Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 /*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125 static int get_update_sysctl_factor(void)
126 {
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144 }
145
146 static void update_sysctl(void)
147 {
148 unsigned int factor = get_update_sysctl_factor();
149
150 #define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155 #undef SET_SYSCTL
156 }
157
158 void sched_init_granularity(void)
159 {
160 update_sysctl();
161 }
162
163 #if BITS_PER_LONG == 32
164 # define WMULT_CONST (~0UL)
165 #else
166 # define WMULT_CONST (1UL << 32)
167 #endif
168
169 #define WMULT_SHIFT 32
170
171 /*
172 * Shift right and round:
173 */
174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176 /*
177 * delta *= weight / lw
178 */
179 static unsigned long
180 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182 {
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 }
217
218
219 const struct sched_class fair_sched_class;
220
221 /**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226
227 /* cpu runqueue to which this cfs_rq is attached */
228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229 {
230 return cfs_rq->rq;
231 }
232
233 /* An entity is a task if it doesn't "own" a runqueue */
234 #define entity_is_task(se) (!se->my_q)
235
236 static inline struct task_struct *task_of(struct sched_entity *se)
237 {
238 #ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240 #endif
241 return container_of(se, struct task_struct, se);
242 }
243
244 /* Walk up scheduling entities hierarchy */
245 #define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249 {
250 return p->se.cfs_rq;
251 }
252
253 /* runqueue on which this entity is (to be) queued */
254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255 {
256 return se->cfs_rq;
257 }
258
259 /* runqueue "owned" by this group */
260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261 {
262 return grp->my_q;
263 }
264
265 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
267
268 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269 {
270 if (!cfs_rq->on_list) {
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
284 }
285
286 cfs_rq->on_list = 1;
287 /* We should have no load, but we need to update last_decay. */
288 update_cfs_rq_blocked_load(cfs_rq, 0);
289 }
290 }
291
292 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293 {
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298 }
299
300 /* Iterate thr' all leaf cfs_rq's on a runqueue */
301 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304 /* Do the two (enqueued) entities belong to the same group ? */
305 static inline int
306 is_same_group(struct sched_entity *se, struct sched_entity *pse)
307 {
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312 }
313
314 static inline struct sched_entity *parent_entity(struct sched_entity *se)
315 {
316 return se->parent;
317 }
318
319 /* return depth at which a sched entity is present in the hierarchy */
320 static inline int depth_se(struct sched_entity *se)
321 {
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328 }
329
330 static void
331 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332 {
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360 }
361
362 #else /* !CONFIG_FAIR_GROUP_SCHED */
363
364 static inline struct task_struct *task_of(struct sched_entity *se)
365 {
366 return container_of(se, struct task_struct, se);
367 }
368
369 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370 {
371 return container_of(cfs_rq, struct rq, cfs);
372 }
373
374 #define entity_is_task(se) 1
375
376 #define for_each_sched_entity(se) \
377 for (; se; se = NULL)
378
379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
380 {
381 return &task_rq(p)->cfs;
382 }
383
384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385 {
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390 }
391
392 /* runqueue "owned" by this group */
393 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394 {
395 return NULL;
396 }
397
398 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 }
401
402 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403 {
404 }
405
406 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409 static inline int
410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 return 1;
413 }
414
415 static inline struct sched_entity *parent_entity(struct sched_entity *se)
416 {
417 return NULL;
418 }
419
420 static inline void
421 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422 {
423 }
424
425 #endif /* CONFIG_FAIR_GROUP_SCHED */
426
427 static __always_inline
428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
429
430 /**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
434 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
435 {
436 s64 delta = (s64)(vruntime - min_vruntime);
437 if (delta > 0)
438 min_vruntime = vruntime;
439
440 return min_vruntime;
441 }
442
443 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 {
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450 }
451
452 static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454 {
455 return (s64)(a->vruntime - b->vruntime) < 0;
456 }
457
458 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 {
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
470 if (!cfs_rq->curr)
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482
483 /*
484 * Enqueue an entity into the rb-tree:
485 */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542 }
543
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552 }
553
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563 }
564
565 /**************************************************************
566 * Scheduling class statistics methods:
567 */
568
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582 #define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588
589 return 0;
590 }
591 #endif
592
593 /*
594 * delta /= w
595 */
596 static inline unsigned long
597 calc_delta_fair(unsigned long delta, struct sched_entity *se)
598 {
599 if (unlikely(se->load.weight != NICE_0_LOAD))
600 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
601
602 return delta;
603 }
604
605 /*
606 * The idea is to set a period in which each task runs once.
607 *
608 * When there are too many tasks (sched_nr_latency) we have to stretch
609 * this period because otherwise the slices get too small.
610 *
611 * p = (nr <= nl) ? l : l*nr/nl
612 */
613 static u64 __sched_period(unsigned long nr_running)
614 {
615 u64 period = sysctl_sched_latency;
616 unsigned long nr_latency = sched_nr_latency;
617
618 if (unlikely(nr_running > nr_latency)) {
619 period = sysctl_sched_min_granularity;
620 period *= nr_running;
621 }
622
623 return period;
624 }
625
626 /*
627 * We calculate the wall-time slice from the period by taking a part
628 * proportional to the weight.
629 *
630 * s = p*P[w/rw]
631 */
632 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
635
636 for_each_sched_entity(se) {
637 struct load_weight *load;
638 struct load_weight lw;
639
640 cfs_rq = cfs_rq_of(se);
641 load = &cfs_rq->load;
642
643 if (unlikely(!se->on_rq)) {
644 lw = cfs_rq->load;
645
646 update_load_add(&lw, se->load.weight);
647 load = &lw;
648 }
649 slice = calc_delta_mine(slice, se->load.weight, load);
650 }
651 return slice;
652 }
653
654 /*
655 * We calculate the vruntime slice of a to be inserted task
656 *
657 * vs = s/w
658 */
659 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
660 {
661 return calc_delta_fair(sched_slice(cfs_rq, se), se);
662 }
663
664 /*
665 * Update the current task's runtime statistics. Skip current tasks that
666 * are not in our scheduling class.
667 */
668 static inline void
669 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
670 unsigned long delta_exec)
671 {
672 unsigned long delta_exec_weighted;
673
674 schedstat_set(curr->statistics.exec_max,
675 max((u64)delta_exec, curr->statistics.exec_max));
676
677 curr->sum_exec_runtime += delta_exec;
678 schedstat_add(cfs_rq, exec_clock, delta_exec);
679 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
680
681 curr->vruntime += delta_exec_weighted;
682 update_min_vruntime(cfs_rq);
683 }
684
685 static void update_curr(struct cfs_rq *cfs_rq)
686 {
687 struct sched_entity *curr = cfs_rq->curr;
688 u64 now = rq_of(cfs_rq)->clock_task;
689 unsigned long delta_exec;
690
691 if (unlikely(!curr))
692 return;
693
694 /*
695 * Get the amount of time the current task was running
696 * since the last time we changed load (this cannot
697 * overflow on 32 bits):
698 */
699 delta_exec = (unsigned long)(now - curr->exec_start);
700 if (!delta_exec)
701 return;
702
703 __update_curr(cfs_rq, curr, delta_exec);
704 curr->exec_start = now;
705
706 if (entity_is_task(curr)) {
707 struct task_struct *curtask = task_of(curr);
708
709 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
710 cpuacct_charge(curtask, delta_exec);
711 account_group_exec_runtime(curtask, delta_exec);
712 }
713
714 account_cfs_rq_runtime(cfs_rq, delta_exec);
715 }
716
717 static inline void
718 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 {
720 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
721 }
722
723 /*
724 * Task is being enqueued - update stats:
725 */
726 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
727 {
728 /*
729 * Are we enqueueing a waiting task? (for current tasks
730 * a dequeue/enqueue event is a NOP)
731 */
732 if (se != cfs_rq->curr)
733 update_stats_wait_start(cfs_rq, se);
734 }
735
736 static void
737 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
738 {
739 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
740 rq_of(cfs_rq)->clock - se->statistics.wait_start));
741 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
742 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
743 rq_of(cfs_rq)->clock - se->statistics.wait_start);
744 #ifdef CONFIG_SCHEDSTATS
745 if (entity_is_task(se)) {
746 trace_sched_stat_wait(task_of(se),
747 rq_of(cfs_rq)->clock - se->statistics.wait_start);
748 }
749 #endif
750 schedstat_set(se->statistics.wait_start, 0);
751 }
752
753 static inline void
754 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 {
756 /*
757 * Mark the end of the wait period if dequeueing a
758 * waiting task:
759 */
760 if (se != cfs_rq->curr)
761 update_stats_wait_end(cfs_rq, se);
762 }
763
764 /*
765 * We are picking a new current task - update its stats:
766 */
767 static inline void
768 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
769 {
770 /*
771 * We are starting a new run period:
772 */
773 se->exec_start = rq_of(cfs_rq)->clock_task;
774 }
775
776 /**************************************************
777 * Scheduling class queueing methods:
778 */
779
780 #ifdef CONFIG_NUMA_BALANCING
781 /*
782 * numa task sample period in ms
783 */
784 unsigned int sysctl_numa_balancing_scan_period_min = 100;
785 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
786 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
787
788 /* Portion of address space to scan in MB */
789 unsigned int sysctl_numa_balancing_scan_size = 256;
790
791 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
792 unsigned int sysctl_numa_balancing_scan_delay = 1000;
793
794 static void task_numa_placement(struct task_struct *p)
795 {
796 int seq;
797
798 if (!p->mm) /* for example, ksmd faulting in a user's mm */
799 return;
800 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
801 if (p->numa_scan_seq == seq)
802 return;
803 p->numa_scan_seq = seq;
804
805 /* FIXME: Scheduling placement policy hints go here */
806 }
807
808 /*
809 * Got a PROT_NONE fault for a page on @node.
810 */
811 void task_numa_fault(int node, int pages, bool migrated)
812 {
813 struct task_struct *p = current;
814
815 if (!sched_feat_numa(NUMA))
816 return;
817
818 /* FIXME: Allocate task-specific structure for placement policy here */
819
820 /*
821 * If pages are properly placed (did not migrate) then scan slower.
822 * This is reset periodically in case of phase changes
823 */
824 if (!migrated)
825 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
826 p->numa_scan_period + jiffies_to_msecs(10));
827
828 task_numa_placement(p);
829 }
830
831 static void reset_ptenuma_scan(struct task_struct *p)
832 {
833 ACCESS_ONCE(p->mm->numa_scan_seq)++;
834 p->mm->numa_scan_offset = 0;
835 }
836
837 /*
838 * The expensive part of numa migration is done from task_work context.
839 * Triggered from task_tick_numa().
840 */
841 void task_numa_work(struct callback_head *work)
842 {
843 unsigned long migrate, next_scan, now = jiffies;
844 struct task_struct *p = current;
845 struct mm_struct *mm = p->mm;
846 struct vm_area_struct *vma;
847 unsigned long start, end;
848 long pages;
849
850 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
851
852 work->next = work; /* protect against double add */
853 /*
854 * Who cares about NUMA placement when they're dying.
855 *
856 * NOTE: make sure not to dereference p->mm before this check,
857 * exit_task_work() happens _after_ exit_mm() so we could be called
858 * without p->mm even though we still had it when we enqueued this
859 * work.
860 */
861 if (p->flags & PF_EXITING)
862 return;
863
864 /*
865 * We do not care about task placement until a task runs on a node
866 * other than the first one used by the address space. This is
867 * largely because migrations are driven by what CPU the task
868 * is running on. If it's never scheduled on another node, it'll
869 * not migrate so why bother trapping the fault.
870 */
871 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
872 mm->first_nid = numa_node_id();
873 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
874 /* Are we running on a new node yet? */
875 if (numa_node_id() == mm->first_nid &&
876 !sched_feat_numa(NUMA_FORCE))
877 return;
878
879 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
880 }
881
882 /*
883 * Reset the scan period if enough time has gone by. Objective is that
884 * scanning will be reduced if pages are properly placed. As tasks
885 * can enter different phases this needs to be re-examined. Lacking
886 * proper tracking of reference behaviour, this blunt hammer is used.
887 */
888 migrate = mm->numa_next_reset;
889 if (time_after(now, migrate)) {
890 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
891 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
892 xchg(&mm->numa_next_reset, next_scan);
893 }
894
895 /*
896 * Enforce maximal scan/migration frequency..
897 */
898 migrate = mm->numa_next_scan;
899 if (time_before(now, migrate))
900 return;
901
902 if (p->numa_scan_period == 0)
903 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
904
905 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
906 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
907 return;
908
909 /*
910 * Do not set pte_numa if the current running node is rate-limited.
911 * This loses statistics on the fault but if we are unwilling to
912 * migrate to this node, it is less likely we can do useful work
913 */
914 if (migrate_ratelimited(numa_node_id()))
915 return;
916
917 start = mm->numa_scan_offset;
918 pages = sysctl_numa_balancing_scan_size;
919 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
920 if (!pages)
921 return;
922
923 down_read(&mm->mmap_sem);
924 vma = find_vma(mm, start);
925 if (!vma) {
926 reset_ptenuma_scan(p);
927 start = 0;
928 vma = mm->mmap;
929 }
930 for (; vma; vma = vma->vm_next) {
931 if (!vma_migratable(vma))
932 continue;
933
934 /* Skip small VMAs. They are not likely to be of relevance */
935 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
936 continue;
937
938 do {
939 start = max(start, vma->vm_start);
940 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
941 end = min(end, vma->vm_end);
942 pages -= change_prot_numa(vma, start, end);
943
944 start = end;
945 if (pages <= 0)
946 goto out;
947 } while (end != vma->vm_end);
948 }
949
950 out:
951 /*
952 * It is possible to reach the end of the VMA list but the last few VMAs are
953 * not guaranteed to the vma_migratable. If they are not, we would find the
954 * !migratable VMA on the next scan but not reset the scanner to the start
955 * so check it now.
956 */
957 if (vma)
958 mm->numa_scan_offset = start;
959 else
960 reset_ptenuma_scan(p);
961 up_read(&mm->mmap_sem);
962 }
963
964 /*
965 * Drive the periodic memory faults..
966 */
967 void task_tick_numa(struct rq *rq, struct task_struct *curr)
968 {
969 struct callback_head *work = &curr->numa_work;
970 u64 period, now;
971
972 /*
973 * We don't care about NUMA placement if we don't have memory.
974 */
975 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
976 return;
977
978 /*
979 * Using runtime rather than walltime has the dual advantage that
980 * we (mostly) drive the selection from busy threads and that the
981 * task needs to have done some actual work before we bother with
982 * NUMA placement.
983 */
984 now = curr->se.sum_exec_runtime;
985 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
986
987 if (now - curr->node_stamp > period) {
988 if (!curr->node_stamp)
989 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
990 curr->node_stamp = now;
991
992 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
993 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
994 task_work_add(curr, work, true);
995 }
996 }
997 }
998 #else
999 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1000 {
1001 }
1002 #endif /* CONFIG_NUMA_BALANCING */
1003
1004 static void
1005 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1006 {
1007 update_load_add(&cfs_rq->load, se->load.weight);
1008 if (!parent_entity(se))
1009 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1010 #ifdef CONFIG_SMP
1011 if (entity_is_task(se))
1012 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1013 #endif
1014 cfs_rq->nr_running++;
1015 }
1016
1017 static void
1018 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1019 {
1020 update_load_sub(&cfs_rq->load, se->load.weight);
1021 if (!parent_entity(se))
1022 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1023 if (entity_is_task(se))
1024 list_del_init(&se->group_node);
1025 cfs_rq->nr_running--;
1026 }
1027
1028 #ifdef CONFIG_FAIR_GROUP_SCHED
1029 # ifdef CONFIG_SMP
1030 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1031 {
1032 long tg_weight;
1033
1034 /*
1035 * Use this CPU's actual weight instead of the last load_contribution
1036 * to gain a more accurate current total weight. See
1037 * update_cfs_rq_load_contribution().
1038 */
1039 tg_weight = atomic64_read(&tg->load_avg);
1040 tg_weight -= cfs_rq->tg_load_contrib;
1041 tg_weight += cfs_rq->load.weight;
1042
1043 return tg_weight;
1044 }
1045
1046 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1047 {
1048 long tg_weight, load, shares;
1049
1050 tg_weight = calc_tg_weight(tg, cfs_rq);
1051 load = cfs_rq->load.weight;
1052
1053 shares = (tg->shares * load);
1054 if (tg_weight)
1055 shares /= tg_weight;
1056
1057 if (shares < MIN_SHARES)
1058 shares = MIN_SHARES;
1059 if (shares > tg->shares)
1060 shares = tg->shares;
1061
1062 return shares;
1063 }
1064 # else /* CONFIG_SMP */
1065 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1066 {
1067 return tg->shares;
1068 }
1069 # endif /* CONFIG_SMP */
1070 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1071 unsigned long weight)
1072 {
1073 if (se->on_rq) {
1074 /* commit outstanding execution time */
1075 if (cfs_rq->curr == se)
1076 update_curr(cfs_rq);
1077 account_entity_dequeue(cfs_rq, se);
1078 }
1079
1080 update_load_set(&se->load, weight);
1081
1082 if (se->on_rq)
1083 account_entity_enqueue(cfs_rq, se);
1084 }
1085
1086 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1087
1088 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1089 {
1090 struct task_group *tg;
1091 struct sched_entity *se;
1092 long shares;
1093
1094 tg = cfs_rq->tg;
1095 se = tg->se[cpu_of(rq_of(cfs_rq))];
1096 if (!se || throttled_hierarchy(cfs_rq))
1097 return;
1098 #ifndef CONFIG_SMP
1099 if (likely(se->load.weight == tg->shares))
1100 return;
1101 #endif
1102 shares = calc_cfs_shares(cfs_rq, tg);
1103
1104 reweight_entity(cfs_rq_of(se), se, shares);
1105 }
1106 #else /* CONFIG_FAIR_GROUP_SCHED */
1107 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1108 {
1109 }
1110 #endif /* CONFIG_FAIR_GROUP_SCHED */
1111
1112 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1113 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1114 /*
1115 * We choose a half-life close to 1 scheduling period.
1116 * Note: The tables below are dependent on this value.
1117 */
1118 #define LOAD_AVG_PERIOD 32
1119 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1120 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1121
1122 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1123 static const u32 runnable_avg_yN_inv[] = {
1124 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1125 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1126 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1127 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1128 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1129 0x85aac367, 0x82cd8698,
1130 };
1131
1132 /*
1133 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1134 * over-estimates when re-combining.
1135 */
1136 static const u32 runnable_avg_yN_sum[] = {
1137 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1138 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1139 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1140 };
1141
1142 /*
1143 * Approximate:
1144 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1145 */
1146 static __always_inline u64 decay_load(u64 val, u64 n)
1147 {
1148 unsigned int local_n;
1149
1150 if (!n)
1151 return val;
1152 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1153 return 0;
1154
1155 /* after bounds checking we can collapse to 32-bit */
1156 local_n = n;
1157
1158 /*
1159 * As y^PERIOD = 1/2, we can combine
1160 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1161 * With a look-up table which covers k^n (n<PERIOD)
1162 *
1163 * To achieve constant time decay_load.
1164 */
1165 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1166 val >>= local_n / LOAD_AVG_PERIOD;
1167 local_n %= LOAD_AVG_PERIOD;
1168 }
1169
1170 val *= runnable_avg_yN_inv[local_n];
1171 /* We don't use SRR here since we always want to round down. */
1172 return val >> 32;
1173 }
1174
1175 /*
1176 * For updates fully spanning n periods, the contribution to runnable
1177 * average will be: \Sum 1024*y^n
1178 *
1179 * We can compute this reasonably efficiently by combining:
1180 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1181 */
1182 static u32 __compute_runnable_contrib(u64 n)
1183 {
1184 u32 contrib = 0;
1185
1186 if (likely(n <= LOAD_AVG_PERIOD))
1187 return runnable_avg_yN_sum[n];
1188 else if (unlikely(n >= LOAD_AVG_MAX_N))
1189 return LOAD_AVG_MAX;
1190
1191 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1192 do {
1193 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1194 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1195
1196 n -= LOAD_AVG_PERIOD;
1197 } while (n > LOAD_AVG_PERIOD);
1198
1199 contrib = decay_load(contrib, n);
1200 return contrib + runnable_avg_yN_sum[n];
1201 }
1202
1203 /*
1204 * We can represent the historical contribution to runnable average as the
1205 * coefficients of a geometric series. To do this we sub-divide our runnable
1206 * history into segments of approximately 1ms (1024us); label the segment that
1207 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1208 *
1209 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1210 * p0 p1 p2
1211 * (now) (~1ms ago) (~2ms ago)
1212 *
1213 * Let u_i denote the fraction of p_i that the entity was runnable.
