import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / sched.h
1
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
8 #include <linux/tick.h>
9
10 #include "cpupri.h"
11 #include "cpuacct.h"
12
13 extern __read_mostly int scheduler_running;
14
15 /*
16 * Convert user-nice values [ -20 ... 0 ... 19 ]
17 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
18 * and back.
19 */
20 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
21 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
22 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
23
24 extern unsigned long get_cpu_load(int cpu);
25 /*
26 * 'User priority' is the nice value converted to something we
27 * can work with better when scaling various scheduler parameters,
28 * it's a [ 0 ... 39 ] range.
29 */
30 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
31 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
32 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
33
34 /*
35 * Helpers for converting nanosecond timing to jiffy resolution
36 */
37 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
38
39 /*
40 * Increase resolution of nice-level calculations for 64-bit architectures.
41 * The extra resolution improves shares distribution and load balancing of
42 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
43 * hierarchies, especially on larger systems. This is not a user-visible change
44 * and does not change the user-interface for setting shares/weights.
45 *
46 * We increase resolution only if we have enough bits to allow this increased
47 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
48 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
49 * increased costs.
50 */
51 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
52 # define SCHED_LOAD_RESOLUTION 10
53 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
54 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
55 #else
56 # define SCHED_LOAD_RESOLUTION 0
57 # define scale_load(w) (w)
58 # define scale_load_down(w) (w)
59 #endif
60
61 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
62 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
63
64 #define NICE_0_LOAD SCHED_LOAD_SCALE
65 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
66
67 /*
68 * These are the 'tuning knobs' of the scheduler:
69 */
70
71 /*
72 * single value that denotes runtime == period, ie unlimited time.
73 */
74 #define RUNTIME_INF ((u64)~0ULL)
75
76 static inline int rt_policy(int policy)
77 {
78 if (policy == SCHED_FIFO || policy == SCHED_RR)
79 return 1;
80 return 0;
81 }
82
83 static inline int task_has_rt_policy(struct task_struct *p)
84 {
85 return rt_policy(p->policy);
86 }
87
88 /*
89 * This is the priority-queue data structure of the RT scheduling class:
90 */
91 struct rt_prio_array {
92 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
93 struct list_head queue[MAX_RT_PRIO];
94 };
95
96 struct rt_bandwidth {
97 /* nests inside the rq lock: */
98 raw_spinlock_t rt_runtime_lock;
99 ktime_t rt_period;
100 u64 rt_runtime;
101 struct hrtimer rt_period_timer;
102 };
103
104 extern struct mutex sched_domains_mutex;
105
106 #ifdef CONFIG_CGROUP_SCHED
107
108 #include <linux/cgroup.h>
109
110 struct cfs_rq;
111 struct rt_rq;
112
113 extern struct list_head task_groups;
114
115 struct cfs_bandwidth {
116 #ifdef CONFIG_CFS_BANDWIDTH
117 raw_spinlock_t lock;
118 ktime_t period;
119 u64 quota, runtime;
120 s64 hierarchal_quota;
121 u64 runtime_expires;
122
123 int idle, timer_active;
124 struct hrtimer period_timer, slack_timer;
125 struct list_head throttled_cfs_rq;
126
127 /* statistics */
128 int nr_periods, nr_throttled;
129 u64 throttled_time;
130 #endif
131 };
132
133 /* task group related information */
134 struct task_group {
135 struct cgroup_subsys_state css;
136
137 #ifdef CONFIG_FAIR_GROUP_SCHED
138 /* schedulable entities of this group on each cpu */
139 struct sched_entity **se;
140 /* runqueue "owned" by this group on each cpu */
141 struct cfs_rq **cfs_rq;
142 unsigned long shares;
143
144 #ifdef CONFIG_SMP
145 atomic_long_t load_avg;
146 atomic_t runnable_avg, usage_avg;
147 #endif
148 #endif
149
150 #ifdef CONFIG_RT_GROUP_SCHED
151 struct sched_rt_entity **rt_se;
152 struct rt_rq **rt_rq;
153
154 struct rt_bandwidth rt_bandwidth;
155 #endif
156
157 struct rcu_head rcu;
158 struct list_head list;
159
160 struct task_group *parent;
161 struct list_head siblings;
162 struct list_head children;
163
164 #ifdef CONFIG_SCHED_AUTOGROUP
165 struct autogroup *autogroup;
166 #endif
167
168 struct cfs_bandwidth cfs_bandwidth;
169 };
170
171 #ifdef CONFIG_FAIR_GROUP_SCHED
172 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
173
174 /*
175 * A weight of 0 or 1 can cause arithmetics problems.
176 * A weight of a cfs_rq is the sum of weights of which entities
177 * are queued on this cfs_rq, so a weight of a entity should not be
178 * too large, so as the shares value of a task group.
179 * (The default weight is 1024 - so there's no practical
180 * limitation from this.)
181 */
182 #define MIN_SHARES (1UL << 1)
183 #define MAX_SHARES (1UL << 18)
184 #endif
185
186 typedef int (*tg_visitor)(struct task_group *, void *);
187
188 extern int walk_tg_tree_from(struct task_group *from,
189 tg_visitor down, tg_visitor up, void *data);
190
191 /*
192 * Iterate the full tree, calling @down when first entering a node and @up when
193 * leaving it for the final time.
194 *
195 * Caller must hold rcu_lock or sufficient equivalent.
