Merge commit '8700c95adb03' into timers/nohz
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 /*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125 static int get_update_sysctl_factor(void)
126 {
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144 }
145
146 static void update_sysctl(void)
147 {
148 unsigned int factor = get_update_sysctl_factor();
149
150 #define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155 #undef SET_SYSCTL
156 }
157
158 void sched_init_granularity(void)
159 {
160 update_sysctl();
161 }
162
163 #if BITS_PER_LONG == 32
164 # define WMULT_CONST (~0UL)
165 #else
166 # define WMULT_CONST (1UL << 32)
167 #endif
168
169 #define WMULT_SHIFT 32
170
171 /*
172 * Shift right and round:
173 */
174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176 /*
177 * delta *= weight / lw
178 */
179 static unsigned long
180 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182 {
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 }
217
218
219 const struct sched_class fair_sched_class;
220
221 /**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226
227 /* cpu runqueue to which this cfs_rq is attached */
228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229 {
230 return cfs_rq->rq;
231 }
232
233 /* An entity is a task if it doesn't "own" a runqueue */
234 #define entity_is_task(se) (!se->my_q)
235
236 static inline struct task_struct *task_of(struct sched_entity *se)
237 {
238 #ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240 #endif
241 return container_of(se, struct task_struct, se);
242 }
243
244 /* Walk up scheduling entities hierarchy */
245 #define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249 {
250 return p->se.cfs_rq;
251 }
252
253 /* runqueue on which this entity is (to be) queued */
254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255 {
256 return se->cfs_rq;
257 }
258
259 /* runqueue "owned" by this group */
260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261 {
262 return grp->my_q;
263 }
264
265 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
267
268 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269 {
270 if (!cfs_rq->on_list) {
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
284 }
285
286 cfs_rq->on_list = 1;
287 /* We should have no load, but we need to update last_decay. */
288 update_cfs_rq_blocked_load(cfs_rq, 0);
289 }
290 }
291
292 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293 {
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298 }
299
300 /* Iterate thr' all leaf cfs_rq's on a runqueue */
301 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304 /* Do the two (enqueued) entities belong to the same group ? */
305 static inline int
306 is_same_group(struct sched_entity *se, struct sched_entity *pse)
307 {
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312 }
313
314 static inline struct sched_entity *parent_entity(struct sched_entity *se)
315 {
316 return se->parent;
317 }
318
319 /* return depth at which a sched entity is present in the hierarchy */
320 static inline int depth_se(struct sched_entity *se)
321 {
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328 }
329
330 static void
331 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332 {
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360 }
361
362 #else /* !CONFIG_FAIR_GROUP_SCHED */
363
364 static inline struct task_struct *task_of(struct sched_entity *se)
365 {
366 return container_of(se, struct task_struct, se);
367 }
368
369 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370 {
371 return container_of(cfs_rq, struct rq, cfs);
372 }
373
374 #define entity_is_task(se) 1
375
376 #define for_each_sched_entity(se) \
377 for (; se; se = NULL)
378
379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
380 {
381 return &task_rq(p)->cfs;
382 }
383
384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385 {
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390 }
391
392 /* runqueue "owned" by this group */
393 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394 {
395 return NULL;
396 }
397
398 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 }
401
402 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403 {
404 }
405
406 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409 static inline int
410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 return 1;
413 }
414
415 static inline struct sched_entity *parent_entity(struct sched_entity *se)
416 {
417 return NULL;
418 }
419
420 static inline void
421 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422 {
423 }
424
425 #endif /* CONFIG_FAIR_GROUP_SCHED */
426
427 static __always_inline
428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
429
430 /**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
434 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
435 {
436 s64 delta = (s64)(vruntime - max_vruntime);
437 if (delta > 0)
438 max_vruntime = vruntime;
439
440 return max_vruntime;
441 }
442
443 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 {
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450 }
451
452 static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454 {
455 return (s64)(a->vruntime - b->vruntime) < 0;
456 }
457
458 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 {
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
470 if (!cfs_rq->curr)
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
476 /* ensure we never gain time by being placed backwards. */
477 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
478 #ifndef CONFIG_64BIT
479 smp_wmb();
480 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
481 #endif
482 }
483
484 /*
485 * Enqueue an entity into the rb-tree:
486 */
487 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 {
489 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
490 struct rb_node *parent = NULL;
491 struct sched_entity *entry;
492 int leftmost = 1;
493
494 /*
495 * Find the right place in the rbtree:
496 */
497 while (*link) {
498 parent = *link;
499 entry = rb_entry(parent, struct sched_entity, run_node);
500 /*
501 * We dont care about collisions. Nodes with
502 * the same key stay together.
503 */
504 if (entity_before(se, entry)) {
505 link = &parent->rb_left;
506 } else {
507 link = &parent->rb_right;
508 leftmost = 0;
509 }
510 }
511
512 /*
513 * Maintain a cache of leftmost tree entries (it is frequently
514 * used):
515 */
516 if (leftmost)
517 cfs_rq->rb_leftmost = &se->run_node;
518
519 rb_link_node(&se->run_node, parent, link);
520 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
521 }
522
523 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525 if (cfs_rq->rb_leftmost == &se->run_node) {
526 struct rb_node *next_node;
527
528 next_node = rb_next(&se->run_node);
529 cfs_rq->rb_leftmost = next_node;
530 }
531
532 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
533 }
534
535 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
536 {
537 struct rb_node *left = cfs_rq->rb_leftmost;
538
539 if (!left)
540 return NULL;
541
542 return rb_entry(left, struct sched_entity, run_node);
543 }
544
545 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546 {
547 struct rb_node *next = rb_next(&se->run_node);
548
549 if (!next)
550 return NULL;
551
552 return rb_entry(next, struct sched_entity, run_node);
553 }
554
555 #ifdef CONFIG_SCHED_DEBUG
556 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
557 {
558 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
559
560 if (!last)
561 return NULL;
562
563 return rb_entry(last, struct sched_entity, run_node);
564 }
565
566 /**************************************************************
567 * Scheduling class statistics methods:
568 */
569
570 int sched_proc_update_handler(struct ctl_table *table, int write,
571 void __user *buffer, size_t *lenp,
572 loff_t *ppos)
573 {
574 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
575 int factor = get_update_sysctl_factor();
576
577 if (ret || !write)
578 return ret;
579
580 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
581 sysctl_sched_min_granularity);
582
583 #define WRT_SYSCTL(name) \
584 (normalized_sysctl_##name = sysctl_##name / (factor))
585 WRT_SYSCTL(sched_min_granularity);
586 WRT_SYSCTL(sched_latency);
587 WRT_SYSCTL(sched_wakeup_granularity);
588 #undef WRT_SYSCTL
589
590 return 0;
591 }
592 #endif
593
594 /*
595 * delta /= w
596 */
597 static inline unsigned long
598 calc_delta_fair(unsigned long delta, struct sched_entity *se)
599 {
600 if (unlikely(se->load.weight != NICE_0_LOAD))
601 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
602
603 return delta;
604 }
605
606 /*
607 * The idea is to set a period in which each task runs once.
608 *
609 * When there are too many tasks (sched_nr_latency) we have to stretch
610 * this period because otherwise the slices get too small.
611 *
612 * p = (nr <= nl) ? l : l*nr/nl
613 */
614 static u64 __sched_period(unsigned long nr_running)
615 {
616 u64 period = sysctl_sched_latency;
617 unsigned long nr_latency = sched_nr_latency;
618
619 if (unlikely(nr_running > nr_latency)) {
620 period = sysctl_sched_min_granularity;
621 period *= nr_running;
622 }
623
624 return period;
625 }
626
627 /*
628 * We calculate the wall-time slice from the period by taking a part
629 * proportional to the weight.
630 *
631 * s = p*P[w/rw]
632 */
633 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
636
637 for_each_sched_entity(se) {
638 struct load_weight *load;
639 struct load_weight lw;
640
641 cfs_rq = cfs_rq_of(se);
642 load = &cfs_rq->load;
643
644 if (unlikely(!se->on_rq)) {
645 lw = cfs_rq->load;
646
647 update_load_add(&lw, se->load.weight);
648 load = &lw;
649 }
650 slice = calc_delta_mine(slice, se->load.weight, load);
651 }
652 return slice;
653 }
654
655 /*
656 * We calculate the vruntime slice of a to-be-inserted task.
657 *
658 * vs = s/w
659 */
660 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
661 {
662 return calc_delta_fair(sched_slice(cfs_rq, se), se);
663 }
664
665 /*
666 * Update the current task's runtime statistics. Skip current tasks that
667 * are not in our scheduling class.
668 */
669 static inline void
670 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
671 unsigned long delta_exec)
672 {
673 unsigned long delta_exec_weighted;
674
675 schedstat_set(curr->statistics.exec_max,
676 max((u64)delta_exec, curr->statistics.exec_max));
677
678 curr->sum_exec_runtime += delta_exec;
679 schedstat_add(cfs_rq, exec_clock, delta_exec);
680 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
681
682 curr->vruntime += delta_exec_weighted;
683 update_min_vruntime(cfs_rq);
684 }
685
686 static void update_curr(struct cfs_rq *cfs_rq)
687 {
688 struct sched_entity *curr = cfs_rq->curr;
689 u64 now = rq_of(cfs_rq)->clock_task;
690 unsigned long delta_exec;
691
692 if (unlikely(!curr))
693 return;
694
695 /*
696 * Get the amount of time the current task was running
697 * since the last time we changed load (this cannot
698 * overflow on 32 bits):
699 */
700 delta_exec = (unsigned long)(now - curr->exec_start);
701 if (!delta_exec)
702 return;
703
704 __update_curr(cfs_rq, curr, delta_exec);
705 curr->exec_start = now;
706
707 if (entity_is_task(curr)) {
708 struct task_struct *curtask = task_of(curr);
709
710 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
711 cpuacct_charge(curtask, delta_exec);
712 account_group_exec_runtime(curtask, delta_exec);
713 }
714
715 account_cfs_rq_runtime(cfs_rq, delta_exec);
716 }
717
718 static inline void
719 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
722 }
723
724 /*
725 * Task is being enqueued - update stats:
726 */
727 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
728 {
729 /*
730 * Are we enqueueing a waiting task? (for current tasks
731 * a dequeue/enqueue event is a NOP)
732 */
733 if (se != cfs_rq->curr)
734 update_stats_wait_start(cfs_rq, se);
735 }
736
737 static void
738 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
741 rq_of(cfs_rq)->clock - se->statistics.wait_start));
742 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
743 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
745 #ifdef CONFIG_SCHEDSTATS
746 if (entity_is_task(se)) {
747 trace_sched_stat_wait(task_of(se),
748 rq_of(cfs_rq)->clock - se->statistics.wait_start);
749 }
750 #endif
751 schedstat_set(se->statistics.wait_start, 0);
752 }
753
754 static inline void
755 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 /*
758 * Mark the end of the wait period if dequeueing a
759 * waiting task:
760 */
761 if (se != cfs_rq->curr)
762 update_stats_wait_end(cfs_rq, se);
763 }
764
765 /*
766 * We are picking a new current task - update its stats:
767 */
768 static inline void
769 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 {
771 /*
772 * We are starting a new run period:
773 */
774 se->exec_start = rq_of(cfs_rq)->clock_task;
775 }
776
777 /**************************************************
778 * Scheduling class queueing methods:
779 */
780
781 #ifdef CONFIG_NUMA_BALANCING
782 /*
783 * numa task sample period in ms
784 */
785 unsigned int sysctl_numa_balancing_scan_period_min = 100;
786 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
787 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
788
789 /* Portion of address space to scan in MB */
790 unsigned int sysctl_numa_balancing_scan_size = 256;
791
792 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
793 unsigned int sysctl_numa_balancing_scan_delay = 1000;
794
795 static void task_numa_placement(struct task_struct *p)
796 {
797 int seq;
798
799 if (!p->mm) /* for example, ksmd faulting in a user's mm */
800 return;
801 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
802 if (p->numa_scan_seq == seq)
803 return;
804 p->numa_scan_seq = seq;
805
806 /* FIXME: Scheduling placement policy hints go here */
807 }
808
809 /*
810 * Got a PROT_NONE fault for a page on @node.
811 */
812 void task_numa_fault(int node, int pages, bool migrated)
813 {
814 struct task_struct *p = current;
815
816 if (!sched_feat_numa(NUMA))
817 return;
818
819 /* FIXME: Allocate task-specific structure for placement policy here */
820
821 /*
822 * If pages are properly placed (did not migrate) then scan slower.
823 * This is reset periodically in case of phase changes
824 */
825 if (!migrated)
826 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
827 p->numa_scan_period + jiffies_to_msecs(10));
828
829 task_numa_placement(p);
830 }
831
832 static void reset_ptenuma_scan(struct task_struct *p)
833 {
834 ACCESS_ONCE(p->mm->numa_scan_seq)++;
835 p->mm->numa_scan_offset = 0;
836 }
837
838 /*
839 * The expensive part of numa migration is done from task_work context.
840 * Triggered from task_tick_numa().
841 */
842 void task_numa_work(struct callback_head *work)
843 {
844 unsigned long migrate, next_scan, now = jiffies;
845 struct task_struct *p = current;
846 struct mm_struct *mm = p->mm;
847 struct vm_area_struct *vma;
848 unsigned long start, end;
849 long pages;
850
851 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
852
853 work->next = work; /* protect against double add */
854 /*
855 * Who cares about NUMA placement when they're dying.
856 *
857 * NOTE: make sure not to dereference p->mm before this check,
858 * exit_task_work() happens _after_ exit_mm() so we could be called
859 * without p->mm even though we still had it when we enqueued this
860 * work.
861 */
862 if (p->flags & PF_EXITING)
863 return;
864
865 /*
866 * We do not care about task placement until a task runs on a node
867 * other than the first one used by the address space. This is
868 * largely because migrations are driven by what CPU the task
869 * is running on. If it's never scheduled on another node, it'll
870 * not migrate so why bother trapping the fault.
871 */
872 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
873 mm->first_nid = numa_node_id();
874 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
875 /* Are we running on a new node yet? */
876 if (numa_node_id() == mm->first_nid &&
877 !sched_feat_numa(NUMA_FORCE))
878 return;
879
880 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
881 }
882
883 /*
884 * Reset the scan period if enough time has gone by. Objective is that
885 * scanning will be reduced if pages are properly placed. As tasks
886 * can enter different phases this needs to be re-examined. Lacking
887 * proper tracking of reference behaviour, this blunt hammer is used.
888 */
889 migrate = mm->numa_next_reset;
890 if (time_after(now, migrate)) {
891 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
892 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
893 xchg(&mm->numa_next_reset, next_scan);
894 }
895
896 /*
897 * Enforce maximal scan/migration frequency..
898 */
899 migrate = mm->numa_next_scan;
900 if (time_before(now, migrate))
901 return;
902
903 if (p->numa_scan_period == 0)
904 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
905
906 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
907 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
908 return;
909
910 /*
911 * Do not set pte_numa if the current running node is rate-limited.
912 * This loses statistics on the fault but if we are unwilling to
913 * migrate to this node, it is less likely we can do useful work
914 */
915 if (migrate_ratelimited(numa_node_id()))
916 return;
917
918 start = mm->numa_scan_offset;
919 pages = sysctl_numa_balancing_scan_size;
920 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
921 if (!pages)
922 return;
923
924 down_read(&mm->mmap_sem);
925 vma = find_vma(mm, start);
926 if (!vma) {
927 reset_ptenuma_scan(p);
928 start = 0;
929 vma = mm->mmap;
930 }
931 for (; vma; vma = vma->vm_next) {
932 if (!vma_migratable(vma))
933 continue;
934
935 /* Skip small VMAs. They are not likely to be of relevance */
936 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
937 continue;
938
939 do {
940 start = max(start, vma->vm_start);
941 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
942 end = min(end, vma->vm_end);
943 pages -= change_prot_numa(vma, start, end);
944
945 start = end;
946 if (pages <= 0)
947 goto out;
948 } while (end != vma->vm_end);
949 }
950
951 out:
952 /*
953 * It is possible to reach the end of the VMA list but the last few VMAs are
954 * not guaranteed to the vma_migratable. If they are not, we would find the
955 * !migratable VMA on the next scan but not reset the scanner to the start
956 * so check it now.
957 */
958 if (vma)
959 mm->numa_scan_offset = start;
960 else
961 reset_ptenuma_scan(p);
962 up_read(&mm->mmap_sem);
963 }
964
965 /*
966 * Drive the periodic memory faults..
967 */
968 void task_tick_numa(struct rq *rq, struct task_struct *curr)
969 {
970 struct callback_head *work = &curr->numa_work;
971 u64 period, now;
972
973 /*
974 * We don't care about NUMA placement if we don't have memory.
975 */
976 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
977 return;
978
979 /*
980 * Using runtime rather than walltime has the dual advantage that
981 * we (mostly) drive the selection from busy threads and that the
982 * task needs to have done some actual work before we bother with
983 * NUMA placement.