1214 *
1215 * We then designate the fractions u_i as our co-efficients, yielding the
1216 * following representation of historical load:
1217 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1218 *
1219 * We choose y based on the with of a reasonably scheduling period, fixing:
1220 * y^32 = 0.5
1221 *
1222 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1223 * approximately half as much as the contribution to load within the last ms
1224 * (u_0).
1225 *
1226 * When a period "rolls over" and we have new u_0`, multiplying the previous
1227 * sum again by y is sufficient to update:
1228 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1229 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1230 */
1231 static __always_inline int __update_entity_runnable_avg(u64 now,
1232 struct sched_avg *sa,
1233 int runnable)
1234 {
1235 u64 delta, periods;
1236 u32 runnable_contrib;
1237 int delta_w, decayed = 0;
1238
1239 delta = now - sa->last_runnable_update;
1240 /*
1241 * This should only happen when time goes backwards, which it
1242 * unfortunately does during sched clock init when we swap over to TSC.
1243 */
1244 if ((s64)delta < 0) {
1245 sa->last_runnable_update = now;
1246 return 0;
1247 }
1248
1249 /*
1250 * Use 1024ns as the unit of measurement since it's a reasonable
1251 * approximation of 1us and fast to compute.
1252 */
1253 delta >>= 10;
1254 if (!delta)
1255 return 0;
1256 sa->last_runnable_update = now;
1257
1258 /* delta_w is the amount already accumulated against our next period */
1259 delta_w = sa->runnable_avg_period % 1024;
1260 if (delta + delta_w >= 1024) {
1261 /* period roll-over */
1262 decayed = 1;
1263
1264 /*
1265 * Now that we know we're crossing a period boundary, figure
1266 * out how much from delta we need to complete the current
1267 * period and accrue it.
1268 */
1269 delta_w = 1024 - delta_w;
1270 if (runnable)
1271 sa->runnable_avg_sum += delta_w;
1272 sa->runnable_avg_period += delta_w;
1273
1274 delta -= delta_w;
1275
1276 /* Figure out how many additional periods this update spans */
1277 periods = delta / 1024;
1278 delta %= 1024;
1279
1280 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1281 periods + 1);
1282 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1283 periods + 1);
1284
1285 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1286 runnable_contrib = __compute_runnable_contrib(periods);
1287 if (runnable)
1288 sa->runnable_avg_sum += runnable_contrib;
1289 sa->runnable_avg_period += runnable_contrib;
1290 }
1291
1292 /* Remainder of delta accrued against u_0` */
1293 if (runnable)
1294 sa->runnable_avg_sum += delta;
1295 sa->runnable_avg_period += delta;
1296
1297 return decayed;
1298 }
1299
1300 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1301 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1302 {
1303 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1304 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1305
1306 decays -= se->avg.decay_count;
1307 if (!decays)
1308 return 0;
1309
1310 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1311 se->avg.decay_count = 0;
1312
1313 return decays;
1314 }
1315
1316 #ifdef CONFIG_FAIR_GROUP_SCHED
1317 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1318 int force_update)
1319 {
1320 struct task_group *tg = cfs_rq->tg;
1321 s64 tg_contrib;
1322
1323 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1324 tg_contrib -= cfs_rq->tg_load_contrib;
1325
1326 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1327 atomic64_add(tg_contrib, &tg->load_avg);
1328 cfs_rq->tg_load_contrib += tg_contrib;
1329 }
1330 }
1331
1332 /*
1333 * Aggregate cfs_rq runnable averages into an equivalent task_group
1334 * representation for computing load contributions.
1335 */
1336 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1337 struct cfs_rq *cfs_rq)
1338 {
1339 struct task_group *tg = cfs_rq->tg;
1340 long contrib;
1341
1342 /* The fraction of a cpu used by this cfs_rq */
1343 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1344 sa->runnable_avg_period + 1);
1345 contrib -= cfs_rq->tg_runnable_contrib;
1346
1347 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1348 atomic_add(contrib, &tg->runnable_avg);
1349 cfs_rq->tg_runnable_contrib += contrib;
1350 }
1351 }
1352
1353 static inline void __update_group_entity_contrib(struct sched_entity *se)
1354 {
1355 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1356 struct task_group *tg = cfs_rq->tg;
1357 int runnable_avg;
1358
1359 u64 contrib;
1360
1361 contrib = cfs_rq->tg_load_contrib * tg->shares;
1362 se->avg.load_avg_contrib = div64_u64(contrib,
1363 atomic64_read(&tg->load_avg) + 1);
1364
1365 /*
1366 * For group entities we need to compute a correction term in the case
1367 * that they are consuming <1 cpu so that we would contribute the same
1368 * load as a task of equal weight.
1369 *
1370 * Explicitly co-ordinating this measurement would be expensive, but
1371 * fortunately the sum of each cpus contribution forms a usable
1372 * lower-bound on the true value.
1373 *
1374 * Consider the aggregate of 2 contributions. Either they are disjoint
1375 * (and the sum represents true value) or they are disjoint and we are
1376 * understating by the aggregate of their overlap.
1377 *
1378 * Extending this to N cpus, for a given overlap, the maximum amount we
1379 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1380 * cpus that overlap for this interval and w_i is the interval width.
1381 *
1382 * On a small machine; the first term is well-bounded which bounds the
1383 * total error since w_i is a subset of the period. Whereas on a
1384 * larger machine, while this first term can be larger, if w_i is the
1385 * of consequential size guaranteed to see n_i*w_i quickly converge to
1386 * our upper bound of 1-cpu.
1387 */
1388 runnable_avg = atomic_read(&tg->runnable_avg);
1389 if (runnable_avg < NICE_0_LOAD) {
1390 se->avg.load_avg_contrib *= runnable_avg;
1391 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1392 }
1393 }
1394 #else
1395 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1396 int force_update) {}
1397 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1398 struct cfs_rq *cfs_rq) {}
1399 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1400 #endif
1401
1402 static inline void __update_task_entity_contrib(struct sched_entity *se)
1403 {
1404 u32 contrib;
1405
1406 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1407 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1408 contrib /= (se->avg.runnable_avg_period + 1);
1409 se->avg.load_avg_contrib = scale_load(contrib);
1410 }
1411
1412 /* Compute the current contribution to load_avg by se, return any delta */
1413 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1414 {
1415 long old_contrib = se->avg.load_avg_contrib;
1416
1417 if (entity_is_task(se)) {
1418 __update_task_entity_contrib(se);
1419 } else {
1420 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1421 __update_group_entity_contrib(se);
1422 }
1423
1424 return se->avg.load_avg_contrib - old_contrib;
1425 }
1426
1427 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1428 long load_contrib)
1429 {
1430 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1431 cfs_rq->blocked_load_avg -= load_contrib;
1432 else
1433 cfs_rq->blocked_load_avg = 0;
1434 }
1435
1436 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1437
1438 /* Update a sched_entity's runnable average */
1439 static inline void update_entity_load_avg(struct sched_entity *se,
1440 int update_cfs_rq)
1441 {
1442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1443 long contrib_delta;
1444 u64 now;
1445
1446 /*
1447 * For a group entity we need to use their owned cfs_rq_clock_task() in
1448 * case they are the parent of a throttled hierarchy.
1449 */
1450 if (entity_is_task(se))
1451 now = cfs_rq_clock_task(cfs_rq);
1452 else
1453 now = cfs_rq_clock_task(group_cfs_rq(se));
1454
1455 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1456 return;
1457
1458 contrib_delta = __update_entity_load_avg_contrib(se);
1459
1460 if (!update_cfs_rq)
1461 return;
1462
1463 if (se->on_rq)
1464 cfs_rq->runnable_load_avg += contrib_delta;
1465 else
1466 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1467 }
1468
1469 /*
1470 * Decay the load contributed by all blocked children and account this so that
1471 * their contribution may appropriately discounted when they wake up.
1472 */
1473 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1474 {
1475 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1476 u64 decays;
1477
1478 decays = now - cfs_rq->last_decay;
1479 if (!decays && !force_update)
1480 return;
1481
1482 if (atomic64_read(&cfs_rq->removed_load)) {
1483 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1484 subtract_blocked_load_contrib(cfs_rq, removed_load);
1485 }
1486
1487 if (decays) {
1488 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1489 decays);
1490 atomic64_add(decays, &cfs_rq->decay_counter);
1491 cfs_rq->last_decay = now;
1492 }
1493
1494 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1495 }
1496
1497 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1498 {
1499 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1500 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1501 }
1502
1503 /* Add the load generated by se into cfs_rq's child load-average */
1504 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1505 struct sched_entity *se,
1506 int wakeup)
1507 {
1508 /*
1509 * We track migrations using entity decay_count <= 0, on a wake-up
1510 * migration we use a negative decay count to track the remote decays
1511 * accumulated while sleeping.
1512 */
1513 if (unlikely(se->avg.decay_count <= 0)) {
1514 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1515 if (se->avg.decay_count) {
1516 /*
1517 * In a wake-up migration we have to approximate the
1518 * time sleeping. This is because we can't synchronize
1519 * clock_task between the two cpus, and it is not
1520 * guaranteed to be read-safe. Instead, we can
1521 * approximate this using our carried decays, which are
1522 * explicitly atomically readable.
1523 */
1524 se->avg.last_runnable_update -= (-se->avg.decay_count)
1525 << 20;
1526 update_entity_load_avg(se, 0);
1527 /* Indicate that we're now synchronized and on-rq */
1528 se->avg.decay_count = 0;
1529 }
1530 wakeup = 0;
1531 } else {
1532 __synchronize_entity_decay(se);
1533 }
1534
1535 /* migrated tasks did not contribute to our blocked load */
1536 if (wakeup) {
1537 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1538 update_entity_load_avg(se, 0);
1539 }
1540
1541 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1542 /* we force update consideration on load-balancer moves */
1543 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1544 }
1545
1546 /*
1547 * Remove se's load from this cfs_rq child load-average, if the entity is
1548 * transitioning to a blocked state we track its projected decay using
1549 * blocked_load_avg.
1550 */
1551 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1552 struct sched_entity *se,
1553 int sleep)
1554 {
1555 update_entity_load_avg(se, 1);
1556 /* we force update consideration on load-balancer moves */
1557 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1558
1559 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1560 if (sleep) {
1561 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1562 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1563 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1564 }
1565 #else
1566 static inline void update_entity_load_avg(struct sched_entity *se,
1567 int update_cfs_rq) {}
1568 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1569 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1570 struct sched_entity *se,
1571 int wakeup) {}
1572 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1573 struct sched_entity *se,
1574 int sleep) {}
1575 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1576 int force_update) {}
1577 #endif
1578
1579 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1580 {
1581 #ifdef CONFIG_SCHEDSTATS
1582 struct task_struct *tsk = NULL;
1583
1584 if (entity_is_task(se))
1585 tsk = task_of(se);
1586
1587 if (se->statistics.sleep_start) {
1588 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1589
1590 if ((s64)delta < 0)
1591 delta = 0;
1592
1593 if (unlikely(delta > se->statistics.sleep_max))
1594 se->statistics.sleep_max = delta;
1595
1596 se->statistics.sleep_start = 0;
1597 se->statistics.sum_sleep_runtime += delta;
1598
1599 if (tsk) {
1600 account_scheduler_latency(tsk, delta >> 10, 1);
1601 trace_sched_stat_sleep(tsk, delta);
1602 }
1603 }
1604 if (se->statistics.block_start) {
1605 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1606
1607 if ((s64)delta < 0)
1608 delta = 0;
1609
1610 if (unlikely(delta > se->statistics.block_max))
1611 se->statistics.block_max = delta;
1612
1613 se->statistics.block_start = 0;
1614 se->statistics.sum_sleep_runtime += delta;
1615
1616 if (tsk) {
1617 if (tsk->in_iowait) {
1618 se->statistics.iowait_sum += delta;
1619 se->statistics.iowait_count++;
1620 trace_sched_stat_iowait(tsk, delta);
1621 }
1622
1623 trace_sched_stat_blocked(tsk, delta);
1624
1625 /*
1626 * Blocking time is in units of nanosecs, so shift by
1627 * 20 to get a milliseconds-range estimation of the
1628 * amount of time that the task spent sleeping:
1629 */
1630 if (unlikely(prof_on == SLEEP_PROFILING)) {
1631 profile_hits(SLEEP_PROFILING,
1632 (void *)get_wchan(tsk),
1633 delta >> 20);
1634 }
1635 account_scheduler_latency(tsk, delta >> 10, 0);
1636 }
1637 }
1638 #endif
1639 }
1640
1641 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1642 {
1643 #ifdef CONFIG_SCHED_DEBUG
1644 s64 d = se->vruntime - cfs_rq->min_vruntime;
1645
1646 if (d < 0)
1647 d = -d;
1648
1649 if (d > 3*sysctl_sched_latency)
1650 schedstat_inc(cfs_rq, nr_spread_over);
1651 #endif
1652 }
1653
1654 static void
1655 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1656 {
1657 u64 vruntime = cfs_rq->min_vruntime;
1658
1659 /*
1660 * The 'current' period is already promised to the current tasks,
1661 * however the extra weight of the new task will slow them down a
1662 * little, place the new task so that it fits in the slot that
1663 * stays open at the end.
1664 */
1665 if (initial && sched_feat(START_DEBIT))
1666 vruntime += sched_vslice(cfs_rq, se);
1667
1668 /* sleeps up to a single latency don't count. */
1669 if (!initial) {
1670 unsigned long thresh = sysctl_sched_latency;
1671
1672 /*
1673 * Halve their sleep time's effect, to allow
1674 * for a gentler effect of sleepers:
1675 */
1676 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1677 thresh >>= 1;
1678
1679 vruntime -= thresh;
1680 }
1681
1682 /* ensure we never gain time by being placed backwards. */
1683 se->vruntime = max_vruntime(se->vruntime, vruntime);
1684 }
1685
1686 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1687
1688 static void
1689 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1690 {
1691 /*
1692 * Update the normalized vruntime before updating min_vruntime
1693 * through callig update_curr().
1694 */
1695 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1696 se->vruntime += cfs_rq->min_vruntime;
1697
1698 /*
1699 * Update run-time statistics of the 'current'.
1700 */
1701 update_curr(cfs_rq);
1702 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1703 account_entity_enqueue(cfs_rq, se);
1704 update_cfs_shares(cfs_rq);
1705
1706 if (flags & ENQUEUE_WAKEUP) {
1707 place_entity(cfs_rq, se, 0);
1708 enqueue_sleeper(cfs_rq, se);
1709 }
1710
1711 update_stats_enqueue(cfs_rq, se);
1712 check_spread(cfs_rq, se);
1713 if (se != cfs_rq->curr)
1714 __enqueue_entity(cfs_rq, se);
1715 se->on_rq = 1;
1716
1717 if (cfs_rq->nr_running == 1) {
1718 list_add_leaf_cfs_rq(cfs_rq);
1719 check_enqueue_throttle(cfs_rq);
1720 }
1721 }
1722
1723 static void __clear_buddies_last(struct sched_entity *se)
1724 {
1725 for_each_sched_entity(se) {
1726 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1727 if (cfs_rq->last == se)
1728 cfs_rq->last = NULL;
1729 else
1730 break;
1731 }
1732 }
1733
1734 static void __clear_buddies_next(struct sched_entity *se)
1735 {
1736 for_each_sched_entity(se) {
1737 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1738 if (cfs_rq->next == se)
1739 cfs_rq->next = NULL;
1740 else
1741 break;
1742 }
1743 }
1744
1745 static void __clear_buddies_skip(struct sched_entity *se)
1746 {
1747 for_each_sched_entity(se) {
1748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1749 if (cfs_rq->skip == se)
1750 cfs_rq->skip = NULL;
1751 else
1752 break;
1753 }
1754 }
1755
1756 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1757 {
1758 if (cfs_rq->last == se)
1759 __clear_buddies_last(se);
1760
1761 if (cfs_rq->next == se)
1762 __clear_buddies_next(se);
1763
1764 if (cfs_rq->skip == se)
1765 __clear_buddies_skip(se);
1766 }
1767
1768 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1769
1770 static void
1771 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1772 {
1773 /*
1774 * Update run-time statistics of the 'current'.
1775 */
1776 update_curr(cfs_rq);
1777 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1778
1779 update_stats_dequeue(cfs_rq, se);
1780 if (flags & DEQUEUE_SLEEP) {
1781 #ifdef CONFIG_SCHEDSTATS
1782 if (entity_is_task(se)) {
1783 struct task_struct *tsk = task_of(se);
1784
1785 if (tsk->state & TASK_INTERRUPTIBLE)
1786 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1787 if (tsk->state & TASK_UNINTERRUPTIBLE)
1788 se->statistics.block_start = rq_of(cfs_rq)->clock;
1789 }
1790 #endif
1791 }
1792
1793 clear_buddies(cfs_rq, se);
1794
1795 if (se != cfs_rq->curr)
1796 __dequeue_entity(cfs_rq, se);
1797 se->on_rq = 0;
1798 account_entity_dequeue(cfs_rq, se);
1799
1800 /*
1801 * Normalize the entity after updating the min_vruntime because the
1802 * update can refer to the ->curr item and we need to reflect this
1803 * movement in our normalized position.
1804 */
1805 if (!(flags & DEQUEUE_SLEEP))
1806 se->vruntime -= cfs_rq->min_vruntime;
1807
1808 /* return excess runtime on last dequeue */
1809 return_cfs_rq_runtime(cfs_rq);
1810
1811 update_min_vruntime(cfs_rq);
1812 update_cfs_shares(cfs_rq);
1813 }
1814
1815 /*
1816 * Preempt the current task with a newly woken task if needed:
1817 */
1818 static void
1819 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1820 {
1821 unsigned long ideal_runtime, delta_exec;
1822 struct sched_entity *se;
1823 s64 delta;
1824
1825 ideal_runtime = sched_slice(cfs_rq, curr);
1826 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1827 if (delta_exec > ideal_runtime) {
1828 resched_task(rq_of(cfs_rq)->curr);
1829 /*
1830 * The current task ran long enough, ensure it doesn't get
1831 * re-elected due to buddy favours.
1832 */
1833 clear_buddies(cfs_rq, curr);
1834 return;
1835 }
1836
1837 /*
1838 * Ensure that a task that missed wakeup preemption by a
1839 * narrow margin doesn't have to wait for a full slice.
1840 * This also mitigates buddy induced latencies under load.
1841 */
1842 if (delta_exec < sysctl_sched_min_granularity)
1843 return;
1844
1845 se = __pick_first_entity(cfs_rq);
1846 delta = curr->vruntime - se->vruntime;
1847
1848 if (delta < 0)
1849 return;
1850
1851 if (delta > ideal_runtime)
1852 resched_task(rq_of(cfs_rq)->curr);
1853 }
1854
1855 static void
1856 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1857 {
1858 /* 'current' is not kept within the tree. */
1859 if (se->on_rq) {
1860 /*
1861 * Any task has to be enqueued before it get to execute on
1862 * a CPU. So account for the time it spent waiting on the
1863 * runqueue.
1864 */
1865 update_stats_wait_end(cfs_rq, se);
1866 __dequeue_entity(cfs_rq, se);
1867 }
1868
1869 update_stats_curr_start(cfs_rq, se);
1870 cfs_rq->curr = se;
1871 #ifdef CONFIG_SCHEDSTATS
1872 /*
1873 * Track our maximum slice length, if the CPU's load is at
1874 * least twice that of our own weight (i.e. dont track it
1875 * when there are only lesser-weight tasks around):
1876 */
1877 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1878 se->statistics.slice_max = max(se->statistics.slice_max,
1879 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1880 }
1881 #endif
1882 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1883 }
1884
1885 static int
1886 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1887
1888 /*
1889 * Pick the next process, keeping these things in mind, in this order:
1890 * 1) keep things fair between processes/task groups
1891 * 2) pick the "next" process, since someone really wants that to run
1892 * 3) pick the "last" process, for cache locality
1893 * 4) do not run the "skip" process, if something else is available
1894 */
1895 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1896 {
1897 struct sched_entity *se = __pick_first_entity(cfs_rq);
1898 struct sched_entity *left = se;
1899
1900 /*
1901 * Avoid running the skip buddy, if running something else can
1902 * be done without getting too unfair.
1903 */
1904 if (cfs_rq->skip == se) {
1905 struct sched_entity *second = __pick_next_entity(se);
1906 if (second && wakeup_preempt_entity(second, left) < 1)
1907 se = second;
1908 }
1909
1910 /*
1911 * Prefer last buddy, try to return the CPU to a preempted task.
1912 */
1913 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1914 se = cfs_rq->last;
1915
1916 /*
1917 * Someone really wants this to run. If it's not unfair, run it.
