->signal->group_exit_code = sig;
912 p->signal->group_stop_count = 0;
913 t = p;
914 do {
915 sigaddset(&t->pending.signal, SIGKILL);
916 signal_wake_up(t, 1);
917 t = next_thread(t);
918 } while (t != p);
919 return;
920 }
921
922 /*
923 * There will be a core dump. We make all threads other
924 * than the chosen one go into a group stop so that nothing
925 * happens until it gets scheduled, takes the signal off
926 * the shared queue, and does the core dump. This is a
927 * little more complicated than strictly necessary, but it
928 * keeps the signal state that winds up in the core dump
929 * unchanged from the death state, e.g. which thread had
930 * the core-dump signal unblocked.
931 */
932 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
933 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
934 p->signal->group_stop_count = 0;
935 p->signal->group_exit_task = t;
936 t = p;
937 do {
938 p->signal->group_stop_count++;
939 signal_wake_up(t, 0);
940 t = next_thread(t);
941 } while (t != p);
942 wake_up_process(p->signal->group_exit_task);
943 return;
944 }
945
946 /*
947 * The signal is already in the shared-pending queue.
948 * Tell the chosen thread to wake up and dequeue it.
949 */
950 signal_wake_up(t, sig == SIGKILL);
951 return;
952 }
953
954 int
955 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
956 {
957 int ret = 0;
958
959 assert_spin_locked(&p->sighand->siglock);
960 handle_stop_signal(sig, p);
961
962 /* Short-circuit ignored signals. */
963 if (sig_ignored(p, sig))
964 return ret;
965
966 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
967 /* This is a non-RT signal and we already have one queued. */
968 return ret;
969
970 /*
971 * Put this signal on the shared-pending queue, or fail with EAGAIN.
972 * We always use the shared queue for process-wide signals,
973 * to avoid several races.
974 */
975 ret = send_signal(sig, info, p, &p->signal->shared_pending);
976 if (unlikely(ret))
977 return ret;
978
979 __group_complete_signal(sig, p);
980 return 0;
981 }
982
983 /*
984 * Nuke all other threads in the group.
985 */
986 void zap_other_threads(struct task_struct *p)
987 {
988 struct task_struct *t;
989
990 p->signal->flags = SIGNAL_GROUP_EXIT;
991 p->signal->group_stop_count = 0;
992
993 if (thread_group_empty(p))
994 return;
995
996 for (t = next_thread(p); t != p; t = next_thread(t)) {
997 /*
998 * Don't bother with already dead threads
999 */
1000 if (t->exit_state)
1001 continue;
1002
1003 /*
1004 * We don't want to notify the parent, since we are
1005 * killed as part of a thread group due to another
1006 * thread doing an execve() or similar. So set the
1007 * exit signal to -1 to allow immediate reaping of
1008 * the process. But don't detach the thread group
1009 * leader.
1010 */
1011 if (t != p->group_leader)
1012 t->exit_signal = -1;
1013
1014 /* SIGKILL will be handled before any pending SIGSTOP */
1015 sigaddset(&t->pending.signal, SIGKILL);
1016 signal_wake_up(t, 1);
1017 }
1018 }
1019
1020 /*
1021 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1022 */
1023 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1024 {
1025 struct sighand_struct *sighand;
1026
1027 for (;;) {
1028 sighand = rcu_dereference(tsk->sighand);
1029 if (unlikely(sighand == NULL))
1030 break;
1031
1032 spin_lock_irqsave(&sighand->siglock, *flags);
1033 if (likely(sighand == tsk->sighand))
1034 break;
1035 spin_unlock_irqrestore(&sighand->siglock, *flags);
1036 }
1037
1038 return sighand;
1039 }
1040
1041 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1042 {
1043 unsigned long flags;
1044 int ret;
1045
1046 ret = check_kill_permission(sig, info, p);
1047
1048 if (!ret && sig) {
1049 ret = -ESRCH;
1050 if (lock_task_sighand(p, &flags)) {
1051 ret = __group_send_sig_info(sig, info, p);
1052 unlock_task_sighand(p, &flags);
1053 }
1054 }
1055
1056 return ret;
1057 }
1058
1059 /*
1060 * kill_pg_info() sends a signal to a process group: this is what the tty
1061 * control characters do (^C, ^Z etc)
1062 */
1063
1064 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1065 {
1066 struct task_struct *p = NULL;
1067 int retval, success;
1068
1069 if (pgrp <= 0)
1070 return -EINVAL;
1071
1072 success = 0;
1073 retval = -ESRCH;
1074 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1075 int err = group_send_sig_info(sig, info, p);
1076 success |= !err;
1077 retval = err;
1078 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1079 return success ? 0 : retval;
1080 }
1081
1082 int
1083 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1084 {
1085 int retval;
1086
1087 read_lock(&tasklist_lock);
1088 retval = __kill_pg_info(sig, info, pgrp);
1089 read_unlock(&tasklist_lock);
1090
1091 return retval;
1092 }
1093
1094 int
1095 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1096 {
1097 int error;
1098 int acquired_tasklist_lock = 0;
1099 struct task_struct *p;
1100
1101 rcu_read_lock();
1102 if (unlikely(sig_needs_tasklist(sig))) {
1103 read_lock(&tasklist_lock);
1104 acquired_tasklist_lock = 1;
1105 }
1106 p = find_task_by_pid(pid);
1107 error = -ESRCH;
1108 if (p)
1109 error = group_send_sig_info(sig, info, p);
1110 if (unlikely(acquired_tasklist_lock))
1111 read_unlock(&tasklist_lock);
1112 rcu_read_unlock();
1113 return error;
1114 }
1115
1116 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1117 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1118 uid_t uid, uid_t euid, u32 secid)
1119 {
1120 int ret = -EINVAL;
1121 struct task_struct *p;
1122
1123 if (!valid_signal(sig))
1124 return ret;
1125
1126 read_lock(&tasklist_lock);
1127 p = find_task_by_pid(pid);
1128 if (!p) {
1129 ret = -ESRCH;
1130 goto out_unlock;
1131 }
1132 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1133 && (euid != p->suid) && (euid != p->uid)
1134 && (uid != p->suid) && (uid != p->uid)) {
1135 ret = -EPERM;
1136 goto out_unlock;
1137 }
1138 ret = security_task_kill(p, info, sig, secid);
1139 if (ret)
1140 goto out_unlock;
1141 if (sig && p->sighand) {
1142 unsigned long flags;
1143 spin_lock_irqsave(&p->sighand->siglock, flags);
1144 ret = __group_send_sig_info(sig, info, p);
1145 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1146 }
1147 out_unlock:
1148 read_unlock(&tasklist_lock);
1149 return ret;
1150 }
1151 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1152
1153 /*
1154 * kill_something_info() interprets pid in interesting ways just like kill(2).