984 */
985 now = curr->se.sum_exec_runtime;
986 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
987
988 if (now - curr->node_stamp > period) {
989 if (!curr->node_stamp)
990 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
991 curr->node_stamp = now;
992
993 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
994 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
995 task_work_add(curr, work, true);
996 }
997 }
998 }
999 #else
1000 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1001 {
1002 }
1003 #endif /* CONFIG_NUMA_BALANCING */
1004
1005 static void
1006 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1007 {
1008 update_load_add(&cfs_rq->load, se->load.weight);
1009 if (!parent_entity(se))
1010 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1011 #ifdef CONFIG_SMP
1012 if (entity_is_task(se))
1013 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1014 #endif
1015 cfs_rq->nr_running++;
1016 }
1017
1018 static void
1019 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020 {
1021 update_load_sub(&cfs_rq->load, se->load.weight);
1022 if (!parent_entity(se))
1023 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1024 if (entity_is_task(se))
1025 list_del_init(&se->group_node);
1026 cfs_rq->nr_running--;
1027 }
1028
1029 #ifdef CONFIG_FAIR_GROUP_SCHED
1030 # ifdef CONFIG_SMP
1031 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1032 {
1033 long tg_weight;
1034
1035 /*
1036 * Use this CPU's actual weight instead of the last load_contribution
1037 * to gain a more accurate current total weight. See
1038 * update_cfs_rq_load_contribution().
1039 */
1040 tg_weight = atomic64_read(&tg->load_avg);
1041 tg_weight -= cfs_rq->tg_load_contrib;
1042 tg_weight += cfs_rq->load.weight;
1043
1044 return tg_weight;
1045 }
1046
1047 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1048 {
1049 long tg_weight, load, shares;
1050
1051 tg_weight = calc_tg_weight(tg, cfs_rq);
1052 load = cfs_rq->load.weight;
1053
1054 shares = (tg->shares * load);
1055 if (tg_weight)
1056 shares /= tg_weight;
1057
1058 if (shares < MIN_SHARES)
1059 shares = MIN_SHARES;
1060 if (shares > tg->shares)
1061 shares = tg->shares;
1062
1063 return shares;
1064 }
1065 # else /* CONFIG_SMP */
1066 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1067 {
1068 return tg->shares;
1069 }
1070 # endif /* CONFIG_SMP */
1071 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1072 unsigned long weight)
1073 {
1074 if (se->on_rq) {
1075 /* commit outstanding execution time */
1076 if (cfs_rq->curr == se)
1077 update_curr(cfs_rq);
1078 account_entity_dequeue(cfs_rq, se);
1079 }
1080
1081 update_load_set(&se->load, weight);
1082
1083 if (se->on_rq)
1084 account_entity_enqueue(cfs_rq, se);
1085 }
1086
1087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1088
1089 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1090 {
1091 struct task_group *tg;
1092 struct sched_entity *se;
1093 long shares;
1094
1095 tg = cfs_rq->tg;
1096 se = tg->se[cpu_of(rq_of(cfs_rq))];
1097 if (!se || throttled_hierarchy(cfs_rq))
1098 return;
1099 #ifndef CONFIG_SMP
1100 if (likely(se->load.weight == tg->shares))
1101 return;
1102 #endif
1103 shares = calc_cfs_shares(cfs_rq, tg);
1104
1105 reweight_entity(cfs_rq_of(se), se, shares);
1106 }
1107 #else /* CONFIG_FAIR_GROUP_SCHED */
1108 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1109 {
1110 }
1111 #endif /* CONFIG_FAIR_GROUP_SCHED */
1112
1113 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1114 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1115 /*
1116 * We choose a half-life close to 1 scheduling period.
1117 * Note: The tables below are dependent on this value.
1118 */
1119 #define LOAD_AVG_PERIOD 32
1120 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1121 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1122
1123 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1124 static const u32 runnable_avg_yN_inv[] = {
1125 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1126 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1127 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1128 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1129 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1130 0x85aac367, 0x82cd8698,
1131 };
1132
1133 /*
1134 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1135 * over-estimates when re-combining.
1136 */
1137 static const u32 runnable_avg_yN_sum[] = {
1138 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1139 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1140 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1141 };
1142
1143 /*
1144 * Approximate:
1145 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1146 */
1147 static __always_inline u64 decay_load(u64 val, u64 n)
1148 {
1149 unsigned int local_n;
1150
1151 if (!n)
1152 return val;
1153 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1154 return 0;
1155
1156 /* after bounds checking we can collapse to 32-bit */
1157 local_n = n;
1158
1159 /*
1160 * As y^PERIOD = 1/2, we can combine
1161 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1162 * With a look-up table which covers k^n (n<PERIOD)
1163 *
1164 * To achieve constant time decay_load.
1165 */
1166 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1167 val >>= local_n / LOAD_AVG_PERIOD;
1168 local_n %= LOAD_AVG_PERIOD;
1169 }
1170
1171 val *= runnable_avg_yN_inv[local_n];
1172 /* We don't use SRR here since we always want to round down. */
1173 return val >> 32;
1174 }
1175
1176 /*
1177 * For updates fully spanning n periods, the contribution to runnable
1178 * average will be: \Sum 1024*y^n
1179 *
1180 * We can compute this reasonably efficiently by combining:
1181 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1182 */
1183 static u32 __compute_runnable_contrib(u64 n)
1184 {
1185 u32 contrib = 0;
1186
1187 if (likely(n <= LOAD_AVG_PERIOD))
1188 return runnable_avg_yN_sum[n];
1189 else if (unlikely(n >= LOAD_AVG_MAX_N))
1190 return LOAD_AVG_MAX;
1191
1192 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1193 do {
1194 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1195 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1196
1197 n -= LOAD_AVG_PERIOD;
1198 } while (n > LOAD_AVG_PERIOD);
1199
1200 contrib = decay_load(contrib, n);
1201 return contrib + runnable_avg_yN_sum[n];
1202 }
1203
1204 /*
1205 * We can represent the historical contribution to runnable average as the
1206 * coefficients of a geometric series. To do this we sub-divide our runnable
1207 * history into segments of approximately 1ms (1024us); label the segment that
1208 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1209 *
1210 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1211 * p0 p1 p2
1212 * (now) (~1ms ago) (~2ms ago)
1213 *
1214 * Let u_i denote the fraction of p_i that the entity was runnable.
1215 *
1216 * We then designate the fractions u_i as our co-efficients, yielding the
1217 * following representation of historical load:
1218 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1219 *
1220 * We choose y based on the with of a reasonably scheduling period, fixing:
1221 * y^32 = 0.5
1222 *
1223 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1224 * approximately half as much as the contribution to load within the last ms
1225 * (u_0).
1226 *
1227 * When a period "rolls over" and we have new u_0`, multiplying the previous
1228 * sum again by y is sufficient to update:
1229 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1230 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1231 */
1232 static __always_inline int __update_entity_runnable_avg(u64 now,
1233 struct sched_avg *sa,
1234 int runnable)
1235 {
1236 u64 delta, periods;
1237 u32 runnable_contrib;
1238 int delta_w, decayed = 0;
1239
1240 delta = now - sa->last_runnable_update;
1241 /*
1242 * This should only happen when time goes backwards, which it
1243 * unfortunately does during sched clock init when we swap over to TSC.
1244 */
1245 if ((s64)delta < 0) {
1246 sa->last_runnable_update = now;
1247 return 0;
1248 }
1249
1250 /*
1251 * Use 1024ns as the unit of measurement since it's a reasonable
1252 * approximation of 1us and fast to compute.
1253 */
1254 delta >>= 10;
1255 if (!delta)
1256 return 0;
1257 sa->last_runnable_update = now;
1258
1259 /* delta_w is the amount already accumulated against our next period */
1260 delta_w = sa->runnable_avg_period % 1024;
1261 if (delta + delta_w >= 1024) {
1262 /* period roll-over */
1263 decayed = 1;
1264
1265 /*
1266 * Now that we know we're crossing a period boundary, figure
1267 * out how much from delta we need to complete the current
1268 * period and accrue it.
1269 */
1270 delta_w = 1024 - delta_w;
1271 if (runnable)
1272 sa->runnable_avg_sum += delta_w;
1273 sa->runnable_avg_period += delta_w;
1274
1275 delta -= delta_w;
1276
1277 /* Figure out how many additional periods this update spans */
1278 periods = delta / 1024;
1279 delta %= 1024;
1280
1281 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1282 periods + 1);
1283 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1284 periods + 1);
1285
1286 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1287 runnable_contrib = __compute_runnable_contrib(periods);
1288 if (runnable)
1289 sa->runnable_avg_sum += runnable_contrib;
1290 sa->runnable_avg_period += runnable_contrib;
1291 }
1292
1293 /* Remainder of delta accrued against u_0` */
1294 if (runnable)
1295 sa->runnable_avg_sum += delta;
1296 sa->runnable_avg_period += delta;
1297
1298 return decayed;
1299 }
1300
1301 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1302 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1303 {
1304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1305 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1306
1307 decays -= se->avg.decay_count;
1308 if (!decays)
1309 return 0;
1310
1311 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1312 se->avg.decay_count = 0;
1313
1314 return decays;
1315 }
1316
1317 #ifdef CONFIG_FAIR_GROUP_SCHED
1318 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1319 int force_update)
1320 {
1321 struct task_group *tg = cfs_rq->tg;
1322 s64 tg_contrib;
1323
1324 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1325 tg_contrib -= cfs_rq->tg_load_contrib;
1326
1327 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1328 atomic64_add(tg_contrib, &tg->load_avg);
1329 cfs_rq->tg_load_contrib += tg_contrib;
1330 }
1331 }
1332
1333 /*
1334 * Aggregate cfs_rq runnable averages into an equivalent task_group
1335 * representation for computing load contributions.
1336 */
1337 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1338 struct cfs_rq *cfs_rq)
1339 {
1340 struct task_group *tg = cfs_rq->tg;
1341 long contrib;
1342
1343 /* The fraction of a cpu used by this cfs_rq */
1344 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1345 sa->runnable_avg_period + 1);
1346 contrib -= cfs_rq->tg_runnable_contrib;
1347
1348 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1349 atomic_add(contrib, &tg->runnable_avg);
1350 cfs_rq->tg_runnable_contrib += contrib;
1351 }
1352 }
1353
1354 static inline void __update_group_entity_contrib(struct sched_entity *se)
1355 {
1356 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1357 struct task_group *tg = cfs_rq->tg;
1358 int runnable_avg;
1359
1360 u64 contrib;
1361
1362 contrib = cfs_rq->tg_load_contrib * tg->shares;
1363 se->avg.load_avg_contrib = div64_u64(contrib,
1364 atomic64_read(&tg->load_avg) + 1);
1365
1366 /*
1367 * For group entities we need to compute a correction term in the case
1368 * that they are consuming <1 cpu so that we would contribute the same
1369 * load as a task of equal weight.
1370 *
1371 * Explicitly co-ordinating this measurement would be expensive, but
1372 * fortunately the sum of each cpus contribution forms a usable
1373 * lower-bound on the true value.
1374 *
1375 * Consider the aggregate of 2 contributions. Either they are disjoint
1376 * (and the sum represents true value) or they are disjoint and we are
1377 * understating by the aggregate of their overlap.
1378 *
1379 * Extending this to N cpus, for a given overlap, the maximum amount we
1380 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1381 * cpus that overlap for this interval and w_i is the interval width.
1382 *
1383 * On a small machine; the first term is well-bounded which bounds the
1384 * total error since w_i is a subset of the period. Whereas on a
1385 * larger machine, while this first term can be larger, if w_i is the
1386 * of consequential size guaranteed to see n_i*w_i quickly converge to
1387 * our upper bound of 1-cpu.
1388 */
1389 runnable_avg = atomic_read(&tg->runnable_avg);
1390 if (runnable_avg < NICE_0_LOAD) {
1391 se->avg.load_avg_contrib *= runnable_avg;
1392 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1393 }
1394 }
1395 #else
1396 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1397 int force_update) {}
1398 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1399 struct cfs_rq *cfs_rq) {}
1400 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1401 #endif
1402
1403 static inline void __update_task_entity_contrib(struct sched_entity *se)
1404 {
1405 u32 contrib;
1406
1407 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1408 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1409 contrib /= (se->avg.runnable_avg_period + 1);
1410 se->avg.load_avg_contrib = scale_load(contrib);
1411 }
1412
1413 /* Compute the current contribution to load_avg by se, return any delta */
1414 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1415 {
1416 long old_contrib = se->avg.load_avg_contrib;
1417
1418 if (entity_is_task(se)) {
1419 __update_task_entity_contrib(se);
1420 } else {
1421 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1422 __update_group_entity_contrib(se);
1423 }
1424
1425 return se->avg.load_avg_contrib - old_contrib;
1426 }
1427
1428 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1429 long load_contrib)
1430 {
1431 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1432 cfs_rq->blocked_load_avg -= load_contrib;
1433 else
1434 cfs_rq->blocked_load_avg = 0;
1435 }
1436
1437 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1438
1439 /* Update a sched_entity's runnable average */
1440 static inline void update_entity_load_avg(struct sched_entity *se,
1441 int update_cfs_rq)
1442 {
1443 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1444 long contrib_delta;
1445 u64 now;
1446
1447 /*
1448 * For a group entity we need to use their owned cfs_rq_clock_task() in
1449 * case they are the parent of a throttled hierarchy.
1450 */
1451 if (entity_is_task(se))
1452 now = cfs_rq_clock_task(cfs_rq);
1453 else
1454 now = cfs_rq_clock_task(group_cfs_rq(se));
1455
1456 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1457 return;
1458
1459 contrib_delta = __update_entity_load_avg_contrib(se);
1460
1461 if (!update_cfs_rq)
1462 return;
1463
1464 if (se->on_rq)
1465 cfs_rq->runnable_load_avg += contrib_delta;
1466 else
1467 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1468 }
1469
1470 /*
1471 * Decay the load contributed by all blocked children and account this so that
1472 * their contribution may appropriately discounted when they wake up.
1473 */
1474 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1475 {
1476 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1477 u64 decays;
1478
1479 decays = now - cfs_rq->last_decay;
1480 if (!decays && !force_update)
1481 return;
1482
1483 if (atomic64_read(&cfs_rq->removed_load)) {
1484 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1485 subtract_blocked_load_contrib(cfs_rq, removed_load);
1486 }
1487
1488 if (decays) {
1489 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1490 decays);
1491 atomic64_add(decays, &cfs_rq->decay_counter);
1492 cfs_rq->last_decay = now;
1493 }
1494
1495 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1496 }
1497
1498 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1499 {
1500 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1501 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1502 }
1503
1504 /* Add the load generated by se into cfs_rq's child load-average */
1505 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1506 struct sched_entity *se,
1507 int wakeup)
1508 {
1509 /*
1510 * We track migrations using entity decay_count <= 0, on a wake-up
1511 * migration we use a negative decay count to track the remote decays
1512 * accumulated while sleeping.
1513 */
1514 if (unlikely(se->avg.decay_count <= 0)) {
1515 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1516 if (se->avg.decay_count) {
1517 /*
1518 * In a wake-up migration we have to approximate the
1519 * time sleeping. This is because we can't synchronize
1520 * clock_task between the two cpus, and it is not
1521 * guaranteed to be read-safe. Instead, we can
1522 * approximate this using our carried decays, which are
1523 * explicitly atomically readable.
1524 */
1525 se->avg.last_runnable_update -= (-se->avg.decay_count)
1526 << 20;
1527 update_entity_load_avg(se, 0);
1528 /* Indicate that we're now synchronized and on-rq */
1529 se->avg.decay_count = 0;
1530 }
1531 wakeup = 0;
1532 } else {
1533 __synchronize_entity_decay(se);
1534 }
1535
1536 /* migrated tasks did not contribute to our blocked load */
1537 if (wakeup) {
1538 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1539 update_entity_load_avg(se, 0);
1540 }
1541
1542 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1543 /* we force update consideration on load-balancer moves */
1544 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1545 }
1546
1547 /*
1548 * Remove se's load from this cfs_rq child load-average, if the entity is
1549 * transitioning to a blocked state we track its projected decay using
1550 * blocked_load_avg.
1551 */
1552 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1553 struct sched_entity *se,
1554 int sleep)
1555 {
1556 update_entity_load_avg(se, 1);
1557 /* we force update consideration on load-balancer moves */
1558 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1559
1560 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1561 if (sleep) {
1562 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1563 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1564 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1565 }
1566
1567 /*
1568 * Update the rq's load with the elapsed running time before entering
1569 * idle. if the last scheduled task is not a CFS task, idle_enter will
1570 * be the only way to update the runnable statistic.
1571 */
1572 void idle_enter_fair(struct rq *this_rq)
1573 {
1574 update_rq_runnable_avg(this_rq, 1);
1575 }
1576
1577 /*
1578 * Update the rq's load with the elapsed idle time before a task is
1579 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1580 * be the only way to update the runnable statistic.