1918 */
1919 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1920 se = cfs_rq->next;
1921
1922 clear_buddies(cfs_rq, se);
1923
1924 return se;
1925 }
1926
1927 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1928
1929 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1930 {
1931 /*
1932 * If still on the runqueue then deactivate_task()
1933 * was not called and update_curr() has to be done:
1934 */
1935 if (prev->on_rq)
1936 update_curr(cfs_rq);
1937
1938 /* throttle cfs_rqs exceeding runtime */
1939 check_cfs_rq_runtime(cfs_rq);
1940
1941 check_spread(cfs_rq, prev);
1942 if (prev->on_rq) {
1943 update_stats_wait_start(cfs_rq, prev);
1944 /* Put 'current' back into the tree. */
1945 __enqueue_entity(cfs_rq, prev);
1946 /* in !on_rq case, update occurred at dequeue */
1947 update_entity_load_avg(prev, 1);
1948 }
1949 cfs_rq->curr = NULL;
1950 }
1951
1952 static void
1953 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1954 {
1955 /*
1956 * Update run-time statistics of the 'current'.
1957 */
1958 update_curr(cfs_rq);
1959
1960 /*
1961 * Ensure that runnable average is periodically updated.
1962 */
1963 update_entity_load_avg(curr, 1);
1964 update_cfs_rq_blocked_load(cfs_rq, 1);
1965
1966 #ifdef CONFIG_SCHED_HRTICK
1967 /*
1968 * queued ticks are scheduled to match the slice, so don't bother
1969 * validating it and just reschedule.
1970 */
1971 if (queued) {
1972 resched_task(rq_of(cfs_rq)->curr);
1973 return;
1974 }
1975 /*
1976 * don't let the period tick interfere with the hrtick preemption
1977 */
1978 if (!sched_feat(DOUBLE_TICK) &&
1979 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1980 return;
1981 #endif
1982
1983 if (cfs_rq->nr_running > 1)
1984 check_preempt_tick(cfs_rq, curr);
1985 }
1986
1987
1988 /**************************************************
1989 * CFS bandwidth control machinery
1990 */
1991
1992 #ifdef CONFIG_CFS_BANDWIDTH
1993
1994 #ifdef HAVE_JUMP_LABEL
1995 static struct static_key __cfs_bandwidth_used;
1996
1997 static inline bool cfs_bandwidth_used(void)
1998 {
1999 return static_key_false(&__cfs_bandwidth_used);
2000 }
2001
2002 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2003 {
2004 /* only need to count groups transitioning between enabled/!enabled */
2005 if (enabled && !was_enabled)
2006 static_key_slow_inc(&__cfs_bandwidth_used);
2007 else if (!enabled && was_enabled)
2008 static_key_slow_dec(&__cfs_bandwidth_used);
2009 }
2010 #else /* HAVE_JUMP_LABEL */
2011 static bool cfs_bandwidth_used(void)
2012 {
2013 return true;
2014 }
2015
2016 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2017 #endif /* HAVE_JUMP_LABEL */
2018
2019 /*
2020 * default period for cfs group bandwidth.
2021 * default: 0.1s, units: nanoseconds
2022 */
2023 static inline u64 default_cfs_period(void)
2024 {
2025 return 100000000ULL;
2026 }
2027
2028 static inline u64 sched_cfs_bandwidth_slice(void)
2029 {
2030 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2031 }
2032
2033 /*
2034 * Replenish runtime according to assigned quota and update expiration time.
2035 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2036 * additional synchronization around rq->lock.
2037 *
2038 * requires cfs_b->lock
2039 */
2040 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2041 {
2042 u64 now;
2043
2044 if (cfs_b->quota == RUNTIME_INF)
2045 return;
2046
2047 now = sched_clock_cpu(smp_processor_id());
2048 cfs_b->runtime = cfs_b->quota;
2049 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2050 }
2051
2052 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2053 {
2054 return &tg->cfs_bandwidth;
2055 }
2056
2057 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2058 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2059 {
2060 if (unlikely(cfs_rq->throttle_count))
2061 return cfs_rq->throttled_clock_task;
2062
2063 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2064 }
2065
2066 /* returns 0 on failure to allocate runtime */
2067 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2068 {
2069 struct task_group *tg = cfs_rq->tg;
2070 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2071 u64 amount = 0, min_amount, expires;
2072
2073 /* note: this is a positive sum as runtime_remaining <= 0 */
2074 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2075
2076 raw_spin_lock(&cfs_b->lock);
2077 if (cfs_b->quota == RUNTIME_INF)
2078 amount = min_amount;
2079 else {
2080 /*
2081 * If the bandwidth pool has become inactive, then at least one
2082 * period must have elapsed since the last consumption.
2083 * Refresh the global state and ensure bandwidth timer becomes
2084 * active.
2085 */
2086 if (!cfs_b->timer_active) {
2087 __refill_cfs_bandwidth_runtime(cfs_b);
2088 __start_cfs_bandwidth(cfs_b);
2089 }
2090
2091 if (cfs_b->runtime > 0) {
2092 amount = min(cfs_b->runtime, min_amount);
2093 cfs_b->runtime -= amount;
2094 cfs_b->idle = 0;
2095 }
2096 }
2097 expires = cfs_b->runtime_expires;
2098 raw_spin_unlock(&cfs_b->lock);
2099
2100 cfs_rq->runtime_remaining += amount;
2101 /*
2102 * we may have advanced our local expiration to account for allowed
2103 * spread between our sched_clock and the one on which runtime was
2104 * issued.
2105 */
2106 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2107 cfs_rq->runtime_expires = expires;
2108
2109 return cfs_rq->runtime_remaining > 0;
2110 }
2111
2112 /*
2113 * Note: This depends on the synchronization provided by sched_clock and the
2114 * fact that rq->clock snapshots this value.
2115 */
2116 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2117 {
2118 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2119 struct rq *rq = rq_of(cfs_rq);
2120
2121 /* if the deadline is ahead of our clock, nothing to do */
2122 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2123 return;
2124
2125 if (cfs_rq->runtime_remaining < 0)
2126 return;
2127
2128 /*
2129 * If the local deadline has passed we have to consider the
2130 * possibility that our sched_clock is 'fast' and the global deadline
2131 * has not truly expired.
2132 *
2133 * Fortunately we can check determine whether this the case by checking
2134 * whether the global deadline has advanced.
2135 */
2136
2137 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2138 /* extend local deadline, drift is bounded above by 2 ticks */
2139 cfs_rq->runtime_expires += TICK_NSEC;
2140 } else {
2141 /* global deadline is ahead, expiration has passed */
2142 cfs_rq->runtime_remaining = 0;
2143 }
2144 }
2145
2146 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2147 unsigned long delta_exec)
2148 {
2149 /* dock delta_exec before expiring quota (as it could span periods) */
2150 cfs_rq->runtime_remaining -= delta_exec;
2151 expire_cfs_rq_runtime(cfs_rq);
2152
2153 if (likely(cfs_rq->runtime_remaining > 0))
2154 return;
2155
2156 /*
2157 * if we're unable to extend our runtime we resched so that the active
2158 * hierarchy can be throttled
2159 */
2160 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2161 resched_task(rq_of(cfs_rq)->curr);
2162 }
2163
2164 static __always_inline
2165 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2166 {
2167 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2168 return;
2169
2170 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2171 }
2172
2173 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2174 {
2175 return cfs_bandwidth_used() && cfs_rq->throttled;
2176 }
2177
2178 /* check whether cfs_rq, or any parent, is throttled */
2179 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2180 {
2181 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2182 }
2183
2184 /*
2185 * Ensure that neither of the group entities corresponding to src_cpu or
2186 * dest_cpu are members of a throttled hierarchy when performing group
2187 * load-balance operations.
2188 */
2189 static inline int throttled_lb_pair(struct task_group *tg,
2190 int src_cpu, int dest_cpu)
2191 {
2192 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2193
2194 src_cfs_rq = tg->cfs_rq[src_cpu];
2195 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2196
2197 return throttled_hierarchy(src_cfs_rq) ||
2198 throttled_hierarchy(dest_cfs_rq);
2199 }
2200
2201 /* updated child weight may affect parent so we have to do this bottom up */
2202 static int tg_unthrottle_up(struct task_group *tg, void *data)
2203 {
2204 struct rq *rq = data;
2205 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2206
2207 cfs_rq->throttle_count--;
2208 #ifdef CONFIG_SMP
2209 if (!cfs_rq->throttle_count) {
2210 /* adjust cfs_rq_clock_task() */
2211 cfs_rq->throttled_clock_task_time += rq->clock_task -
2212 cfs_rq->throttled_clock_task;
2213 }
2214 #endif
2215
2216 return 0;
2217 }
2218
2219 static int tg_throttle_down(struct task_group *tg, void *data)
2220 {
2221 struct rq *rq = data;
2222 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2223
2224 /* group is entering throttled state, stop time */
2225 if (!cfs_rq->throttle_count)
2226 cfs_rq->throttled_clock_task = rq->clock_task;
2227 cfs_rq->throttle_count++;
2228
2229 return 0;
2230 }
2231
2232 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2233 {
2234 struct rq *rq = rq_of(cfs_rq);
2235 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2236 struct sched_entity *se;
2237 long task_delta, dequeue = 1;
2238
2239 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2240
2241 /* freeze hierarchy runnable averages while throttled */
2242 rcu_read_lock();
2243 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2244 rcu_read_unlock();
2245
2246 task_delta = cfs_rq->h_nr_running;
2247 for_each_sched_entity(se) {
2248 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2249 /* throttled entity or throttle-on-deactivate */
2250 if (!se->on_rq)
2251 break;
2252
2253 if (dequeue)
2254 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2255 qcfs_rq->h_nr_running -= task_delta;
2256
2257 if (qcfs_rq->load.weight)
2258 dequeue = 0;
2259 }
2260
2261 if (!se)
2262 rq->nr_running -= task_delta;
2263
2264 cfs_rq->throttled = 1;
2265 cfs_rq->throttled_clock = rq->clock;
2266 raw_spin_lock(&cfs_b->lock);
2267 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2268 raw_spin_unlock(&cfs_b->lock);
2269 }
2270
2271 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2272 {
2273 struct rq *rq = rq_of(cfs_rq);
2274 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2275 struct sched_entity *se;
2276 int enqueue = 1;
2277 long task_delta;
2278
2279 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2280
2281 cfs_rq->throttled = 0;
2282 raw_spin_lock(&cfs_b->lock);
2283 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2284 list_del_rcu(&cfs_rq->throttled_list);
2285 raw_spin_unlock(&cfs_b->lock);
2286
2287 update_rq_clock(rq);
2288 /* update hierarchical throttle state */
2289 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2290
2291 if (!cfs_rq->load.weight)
2292 return;
2293
2294 task_delta = cfs_rq->h_nr_running;
2295 for_each_sched_entity(se) {
2296 if (se->on_rq)
2297 enqueue = 0;
2298
2299 cfs_rq = cfs_rq_of(se);
2300 if (enqueue)
2301 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2302 cfs_rq->h_nr_running += task_delta;
2303
2304 if (cfs_rq_throttled(cfs_rq))
2305 break;
2306 }
2307
2308 if (!se)
2309 rq->nr_running += task_delta;
2310
2311 /* determine whether we need to wake up potentially idle cpu */
2312 if (rq->curr == rq->idle && rq->cfs.nr_running)
2313 resched_task(rq->curr);
2314 }
2315
2316 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2317 u64 remaining, u64 expires)
2318 {
2319 struct cfs_rq *cfs_rq;
2320 u64 runtime = remaining;
2321
2322 rcu_read_lock();
2323 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2324 throttled_list) {
2325 struct rq *rq = rq_of(cfs_rq);
2326
2327 raw_spin_lock(&rq->lock);
2328 if (!cfs_rq_throttled(cfs_rq))
2329 goto next;
2330
2331 runtime = -cfs_rq->runtime_remaining + 1;
2332 if (runtime > remaining)
2333 runtime = remaining;
2334 remaining -= runtime;
2335
2336 cfs_rq->runtime_remaining += runtime;
2337 cfs_rq->runtime_expires = expires;
2338
2339 /* we check whether we're throttled above */
2340 if (cfs_rq->runtime_remaining > 0)
2341 unthrottle_cfs_rq(cfs_rq);
2342
2343 next:
2344 raw_spin_unlock(&rq->lock);
2345
2346 if (!remaining)
2347 break;
2348 }
2349 rcu_read_unlock();
2350
2351 return remaining;
2352 }
2353
2354 /*
2355 * Responsible for refilling a task_group's bandwidth and unthrottling its
2356 * cfs_rqs as appropriate. If there has been no activity within the last
2357 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2358 * used to track this state.
2359 */
2360 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2361 {
2362 u64 runtime, runtime_expires;
2363 int idle = 1, throttled;
2364
2365 raw_spin_lock(&cfs_b->lock);
2366 /* no need to continue the timer with no bandwidth constraint */
2367 if (cfs_b->quota == RUNTIME_INF)
2368 goto out_unlock;
2369
2370 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2371 /* idle depends on !throttled (for the case of a large deficit) */
2372 idle = cfs_b->idle && !throttled;
2373 cfs_b->nr_periods += overrun;
2374
2375 /* if we're going inactive then everything else can be deferred */
2376 if (idle)
2377 goto out_unlock;
2378
2379 __refill_cfs_bandwidth_runtime(cfs_b);
2380
2381 if (!throttled) {
2382 /* mark as potentially idle for the upcoming period */
2383 cfs_b->idle = 1;
2384 goto out_unlock;
2385 }
2386
2387 /* account preceding periods in which throttling occurred */
2388 cfs_b->nr_throttled += overrun;
2389
2390 /*
2391 * There are throttled entities so we must first use the new bandwidth
2392 * to unthrottle them before making it generally available. This
2393 * ensures that all existing debts will be paid before a new cfs_rq is
2394 * allowed to run.
2395 */
2396 runtime = cfs_b->runtime;
2397 runtime_expires = cfs_b->runtime_expires;
2398 cfs_b->runtime = 0;
2399
2400 /*
2401 * This check is repeated as we are holding onto the new bandwidth
2402 * while we unthrottle. This can potentially race with an unthrottled
2403 * group trying to acquire new bandwidth from the global pool.
2404 */
2405 while (throttled && runtime > 0) {
2406 raw_spin_unlock(&cfs_b->lock);
2407 /* we can't nest cfs_b->lock while distributing bandwidth */
2408 runtime = distribute_cfs_runtime(cfs_b, runtime,
2409 runtime_expires);
2410 raw_spin_lock(&cfs_b->lock);
2411
2412 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2413 }
2414
2415 /* return (any) remaining runtime */
2416 cfs_b->runtime = runtime;
2417 /*
2418 * While we are ensured activity in the period following an
2419 * unthrottle, this also covers the case in which the new bandwidth is
2420 * insufficient to cover the existing bandwidth deficit. (Forcing the
2421 * timer to remain active while there are any throttled entities.)
2422 */
2423 cfs_b->idle = 0;
2424 out_unlock:
2425 if (idle)
2426 cfs_b->timer_active = 0;
2427 raw_spin_unlock(&cfs_b->lock);
2428
2429 return idle;
2430 }
2431
2432 /* a cfs_rq won't donate quota below this amount */
2433 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2434 /* minimum remaining period time to redistribute slack quota */
2435 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2436 /* how long we wait to gather additional slack before distributing */
2437 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2438
2439 /* are we near the end of the current quota period? */
2440 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2441 {
2442 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2443 u64 remaining;
2444
2445 /* if the call-back is running a quota refresh is already occurring */
2446 if (hrtimer_callback_running(refresh_timer))
2447 return 1;
2448
2449 /* is a quota refresh about to occur? */
2450 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2451 if (remaining < min_expire)
2452 return 1;
2453
2454 return 0;
2455 }
2456
2457 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2458 {
2459 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2460
2461 /* if there's a quota refresh soon don't bother with slack */
2462 if (runtime_refresh_within(cfs_b, min_left))
2463 return;
2464
2465 start_bandwidth_timer(&cfs_b->slack_timer,
2466 ns_to_ktime(cfs_bandwidth_slack_period));
2467 }
2468
2469 /* we know any runtime found here is valid as update_curr() precedes return */
2470 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2471 {
2472 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2473 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2474
2475 if (slack_runtime <= 0)
2476 return;
2477
2478 raw_spin_lock(&cfs_b->lock);
2479 if (cfs_b->quota != RUNTIME_INF &&
2480 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2481 cfs_b->runtime += slack_runtime;
2482
2483 /* we are under rq->lock, defer unthrottling using a timer */
2484 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2485 !list_empty(&cfs_b->throttled_cfs_rq))
2486 start_cfs_slack_bandwidth(cfs_b);
2487 }
2488 raw_spin_unlock(&cfs_b->lock);
2489
2490 /* even if it's not valid for return we don't want to try again */
2491 cfs_rq->runtime_remaining -= slack_runtime;
2492 }
2493
2494 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2495 {
2496 if (!cfs_bandwidth_used())
2497 return;
2498
2499 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2500 return;
2501
2502 __return_cfs_rq_runtime(cfs_rq);
2503 }
2504
2505 /*
2506 * This is done with a timer (instead of inline with bandwidth return) since
2507 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2508 */
2509 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2510 {
2511 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2512 u64 expires;
2513
2514 /* confirm we're still not at a refresh boundary */
2515 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2516 return;
2517
2518 raw_spin_lock(&cfs_b->lock);
2519 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2520 runtime = cfs_b->runtime;
2521 cfs_b->runtime = 0;
2522 }
2523 expires = cfs_b->runtime_expires;
2524 raw_spin_unlock(&cfs_b->lock);
2525
2526 if (!runtime)
2527 return;
2528
2529 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2530
2531 raw_spin_lock(&cfs_b->lock);
2532 if (expires == cfs_b->runtime_expires)
2533 cfs_b->runtime = runtime;
2534 raw_spin_unlock(&cfs_b->lock);
2535 }
2536
2537 /*
2538 * When a group wakes up we want to make sure that its quota is not already
2539 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2540 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2541 */
2542 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2543 {
2544 if (!cfs_bandwidth_used())
2545 return;
2546
2547 /* an active group must be handled by the update_curr()->put() path */
2548 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2549 return;
2550
2551 /* ensure the group is not already throttled */
2552 if (cfs_rq_throttled(cfs_rq))
2553 return;
2554
2555 /* update runtime allocation */
2556 account_cfs_rq_runtime(cfs_rq, 0);
2557 if (cfs_rq->runtime_remaining <= 0)
2558 throttle_cfs_rq(cfs_rq);
2559 }
2560
2561 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2562 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2563 {
2564 if (!cfs_bandwidth_used())
2565 return;
2566
2567 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2568 return;
2569
2570 /*
2571 * it's possible for a throttled entity to be forced into a running
2572 * state (e.g. set_curr_task), in this case we're finished.
2573 */
2574 if (cfs_rq_throttled(cfs_rq))
2575 return;
2576
2577 throttle_cfs_rq(cfs_rq);
2578 }
2579
2580 static inline u64 default_cfs_period(void);
2581 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2582 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2583
2584 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2585 {
2586 struct cfs_bandwidth *cfs_b =
2587 container_of(timer, struct cfs_bandwidth, slack_timer);
2588 do_sched_cfs_slack_timer(cfs_b);
2589
2590 return HRTIMER_NORESTART;
2591 }
2592
2593 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2594 {
2595 struct cfs_bandwidth *cfs_b =
2596 container_of(timer, struct cfs_bandwidth, period_timer);
2597 ktime_t now;
2598 int overrun;
2599 int idle = 0;
2600
2601 for (;;) {
2602 now = hrtimer_cb_get_time(timer);
2603 overrun = hrtimer_forward(timer, now, cfs_b->period);
2604
2605 if (!overrun)
2606 break;
2607
2608 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2609 }
2610
2611 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2612 }
2613
2614 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2615 {
2616 raw_spin_lock_init(&cfs_b->lock);
2617 cfs_b->runtime = 0;
2618 cfs_b->quota = RUNTIME_INF;
2619 cfs_b->period = ns_to_ktime(default_cfs_period());
2620
2621 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2622 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2623 cfs_b->period_timer.function = sched_cfs_period_timer;
2624 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2625 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2626 }
2627
2628 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2629 {
2630 cfs_rq->runtime_enabled = 0;
2631 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2632 }
2633
2634 /* requires cfs_b->lock, may release to reprogram timer */
2635 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2636 {
2637 /*
2638 * The timer may be active because we're trying to set a new bandwidth
2639 * period or because we're racing with the tear-down path
2640 * (timer_active==0 becomes visible before the hrtimer call-back
2641 * terminates). In either case we ensure that it's re-programmed
2642 */
2643 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2644 raw_spin_unlock(&cfs_b->lock);
2645 /* ensure cfs_b->lock is available while we wait */
2646 hrtimer_cancel(&cfs_b->period_timer);
2647
2648 raw_spin_lock(&cfs_b->lock);
2649 /* if someone else restarted the timer then we're done */
2650 if (cfs_b->timer_active)
2651 return;
2652 }
2653
2654 cfs_b->timer_active = 1;
2655 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2656 }
2657
2658 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2659 {
2660 hrtimer_cancel(&cfs_b->period_timer);
2661 hrtimer_cancel(&cfs_b->slack_timer);
2662 }
2663
2664 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2665 {
2666 struct cfs_rq *cfs_rq;
2667
2668 for_each_leaf_cfs_rq(rq, cfs_rq) {
2669 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2670
2671 if (!cfs_rq->runtime_enabled)
2672 continue;
2673
2674 /*
2675 * clock_task is not advancing so we just need to make sure
2676 * there's some valid quota amount
2677 */
2678 cfs_rq->runtime_remaining = cfs_b->quota;
2679 if (cfs_rq_throttled(cfs_rq))
2680 unthrottle_cfs_rq(cfs_rq);
2681 }
2682 }
2683
2684 #else /* CONFIG_CFS_BANDWIDTH */
2685 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2686 {
2687 return rq_of(cfs_rq)->clock_task;
2688 }
2689
2690 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2691 unsigned long delta_exec) {}
2692 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2693 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2694 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2695
2696 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2697 {
2698 return 0;
2699 }
2700
2701 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2702 {
2703 return 0;
2704 }
2705
2706 static inline int throttled_lb_pair(struct task_group *tg,
2707 int src_cpu, int dest_cpu)
2708 {
2709 return 0;
2710 }
2711
2712 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2713
2714 #ifdef CONFIG_FAIR_GROUP_SCHED
2715 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2716 #endif
2717
2718 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2719 {
2720 return NULL;
2721 }
2722 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2723 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2724
2725 #endif /* CONFIG_CFS_BANDWIDTH */
2726
2727 /**************************************************
2728 * CFS operations on tasks:
2729 */
2730
2731 #ifdef CONFIG_SCHED_HRTICK
2732 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2733 {
2734 struct sched_entity *se = &p->se;
2735 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2736
2737 WARN_ON(task_rq(p) != rq);
2738
2739 if (cfs_rq->nr_running > 1) {
2740 u64 slice = sched_slice(cfs_rq, se);
2741 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2742 s64 delta = slice - ran;
2743
2744 if (delta < 0) {
2745 if (rq->curr == p)
2746 resched_task(p);
2747 return;
2748 }
2749
2750 /*
2751 * Don't schedule slices shorter than 10000ns, that just
2752 * doesn't make sense. Rely on vruntime for fairness.