1155 *
1156 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1157 * is probably wrong. Should make it like BSD or SYSV.
1158 */
1159
1160 static int kill_something_info(int sig, struct siginfo *info, int pid)
1161 {
1162 if (!pid) {
1163 return kill_pg_info(sig, info, process_group(current));
1164 } else if (pid == -1) {
1165 int retval = 0, count = 0;
1166 struct task_struct * p;
1167
1168 read_lock(&tasklist_lock);
1169 for_each_process(p) {
1170 if (p->pid > 1 && p->tgid != current->tgid) {
1171 int err = group_send_sig_info(sig, info, p);
1172 ++count;
1173 if (err != -EPERM)
1174 retval = err;
1175 }
1176 }
1177 read_unlock(&tasklist_lock);
1178 return count ? retval : -ESRCH;
1179 } else if (pid < 0) {
1180 return kill_pg_info(sig, info, -pid);
1181 } else {
1182 return kill_proc_info(sig, info, pid);
1183 }
1184 }
1185
1186 /*
1187 * These are for backward compatibility with the rest of the kernel source.
1188 */
1189
1190 /*
1191 * These two are the most common entry points. They send a signal
1192 * just to the specific thread.
1193 */
1194 int
1195 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196 {
1197 int ret;
1198 unsigned long flags;
1199
1200 /*
1201 * Make sure legacy kernel users don't send in bad values
1202 * (normal paths check this in check_kill_permission).
1203 */
1204 if (!valid_signal(sig))
1205 return -EINVAL;
1206
1207 /*
1208 * We need the tasklist lock even for the specific
1209 * thread case (when we don't need to follow the group
1210 * lists) in order to avoid races with "p->sighand"
1211 * going away or changing from under us.
1212 */
1213 read_lock(&tasklist_lock);
1214 spin_lock_irqsave(&p->sighand->siglock, flags);
1215 ret = specific_send_sig_info(sig, info, p);
1216 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1217 read_unlock(&tasklist_lock);
1218 return ret;
1219 }
1220
1221 #define __si_special(priv) \
1222 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1223
1224 int
1225 send_sig(int sig, struct task_struct *p, int priv)
1226 {
1227 return send_sig_info(sig, __si_special(priv), p);
1228 }
1229
1230 /*
1231 * This is the entry point for "process-wide" signals.
1232 * They will go to an appropriate thread in the thread group.
1233 */
1234 int
1235 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1236 {
1237 int ret;
1238 read_lock(&tasklist_lock);
1239 ret = group_send_sig_info(sig, info, p);
1240 read_unlock(&tasklist_lock);
1241 return ret;
1242 }
1243
1244 void
1245 force_sig(int sig, struct task_struct *p)
1246 {
1247 force_sig_info(sig, SEND_SIG_PRIV, p);
1248 }
1249
1250 /*
1251 * When things go south during signal handling, we
1252 * will force a SIGSEGV. And if the signal that caused
1253 * the problem was already a SIGSEGV, we'll want to
1254 * make sure we don't even try to deliver the signal..
1255 */
1256 int
1257 force_sigsegv(int sig, struct task_struct *p)
1258 {
1259 if (sig == SIGSEGV) {
1260 unsigned long flags;
1261 spin_lock_irqsave(&p->sighand->siglock, flags);
1262 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1263 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1264 }
1265 force_sig(SIGSEGV, p);
1266 return 0;
1267 }
1268
1269 int
1270 kill_pg(pid_t pgrp, int sig, int priv)
1271 {
1272 return kill_pg_info(sig, __si_special(priv), pgrp);
1273 }
1274
1275 int
1276 kill_proc(pid_t pid, int sig, int priv)
1277 {
1278 return kill_proc_info(sig, __si_special(priv), pid);
1279 }
1280
1281 /*
1282 * These functions support sending signals using preallocated sigqueue
1283 * structures. This is needed "because realtime applications cannot
1284 * afford to lose notifications of asynchronous events, like timer
1285 * expirations or I/O completions". In the case of Posix Timers
1286 * we allocate the sigqueue structure from the timer_create. If this
1287 * allocation fails we are able to report the failure to the application
1288 * with an EAGAIN error.
1289 */
1290
1291 struct sigqueue *sigqueue_alloc(void)
1292 {
1293 struct sigqueue *q;
1294
1295 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1296 q->flags |= SIGQUEUE_PREALLOC;
1297 return(q);
1298 }
1299
1300 void sigqueue_free(struct sigqueue *q)
1301 {
1302 unsigned long flags;
1303 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1304 /*
1305 * If the signal is still pending remove it from the
1306 * pending queue.
1307 */
1308 if (unlikely(!list_empty(&q->list))) {
1309 spinlock_t *lock = &current->sighand->siglock;
1310 read_lock(&tasklist_lock);
1311 spin_lock_irqsave(lock, flags);
1312 if (!list_empty(&q->list))
1313 list_del_init(&q->list);
1314 spin_unlock_irqrestore(lock, flags);
1315 read_unlock(&tasklist_lock);
1316 }
1317 q->flags &= ~SIGQUEUE_PREALLOC;
1318 __sigqueue_free(q);
1319 }
1320
1321 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1322 {
1323 unsigned long flags;
1324 int ret = 0;
1325
1326 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1327
1328 /*
1329 * The rcu based delayed sighand destroy makes it possible to
1330 * run this without tasklist lock held. The task struct itself
1331 * cannot go away as create_timer did get_task_struct().
1332 *
1333 * We return -1, when the task is marked exiting, so
1334 * posix_timer_event can redirect it to the group leader
1335 */
1336 rcu_read_lock();
1337
1338 if (!likely(lock_task_sighand(p, &flags))) {
1339 ret = -1;
1340 goto out_err;
1341 }
1342
1343 if (unlikely(!list_empty(&q->list))) {
1344 /*
1345 * If an SI_TIMER entry is already queue just increment
1346 * the overrun count.