196 */
197 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
198 {
199 return walk_tg_tree_from(&root_task_group, down, up, data);
200 }
201
202 extern int tg_nop(struct task_group *tg, void *data);
203
204 extern void free_fair_sched_group(struct task_group *tg);
205 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
206 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
207 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
208 struct sched_entity *se, int cpu,
209 struct sched_entity *parent);
210 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
211 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
212
213 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
214 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
215 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
216
217 extern void free_rt_sched_group(struct task_group *tg);
218 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
219 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
220 struct sched_rt_entity *rt_se, int cpu,
221 struct sched_rt_entity *parent);
222
223 extern struct task_group *sched_create_group(struct task_group *parent);
224 extern void sched_online_group(struct task_group *tg,
225 struct task_group *parent);
226 extern void sched_destroy_group(struct task_group *tg);
227 extern void sched_offline_group(struct task_group *tg);
228
229 extern void sched_move_task(struct task_struct *tsk);
230
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
233 #endif
234
235 #else /* CONFIG_CGROUP_SCHED */
236
237 struct cfs_bandwidth { };
238
239 #endif /* CONFIG_CGROUP_SCHED */
240
241 /* CFS-related fields in a runqueue */
242 struct cfs_rq {
243 struct load_weight load;
244 unsigned int nr_running, h_nr_running;
245
246 u64 exec_clock;
247 u64 min_vruntime;
248 #ifndef CONFIG_64BIT
249 u64 min_vruntime_copy;
250 #endif
251
252 struct rb_root tasks_timeline;
253 struct rb_node *rb_leftmost;
254
255 /*
256 * 'curr' points to currently running entity on this cfs_rq.
257 * It is set to NULL otherwise (i.e when none are currently running).
258 */
259 struct sched_entity *curr, *next, *last, *skip;
260
261 #ifdef CONFIG_SCHED_DEBUG
262 unsigned int nr_spread_over;
263 #endif
264
265 #ifdef CONFIG_SMP
266 /*
267 * CFS Load tracking
268 * Under CFS, load is tracked on a per-entity basis and aggregated up.
269 * This allows for the description of both thread and group usage (in
270 * the FAIR_GROUP_SCHED case).
271 */
272 unsigned long runnable_load_avg, blocked_load_avg;
273 atomic64_t decay_counter;
274 u64 last_decay;
275 atomic_long_t removed_load;
276
277 #ifdef CONFIG_FAIR_GROUP_SCHED
278 /* Required to track per-cpu representation of a task_group */
279 u32 tg_runnable_contrib, tg_usage_contrib;
280 unsigned long tg_load_contrib;
281 #endif /* CONFIG_FAIR_GROUP_SCHED */
282
283 struct sched_avg avg;
284
285 /*
286 * h_load = weight * f(tg)
287 *
288 * Where f(tg) is the recursive weight fraction assigned to
289 * this group.
290 */
291 unsigned long h_load;
292 #endif /* CONFIG_SMP */
293
294 #ifdef CONFIG_FAIR_GROUP_SCHED
295 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
296
297 /*
298 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
299 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
300 * (like users, containers etc.)
301 *
302 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
303 * list is used during load balance.
304 */
305 int on_list;
306 struct list_head leaf_cfs_rq_list;
307 struct task_group *tg; /* group that "owns" this runqueue */
308
309 #ifdef CONFIG_CFS_BANDWIDTH
310 int runtime_enabled;
311 u64 runtime_expires;
312 s64 runtime_remaining;
313
314 u64 throttled_clock, throttled_clock_task;
315 u64 throttled_clock_task_time;
316 int throttled, throttle_count;
317 struct list_head throttled_list;
318 #endif /* CONFIG_CFS_BANDWIDTH */
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
320 };
321
322 static inline int rt_bandwidth_enabled(void)
323 {
324 return sysctl_sched_rt_runtime >= 0;
325 }
326
327 /* Real-Time classes' related field in a runqueue: */
328 struct rt_rq {
329 struct rt_prio_array active;
330 unsigned int rt_nr_running;
331 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
332 struct {
333 int curr; /* highest queued rt task prio */
334 #ifdef CONFIG_SMP
335 int next; /* next highest */
336 #endif
337 } highest_prio;
338 #endif
339 #ifdef CONFIG_SMP
340 unsigned long rt_nr_migratory;
341 unsigned long rt_nr_total;
342 int overloaded;
343 struct plist_head pushable_tasks;
344 #endif
345 int rt_throttled;
346 int rt_disable_borrow;
347 u64 rt_time;
348 u64 rt_runtime;
349 /* Nests inside the rq lock: */
350 raw_spinlock_t rt_runtime_lock;
351
352 #ifdef CONFIG_RT_GROUP_SCHED
353 unsigned long rt_nr_boosted;
354
355 struct rq *rq;
356 struct list_head leaf_rt_rq_list;
357 struct task_group *tg;
358 #endif
359 };
360
361 #ifdef CONFIG_SMP
362
363 /*
364 * We add the notion of a root-domain which will be used to define per-domain
365 * variables. Each exclusive cpuset essentially defines an island domain by
366 * fully partitioning the member cpus from any other cpuset. Whenever a new
367 * exclusive cpuset is created, we also create and attach a new root-domain
368 * object.