1581 */
1582 void idle_exit_fair(struct rq *this_rq)
1583 {
1584 update_rq_runnable_avg(this_rq, 0);
1585 }
1586
1587 #else
1588 static inline void update_entity_load_avg(struct sched_entity *se,
1589 int update_cfs_rq) {}
1590 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1591 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1592 struct sched_entity *se,
1593 int wakeup) {}
1594 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1595 struct sched_entity *se,
1596 int sleep) {}
1597 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1598 int force_update) {}
1599 #endif
1600
1601 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1602 {
1603 #ifdef CONFIG_SCHEDSTATS
1604 struct task_struct *tsk = NULL;
1605
1606 if (entity_is_task(se))
1607 tsk = task_of(se);
1608
1609 if (se->statistics.sleep_start) {
1610 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1611
1612 if ((s64)delta < 0)
1613 delta = 0;
1614
1615 if (unlikely(delta > se->statistics.sleep_max))
1616 se->statistics.sleep_max = delta;
1617
1618 se->statistics.sleep_start = 0;
1619 se->statistics.sum_sleep_runtime += delta;
1620
1621 if (tsk) {
1622 account_scheduler_latency(tsk, delta >> 10, 1);
1623 trace_sched_stat_sleep(tsk, delta);
1624 }
1625 }
1626 if (se->statistics.block_start) {
1627 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1628
1629 if ((s64)delta < 0)
1630 delta = 0;
1631
1632 if (unlikely(delta > se->statistics.block_max))
1633 se->statistics.block_max = delta;
1634
1635 se->statistics.block_start = 0;
1636 se->statistics.sum_sleep_runtime += delta;
1637
1638 if (tsk) {
1639 if (tsk->in_iowait) {
1640 se->statistics.iowait_sum += delta;
1641 se->statistics.iowait_count++;
1642 trace_sched_stat_iowait(tsk, delta);
1643 }
1644
1645 trace_sched_stat_blocked(tsk, delta);
1646
1647 /*
1648 * Blocking time is in units of nanosecs, so shift by
1649 * 20 to get a milliseconds-range estimation of the
1650 * amount of time that the task spent sleeping:
1651 */
1652 if (unlikely(prof_on == SLEEP_PROFILING)) {
1653 profile_hits(SLEEP_PROFILING,
1654 (void *)get_wchan(tsk),
1655 delta >> 20);
1656 }
1657 account_scheduler_latency(tsk, delta >> 10, 0);
1658 }
1659 }
1660 #endif
1661 }
1662
1663 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1664 {
1665 #ifdef CONFIG_SCHED_DEBUG
1666 s64 d = se->vruntime - cfs_rq->min_vruntime;
1667
1668 if (d < 0)
1669 d = -d;
1670
1671 if (d > 3*sysctl_sched_latency)
1672 schedstat_inc(cfs_rq, nr_spread_over);
1673 #endif
1674 }
1675
1676 static void
1677 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1678 {
1679 u64 vruntime = cfs_rq->min_vruntime;
1680
1681 /*
1682 * The 'current' period is already promised to the current tasks,
1683 * however the extra weight of the new task will slow them down a
1684 * little, place the new task so that it fits in the slot that
1685 * stays open at the end.
1686 */
1687 if (initial && sched_feat(START_DEBIT))
1688 vruntime += sched_vslice(cfs_rq, se);
1689
1690 /* sleeps up to a single latency don't count. */
1691 if (!initial) {
1692 unsigned long thresh = sysctl_sched_latency;
1693
1694 /*
1695 * Halve their sleep time's effect, to allow
1696 * for a gentler effect of sleepers:
1697 */
1698 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1699 thresh >>= 1;
1700
1701 vruntime -= thresh;
1702 }
1703
1704 /* ensure we never gain time by being placed backwards. */
1705 se->vruntime = max_vruntime(se->vruntime, vruntime);
1706 }
1707
1708 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1709
1710 static void
1711 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1712 {
1713 /*
1714 * Update the normalized vruntime before updating min_vruntime
1715 * through callig update_curr().
1716 */
1717 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1718 se->vruntime += cfs_rq->min_vruntime;
1719
1720 /*
1721 * Update run-time statistics of the 'current'.
1722 */
1723 update_curr(cfs_rq);
1724 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1725 account_entity_enqueue(cfs_rq, se);
1726 update_cfs_shares(cfs_rq);
1727
1728 if (flags & ENQUEUE_WAKEUP) {
1729 place_entity(cfs_rq, se, 0);
1730 enqueue_sleeper(cfs_rq, se);
1731 }
1732
1733 update_stats_enqueue(cfs_rq, se);
1734 check_spread(cfs_rq, se);
1735 if (se != cfs_rq->curr)
1736 __enqueue_entity(cfs_rq, se);
1737 se->on_rq = 1;
1738
1739 if (cfs_rq->nr_running == 1) {
1740 list_add_leaf_cfs_rq(cfs_rq);
1741 check_enqueue_throttle(cfs_rq);
1742 }
1743 }
1744
1745 static void __clear_buddies_last(struct sched_entity *se)
1746 {
1747 for_each_sched_entity(se) {
1748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1749 if (cfs_rq->last == se)
1750 cfs_rq->last = NULL;
1751 else
1752 break;
1753 }
1754 }
1755
1756 static void __clear_buddies_next(struct sched_entity *se)
1757 {
1758 for_each_sched_entity(se) {
1759 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1760 if (cfs_rq->next == se)
1761 cfs_rq->next = NULL;
1762 else
1763 break;
1764 }
1765 }
1766
1767 static void __clear_buddies_skip(struct sched_entity *se)
1768 {
1769 for_each_sched_entity(se) {
1770 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1771 if (cfs_rq->skip == se)
1772 cfs_rq->skip = NULL;
1773 else
1774 break;
1775 }
1776 }
1777
1778 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1779 {
1780 if (cfs_rq->last == se)
1781 __clear_buddies_last(se);
1782
1783 if (cfs_rq->next == se)
1784 __clear_buddies_next(se);
1785
1786 if (cfs_rq->skip == se)
1787 __clear_buddies_skip(se);
1788 }
1789
1790 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1791
1792 static void
1793 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1794 {
1795 /*
1796 * Update run-time statistics of the 'current'.
1797 */
1798 update_curr(cfs_rq);
1799 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1800
1801 update_stats_dequeue(cfs_rq, se);
1802 if (flags & DEQUEUE_SLEEP) {
1803 #ifdef CONFIG_SCHEDSTATS
1804 if (entity_is_task(se)) {
1805 struct task_struct *tsk = task_of(se);
1806
1807 if (tsk->state & TASK_INTERRUPTIBLE)
1808 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1809 if (tsk->state & TASK_UNINTERRUPTIBLE)
1810 se->statistics.block_start = rq_of(cfs_rq)->clock;
1811 }
1812 #endif
1813 }
1814
1815 clear_buddies(cfs_rq, se);
1816
1817 if (se != cfs_rq->curr)
1818 __dequeue_entity(cfs_rq, se);
1819 se->on_rq = 0;
1820 account_entity_dequeue(cfs_rq, se);
1821
1822 /*
1823 * Normalize the entity after updating the min_vruntime because the
1824 * update can refer to the ->curr item and we need to reflect this
1825 * movement in our normalized position.
1826 */
1827 if (!(flags & DEQUEUE_SLEEP))
1828 se->vruntime -= cfs_rq->min_vruntime;
1829
1830 /* return excess runtime on last dequeue */
1831 return_cfs_rq_runtime(cfs_rq);
1832
1833 update_min_vruntime(cfs_rq);
1834 update_cfs_shares(cfs_rq);
1835 }
1836
1837 /*
1838 * Preempt the current task with a newly woken task if needed:
1839 */
1840 static void
1841 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1842 {
1843 unsigned long ideal_runtime, delta_exec;
1844 struct sched_entity *se;
1845 s64 delta;
1846
1847 ideal_runtime = sched_slice(cfs_rq, curr);
1848 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1849 if (delta_exec > ideal_runtime) {
1850 resched_task(rq_of(cfs_rq)->curr);
1851 /*
1852 * The current task ran long enough, ensure it doesn't get
1853 * re-elected due to buddy favours.
1854 */
1855 clear_buddies(cfs_rq, curr);
1856 return;
1857 }
1858
1859 /*
1860 * Ensure that a task that missed wakeup preemption by a
1861 * narrow margin doesn't have to wait for a full slice.
1862 * This also mitigates buddy induced latencies under load.
1863 */
1864 if (delta_exec < sysctl_sched_min_granularity)
1865 return;
1866
1867 se = __pick_first_entity(cfs_rq);
1868 delta = curr->vruntime - se->vruntime;
1869
1870 if (delta < 0)
1871 return;
1872
1873 if (delta > ideal_runtime)
1874 resched_task(rq_of(cfs_rq)->curr);
1875 }
1876
1877 static void
1878 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1879 {
1880 /* 'current' is not kept within the tree. */
1881 if (se->on_rq) {
1882 /*
1883 * Any task has to be enqueued before it get to execute on
1884 * a CPU. So account for the time it spent waiting on the
1885 * runqueue.
1886 */
1887 update_stats_wait_end(cfs_rq, se);
1888 __dequeue_entity(cfs_rq, se);
1889 }
1890
1891 update_stats_curr_start(cfs_rq, se);
1892 cfs_rq->curr = se;
1893 #ifdef CONFIG_SCHEDSTATS
1894 /*
1895 * Track our maximum slice length, if the CPU's load is at
1896 * least twice that of our own weight (i.e. dont track it
1897 * when there are only lesser-weight tasks around):
1898 */
1899 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1900 se->statistics.slice_max = max(se->statistics.slice_max,
1901 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1902 }
1903 #endif
1904 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1905 }
1906
1907 static int
1908 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1909
1910 /*
1911 * Pick the next process, keeping these things in mind, in this order:
1912 * 1) keep things fair between processes/task groups
1913 * 2) pick the "next" process, since someone really wants that to run
1914 * 3) pick the "last" process, for cache locality
1915 * 4) do not run the "skip" process, if something else is available
1916 */
1917 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1918 {
1919 struct sched_entity *se = __pick_first_entity(cfs_rq);
1920 struct sched_entity *left = se;
1921
1922 /*
1923 * Avoid running the skip buddy, if running something else can
1924 * be done without getting too unfair.
1925 */
1926 if (cfs_rq->skip == se) {
1927 struct sched_entity *second = __pick_next_entity(se);
1928 if (second && wakeup_preempt_entity(second, left) < 1)
1929 se = second;
1930 }
1931
1932 /*
1933 * Prefer last buddy, try to return the CPU to a preempted task.
1934 */
1935 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1936 se = cfs_rq->last;
1937
1938 /*
1939 * Someone really wants this to run. If it's not unfair, run it.
1940 */
1941 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1942 se = cfs_rq->next;
1943
1944 clear_buddies(cfs_rq, se);
1945
1946 return se;
1947 }
1948
1949 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1950
1951 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1952 {
1953 /*
1954 * If still on the runqueue then deactivate_task()
1955 * was not called and update_curr() has to be done:
1956 */
1957 if (prev->on_rq)
1958 update_curr(cfs_rq);
1959
1960 /* throttle cfs_rqs exceeding runtime */
1961 check_cfs_rq_runtime(cfs_rq);
1962
1963 check_spread(cfs_rq, prev);
1964 if (prev->on_rq) {
1965 update_stats_wait_start(cfs_rq, prev);
1966 /* Put 'current' back into the tree. */
1967 __enqueue_entity(cfs_rq, prev);
1968 /* in !on_rq case, update occurred at dequeue */
1969 update_entity_load_avg(prev, 1);
1970 }
1971 cfs_rq->curr = NULL;
1972 }
1973
1974 static void
1975 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1976 {
1977 /*
1978 * Update run-time statistics of the 'current'.
1979 */
1980 update_curr(cfs_rq);
1981
1982 /*
1983 * Ensure that runnable average is periodically updated.
1984 */
1985 update_entity_load_avg(curr, 1);
1986 update_cfs_rq_blocked_load(cfs_rq, 1);
1987
1988 #ifdef CONFIG_SCHED_HRTICK
1989 /*
1990 * queued ticks are scheduled to match the slice, so don't bother
1991 * validating it and just reschedule.
1992 */
1993 if (queued) {
1994 resched_task(rq_of(cfs_rq)->curr);
1995 return;
1996 }
1997 /*
1998 * don't let the period tick interfere with the hrtick preemption
1999 */
2000 if (!sched_feat(DOUBLE_TICK) &&
2001 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2002 return;
2003 #endif
2004
2005 if (cfs_rq->nr_running > 1)
2006 check_preempt_tick(cfs_rq, curr);
2007 }
2008
2009
2010 /**************************************************
2011 * CFS bandwidth control machinery
2012 */
2013
2014 #ifdef CONFIG_CFS_BANDWIDTH
2015
2016 #ifdef HAVE_JUMP_LABEL
2017 static struct static_key __cfs_bandwidth_used;
2018
2019 static inline bool cfs_bandwidth_used(void)
2020 {
2021 return static_key_false(&__cfs_bandwidth_used);
2022 }
2023
2024 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2025 {
2026 /* only need to count groups transitioning between enabled/!enabled */
2027 if (enabled && !was_enabled)
2028 static_key_slow_inc(&__cfs_bandwidth_used);
2029 else if (!enabled && was_enabled)
2030 static_key_slow_dec(&__cfs_bandwidth_used);
2031 }
2032 #else /* HAVE_JUMP_LABEL */
2033 static bool cfs_bandwidth_used(void)
2034 {
2035 return true;
2036 }
2037
2038 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2039 #endif /* HAVE_JUMP_LABEL */
2040
2041 /*
2042 * default period for cfs group bandwidth.
2043 * default: 0.1s, units: nanoseconds
2044 */
2045 static inline u64 default_cfs_period(void)
2046 {
2047 return 100000000ULL;
2048 }
2049
2050 static inline u64 sched_cfs_bandwidth_slice(void)
2051 {
2052 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2053 }
2054
2055 /*
2056 * Replenish runtime according to assigned quota and update expiration time.
2057 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2058 * additional synchronization around rq->lock.
2059 *
2060 * requires cfs_b->lock
2061 */
2062 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2063 {
2064 u64 now;
2065
2066 if (cfs_b->quota == RUNTIME_INF)
2067 return;
2068
2069 now = sched_clock_cpu(smp_processor_id());
2070 cfs_b->runtime = cfs_b->quota;
2071 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2072 }
2073
2074 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2075 {
2076 return &tg->cfs_bandwidth;
2077 }
2078
2079 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2080 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2081 {
2082 if (unlikely(cfs_rq->throttle_count))
2083 return cfs_rq->throttled_clock_task;
2084
2085 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2086 }
2087
2088 /* returns 0 on failure to allocate runtime */
2089 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2090 {
2091 struct task_group *tg = cfs_rq->tg;
2092 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2093 u64 amount = 0, min_amount, expires;
2094
2095 /* note: this is a positive sum as runtime_remaining <= 0 */
2096 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2097
2098 raw_spin_lock(&cfs_b->lock);
2099 if (cfs_b->quota == RUNTIME_INF)
2100 amount = min_amount;
2101 else {
2102 /*
2103 * If the bandwidth pool has become inactive, then at least one
2104 * period must have elapsed since the last consumption.
2105 * Refresh the global state and ensure bandwidth timer becomes
2106 * active.
2107 */
2108 if (!cfs_b->timer_active) {
2109 __refill_cfs_bandwidth_runtime(cfs_b);
2110 __start_cfs_bandwidth(cfs_b);
2111 }
2112
2113 if (cfs_b->runtime > 0) {
2114 amount = min(cfs_b->runtime, min_amount);
2115 cfs_b->runtime -= amount;
2116 cfs_b->idle = 0;
2117 }
2118 }
2119 expires = cfs_b->runtime_expires;
2120 raw_spin_unlock(&cfs_b->lock);
2121
2122 cfs_rq->runtime_remaining += amount;
2123 /*
2124 * we may have advanced our local expiration to account for allowed
2125 * spread between our sched_clock and the one on which runtime was
2126 * issued.
2127 */
2128 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2129 cfs_rq->runtime_expires = expires;
2130
2131 return cfs_rq->runtime_remaining > 0;
2132 }
2133
2134 /*
2135 * Note: This depends on the synchronization provided by sched_clock and the
2136 * fact that rq->clock snapshots this value.
2137 */
2138 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2139 {
2140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2141 struct rq *rq = rq_of(cfs_rq);
2142
2143 /* if the deadline is ahead of our clock, nothing to do */
2144 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2145 return;
2146
2147 if (cfs_rq->runtime_remaining < 0)
2148 return;
2149
2150 /*
2151 * If the local deadline has passed we have to consider the
2152 * possibility that our sched_clock is 'fast' and the global deadline
2153 * has not truly expired.
2154 *
2155 * Fortunately we can check determine whether this the case by checking
2156 * whether the global deadline has advanced.
2157 */
2158
2159 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2160 /* extend local deadline, drift is bounded above by 2 ticks */
2161 cfs_rq->runtime_expires += TICK_NSEC;
2162 } else {
2163 /* global deadline is ahead, expiration has passed */
2164 cfs_rq->runtime_remaining = 0;
2165 }
2166 }
2167
2168 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2169 unsigned long delta_exec)
2170 {
2171 /* dock delta_exec before expiring quota (as it could span periods) */
2172 cfs_rq->runtime_remaining -= delta_exec;
2173 expire_cfs_rq_runtime(cfs_rq);
2174
2175 if (likely(cfs_rq->runtime_remaining > 0))
2176 return;
2177
2178 /*
2179 * if we're unable to extend our runtime we resched so that the active
2180 * hierarchy can be throttled
2181 */
2182 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2183 resched_task(rq_of(cfs_rq)->curr);
2184 }
2185
2186 static __always_inline
2187 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2188 {
2189 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2190 return;
2191
2192 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2193 }
2194
2195 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2196 {
2197 return cfs_bandwidth_used() && cfs_rq->throttled;
2198 }
2199
2200 /* check whether cfs_rq, or any parent, is throttled */
2201 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2202 {
2203 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2204 }
2205
2206 /*
2207 * Ensure that neither of the group entities corresponding to src_cpu or
2208 * dest_cpu are members of a throttled hierarchy when performing group
2209 * load-balance operations.