1347 */
1348 BUG_ON(q->info.si_code != SI_TIMER);
1349 q->info.si_overrun++;
1350 goto out;
1351 }
1352 /* Short-circuit ignored signals. */
1353 if (sig_ignored(p, sig)) {
1354 ret = 1;
1355 goto out;
1356 }
1357
1358 list_add_tail(&q->list, &p->pending.list);
1359 sigaddset(&p->pending.signal, sig);
1360 if (!sigismember(&p->blocked, sig))
1361 signal_wake_up(p, sig == SIGKILL);
1362
1363 out:
1364 unlock_task_sighand(p, &flags);
1365 out_err:
1366 rcu_read_unlock();
1367
1368 return ret;
1369 }
1370
1371 int
1372 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1373 {
1374 unsigned long flags;
1375 int ret = 0;
1376
1377 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1378
1379 read_lock(&tasklist_lock);
1380 /* Since it_lock is held, p->sighand cannot be NULL. */
1381 spin_lock_irqsave(&p->sighand->siglock, flags);
1382 handle_stop_signal(sig, p);
1383
1384 /* Short-circuit ignored signals. */
1385 if (sig_ignored(p, sig)) {
1386 ret = 1;
1387 goto out;
1388 }
1389
1390 if (unlikely(!list_empty(&q->list))) {
1391 /*
1392 * If an SI_TIMER entry is already queue just increment
1393 * the overrun count. Other uses should not try to
1394 * send the signal multiple times.
1395 */
1396 BUG_ON(q->info.si_code != SI_TIMER);
1397 q->info.si_overrun++;
1398 goto out;
1399 }
1400
1401 /*
1402 * Put this signal on the shared-pending queue.
1403 * We always use the shared queue for process-wide signals,
1404 * to avoid several races.
1405 */
1406 list_add_tail(&q->list, &p->signal->shared_pending.list);
1407 sigaddset(&p->signal->shared_pending.signal, sig);
1408
1409 __group_complete_signal(sig, p);
1410 out:
1411 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1412 read_unlock(&tasklist_lock);
1413 return ret;
1414 }
1415
1416 /*
1417 * Wake up any threads in the parent blocked in wait* syscalls.
1418 */
1419 static inline void __wake_up_parent(struct task_struct *p,
1420 struct task_struct *parent)
1421 {
1422 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1423 }
1424
1425 /*
1426 * Let a parent know about the death of a child.
1427 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1428 */
1429
1430 void do_notify_parent(struct task_struct *tsk, int sig)
1431 {
1432 struct siginfo info;
1433 unsigned long flags;
1434 struct sighand_struct *psig;
1435
1436 BUG_ON(sig == -1);
1437
1438 /* do_notify_parent_cldstop should have been called instead. */
1439 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1440
1441 BUG_ON(!tsk->ptrace &&
1442 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1443
1444 info.si_signo = sig;
1445 info.si_errno = 0;
1446 info.si_pid = tsk->pid;
1447 info.si_uid = tsk->uid;
1448
1449 /* FIXME: find out whether or not this is supposed to be c*time. */
1450 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1451 tsk->signal->utime));
1452 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1453 tsk->signal->stime));
1454
1455 info.si_status = tsk->exit_code & 0x7f;
1456 if (tsk->exit_code & 0x80)
1457 info.si_code = CLD_DUMPED;
1458 else if (tsk->exit_code & 0x7f)
1459 info.si_code = CLD_KILLED;
1460 else {
1461 info.si_code = CLD_EXITED;
1462 info.si_status = tsk->exit_code >> 8;
1463 }
1464
1465 psig = tsk->parent->sighand;
1466 spin_lock_irqsave(&psig->siglock, flags);
1467 if (!tsk->ptrace && sig == SIGCHLD &&
1468 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1469 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1470 /*
1471 * We are exiting and our parent doesn't care. POSIX.1
1472 * defines special semantics for setting SIGCHLD to SIG_IGN
1473 * or setting the SA_NOCLDWAIT flag: we should be reaped
1474 * automatically and not left for our parent's wait4 call.
1475 * Rather than having the parent do it as a magic kind of
1476 * signal handler, we just set this to tell do_exit that we
1477 * can be cleaned up without becoming a zombie. Note that
1478 * we still call __wake_up_parent in this case, because a
1479 * blocked sys_wait4 might now return -ECHILD.
1480 *
1481 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1482 * is implementation-defined: we do (if you don't want
1483 * it, just use SIG_IGN instead).
1484 */
1485 tsk->exit_signal = -1;
1486 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1487 sig = 0;
1488 }
1489 if (valid_signal(sig) && sig > 0)
1490 __group_send_sig_info(sig, &info, tsk->parent);
1491 __wake_up_parent(tsk, tsk->parent);
1492 spin_unlock_irqrestore(&psig->siglock, flags);
1493 }
1494
1495 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1496 {
1497 struct siginfo info;
1498 unsigned long flags;
1499 struct task_struct *parent;
1500 struct sighand_struct *sighand;
1501
1502 if (tsk->ptrace & PT_PTRACED)
1503 parent = tsk->parent;
1504 else {
1505 tsk = tsk->group_leader;
1506 parent = tsk->real_parent;
1507 }
1508
1509 info.si_signo = SIGCHLD;
1510 info.si_errno = 0;
1511 info.si_pid = tsk->pid;
1512 info.si_uid = tsk->uid;
1513
1514 /* FIXME: find out whether or not this is supposed to be c*time. */
1515 info.si_utime = cputime_to_jiffies(tsk->utime);
1516 info.si_stime = cputime_to_jiffies(tsk->stime);
1517
1518 info.si_code = why;
1519 switch (why) {
1520 case CLD_CONTINUED:
1521 info.si_status = SIGCONT;
1522 break;
1523 case CLD_STOPPED:
1524 info.si_status = tsk->signal->group_exit_code & 0x7f;
1525 break;
1526 case CLD_TRAPPED:
1527 info.si_status = tsk->exit_code & 0x7f;
1528 break;
1529 default:
1530 BUG();
1531 }
1532
1533 sighand = parent->sighand;
1534 spin_lock_irqsave(&sighand->siglock, flags);
1535 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1536 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1537 __group_send_sig_info(SIGCHLD, &info, parent);
1538 /*
1539 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1540 */
1541 __wake_up_parent(tsk, parent);
1542 spin_unlock_irqrestore(&sighand->siglock, flags);
1543 }
1544
1545 static inline int may_ptrace_stop(void)
1546 {
1547 if (!likely(current->ptrace & PT_PTRACED))
1548 return 0;
1549
1550 if (unlikely(current->parent == current->real_parent &&
1551 (current->ptrace & PT_ATTACHED)))
1552 return 0;
1553
1554 if (unlikely(current->signal == current->parent->signal) &&
1555 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1556 return 0;
1557
1558 /*
1559 * Are we in the middle of do_coredump?