369 *
370 */
371 struct root_domain {
372 atomic_t refcount;
373 atomic_t rto_count;
374 struct rcu_head rcu;
375 cpumask_var_t span;
376 cpumask_var_t online;
377
378 /*
379 * The "RT overload" flag: it gets set if a CPU has more than
380 * one runnable RT task.
381 */
382 cpumask_var_t rto_mask;
383 struct cpupri cpupri;
384 };
385
386 extern struct root_domain def_root_domain;
387
388 #endif /* CONFIG_SMP */
389
390 /*
391 * This is the main, per-CPU runqueue data structure.
392 *
393 * Locking rule: those places that want to lock multiple runqueues
394 * (such as the load balancing or the thread migration code), lock
395 * acquire operations must be ordered by ascending &runqueue.
396 */
397 struct rq {
398 /* runqueue lock: */
399 raw_spinlock_t lock;
400
401 /*
402 * nr_running and cpu_load should be in the same cacheline because
403 * remote CPUs use both these fields when doing load calculation.
404 */
405 unsigned int nr_running;
406 #define CPU_LOAD_IDX_MAX 5
407 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
408 unsigned long last_load_update_tick;
409 #ifdef CONFIG_NO_HZ_COMMON
410 u64 nohz_stamp;
411 unsigned long nohz_flags;
412 #endif
413 #ifdef CONFIG_NO_HZ_FULL
414 unsigned long last_sched_tick;
415 #endif
416 int skip_clock_update;
417
418 /* capture load from *all* tasks on this cpu: */
419 struct load_weight load;
420 unsigned long nr_load_updates;
421 u64 nr_switches;
422
423 struct cfs_rq cfs;
424 struct rt_rq rt;
425
426 #ifdef CONFIG_FAIR_GROUP_SCHED
427 /* list of leaf cfs_rq on this cpu: */
428 struct list_head leaf_cfs_rq_list;
429 #ifdef CONFIG_SMP
430 unsigned long h_load_throttle;
431 #endif /* CONFIG_SMP */
432 #endif /* CONFIG_FAIR_GROUP_SCHED */
433
434 #ifdef CONFIG_RT_GROUP_SCHED
435 struct list_head leaf_rt_rq_list;
436 #endif
437
438 /*
439 * This is part of a global counter where only the total sum
440 * over all CPUs matters. A task can increase this counter on
441 * one CPU and if it got migrated afterwards it may decrease
442 * it on another CPU. Always updated under the runqueue lock:
443 */
444 unsigned long nr_uninterruptible;
445
446 struct task_struct *curr, *idle, *stop;
447 unsigned long next_balance;
448 struct mm_struct *prev_mm;
449
450 u64 clock;
451 u64 clock_task;
452
453 atomic_t nr_iowait;
454
455 #ifdef CONFIG_SMP
456 struct root_domain *rd;
457 struct sched_domain *sd;
458
459 unsigned long cpu_power;
460
461 unsigned char idle_balance;
462 /* For active balancing */
463 int post_schedule;
464 int active_balance;
465 int push_cpu;
466 struct cpu_stop_work active_balance_work;
467 #ifdef CONFIG_SCHED_HMP
468 struct task_struct *migrate_task;
469 #endif
470 /* cpu of this runqueue: */
471 int cpu;
472 int online;
473
474 struct list_head cfs_tasks;
475
476 u64 rt_avg;
477 u64 age_stamp;
478 u64 idle_stamp;
479 u64 avg_idle;
480 #endif
481
482 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
483 u64 prev_irq_time;
484 #endif
485 #ifdef CONFIG_PARAVIRT
486 u64 prev_steal_time;
487 #endif
488 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
489 u64 prev_steal_time_rq;
490 #endif
491
492 /* calc_load related fields */
493 unsigned long calc_load_update;
494 long calc_load_active;
495
496 #ifdef CONFIG_SCHED_HRTICK
497 #ifdef CONFIG_SMP
498 int hrtick_csd_pending;
499 struct call_single_data hrtick_csd;
500 #endif
501 struct hrtimer hrtick_timer;
502 #endif
503
504 #ifdef CONFIG_SCHEDSTATS
505 /* latency stats */
506 struct sched_info rq_sched_info;
507 unsigned long long rq_cpu_time;
508 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
509
510 /* sys_sched_yield() stats */
511 unsigned int yld_count;
512
513 /* schedule() stats */
514 unsigned int sched_count;
515 unsigned int sched_goidle;
516
517 /* try_to_wake_up() stats */
518 unsigned int ttwu_count;
519 unsigned int ttwu_local;
520 #endif
521
522 #ifdef CONFIG_SMP
523 struct llist_head wake_list;
524 #endif
525
526 struct sched_avg avg;
527 };
528
529 static inline int cpu_of(struct rq *rq)
530 {
531 #ifdef CONFIG_SMP
532 return rq->cpu;
533 #else
534 return 0;
535 #endif
536 }
537
538 DECLARE_PER_CPU(struct rq, runqueues);
539
540 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
541 #define this_rq() (&__get_cpu_var(runqueues))
542 #define task_rq(p) cpu_rq(task_cpu(p))
543 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
544 #define raw_rq() (&__raw_get_cpu_var(runqueues))
545
546 #ifdef CONFIG_SMP
547
548 #define rcu_dereference_check_sched_domain(p) \
549 rcu_dereference_check((p), \
550 lockdep_is_held(&sched_domains_mutex))
551
552 /*
553 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
554 * See detach_destroy_domains: synchronize_sched for details.