2753 */
2754 if (rq->curr != p)
2755 delta = max_t(s64, 10000LL, delta);
2756
2757 hrtick_start(rq, delta);
2758 }
2759 }
2760
2761 /*
2762 * called from enqueue/dequeue and updates the hrtick when the
2763 * current task is from our class and nr_running is low enough
2764 * to matter.
2765 */
2766 static void hrtick_update(struct rq *rq)
2767 {
2768 struct task_struct *curr = rq->curr;
2769
2770 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2771 return;
2772
2773 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2774 hrtick_start_fair(rq, curr);
2775 }
2776 #else /* !CONFIG_SCHED_HRTICK */
2777 static inline void
2778 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2779 {
2780 }
2781
2782 static inline void hrtick_update(struct rq *rq)
2783 {
2784 }
2785 #endif
2786
2787 /*
2788 * The enqueue_task method is called before nr_running is
2789 * increased. Here we update the fair scheduling stats and
2790 * then put the task into the rbtree:
2791 */
2792 static void
2793 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2794 {
2795 struct cfs_rq *cfs_rq;
2796 struct sched_entity *se = &p->se;
2797
2798 for_each_sched_entity(se) {
2799 if (se->on_rq)
2800 break;
2801 cfs_rq = cfs_rq_of(se);
2802 enqueue_entity(cfs_rq, se, flags);
2803
2804 /*
2805 * end evaluation on encountering a throttled cfs_rq
2806 *
2807 * note: in the case of encountering a throttled cfs_rq we will
2808 * post the final h_nr_running increment below.
2809 */
2810 if (cfs_rq_throttled(cfs_rq))
2811 break;
2812 cfs_rq->h_nr_running++;
2813
2814 flags = ENQUEUE_WAKEUP;
2815 }
2816
2817 for_each_sched_entity(se) {
2818 cfs_rq = cfs_rq_of(se);
2819 cfs_rq->h_nr_running++;
2820
2821 if (cfs_rq_throttled(cfs_rq))
2822 break;
2823
2824 update_cfs_shares(cfs_rq);
2825 update_entity_load_avg(se, 1);
2826 }
2827
2828 if (!se) {
2829 update_rq_runnable_avg(rq, rq->nr_running);
2830 inc_nr_running(rq);
2831 }
2832 hrtick_update(rq);
2833 }
2834
2835 static void set_next_buddy(struct sched_entity *se);
2836
2837 /*
2838 * The dequeue_task method is called before nr_running is
2839 * decreased. We remove the task from the rbtree and
2840 * update the fair scheduling stats:
2841 */
2842 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2843 {
2844 struct cfs_rq *cfs_rq;
2845 struct sched_entity *se = &p->se;
2846 int task_sleep = flags & DEQUEUE_SLEEP;
2847
2848 for_each_sched_entity(se) {
2849 cfs_rq = cfs_rq_of(se);
2850 dequeue_entity(cfs_rq, se, flags);
2851
2852 /*
2853 * end evaluation on encountering a throttled cfs_rq
2854 *
2855 * note: in the case of encountering a throttled cfs_rq we will
2856 * post the final h_nr_running decrement below.
2857 */
2858 if (cfs_rq_throttled(cfs_rq))
2859 break;
2860 cfs_rq->h_nr_running--;
2861
2862 /* Don't dequeue parent if it has other entities besides us */
2863 if (cfs_rq->load.weight) {
2864 /*
2865 * Bias pick_next to pick a task from this cfs_rq, as
2866 * p is sleeping when it is within its sched_slice.
2867 */
2868 if (task_sleep && parent_entity(se))
2869 set_next_buddy(parent_entity(se));
2870
2871 /* avoid re-evaluating load for this entity */
2872 se = parent_entity(se);
2873 break;
2874 }
2875 flags |= DEQUEUE_SLEEP;
2876 }
2877
2878 for_each_sched_entity(se) {
2879 cfs_rq = cfs_rq_of(se);
2880 cfs_rq->h_nr_running--;
2881
2882 if (cfs_rq_throttled(cfs_rq))
2883 break;
2884
2885 update_cfs_shares(cfs_rq);
2886 update_entity_load_avg(se, 1);
2887 }
2888
2889 if (!se) {
2890 dec_nr_running(rq);
2891 update_rq_runnable_avg(rq, 1);
2892 }
2893 hrtick_update(rq);
2894 }
2895
2896 #ifdef CONFIG_SMP
2897 /* Used instead of source_load when we know the type == 0 */
2898 static unsigned long weighted_cpuload(const int cpu)
2899 {
2900 return cpu_rq(cpu)->load.weight;
2901 }
2902
2903 /*
2904 * Return a low guess at the load of a migration-source cpu weighted
2905 * according to the scheduling class and "nice" value.
2906 *
2907 * We want to under-estimate the load of migration sources, to
2908 * balance conservatively.
2909 */
2910 static unsigned long source_load(int cpu, int type)
2911 {
2912 struct rq *rq = cpu_rq(cpu);
2913 unsigned long total = weighted_cpuload(cpu);
2914
2915 if (type == 0 || !sched_feat(LB_BIAS))
2916 return total;
2917
2918 return min(rq->cpu_load[type-1], total);
2919 }
2920
2921 /*
2922 * Return a high guess at the load of a migration-target cpu weighted
2923 * according to the scheduling class and "nice" value.
2924 */
2925 static unsigned long target_load(int cpu, int type)
2926 {
2927 struct rq *rq = cpu_rq(cpu);
2928 unsigned long total = weighted_cpuload(cpu);
2929
2930 if (type == 0 || !sched_feat(LB_BIAS))
2931 return total;
2932
2933 return max(rq->cpu_load[type-1], total);
2934 }
2935
2936 static unsigned long power_of(int cpu)
2937 {
2938 return cpu_rq(cpu)->cpu_power;
2939 }
2940
2941 static unsigned long cpu_avg_load_per_task(int cpu)
2942 {
2943 struct rq *rq = cpu_rq(cpu);
2944 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2945
2946 if (nr_running)
2947 return rq->load.weight / nr_running;
2948
2949 return 0;
2950 }
2951
2952
2953 static void task_waking_fair(struct task_struct *p)
2954 {
2955 struct sched_entity *se = &p->se;
2956 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2957 u64 min_vruntime;
2958
2959 #ifndef CONFIG_64BIT
2960 u64 min_vruntime_copy;
2961
2962 do {
2963 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2964 smp_rmb();
2965 min_vruntime = cfs_rq->min_vruntime;
2966 } while (min_vruntime != min_vruntime_copy);
2967 #else
2968 min_vruntime = cfs_rq->min_vruntime;
2969 #endif
2970
2971 se->vruntime -= min_vruntime;
2972 }
2973
2974 #ifdef CONFIG_FAIR_GROUP_SCHED
2975 /*
2976 * effective_load() calculates the load change as seen from the root_task_group
2977 *
2978 * Adding load to a group doesn't make a group heavier, but can cause movement
2979 * of group shares between cpus. Assuming the shares were perfectly aligned one
2980 * can calculate the shift in shares.
2981 *
2982 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2983 * on this @cpu and results in a total addition (subtraction) of @wg to the
2984 * total group weight.
2985 *
2986 * Given a runqueue weight distribution (rw_i) we can compute a shares
2987 * distribution (s_i) using:
2988 *
2989 * s_i = rw_i / \Sum rw_j (1)
2990 *
2991 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2992 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2993 * shares distribution (s_i):
2994 *
2995 * rw_i = { 2, 4, 1, 0 }
2996 * s_i = { 2/7, 4/7, 1/7, 0 }
2997 *
2998 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2999 * task used to run on and the CPU the waker is running on), we need to
3000 * compute the effect of waking a task on either CPU and, in case of a sync
3001 * wakeup, compute the effect of the current task going to sleep.
3002 *
3003 * So for a change of @wl to the local @cpu with an overall group weight change
3004 * of @wl we can compute the new shares distribution (s'_i) using:
3005 *
3006 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3007 *
3008 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3009 * differences in waking a task to CPU 0. The additional task changes the
3010 * weight and shares distributions like:
3011 *
3012 * rw'_i = { 3, 4, 1, 0 }
3013 * s'_i = { 3/8, 4/8, 1/8, 0 }
3014 *
3015 * We can then compute the difference in effective weight by using:
3016 *
3017 * dw_i = S * (s'_i - s_i) (3)
3018 *
3019 * Where 'S' is the group weight as seen by its parent.
3020 *
3021 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3022 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3023 * 4/7) times the weight of the group.
3024 */
3025 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3026 {
3027 struct sched_entity *se = tg->se[cpu];
3028
3029 if (!tg->parent) /* the trivial, non-cgroup case */
3030 return wl;
3031
3032 for_each_sched_entity(se) {
3033 long w, W;
3034
3035 tg = se->my_q->tg;
3036
3037 /*
3038 * W = @wg + \Sum rw_j
3039 */
3040 W = wg + calc_tg_weight(tg, se->my_q);
3041
3042 /*
3043 * w = rw_i + @wl
3044 */
3045 w = se->my_q->load.weight + wl;
3046
3047 /*
3048 * wl = S * s'_i; see (2)
3049 */
3050 if (W > 0 && w < W)
3051 wl = (w * tg->shares) / W;
3052 else
3053 wl = tg->shares;
3054
3055 /*
3056 * Per the above, wl is the new se->load.weight value; since
3057 * those are clipped to [MIN_SHARES, ...) do so now. See
3058 * calc_cfs_shares().
3059 */
3060 if (wl < MIN_SHARES)
3061 wl = MIN_SHARES;
3062
3063 /*
3064 * wl = dw_i = S * (s'_i - s_i); see (3)
3065 */
3066 wl -= se->load.weight;
3067
3068 /*
3069 * Recursively apply this logic to all parent groups to compute
3070 * the final effective load change on the root group. Since
3071 * only the @tg group gets extra weight, all parent groups can
3072 * only redistribute existing shares. @wl is the shift in shares
3073 * resulting from this level per the above.
3074 */
3075 wg = 0;
3076 }
3077
3078 return wl;
3079 }
3080 #else
3081
3082 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3083 unsigned long wl, unsigned long wg)
3084 {
3085 return wl;
3086 }
3087
3088 #endif
3089
3090 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3091 {
3092 s64 this_load, load;
3093 int idx, this_cpu, prev_cpu;
3094 unsigned long tl_per_task;
3095 struct task_group *tg;
3096 unsigned long weight;
3097 int balanced;
3098
3099 idx = sd->wake_idx;
3100 this_cpu = smp_processor_id();
3101 prev_cpu = task_cpu(p);
3102 load = source_load(prev_cpu, idx);
3103 this_load = target_load(this_cpu, idx);
3104
3105 /*
3106 * If sync wakeup then subtract the (maximum possible)
3107 * effect of the currently running task from the load
3108 * of the current CPU:
3109 */
3110 if (sync) {
3111 tg = task_group(current);
3112 weight = current->se.load.weight;
3113
3114 this_load += effective_load(tg, this_cpu, -weight, -weight);
3115 load += effective_load(tg, prev_cpu, 0, -weight);
3116 }
3117
3118 tg = task_group(p);
3119 weight = p->se.load.weight;
3120
3121 /*
3122 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3123 * due to the sync cause above having dropped this_load to 0, we'll
3124 * always have an imbalance, but there's really nothing you can do
3125 * about that, so that's good too.
3126 *
3127 * Otherwise check if either cpus are near enough in load to allow this
3128 * task to be woken on this_cpu.
3129 */
3130 if (this_load > 0) {
3131 s64 this_eff_load, prev_eff_load;
3132
3133 this_eff_load = 100;
3134 this_eff_load *= power_of(prev_cpu);
3135 this_eff_load *= this_load +
3136 effective_load(tg, this_cpu, weight, weight);
3137
3138 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3139 prev_eff_load *= power_of(this_cpu);
3140 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3141
3142 balanced = this_eff_load <= prev_eff_load;
3143 } else
3144 balanced = true;
3145
3146 /*
3147 * If the currently running task will sleep within
3148 * a reasonable amount of time then attract this newly
3149 * woken task:
3150 */
3151 if (sync && balanced)
3152 return 1;
3153
3154 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3155 tl_per_task = cpu_avg_load_per_task(this_cpu);
3156
3157 if (balanced ||
3158 (this_load <= load &&
3159 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3160 /*
3161 * This domain has SD_WAKE_AFFINE and
3162 * p is cache cold in this domain, and
3163 * there is no bad imbalance.
3164 */
3165 schedstat_inc(sd, ttwu_move_affine);
3166 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3167
3168 return 1;
3169 }
3170 return 0;
3171 }
3172
3173 /*
3174 * find_idlest_group finds and returns the least busy CPU group within the
3175 * domain.
3176 */
3177 static struct sched_group *
3178 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3179 int this_cpu, int load_idx)
3180 {
3181 struct sched_group *idlest = NULL, *group = sd->groups;
3182 unsigned long min_load = ULONG_MAX, this_load = 0;
3183 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3184
3185 do {
3186 unsigned long load, avg_load;
3187 int local_group;
3188 int i;
3189
3190 /* Skip over this group if it has no CPUs allowed */
3191 if (!cpumask_intersects(sched_group_cpus(group),
3192 tsk_cpus_allowed(p)))
3193 continue;
3194
3195 local_group = cpumask_test_cpu(this_cpu,
3196 sched_group_cpus(group));
3197
3198 /* Tally up the load of all CPUs in the group */
3199 avg_load = 0;
3200
3201 for_each_cpu(i, sched_group_cpus(group)) {
3202 /* Bias balancing toward cpus of our domain */
3203 if (local_group)
3204 load = source_load(i, load_idx);
3205 else
3206 load = target_load(i, load_idx);
3207
3208 avg_load += load;
3209 }
3210
3211 /* Adjust by relative CPU power of the group */
3212 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3213
3214 if (local_group) {
3215 this_load = avg_load;
3216 } else if (avg_load < min_load) {
3217 min_load = avg_load;
3218 idlest = group;
3219 }
3220 } while (group = group->next, group != sd->groups);
3221
3222 if (!idlest || 100*this_load < imbalance*min_load)
3223 return NULL;
3224 return idlest;
3225 }
3226
3227 /*
3228 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3229 */
3230 static int
3231 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3232 {
3233 unsigned long load, min_load = ULONG_MAX;
3234 int idlest = -1;
3235 int i;
3236
3237 /* Traverse only the allowed CPUs */
3238 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3239 load = weighted_cpuload(i);
3240
3241 if (load < min_load || (load == min_load && i == this_cpu)) {
3242 min_load = load;
3243 idlest = i;
3244 }
3245 }
3246
3247 return idlest;
3248 }
3249
3250 /*
3251 * Try and locate an idle CPU in the sched_domain.
3252 */
3253 static int select_idle_sibling(struct task_struct *p, int target)
3254 {
3255 struct sched_domain *sd;
3256 struct sched_group *sg;
3257 int i = task_cpu(p);
3258
3259 if (idle_cpu(target))
3260 return target;
3261
3262 /*
3263 * If the prevous cpu is cache affine and idle, don't be stupid.
3264 */
3265 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3266 return i;
3267
3268 /*
3269 * Otherwise, iterate the domains and find an elegible idle cpu.
3270 */
3271 sd = rcu_dereference(per_cpu(sd_llc, target));
3272 for_each_lower_domain(sd) {
3273 sg = sd->groups;
3274 do {
3275 if (!cpumask_intersects(sched_group_cpus(sg),
3276 tsk_cpus_allowed(p)))
3277 goto next;
3278
3279 for_each_cpu(i, sched_group_cpus(sg)) {
3280 if (i == target || !idle_cpu(i))
3281 goto next;
3282 }
3283
3284 target = cpumask_first_and(sched_group_cpus(sg),
3285 tsk_cpus_allowed(p));
3286 goto done;
3287 next:
3288 sg = sg->next;
3289 } while (sg != sd->groups);
3290 }
3291 done:
3292 return target;
3293 }
3294
3295 /*
3296 * sched_balance_self: balance the current task (running on cpu) in domains
3297 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3298 * SD_BALANCE_EXEC.
3299 *
3300 * Balance, ie. select the least loaded group.
3301 *
3302 * Returns the target CPU number, or the same CPU if no balancing is needed.
3303 *
3304 * preempt must be disabled.
3305 */
3306 static int
3307 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3308 {
3309 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3310 int cpu = smp_processor_id();
3311 int prev_cpu = task_cpu(p);
3312 int new_cpu = cpu;
3313 int want_affine = 0;
3314 int sync = wake_flags & WF_SYNC;
3315
3316 if (p->nr_cpus_allowed == 1)
3317 return prev_cpu;
3318
3319 if (sd_flag & SD_BALANCE_WAKE) {
3320 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3321 want_affine = 1;
3322 new_cpu = prev_cpu;
3323 }
3324
3325 rcu_read_lock();
3326 for_each_domain(cpu, tmp) {
3327 if (!(tmp->flags & SD_LOAD_BALANCE))
3328 continue;
3329
3330 /*
3331 * If both cpu and prev_cpu are part of this domain,
3332 * cpu is a valid SD_WAKE_AFFINE target.
3333 */
3334 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3335 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3336 affine_sd = tmp;
3337 break;
3338 }
3339
3340 if (tmp->flags & sd_flag)
3341 sd = tmp;
3342 }
3343
3344 if (affine_sd) {
3345 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3346 prev_cpu = cpu;
3347
3348 new_cpu = select_idle_sibling(p, prev_cpu);
3349 goto unlock;
3350 }
3351
3352 while (sd) {
3353 int load_idx = sd->forkexec_idx;
3354 struct sched_group *group;
3355 int weight;
3356
3357 if (!(sd->flags & sd_flag)) {
3358 sd = sd->child;
3359 continue;
3360 }
3361
3362 if (sd_flag & SD_BALANCE_WAKE)
3363 load_idx = sd->wake_idx;
3364
3365 group = find_idlest_group(sd, p, cpu, load_idx);
3366 if (!group) {
3367 sd = sd->child;
3368 continue;
3369 }
3370
3371 new_cpu = find_idlest_cpu(group, p, cpu);
3372 if (new_cpu == -1 || new_cpu == cpu) {
3373 /* Now try balancing at a lower domain level of cpu */
3374 sd = sd->child;
3375 continue;
3376 }
3377
3378 /* Now try balancing at a lower domain level of new_cpu */
3379 cpu = new_cpu;
3380 weight = sd->span_weight;
3381 sd = NULL;
3382 for_each_domain(cpu, tmp) {
3383 if (weight <= tmp->span_weight)
3384 break;
3385 if (tmp->flags & sd_flag)
3386 sd = tmp;
3387 }
3388 /* while loop will break here if sd == NULL */
3389 }
3390 unlock:
3391 rcu_read_unlock();
3392
3393 return new_cpu;
3394 }
3395
3396 /*
3397 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3398 * removed when useful for applications beyond shares distribution (e.g.