1560 * If so and our tracer is also part of the coredump stopping
1561 * is a deadlock situation, and pointless because our tracer
1562 * is dead so don't allow us to stop.
1563 * If SIGKILL was already sent before the caller unlocked
1564 * ->siglock we must see ->core_waiters != 0. Otherwise it
1565 * is safe to enter schedule().
1566 */
1567 if (unlikely(current->mm->core_waiters) &&
1568 unlikely(current->mm == current->parent->mm))
1569 return 0;
1570
1571 return 1;
1572 }
1573
1574 /*
1575 * This must be called with current->sighand->siglock held.
1576 *
1577 * This should be the path for all ptrace stops.
1578 * We always set current->last_siginfo while stopped here.
1579 * That makes it a way to test a stopped process for
1580 * being ptrace-stopped vs being job-control-stopped.
1581 *
1582 * If we actually decide not to stop at all because the tracer is gone,
1583 * we leave nostop_code in current->exit_code.
1584 */
1585 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1586 {
1587 /*
1588 * If there is a group stop in progress,
1589 * we must participate in the bookkeeping.
1590 */
1591 if (current->signal->group_stop_count > 0)
1592 --current->signal->group_stop_count;
1593
1594 current->last_siginfo = info;
1595 current->exit_code = exit_code;
1596
1597 /* Let the debugger run. */
1598 set_current_state(TASK_TRACED);
1599 spin_unlock_irq(&current->sighand->siglock);
1600 try_to_freeze();
1601 read_lock(&tasklist_lock);
1602 if (may_ptrace_stop()) {
1603 do_notify_parent_cldstop(current, CLD_TRAPPED);
1604 read_unlock(&tasklist_lock);
1605 schedule();
1606 } else {
1607 /*
1608 * By the time we got the lock, our tracer went away.
1609 * Don't stop here.
1610 */
1611 read_unlock(&tasklist_lock);
1612 set_current_state(TASK_RUNNING);
1613 current->exit_code = nostop_code;
1614 }
1615
1616 /*
1617 * We are back. Now reacquire the siglock before touching
1618 * last_siginfo, so that we are sure to have synchronized with
1619 * any signal-sending on another CPU that wants to examine it.
1620 */
1621 spin_lock_irq(&current->sighand->siglock);
1622 current->last_siginfo = NULL;
1623
1624 /*
1625 * Queued signals ignored us while we were stopped for tracing.
1626 * So check for any that we should take before resuming user mode.
1627 */
1628 recalc_sigpending();
1629 }
1630
1631 void ptrace_notify(int exit_code)
1632 {
1633 siginfo_t info;
1634
1635 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1636
1637 memset(&info, 0, sizeof info);
1638 info.si_signo = SIGTRAP;
1639 info.si_code = exit_code;
1640 info.si_pid = current->pid;
1641 info.si_uid = current->uid;
1642
1643 /* Let the debugger run. */
1644 spin_lock_irq(&current->sighand->siglock);
1645 ptrace_stop(exit_code, 0, &info);
1646 spin_unlock_irq(&current->sighand->siglock);
1647 }
1648
1649 static void
1650 finish_stop(int stop_count)
1651 {
1652 /*
1653 * If there are no other threads in the group, or if there is
1654 * a group stop in progress and we are the last to stop,
1655 * report to the parent. When ptraced, every thread reports itself.
1656 */
1657 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1658 read_lock(&tasklist_lock);
1659 do_notify_parent_cldstop(current, CLD_STOPPED);
1660 read_unlock(&tasklist_lock);
1661 }
1662
1663 schedule();
1664 /*
1665 * Now we don't run again until continued.
1666 */
1667 current->exit_code = 0;
1668 }
1669
1670 /*
1671 * This performs the stopping for SIGSTOP and other stop signals.
1672 * We have to stop all threads in the thread group.
1673 * Returns nonzero if we've actually stopped and released the siglock.
1674 * Returns zero if we didn't stop and still hold the siglock.
1675 */
1676 static int do_signal_stop(int signr)
1677 {
1678 struct signal_struct *sig = current->signal;
1679 int stop_count;
1680
1681 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1682 return 0;
1683
1684 if (sig->group_stop_count > 0) {
1685 /*
1686 * There is a group stop in progress. We don't need to
1687 * start another one.
1688 */
1689 stop_count = --sig->group_stop_count;
1690 } else {
1691 /*
1692 * There is no group stop already in progress.
1693 * We must initiate one now.
1694 */
1695 struct task_struct *t;
1696
1697 sig->group_exit_code = signr;
1698
1699 stop_count = 0;
1700 for (t = next_thread(current); t != current; t = next_thread(t))
1701 /*
1702 * Setting state to TASK_STOPPED for a group
1703 * stop is always done with the siglock held,
1704 * so this check has no races.
1705 */
1706 if (!t->exit_state &&
1707 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1708 stop_count++;
1709 signal_wake_up(t, 0);
1710 }
1711 sig->group_stop_count = stop_count;
1712 }
1713
1714 if (stop_count == 0)
1715 sig->flags = SIGNAL_STOP_STOPPED;
1716 current->exit_code = sig->group_exit_code;
1717 __set_current_state(TASK_STOPPED);
1718
1719 spin_unlock_irq(&current->sighand->siglock);
1720 finish_stop(stop_count);
1721 return 1;
1722 }
1723
1724 /*
1725 * Do appropriate magic when group_stop_count > 0.
1726 * We return nonzero if we stopped, after releasing the siglock.
1727 * We return zero if we still hold the siglock and should look
1728 * for another signal without checking group_stop_count again.
1729 */
1730 static int handle_group_stop(void)
1731 {
1732 int stop_count;
1733
1734 if (current->signal->group_exit_task == current) {
1735 /*
1736 * Group stop is so we can do a core dump,
1737 * We are the initiating thread, so get on with it.
1738 */
1739 current->signal->group_exit_task = NULL;
1740 return 0;
1741 }
1742
1743 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1744 /*
1745 * Group stop is so another thread can do a core dump,
1746 * or else we are racing against a death signal.
1747 * Just punt the stop so we can get the next signal.
1748 */
1749 return 0;
1750
1751 /*
1752 * There is a group stop in progress. We stop
1753 * without any associated signal being in our queue.