555 *
556 * The domain tree of any CPU may only be accessed from within
557 * preempt-disabled sections.
558 */
559 #define for_each_domain(cpu, __sd) \
560 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
561 __sd; __sd = __sd->parent)
562
563 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
564
565 /**
566 * highest_flag_domain - Return highest sched_domain containing flag.
567 * @cpu: The cpu whose highest level of sched domain is to
568 * be returned.
569 * @flag: The flag to check for the highest sched_domain
570 * for the given cpu.
571 *
572 * Returns the highest sched_domain of a cpu which contains the given flag.
573 */
574 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
575 {
576 struct sched_domain *sd, *hsd = NULL;
577
578 for_each_domain(cpu, sd) {
579 if (!(sd->flags & flag))
580 break;
581 hsd = sd;
582 }
583
584 return hsd;
585 }
586
587 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
588 DECLARE_PER_CPU(int, sd_llc_id);
589
590 struct sched_group_power {
591 atomic_t ref;
592 /*
593 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
594 * single CPU.
595 */
596 unsigned int power, power_orig;
597 unsigned long next_update;
598 /*
599 * Number of busy cpus in this group.
600 */
601 atomic_t nr_busy_cpus;
602
603 unsigned long cpumask[0]; /* iteration mask */
604 };
605
606 struct sched_group {
607 struct sched_group *next; /* Must be a circular list */
608 atomic_t ref;
609
610 unsigned int group_weight;
611 struct sched_group_power *sgp;
612
613 /*
614 * The CPUs this group covers.
615 *
616 * NOTE: this field is variable length. (Allocated dynamically
617 * by attaching extra space to the end of the structure,
618 * depending on how many CPUs the kernel has booted up with)
619 */
620 unsigned long cpumask[0];
621 };
622
623 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
624 {
625 return to_cpumask(sg->cpumask);
626 }
627
628 /*
629 * cpumask masking which cpus in the group are allowed to iterate up the domain
630 * tree.
631 */
632 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
633 {
634 return to_cpumask(sg->sgp->cpumask);
635 }
636
637 /**
638 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
639 * @group: The group whose first cpu is to be returned.
640 */
641 static inline unsigned int group_first_cpu(struct sched_group *group)
642 {
643 return cpumask_first(sched_group_cpus(group));
644 }
645
646 extern int group_balance_cpu(struct sched_group *sg);
647
648 #ifdef CONFIG_SCHED_HMP
649 static LIST_HEAD(hmp_domains);
650 DECLARE_PER_CPU(struct hmp_domain *, hmp_cpu_domain);
651 #define hmp_cpu_domain(cpu) (per_cpu(hmp_cpu_domain, (cpu)))
652 #endif /* CONFIG_SCHED_HMP */
653
654 #endif /* CONFIG_SMP */
655
656 #include "stats.h"
657 #include "auto_group.h"
658
659 #ifdef CONFIG_CGROUP_SCHED
660
661 /*
662 * Return the group to which this tasks belongs.
663 *
664 * We cannot use task_subsys_state() and friends because the cgroup
665 * subsystem changes that value before the cgroup_subsys::attach() method
666 * is called, therefore we cannot pin it and might observe the wrong value.
667 *
668 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
669 * core changes this before calling sched_move_task().
670 *
671 * Instead we use a 'copy' which is updated from sched_move_task() while
672 * holding both task_struct::pi_lock and rq::lock.
673 */
674 static inline struct task_group *task_group(struct task_struct *p)
675 {
676 return p->sched_task_group;
677 }
678
679 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
680 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
681 {
682 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
683 struct task_group *tg = task_group(p);
684 #endif
685
686 #ifdef CONFIG_FAIR_GROUP_SCHED
687 p->se.cfs_rq = tg->cfs_rq[cpu];
688 p->se.parent = tg->se[cpu];
689 #endif
690
691 #ifdef CONFIG_RT_GROUP_SCHED
692 p->rt.rt_rq = tg->rt_rq[cpu];
693 p->rt.parent = tg->rt_se[cpu];
694 #endif
695 }
696
697 #else /* CONFIG_CGROUP_SCHED */
698
699 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
700 static inline struct task_group *task_group(struct task_struct *p)
701 {
702 return NULL;
703 }
704
705 #endif /* CONFIG_CGROUP_SCHED */
706
707 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
708 {
709 set_task_rq(p, cpu);
710 #ifdef CONFIG_SMP
711 /*
712 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
713 * successfuly executed on another CPU. We must ensure that updates of
714 * per-task data have been completed by this moment.