3399 * load-balance).
3400 */
3401 #ifdef CONFIG_FAIR_GROUP_SCHED
3402 /*
3403 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3404 * cfs_rq_of(p) references at time of call are still valid and identify the
3405 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3406 * other assumptions, including the state of rq->lock, should be made.
3407 */
3408 static void
3409 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3410 {
3411 struct sched_entity *se = &p->se;
3412 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3413
3414 /*
3415 * Load tracking: accumulate removed load so that it can be processed
3416 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3417 * to blocked load iff they have a positive decay-count. It can never
3418 * be negative here since on-rq tasks have decay-count == 0.
3419 */
3420 if (se->avg.decay_count) {
3421 se->avg.decay_count = -__synchronize_entity_decay(se);
3422 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3423 }
3424 }
3425 #endif
3426 #endif /* CONFIG_SMP */
3427
3428 static unsigned long
3429 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3430 {
3431 unsigned long gran = sysctl_sched_wakeup_granularity;
3432
3433 /*
3434 * Since its curr running now, convert the gran from real-time
3435 * to virtual-time in his units.
3436 *
3437 * By using 'se' instead of 'curr' we penalize light tasks, so
3438 * they get preempted easier. That is, if 'se' < 'curr' then
3439 * the resulting gran will be larger, therefore penalizing the
3440 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3441 * be smaller, again penalizing the lighter task.
3442 *
3443 * This is especially important for buddies when the leftmost
3444 * task is higher priority than the buddy.
3445 */
3446 return calc_delta_fair(gran, se);
3447 }
3448
3449 /*
3450 * Should 'se' preempt 'curr'.
3451 *
3452 * |s1
3453 * |s2
3454 * |s3
3455 * g
3456 * |<--->|c
3457 *
3458 * w(c, s1) = -1
3459 * w(c, s2) = 0
3460 * w(c, s3) = 1
3461 *
3462 */
3463 static int
3464 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3465 {
3466 s64 gran, vdiff = curr->vruntime - se->vruntime;
3467
3468 if (vdiff <= 0)
3469 return -1;
3470
3471 gran = wakeup_gran(curr, se);
3472 if (vdiff > gran)
3473 return 1;
3474
3475 return 0;
3476 }
3477
3478 static void set_last_buddy(struct sched_entity *se)
3479 {
3480 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3481 return;
3482
3483 for_each_sched_entity(se)
3484 cfs_rq_of(se)->last = se;
3485 }
3486
3487 static void set_next_buddy(struct sched_entity *se)
3488 {
3489 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3490 return;
3491
3492 for_each_sched_entity(se)
3493 cfs_rq_of(se)->next = se;
3494 }
3495
3496 static void set_skip_buddy(struct sched_entity *se)
3497 {
3498 for_each_sched_entity(se)
3499 cfs_rq_of(se)->skip = se;
3500 }
3501
3502 /*
3503 * Preempt the current task with a newly woken task if needed:
3504 */
3505 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3506 {
3507 struct task_struct *curr = rq->curr;
3508 struct sched_entity *se = &curr->se, *pse = &p->se;
3509 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3510 int scale = cfs_rq->nr_running >= sched_nr_latency;
3511 int next_buddy_marked = 0;
3512
3513 if (unlikely(se == pse))
3514 return;
3515
3516 /*
3517 * This is possible from callers such as move_task(), in which we
3518 * unconditionally check_prempt_curr() after an enqueue (which may have
3519 * lead to a throttle). This both saves work and prevents false
3520 * next-buddy nomination below.
3521 */
3522 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3523 return;
3524
3525 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3526 set_next_buddy(pse);
3527 next_buddy_marked = 1;
3528 }
3529
3530 /*
3531 * We can come here with TIF_NEED_RESCHED already set from new task
3532 * wake up path.
3533 *
3534 * Note: this also catches the edge-case of curr being in a throttled
3535 * group (e.g. via set_curr_task), since update_curr() (in the
3536 * enqueue of curr) will have resulted in resched being set. This
3537 * prevents us from potentially nominating it as a false LAST_BUDDY
3538 * below.
3539 */
3540 if (test_tsk_need_resched(curr))
3541 return;
3542
3543 /* Idle tasks are by definition preempted by non-idle tasks. */
3544 if (unlikely(curr->policy == SCHED_IDLE) &&
3545 likely(p->policy != SCHED_IDLE))
3546 goto preempt;
3547
3548 /*
3549 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3550 * is driven by the tick):
3551 */
3552 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3553 return;
3554
3555 find_matching_se(&se, &pse);
3556 update_curr(cfs_rq_of(se));
3557 BUG_ON(!pse);
3558 if (wakeup_preempt_entity(se, pse) == 1) {
3559 /*
3560 * Bias pick_next to pick the sched entity that is
3561 * triggering this preemption.
3562 */
3563 if (!next_buddy_marked)
3564 set_next_buddy(pse);
3565 goto preempt;
3566 }
3567
3568 return;
3569
3570 preempt:
3571 resched_task(curr);
3572 /*
3573 * Only set the backward buddy when the current task is still
3574 * on the rq. This can happen when a wakeup gets interleaved
3575 * with schedule on the ->pre_schedule() or idle_balance()
3576 * point, either of which can * drop the rq lock.
3577 *
3578 * Also, during early boot the idle thread is in the fair class,
3579 * for obvious reasons its a bad idea to schedule back to it.
3580 */
3581 if (unlikely(!se->on_rq || curr == rq->idle))
3582 return;
3583
3584 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3585 set_last_buddy(se);
3586 }
3587
3588 static struct task_struct *pick_next_task_fair(struct rq *rq)
3589 {
3590 struct task_struct *p;
3591 struct cfs_rq *cfs_rq = &rq->cfs;
3592 struct sched_entity *se;
3593
3594 if (!cfs_rq->nr_running)
3595 return NULL;
3596
3597 do {
3598 se = pick_next_entity(cfs_rq);
3599 set_next_entity(cfs_rq, se);
3600 cfs_rq = group_cfs_rq(se);
3601 } while (cfs_rq);
3602
3603 p = task_of(se);
3604 if (hrtick_enabled(rq))
3605 hrtick_start_fair(rq, p);
3606
3607 return p;
3608 }
3609
3610 /*
3611 * Account for a descheduled task:
3612 */
3613 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3614 {
3615 struct sched_entity *se = &prev->se;
3616 struct cfs_rq *cfs_rq;
3617
3618 for_each_sched_entity(se) {
3619 cfs_rq = cfs_rq_of(se);
3620 put_prev_entity(cfs_rq, se);
3621 }
3622 }
3623
3624 /*
3625 * sched_yield() is very simple
3626 *
3627 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3628 */
3629 static void yield_task_fair(struct rq *rq)
3630 {
3631 struct task_struct *curr = rq->curr;
3632 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3633 struct sched_entity *se = &curr->se;
3634
3635 /*
3636 * Are we the only task in the tree?
3637 */
3638 if (unlikely(rq->nr_running == 1))
3639 return;
3640
3641 clear_buddies(cfs_rq, se);
3642
3643 if (curr->policy != SCHED_BATCH) {
3644 update_rq_clock(rq);
3645 /*
3646 * Update run-time statistics of the 'current'.
3647 */
3648 update_curr(cfs_rq);
3649 /*
3650 * Tell update_rq_clock() that we've just updated,
3651 * so we don't do microscopic update in schedule()
3652 * and double the fastpath cost.
3653 */
3654 rq->skip_clock_update = 1;
3655 }
3656
3657 set_skip_buddy(se);
3658 }
3659
3660 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3661 {
3662 struct sched_entity *se = &p->se;
3663
3664 /* throttled hierarchies are not runnable */
3665 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3666 return false;
3667
3668 /* Tell the scheduler that we'd really like pse to run next. */
3669 set_next_buddy(se);
3670
3671 yield_task_fair(rq);
3672
3673 return true;
3674 }
3675
3676 #ifdef CONFIG_SMP
3677 /**************************************************
3678 * Fair scheduling class load-balancing methods.
3679 *
3680 * BASICS
3681 *
3682 * The purpose of load-balancing is to achieve the same basic fairness the
3683 * per-cpu scheduler provides, namely provide a proportional amount of compute
3684 * time to each task. This is expressed in the following equation:
3685 *
3686 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3687 *
3688 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3689 * W_i,0 is defined as:
3690 *
3691 * W_i,0 = \Sum_j w_i,j (2)
3692 *
3693 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3694 * is derived from the nice value as per prio_to_weight[].
3695 *
3696 * The weight average is an exponential decay average of the instantaneous
3697 * weight:
3698 *
3699 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3700 *
3701 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3702 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3703 * can also include other factors [XXX].
3704 *
3705 * To achieve this balance we define a measure of imbalance which follows
3706 * directly from (1):
3707 *
3708 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3709 *
3710 * We them move tasks around to minimize the imbalance. In the continuous
3711 * function space it is obvious this converges, in the discrete case we get
3712 * a few fun cases generally called infeasible weight scenarios.
3713 *
3714 * [XXX expand on:
3715 * - infeasible weights;
3716 * - local vs global optima in the discrete case. ]
3717 *
3718 *
3719 * SCHED DOMAINS
3720 *
3721 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3722 * for all i,j solution, we create a tree of cpus that follows the hardware
3723 * topology where each level pairs two lower groups (or better). This results
3724 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3725 * tree to only the first of the previous level and we decrease the frequency
3726 * of load-balance at each level inv. proportional to the number of cpus in
3727 * the groups.
3728 *
3729 * This yields:
3730 *
3731 * log_2 n 1 n
3732 * \Sum { --- * --- * 2^i } = O(n) (5)
3733 * i = 0 2^i 2^i
3734 * `- size of each group
3735 * | | `- number of cpus doing load-balance
3736 * | `- freq
3737 * `- sum over all levels
3738 *
3739 * Coupled with a limit on how many tasks we can migrate every balance pass,
3740 * this makes (5) the runtime complexity of the balancer.
3741 *
3742 * An important property here is that each CPU is still (indirectly) connected
3743 * to every other cpu in at most O(log n) steps:
3744 *
3745 * The adjacency matrix of the resulting graph is given by:
3746 *
3747 * log_2 n
3748 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3749 * k = 0
3750 *
3751 * And you'll find that:
3752 *
3753 * A^(log_2 n)_i,j != 0 for all i,j (7)
3754 *
3755 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3756 * The task movement gives a factor of O(m), giving a convergence complexity
3757 * of:
3758 *
3759 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3760 *
3761 *
3762 * WORK CONSERVING
3763 *
3764 * In order to avoid CPUs going idle while there's still work to do, new idle
3765 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3766 * tree itself instead of relying on other CPUs to bring it work.
3767 *
3768 * This adds some complexity to both (5) and (8) but it reduces the total idle
3769 * time.
3770 *
3771 * [XXX more?]
3772 *
3773 *
3774 * CGROUPS
3775 *
3776 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3777 *
3778 * s_k,i
3779 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3780 * S_k
3781 *
3782 * Where
3783 *
3784 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3785 *
3786 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3787 *
3788 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3789 * property.
3790 *
3791 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3792 * rewrite all of this once again.]
3793 */
3794
3795 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3796
3797 #define LBF_ALL_PINNED 0x01
3798 #define LBF_NEED_BREAK 0x02
3799 #define LBF_SOME_PINNED 0x04
3800
3801 struct lb_env {
3802 struct sched_domain *sd;
3803
3804 struct rq *src_rq;
3805 int src_cpu;
3806
3807 int dst_cpu;
3808 struct rq *dst_rq;
3809
3810 struct cpumask *dst_grpmask;
3811 int new_dst_cpu;
3812 enum cpu_idle_type idle;
3813 long imbalance;
3814 /* The set of CPUs under consideration for load-balancing */
3815 struct cpumask *cpus;
3816
3817 unsigned int flags;
3818
3819 unsigned int loop;
3820 unsigned int loop_break;
3821 unsigned int loop_max;
3822 };
3823
3824 /*
3825 * move_task - move a task from one runqueue to another runqueue.
3826 * Both runqueues must be locked.
3827 */
3828 static void move_task(struct task_struct *p, struct lb_env *env)
3829 {
3830 deactivate_task(env->src_rq, p, 0);
3831 set_task_cpu(p, env->dst_cpu);
3832 activate_task(env->dst_rq, p, 0);
3833 check_preempt_curr(env->dst_rq, p, 0);
3834 }
3835
3836 /*
3837 * Is this task likely cache-hot:
3838 */
3839 static int
3840 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3841 {
3842 s64 delta;
3843
3844 if (p->sched_class != &fair_sched_class)
3845 return 0;
3846
3847 if (unlikely(p->policy == SCHED_IDLE))
3848 return 0;
3849
3850 /*
3851 * Buddy candidates are cache hot:
3852 */
3853 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3854 (&p->se == cfs_rq_of(&p->se)->next ||
3855 &p->se == cfs_rq_of(&p->se)->last))
3856 return 1;
3857
3858 if (sysctl_sched_migration_cost == -1)
3859 return 1;
3860 if (sysctl_sched_migration_cost == 0)
3861 return 0;
3862
3863 delta = now - p->se.exec_start;
3864
3865 return delta < (s64)sysctl_sched_migration_cost;
3866 }
3867
3868 /*
3869 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3870 */
3871 static
3872 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3873 {
3874 int tsk_cache_hot = 0;
3875 /*
3876 * We do not migrate tasks that are:
3877 * 1) running (obviously), or
3878 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3879 * 3) are cache-hot on their current CPU.
3880 */
3881 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3882 int new_dst_cpu;
3883
3884 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3885
3886 /*
3887 * Remember if this task can be migrated to any other cpu in
3888 * our sched_group. We may want to revisit it if we couldn't
3889 * meet load balance goals by pulling other tasks on src_cpu.
3890 *
3891 * Also avoid computing new_dst_cpu if we have already computed
3892 * one in current iteration.
3893 */
3894 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3895 return 0;
3896
3897 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3898 tsk_cpus_allowed(p));
3899 if (new_dst_cpu < nr_cpu_ids) {
3900 env->flags |= LBF_SOME_PINNED;
3901 env->new_dst_cpu = new_dst_cpu;
3902 }
3903 return 0;
3904 }
3905
3906 /* Record that we found atleast one task that could run on dst_cpu */
3907 env->flags &= ~LBF_ALL_PINNED;
3908
3909 if (task_running(env->src_rq, p)) {
3910 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3911 return 0;
3912 }
3913
3914 /*
3915 * Aggressive migration if:
3916 * 1) task is cache cold, or
3917 * 2) too many balance attempts have failed.
3918 */
3919
3920 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3921 if (!tsk_cache_hot ||
3922 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3923 #ifdef CONFIG_SCHEDSTATS
3924 if (tsk_cache_hot) {
3925 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3926 schedstat_inc(p, se.statistics.nr_forced_migrations);
3927 }
3928 #endif
3929 return 1;
3930 }
3931
3932 if (tsk_cache_hot) {
3933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3934 return 0;
3935 }
3936 return 1;
3937 }
3938
3939 /*
3940 * move_one_task tries to move exactly one task from busiest to this_rq, as
3941 * part of active balancing operations within "domain".
3942 * Returns 1 if successful and 0 otherwise.
3943 *
3944 * Called with both runqueues locked.
3945 */
3946 static int move_one_task(struct lb_env *env)
3947 {
3948 struct task_struct *p, *n;
3949
3950 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3951 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3952 continue;
3953
3954 if (!can_migrate_task(p, env))
3955 continue;
3956
3957 move_task(p, env);
3958 /*
3959 * Right now, this is only the second place move_task()
3960 * is called, so we can safely collect move_task()
3961 * stats here rather than inside move_task().
3962 */
3963 schedstat_inc(env->sd, lb_gained[env->idle]);
3964 return 1;
3965 }
3966 return 0;
3967 }
3968
3969 static unsigned long task_h_load(struct task_struct *p);
3970
3971 static const unsigned int sched_nr_migrate_break = 32;
3972
3973 /*
3974 * move_tasks tries to move up to imbalance weighted load from busiest to
3975 * this_rq, as part of a balancing operation within domain "sd".
3976 * Returns 1 if successful and 0 otherwise.
3977 *
3978 * Called with both runqueues locked.
3979 */
3980 static int move_tasks(struct lb_env *env)
3981 {
3982 struct list_head *tasks = &env->src_rq->cfs_tasks;
3983 struct task_struct *p;
3984 unsigned long load;
3985 int pulled = 0;
3986
3987 if (env->imbalance <= 0)
3988 return 0;
3989
3990 while (!list_empty(tasks)) {
3991 p = list_first_entry(tasks, struct task_struct, se.group_node);
3992
3993 env->loop++;
3994 /* We've more or less seen every task there is, call it quits */
3995 if (env->loop > env->loop_max)
3996 break;
3997
3998 /* take a breather every nr_migrate tasks */
3999 if (env->loop > env->loop_break) {
4000 env->loop_break += sched_nr_migrate_break;
4001 env->flags |= LBF_NEED_BREAK;
4002 break;
4003 }
4004
4005 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4006 goto next;
4007
4008 load = task_h_load(p);
4009
4010 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4011 goto next;
4012
4013 if ((load / 2) > env->imbalance)
4014 goto next;
4015
4016 if (!can_migrate_task(p, env))
4017 goto next;
4018
4019 move_task(p, env);
4020 pulled++;
4021 env->imbalance -= load;
4022
4023 #ifdef CONFIG_PREEMPT
4024 /*
4025 * NEWIDLE balancing is a source of latency, so preemptible
4026 * kernels will stop after the first task is pulled to minimize
4027 * the critical section.
4028 */
4029 if (env->idle == CPU_NEWLY_IDLE)
4030 break;
4031 #endif
4032
4033 /*
4034 * We only want to steal up to the prescribed amount of
4035 * weighted load.
4036 */
4037 if (env->imbalance <= 0)
4038 break;
4039
4040 continue;
4041 next:
4042 list_move_tail(&p->se.group_node, tasks);
4043 }
4044
4045 /*
4046 * Right now, this is one of only two places move_task() is called,
4047 * so we can safely collect move_task() stats here rather than
4048 * inside move_task().
4049 */
4050 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4051
4052 return pulled;
4053 }
4054
4055 #ifdef CONFIG_FAIR_GROUP_SCHED
4056 /*
4057 * update tg->load_weight by folding this cpu's load_avg
4058 */
4059 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4060 {
4061 struct sched_entity *se = tg->se[cpu];
4062 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4063
4064 /* throttled entities do not contribute to load */
4065 if (throttled_hierarchy(cfs_rq))
4066 return;
4067
4068 update_cfs_rq_blocked_load(cfs_rq, 1);
4069
4070 if (se) {
4071 update_entity_load_avg(se, 1);
4072 /*
4073 * We pivot on our runnable average having decayed to zero for
4074 * list removal. This generally implies that all our children
4075 * have also been removed (modulo rounding error or bandwidth
4076 * control); however, such cases are rare and we can fix these
4077 * at enqueue.
4078 *
4079 * TODO: fix up out-of-order children on enqueue.
4080 */
4081 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4082 list_del_leaf_cfs_rq(cfs_rq);
4083 } else {
4084 struct rq *rq = rq_of(cfs_rq);
4085 update_rq_runnable_avg(rq, rq->nr_running);
4086 }
4087 }
4088
4089 static void update_blocked_averages(int cpu)
4090 {
4091 struct rq *rq = cpu_rq(cpu);
4092 struct cfs_rq *cfs_rq;
4093 unsigned long flags;
4094
4095 raw_spin_lock_irqsave(&rq->lock, flags);
4096 update_rq_clock(rq);
4097 /*
4098 * Iterates the task_group tree in a bottom up fashion, see
4099 * list_add_leaf_cfs_rq() for details.
4100 */
4101 for_each_leaf_cfs_rq(rq, cfs_rq) {
4102 /*
4103 * Note: We may want to consider periodically releasing
4104 * rq->lock about these updates so that creating many task
4105 * groups does not result in continually extending hold time.
4106 */
4107 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4108 }
4109
4110 raw_spin_unlock_irqrestore(&rq->lock, flags);
4111 }
4112
4113 /*
4114 * Compute the cpu's hierarchical load factor for each task group.
4115 * This needs to be done in a top-down fashion because the load of a child
4116 * group is a fraction of its parents load.