1754 */
1755 stop_count = --current->signal->group_stop_count;
1756 if (stop_count == 0)
1757 current->signal->flags = SIGNAL_STOP_STOPPED;
1758 current->exit_code = current->signal->group_exit_code;
1759 set_current_state(TASK_STOPPED);
1760 spin_unlock_irq(&current->sighand->siglock);
1761 finish_stop(stop_count);
1762 return 1;
1763 }
1764
1765 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1766 struct pt_regs *regs, void *cookie)
1767 {
1768 sigset_t *mask = &current->blocked;
1769 int signr = 0;
1770
1771 try_to_freeze();
1772
1773 relock:
1774 spin_lock_irq(&current->sighand->siglock);
1775 for (;;) {
1776 struct k_sigaction *ka;
1777
1778 if (unlikely(current->signal->group_stop_count > 0) &&
1779 handle_group_stop())
1780 goto relock;
1781
1782 signr = dequeue_signal(current, mask, info);
1783
1784 if (!signr)
1785 break; /* will return 0 */
1786
1787 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1788 ptrace_signal_deliver(regs, cookie);
1789
1790 /* Let the debugger run. */
1791 ptrace_stop(signr, signr, info);
1792
1793 /* We're back. Did the debugger cancel the sig? */
1794 signr = current->exit_code;
1795 if (signr == 0)
1796 continue;
1797
1798 current->exit_code = 0;
1799
1800 /* Update the siginfo structure if the signal has
1801 changed. If the debugger wanted something
1802 specific in the siginfo structure then it should
1803 have updated *info via PTRACE_SETSIGINFO. */
1804 if (signr != info->si_signo) {
1805 info->si_signo = signr;
1806 info->si_errno = 0;
1807 info->si_code = SI_USER;
1808 info->si_pid = current->parent->pid;
1809 info->si_uid = current->parent->uid;
1810 }
1811
1812 /* If the (new) signal is now blocked, requeue it. */
1813 if (sigismember(&current->blocked, signr)) {
1814 specific_send_sig_info(signr, info, current);
1815 continue;
1816 }
1817 }
1818
1819 ka = &current->sighand->action[signr-1];
1820 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1821 continue;
1822 if (ka->sa.sa_handler != SIG_DFL) {
1823 /* Run the handler. */
1824 *return_ka = *ka;
1825
1826 if (ka->sa.sa_flags & SA_ONESHOT)
1827 ka->sa.sa_handler = SIG_DFL;
1828
1829 break; /* will return non-zero "signr" value */
1830 }
1831
1832 /*
1833 * Now we are doing the default action for this signal.
1834 */
1835 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1836 continue;
1837
1838 /* Init gets no signals it doesn't want. */
1839 if (current == child_reaper)
1840 continue;
1841
1842 if (sig_kernel_stop(signr)) {
1843 /*
1844 * The default action is to stop all threads in
1845 * the thread group. The job control signals
1846 * do nothing in an orphaned pgrp, but SIGSTOP
1847 * always works. Note that siglock needs to be
1848 * dropped during the call to is_orphaned_pgrp()
1849 * because of lock ordering with tasklist_lock.
1850 * This allows an intervening SIGCONT to be posted.
1851 * We need to check for that and bail out if necessary.
1852 */
1853 if (signr != SIGSTOP) {
1854 spin_unlock_irq(&current->sighand->siglock);
1855
1856 /* signals can be posted during this window */
1857
1858 if (is_orphaned_pgrp(process_group(current)))
1859 goto relock;
1860
1861 spin_lock_irq(&current->sighand->siglock);
1862 }
1863
1864 if (likely(do_signal_stop(signr))) {
1865 /* It released the siglock. */
1866 goto relock;
1867 }
1868
1869 /*
1870 * We didn't actually stop, due to a race
1871 * with SIGCONT or something like that.
1872 */
1873 continue;
1874 }
1875
1876 spin_unlock_irq(&current->sighand->siglock);
1877
1878 /*
1879 * Anything else is fatal, maybe with a core dump.
1880 */
1881 current->flags |= PF_SIGNALED;
1882 if (sig_kernel_coredump(signr)) {
1883 /*
1884 * If it was able to dump core, this kills all
1885 * other threads in the group and synchronizes with
1886 * their demise. If we lost the race with another
1887 * thread getting here, it set group_exit_code
1888 * first and our do_group_exit call below will use
1889 * that value and ignore the one we pass it.
1890 */
1891 do_coredump((long)signr, signr, regs);
1892 }
1893
1894 /*
1895 * Death signals, no core dump.
1896 */
1897 do_group_exit(signr);
1898 /* NOTREACHED */
1899 }
1900 spin_unlock_irq(&current->sighand->siglock);
1901 return signr;
1902 }
1903
1904 EXPORT_SYMBOL(recalc_sigpending);
1905 EXPORT_SYMBOL_GPL(dequeue_signal);
1906 EXPORT_SYMBOL(flush_signals);
1907 EXPORT_SYMBOL(force_sig);
1908 EXPORT_SYMBOL(kill_pg);
1909 EXPORT_SYMBOL(kill_proc);
1910 EXPORT_SYMBOL(ptrace_notify);
1911 EXPORT_SYMBOL(send_sig);
1912 EXPORT_SYMBOL(send_sig_info);
1913 EXPORT_SYMBOL(sigprocmask);
1914 EXPORT_SYMBOL(block_all_signals);
1915 EXPORT_SYMBOL(unblock_all_signals);
1916
1917
1918 /*
1919 * System call entry points.
1920 */
1921
1922 asmlinkage long sys_restart_syscall(void)
1923 {
1924 struct restart_block *restart = &current_thread_info()->restart_block;
1925 return restart->fn(restart);
1926 }
1927
1928 long do_no_restart_syscall(struct restart_block *param)
1929 {
1930 return -EINTR;
1931 }
1932
1933 /*
1934 * We don't need to get the kernel lock - this is all local to this
1935 * particular thread.. (and that's good, because this is _heavily_
1936 * used by various programs)
1937 */
1938
1939 /*
1940 * This is also useful for kernel threads that want to temporarily
1941 * (or permanently) block certain signals.
1942 *
1943 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1944 * interface happily blocks "unblockable" signals like SIGKILL
1945 * and friends.