715 */
716 smp_wmb();
717 task_thread_info(p)->cpu = cpu;
718
719 #ifdef CONFIG_FAIR_GROUP_SCHED
720 BUG_ON(p->se.cfs_rq->rq->cpu != cpu);
721 #endif
722
723 #endif
724 }
725
726 /*
727 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
728 */
729 #ifdef CONFIG_SCHED_DEBUG
730 # include <linux/static_key.h>
731 # define const_debug __read_mostly
732 #else
733 # define const_debug const
734 #endif
735
736 extern const_debug unsigned int sysctl_sched_features;
737
738 #define SCHED_FEAT(name, enabled) \
739 __SCHED_FEAT_##name ,
740
741 enum {
742 #include "features.h"
743 __SCHED_FEAT_NR,
744 };
745
746 #undef SCHED_FEAT
747
748 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
749 static __always_inline bool static_branch__true(struct static_key *key)
750 {
751 return static_key_true(key); /* Not out of line branch. */
752 }
753
754 static __always_inline bool static_branch__false(struct static_key *key)
755 {
756 return static_key_false(key); /* Out of line branch. */
757 }
758
759 #define SCHED_FEAT(name, enabled) \
760 static __always_inline bool static_branch_##name(struct static_key *key) \
761 { \
762 return static_branch__##enabled(key); \
763 }
764
765 #include "features.h"
766
767 #undef SCHED_FEAT
768
769 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
770 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
771 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
772 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
773 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
774
775 #ifdef CONFIG_NUMA_BALANCING
776 #define sched_feat_numa(x) sched_feat(x)
777 #ifdef CONFIG_SCHED_DEBUG
778 #define numabalancing_enabled sched_feat_numa(NUMA)
779 #else
780 extern bool numabalancing_enabled;
781 #endif /* CONFIG_SCHED_DEBUG */
782 #else
783 #define sched_feat_numa(x) (0)
784 #define numabalancing_enabled (0)
785 #endif /* CONFIG_NUMA_BALANCING */
786
787 static inline u64 global_rt_period(void)
788 {
789 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
790 }
791
792 static inline u64 global_rt_runtime(void)
793 {
794 if (sysctl_sched_rt_runtime < 0)
795 return RUNTIME_INF;
796
797 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
798 }
799
800
801
802 static inline int task_current(struct rq *rq, struct task_struct *p)
803 {
804 return rq->curr == p;
805 }
806
807 static inline int task_running(struct rq *rq, struct task_struct *p)
808 {
809 #ifdef CONFIG_SMP
810 return p->on_cpu;
811 #else
812 return task_current(rq, p);
813 #endif
814 }
815
816
817 #ifndef prepare_arch_switch
818 # define prepare_arch_switch(next) do { } while (0)
819 #endif
820 #ifndef finish_arch_switch
821 # define finish_arch_switch(prev) do { } while (0)
822 #endif
823 #ifndef finish_arch_post_lock_switch
824 # define finish_arch_post_lock_switch() do { } while (0)
825 #endif
826
827 #ifdef CONFIG_MT_RT_SCHED
828 extern void mt_check_rt_policy(struct rq *this_rq);
829 extern int push_need_released_rt_task(struct rq *rq, struct task_struct *p);
830 extern int pull_rt_task(struct rq *this_rq);
831 extern int mt_post_schedule(struct rq *rq);
832 #endif
833
834 #ifdef CONFIG_MT_RT_SCHED_LOG
835 #ifdef CONFIG_MT_RT_SCHED_DEBUG
836 #define mt_rt_printf(x...) \
837 do{ \
838 char strings[128]=""; \
839 snprintf(strings, 128, x); \
840 printk(KERN_NOTICE x); \
841 trace_sched_rt_log(strings); \
842 }while (0)
843 #else
844 #define mt_rt_printf(x...) \
845 do{ \
846 char strings[128]=""; \
847 snprintf(strings, 128, x); \
848 trace_sched_rt_log(strings); \
849 }while (0)
850 #endif
851 #else
852 #define mt_rt_printf do {} while (0)
853 #endif
854
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
857 {
858 #ifdef CONFIG_SMP
859 /*
860 * We can optimise this out completely for !SMP, because the
861 * SMP rebalancing from interrupt is the only thing that cares
862 * here.
863 */
864 next->on_cpu = 1;
865 #endif
866 }
867
868 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
869 {
870 #ifdef CONFIG_SMP
871 /*
872 * After ->on_cpu is cleared, the task can be moved to a different CPU.
873 * We must ensure this doesn't happen until the switch is completely
874 * finished.
875 */
876 smp_wmb();
877 prev->on_cpu = 0;
878 #endif
879 #ifdef CONFIG_DEBUG_SPINLOCK
880 /* this is a valid case when another task releases the spinlock */
881 rq->lock.owner = current;
882 #endif
883 /*
884 * If we are tracking spinlock dependencies then we have to
885 * fix up the runqueue lock - which gets 'carried over' from
886 * prev into current:
887 */
888 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
889 #ifdef CONFIG_MT_RT_SCHED
890 if(test_tsk_need_released(prev)){
891 clear_tsk_need_released(prev);
892 push_need_released_rt_task(rq, prev);
893 }
894 #endif
895 raw_spin_unlock_irq(&rq->lock);
896 }
897
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
900 {
901 #ifdef CONFIG_SMP
902 /*
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
906 */
907 next->on_cpu = 1;
908 #endif
909 raw_spin_unlock(&rq->lock);
910 }
911
912 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 {
914 #ifdef CONFIG_SMP
915 /*
916 * After ->on_cpu is cleared, the task can be moved to a different CPU.
917 * We must ensure this doesn't happen until the switch is completely
918 * finished.
919 */
920 smp_wmb();
921 prev->on_cpu = 0;
922 #endif
923 local_irq_enable();
924 }
925 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926
927 /*
928 * wake flags
929 */
930 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
931 #define WF_FORK 0x02 /* child wakeup after fork */
932 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
933
934 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
935 {
936 lw->weight += inc;
937 lw->inv_weight = 0;
938 }
939
940 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
941 {
942 lw->weight -= dec;
943 lw->inv_weight = 0;
944 }
945
946 static inline void update_load_set(struct load_weight *lw, unsigned long w)
947 {
948 lw->weight = w;
949 lw->inv_weight = 0;
950 }
951
952 /*
953 * To aid in avoiding the subversion of "niceness" due to uneven distribution
954 * of tasks with abnormal "nice" values across CPUs the contribution that
955 * each task makes to its run queue's load is weighted according to its
956 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
957 * scaled version of the new time slice allocation that they receive on time
958 * slice expiry etc.