4117 */
4118 static int tg_load_down(struct task_group *tg, void *data)
4119 {
4120 unsigned long load;
4121 long cpu = (long)data;
4122
4123 if (!tg->parent) {
4124 load = cpu_rq(cpu)->load.weight;
4125 } else {
4126 load = tg->parent->cfs_rq[cpu]->h_load;
4127 load *= tg->se[cpu]->load.weight;
4128 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4129 }
4130
4131 tg->cfs_rq[cpu]->h_load = load;
4132
4133 return 0;
4134 }
4135
4136 static void update_h_load(long cpu)
4137 {
4138 struct rq *rq = cpu_rq(cpu);
4139 unsigned long now = jiffies;
4140
4141 if (rq->h_load_throttle == now)
4142 return;
4143
4144 rq->h_load_throttle = now;
4145
4146 rcu_read_lock();
4147 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4148 rcu_read_unlock();
4149 }
4150
4151 static unsigned long task_h_load(struct task_struct *p)
4152 {
4153 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4154 unsigned long load;
4155
4156 load = p->se.load.weight;
4157 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4158
4159 return load;
4160 }
4161 #else
4162 static inline void update_blocked_averages(int cpu)
4163 {
4164 }
4165
4166 static inline void update_h_load(long cpu)
4167 {
4168 }
4169
4170 static unsigned long task_h_load(struct task_struct *p)
4171 {
4172 return p->se.load.weight;
4173 }
4174 #endif
4175
4176 /********** Helpers for find_busiest_group ************************/
4177 /*
4178 * sd_lb_stats - Structure to store the statistics of a sched_domain
4179 * during load balancing.
4180 */
4181 struct sd_lb_stats {
4182 struct sched_group *busiest; /* Busiest group in this sd */
4183 struct sched_group *this; /* Local group in this sd */
4184 unsigned long total_load; /* Total load of all groups in sd */
4185 unsigned long total_pwr; /* Total power of all groups in sd */
4186 unsigned long avg_load; /* Average load across all groups in sd */
4187
4188 /** Statistics of this group */
4189 unsigned long this_load;
4190 unsigned long this_load_per_task;
4191 unsigned long this_nr_running;
4192 unsigned long this_has_capacity;
4193 unsigned int this_idle_cpus;
4194
4195 /* Statistics of the busiest group */
4196 unsigned int busiest_idle_cpus;
4197 unsigned long max_load;
4198 unsigned long busiest_load_per_task;
4199 unsigned long busiest_nr_running;
4200 unsigned long busiest_group_capacity;
4201 unsigned long busiest_has_capacity;
4202 unsigned int busiest_group_weight;
4203
4204 int group_imb; /* Is there imbalance in this sd */
4205 };
4206
4207 /*
4208 * sg_lb_stats - stats of a sched_group required for load_balancing
4209 */
4210 struct sg_lb_stats {
4211 unsigned long avg_load; /*Avg load across the CPUs of the group */
4212 unsigned long group_load; /* Total load over the CPUs of the group */
4213 unsigned long sum_nr_running; /* Nr tasks running in the group */
4214 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4215 unsigned long group_capacity;
4216 unsigned long idle_cpus;
4217 unsigned long group_weight;
4218 int group_imb; /* Is there an imbalance in the group ? */
4219 int group_has_capacity; /* Is there extra capacity in the group? */
4220 };
4221
4222 /**
4223 * get_sd_load_idx - Obtain the load index for a given sched domain.
4224 * @sd: The sched_domain whose load_idx is to be obtained.
4225 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4226 */
4227 static inline int get_sd_load_idx(struct sched_domain *sd,
4228 enum cpu_idle_type idle)
4229 {
4230 int load_idx;
4231
4232 switch (idle) {
4233 case CPU_NOT_IDLE:
4234 load_idx = sd->busy_idx;
4235 break;
4236
4237 case CPU_NEWLY_IDLE:
4238 load_idx = sd->newidle_idx;
4239 break;
4240 default:
4241 load_idx = sd->idle_idx;
4242 break;
4243 }
4244
4245 return load_idx;
4246 }
4247
4248 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4249 {
4250 return SCHED_POWER_SCALE;
4251 }
4252
4253 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4254 {
4255 return default_scale_freq_power(sd, cpu);
4256 }
4257
4258 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4259 {
4260 unsigned long weight = sd->span_weight;
4261 unsigned long smt_gain = sd->smt_gain;
4262
4263 smt_gain /= weight;
4264
4265 return smt_gain;
4266 }
4267
4268 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4269 {
4270 return default_scale_smt_power(sd, cpu);
4271 }
4272
4273 unsigned long scale_rt_power(int cpu)
4274 {
4275 struct rq *rq = cpu_rq(cpu);
4276 u64 total, available, age_stamp, avg;
4277
4278 /*
4279 * Since we're reading these variables without serialization make sure
4280 * we read them once before doing sanity checks on them.
4281 */
4282 age_stamp = ACCESS_ONCE(rq->age_stamp);
4283 avg = ACCESS_ONCE(rq->rt_avg);
4284
4285 total = sched_avg_period() + (rq->clock - age_stamp);
4286
4287 if (unlikely(total < avg)) {
4288 /* Ensures that power won't end up being negative */
4289 available = 0;
4290 } else {
4291 available = total - avg;
4292 }
4293
4294 if (unlikely((s64)total < SCHED_POWER_SCALE))
4295 total = SCHED_POWER_SCALE;
4296
4297 total >>= SCHED_POWER_SHIFT;
4298
4299 return div_u64(available, total);
4300 }
4301
4302 static void update_cpu_power(struct sched_domain *sd, int cpu)
4303 {
4304 unsigned long weight = sd->span_weight;
4305 unsigned long power = SCHED_POWER_SCALE;
4306 struct sched_group *sdg = sd->groups;
4307
4308 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4309 if (sched_feat(ARCH_POWER))
4310 power *= arch_scale_smt_power(sd, cpu);
4311 else
4312 power *= default_scale_smt_power(sd, cpu);
4313
4314 power >>= SCHED_POWER_SHIFT;
4315 }
4316
4317 sdg->sgp->power_orig = power;
4318
4319 if (sched_feat(ARCH_POWER))
4320 power *= arch_scale_freq_power(sd, cpu);
4321 else
4322 power *= default_scale_freq_power(sd, cpu);
4323
4324 power >>= SCHED_POWER_SHIFT;
4325
4326 power *= scale_rt_power(cpu);
4327 power >>= SCHED_POWER_SHIFT;
4328
4329 if (!power)
4330 power = 1;
4331
4332 cpu_rq(cpu)->cpu_power = power;
4333 sdg->sgp->power = power;
4334 }
4335
4336 void update_group_power(struct sched_domain *sd, int cpu)
4337 {
4338 struct sched_domain *child = sd->child;
4339 struct sched_group *group, *sdg = sd->groups;
4340 unsigned long power;
4341 unsigned long interval;
4342
4343 interval = msecs_to_jiffies(sd->balance_interval);
4344 interval = clamp(interval, 1UL, max_load_balance_interval);
4345 sdg->sgp->next_update = jiffies + interval;
4346
4347 if (!child) {
4348 update_cpu_power(sd, cpu);
4349 return;
4350 }
4351
4352 power = 0;
4353
4354 if (child->flags & SD_OVERLAP) {
4355 /*
4356 * SD_OVERLAP domains cannot assume that child groups
4357 * span the current group.
4358 */
4359
4360 for_each_cpu(cpu, sched_group_cpus(sdg))
4361 power += power_of(cpu);
4362 } else {
4363 /*
4364 * !SD_OVERLAP domains can assume that child groups
4365 * span the current group.
4366 */
4367
4368 group = child->groups;
4369 do {
4370 power += group->sgp->power;
4371 group = group->next;
4372 } while (group != child->groups);
4373 }
4374
4375 sdg->sgp->power_orig = sdg->sgp->power = power;
4376 }
4377
4378 /*
4379 * Try and fix up capacity for tiny siblings, this is needed when
4380 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4381 * which on its own isn't powerful enough.
4382 *
4383 * See update_sd_pick_busiest() and check_asym_packing().
4384 */
4385 static inline int
4386 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4387 {
4388 /*
4389 * Only siblings can have significantly less than SCHED_POWER_SCALE
4390 */
4391 if (!(sd->flags & SD_SHARE_CPUPOWER))
4392 return 0;
4393
4394 /*
4395 * If ~90% of the cpu_power is still there, we're good.
4396 */
4397 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4398 return 1;
4399
4400 return 0;
4401 }
4402
4403 /**
4404 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4405 * @env: The load balancing environment.
4406 * @group: sched_group whose statistics are to be updated.
4407 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4408 * @local_group: Does group contain this_cpu.
4409 * @balance: Should we balance.
4410 * @sgs: variable to hold the statistics for this group.
4411 */
4412 static inline void update_sg_lb_stats(struct lb_env *env,
4413 struct sched_group *group, int load_idx,
4414 int local_group, int *balance, struct sg_lb_stats *sgs)
4415 {
4416 unsigned long nr_running, max_nr_running, min_nr_running;
4417 unsigned long load, max_cpu_load, min_cpu_load;
4418 unsigned int balance_cpu = -1, first_idle_cpu = 0;
4419 unsigned long avg_load_per_task = 0;
4420 int i;
4421
4422 if (local_group)
4423 balance_cpu = group_balance_cpu(group);
4424
4425 /* Tally up the load of all CPUs in the group */
4426 max_cpu_load = 0;
4427 min_cpu_load = ~0UL;
4428 max_nr_running = 0;
4429 min_nr_running = ~0UL;
4430
4431 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4432 struct rq *rq = cpu_rq(i);
4433
4434 nr_running = rq->nr_running;
4435
4436 /* Bias balancing toward cpus of our domain */
4437 if (local_group) {
4438 if (idle_cpu(i) && !first_idle_cpu &&
4439 cpumask_test_cpu(i, sched_group_mask(group))) {
4440 first_idle_cpu = 1;
4441 balance_cpu = i;
4442 }
4443
4444 load = target_load(i, load_idx);
4445 } else {
4446 load = source_load(i, load_idx);
4447 if (load > max_cpu_load)
4448 max_cpu_load = load;
4449 if (min_cpu_load > load)
4450 min_cpu_load = load;
4451
4452 if (nr_running > max_nr_running)
4453 max_nr_running = nr_running;
4454 if (min_nr_running > nr_running)
4455 min_nr_running = nr_running;
4456 }
4457
4458 sgs->group_load += load;
4459 sgs->sum_nr_running += nr_running;
4460 sgs->sum_weighted_load += weighted_cpuload(i);
4461 if (idle_cpu(i))
4462 sgs->idle_cpus++;
4463 }
4464
4465 /*
4466 * First idle cpu or the first cpu(busiest) in this sched group
4467 * is eligible for doing load balancing at this and above
4468 * domains. In the newly idle case, we will allow all the cpu's
4469 * to do the newly idle load balance.
4470 */
4471 if (local_group) {
4472 if (env->idle != CPU_NEWLY_IDLE) {
4473 if (balance_cpu != env->dst_cpu) {
4474 *balance = 0;
4475 return;
4476 }
4477 update_group_power(env->sd, env->dst_cpu);
4478 } else if (time_after_eq(jiffies, group->sgp->next_update))
4479 update_group_power(env->sd, env->dst_cpu);
4480 }
4481
4482 /* Adjust by relative CPU power of the group */
4483 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4484
4485 /*
4486 * Consider the group unbalanced when the imbalance is larger
4487 * than the average weight of a task.
4488 *
4489 * APZ: with cgroup the avg task weight can vary wildly and
4490 * might not be a suitable number - should we keep a
4491 * normalized nr_running number somewhere that negates
4492 * the hierarchy?
4493 */
4494 if (sgs->sum_nr_running)
4495 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4496
4497 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4498 (max_nr_running - min_nr_running) > 1)
4499 sgs->group_imb = 1;
4500
4501 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4502 SCHED_POWER_SCALE);
4503 if (!sgs->group_capacity)
4504 sgs->group_capacity = fix_small_capacity(env->sd, group);
4505 sgs->group_weight = group->group_weight;
4506
4507 if (sgs->group_capacity > sgs->sum_nr_running)
4508 sgs->group_has_capacity = 1;
4509 }
4510
4511 /**
4512 * update_sd_pick_busiest - return 1 on busiest group
4513 * @env: The load balancing environment.
4514 * @sds: sched_domain statistics
4515 * @sg: sched_group candidate to be checked for being the busiest
4516 * @sgs: sched_group statistics
4517 *
4518 * Determine if @sg is a busier group than the previously selected
4519 * busiest group.
4520 */
4521 static bool update_sd_pick_busiest(struct lb_env *env,
4522 struct sd_lb_stats *sds,
4523 struct sched_group *sg,
4524 struct sg_lb_stats *sgs)
4525 {
4526 if (sgs->avg_load <= sds->max_load)
4527 return false;
4528
4529 if (sgs->sum_nr_running > sgs->group_capacity)
4530 return true;
4531
4532 if (sgs->group_imb)
4533 return true;
4534
4535 /*
4536 * ASYM_PACKING needs to move all the work to the lowest
4537 * numbered CPUs in the group, therefore mark all groups
4538 * higher than ourself as busy.
4539 */
4540 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4541 env->dst_cpu < group_first_cpu(sg)) {
4542 if (!sds->busiest)
4543 return true;
4544
4545 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4546 return true;
4547 }
4548
4549 return false;
4550 }
4551
4552 /**
4553 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4554 * @env: The load balancing environment.
4555 * @balance: Should we balance.
4556 * @sds: variable to hold the statistics for this sched_domain.
4557 */
4558 static inline void update_sd_lb_stats(struct lb_env *env,
4559 int *balance, struct sd_lb_stats *sds)
4560 {
4561 struct sched_domain *child = env->sd->child;
4562 struct sched_group *sg = env->sd->groups;
4563 struct sg_lb_stats sgs;
4564 int load_idx, prefer_sibling = 0;
4565
4566 if (child && child->flags & SD_PREFER_SIBLING)
4567 prefer_sibling = 1;
4568
4569 load_idx = get_sd_load_idx(env->sd, env->idle);
4570
4571 do {
4572 int local_group;
4573
4574 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4575 memset(&sgs, 0, sizeof(sgs));
4576 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4577
4578 if (local_group && !(*balance))
4579 return;
4580
4581 sds->total_load += sgs.group_load;
4582 sds->total_pwr += sg->sgp->power;
4583
4584 /*
4585 * In case the child domain prefers tasks go to siblings
4586 * first, lower the sg capacity to one so that we'll try
4587 * and move all the excess tasks away. We lower the capacity
4588 * of a group only if the local group has the capacity to fit
4589 * these excess tasks, i.e. nr_running < group_capacity. The
4590 * extra check prevents the case where you always pull from the
4591 * heaviest group when it is already under-utilized (possible
4592 * with a large weight task outweighs the tasks on the system).
4593 */
4594 if (prefer_sibling && !local_group && sds->this_has_capacity)
4595 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4596
4597 if (local_group) {
4598 sds->this_load = sgs.avg_load;
4599 sds->this = sg;
4600 sds->this_nr_running = sgs.sum_nr_running;
4601 sds->this_load_per_task = sgs.sum_weighted_load;
4602 sds->this_has_capacity = sgs.group_has_capacity;
4603 sds->this_idle_cpus = sgs.idle_cpus;
4604 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4605 sds->max_load = sgs.avg_load;
4606 sds->busiest = sg;
4607 sds->busiest_nr_running = sgs.sum_nr_running;
4608 sds->busiest_idle_cpus = sgs.idle_cpus;
4609 sds->busiest_group_capacity = sgs.group_capacity;
4610 sds->busiest_load_per_task = sgs.sum_weighted_load;
4611 sds->busiest_has_capacity = sgs.group_has_capacity;
4612 sds->busiest_group_weight = sgs.group_weight;
4613 sds->group_imb = sgs.group_imb;
4614 }
4615
4616 sg = sg->next;
4617 } while (sg != env->sd->groups);
4618 }
4619
4620 /**
4621 * check_asym_packing - Check to see if the group is packed into the
4622 * sched doman.
4623 *
4624 * This is primarily intended to used at the sibling level. Some
4625 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4626 * case of POWER7, it can move to lower SMT modes only when higher
4627 * threads are idle. When in lower SMT modes, the threads will
4628 * perform better since they share less core resources. Hence when we
4629 * have idle threads, we want them to be the higher ones.
4630 *
4631 * This packing function is run on idle threads. It checks to see if
4632 * the busiest CPU in this domain (core in the P7 case) has a higher
4633 * CPU number than the packing function is being run on. Here we are
4634 * assuming lower CPU number will be equivalent to lower a SMT thread
4635 * number.
4636 *
4637 * Returns 1 when packing is required and a task should be moved to
4638 * this CPU. The amount of the imbalance is returned in *imbalance.
4639 *
4640 * @env: The load balancing environment.
4641 * @sds: Statistics of the sched_domain which is to be packed
4642 */
4643 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4644 {
4645 int busiest_cpu;
4646
4647 if (!(env->sd->flags & SD_ASYM_PACKING))
4648 return 0;
4649
4650 if (!sds->busiest)
4651 return 0;
4652
4653 busiest_cpu = group_first_cpu(sds->busiest);
4654 if (env->dst_cpu > busiest_cpu)
4655 return 0;
4656
4657 env->imbalance = DIV_ROUND_CLOSEST(
4658 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4659
4660 return 1;
4661 }
4662
4663 /**
4664 * fix_small_imbalance - Calculate the minor imbalance that exists
4665 * amongst the groups of a sched_domain, during
4666 * load balancing.
4667 * @env: The load balancing environment.
4668 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4669 */
4670 static inline
4671 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4672 {
4673 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4674 unsigned int imbn = 2;
4675 unsigned long scaled_busy_load_per_task;
4676
4677 if (sds->this_nr_running) {
4678 sds->this_load_per_task /= sds->this_nr_running;
4679 if (sds->busiest_load_per_task >
4680 sds->this_load_per_task)
4681 imbn = 1;
4682 } else {
4683 sds->this_load_per_task =
4684 cpu_avg_load_per_task(env->dst_cpu);
4685 }
4686
4687 scaled_busy_load_per_task = sds->busiest_load_per_task
4688 * SCHED_POWER_SCALE;
4689 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4690
4691 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4692 (scaled_busy_load_per_task * imbn)) {
4693 env->imbalance = sds->busiest_load_per_task;
4694 return;
4695 }
4696
4697 /*
4698 * OK, we don't have enough imbalance to justify moving tasks,
4699 * however we may be able to increase total CPU power used by
4700 * moving them.
4701 */
4702
4703 pwr_now += sds->busiest->sgp->power *
4704 min(sds->busiest_load_per_task, sds->max_load);
4705 pwr_now += sds->this->sgp->power *
4706 min(sds->this_load_per_task, sds->this_load);
4707 pwr_now /= SCHED_POWER_SCALE;
4708
4709 /* Amount of load we'd subtract */
4710 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4711 sds->busiest->sgp->power;
4712 if (sds->max_load > tmp)
4713 pwr_move += sds->busiest->sgp->power *
4714 min(sds->busiest_load_per_task, sds->max_load - tmp);
4715
4716 /* Amount of load we'd add */
4717 if (sds->max_load * sds->busiest->sgp->power <
4718 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4719 tmp = (sds->max_load * sds->busiest->sgp->power) /
4720 sds->this->sgp->power;
4721 else
4722 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4723 sds->this->sgp->power;
4724 pwr_move += sds->this->sgp->power *
4725 min(sds->this_load_per_task, sds->this_load + tmp);
4726 pwr_move /= SCHED_POWER_SCALE;
4727
4728 /* Move if we gain throughput */
4729 if (pwr_move > pwr_now)
4730 env->imbalance = sds->busiest_load_per_task;
4731 }
4732
4733 /**
4734 * calculate_imbalance - Calculate the amount of imbalance present within the
4735 * groups of a given sched_domain during load balance.
4736 * @env: load balance environment
4737 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4738 */
4739 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4740 {
4741 unsigned long max_pull, load_above_capacity = ~0UL;
4742
4743 sds->busiest_load_per_task /= sds->busiest_nr_running;
4744 if (sds->group_imb) {
4745 sds->busiest_load_per_task =
4746 min(sds->busiest_load_per_task, sds->avg_load);
4747 }
4748
4749 /*
4750 * In the presence of smp nice balancing, certain scenarios can have
4751 * max load less than avg load(as we skip the groups at or below
4752 * its cpu_power, while calculating max_load..)
4753 */
4754 if (sds->max_load < sds->avg_load) {
4755 env->imbalance = 0;
4756 return fix_small_imbalance(env, sds);
4757 }
4758
4759 if (!sds->group_imb) {
4760 /*
4761 * Don't want to pull so many tasks that a group would go idle.
4762 */
4763 load_above_capacity = (sds->busiest_nr_running -
4764 sds->busiest_group_capacity);
4765
4766 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4767
4768 load_above_capacity /= sds->busiest->sgp->power;
4769 }
4770
4771 /*
4772 * We're trying to get all the cpus to the average_load, so we don't
4773 * want to push ourselves above the average load, nor do we wish to
4774 * reduce the max loaded cpu below the average load. At the same time,
4775 * we also don't want to reduce the group load below the group capacity
4776 * (so that we can implement power-savings policies etc). Thus we look
4777 * for the minimum possible imbalance.
4778 * Be careful of negative numbers as they'll appear as very large values
4779 * with unsigned longs.