2210 */
2211 static inline int throttled_lb_pair(struct task_group *tg,
2212 int src_cpu, int dest_cpu)
2213 {
2214 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2215
2216 src_cfs_rq = tg->cfs_rq[src_cpu];
2217 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2218
2219 return throttled_hierarchy(src_cfs_rq) ||
2220 throttled_hierarchy(dest_cfs_rq);
2221 }
2222
2223 /* updated child weight may affect parent so we have to do this bottom up */
2224 static int tg_unthrottle_up(struct task_group *tg, void *data)
2225 {
2226 struct rq *rq = data;
2227 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2228
2229 cfs_rq->throttle_count--;
2230 #ifdef CONFIG_SMP
2231 if (!cfs_rq->throttle_count) {
2232 /* adjust cfs_rq_clock_task() */
2233 cfs_rq->throttled_clock_task_time += rq->clock_task -
2234 cfs_rq->throttled_clock_task;
2235 }
2236 #endif
2237
2238 return 0;
2239 }
2240
2241 static int tg_throttle_down(struct task_group *tg, void *data)
2242 {
2243 struct rq *rq = data;
2244 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2245
2246 /* group is entering throttled state, stop time */
2247 if (!cfs_rq->throttle_count)
2248 cfs_rq->throttled_clock_task = rq->clock_task;
2249 cfs_rq->throttle_count++;
2250
2251 return 0;
2252 }
2253
2254 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2255 {
2256 struct rq *rq = rq_of(cfs_rq);
2257 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2258 struct sched_entity *se;
2259 long task_delta, dequeue = 1;
2260
2261 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2262
2263 /* freeze hierarchy runnable averages while throttled */
2264 rcu_read_lock();
2265 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2266 rcu_read_unlock();
2267
2268 task_delta = cfs_rq->h_nr_running;
2269 for_each_sched_entity(se) {
2270 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2271 /* throttled entity or throttle-on-deactivate */
2272 if (!se->on_rq)
2273 break;
2274
2275 if (dequeue)
2276 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2277 qcfs_rq->h_nr_running -= task_delta;
2278
2279 if (qcfs_rq->load.weight)
2280 dequeue = 0;
2281 }
2282
2283 if (!se)
2284 rq->nr_running -= task_delta;
2285
2286 cfs_rq->throttled = 1;
2287 cfs_rq->throttled_clock = rq->clock;
2288 raw_spin_lock(&cfs_b->lock);
2289 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2290 raw_spin_unlock(&cfs_b->lock);
2291 }
2292
2293 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2294 {
2295 struct rq *rq = rq_of(cfs_rq);
2296 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2297 struct sched_entity *se;
2298 int enqueue = 1;
2299 long task_delta;
2300
2301 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2302
2303 cfs_rq->throttled = 0;
2304 raw_spin_lock(&cfs_b->lock);
2305 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2306 list_del_rcu(&cfs_rq->throttled_list);
2307 raw_spin_unlock(&cfs_b->lock);
2308
2309 update_rq_clock(rq);
2310 /* update hierarchical throttle state */
2311 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2312
2313 if (!cfs_rq->load.weight)
2314 return;
2315
2316 task_delta = cfs_rq->h_nr_running;
2317 for_each_sched_entity(se) {
2318 if (se->on_rq)
2319 enqueue = 0;
2320
2321 cfs_rq = cfs_rq_of(se);
2322 if (enqueue)
2323 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2324 cfs_rq->h_nr_running += task_delta;
2325
2326 if (cfs_rq_throttled(cfs_rq))
2327 break;
2328 }
2329
2330 if (!se)
2331 rq->nr_running += task_delta;
2332
2333 /* determine whether we need to wake up potentially idle cpu */
2334 if (rq->curr == rq->idle && rq->cfs.nr_running)
2335 resched_task(rq->curr);
2336 }
2337
2338 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2339 u64 remaining, u64 expires)
2340 {
2341 struct cfs_rq *cfs_rq;
2342 u64 runtime = remaining;
2343
2344 rcu_read_lock();
2345 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2346 throttled_list) {
2347 struct rq *rq = rq_of(cfs_rq);
2348
2349 raw_spin_lock(&rq->lock);
2350 if (!cfs_rq_throttled(cfs_rq))
2351 goto next;
2352
2353 runtime = -cfs_rq->runtime_remaining + 1;
2354 if (runtime > remaining)
2355 runtime = remaining;
2356 remaining -= runtime;
2357
2358 cfs_rq->runtime_remaining += runtime;
2359 cfs_rq->runtime_expires = expires;
2360
2361 /* we check whether we're throttled above */
2362 if (cfs_rq->runtime_remaining > 0)
2363 unthrottle_cfs_rq(cfs_rq);
2364
2365 next:
2366 raw_spin_unlock(&rq->lock);
2367
2368 if (!remaining)
2369 break;
2370 }
2371 rcu_read_unlock();
2372
2373 return remaining;
2374 }
2375
2376 /*
2377 * Responsible for refilling a task_group's bandwidth and unthrottling its
2378 * cfs_rqs as appropriate. If there has been no activity within the last
2379 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2380 * used to track this state.
2381 */
2382 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2383 {
2384 u64 runtime, runtime_expires;
2385 int idle = 1, throttled;
2386
2387 raw_spin_lock(&cfs_b->lock);
2388 /* no need to continue the timer with no bandwidth constraint */
2389 if (cfs_b->quota == RUNTIME_INF)
2390 goto out_unlock;
2391
2392 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2393 /* idle depends on !throttled (for the case of a large deficit) */
2394 idle = cfs_b->idle && !throttled;
2395 cfs_b->nr_periods += overrun;
2396
2397 /* if we're going inactive then everything else can be deferred */
2398 if (idle)
2399 goto out_unlock;
2400
2401 __refill_cfs_bandwidth_runtime(cfs_b);
2402
2403 if (!throttled) {
2404 /* mark as potentially idle for the upcoming period */
2405 cfs_b->idle = 1;
2406 goto out_unlock;
2407 }
2408
2409 /* account preceding periods in which throttling occurred */
2410 cfs_b->nr_throttled += overrun;
2411
2412 /*
2413 * There are throttled entities so we must first use the new bandwidth
2414 * to unthrottle them before making it generally available. This
2415 * ensures that all existing debts will be paid before a new cfs_rq is
2416 * allowed to run.
2417 */
2418 runtime = cfs_b->runtime;
2419 runtime_expires = cfs_b->runtime_expires;
2420 cfs_b->runtime = 0;
2421
2422 /*
2423 * This check is repeated as we are holding onto the new bandwidth
2424 * while we unthrottle. This can potentially race with an unthrottled
2425 * group trying to acquire new bandwidth from the global pool.
2426 */
2427 while (throttled && runtime > 0) {
2428 raw_spin_unlock(&cfs_b->lock);
2429 /* we can't nest cfs_b->lock while distributing bandwidth */
2430 runtime = distribute_cfs_runtime(cfs_b, runtime,
2431 runtime_expires);
2432 raw_spin_lock(&cfs_b->lock);
2433
2434 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2435 }
2436
2437 /* return (any) remaining runtime */
2438 cfs_b->runtime = runtime;
2439 /*
2440 * While we are ensured activity in the period following an
2441 * unthrottle, this also covers the case in which the new bandwidth is
2442 * insufficient to cover the existing bandwidth deficit. (Forcing the
2443 * timer to remain active while there are any throttled entities.)
2444 */
2445 cfs_b->idle = 0;
2446 out_unlock:
2447 if (idle)
2448 cfs_b->timer_active = 0;
2449 raw_spin_unlock(&cfs_b->lock);
2450
2451 return idle;
2452 }
2453
2454 /* a cfs_rq won't donate quota below this amount */
2455 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2456 /* minimum remaining period time to redistribute slack quota */
2457 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2458 /* how long we wait to gather additional slack before distributing */
2459 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2460
2461 /* are we near the end of the current quota period? */
2462 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2463 {
2464 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2465 u64 remaining;
2466
2467 /* if the call-back is running a quota refresh is already occurring */
2468 if (hrtimer_callback_running(refresh_timer))
2469 return 1;
2470
2471 /* is a quota refresh about to occur? */
2472 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2473 if (remaining < min_expire)
2474 return 1;
2475
2476 return 0;
2477 }
2478
2479 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2480 {
2481 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2482
2483 /* if there's a quota refresh soon don't bother with slack */
2484 if (runtime_refresh_within(cfs_b, min_left))
2485 return;
2486
2487 start_bandwidth_timer(&cfs_b->slack_timer,
2488 ns_to_ktime(cfs_bandwidth_slack_period));
2489 }
2490
2491 /* we know any runtime found here is valid as update_curr() precedes return */
2492 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2493 {
2494 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2495 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2496
2497 if (slack_runtime <= 0)
2498 return;
2499
2500 raw_spin_lock(&cfs_b->lock);
2501 if (cfs_b->quota != RUNTIME_INF &&
2502 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2503 cfs_b->runtime += slack_runtime;
2504
2505 /* we are under rq->lock, defer unthrottling using a timer */
2506 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2507 !list_empty(&cfs_b->throttled_cfs_rq))
2508 start_cfs_slack_bandwidth(cfs_b);
2509 }
2510 raw_spin_unlock(&cfs_b->lock);
2511
2512 /* even if it's not valid for return we don't want to try again */
2513 cfs_rq->runtime_remaining -= slack_runtime;
2514 }
2515
2516 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2517 {
2518 if (!cfs_bandwidth_used())
2519 return;
2520
2521 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2522 return;
2523
2524 __return_cfs_rq_runtime(cfs_rq);
2525 }
2526
2527 /*
2528 * This is done with a timer (instead of inline with bandwidth return) since
2529 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2530 */
2531 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2532 {
2533 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2534 u64 expires;
2535
2536 /* confirm we're still not at a refresh boundary */
2537 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2538 return;
2539
2540 raw_spin_lock(&cfs_b->lock);
2541 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2542 runtime = cfs_b->runtime;
2543 cfs_b->runtime = 0;
2544 }
2545 expires = cfs_b->runtime_expires;
2546 raw_spin_unlock(&cfs_b->lock);
2547
2548 if (!runtime)
2549 return;
2550
2551 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2552
2553 raw_spin_lock(&cfs_b->lock);
2554 if (expires == cfs_b->runtime_expires)
2555 cfs_b->runtime = runtime;
2556 raw_spin_unlock(&cfs_b->lock);
2557 }
2558
2559 /*
2560 * When a group wakes up we want to make sure that its quota is not already
2561 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2562 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2563 */
2564 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2565 {
2566 if (!cfs_bandwidth_used())
2567 return;
2568
2569 /* an active group must be handled by the update_curr()->put() path */
2570 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2571 return;
2572
2573 /* ensure the group is not already throttled */
2574 if (cfs_rq_throttled(cfs_rq))
2575 return;
2576
2577 /* update runtime allocation */
2578 account_cfs_rq_runtime(cfs_rq, 0);
2579 if (cfs_rq->runtime_remaining <= 0)
2580 throttle_cfs_rq(cfs_rq);
2581 }
2582
2583 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2584 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2585 {
2586 if (!cfs_bandwidth_used())
2587 return;
2588
2589 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2590 return;
2591
2592 /*
2593 * it's possible for a throttled entity to be forced into a running
2594 * state (e.g. set_curr_task), in this case we're finished.
2595 */
2596 if (cfs_rq_throttled(cfs_rq))
2597 return;
2598
2599 throttle_cfs_rq(cfs_rq);
2600 }
2601
2602 static inline u64 default_cfs_period(void);
2603 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2604 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2605
2606 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2607 {
2608 struct cfs_bandwidth *cfs_b =
2609 container_of(timer, struct cfs_bandwidth, slack_timer);
2610 do_sched_cfs_slack_timer(cfs_b);
2611
2612 return HRTIMER_NORESTART;
2613 }
2614
2615 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2616 {
2617 struct cfs_bandwidth *cfs_b =
2618 container_of(timer, struct cfs_bandwidth, period_timer);
2619 ktime_t now;
2620 int overrun;
2621 int idle = 0;
2622
2623 for (;;) {
2624 now = hrtimer_cb_get_time(timer);
2625 overrun = hrtimer_forward(timer, now, cfs_b->period);
2626
2627 if (!overrun)
2628 break;
2629
2630 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2631 }
2632
2633 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2634 }
2635
2636 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2637 {
2638 raw_spin_lock_init(&cfs_b->lock);
2639 cfs_b->runtime = 0;
2640 cfs_b->quota = RUNTIME_INF;
2641 cfs_b->period = ns_to_ktime(default_cfs_period());
2642
2643 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2644 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2645 cfs_b->period_timer.function = sched_cfs_period_timer;
2646 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2647 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2648 }
2649
2650 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2651 {
2652 cfs_rq->runtime_enabled = 0;
2653 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2654 }
2655
2656 /* requires cfs_b->lock, may release to reprogram timer */
2657 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2658 {
2659 /*
2660 * The timer may be active because we're trying to set a new bandwidth
2661 * period or because we're racing with the tear-down path
2662 * (timer_active==0 becomes visible before the hrtimer call-back
2663 * terminates). In either case we ensure that it's re-programmed
2664 */
2665 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2666 raw_spin_unlock(&cfs_b->lock);
2667 /* ensure cfs_b->lock is available while we wait */
2668 hrtimer_cancel(&cfs_b->period_timer);
2669
2670 raw_spin_lock(&cfs_b->lock);
2671 /* if someone else restarted the timer then we're done */
2672 if (cfs_b->timer_active)
2673 return;
2674 }
2675
2676 cfs_b->timer_active = 1;
2677 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2678 }
2679
2680 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2681 {
2682 hrtimer_cancel(&cfs_b->period_timer);
2683 hrtimer_cancel(&cfs_b->slack_timer);
2684 }
2685
2686 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2687 {
2688 struct cfs_rq *cfs_rq;
2689
2690 for_each_leaf_cfs_rq(rq, cfs_rq) {
2691 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2692
2693 if (!cfs_rq->runtime_enabled)
2694 continue;
2695
2696 /*
2697 * clock_task is not advancing so we just need to make sure
2698 * there's some valid quota amount
2699 */
2700 cfs_rq->runtime_remaining = cfs_b->quota;
2701 if (cfs_rq_throttled(cfs_rq))
2702 unthrottle_cfs_rq(cfs_rq);
2703 }
2704 }
2705
2706 #else /* CONFIG_CFS_BANDWIDTH */
2707 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2708 {
2709 return rq_of(cfs_rq)->clock_task;
2710 }
2711
2712 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2713 unsigned long delta_exec) {}
2714 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2715 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2716 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2717
2718 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2719 {
2720 return 0;
2721 }
2722
2723 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2724 {
2725 return 0;
2726 }
2727
2728 static inline int throttled_lb_pair(struct task_group *tg,
2729 int src_cpu, int dest_cpu)
2730 {
2731 return 0;
2732 }
2733
2734 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2735
2736 #ifdef CONFIG_FAIR_GROUP_SCHED
2737 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2738 #endif
2739
2740 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2741 {
2742 return NULL;
2743 }
2744 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2745 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2746
2747 #endif /* CONFIG_CFS_BANDWIDTH */
2748
2749 /**************************************************
2750 * CFS operations on tasks:
2751 */
2752
2753 #ifdef CONFIG_SCHED_HRTICK
2754 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2755 {
2756 struct sched_entity *se = &p->se;
2757 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2758
2759 WARN_ON(task_rq(p) != rq);
2760
2761 if (cfs_rq->nr_running > 1) {
2762 u64 slice = sched_slice(cfs_rq, se);
2763 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2764 s64 delta = slice - ran;
2765
2766 if (delta < 0) {
2767 if (rq->curr == p)
2768 resched_task(p);
2769 return;
2770 }
2771
2772 /*
2773 * Don't schedule slices shorter than 10000ns, that just
2774 * doesn't make sense. Rely on vruntime for fairness.
2775 */
2776 if (rq->curr != p)
2777 delta = max_t(s64, 10000LL, delta);
2778
2779 hrtick_start(rq, delta);
2780 }
2781 }
2782
2783 /*
2784 * called from enqueue/dequeue and updates the hrtick when the
2785 * current task is from our class and nr_running is low enough
2786 * to matter.
2787 */
2788 static void hrtick_update(struct rq *rq)
2789 {
2790 struct task_struct *curr = rq->curr;
2791
2792 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2793 return;
2794
2795 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2796 hrtick_start_fair(rq, curr);
2797 }
2798 #else /* !CONFIG_SCHED_HRTICK */
2799 static inline void
2800 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2801 {
2802 }
2803
2804 static inline void hrtick_update(struct rq *rq)
2805 {
2806 }
2807 #endif
2808
2809 /*
2810 * The enqueue_task method is called before nr_running is
2811 * increased. Here we update the fair scheduling stats and
2812 * then put the task into the rbtree:
2813 */
2814 static void
2815 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2816 {
2817 struct cfs_rq *cfs_rq;
2818 struct sched_entity *se = &p->se;
2819
2820 for_each_sched_entity(se) {
2821 if (se->on_rq)
2822 break;
2823 cfs_rq = cfs_rq_of(se);
2824 enqueue_entity(cfs_rq, se, flags);
2825
2826 /*
2827 * end evaluation on encountering a throttled cfs_rq
2828 *
2829 * note: in the case of encountering a throttled cfs_rq we will
2830 * post the final h_nr_running increment below.