959 */
960
961 #define WEIGHT_IDLEPRIO 3
962 #define WMULT_IDLEPRIO 1431655765
963
964 /*
965 * Nice levels are multiplicative, with a gentle 10% change for every
966 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
967 * nice 1, it will get ~10% less CPU time than another CPU-bound task
968 * that remained on nice 0.
969 *
970 * The "10% effect" is relative and cumulative: from _any_ nice level,
971 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
972 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
973 * If a task goes up by ~10% and another task goes down by ~10% then
974 * the relative distance between them is ~25%.)
975 */
976 static const int prio_to_weight[40] = {
977 /* -20 */ 88761, 71755, 56483, 46273, 36291,
978 /* -15 */ 29154, 23254, 18705, 14949, 11916,
979 /* -10 */ 9548, 7620, 6100, 4904, 3906,
980 /* -5 */ 3121, 2501, 1991, 1586, 1277,
981 /* 0 */ 1024, 820, 655, 526, 423,
982 /* 5 */ 335, 272, 215, 172, 137,
983 /* 10 */ 110, 87, 70, 56, 45,
984 /* 15 */ 36, 29, 23, 18, 15,
985 };
986
987 /*
988 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
989 *
990 * In cases where the weight does not change often, we can use the
991 * precalculated inverse to speed up arithmetics by turning divisions
992 * into multiplications:
993 */
994 static const u32 prio_to_wmult[40] = {
995 /* -20 */ 48388, 59856, 76040, 92818, 118348,
996 /* -15 */ 147320, 184698, 229616, 287308, 360437,
997 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
998 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
999 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1000 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1001 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1002 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1003 };
1004
1005 #define ENQUEUE_WAKEUP 1
1006 #define ENQUEUE_HEAD 2
1007 #ifdef CONFIG_SMP
1008 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1009 #else
1010 #define ENQUEUE_WAKING 0
1011 #endif
1012
1013 #define DEQUEUE_SLEEP 1
1014
1015 struct sched_class {
1016 const struct sched_class *next;
1017
1018 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1019 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1020 void (*yield_task) (struct rq *rq);
1021 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1022
1023 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1024
1025 struct task_struct * (*pick_next_task) (struct rq *rq);
1026 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1027
1028 #ifdef CONFIG_SMP
1029 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1030 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1031
1032 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1033 void (*post_schedule) (struct rq *this_rq);
1034 void (*task_waking) (struct task_struct *task);
1035 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1036
1037 void (*set_cpus_allowed)(struct task_struct *p,
1038 const struct cpumask *newmask);
1039
1040 void (*rq_online)(struct rq *rq);
1041 void (*rq_offline)(struct rq *rq);
1042 #endif
1043
1044 void (*set_curr_task) (struct rq *rq);
1045 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1046 void (*task_fork) (struct task_struct *p);
1047
1048 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1049 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1050 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1051 int oldprio);
1052
1053 unsigned int (*get_rr_interval) (struct rq *rq,
1054 struct task_struct *task);
1055
1056 #ifdef CONFIG_FAIR_GROUP_SCHED
1057 void (*task_move_group) (struct task_struct *p, int on_rq);
1058 #endif
1059 };
1060
1061 #define sched_class_highest (&stop_sched_class)
1062 #define for_each_class(class) \
1063 for (class = sched_class_highest; class; class = class->next)
1064
1065 extern const struct sched_class stop_sched_class;
1066 extern const struct sched_class rt_sched_class;
1067 extern const struct sched_class fair_sched_class;
1068 extern const struct sched_class idle_sched_class;
1069
1070
1071 #ifdef CONFIG_SMP
1072
1073 extern void update_group_power(struct sched_domain *sd, int cpu);
1074
1075 extern void trigger_load_balance(struct rq *rq, int cpu);
1076 extern void idle_balance(int this_cpu, struct rq *this_rq);
1077
1078 extern void idle_enter_fair(struct rq *this_rq);
1079 extern void idle_exit_fair(struct rq *this_rq);
1080
1081
1082 # ifdef CONFIG_MTK_SCHED_CMP_TGS
1083 extern int group_leader_is_empty(struct task_struct *p);
1084 # endif /* CONFIG_MTK_SCHED_CMP_TGS */
1085
1086 # ifdef CONFIG_MTK_SCHED_CMP
1087 extern void get_cluster_cpus(struct cpumask *cpus, int cluster_id,
1088 bool exclusive_offline);
1089 extern int get_cluster_id(unsigned int cpu);
1090 # endif /* CONFIG_MTK_SCHED_CMP */
1091
1092 #else /* CONFIG_SMP */