4780 */
4781 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4782
4783 /* How much load to actually move to equalise the imbalance */
4784 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4785 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4786 / SCHED_POWER_SCALE;
4787
4788 /*
4789 * if *imbalance is less than the average load per runnable task
4790 * there is no guarantee that any tasks will be moved so we'll have
4791 * a think about bumping its value to force at least one task to be
4792 * moved
4793 */
4794 if (env->imbalance < sds->busiest_load_per_task)
4795 return fix_small_imbalance(env, sds);
4796
4797 }
4798
4799 /******* find_busiest_group() helpers end here *********************/
4800
4801 /**
4802 * find_busiest_group - Returns the busiest group within the sched_domain
4803 * if there is an imbalance. If there isn't an imbalance, and
4804 * the user has opted for power-savings, it returns a group whose
4805 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4806 * such a group exists.
4807 *
4808 * Also calculates the amount of weighted load which should be moved
4809 * to restore balance.
4810 *
4811 * @env: The load balancing environment.
4812 * @balance: Pointer to a variable indicating if this_cpu
4813 * is the appropriate cpu to perform load balancing at this_level.
4814 *
4815 * Returns: - the busiest group if imbalance exists.
4816 * - If no imbalance and user has opted for power-savings balance,
4817 * return the least loaded group whose CPUs can be
4818 * put to idle by rebalancing its tasks onto our group.
4819 */
4820 static struct sched_group *
4821 find_busiest_group(struct lb_env *env, int *balance)
4822 {
4823 struct sd_lb_stats sds;
4824
4825 memset(&sds, 0, sizeof(sds));
4826
4827 /*
4828 * Compute the various statistics relavent for load balancing at
4829 * this level.
4830 */
4831 update_sd_lb_stats(env, balance, &sds);
4832
4833 /*
4834 * this_cpu is not the appropriate cpu to perform load balancing at
4835 * this level.
4836 */
4837 if (!(*balance))
4838 goto ret;
4839
4840 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4841 check_asym_packing(env, &sds))
4842 return sds.busiest;
4843
4844 /* There is no busy sibling group to pull tasks from */
4845 if (!sds.busiest || sds.busiest_nr_running == 0)
4846 goto out_balanced;
4847
4848 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4849
4850 /*
4851 * If the busiest group is imbalanced the below checks don't
4852 * work because they assumes all things are equal, which typically
4853 * isn't true due to cpus_allowed constraints and the like.
4854 */
4855 if (sds.group_imb)
4856 goto force_balance;
4857
4858 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4859 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4860 !sds.busiest_has_capacity)
4861 goto force_balance;
4862
4863 /*
4864 * If the local group is more busy than the selected busiest group
4865 * don't try and pull any tasks.
4866 */
4867 if (sds.this_load >= sds.max_load)
4868 goto out_balanced;
4869
4870 /*
4871 * Don't pull any tasks if this group is already above the domain
4872 * average load.
4873 */
4874 if (sds.this_load >= sds.avg_load)
4875 goto out_balanced;
4876
4877 if (env->idle == CPU_IDLE) {
4878 /*
4879 * This cpu is idle. If the busiest group load doesn't
4880 * have more tasks than the number of available cpu's and
4881 * there is no imbalance between this and busiest group
4882 * wrt to idle cpu's, it is balanced.
4883 */
4884 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4885 sds.busiest_nr_running <= sds.busiest_group_weight)
4886 goto out_balanced;
4887 } else {
4888 /*
4889 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4890 * imbalance_pct to be conservative.
4891 */
4892 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4893 goto out_balanced;
4894 }
4895
4896 force_balance:
4897 /* Looks like there is an imbalance. Compute it */
4898 calculate_imbalance(env, &sds);
4899 return sds.busiest;
4900
4901 out_balanced:
4902 ret:
4903 env->imbalance = 0;
4904 return NULL;
4905 }
4906
4907 /*
4908 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4909 */
4910 static struct rq *find_busiest_queue(struct lb_env *env,
4911 struct sched_group *group)
4912 {
4913 struct rq *busiest = NULL, *rq;
4914 unsigned long max_load = 0;
4915 int i;
4916
4917 for_each_cpu(i, sched_group_cpus(group)) {
4918 unsigned long power = power_of(i);
4919 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4920 SCHED_POWER_SCALE);
4921 unsigned long wl;
4922
4923 if (!capacity)
4924 capacity = fix_small_capacity(env->sd, group);
4925
4926 if (!cpumask_test_cpu(i, env->cpus))
4927 continue;
4928
4929 rq = cpu_rq(i);
4930 wl = weighted_cpuload(i);
4931
4932 /*
4933 * When comparing with imbalance, use weighted_cpuload()
4934 * which is not scaled with the cpu power.
4935 */
4936 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4937 continue;
4938
4939 /*
4940 * For the load comparisons with the other cpu's, consider
4941 * the weighted_cpuload() scaled with the cpu power, so that
4942 * the load can be moved away from the cpu that is potentially
4943 * running at a lower capacity.
4944 */
4945 wl = (wl * SCHED_POWER_SCALE) / power;
4946
4947 if (wl > max_load) {
4948 max_load = wl;
4949 busiest = rq;
4950 }
4951 }
4952
4953 return busiest;
4954 }
4955
4956 /*
4957 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4958 * so long as it is large enough.
4959 */
4960 #define MAX_PINNED_INTERVAL 512
4961
4962 /* Working cpumask for load_balance and load_balance_newidle. */
4963 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4964
4965 static int need_active_balance(struct lb_env *env)
4966 {
4967 struct sched_domain *sd = env->sd;
4968
4969 if (env->idle == CPU_NEWLY_IDLE) {
4970
4971 /*
4972 * ASYM_PACKING needs to force migrate tasks from busy but
4973 * higher numbered CPUs in order to pack all tasks in the
4974 * lowest numbered CPUs.
4975 */
4976 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4977 return 1;
4978 }
4979
4980 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4981 }
4982
4983 static int active_load_balance_cpu_stop(void *data);
4984
4985 /*
4986 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4987 * tasks if there is an imbalance.
4988 */
4989 static int load_balance(int this_cpu, struct rq *this_rq,
4990 struct sched_domain *sd, enum cpu_idle_type idle,
4991 int *balance)
4992 {
4993 int ld_moved, cur_ld_moved, active_balance = 0;
4994 int lb_iterations, max_lb_iterations;
4995 struct sched_group *group;
4996 struct rq *busiest;
4997 unsigned long flags;
4998 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4999
5000 struct lb_env env = {
5001 .sd = sd,
5002 .dst_cpu = this_cpu,
5003 .dst_rq = this_rq,
5004 .dst_grpmask = sched_group_cpus(sd->groups),
5005 .idle = idle,
5006 .loop_break = sched_nr_migrate_break,
5007 .cpus = cpus,
5008 };
5009
5010 cpumask_copy(cpus, cpu_active_mask);
5011 max_lb_iterations = cpumask_weight(env.dst_grpmask);
5012
5013 schedstat_inc(sd, lb_count[idle]);
5014
5015 redo:
5016 group = find_busiest_group(&env, balance);
5017
5018 if (*balance == 0)
5019 goto out_balanced;
5020
5021 if (!group) {
5022 schedstat_inc(sd, lb_nobusyg[idle]);
5023 goto out_balanced;
5024 }
5025
5026 busiest = find_busiest_queue(&env, group);
5027 if (!busiest) {
5028 schedstat_inc(sd, lb_nobusyq[idle]);
5029 goto out_balanced;
5030 }
5031
5032 BUG_ON(busiest == env.dst_rq);
5033
5034 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5035
5036 ld_moved = 0;
5037 lb_iterations = 1;
5038 if (busiest->nr_running > 1) {
5039 /*
5040 * Attempt to move tasks. If find_busiest_group has found
5041 * an imbalance but busiest->nr_running <= 1, the group is
5042 * still unbalanced. ld_moved simply stays zero, so it is
5043 * correctly treated as an imbalance.
5044 */
5045 env.flags |= LBF_ALL_PINNED;
5046 env.src_cpu = busiest->cpu;
5047 env.src_rq = busiest;
5048 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5049
5050 update_h_load(env.src_cpu);
5051 more_balance:
5052 local_irq_save(flags);
5053 double_rq_lock(env.dst_rq, busiest);
5054
5055 /*
5056 * cur_ld_moved - load moved in current iteration
5057 * ld_moved - cumulative load moved across iterations
5058 */
5059 cur_ld_moved = move_tasks(&env);
5060 ld_moved += cur_ld_moved;
5061 double_rq_unlock(env.dst_rq, busiest);
5062 local_irq_restore(flags);
5063
5064 if (env.flags & LBF_NEED_BREAK) {
5065 env.flags &= ~LBF_NEED_BREAK;
5066 goto more_balance;
5067 }
5068
5069 /*
5070 * some other cpu did the load balance for us.
5071 */
5072 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5073 resched_cpu(env.dst_cpu);
5074
5075 /*
5076 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5077 * us and move them to an alternate dst_cpu in our sched_group
5078 * where they can run. The upper limit on how many times we
5079 * iterate on same src_cpu is dependent on number of cpus in our
5080 * sched_group.
5081 *
5082 * This changes load balance semantics a bit on who can move
5083 * load to a given_cpu. In addition to the given_cpu itself
5084 * (or a ilb_cpu acting on its behalf where given_cpu is
5085 * nohz-idle), we now have balance_cpu in a position to move
5086 * load to given_cpu. In rare situations, this may cause
5087 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5088 * _independently_ and at _same_ time to move some load to
5089 * given_cpu) causing exceess load to be moved to given_cpu.
5090 * This however should not happen so much in practice and
5091 * moreover subsequent load balance cycles should correct the
5092 * excess load moved.
5093 */
5094 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5095 lb_iterations++ < max_lb_iterations) {
5096
5097 env.dst_rq = cpu_rq(env.new_dst_cpu);
5098 env.dst_cpu = env.new_dst_cpu;
5099 env.flags &= ~LBF_SOME_PINNED;
5100 env.loop = 0;
5101 env.loop_break = sched_nr_migrate_break;
5102 /*
5103 * Go back to "more_balance" rather than "redo" since we
5104 * need to continue with same src_cpu.
5105 */
5106 goto more_balance;
5107 }
5108
5109 /* All tasks on this runqueue were pinned by CPU affinity */
5110 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5111 cpumask_clear_cpu(cpu_of(busiest), cpus);
5112 if (!cpumask_empty(cpus)) {
5113 env.loop = 0;
5114 env.loop_break = sched_nr_migrate_break;
5115 goto redo;
5116 }
5117 goto out_balanced;
5118 }
5119 }
5120
5121 if (!ld_moved) {
5122 schedstat_inc(sd, lb_failed[idle]);
5123 /*
5124 * Increment the failure counter only on periodic balance.
5125 * We do not want newidle balance, which can be very
5126 * frequent, pollute the failure counter causing
5127 * excessive cache_hot migrations and active balances.
5128 */
5129 if (idle != CPU_NEWLY_IDLE)
5130 sd->nr_balance_failed++;
5131
5132 if (need_active_balance(&env)) {
5133 raw_spin_lock_irqsave(&busiest->lock, flags);
5134
5135 /* don't kick the active_load_balance_cpu_stop,
5136 * if the curr task on busiest cpu can't be
5137 * moved to this_cpu
5138 */
5139 if (!cpumask_test_cpu(this_cpu,
5140 tsk_cpus_allowed(busiest->curr))) {
5141 raw_spin_unlock_irqrestore(&busiest->lock,
5142 flags);
5143 env.flags |= LBF_ALL_PINNED;
5144 goto out_one_pinned;
5145 }
5146
5147 /*
5148 * ->active_balance synchronizes accesses to
5149 * ->active_balance_work. Once set, it's cleared
5150 * only after active load balance is finished.
5151 */
5152 if (!busiest->active_balance) {
5153 busiest->active_balance = 1;
5154 busiest->push_cpu = this_cpu;
5155 active_balance = 1;
5156 }
5157 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5158
5159 if (active_balance) {
5160 stop_one_cpu_nowait(cpu_of(busiest),
5161 active_load_balance_cpu_stop, busiest,
5162 &busiest->active_balance_work);
5163 }
5164
5165 /*
5166 * We've kicked active balancing, reset the failure
5167 * counter.
5168 */
5169 sd->nr_balance_failed = sd->cache_nice_tries+1;
5170 }
5171 } else
5172 sd->nr_balance_failed = 0;
5173
5174 if (likely(!active_balance)) {
5175 /* We were unbalanced, so reset the balancing interval */
5176 sd->balance_interval = sd->min_interval;
5177 } else {
5178 /*
5179 * If we've begun active balancing, start to back off. This
5180 * case may not be covered by the all_pinned logic if there
5181 * is only 1 task on the busy runqueue (because we don't call
5182 * move_tasks).
5183 */
5184 if (sd->balance_interval < sd->max_interval)
5185 sd->balance_interval *= 2;
5186 }
5187
5188 goto out;
5189
5190 out_balanced:
5191 schedstat_inc(sd, lb_balanced[idle]);
5192
5193 sd->nr_balance_failed = 0;
5194
5195 out_one_pinned:
5196 /* tune up the balancing interval */
5197 if (((env.flags & LBF_ALL_PINNED) &&
5198 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5199 (sd->balance_interval < sd->max_interval))
5200 sd->balance_interval *= 2;
5201
5202 ld_moved = 0;
5203 out:
5204 return ld_moved;
5205 }
5206
5207 /*
5208 * idle_balance is called by schedule() if this_cpu is about to become
5209 * idle. Attempts to pull tasks from other CPUs.
5210 */
5211 void idle_balance(int this_cpu, struct rq *this_rq)
5212 {
5213 struct sched_domain *sd;
5214 int pulled_task = 0;
5215 unsigned long next_balance = jiffies + HZ;
5216
5217 this_rq->idle_stamp = this_rq->clock;
5218
5219 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5220 return;
5221
5222 update_rq_runnable_avg(this_rq, 1);
5223
5224 /*
5225 * Drop the rq->lock, but keep IRQ/preempt disabled.
5226 */
5227 raw_spin_unlock(&this_rq->lock);
5228
5229 update_blocked_averages(this_cpu);
5230 rcu_read_lock();
5231 for_each_domain(this_cpu, sd) {
5232 unsigned long interval;
5233 int balance = 1;
5234
5235 if (!(sd->flags & SD_LOAD_BALANCE))
5236 continue;
5237
5238 if (sd->flags & SD_BALANCE_NEWIDLE) {
5239 /* If we've pulled tasks over stop searching: */
5240 pulled_task = load_balance(this_cpu, this_rq,
5241 sd, CPU_NEWLY_IDLE, &balance);
5242 }
5243
5244 interval = msecs_to_jiffies(sd->balance_interval);
5245 if (time_after(next_balance, sd->last_balance + interval))
5246 next_balance = sd->last_balance + interval;
5247 if (pulled_task) {
5248 this_rq->idle_stamp = 0;
5249 break;
5250 }
5251 }
5252 rcu_read_unlock();
5253
5254 raw_spin_lock(&this_rq->lock);
5255
5256 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5257 /*
5258 * We are going idle. next_balance may be set based on
5259 * a busy processor. So reset next_balance.
5260 */
5261 this_rq->next_balance = next_balance;
5262 }
5263 }
5264
5265 /*
5266 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5267 * running tasks off the busiest CPU onto idle CPUs. It requires at
5268 * least 1 task to be running on each physical CPU where possible, and
5269 * avoids physical / logical imbalances.
5270 */
5271 static int active_load_balance_cpu_stop(void *data)
5272 {
5273 struct rq *busiest_rq = data;
5274 int busiest_cpu = cpu_of(busiest_rq);
5275 int target_cpu = busiest_rq->push_cpu;
5276 struct rq *target_rq = cpu_rq(target_cpu);
5277 struct sched_domain *sd;
5278
5279 raw_spin_lock_irq(&busiest_rq->lock);
5280
5281 /* make sure the requested cpu hasn't gone down in the meantime */
5282 if (unlikely(busiest_cpu != smp_processor_id() ||
5283 !busiest_rq->active_balance))
5284 goto out_unlock;
5285
5286 /* Is there any task to move? */
5287 if (busiest_rq->nr_running <= 1)
5288 goto out_unlock;
5289
5290 /*
5291 * This condition is "impossible", if it occurs
5292 * we need to fix it. Originally reported by
5293 * Bjorn Helgaas on a 128-cpu setup.
5294 */
5295 BUG_ON(busiest_rq == target_rq);
5296
5297 /* move a task from busiest_rq to target_rq */
5298 double_lock_balance(busiest_rq, target_rq);
5299
5300 /* Search for an sd spanning us and the target CPU. */
5301 rcu_read_lock();
5302 for_each_domain(target_cpu, sd) {
5303 if ((sd->flags & SD_LOAD_BALANCE) &&
5304 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5305 break;
5306 }
5307
5308 if (likely(sd)) {
5309 struct lb_env env = {
5310 .sd = sd,
5311 .dst_cpu = target_cpu,
5312 .dst_rq = target_rq,
5313 .src_cpu = busiest_rq->cpu,
5314 .src_rq = busiest_rq,
5315 .idle = CPU_IDLE,
5316 };
5317
5318 schedstat_inc(sd, alb_count);
5319
5320 if (move_one_task(&env))
5321 schedstat_inc(sd, alb_pushed);
5322 else
5323 schedstat_inc(sd, alb_failed);
5324 }
5325 rcu_read_unlock();
5326 double_unlock_balance(busiest_rq, target_rq);
5327 out_unlock:
5328 busiest_rq->active_balance = 0;
5329 raw_spin_unlock_irq(&busiest_rq->lock);
5330 return 0;
5331 }
5332
5333 #ifdef CONFIG_NO_HZ
5334 /*
5335 * idle load balancing details
5336 * - When one of the busy CPUs notice that there may be an idle rebalancing
5337 * needed, they will kick the idle load balancer, which then does idle
5338 * load balancing for all the idle CPUs.
5339 */
5340 static struct {
5341 cpumask_var_t idle_cpus_mask;
5342 atomic_t nr_cpus;
5343 unsigned long next_balance; /* in jiffy units */
5344 } nohz ____cacheline_aligned;
5345
5346 static inline int find_new_ilb(int call_cpu)
5347 {
5348 int ilb = cpumask_first(nohz.idle_cpus_mask);
5349
5350 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5351 return ilb;
5352
5353 return nr_cpu_ids;
5354 }
5355
5356 /*
5357 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5358 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5359 * CPU (if there is one).
5360 */
5361 static void nohz_balancer_kick(int cpu)
5362 {
5363 int ilb_cpu;
5364
5365 nohz.next_balance++;
5366
5367 ilb_cpu = find_new_ilb(cpu);
5368
5369 if (ilb_cpu >= nr_cpu_ids)
5370 return;
5371
5372 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5373 return;
5374 /*
5375 * Use smp_send_reschedule() instead of resched_cpu().
5376 * This way we generate a sched IPI on the target cpu which
5377 * is idle. And the softirq performing nohz idle load balance
5378 * will be run before returning from the IPI.
5379 */
5380 smp_send_reschedule(ilb_cpu);
5381 return;
5382 }
5383
5384 static inline void nohz_balance_exit_idle(int cpu)
5385 {
5386 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5387 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5388 atomic_dec(&nohz.nr_cpus);
5389 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5390 }
5391 }
5392
5393 static inline void set_cpu_sd_state_busy(void)
5394 {
5395 struct sched_domain *sd;
5396 int cpu = smp_processor_id();
5397
5398 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5399 return;
5400 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5401
5402 rcu_read_lock();
5403 for_each_domain(cpu, sd)
5404 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5405 rcu_read_unlock();
5406 }
5407
5408 void set_cpu_sd_state_idle(void)
5409 {
5410 struct sched_domain *sd;
5411 int cpu = smp_processor_id();
5412
5413 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5414 return;
5415 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5416
5417 rcu_read_lock();
5418 for_each_domain(cpu, sd)
5419 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5420 rcu_read_unlock();
5421 }
5422
5423 /*
5424 * This routine will record that the cpu is going idle with tick stopped.
5425 * This info will be used in performing idle load balancing in the future.
5426 */
5427 void nohz_balance_enter_idle(int cpu)
5428 {
5429 /*
5430 * If this cpu is going down, then nothing needs to be done.
5431 */
5432 if (!cpu_active(cpu))
5433 return;
5434
5435 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5436 return;
5437
5438 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5439 atomic_inc(&nohz.nr_cpus);
5440 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5441 }
5442
5443 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5444 unsigned long action, void *hcpu)
5445 {
5446 switch (action & ~CPU_TASKS_FROZEN) {
5447 case CPU_DYING:
5448 nohz_balance_exit_idle(smp_processor_id());
5449 return NOTIFY_OK;
5450 default:
5451 return NOTIFY_DONE;
5452 }
5453 }
5454 #endif
5455
5456 static DEFINE_SPINLOCK(balancing);
5457
5458 /*
5459 * Scale the max load_balance interval with the number of CPUs in the system.