1946 */
1947 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1948 {
1949 int error;
1950
1951 spin_lock_irq(&current->sighand->siglock);
1952 if (oldset)
1953 *oldset = current->blocked;
1954
1955 error = 0;
1956 switch (how) {
1957 case SIG_BLOCK:
1958 sigorsets(&current->blocked, &current->blocked, set);
1959 break;
1960 case SIG_UNBLOCK:
1961 signandsets(&current->blocked, &current->blocked, set);
1962 break;
1963 case SIG_SETMASK:
1964 current->blocked = *set;
1965 break;
1966 default:
1967 error = -EINVAL;
1968 }
1969 recalc_sigpending();
1970 spin_unlock_irq(&current->sighand->siglock);
1971
1972 return error;
1973 }
1974
1975 asmlinkage long
1976 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1977 {
1978 int error = -EINVAL;
1979 sigset_t old_set, new_set;
1980
1981 /* XXX: Don't preclude handling different sized sigset_t's. */
1982 if (sigsetsize != sizeof(sigset_t))
1983 goto out;
1984
1985 if (set) {
1986 error = -EFAULT;
1987 if (copy_from_user(&new_set, set, sizeof(*set)))
1988 goto out;
1989 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1990
1991 error = sigprocmask(how, &new_set, &old_set);
1992 if (error)
1993 goto out;
1994 if (oset)
1995 goto set_old;
1996 } else if (oset) {
1997 spin_lock_irq(&current->sighand->siglock);
1998 old_set = current->blocked;
1999 spin_unlock_irq(&current->sighand->siglock);
2000
2001 set_old:
2002 error = -EFAULT;
2003 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2004 goto out;
2005 }
2006 error = 0;
2007 out:
2008 return error;
2009 }
2010
2011 long do_sigpending(void __user *set, unsigned long sigsetsize)
2012 {
2013 long error = -EINVAL;
2014 sigset_t pending;
2015
2016 if (sigsetsize > sizeof(sigset_t))
2017 goto out;
2018
2019 spin_lock_irq(&current->sighand->siglock);
2020 sigorsets(&pending, &current->pending.signal,
2021 &current->signal->shared_pending.signal);
2022 spin_unlock_irq(&current->sighand->siglock);
2023
2024 /* Outside the lock because only this thread touches it. */
2025 sigandsets(&pending, &current->blocked, &pending);
2026
2027 error = -EFAULT;
2028 if (!copy_to_user(set, &pending, sigsetsize))
2029 error = 0;
2030
2031 out:
2032 return error;
2033 }
2034
2035 asmlinkage long
2036 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2037 {
2038 return do_sigpending(set, sigsetsize);
2039 }
2040
2041 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2042
2043 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2044 {
2045 int err;
2046
2047 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2048 return -EFAULT;
2049 if (from->si_code < 0)
2050 return __copy_to_user(to, from, sizeof(siginfo_t))
2051 ? -EFAULT : 0;
2052 /*
2053 * If you change siginfo_t structure, please be sure
2054 * this code is fixed accordingly.
2055 * It should never copy any pad contained in the structure
2056 * to avoid security leaks, but must copy the generic
2057 * 3 ints plus the relevant union member.
2058 */
2059 err = __put_user(from->si_signo, &to->si_signo);
2060 err |= __put_user(from->si_errno, &to->si_errno);
2061 err |= __put_user((short)from->si_code, &to->si_code);
2062 switch (from->si_code & __SI_MASK) {
2063 case __SI_KILL:
2064 err |= __put_user(from->si_pid, &to->si_pid);
2065 err |= __put_user(from->si_uid, &to->si_uid);
2066 break;
2067 case __SI_TIMER:
2068 err |= __put_user(from->si_tid, &to->si_tid);
2069 err |= __put_user(from->si_overrun, &to->si_overrun);
2070 err |= __put_user(from->si_ptr, &to->si_ptr);
2071 break;
2072 case __SI_POLL:
2073 err |= __put_user(from->si_band, &to->si_band);
2074 err |= __put_user(from->si_fd, &to->si_fd);
2075 break;
2076 case __SI_FAULT:
2077 err |= __put_user(from->si_addr, &to->si_addr);
2078 #ifdef __ARCH_SI_TRAPNO
2079 err |= __put_user(from->si_trapno, &to->si_trapno);
2080 #endif
2081 break;
2082 case __SI_CHLD:
2083 err |= __put_user(from->si_pid, &to->si_pid);
2084 err |= __put_user(from->si_uid, &to->si_uid);
2085 err |= __put_user(from->si_status, &to->si_status);
2086 err |= __put_user(from->si_utime, &to->si_utime);
2087 err |= __put_user(from->si_stime, &to->si_stime);
2088 break;
2089 case __SI_RT: /* This is not generated by the kernel as of now. */
2090 case __SI_MESGQ: /* But this is */
2091 err |= __put_user(from->si_pid, &to->si_pid);
2092 err |= __put_user(from->si_uid, &to->si_uid);
2093 err |= __put_user(from->si_ptr, &to->si_ptr);
2094 break;
2095 default: /* this is just in case for now ... */
2096 err |= __put_user(from->si_pid, &to->si_pid);
2097 err |= __put_user(from->si_uid, &to->si_uid);
2098 break;
2099 }
2100 return err;
2101 }
2102
2103 #endif
2104
2105 asmlinkage long
2106 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2107 siginfo_t __user *uinfo,
2108 const struct timespec __user *uts,
2109 size_t sigsetsize)
2110 {
2111 int ret, sig;
2112 sigset_t these;
2113 struct timespec ts;
2114 siginfo_t info;
2115 long timeout = 0;
2116
2117 /* XXX: Don't preclude handling different sized sigset_t's. */
2118 if (sigsetsize != sizeof(sigset_t))
2119 return -EINVAL;
2120
2121 if (copy_from_user(&these, uthese, sizeof(these)))
2122 return -EFAULT;
2123
2124 /*
2125 * Invert the set of allowed signals to get those we
2126 * want to block.