2831 */
2832 if (cfs_rq_throttled(cfs_rq))
2833 break;
2834 cfs_rq->h_nr_running++;
2835
2836 flags = ENQUEUE_WAKEUP;
2837 }
2838
2839 for_each_sched_entity(se) {
2840 cfs_rq = cfs_rq_of(se);
2841 cfs_rq->h_nr_running++;
2842
2843 if (cfs_rq_throttled(cfs_rq))
2844 break;
2845
2846 update_cfs_shares(cfs_rq);
2847 update_entity_load_avg(se, 1);
2848 }
2849
2850 if (!se) {
2851 update_rq_runnable_avg(rq, rq->nr_running);
2852 inc_nr_running(rq);
2853 }
2854 hrtick_update(rq);
2855 }
2856
2857 static void set_next_buddy(struct sched_entity *se);
2858
2859 /*
2860 * The dequeue_task method is called before nr_running is
2861 * decreased. We remove the task from the rbtree and
2862 * update the fair scheduling stats:
2863 */
2864 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2865 {
2866 struct cfs_rq *cfs_rq;
2867 struct sched_entity *se = &p->se;
2868 int task_sleep = flags & DEQUEUE_SLEEP;
2869
2870 for_each_sched_entity(se) {
2871 cfs_rq = cfs_rq_of(se);
2872 dequeue_entity(cfs_rq, se, flags);
2873
2874 /*
2875 * end evaluation on encountering a throttled cfs_rq
2876 *
2877 * note: in the case of encountering a throttled cfs_rq we will
2878 * post the final h_nr_running decrement below.
2879 */
2880 if (cfs_rq_throttled(cfs_rq))
2881 break;
2882 cfs_rq->h_nr_running--;
2883
2884 /* Don't dequeue parent if it has other entities besides us */
2885 if (cfs_rq->load.weight) {
2886 /*
2887 * Bias pick_next to pick a task from this cfs_rq, as
2888 * p is sleeping when it is within its sched_slice.
2889 */
2890 if (task_sleep && parent_entity(se))
2891 set_next_buddy(parent_entity(se));
2892
2893 /* avoid re-evaluating load for this entity */
2894 se = parent_entity(se);
2895 break;
2896 }
2897 flags |= DEQUEUE_SLEEP;
2898 }
2899
2900 for_each_sched_entity(se) {
2901 cfs_rq = cfs_rq_of(se);
2902 cfs_rq->h_nr_running--;
2903
2904 if (cfs_rq_throttled(cfs_rq))
2905 break;
2906
2907 update_cfs_shares(cfs_rq);
2908 update_entity_load_avg(se, 1);
2909 }
2910
2911 if (!se) {
2912 dec_nr_running(rq);
2913 update_rq_runnable_avg(rq, 1);
2914 }
2915 hrtick_update(rq);
2916 }
2917
2918 #ifdef CONFIG_SMP
2919 /* Used instead of source_load when we know the type == 0 */
2920 static unsigned long weighted_cpuload(const int cpu)
2921 {
2922 return cpu_rq(cpu)->load.weight;
2923 }
2924
2925 /*
2926 * Return a low guess at the load of a migration-source cpu weighted
2927 * according to the scheduling class and "nice" value.
2928 *
2929 * We want to under-estimate the load of migration sources, to
2930 * balance conservatively.
2931 */
2932 static unsigned long source_load(int cpu, int type)
2933 {
2934 struct rq *rq = cpu_rq(cpu);
2935 unsigned long total = weighted_cpuload(cpu);
2936
2937 if (type == 0 || !sched_feat(LB_BIAS))
2938 return total;
2939
2940 return min(rq->cpu_load[type-1], total);
2941 }
2942
2943 /*
2944 * Return a high guess at the load of a migration-target cpu weighted
2945 * according to the scheduling class and "nice" value.
2946 */
2947 static unsigned long target_load(int cpu, int type)
2948 {
2949 struct rq *rq = cpu_rq(cpu);
2950 unsigned long total = weighted_cpuload(cpu);
2951
2952 if (type == 0 || !sched_feat(LB_BIAS))
2953 return total;
2954
2955 return max(rq->cpu_load[type-1], total);
2956 }
2957
2958 static unsigned long power_of(int cpu)
2959 {
2960 return cpu_rq(cpu)->cpu_power;
2961 }
2962
2963 static unsigned long cpu_avg_load_per_task(int cpu)
2964 {
2965 struct rq *rq = cpu_rq(cpu);
2966 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2967
2968 if (nr_running)
2969 return rq->load.weight / nr_running;
2970
2971 return 0;
2972 }
2973
2974
2975 static void task_waking_fair(struct task_struct *p)
2976 {
2977 struct sched_entity *se = &p->se;
2978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2979 u64 min_vruntime;
2980
2981 #ifndef CONFIG_64BIT
2982 u64 min_vruntime_copy;
2983
2984 do {
2985 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2986 smp_rmb();
2987 min_vruntime = cfs_rq->min_vruntime;
2988 } while (min_vruntime != min_vruntime_copy);
2989 #else
2990 min_vruntime = cfs_rq->min_vruntime;
2991 #endif
2992
2993 se->vruntime -= min_vruntime;
2994 }
2995
2996 #ifdef CONFIG_FAIR_GROUP_SCHED
2997 /*
2998 * effective_load() calculates the load change as seen from the root_task_group
2999 *
3000 * Adding load to a group doesn't make a group heavier, but can cause movement
3001 * of group shares between cpus. Assuming the shares were perfectly aligned one
3002 * can calculate the shift in shares.
3003 *
3004 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3005 * on this @cpu and results in a total addition (subtraction) of @wg to the
3006 * total group weight.
3007 *
3008 * Given a runqueue weight distribution (rw_i) we can compute a shares
3009 * distribution (s_i) using:
3010 *
3011 * s_i = rw_i / \Sum rw_j (1)
3012 *
3013 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3014 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3015 * shares distribution (s_i):
3016 *
3017 * rw_i = { 2, 4, 1, 0 }
3018 * s_i = { 2/7, 4/7, 1/7, 0 }
3019 *
3020 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3021 * task used to run on and the CPU the waker is running on), we need to
3022 * compute the effect of waking a task on either CPU and, in case of a sync
3023 * wakeup, compute the effect of the current task going to sleep.
3024 *
3025 * So for a change of @wl to the local @cpu with an overall group weight change
3026 * of @wl we can compute the new shares distribution (s'_i) using:
3027 *
3028 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3029 *
3030 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3031 * differences in waking a task to CPU 0. The additional task changes the
3032 * weight and shares distributions like:
3033 *
3034 * rw'_i = { 3, 4, 1, 0 }
3035 * s'_i = { 3/8, 4/8, 1/8, 0 }
3036 *
3037 * We can then compute the difference in effective weight by using:
3038 *
3039 * dw_i = S * (s'_i - s_i) (3)
3040 *
3041 * Where 'S' is the group weight as seen by its parent.
3042 *
3043 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3044 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3045 * 4/7) times the weight of the group.
3046 */
3047 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3048 {
3049 struct sched_entity *se = tg->se[cpu];
3050
3051 if (!tg->parent) /* the trivial, non-cgroup case */
3052 return wl;
3053
3054 for_each_sched_entity(se) {
3055 long w, W;
3056
3057 tg = se->my_q->tg;
3058
3059 /*
3060 * W = @wg + \Sum rw_j
3061 */
3062 W = wg + calc_tg_weight(tg, se->my_q);
3063
3064 /*
3065 * w = rw_i + @wl
3066 */
3067 w = se->my_q->load.weight + wl;
3068
3069 /*
3070 * wl = S * s'_i; see (2)
3071 */
3072 if (W > 0 && w < W)
3073 wl = (w * tg->shares) / W;
3074 else
3075 wl = tg->shares;
3076
3077 /*
3078 * Per the above, wl is the new se->load.weight value; since
3079 * those are clipped to [MIN_SHARES, ...) do so now. See
3080 * calc_cfs_shares().
3081 */
3082 if (wl < MIN_SHARES)
3083 wl = MIN_SHARES;
3084
3085 /*
3086 * wl = dw_i = S * (s'_i - s_i); see (3)
3087 */
3088 wl -= se->load.weight;
3089
3090 /*
3091 * Recursively apply this logic to all parent groups to compute
3092 * the final effective load change on the root group. Since
3093 * only the @tg group gets extra weight, all parent groups can
3094 * only redistribute existing shares. @wl is the shift in shares
3095 * resulting from this level per the above.
3096 */
3097 wg = 0;
3098 }
3099
3100 return wl;
3101 }
3102 #else
3103
3104 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3105 unsigned long wl, unsigned long wg)
3106 {
3107 return wl;
3108 }
3109
3110 #endif
3111
3112 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3113 {
3114 s64 this_load, load;
3115 int idx, this_cpu, prev_cpu;
3116 unsigned long tl_per_task;
3117 struct task_group *tg;
3118 unsigned long weight;
3119 int balanced;
3120
3121 idx = sd->wake_idx;
3122 this_cpu = smp_processor_id();
3123 prev_cpu = task_cpu(p);
3124 load = source_load(prev_cpu, idx);
3125 this_load = target_load(this_cpu, idx);
3126
3127 /*
3128 * If sync wakeup then subtract the (maximum possible)
3129 * effect of the currently running task from the load
3130 * of the current CPU:
3131 */
3132 if (sync) {
3133 tg = task_group(current);
3134 weight = current->se.load.weight;
3135
3136 this_load += effective_load(tg, this_cpu, -weight, -weight);
3137 load += effective_load(tg, prev_cpu, 0, -weight);
3138 }
3139
3140 tg = task_group(p);
3141 weight = p->se.load.weight;
3142
3143 /*
3144 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3145 * due to the sync cause above having dropped this_load to 0, we'll
3146 * always have an imbalance, but there's really nothing you can do
3147 * about that, so that's good too.
3148 *
3149 * Otherwise check if either cpus are near enough in load to allow this
3150 * task to be woken on this_cpu.
3151 */
3152 if (this_load > 0) {
3153 s64 this_eff_load, prev_eff_load;
3154
3155 this_eff_load = 100;
3156 this_eff_load *= power_of(prev_cpu);
3157 this_eff_load *= this_load +
3158 effective_load(tg, this_cpu, weight, weight);
3159
3160 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3161 prev_eff_load *= power_of(this_cpu);
3162 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3163
3164 balanced = this_eff_load <= prev_eff_load;
3165 } else
3166 balanced = true;
3167
3168 /*
3169 * If the currently running task will sleep within
3170 * a reasonable amount of time then attract this newly
3171 * woken task:
3172 */
3173 if (sync && balanced)
3174 return 1;
3175
3176 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3177 tl_per_task = cpu_avg_load_per_task(this_cpu);
3178
3179 if (balanced ||
3180 (this_load <= load &&
3181 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3182 /*
3183 * This domain has SD_WAKE_AFFINE and
3184 * p is cache cold in this domain, and
3185 * there is no bad imbalance.
3186 */
3187 schedstat_inc(sd, ttwu_move_affine);
3188 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3189
3190 return 1;
3191 }
3192 return 0;
3193 }
3194
3195 /*
3196 * find_idlest_group finds and returns the least busy CPU group within the
3197 * domain.
3198 */
3199 static struct sched_group *
3200 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3201 int this_cpu, int load_idx)
3202 {
3203 struct sched_group *idlest = NULL, *group = sd->groups;
3204 unsigned long min_load = ULONG_MAX, this_load = 0;
3205 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3206
3207 do {
3208 unsigned long load, avg_load;
3209 int local_group;
3210 int i;
3211
3212 /* Skip over this group if it has no CPUs allowed */
3213 if (!cpumask_intersects(sched_group_cpus(group),
3214 tsk_cpus_allowed(p)))
3215 continue;
3216
3217 local_group = cpumask_test_cpu(this_cpu,
3218 sched_group_cpus(group));
3219
3220 /* Tally up the load of all CPUs in the group */
3221 avg_load = 0;
3222
3223 for_each_cpu(i, sched_group_cpus(group)) {
3224 /* Bias balancing toward cpus of our domain */
3225 if (local_group)
3226 load = source_load(i, load_idx);
3227 else
3228 load = target_load(i, load_idx);
3229
3230 avg_load += load;
3231 }
3232
3233 /* Adjust by relative CPU power of the group */
3234 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3235
3236 if (local_group) {
3237 this_load = avg_load;
3238 } else if (avg_load < min_load) {
3239 min_load = avg_load;
3240 idlest = group;
3241 }
3242 } while (group = group->next, group != sd->groups);
3243
3244 if (!idlest || 100*this_load < imbalance*min_load)
3245 return NULL;
3246 return idlest;
3247 }
3248
3249 /*
3250 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3251 */
3252 static int
3253 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3254 {
3255 unsigned long load, min_load = ULONG_MAX;
3256 int idlest = -1;
3257 int i;
3258
3259 /* Traverse only the allowed CPUs */
3260 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3261 load = weighted_cpuload(i);
3262
3263 if (load < min_load || (load == min_load && i == this_cpu)) {
3264 min_load = load;
3265 idlest = i;
3266 }
3267 }
3268
3269 return idlest;
3270 }
3271
3272 /*
3273 * Try and locate an idle CPU in the sched_domain.
3274 */
3275 static int select_idle_sibling(struct task_struct *p, int target)
3276 {
3277 struct sched_domain *sd;
3278 struct sched_group *sg;
3279 int i = task_cpu(p);
3280
3281 if (idle_cpu(target))
3282 return target;
3283
3284 /*
3285 * If the prevous cpu is cache affine and idle, don't be stupid.
3286 */
3287 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3288 return i;
3289
3290 /*
3291 * Otherwise, iterate the domains and find an elegible idle cpu.
3292 */
3293 sd = rcu_dereference(per_cpu(sd_llc, target));
3294 for_each_lower_domain(sd) {
3295 sg = sd->groups;
3296 do {
3297 if (!cpumask_intersects(sched_group_cpus(sg),
3298 tsk_cpus_allowed(p)))
3299 goto next;
3300
3301 for_each_cpu(i, sched_group_cpus(sg)) {
3302 if (i == target || !idle_cpu(i))
3303 goto next;
3304 }
3305
3306 target = cpumask_first_and(sched_group_cpus(sg),
3307 tsk_cpus_allowed(p));
3308 goto done;
3309 next:
3310 sg = sg->next;
3311 } while (sg != sd->groups);
3312 }
3313 done:
3314 return target;
3315 }
3316
3317 /*
3318 * sched_balance_self: balance the current task (running on cpu) in domains
3319 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3320 * SD_BALANCE_EXEC.
3321 *
3322 * Balance, ie. select the least loaded group.
3323 *
3324 * Returns the target CPU number, or the same CPU if no balancing is needed.
3325 *
3326 * preempt must be disabled.
3327 */
3328 static int
3329 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3330 {
3331 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3332 int cpu = smp_processor_id();
3333 int prev_cpu = task_cpu(p);
3334 int new_cpu = cpu;
3335 int want_affine = 0;
3336 int sync = wake_flags & WF_SYNC;
3337
3338 if (p->nr_cpus_allowed == 1)
3339 return prev_cpu;
3340
3341 if (sd_flag & SD_BALANCE_WAKE) {
3342 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3343 want_affine = 1;
3344 new_cpu = prev_cpu;
3345 }
3346
3347 rcu_read_lock();
3348 for_each_domain(cpu, tmp) {
3349 if (!(tmp->flags & SD_LOAD_BALANCE))
3350 continue;
3351
3352 /*
3353 * If both cpu and prev_cpu are part of this domain,
3354 * cpu is a valid SD_WAKE_AFFINE target.
3355 */
3356 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3357 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3358 affine_sd = tmp;
3359 break;
3360 }
3361
3362 if (tmp->flags & sd_flag)
3363 sd = tmp;
3364 }
3365
3366 if (affine_sd) {
3367 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3368 prev_cpu = cpu;
3369
3370 new_cpu = select_idle_sibling(p, prev_cpu);
3371 goto unlock;
3372 }
3373
3374 while (sd) {
3375 int load_idx = sd->forkexec_idx;
3376 struct sched_group *group;
3377 int weight;
3378
3379 if (!(sd->flags & sd_flag)) {
3380 sd = sd->child;
3381 continue;
3382 }
3383
3384 if (sd_flag & SD_BALANCE_WAKE)
3385 load_idx = sd->wake_idx;
3386
3387 group = find_idlest_group(sd, p, cpu, load_idx);
3388 if (!group) {
3389 sd = sd->child;
3390 continue;
3391 }
3392
3393 new_cpu = find_idlest_cpu(group, p, cpu);
3394 if (new_cpu == -1 || new_cpu == cpu) {
3395 /* Now try balancing at a lower domain level of cpu */
3396 sd = sd->child;
3397 continue;
3398 }
3399
3400 /* Now try balancing at a lower domain level of new_cpu */
3401 cpu = new_cpu;
3402 weight = sd->span_weight;
3403 sd = NULL;
3404 for_each_domain(cpu, tmp) {
3405 if (weight <= tmp->span_weight)
3406 break;
3407 if (tmp->flags & sd_flag)
3408 sd = tmp;
3409 }
3410 /* while loop will break here if sd == NULL */
3411 }
3412 unlock:
3413 rcu_read_unlock();
3414
3415 return new_cpu;
3416 }
3417
3418 /*
3419 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3420 * removed when useful for applications beyond shares distribution (e.g.
3421 * load-balance).
3422 */
3423 #ifdef CONFIG_FAIR_GROUP_SCHED
3424 /*
3425 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3426 * cfs_rq_of(p) references at time of call are still valid and identify the
3427 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3428 * other assumptions, including the state of rq->lock, should be made.