5460 * This trades load-balance latency on larger machines for less cross talk.
5461 */
5462 void update_max_interval(void)
5463 {
5464 max_load_balance_interval = HZ*num_online_cpus()/10;
5465 }
5466
5467 /*
5468 * It checks each scheduling domain to see if it is due to be balanced,
5469 * and initiates a balancing operation if so.
5470 *
5471 * Balancing parameters are set up in arch_init_sched_domains.
5472 */
5473 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5474 {
5475 int balance = 1;
5476 struct rq *rq = cpu_rq(cpu);
5477 unsigned long interval;
5478 struct sched_domain *sd;
5479 /* Earliest time when we have to do rebalance again */
5480 unsigned long next_balance = jiffies + 60*HZ;
5481 int update_next_balance = 0;
5482 int need_serialize;
5483
5484 update_blocked_averages(cpu);
5485
5486 rcu_read_lock();
5487 for_each_domain(cpu, sd) {
5488 if (!(sd->flags & SD_LOAD_BALANCE))
5489 continue;
5490
5491 interval = sd->balance_interval;
5492 if (idle != CPU_IDLE)
5493 interval *= sd->busy_factor;
5494
5495 /* scale ms to jiffies */
5496 interval = msecs_to_jiffies(interval);
5497 interval = clamp(interval, 1UL, max_load_balance_interval);
5498
5499 need_serialize = sd->flags & SD_SERIALIZE;
5500
5501 if (need_serialize) {
5502 if (!spin_trylock(&balancing))
5503 goto out;
5504 }
5505
5506 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5507 if (load_balance(cpu, rq, sd, idle, &balance)) {
5508 /*
5509 * We've pulled tasks over so either we're no
5510 * longer idle.
5511 */
5512 idle = CPU_NOT_IDLE;
5513 }
5514 sd->last_balance = jiffies;
5515 }
5516 if (need_serialize)
5517 spin_unlock(&balancing);
5518 out:
5519 if (time_after(next_balance, sd->last_balance + interval)) {
5520 next_balance = sd->last_balance + interval;
5521 update_next_balance = 1;
5522 }
5523
5524 /*
5525 * Stop the load balance at this level. There is another
5526 * CPU in our sched group which is doing load balancing more
5527 * actively.
5528 */
5529 if (!balance)
5530 break;
5531 }
5532 rcu_read_unlock();
5533
5534 /*
5535 * next_balance will be updated only when there is a need.
5536 * When the cpu is attached to null domain for ex, it will not be
5537 * updated.
5538 */
5539 if (likely(update_next_balance))
5540 rq->next_balance = next_balance;
5541 }
5542
5543 #ifdef CONFIG_NO_HZ
5544 /*
5545 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5546 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5547 */
5548 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5549 {
5550 struct rq *this_rq = cpu_rq(this_cpu);
5551 struct rq *rq;
5552 int balance_cpu;
5553
5554 if (idle != CPU_IDLE ||
5555 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5556 goto end;
5557
5558 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5559 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5560 continue;
5561
5562 /*
5563 * If this cpu gets work to do, stop the load balancing
5564 * work being done for other cpus. Next load
5565 * balancing owner will pick it up.
5566 */
5567 if (need_resched())
5568 break;
5569
5570 rq = cpu_rq(balance_cpu);
5571
5572 raw_spin_lock_irq(&rq->lock);
5573 update_rq_clock(rq);
5574 update_idle_cpu_load(rq);
5575 raw_spin_unlock_irq(&rq->lock);
5576
5577 rebalance_domains(balance_cpu, CPU_IDLE);
5578
5579 if (time_after(this_rq->next_balance, rq->next_balance))
5580 this_rq->next_balance = rq->next_balance;
5581 }
5582 nohz.next_balance = this_rq->next_balance;
5583 end:
5584 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5585 }
5586
5587 /*
5588 * Current heuristic for kicking the idle load balancer in the presence
5589 * of an idle cpu is the system.
5590 * - This rq has more than one task.
5591 * - At any scheduler domain level, this cpu's scheduler group has multiple
5592 * busy cpu's exceeding the group's power.
5593 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5594 * domain span are idle.
5595 */
5596 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5597 {
5598 unsigned long now = jiffies;
5599 struct sched_domain *sd;
5600
5601 if (unlikely(idle_cpu(cpu)))
5602 return 0;
5603
5604 /*
5605 * We may be recently in ticked or tickless idle mode. At the first
5606 * busy tick after returning from idle, we will update the busy stats.
5607 */
5608 set_cpu_sd_state_busy();
5609 nohz_balance_exit_idle(cpu);
5610
5611 /*
5612 * None are in tickless mode and hence no need for NOHZ idle load
5613 * balancing.
5614 */
5615 if (likely(!atomic_read(&nohz.nr_cpus)))
5616 return 0;
5617
5618 if (time_before(now, nohz.next_balance))
5619 return 0;
5620
5621 if (rq->nr_running >= 2)
5622 goto need_kick;
5623
5624 rcu_read_lock();
5625 for_each_domain(cpu, sd) {
5626 struct sched_group *sg = sd->groups;
5627 struct sched_group_power *sgp = sg->sgp;
5628 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5629
5630 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5631 goto need_kick_unlock;
5632
5633 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5634 && (cpumask_first_and(nohz.idle_cpus_mask,
5635 sched_domain_span(sd)) < cpu))
5636 goto need_kick_unlock;
5637
5638 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5639 break;
5640 }
5641 rcu_read_unlock();
5642 return 0;
5643
5644 need_kick_unlock:
5645 rcu_read_unlock();
5646 need_kick:
5647 return 1;
5648 }
5649 #else
5650 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5651 #endif
5652
5653 /*
5654 * run_rebalance_domains is triggered when needed from the scheduler tick.
5655 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5656 */
5657 static void run_rebalance_domains(struct softirq_action *h)
5658 {
5659 int this_cpu = smp_processor_id();
5660 struct rq *this_rq = cpu_rq(this_cpu);
5661 enum cpu_idle_type idle = this_rq->idle_balance ?
5662 CPU_IDLE : CPU_NOT_IDLE;
5663
5664 rebalance_domains(this_cpu, idle);
5665
5666 /*
5667 * If this cpu has a pending nohz_balance_kick, then do the
5668 * balancing on behalf of the other idle cpus whose ticks are
5669 * stopped.
5670 */
5671 nohz_idle_balance(this_cpu, idle);
5672 }
5673
5674 static inline int on_null_domain(int cpu)
5675 {
5676 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5677 }
5678
5679 /*
5680 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5681 */
5682 void trigger_load_balance(struct rq *rq, int cpu)
5683 {
5684 /* Don't need to rebalance while attached to NULL domain */
5685 if (time_after_eq(jiffies, rq->next_balance) &&
5686 likely(!on_null_domain(cpu)))
5687 raise_softirq(SCHED_SOFTIRQ);
5688 #ifdef CONFIG_NO_HZ
5689 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5690 nohz_balancer_kick(cpu);
5691 #endif
5692 }
5693
5694 static void rq_online_fair(struct rq *rq)
5695 {
5696 update_sysctl();
5697 }
5698
5699 static void rq_offline_fair(struct rq *rq)
5700 {
5701 update_sysctl();
5702
5703 /* Ensure any throttled groups are reachable by pick_next_task */
5704 unthrottle_offline_cfs_rqs(rq);
5705 }
5706
5707 #endif /* CONFIG_SMP */
5708
5709 /*
5710 * scheduler tick hitting a task of our scheduling class:
5711 */
5712 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5713 {
5714 struct cfs_rq *cfs_rq;
5715 struct sched_entity *se = &curr->se;
5716
5717 for_each_sched_entity(se) {
5718 cfs_rq = cfs_rq_of(se);
5719 entity_tick(cfs_rq, se, queued);
5720 }
5721
5722 if (sched_feat_numa(NUMA))
5723 task_tick_numa(rq, curr);
5724
5725 update_rq_runnable_avg(rq, 1);
5726 }
5727
5728 /*
5729 * called on fork with the child task as argument from the parent's context
5730 * - child not yet on the tasklist
5731 * - preemption disabled
5732 */
5733 static void task_fork_fair(struct task_struct *p)
5734 {
5735 struct cfs_rq *cfs_rq;
5736 struct sched_entity *se = &p->se, *curr;
5737 int this_cpu = smp_processor_id();
5738 struct rq *rq = this_rq();
5739 unsigned long flags;
5740
5741 raw_spin_lock_irqsave(&rq->lock, flags);
5742
5743 update_rq_clock(rq);
5744
5745 cfs_rq = task_cfs_rq(current);
5746 curr = cfs_rq->curr;
5747
5748 if (unlikely(task_cpu(p) != this_cpu)) {
5749 rcu_read_lock();
5750 __set_task_cpu(p, this_cpu);
5751 rcu_read_unlock();
5752 }
5753
5754 update_curr(cfs_rq);
5755
5756 if (curr)
5757 se->vruntime = curr->vruntime;
5758 place_entity(cfs_rq, se, 1);
5759
5760 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5761 /*
5762 * Upon rescheduling, sched_class::put_prev_task() will place
5763 * 'current' within the tree based on its new key value.
5764 */
5765 swap(curr->vruntime, se->vruntime);
5766 resched_task(rq->curr);
5767 }
5768
5769 se->vruntime -= cfs_rq->min_vruntime;
5770
5771 raw_spin_unlock_irqrestore(&rq->lock, flags);
5772 }
5773
5774 /*
5775 * Priority of the task has changed. Check to see if we preempt
5776 * the current task.
5777 */
5778 static void
5779 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5780 {
5781 if (!p->se.on_rq)
5782 return;
5783
5784 /*
5785 * Reschedule if we are currently running on this runqueue and
5786 * our priority decreased, or if we are not currently running on
5787 * this runqueue and our priority is higher than the current's
5788 */
5789 if (rq->curr == p) {
5790 if (p->prio > oldprio)
5791 resched_task(rq->curr);
5792 } else
5793 check_preempt_curr(rq, p, 0);
5794 }
5795
5796 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5797 {
5798 struct sched_entity *se = &p->se;
5799 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5800
5801 /*
5802 * Ensure the task's vruntime is normalized, so that when its
5803 * switched back to the fair class the enqueue_entity(.flags=0) will
5804 * do the right thing.
5805 *
5806 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5807 * have normalized the vruntime, if it was !on_rq, then only when
5808 * the task is sleeping will it still have non-normalized vruntime.
5809 */
5810 if (!se->on_rq && p->state != TASK_RUNNING) {
5811 /*
5812 * Fix up our vruntime so that the current sleep doesn't
5813 * cause 'unlimited' sleep bonus.
5814 */
5815 place_entity(cfs_rq, se, 0);
5816 se->vruntime -= cfs_rq->min_vruntime;
5817 }
5818
5819 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5820 /*
5821 * Remove our load from contribution when we leave sched_fair
5822 * and ensure we don't carry in an old decay_count if we
5823 * switch back.
5824 */
5825 if (p->se.avg.decay_count) {
5826 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5827 __synchronize_entity_decay(&p->se);
5828 subtract_blocked_load_contrib(cfs_rq,
5829 p->se.avg.load_avg_contrib);
5830 }
5831 #endif
5832 }
5833
5834 /*
5835 * We switched to the sched_fair class.
5836 */
5837 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5838 {
5839 if (!p->se.on_rq)
5840 return;
5841
5842 /*
5843 * We were most likely switched from sched_rt, so
5844 * kick off the schedule if running, otherwise just see
5845 * if we can still preempt the current task.
5846 */
5847 if (rq->curr == p)
5848 resched_task(rq->curr);
5849 else
5850 check_preempt_curr(rq, p, 0);
5851 }
5852
5853 /* Account for a task changing its policy or group.
5854 *
5855 * This routine is mostly called to set cfs_rq->curr field when a task
5856 * migrates between groups/classes.
5857 */
5858 static void set_curr_task_fair(struct rq *rq)
5859 {
5860 struct sched_entity *se = &rq->curr->se;
5861
5862 for_each_sched_entity(se) {
5863 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5864
5865 set_next_entity(cfs_rq, se);
5866 /* ensure bandwidth has been allocated on our new cfs_rq */
5867 account_cfs_rq_runtime(cfs_rq, 0);
5868 }
5869 }
5870
5871 void init_cfs_rq(struct cfs_rq *cfs_rq)
5872 {
5873 cfs_rq->tasks_timeline = RB_ROOT;
5874 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5875 #ifndef CONFIG_64BIT
5876 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5877 #endif
5878 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5879 atomic64_set(&cfs_rq->decay_counter, 1);
5880 atomic64_set(&cfs_rq->removed_load, 0);
5881 #endif
5882 }
5883
5884 #ifdef CONFIG_FAIR_GROUP_SCHED
5885 static void task_move_group_fair(struct task_struct *p, int on_rq)
5886 {
5887 struct cfs_rq *cfs_rq;
5888 /*
5889 * If the task was not on the rq at the time of this cgroup movement
5890 * it must have been asleep, sleeping tasks keep their ->vruntime
5891 * absolute on their old rq until wakeup (needed for the fair sleeper
5892 * bonus in place_entity()).
5893 *
5894 * If it was on the rq, we've just 'preempted' it, which does convert
5895 * ->vruntime to a relative base.
5896 *
5897 * Make sure both cases convert their relative position when migrating
5898 * to another cgroup's rq. This does somewhat interfere with the
5899 * fair sleeper stuff for the first placement, but who cares.
5900 */
5901 /*
5902 * When !on_rq, vruntime of the task has usually NOT been normalized.
5903 * But there are some cases where it has already been normalized:
5904 *
5905 * - Moving a forked child which is waiting for being woken up by
5906 * wake_up_new_task().
5907 * - Moving a task which has been woken up by try_to_wake_up() and
5908 * waiting for actually being woken up by sched_ttwu_pending().
5909 *
5910 * To prevent boost or penalty in the new cfs_rq caused by delta
5911 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5912 */
5913 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5914 on_rq = 1;
5915
5916 if (!on_rq)
5917 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5918 set_task_rq(p, task_cpu(p));
5919 if (!on_rq) {
5920 cfs_rq = cfs_rq_of(&p->se);
5921 p->se.vruntime += cfs_rq->min_vruntime;
5922 #ifdef CONFIG_SMP
5923 /*
5924 * migrate_task_rq_fair() will have removed our previous
5925 * contribution, but we must synchronize for ongoing future
5926 * decay.
5927 */
5928 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5929 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5930 #endif
5931 }
5932 }
5933
5934 void free_fair_sched_group(struct task_group *tg)
5935 {
5936 int i;
5937
5938 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5939
5940 for_each_possible_cpu(i) {
5941 if (tg->cfs_rq)
5942 kfree(tg->cfs_rq[i]);
5943 if (tg->se)
5944 kfree(tg->se[i]);
5945 }
5946
5947 kfree(tg->cfs_rq);
5948 kfree(tg->se);
5949 }
5950
5951 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5952 {
5953 struct cfs_rq *cfs_rq;
5954 struct sched_entity *se;
5955 int i;
5956
5957 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5958 if (!tg->cfs_rq)
5959 goto err;
5960 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5961 if (!tg->se)
5962 goto err;
5963
5964 tg->shares = NICE_0_LOAD;
5965
5966 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5967
5968 for_each_possible_cpu(i) {
5969 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5970 GFP_KERNEL, cpu_to_node(i));
5971 if (!cfs_rq)
5972 goto err;
5973
5974 se = kzalloc_node(sizeof(struct sched_entity),
5975 GFP_KERNEL, cpu_to_node(i));
5976 if (!se)
5977 goto err_free_rq;
5978
5979 init_cfs_rq(cfs_rq);
5980 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5981 }
5982
5983 return 1;
5984
5985 err_free_rq:
5986 kfree(cfs_rq);
5987 err:
5988 return 0;
5989 }
5990
5991 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5992 {
5993 struct rq *rq = cpu_rq(cpu);
5994 unsigned long flags;
5995
5996 /*
5997 * Only empty task groups can be destroyed; so we can speculatively
5998 * check on_list without danger of it being re-added.
5999 */
6000 if (!tg->cfs_rq[cpu]->on_list)
6001 return;
6002
6003 raw_spin_lock_irqsave(&rq->lock, flags);
6004 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6005 raw_spin_unlock_irqrestore(&rq->lock, flags);
6006 }
6007
6008 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6009 struct sched_entity *se, int cpu,
6010 struct sched_entity *parent)
6011 {
6012 struct rq *rq = cpu_rq(cpu);
6013
6014 cfs_rq->tg = tg;
6015 cfs_rq->rq = rq;
6016 init_cfs_rq_runtime(cfs_rq);
6017
6018 tg->cfs_rq[cpu] = cfs_rq;
6019 tg->se[cpu] = se;
6020
6021 /* se could be NULL for root_task_group */
6022 if (!se)
6023 return;
6024
6025 if (!parent)
6026 se->cfs_rq = &rq->cfs;
6027 else
6028 se->cfs_rq = parent->my_q;
6029
6030 se->my_q = cfs_rq;
6031 update_load_set(&se->load, 0);
6032 se->parent = parent;
6033 }
6034
6035 static DEFINE_MUTEX(shares_mutex);
6036
6037 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6038 {
6039 int i;
6040 unsigned long flags;
6041
6042 /*
6043 * We can't change the weight of the root cgroup.
6044 */
6045 if (!tg->se[0])
6046 return -EINVAL;
6047
6048 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6049
6050 mutex_lock(&shares_mutex);
6051 if (tg->shares == shares)
6052 goto done;
6053
6054 tg->shares = shares;
6055 for_each_possible_cpu(i) {
6056 struct rq *rq = cpu_rq(i);
6057 struct sched_entity *se;
6058
6059 se = tg->se[i];
6060 /* Propagate contribution to hierarchy */
6061 raw_spin_lock_irqsave(&rq->lock, flags);
6062 for_each_sched_entity(se)
6063 update_cfs_shares(group_cfs_rq(se));
6064 raw_spin_unlock_irqrestore(&rq->lock, flags);
6065 }
6066
6067 done:
6068 mutex_unlock(&shares_mutex);
6069 return 0;
6070 }
6071 #else /* CONFIG_FAIR_GROUP_SCHED */
6072
6073 void free_fair_sched_group(struct task_group *tg) { }
6074
6075 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6076 {
6077 return 1;
6078 }
6079
6080 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6081
6082 #endif /* CONFIG_FAIR_GROUP_SCHED */
6083
6084
6085 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6086 {
6087 struct sched_entity *se = &task->se;
6088 unsigned int rr_interval = 0;
6089
6090 /*
6091 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6092 * idle runqueue:
6093 */
6094 if (rq->cfs.load.weight)
6095 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6096
6097 return rr_interval;
6098 }
6099
6100 /*
6101 * All the scheduling class methods:
6102 */
6103 const struct sched_class fair_sched_class = {
6104 .next = &idle_sched_class,
6105 .enqueue_task = enqueue_task_fair,
6106 .dequeue_task = dequeue_task_fair,
6107 .yield_task = yield_task_fair,
6108 .yield_to_task = yield_to_task_fair,
6109
6110 .check_preempt_curr = check_preempt_wakeup,
6111
6112 .pick_next_task = pick_next_task_fair,
6113 .put_prev_task = put_prev_task_fair,
6114
6115 #ifdef CONFIG_SMP
6116 .select_task_rq = select_task_rq_fair,
6117 #ifdef CONFIG_FAIR_GROUP_SCHED
6118 .migrate_task_rq = migrate_task_rq_fair,
6119 #endif
6120 .rq_online = rq_online_fair,
6121 .rq_offline = rq_offline_fair,
6122
6123 .task_waking = task_waking_fair,
6124 #endif
6125
6126 .set_curr_task = set_curr_task_fair,
6127 .task_tick = task_tick_fair,
6128 .task_fork = task_fork_fair,
6129
6130 .prio_changed = prio_changed_fair,
6131 .switched_from = switched_from_fair,
6132 .switched_to = switched_to_fair,
6133
6134 .get_rr_interval = get_rr_interval_fair,
6135
6136 #ifdef CONFIG_FAIR_GROUP_SCHED
6137 .task_move_group = task_move_group_fair,
6138 #endif
6139 };
6140
6141 #ifdef CONFIG_SCHED_DEBUG
6142 void print_cfs_stats(struct seq_file *m, int cpu)
6143 {
6144 struct cfs_rq *cfs_rq;
6145
6146 rcu_read_lock();
6147 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6148 print_cfs_rq(m, cpu, cfs_rq);
6149 rcu_read_unlock();
6150 }
6151 #endif
6152
6153 __init void init_sched_fair_class(void)
6154 {
6155 #ifdef CONFIG_SMP
6156 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6157
6158 #ifdef CONFIG_NO_HZ
6159 nohz.next_balance = jiffies;
6160 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6161 cpu_notifier(sched_ilb_notifier, 0);
6162 #endif
6163 #endif /* SMP */
6164
6165 }