1093
1094 static inline void idle_balance(int cpu, struct rq *rq)
1095 {
1096 }
1097
1098 #endif
1099
1100 extern void sysrq_sched_debug_show(void);
1101 extern void sched_init_granularity(void);
1102 #if defined (CONFIG_MTK_SCHED_CMP_PACK_SMALL_TASK) || defined (CONFIG_HMP_PACK_SMALL_TASK)
1103 extern void update_packing_domain(int cpu);
1104 #endif /* CONFIG_HMP_PACK_SMALL_TASK */
1105 extern void update_max_interval(void);
1106 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
1107 extern void init_sched_rt_class(void);
1108 extern void init_sched_fair_class(void);
1109
1110 extern void resched_task(struct task_struct *p);
1111 extern void resched_cpu(int cpu);
1112
1113 extern struct rt_bandwidth def_rt_bandwidth;
1114 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1115
1116 extern void update_idle_cpu_load(struct rq *this_rq);
1117
1118 extern void init_task_runnable_average(struct task_struct *p);
1119
1120 #ifdef CONFIG_PARAVIRT
1121 static inline u64 steal_ticks(u64 steal)
1122 {
1123 if (unlikely(steal > NSEC_PER_SEC))
1124 return div_u64(steal, TICK_NSEC);
1125
1126 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1127 }
1128 #endif
1129
1130 static inline void inc_nr_running(struct rq *rq)
1131 {
1132 #ifdef CONFIG_MTK_SCHED_RQAVG_KS
1133 sched_update_nr_prod(cpu_of(rq), rq->nr_running, true);
1134 #endif /* CONFIG_MTK_SCHED_RQAVG_KS */
1135 rq->nr_running++;
1136
1137 #ifdef CONFIG_NO_HZ_FULL
1138 if (rq->nr_running == 2) {
1139 if (tick_nohz_full_cpu(rq->cpu)) {
1140 /* Order rq->nr_running write against the IPI */
1141 smp_wmb();
1142 smp_send_reschedule(rq->cpu);
1143 }
1144 }
1145 #endif
1146 }
1147
1148 static inline void dec_nr_running(struct rq *rq)
1149 {
1150 #ifdef CONFIG_MTK_SCHED_RQAVG_KS
1151 sched_update_nr_prod(cpu_of(rq), rq->nr_running, false);
1152 #endif /* CONFIG_MTK_SCHED_RQAVG_KS */
1153 rq->nr_running--;
1154 }
1155
1156 static inline void rq_last_tick_reset(struct rq *rq)
1157 {
1158 #ifdef CONFIG_NO_HZ_FULL
1159 rq->last_sched_tick = jiffies;
1160 #endif
1161 }
1162
1163 extern void update_rq_clock(struct rq *rq);
1164
1165 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1166 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1167
1168 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1169
1170 extern const_debug unsigned int sysctl_sched_time_avg;
1171 extern const_debug unsigned int sysctl_sched_nr_migrate;
1172 extern const_debug unsigned int sysctl_sched_migration_cost;
1173
1174 static inline u64 sched_avg_period(void)
1175 {
1176 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1177 }
1178
1179 #ifdef CONFIG_SCHED_HRTICK
1180
1181 /*
1182 * Use hrtick when:
1183 * - enabled by features
1184 * - hrtimer is actually high res
1185 */
1186 static inline int hrtick_enabled(struct rq *rq)
1187 {
1188 if (!sched_feat(HRTICK))
1189 return 0;
1190 if (!cpu_active(cpu_of(rq)))
1191 return 0;
1192 return hrtimer_is_hres_active(&rq->hrtick_timer);
1193 }
1194
1195 void hrtick_start(struct rq *rq, u64 delay);
1196
1197 #else
1198
1199 static inline int hrtick_enabled(struct rq *rq)
1200 {
1201 return 0;
1202 }
1203
1204 #endif /* CONFIG_SCHED_HRTICK */
1205
1206 #ifdef CONFIG_SMP
1207 extern void sched_avg_update(struct rq *rq);
1208 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1209 {
1210 rq->rt_avg += rt_delta;
1211 sched_avg_update(rq);
1212 }
1213 #else
1214 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1215 static inline void sched_avg_update(struct rq *rq) { }
1216 #endif
1217
1218 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1219
1220 #ifdef CONFIG_SMP
1221 #ifdef CONFIG_PREEMPT
1222
1223 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1224
1225 /*
1226 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1227 * way at the expense of forcing extra atomic operations in all
1228 * invocations. This assures that the double_lock is acquired using the
1229 * same underlying policy as the spinlock_t on this architecture, which
1230 * reduces latency compared to the unfair variant below. However, it
1231 * also adds more overhead and therefore may reduce throughput.
1232 */
1233 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1234 __releases(this_rq->lock)
1235 __acquires(busiest->lock)
1236 __acquires(this_rq->lock)
1237 {
1238 raw_spin_unlock(&this_rq->lock);
1239 double_rq_lock(this_rq, busiest);
1240
1241 return 1;
1242 }
1243
1244 #else
1245 /*
1246 * Unfair double_lock_balance: Optimizes throughput at the expense of
1247 * latency by eliminating extra atomic operations when the locks are
1248 * already in proper order on entry. This favors lower cpu-ids and will
1249 * grant the double lock to lower cpus over higher ids under contention,
1250 * regardless of entry order into the function.