2127 */
2128 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2129 signotset(&these);
2130
2131 if (uts) {
2132 if (copy_from_user(&ts, uts, sizeof(ts)))
2133 return -EFAULT;
2134 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2135 || ts.tv_sec < 0)
2136 return -EINVAL;
2137 }
2138
2139 spin_lock_irq(&current->sighand->siglock);
2140 sig = dequeue_signal(current, &these, &info);
2141 if (!sig) {
2142 timeout = MAX_SCHEDULE_TIMEOUT;
2143 if (uts)
2144 timeout = (timespec_to_jiffies(&ts)
2145 + (ts.tv_sec || ts.tv_nsec));
2146
2147 if (timeout) {
2148 /* None ready -- temporarily unblock those we're
2149 * interested while we are sleeping in so that we'll
2150 * be awakened when they arrive. */
2151 current->real_blocked = current->blocked;
2152 sigandsets(&current->blocked, &current->blocked, &these);
2153 recalc_sigpending();
2154 spin_unlock_irq(&current->sighand->siglock);
2155
2156 timeout = schedule_timeout_interruptible(timeout);
2157
2158 spin_lock_irq(&current->sighand->siglock);
2159 sig = dequeue_signal(current, &these, &info);
2160 current->blocked = current->real_blocked;
2161 siginitset(&current->real_blocked, 0);
2162 recalc_sigpending();
2163 }
2164 }
2165 spin_unlock_irq(&current->sighand->siglock);
2166
2167 if (sig) {
2168 ret = sig;
2169 if (uinfo) {
2170 if (copy_siginfo_to_user(uinfo, &info))
2171 ret = -EFAULT;
2172 }
2173 } else {
2174 ret = -EAGAIN;
2175 if (timeout)
2176 ret = -EINTR;
2177 }
2178
2179 return ret;
2180 }
2181
2182 asmlinkage long
2183 sys_kill(int pid, int sig)
2184 {
2185 struct siginfo info;
2186
2187 info.si_signo = sig;
2188 info.si_errno = 0;
2189 info.si_code = SI_USER;
2190 info.si_pid = current->tgid;
2191 info.si_uid = current->uid;
2192
2193 return kill_something_info(sig, &info, pid);
2194 }
2195
2196 static int do_tkill(int tgid, int pid, int sig)
2197 {
2198 int error;
2199 struct siginfo info;
2200 struct task_struct *p;
2201
2202 error = -ESRCH;
2203 info.si_signo = sig;
2204 info.si_errno = 0;
2205 info.si_code = SI_TKILL;
2206 info.si_pid = current->tgid;
2207 info.si_uid = current->uid;
2208
2209 read_lock(&tasklist_lock);
2210 p = find_task_by_pid(pid);
2211 if (p && (tgid <= 0 || p->tgid == tgid)) {
2212 error = check_kill_permission(sig, &info, p);
2213 /*
2214 * The null signal is a permissions and process existence
2215 * probe. No signal is actually delivered.
2216 */
2217 if (!error && sig && p->sighand) {
2218 spin_lock_irq(&p->sighand->siglock);
2219 handle_stop_signal(sig, p);
2220 error = specific_send_sig_info(sig, &info, p);
2221 spin_unlock_irq(&p->sighand->siglock);
2222 }
2223 }
2224 read_unlock(&tasklist_lock);
2225
2226 return error;
2227 }
2228
2229 /**
2230 * sys_tgkill - send signal to one specific thread
2231 * @tgid: the thread group ID of the thread
2232 * @pid: the PID of the thread
2233 * @sig: signal to be sent
2234 *
2235 * This syscall also checks the tgid and returns -ESRCH even if the PID
2236 * exists but it's not belonging to the target process anymore. This
2237 * method solves the problem of threads exiting and PIDs getting reused.
2238 */
2239 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2240 {
2241 /* This is only valid for single tasks */
2242 if (pid <= 0 || tgid <= 0)
2243 return -EINVAL;
2244
2245 return do_tkill(tgid, pid, sig);
2246 }
2247
2248 /*
2249 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2250 */
2251 asmlinkage long
2252 sys_tkill(int pid, int sig)
2253 {
2254 /* This is only valid for single tasks */
2255 if (pid <= 0)
2256 return -EINVAL;
2257
2258 return do_tkill(0, pid, sig);
2259 }
2260
2261 asmlinkage long
2262 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2263 {
2264 siginfo_t info;
2265
2266 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2267 return -EFAULT;
2268
2269 /* Not even root can pretend to send signals from the kernel.
2270 Nor can they impersonate a kill(), which adds source info. */
2271 if (info.si_code >= 0)
2272 return -EPERM;
2273 info.si_signo = sig;
2274
2275 /* POSIX.1b doesn't mention process groups. */
2276 return kill_proc_info(sig, &info, pid);
2277 }
2278
2279 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2280 {
2281 struct k_sigaction *k;
2282 sigset_t mask;
2283
2284 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2285 return -EINVAL;
2286
2287 k = &current->sighand->action[sig-1];
2288
2289 spin_lock_irq(&current->sighand->siglock);
2290 if (signal_pending(current)) {
2291 /*
2292 * If there might be a fatal signal pending on multiple
2293 * threads, make sure we take it before changing the action.
2294 */
2295 spin_unlock_irq(&current->sighand->siglock);
2296 return -ERESTARTNOINTR;
2297 }
2298
2299 if (oact)
2300 *oact = *k;
2301
2302 if (act) {
2303 sigdelsetmask(&act->sa.sa_mask,
2304 sigmask(SIGKILL) | sigmask(SIGSTOP));
2305 *k = *act;
2306 /*
2307 * POSIX 3.3.1.3:
2308 * "Setting a signal action to SIG_IGN for a signal that is
2309 * pending shall cause the pending signal to be discarded,
2310 * whether or not it is blocked."