3429 */
3430 static void
3431 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3432 {
3433 struct sched_entity *se = &p->se;
3434 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3435
3436 /*
3437 * Load tracking: accumulate removed load so that it can be processed
3438 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3439 * to blocked load iff they have a positive decay-count. It can never
3440 * be negative here since on-rq tasks have decay-count == 0.
3441 */
3442 if (se->avg.decay_count) {
3443 se->avg.decay_count = -__synchronize_entity_decay(se);
3444 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3445 }
3446 }
3447 #endif
3448 #endif /* CONFIG_SMP */
3449
3450 static unsigned long
3451 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3452 {
3453 unsigned long gran = sysctl_sched_wakeup_granularity;
3454
3455 /*
3456 * Since its curr running now, convert the gran from real-time
3457 * to virtual-time in his units.
3458 *
3459 * By using 'se' instead of 'curr' we penalize light tasks, so
3460 * they get preempted easier. That is, if 'se' < 'curr' then
3461 * the resulting gran will be larger, therefore penalizing the
3462 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3463 * be smaller, again penalizing the lighter task.
3464 *
3465 * This is especially important for buddies when the leftmost
3466 * task is higher priority than the buddy.
3467 */
3468 return calc_delta_fair(gran, se);
3469 }
3470
3471 /*
3472 * Should 'se' preempt 'curr'.
3473 *
3474 * |s1
3475 * |s2
3476 * |s3
3477 * g
3478 * |<--->|c
3479 *
3480 * w(c, s1) = -1
3481 * w(c, s2) = 0
3482 * w(c, s3) = 1
3483 *
3484 */
3485 static int
3486 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3487 {
3488 s64 gran, vdiff = curr->vruntime - se->vruntime;
3489
3490 if (vdiff <= 0)
3491 return -1;
3492
3493 gran = wakeup_gran(curr, se);
3494 if (vdiff > gran)
3495 return 1;
3496
3497 return 0;
3498 }
3499
3500 static void set_last_buddy(struct sched_entity *se)
3501 {
3502 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3503 return;
3504
3505 for_each_sched_entity(se)
3506 cfs_rq_of(se)->last = se;
3507 }
3508
3509 static void set_next_buddy(struct sched_entity *se)
3510 {
3511 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3512 return;
3513
3514 for_each_sched_entity(se)
3515 cfs_rq_of(se)->next = se;
3516 }
3517
3518 static void set_skip_buddy(struct sched_entity *se)
3519 {
3520 for_each_sched_entity(se)
3521 cfs_rq_of(se)->skip = se;
3522 }
3523
3524 /*
3525 * Preempt the current task with a newly woken task if needed:
3526 */
3527 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3528 {
3529 struct task_struct *curr = rq->curr;
3530 struct sched_entity *se = &curr->se, *pse = &p->se;
3531 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3532 int scale = cfs_rq->nr_running >= sched_nr_latency;
3533 int next_buddy_marked = 0;
3534
3535 if (unlikely(se == pse))
3536 return;
3537
3538 /*
3539 * This is possible from callers such as move_task(), in which we
3540 * unconditionally check_prempt_curr() after an enqueue (which may have
3541 * lead to a throttle). This both saves work and prevents false
3542 * next-buddy nomination below.
3543 */
3544 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3545 return;
3546
3547 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3548 set_next_buddy(pse);
3549 next_buddy_marked = 1;
3550 }
3551
3552 /*
3553 * We can come here with TIF_NEED_RESCHED already set from new task
3554 * wake up path.
3555 *
3556 * Note: this also catches the edge-case of curr being in a throttled
3557 * group (e.g. via set_curr_task), since update_curr() (in the
3558 * enqueue of curr) will have resulted in resched being set. This
3559 * prevents us from potentially nominating it as a false LAST_BUDDY
3560 * below.
3561 */
3562 if (test_tsk_need_resched(curr))
3563 return;
3564
3565 /* Idle tasks are by definition preempted by non-idle tasks. */
3566 if (unlikely(curr->policy == SCHED_IDLE) &&
3567 likely(p->policy != SCHED_IDLE))
3568 goto preempt;
3569
3570 /*
3571 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3572 * is driven by the tick):
3573 */
3574 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3575 return;
3576
3577 find_matching_se(&se, &pse);
3578 update_curr(cfs_rq_of(se));
3579 BUG_ON(!pse);
3580 if (wakeup_preempt_entity(se, pse) == 1) {
3581 /*
3582 * Bias pick_next to pick the sched entity that is
3583 * triggering this preemption.
3584 */
3585 if (!next_buddy_marked)
3586 set_next_buddy(pse);
3587 goto preempt;
3588 }
3589
3590 return;
3591
3592 preempt:
3593 resched_task(curr);
3594 /*
3595 * Only set the backward buddy when the current task is still
3596 * on the rq. This can happen when a wakeup gets interleaved
3597 * with schedule on the ->pre_schedule() or idle_balance()
3598 * point, either of which can * drop the rq lock.
3599 *
3600 * Also, during early boot the idle thread is in the fair class,
3601 * for obvious reasons its a bad idea to schedule back to it.
3602 */
3603 if (unlikely(!se->on_rq || curr == rq->idle))
3604 return;
3605
3606 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3607 set_last_buddy(se);
3608 }
3609
3610 static struct task_struct *pick_next_task_fair(struct rq *rq)
3611 {
3612 struct task_struct *p;
3613 struct cfs_rq *cfs_rq = &rq->cfs;
3614 struct sched_entity *se;
3615
3616 if (!cfs_rq->nr_running)
3617 return NULL;
3618
3619 do {
3620 se = pick_next_entity(cfs_rq);
3621 set_next_entity(cfs_rq, se);
3622 cfs_rq = group_cfs_rq(se);
3623 } while (cfs_rq);
3624
3625 p = task_of(se);
3626 if (hrtick_enabled(rq))
3627 hrtick_start_fair(rq, p);
3628
3629 return p;
3630 }
3631
3632 /*
3633 * Account for a descheduled task:
3634 */
3635 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3636 {
3637 struct sched_entity *se = &prev->se;
3638 struct cfs_rq *cfs_rq;
3639
3640 for_each_sched_entity(se) {
3641 cfs_rq = cfs_rq_of(se);
3642 put_prev_entity(cfs_rq, se);
3643 }
3644 }
3645
3646 /*
3647 * sched_yield() is very simple
3648 *
3649 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3650 */
3651 static void yield_task_fair(struct rq *rq)
3652 {
3653 struct task_struct *curr = rq->curr;
3654 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3655 struct sched_entity *se = &curr->se;
3656
3657 /*
3658 * Are we the only task in the tree?
3659 */
3660 if (unlikely(rq->nr_running == 1))
3661 return;
3662
3663 clear_buddies(cfs_rq, se);
3664
3665 if (curr->policy != SCHED_BATCH) {
3666 update_rq_clock(rq);
3667 /*
3668 * Update run-time statistics of the 'current'.
3669 */
3670 update_curr(cfs_rq);
3671 /*
3672 * Tell update_rq_clock() that we've just updated,
3673 * so we don't do microscopic update in schedule()
3674 * and double the fastpath cost.
3675 */
3676 rq->skip_clock_update = 1;
3677 }
3678
3679 set_skip_buddy(se);
3680 }
3681
3682 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3683 {
3684 struct sched_entity *se = &p->se;
3685
3686 /* throttled hierarchies are not runnable */
3687 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3688 return false;
3689
3690 /* Tell the scheduler that we'd really like pse to run next. */
3691 set_next_buddy(se);
3692
3693 yield_task_fair(rq);
3694
3695 return true;
3696 }
3697
3698 #ifdef CONFIG_SMP
3699 /**************************************************
3700 * Fair scheduling class load-balancing methods.
3701 *
3702 * BASICS
3703 *
3704 * The purpose of load-balancing is to achieve the same basic fairness the
3705 * per-cpu scheduler provides, namely provide a proportional amount of compute
3706 * time to each task. This is expressed in the following equation:
3707 *
3708 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3709 *
3710 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3711 * W_i,0 is defined as:
3712 *
3713 * W_i,0 = \Sum_j w_i,j (2)
3714 *
3715 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3716 * is derived from the nice value as per prio_to_weight[].
3717 *
3718 * The weight average is an exponential decay average of the instantaneous
3719 * weight:
3720 *
3721 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3722 *
3723 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3724 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3725 * can also include other factors [XXX].
3726 *
3727 * To achieve this balance we define a measure of imbalance which follows
3728 * directly from (1):
3729 *
3730 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3731 *
3732 * We them move tasks around to minimize the imbalance. In the continuous
3733 * function space it is obvious this converges, in the discrete case we get
3734 * a few fun cases generally called infeasible weight scenarios.
3735 *
3736 * [XXX expand on:
3737 * - infeasible weights;
3738 * - local vs global optima in the discrete case. ]
3739 *
3740 *
3741 * SCHED DOMAINS
3742 *
3743 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3744 * for all i,j solution, we create a tree of cpus that follows the hardware
3745 * topology where each level pairs two lower groups (or better). This results
3746 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3747 * tree to only the first of the previous level and we decrease the frequency
3748 * of load-balance at each level inv. proportional to the number of cpus in
3749 * the groups.
3750 *
3751 * This yields:
3752 *
3753 * log_2 n 1 n
3754 * \Sum { --- * --- * 2^i } = O(n) (5)
3755 * i = 0 2^i 2^i
3756 * `- size of each group
3757 * | | `- number of cpus doing load-balance
3758 * | `- freq
3759 * `- sum over all levels
3760 *
3761 * Coupled with a limit on how many tasks we can migrate every balance pass,
3762 * this makes (5) the runtime complexity of the balancer.
3763 *
3764 * An important property here is that each CPU is still (indirectly) connected
3765 * to every other cpu in at most O(log n) steps:
3766 *
3767 * The adjacency matrix of the resulting graph is given by:
3768 *
3769 * log_2 n
3770 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3771 * k = 0
3772 *
3773 * And you'll find that:
3774 *
3775 * A^(log_2 n)_i,j != 0 for all i,j (7)
3776 *
3777 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3778 * The task movement gives a factor of O(m), giving a convergence complexity
3779 * of:
3780 *
3781 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3782 *
3783 *
3784 * WORK CONSERVING
3785 *
3786 * In order to avoid CPUs going idle while there's still work to do, new idle
3787 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3788 * tree itself instead of relying on other CPUs to bring it work.
3789 *
3790 * This adds some complexity to both (5) and (8) but it reduces the total idle
3791 * time.
3792 *
3793 * [XXX more?]
3794 *
3795 *
3796 * CGROUPS
3797 *
3798 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3799 *
3800 * s_k,i
3801 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3802 * S_k
3803 *
3804 * Where
3805 *
3806 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3807 *
3808 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3809 *
3810 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3811 * property.
3812 *
3813 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3814 * rewrite all of this once again.]
3815 */
3816
3817 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3818
3819 #define LBF_ALL_PINNED 0x01
3820 #define LBF_NEED_BREAK 0x02
3821 #define LBF_SOME_PINNED 0x04
3822
3823 struct lb_env {
3824 struct sched_domain *sd;
3825
3826 struct rq *src_rq;
3827 int src_cpu;
3828
3829 int dst_cpu;
3830 struct rq *dst_rq;
3831
3832 struct cpumask *dst_grpmask;
3833 int new_dst_cpu;
3834 enum cpu_idle_type idle;
3835 long imbalance;
3836 /* The set of CPUs under consideration for load-balancing */
3837 struct cpumask *cpus;
3838
3839 unsigned int flags;
3840
3841 unsigned int loop;
3842 unsigned int loop_break;
3843 unsigned int loop_max;
3844 };
3845
3846 /*
3847 * move_task - move a task from one runqueue to another runqueue.
3848 * Both runqueues must be locked.
3849 */
3850 static void move_task(struct task_struct *p, struct lb_env *env)
3851 {
3852 deactivate_task(env->src_rq, p, 0);
3853 set_task_cpu(p, env->dst_cpu);
3854 activate_task(env->dst_rq, p, 0);
3855 check_preempt_curr(env->dst_rq, p, 0);
3856 }
3857
3858 /*
3859 * Is this task likely cache-hot:
3860 */
3861 static int
3862 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3863 {
3864 s64 delta;
3865
3866 if (p->sched_class != &fair_sched_class)
3867 return 0;
3868
3869 if (unlikely(p->policy == SCHED_IDLE))
3870 return 0;
3871
3872 /*
3873 * Buddy candidates are cache hot:
3874 */
3875 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3876 (&p->se == cfs_rq_of(&p->se)->next ||
3877 &p->se == cfs_rq_of(&p->se)->last))
3878 return 1;
3879
3880 if (sysctl_sched_migration_cost == -1)
3881 return 1;
3882 if (sysctl_sched_migration_cost == 0)
3883 return 0;
3884
3885 delta = now - p->se.exec_start;
3886
3887 return delta < (s64)sysctl_sched_migration_cost;
3888 }
3889
3890 /*
3891 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3892 */
3893 static
3894 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3895 {
3896 int tsk_cache_hot = 0;
3897 /*
3898 * We do not migrate tasks that are:
3899 * 1) throttled_lb_pair, or
3900 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3901 * 3) running (obviously), or
3902 * 4) are cache-hot on their current CPU.
3903 */
3904 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3905 return 0;
3906
3907 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3908 int cpu;
3909
3910 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3911
3912 /*
3913 * Remember if this task can be migrated to any other cpu in
3914 * our sched_group. We may want to revisit it if we couldn't
3915 * meet load balance goals by pulling other tasks on src_cpu.
3916 *
3917 * Also avoid computing new_dst_cpu if we have already computed
3918 * one in current iteration.
3919 */
3920 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3921 return 0;
3922
3923 /* Prevent to re-select dst_cpu via env's cpus */
3924 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3925 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3926 env->flags |= LBF_SOME_PINNED;
3927 env->new_dst_cpu = cpu;
3928 break;
3929 }
3930 }
3931
3932 return 0;
3933 }
3934
3935 /* Record that we found atleast one task that could run on dst_cpu */
3936 env->flags &= ~LBF_ALL_PINNED;
3937
3938 if (task_running(env->src_rq, p)) {
3939 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3940 return 0;
3941 }
3942
3943 /*
3944 * Aggressive migration if:
3945 * 1) task is cache cold, or
3946 * 2) too many balance attempts have failed.
3947 */
3948
3949 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3950 if (!tsk_cache_hot ||
3951 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3952
3953 if (tsk_cache_hot) {
3954 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3955 schedstat_inc(p, se.statistics.nr_forced_migrations);
3956 }
3957
3958 return 1;
3959 }
3960
3961 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3962 return 0;
3963 }
3964
3965 /*
3966 * move_one_task tries to move exactly one task from busiest to this_rq, as
3967 * part of active balancing operations within "domain".
3968 * Returns 1 if successful and 0 otherwise.
3969 *
3970 * Called with both runqueues locked.
3971 */
3972 static int move_one_task(struct lb_env *env)
3973 {
3974 struct task_struct *p, *n;
3975
3976 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3977 if (!can_migrate_task(p, env))
3978 continue;
3979
3980 move_task(p, env);
3981 /*
3982 * Right now, this is only the second place move_task()
3983 * is called, so we can safely collect move_task()
3984 * stats here rather than inside move_task().
3985 */
3986 schedstat_inc(env->sd, lb_gained[env->idle]);
3987 return 1;
3988 }
3989 return 0;
3990 }
3991
3992 static unsigned long task_h_load(struct task_struct *p);
3993
3994 static const unsigned int sched_nr_migrate_break = 32;
3995
3996 /*
3997 * move_tasks tries to move up to imbalance weighted load from busiest to
3998 * this_rq, as part of a balancing operation within domain "sd".
3999 * Returns 1 if successful and 0 otherwise.
4000 *
4001 * Called with both runqueues locked.
4002 */
4003 static int move_tasks(struct lb_env *env)
4004 {
4005 struct list_head *tasks = &env->src_rq->cfs_tasks;
4006 struct task_struct *p;
4007 unsigned long load;
4008 int pulled = 0;
4009
4010 if (env->imbalance <= 0)
4011 return 0;
4012
4013 while (!list_empty(tasks)) {
4014 p = list_first_entry(tasks, struct task_struct, se.group_node);
4015
4016 env->loop++;
4017 /* We've more or less seen every task there is, call it quits */
4018 if (env->loop > env->loop_max)
4019 break;
4020
4021 /* take a breather every nr_migrate tasks */
4022 if (env->loop > env->loop_break) {
4023 env->loop_break += sched_nr_migrate_break;
4024 env->flags |= LBF_NEED_BREAK;
4025 break;
4026 }
4027
4028 if (!can_migrate_task(p, env))
4029 goto next;
4030
4031 load = task_h_load(p);
4032
4033 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4034 goto next;
4035
4036 if ((load / 2) > env->imbalance)
4037 goto next;
4038
4039 move_task(p, env);
4040 pulled++;
4041 env->imbalance -= load;
4042
4043 #ifdef CONFIG_PREEMPT
4044 /*
4045 * NEWIDLE balancing is a source of latency, so preemptible
4046 * kernels will stop after the first task is pulled to minimize
4047 * the critical section.
4048 */
4049 if (env->idle == CPU_NEWLY_IDLE)
4050 break;
4051 #endif
4052
4053 /*
4054 * We only want to steal up to the prescribed amount of
4055 * weighted load.