1251 */
1252 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1253 __releases(this_rq->lock)
1254 __acquires(busiest->lock)
1255 __acquires(this_rq->lock)
1256 {
1257 int ret = 0;
1258
1259 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1260 if (busiest < this_rq) {
1261 raw_spin_unlock(&this_rq->lock);
1262 raw_spin_lock(&busiest->lock);
1263 raw_spin_lock_nested(&this_rq->lock,
1264 SINGLE_DEPTH_NESTING);
1265 ret = 1;
1266 } else
1267 raw_spin_lock_nested(&busiest->lock,
1268 SINGLE_DEPTH_NESTING);
1269 }
1270 return ret;
1271 }
1272
1273 #endif /* CONFIG_PREEMPT */
1274
1275 /*
1276 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1277 */
1278 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1279 {
1280 if (unlikely(!irqs_disabled())) {
1281 /* printk() doesn't work good under rq->lock */
1282 raw_spin_unlock(&this_rq->lock);
1283 BUG_ON(1);
1284 }
1285
1286 return _double_lock_balance(this_rq, busiest);
1287 }
1288
1289 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1290 __releases(busiest->lock)
1291 {
1292 raw_spin_unlock(&busiest->lock);
1293 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1294 }
1295
1296 /*
1297 * double_rq_lock - safely lock two runqueues
1298 *
1299 * Note this does not disable interrupts like task_rq_lock,
1300 * you need to do so manually before calling.
1301 */
1302 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1303 __acquires(rq1->lock)
1304 __acquires(rq2->lock)
1305 {
1306 BUG_ON(!irqs_disabled());
1307 if (rq1 == rq2) {
1308 raw_spin_lock(&rq1->lock);
1309 __acquire(rq2->lock); /* Fake it out ;) */
1310 } else {
1311 if (rq1 < rq2) {
1312 raw_spin_lock(&rq1->lock);
1313 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1314 } else {
1315 raw_spin_lock(&rq2->lock);
1316 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1317 }
1318 }
1319 }
1320
1321 /*
1322 * double_rq_unlock - safely unlock two runqueues
1323 *
1324 * Note this does not restore interrupts like task_rq_unlock,
1325 * you need to do so manually after calling.
1326 */
1327 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1328 __releases(rq1->lock)
1329 __releases(rq2->lock)
1330 {
1331 raw_spin_unlock(&rq1->lock);
1332 if (rq1 != rq2)
1333 raw_spin_unlock(&rq2->lock);
1334 else
1335 __release(rq2->lock);
1336 }
1337
1338 #else /* CONFIG_SMP */
1339
1340 /*
1341 * double_rq_lock - safely lock two runqueues
1342 *
1343 * Note this does not disable interrupts like task_rq_lock,
1344 * you need to do so manually before calling.
1345 */
1346 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1347 __acquires(rq1->lock)
1348 __acquires(rq2->lock)
1349 {
1350 BUG_ON(!irqs_disabled());
1351 BUG_ON(rq1 != rq2);
1352 raw_spin_lock(&rq1->lock);
1353 __acquire(rq2->lock); /* Fake it out ;) */
1354 }
1355
1356 /*
1357 * double_rq_unlock - safely unlock two runqueues
1358 *
1359 * Note this does not restore interrupts like task_rq_unlock,
1360 * you need to do so manually after calling.
1361 */
1362 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1363 __releases(rq1->lock)
1364 __releases(rq2->lock)
1365 {
1366 BUG_ON(rq1 != rq2);
1367 raw_spin_unlock(&rq1->lock);
1368 __release(rq2->lock);
1369 }
1370
1371 #endif
1372
1373 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1374 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1375 extern void print_cfs_stats(struct seq_file *m, int cpu);
1376 extern void print_rt_stats(struct seq_file *m, int cpu);
1377
1378 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1379 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1380 extern void unthrottle_offline_rt_rqs(struct rq *rq);
1381
1382 extern void cfs_bandwidth_usage_inc(void);
1383 extern void cfs_bandwidth_usage_dec(void);
1384
1385 #ifdef CONFIG_NO_HZ_COMMON
1386 enum rq_nohz_flag_bits {
1387 NOHZ_TICK_STOPPED,
1388 NOHZ_BALANCE_KICK,
1389 };
1390
1391 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1392 #endif
1393
1394 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1395
1396 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1397 DECLARE_PER_CPU(u64, cpu_softirq_time);
1398
1399 #ifndef CONFIG_64BIT
1400 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1401
1402 static inline void irq_time_write_begin(void)
1403 {
1404 __this_cpu_inc(irq_time_seq.sequence);
1405 smp_wmb();
1406 }
1407
1408 static inline void irq_time_write_end(void)
1409 {
1410 smp_wmb();
1411 __this_cpu_inc(irq_time_seq.sequence);
1412 }
1413
1414 static inline u64 irq_time_read(int cpu)
1415 {
1416 u64 irq_time;
1417 unsigned seq;
1418
1419 do {
1420 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1421 irq_time = per_cpu(cpu_softirq_time, cpu) +
1422 per_cpu(cpu_hardirq_time, cpu);
1423 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1424
1425 return irq_time;
1426 }
1427 #else /* CONFIG_64BIT */
1428 static inline void irq_time_write_begin(void)
1429 {
1430 }
1431
1432 static inline void irq_time_write_end(void)
1433 {
1434 }
1435
1436 static inline u64 irq_time_read(int cpu)
1437 {
1438 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1439 }
1440 #endif /* CONFIG_64BIT */
1441 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1442
1443 #ifdef CONFIG_SMP
1444 static inline int rq_cpu(const struct rq *rq) { return rq->cpu; }
1445 #else
1446 static inline int rq_cpu(const struct rq *rq) { return 0; }
1447 #endif
1448