2311 *
2312 * "Setting a signal action to SIG_DFL for a signal that is
2313 * pending and whose default action is to ignore the signal
2314 * (for example, SIGCHLD), shall cause the pending signal to
2315 * be discarded, whether or not it is blocked"
2316 */
2317 if (act->sa.sa_handler == SIG_IGN ||
2318 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2319 struct task_struct *t = current;
2320 sigemptyset(&mask);
2321 sigaddset(&mask, sig);
2322 rm_from_queue_full(&mask, &t->signal->shared_pending);
2323 do {
2324 rm_from_queue_full(&mask, &t->pending);
2325 recalc_sigpending_tsk(t);
2326 t = next_thread(t);
2327 } while (t != current);
2328 }
2329 }
2330
2331 spin_unlock_irq(&current->sighand->siglock);
2332 return 0;
2333 }
2334
2335 int
2336 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2337 {
2338 stack_t oss;
2339 int error;
2340
2341 if (uoss) {
2342 oss.ss_sp = (void __user *) current->sas_ss_sp;
2343 oss.ss_size = current->sas_ss_size;
2344 oss.ss_flags = sas_ss_flags(sp);
2345 }
2346
2347 if (uss) {
2348 void __user *ss_sp;
2349 size_t ss_size;
2350 int ss_flags;
2351
2352 error = -EFAULT;
2353 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2354 || __get_user(ss_sp, &uss->ss_sp)
2355 || __get_user(ss_flags, &uss->ss_flags)
2356 || __get_user(ss_size, &uss->ss_size))
2357 goto out;
2358
2359 error = -EPERM;
2360 if (on_sig_stack(sp))
2361 goto out;
2362
2363 error = -EINVAL;
2364 /*
2365 *
2366 * Note - this code used to test ss_flags incorrectly
2367 * old code may have been written using ss_flags==0
2368 * to mean ss_flags==SS_ONSTACK (as this was the only
2369 * way that worked) - this fix preserves that older
2370 * mechanism
2371 */
2372 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2373 goto out;
2374
2375 if (ss_flags == SS_DISABLE) {
2376 ss_size = 0;
2377 ss_sp = NULL;
2378 } else {
2379 error = -ENOMEM;
2380 if (ss_size < MINSIGSTKSZ)
2381 goto out;
2382 }
2383
2384 current->sas_ss_sp = (unsigned long) ss_sp;
2385 current->sas_ss_size = ss_size;
2386 }
2387
2388 if (uoss) {
2389 error = -EFAULT;
2390 if (copy_to_user(uoss, &oss, sizeof(oss)))
2391 goto out;
2392 }
2393
2394 error = 0;
2395 out:
2396 return error;
2397 }
2398
2399 #ifdef __ARCH_WANT_SYS_SIGPENDING
2400
2401 asmlinkage long
2402 sys_sigpending(old_sigset_t __user *set)
2403 {
2404 return do_sigpending(set, sizeof(*set));
2405 }
2406
2407 #endif
2408
2409 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2410 /* Some platforms have their own version with special arguments others
2411 support only sys_rt_sigprocmask. */
2412
2413 asmlinkage long
2414 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2415 {
2416 int error;
2417 old_sigset_t old_set, new_set;
2418
2419 if (set) {
2420 error = -EFAULT;
2421 if (copy_from_user(&new_set, set, sizeof(*set)))
2422 goto out;
2423 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2424
2425 spin_lock_irq(&current->sighand->siglock);
2426 old_set = current->blocked.sig[0];
2427
2428 error = 0;
2429 switch (how) {
2430 default:
2431 error = -EINVAL;
2432 break;
2433 case SIG_BLOCK:
2434 sigaddsetmask(&current->blocked, new_set);
2435 break;
2436 case SIG_UNBLOCK:
2437 sigdelsetmask(&current->blocked, new_set);
2438 break;
2439 case SIG_SETMASK:
2440 current->blocked.sig[0] = new_set;
2441 break;
2442 }
2443
2444 recalc_sigpending();
2445 spin_unlock_irq(&current->sighand->siglock);
2446 if (error)
2447 goto out;
2448 if (oset)
2449 goto set_old;
2450 } else if (oset) {
2451 old_set = current->blocked.sig[0];
2452 set_old:
2453 error = -EFAULT;
2454 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2455 goto out;
2456 }
2457 error = 0;
2458 out:
2459 return error;
2460 }
2461 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2462
2463 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2464 asmlinkage long
2465 sys_rt_sigaction(int sig,
2466 const struct sigaction __user *act,
2467 struct sigaction __user *oact,
2468 size_t sigsetsize)
2469 {
2470 struct k_sigaction new_sa, old_sa;
2471 int ret = -EINVAL;
2472
2473 /* XXX: Don't preclude handling different sized sigset_t's. */
2474 if (sigsetsize != sizeof(sigset_t))
2475 goto out;
2476
2477 if (act) {
2478 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2479 return -EFAULT;
2480 }
2481
2482 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2483
2484 if (!ret && oact) {
2485 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2486 return -EFAULT;
2487 }
2488 out:
2489 return ret;
2490 }
2491 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2492
2493 #ifdef __ARCH_WANT_SYS_SGETMASK
2494
2495 /*
2496 * For backwards compatibility. Functionality superseded by sigprocmask.
2497 */
2498 asmlinkage long
2499 sys_sgetmask(void)
2500 {
2501 /* SMP safe */
2502 return current->blocked.sig[0];
2503 }
2504
2505 asmlinkage long
2506 sys_ssetmask(int newmask)
2507 {
2508 int old;
2509
2510 spin_lock_irq(&current->sighand->siglock);
2511 old = current->blocked.sig[0];
2512
2513 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2514 sigmask(SIGSTOP)));
2515 recalc_sigpending();
2516 spin_unlock_irq(&current->sighand->siglock);
2517
2518 return old;
2519 }
2520 #endif /* __ARCH_WANT_SGETMASK */
2521
2522 #ifdef __ARCH_WANT_SYS_SIGNAL
2523 /*
2524 * For backwards compatibility. Functionality superseded by sigaction.
2525 */
2526 asmlinkage unsigned long
2527 sys_signal(int sig, __sighandler_t handler)
2528 {
2529 struct k_sigaction new_sa, old_sa;
2530 int ret;
2531
2532 new_sa.sa.sa_handler = handler;
2533 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2534 sigemptyset(&new_sa.sa.sa_mask);
2535
2536 ret = do_sigaction(sig, &new_sa, &old_sa);
2537
2538 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2539 }
2540 #endif /* __ARCH_WANT_SYS_SIGNAL */
2541
2542 #ifdef __ARCH_WANT_SYS_PAUSE
2543
2544 asmlinkage long
2545 sys_pause(void)
2546 {
2547 current->state = TASK_INTERRUPTIBLE;
2548 schedule();
2549 return -ERESTARTNOHAND;
2550 }
2551
2552 #endif
2553
2554 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2555 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2556 {
2557 sigset_t newset;
2558
2559 /* XXX: Don't preclude handling different sized sigset_t's. */
2560 if (sigsetsize != sizeof(sigset_t))
2561 return -EINVAL;
2562
2563 if (copy_from_user(&newset, unewset, sizeof(newset)))
2564 return -EFAULT;
2565 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2566
2567 spin_lock_irq(&current->sighand->siglock);
2568 current->saved_sigmask = current->blocked;
2569 current->blocked = newset;
2570 recalc_sigpending();
2571 spin_unlock_irq(&current->sighand->siglock);
2572
2573 current->state = TASK_INTERRUPTIBLE;
2574 schedule();
2575 set_thread_flag(TIF_RESTORE_SIGMASK);
2576 return -ERESTARTNOHAND;
2577 }
2578 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2579
2580 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2581 {
2582 return NULL;
2583 }
2584
2585 void __init signals_init(void)
2586 {
2587 sigqueue_cachep =
2588 kmem_cache_create("sigqueue",
2589 sizeof(struct sigqueue),
2590 __alignof__(struct sigqueue),
2591 SLAB_PANIC, NULL, NULL);
2592 }