4056 */
4057 if (env->imbalance <= 0)
4058 break;
4059
4060 continue;
4061 next:
4062 list_move_tail(&p->se.group_node, tasks);
4063 }
4064
4065 /*
4066 * Right now, this is one of only two places move_task() is called,
4067 * so we can safely collect move_task() stats here rather than
4068 * inside move_task().
4069 */
4070 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4071
4072 return pulled;
4073 }
4074
4075 #ifdef CONFIG_FAIR_GROUP_SCHED
4076 /*
4077 * update tg->load_weight by folding this cpu's load_avg
4078 */
4079 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4080 {
4081 struct sched_entity *se = tg->se[cpu];
4082 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4083
4084 /* throttled entities do not contribute to load */
4085 if (throttled_hierarchy(cfs_rq))
4086 return;
4087
4088 update_cfs_rq_blocked_load(cfs_rq, 1);
4089
4090 if (se) {
4091 update_entity_load_avg(se, 1);
4092 /*
4093 * We pivot on our runnable average having decayed to zero for
4094 * list removal. This generally implies that all our children
4095 * have also been removed (modulo rounding error or bandwidth
4096 * control); however, such cases are rare and we can fix these
4097 * at enqueue.
4098 *
4099 * TODO: fix up out-of-order children on enqueue.
4100 */
4101 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4102 list_del_leaf_cfs_rq(cfs_rq);
4103 } else {
4104 struct rq *rq = rq_of(cfs_rq);
4105 update_rq_runnable_avg(rq, rq->nr_running);
4106 }
4107 }
4108
4109 static void update_blocked_averages(int cpu)
4110 {
4111 struct rq *rq = cpu_rq(cpu);
4112 struct cfs_rq *cfs_rq;
4113 unsigned long flags;
4114
4115 raw_spin_lock_irqsave(&rq->lock, flags);
4116 update_rq_clock(rq);
4117 /*
4118 * Iterates the task_group tree in a bottom up fashion, see
4119 * list_add_leaf_cfs_rq() for details.
4120 */
4121 for_each_leaf_cfs_rq(rq, cfs_rq) {
4122 /*
4123 * Note: We may want to consider periodically releasing
4124 * rq->lock about these updates so that creating many task
4125 * groups does not result in continually extending hold time.
4126 */
4127 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4128 }
4129
4130 raw_spin_unlock_irqrestore(&rq->lock, flags);
4131 }
4132
4133 /*
4134 * Compute the cpu's hierarchical load factor for each task group.
4135 * This needs to be done in a top-down fashion because the load of a child
4136 * group is a fraction of its parents load.
4137 */
4138 static int tg_load_down(struct task_group *tg, void *data)
4139 {
4140 unsigned long load;
4141 long cpu = (long)data;
4142
4143 if (!tg->parent) {
4144 load = cpu_rq(cpu)->load.weight;
4145 } else {
4146 load = tg->parent->cfs_rq[cpu]->h_load;
4147 load *= tg->se[cpu]->load.weight;
4148 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4149 }
4150
4151 tg->cfs_rq[cpu]->h_load = load;
4152
4153 return 0;
4154 }
4155
4156 static void update_h_load(long cpu)
4157 {
4158 struct rq *rq = cpu_rq(cpu);
4159 unsigned long now = jiffies;
4160
4161 if (rq->h_load_throttle == now)
4162 return;
4163
4164 rq->h_load_throttle = now;
4165
4166 rcu_read_lock();
4167 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4168 rcu_read_unlock();
4169 }
4170
4171 static unsigned long task_h_load(struct task_struct *p)
4172 {
4173 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4174 unsigned long load;
4175
4176 load = p->se.load.weight;
4177 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4178
4179 return load;
4180 }
4181 #else
4182 static inline void update_blocked_averages(int cpu)
4183 {
4184 }
4185
4186 static inline void update_h_load(long cpu)
4187 {
4188 }
4189
4190 static unsigned long task_h_load(struct task_struct *p)
4191 {
4192 return p->se.load.weight;
4193 }
4194 #endif
4195
4196 /********** Helpers for find_busiest_group ************************/
4197 /*
4198 * sd_lb_stats - Structure to store the statistics of a sched_domain
4199 * during load balancing.
4200 */
4201 struct sd_lb_stats {
4202 struct sched_group *busiest; /* Busiest group in this sd */
4203 struct sched_group *this; /* Local group in this sd */
4204 unsigned long total_load; /* Total load of all groups in sd */
4205 unsigned long total_pwr; /* Total power of all groups in sd */
4206 unsigned long avg_load; /* Average load across all groups in sd */
4207
4208 /** Statistics of this group */
4209 unsigned long this_load;
4210 unsigned long this_load_per_task;
4211 unsigned long this_nr_running;
4212 unsigned long this_has_capacity;
4213 unsigned int this_idle_cpus;
4214
4215 /* Statistics of the busiest group */
4216 unsigned int busiest_idle_cpus;
4217 unsigned long max_load;
4218 unsigned long busiest_load_per_task;
4219 unsigned long busiest_nr_running;
4220 unsigned long busiest_group_capacity;
4221 unsigned long busiest_has_capacity;
4222 unsigned int busiest_group_weight;
4223
4224 int group_imb; /* Is there imbalance in this sd */
4225 };
4226
4227 /*
4228 * sg_lb_stats - stats of a sched_group required for load_balancing
4229 */
4230 struct sg_lb_stats {
4231 unsigned long avg_load; /*Avg load across the CPUs of the group */
4232 unsigned long group_load; /* Total load over the CPUs of the group */
4233 unsigned long sum_nr_running; /* Nr tasks running in the group */
4234 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4235 unsigned long group_capacity;
4236 unsigned long idle_cpus;
4237 unsigned long group_weight;
4238 int group_imb; /* Is there an imbalance in the group ? */
4239 int group_has_capacity; /* Is there extra capacity in the group? */
4240 };
4241
4242 /**
4243 * get_sd_load_idx - Obtain the load index for a given sched domain.
4244 * @sd: The sched_domain whose load_idx is to be obtained.
4245 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4246 */
4247 static inline int get_sd_load_idx(struct sched_domain *sd,
4248 enum cpu_idle_type idle)
4249 {
4250 int load_idx;
4251
4252 switch (idle) {
4253 case CPU_NOT_IDLE:
4254 load_idx = sd->busy_idx;
4255 break;
4256
4257 case CPU_NEWLY_IDLE:
4258 load_idx = sd->newidle_idx;
4259 break;
4260 default:
4261 load_idx = sd->idle_idx;
4262 break;
4263 }
4264
4265 return load_idx;
4266 }
4267
4268 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4269 {
4270 return SCHED_POWER_SCALE;
4271 }
4272
4273 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4274 {
4275 return default_scale_freq_power(sd, cpu);
4276 }
4277
4278 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4279 {
4280 unsigned long weight = sd->span_weight;
4281 unsigned long smt_gain = sd->smt_gain;
4282
4283 smt_gain /= weight;
4284
4285 return smt_gain;
4286 }
4287
4288 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4289 {
4290 return default_scale_smt_power(sd, cpu);
4291 }
4292
4293 static unsigned long scale_rt_power(int cpu)
4294 {
4295 struct rq *rq = cpu_rq(cpu);
4296 u64 total, available, age_stamp, avg;
4297
4298 /*
4299 * Since we're reading these variables without serialization make sure
4300 * we read them once before doing sanity checks on them.
4301 */
4302 age_stamp = ACCESS_ONCE(rq->age_stamp);
4303 avg = ACCESS_ONCE(rq->rt_avg);
4304
4305 total = sched_avg_period() + (rq->clock - age_stamp);
4306
4307 if (unlikely(total < avg)) {
4308 /* Ensures that power won't end up being negative */
4309 available = 0;
4310 } else {
4311 available = total - avg;
4312 }
4313
4314 if (unlikely((s64)total < SCHED_POWER_SCALE))
4315 total = SCHED_POWER_SCALE;
4316
4317 total >>= SCHED_POWER_SHIFT;
4318
4319 return div_u64(available, total);
4320 }
4321
4322 static void update_cpu_power(struct sched_domain *sd, int cpu)
4323 {
4324 unsigned long weight = sd->span_weight;
4325 unsigned long power = SCHED_POWER_SCALE;
4326 struct sched_group *sdg = sd->groups;
4327
4328 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4329 if (sched_feat(ARCH_POWER))
4330 power *= arch_scale_smt_power(sd, cpu);
4331 else
4332 power *= default_scale_smt_power(sd, cpu);
4333
4334 power >>= SCHED_POWER_SHIFT;
4335 }
4336
4337 sdg->sgp->power_orig = power;
4338
4339 if (sched_feat(ARCH_POWER))
4340 power *= arch_scale_freq_power(sd, cpu);
4341 else
4342 power *= default_scale_freq_power(sd, cpu);
4343
4344 power >>= SCHED_POWER_SHIFT;
4345
4346 power *= scale_rt_power(cpu);
4347 power >>= SCHED_POWER_SHIFT;
4348
4349 if (!power)
4350 power = 1;
4351
4352 cpu_rq(cpu)->cpu_power = power;
4353 sdg->sgp->power = power;
4354 }
4355
4356 void update_group_power(struct sched_domain *sd, int cpu)
4357 {
4358 struct sched_domain *child = sd->child;
4359 struct sched_group *group, *sdg = sd->groups;
4360 unsigned long power;
4361 unsigned long interval;
4362
4363 interval = msecs_to_jiffies(sd->balance_interval);
4364 interval = clamp(interval, 1UL, max_load_balance_interval);
4365 sdg->sgp->next_update = jiffies + interval;
4366
4367 if (!child) {
4368 update_cpu_power(sd, cpu);
4369 return;
4370 }
4371
4372 power = 0;
4373
4374 if (child->flags & SD_OVERLAP) {
4375 /*
4376 * SD_OVERLAP domains cannot assume that child groups
4377 * span the current group.
4378 */
4379
4380 for_each_cpu(cpu, sched_group_cpus(sdg))
4381 power += power_of(cpu);
4382 } else {
4383 /*
4384 * !SD_OVERLAP domains can assume that child groups
4385 * span the current group.
4386 */
4387
4388 group = child->groups;
4389 do {
4390 power += group->sgp->power;
4391 group = group->next;
4392 } while (group != child->groups);
4393 }
4394
4395 sdg->sgp->power_orig = sdg->sgp->power = power;
4396 }
4397
4398 /*
4399 * Try and fix up capacity for tiny siblings, this is needed when
4400 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4401 * which on its own isn't powerful enough.
4402 *
4403 * See update_sd_pick_busiest() and check_asym_packing().
4404 */
4405 static inline int
4406 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4407 {
4408 /*
4409 * Only siblings can have significantly less than SCHED_POWER_SCALE
4410 */
4411 if (!(sd->flags & SD_SHARE_CPUPOWER))
4412 return 0;
4413
4414 /*
4415 * If ~90% of the cpu_power is still there, we're good.
4416 */
4417 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4418 return 1;
4419
4420 return 0;
4421 }
4422
4423 /**
4424 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4425 * @env: The load balancing environment.
4426 * @group: sched_group whose statistics are to be updated.
4427 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4428 * @local_group: Does group contain this_cpu.
4429 * @balance: Should we balance.
4430 * @sgs: variable to hold the statistics for this group.
4431 */
4432 static inline void update_sg_lb_stats(struct lb_env *env,
4433 struct sched_group *group, int load_idx,
4434 int local_group, int *balance, struct sg_lb_stats *sgs)
4435 {
4436 unsigned long nr_running, max_nr_running, min_nr_running;
4437 unsigned long load, max_cpu_load, min_cpu_load;
4438 unsigned int balance_cpu = -1, first_idle_cpu = 0;
4439 unsigned long avg_load_per_task = 0;
4440 int i;
4441
4442 if (local_group)
4443 balance_cpu = group_balance_cpu(group);
4444
4445 /* Tally up the load of all CPUs in the group */
4446 max_cpu_load = 0;
4447 min_cpu_load = ~0UL;
4448 max_nr_running = 0;
4449 min_nr_running = ~0UL;
4450
4451 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4452 struct rq *rq = cpu_rq(i);
4453
4454 nr_running = rq->nr_running;
4455
4456 /* Bias balancing toward cpus of our domain */
4457 if (local_group) {
4458 if (idle_cpu(i) && !first_idle_cpu &&
4459 cpumask_test_cpu(i, sched_group_mask(group))) {
4460 first_idle_cpu = 1;
4461 balance_cpu = i;
4462 }
4463
4464 load = target_load(i, load_idx);
4465 } else {
4466 load = source_load(i, load_idx);
4467 if (load > max_cpu_load)
4468 max_cpu_load = load;
4469 if (min_cpu_load > load)
4470 min_cpu_load = load;
4471
4472 if (nr_running > max_nr_running)
4473 max_nr_running = nr_running;
4474 if (min_nr_running > nr_running)
4475 min_nr_running = nr_running;
4476 }
4477
4478 sgs->group_load += load;
4479 sgs->sum_nr_running += nr_running;
4480 sgs->sum_weighted_load += weighted_cpuload(i);
4481 if (idle_cpu(i))
4482 sgs->idle_cpus++;
4483 }
4484
4485 /*
4486 * First idle cpu or the first cpu(busiest) in this sched group
4487 * is eligible for doing load balancing at this and above
4488 * domains. In the newly idle case, we will allow all the cpu's
4489 * to do the newly idle load balance.
4490 */
4491 if (local_group) {
4492 if (env->idle != CPU_NEWLY_IDLE) {
4493 if (balance_cpu != env->dst_cpu) {
4494 *balance = 0;
4495 return;
4496 }
4497 update_group_power(env->sd, env->dst_cpu);
4498 } else if (time_after_eq(jiffies, group->sgp->next_update))
4499 update_group_power(env->sd, env->dst_cpu);
4500 }
4501
4502 /* Adjust by relative CPU power of the group */
4503 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4504
4505 /*
4506 * Consider the group unbalanced when the imbalance is larger
4507 * than the average weight of a task.
4508 *
4509 * APZ: with cgroup the avg task weight can vary wildly and
4510 * might not be a suitable number - should we keep a
4511 * normalized nr_running number somewhere that negates
4512 * the hierarchy?
4513 */
4514 if (sgs->sum_nr_running)
4515 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4516
4517 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4518 (max_nr_running - min_nr_running) > 1)
4519 sgs->group_imb = 1;
4520
4521 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4522 SCHED_POWER_SCALE);
4523 if (!sgs->group_capacity)
4524 sgs->group_capacity = fix_small_capacity(env->sd, group);
4525 sgs->group_weight = group->group_weight;
4526
4527 if (sgs->group_capacity > sgs->sum_nr_running)
4528 sgs->group_has_capacity = 1;
4529 }
4530
4531 /**
4532 * update_sd_pick_busiest - return 1 on busiest group
4533 * @env: The load balancing environment.
4534 * @sds: sched_domain statistics
4535 * @sg: sched_group candidate to be checked for being the busiest
4536 * @sgs: sched_group statistics
4537 *
4538 * Determine if @sg is a busier group than the previously selected
4539 * busiest group.
4540 */
4541 static bool update_sd_pick_busiest(struct lb_env *env,
4542 struct sd_lb_stats *sds,
4543 struct sched_group *sg,
4544 struct sg_lb_stats *sgs)
4545 {
4546 if (sgs->avg_load <= sds->max_load)
4547 return false;
4548
4549 if (sgs->sum_nr_running > sgs->group_capacity)
4550 return true;
4551
4552 if (sgs->group_imb)
4553 return true;
4554
4555 /*
4556 * ASYM_PACKING needs to move all the work to the lowest
4557 * numbered CPUs in the group, therefore mark all groups
4558 * higher than ourself as busy.
4559 */
4560 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4561 env->dst_cpu < group_first_cpu(sg)) {
4562 if (!sds->busiest)
4563 return true;
4564
4565 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4566 return true;
4567 }
4568
4569 return false;
4570 }
4571
4572 /**
4573 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4574 * @env: The load balancing environment.
4575 * @balance: Should we balance.
4576 * @sds: variable to hold the statistics for this sched_domain.
4577 */
4578 static inline void update_sd_lb_stats(struct lb_env *env,
4579 int *balance, struct sd_lb_stats *sds)
4580 {
4581 struct sched_domain *child = env->sd->child;
4582 struct sched_group *sg = env->sd->groups;
4583 struct sg_lb_stats sgs;
4584 int load_idx, prefer_sibling = 0;
4585
4586 if (child && child->flags & SD_PREFER_SIBLING)
4587 prefer_sibling = 1;
4588
4589 load_idx = get_sd_load_idx(env->sd, env->idle);
4590
4591 do {
4592 int local_group;
4593
4594 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4595 memset(&sgs, 0, sizeof(sgs));
4596 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4597
4598 if (local_group && !(*balance))
4599 return;
4600
4601 sds->total_load += sgs.group_load;
4602 sds->total_pwr += sg->sgp->power;
4603
4604 /*
4605 * In case the child domain prefers tasks go to siblings
4606 * first, lower the sg capacity to one so that we'll try
4607 * and move all the excess tasks away. We lower the capacity
4608 * of a group only if the local group has the capacity to fit
4609 * these excess tasks, i.e. nr_running < group_capacity. The
4610 * extra check prevents the case where you always pull from the
4611 * heaviest group when it is already under-utilized (possible
4612 * with a large weight task outweighs the tasks on the system).
4613 */
4614 if (prefer_sibling && !local_group && sds->this_has_capacity)
4615 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4616
4617 if (local_group) {
4618 sds->this_load = sgs.avg_load;
4619 sds->this = sg;
4620 sds->this_nr_running = sgs.sum_nr_running;
4621 sds->this_load_per_task = sgs.sum_weighted_load;
4622 sds->this_has_capacity = sgs.group_has_capacity;
4623 sds->this_idle_cpus = sgs.idle_cpus;
4624 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4625 sds->max_load = sgs.avg_load;
4626 sds->busiest = sg;
4627 sds->busiest_nr_running = sgs.sum_nr_running;
4628 sds->busiest_idle_cpus = sgs.idle_cpus;
4629 sds->busiest_group_capacity = sgs.group_capacity;
4630 sds->busiest_load_per_task = sgs.sum_weighted_load;
4631 sds->busiest_has_capacity = sgs.group_has_capacity;
4632 sds->busiest_group_weight = sgs.group_weight;
4633 sds->group_imb = sgs.group_imb;
4634 }
4635
4636 sg = sg->next;
4637 } while (sg != env->sd->groups);
4638 }
4639
4640 /**
4641 * check_asym_packing - Check to see if the group is packed into the
4642 * sched doman.
4643 *
4644 * This is primarily intended to used at the sibling level. Some
4645 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4646 * case of POWER7, it can move to lower SMT modes only when higher
4647 * threads are idle. When in lower SMT modes, the threads will
4648 * perform better since they share less core resources. Hence when we
4649 * have idle threads, we want them to be the higher ones.
4650 *
4651 * This packing function is run on idle threads. It checks to see if
4652 * the busiest CPU in this domain (core in the P7 case) has a higher
4653 * CPU number than the packing function is being run on. Here we are
4654 * assuming lower CPU number will be equivalent to lower a SMT thread
4655 * number.
4656 *
4657 * Returns 1 when packing is required and a task should be moved to
4658 * this CPU. The amount of the imbalance is returned in *imbalance.
4659 *
4660 * @env: The load balancing environment.
4661 * @sds: Statistics of the sched_domain which is to be packed
4662 */
4663 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4664 {
4665 int busiest_cpu;
4666
4667 if (!(env->sd->flags & SD_ASYM_PACKING))
4668 return 0;
4669
4670 if (!sds->busiest)
4671 return 0;
4672
4673 busiest_cpu = group_first_cpu(sds->busiest);
4674 if (env->dst_cpu > busiest_cpu)
4675 return 0;
4676
4677 env->imbalance = DIV_ROUND_CLOSEST(
4678 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4679
4680 return 1;
4681 }
4682
4683 /**
4684 * fix_small_imbalance - Calculate the minor imbalance that exists
4685 * amongst the groups of a sched_domain, during
4686 * load balancing.
4687 * @env: The load balancing environment.
4688 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4689 */
4690 static inline
4691 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4692 {
4693 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4694 unsigned int imbn = 2;
4695 unsigned long scaled_busy_load_per_task;
4696
4697 if (sds->this_nr_running) {
4698 sds->this_load_per_task /= sds->this_nr_running;
4699 if (sds->busiest_load_per_task >
4700 sds->this_load_per_task)
4701 imbn = 1;
4702 } else {
4703 sds->this_load_per_task =
4704 cpu_avg_load_per_task(env->dst_cpu);
4705 }
4706
4707 scaled_busy_load_per_task = sds->busiest_load_per_task
4708 * SCHED_POWER_SCALE;
4709 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4710
4711 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4712 (scaled_busy_load_per_task * imbn)) {
4713 env->imbalance = sds->busiest_load_per_task;
4714 return;
4715 }
4716
4717 /*
4718 * OK, we don't have enough imbalance to justify moving tasks,
4719 * however we may be able to increase total CPU power used by
4720 * moving them.
4721 */
4722
4723 pwr_now += sds->busiest->sgp->power *
4724 min(sds->busiest_load_per_task, sds->max_load);
4725 pwr_now += sds->this->sgp->power *
4726 min(sds->this_load_per_task, sds->this_load);
4727 pwr_now /= SCHED_POWER_SCALE;
4728
4729 /* Amount of load we'd subtract */
4730 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4731 sds->busiest->sgp->power;
4732 if (sds->max_load > tmp)
4733 pwr_move += sds->busiest->sgp->power *
4734 min(sds->busiest_load_per_task, sds->max_load - tmp);
4735
4736 /* Amount of load we'd add */
4737 if (sds->max_load * sds->busiest->sgp->power <
4738 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4739 tmp = (sds->max_load * sds->busiest->sgp->power) /
4740 sds->this->sgp->power;
4741 else
4742 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4743 sds->this->sgp->power;
4744 pwr_move += sds->this->sgp->power *
4745 min(sds->this_load_per_task, sds->this_load + tmp);
4746 pwr_move /= SCHED_POWER_SCALE;
4747
4748 /* Move if we gain throughput */
4749 if (pwr_move > pwr_now)
4750 env->imbalance = sds->busiest_load_per_task;
4751 }
4752
4753 /**
4754 * calculate_imbalance - Calculate the amount of imbalance present within the
4755 * groups of a given sched_domain during load balance.
4756 * @env: load balance environment
4757 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4758 */
4759 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4760 {
4761 unsigned long max_pull, load_above_capacity = ~0UL;
4762
4763 sds->busiest_load_per_task /= sds->busiest_nr_running;
4764 if (sds->group_imb) {
4765 sds->busiest_load_per_task =
4766 min(sds->busiest_load_per_task, sds->avg_load);
4767 }
4768
4769 /*
4770 * In the presence of smp nice balancing, certain scenarios can have
4771 * max load less than avg load(as we skip the groups at or below
4772 * its cpu_power, while calculating max_load..)
4773 */
4774 if (sds->max_load < sds->avg_load) {
4775 env->imbalance = 0;
4776 return fix_small_imbalance(env, sds);
4777 }
4778
4779 if (!sds->group_imb) {
4780 /*
4781 * Don't want to pull so many tasks that a group would go idle.
4782 */
4783 load_above_capacity = (sds->busiest_nr_running -
4784 sds->busiest_group_capacity);
4785
4786 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4787
4788 load_above_capacity /= sds->busiest->sgp->power;
4789 }
4790
4791 /*
4792 * We're trying to get all the cpus to the average_load, so we don't
4793 * want to push ourselves above the average load, nor do we wish to
4794 * reduce the max loaded cpu below the average load. At the same time,
4795 * we also don't want to reduce the group load below the group capacity
4796 * (so that we can implement power-savings policies etc). Thus we look
4797 * for the minimum possible imbalance.
4798 * Be careful of negative numbers as they'll appear as very large values
4799 * with unsigned longs.
4800 */
4801 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4802
4803 /* How much load to actually move to equalise the imbalance */
4804 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4805 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4806 / SCHED_POWER_SCALE;
4807
4808 /*
4809 * if *imbalance is less than the average load per runnable task
4810 * there is no guarantee that any tasks will be moved so we'll have
4811 * a think about bumping its value to force at least one task to be
4812 * moved
4813 */
4814 if (env->imbalance < sds->busiest_load_per_task)
4815 return fix_small_imbalance(env, sds);
4816
4817 }
4818
4819 /******* find_busiest_group() helpers end here *********************/
4820
4821 /**
4822 * find_busiest_group - Returns the busiest group within the sched_domain
4823 * if there is an imbalance. If there isn't an imbalance, and
4824 * the user has opted for power-savings, it returns a group whose
4825 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4826 * such a group exists.
4827 *
4828 * Also calculates the amount of weighted load which should be moved
4829 * to restore balance.
4830 *
4831 * @env: The load balancing environment.
4832 * @balance: Pointer to a variable indicating if this_cpu
4833 * is the appropriate cpu to perform load balancing at this_level.
4834 *
4835 * Returns: - the busiest group if imbalance exists.
4836 * - If no imbalance and user has opted for power-savings balance,
4837 * return the least loaded group whose CPUs can be
4838 * put to idle by rebalancing its tasks onto our group.
4839 */
4840 static struct sched_group *
4841 find_busiest_group(struct lb_env *env, int *balance)
4842 {
4843 struct sd_lb_stats sds;
4844
4845 memset(&sds, 0, sizeof(sds));
4846
4847 /*
4848 * Compute the various statistics relavent for load balancing at
4849 * this level.
4850 */
4851 update_sd_lb_stats(env, balance, &sds);
4852
4853 /*
4854 * this_cpu is not the appropriate cpu to perform load balancing at
4855 * this level.
4856 */
4857 if (!(*balance))
4858 goto ret;
4859
4860 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4861 check_asym_packing(env, &sds))
4862 return sds.busiest;
4863
4864 /* There is no busy sibling group to pull tasks from */
4865 if (!sds.busiest || sds.busiest_nr_running == 0)
4866 goto out_balanced;
4867
4868 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4869
4870 /*
4871 * If the busiest group is imbalanced the below checks don't
4872 * work because they assumes all things are equal, which typically
4873 * isn't true due to cpus_allowed constraints and the like.
4874 */
4875 if (sds.group_imb)
4876 goto force_balance;
4877
4878 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4879 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4880 !sds.busiest_has_capacity)
4881 goto force_balance;
4882
4883 /*
4884 * If the local group is more busy than the selected busiest group
4885 * don't try and pull any tasks.
4886 */
4887 if (sds.this_load >= sds.max_load)
4888 goto out_balanced;
4889
4890 /*
4891 * Don't pull any tasks if this group is already above the domain
4892 * average load.
4893 */
4894 if (sds.this_load >= sds.avg_load)
4895 goto out_balanced;
4896
4897 if (env->idle == CPU_IDLE) {
4898 /*
4899 * This cpu is idle. If the busiest group load doesn't
4900 * have more tasks than the number of available cpu's and
4901 * there is no imbalance between this and busiest group
4902 * wrt to idle cpu's, it is balanced.
4903 */
4904 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4905 sds.busiest_nr_running <= sds.busiest_group_weight)
4906 goto out_balanced;
4907 } else {
4908 /*
4909 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4910 * imbalance_pct to be conservative.
4911 */
4912 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4913 goto out_balanced;
4914 }
4915
4916 force_balance:
4917 /* Looks like there is an imbalance. Compute it */
4918 calculate_imbalance(env, &sds);
4919 return sds.busiest;
4920
4921 out_balanced:
4922 ret:
4923 env->imbalance = 0;
4924 return NULL;
4925 }
4926
4927 /*
4928 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4929 */
4930 static struct rq *find_busiest_queue(struct lb_env *env,
4931 struct sched_group *group)
4932 {
4933 struct rq *busiest = NULL, *rq;
4934 unsigned long max_load = 0;
4935 int i;
4936
4937 for_each_cpu(i, sched_group_cpus(group)) {
4938 unsigned long power = power_of(i);
4939 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4940 SCHED_POWER_SCALE);
4941 unsigned long wl;
4942
4943 if (!capacity)
4944 capacity = fix_small_capacity(env->sd, group);
4945
4946 if (!cpumask_test_cpu(i, env->cpus))
4947 continue;
4948
4949 rq = cpu_rq(i);
4950 wl = weighted_cpuload(i);
4951
4952 /*
4953 * When comparing with imbalance, use weighted_cpuload()
4954 * which is not scaled with the cpu power.
4955 */
4956 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4957 continue;
4958
4959 /*
4960 * For the load comparisons with the other cpu's, consider
4961 * the weighted_cpuload() scaled with the cpu power, so that
4962 * the load can be moved away from the cpu that is potentially
4963 * running at a lower capacity.
4964 */
4965 wl = (wl * SCHED_POWER_SCALE) / power;
4966
4967 if (wl > max_load) {
4968 max_load = wl;
4969 busiest = rq;
4970 }
4971 }
4972
4973 return busiest;
4974 }
4975
4976 /*
4977 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4978 * so long as it is large enough.
4979 */
4980 #define MAX_PINNED_INTERVAL 512
4981
4982 /* Working cpumask for load_balance and load_balance_newidle. */
4983 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4984
4985 static int need_active_balance(struct lb_env *env)
4986 {
4987 struct sched_domain *sd = env->sd;
4988
4989 if (env->idle == CPU_NEWLY_IDLE) {
4990
4991 /*
4992 * ASYM_PACKING needs to force migrate tasks from busy but
4993 * higher numbered CPUs in order to pack all tasks in the
4994 * lowest numbered CPUs.
4995 */
4996 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4997 return 1;
4998 }
4999
5000 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5001 }
5002
5003 static int active_load_balance_cpu_stop(void *data);
5004
5005 /*
5006 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5007 * tasks if there is an imbalance.
5008 */
5009 static int load_balance(int this_cpu, struct rq *this_rq,
5010 struct sched_domain *sd, enum cpu_idle_type idle,
5011 int *balance)
5012 {
5013 int ld_moved, cur_ld_moved, active_balance = 0;
5014 struct sched_group *group;
5015 struct rq *busiest;
5016 unsigned long flags;
5017 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5018
5019 struct lb_env env = {
5020 .sd = sd,
5021 .dst_cpu = this_cpu,
5022 .dst_rq = this_rq,
5023 .dst_grpmask = sched_group_cpus(sd->groups),
5024 .idle = idle,
5025 .loop_break = sched_nr_migrate_break,
5026 .cpus = cpus,
5027 };
5028
5029 /*
5030 * For NEWLY_IDLE load_balancing, we don't need to consider
5031 * other cpus in our group
5032 */
5033 if (idle == CPU_NEWLY_IDLE)
5034 env.dst_grpmask = NULL;
5035
5036 cpumask_copy(cpus, cpu_active_mask);
5037
5038 schedstat_inc(sd, lb_count[idle]);
5039
5040 redo:
5041 group = find_busiest_group(&env, balance);
5042
5043 if (*balance == 0)
5044 goto out_balanced;
5045
5046 if (!group) {
5047 schedstat_inc(sd, lb_nobusyg[idle]);
5048 goto out_balanced;
5049 }
5050
5051 busiest = find_busiest_queue(&env, group);
5052 if (!busiest) {
5053 schedstat_inc(sd, lb_nobusyq[idle]);
5054 goto out_balanced;
5055 }
5056
5057 BUG_ON(busiest == env.dst_rq);
5058
5059 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5060
5061 ld_moved = 0;
5062 if (busiest->nr_running > 1) {
5063 /*
5064 * Attempt to move tasks. If find_busiest_group has found
5065 * an imbalance but busiest->nr_running <= 1, the group is
5066 * still unbalanced. ld_moved simply stays zero, so it is
5067 * correctly treated as an imbalance.
5068 */
5069 env.flags |= LBF_ALL_PINNED;
5070 env.src_cpu = busiest->cpu;
5071 env.src_rq = busiest;
5072 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5073
5074 update_h_load(env.src_cpu);
5075 more_balance:
5076 local_irq_save(flags);
5077 double_rq_lock(env.dst_rq, busiest);
5078
5079 /*
5080 * cur_ld_moved - load moved in current iteration
5081 * ld_moved - cumulative load moved across iterations
5082 */
5083 cur_ld_moved = move_tasks(&env);
5084 ld_moved += cur_ld_moved;
5085 double_rq_unlock(env.dst_rq, busiest);
5086 local_irq_restore(flags);
5087
5088 /*
5089 * some other cpu did the load balance for us.
5090 */
5091 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5092 resched_cpu(env.dst_cpu);
5093
5094 if (env.flags & LBF_NEED_BREAK) {
5095 env.flags &= ~LBF_NEED_BREAK;
5096 goto more_balance;
5097 }
5098
5099 /*
5100 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5101 * us and move them to an alternate dst_cpu in our sched_group
5102 * where they can run. The upper limit on how many times we
5103 * iterate on same src_cpu is dependent on number of cpus in our
5104 * sched_group.
5105 *
5106 * This changes load balance semantics a bit on who can move
5107 * load to a given_cpu. In addition to the given_cpu itself
5108 * (or a ilb_cpu acting on its behalf where given_cpu is
5109 * nohz-idle), we now have balance_cpu in a position to move
5110 * load to given_cpu. In rare situations, this may cause
5111 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5112 * _independently_ and at _same_ time to move some load to
5113 * given_cpu) causing exceess load to be moved to given_cpu.
5114 * This however should not happen so much in practice and
5115 * moreover subsequent load balance cycles should correct the
5116 * excess load moved.
5117 */
5118 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5119
5120 env.dst_rq = cpu_rq(env.new_dst_cpu);
5121 env.dst_cpu = env.new_dst_cpu;
5122 env.flags &= ~LBF_SOME_PINNED;
5123 env.loop = 0;
5124 env.loop_break = sched_nr_migrate_break;
5125
5126 /* Prevent to re-select dst_cpu via env's cpus */
5127 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5128
5129 /*
5130 * Go back to "more_balance" rather than "redo" since we
5131 * need to continue with same src_cpu.
5132 */
5133 goto more_balance;
5134 }
5135
5136 /* All tasks on this runqueue were pinned by CPU affinity */
5137 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5138 cpumask_clear_cpu(cpu_of(busiest), cpus);
5139 if (!cpumask_empty(cpus)) {
5140 env.loop = 0;
5141 env.loop_break = sched_nr_migrate_break;
5142 goto redo;
5143 }
5144 goto out_balanced;
5145 }
5146 }
5147
5148 if (!ld_moved) {
5149 schedstat_inc(sd, lb_failed[idle]);
5150 /*
5151 * Increment the failure counter only on periodic balance.
5152 * We do not want newidle balance, which can be very
5153 * frequent, pollute the failure counter causing
5154 * excessive cache_hot migrations and active balances.
5155 */
5156 if (idle != CPU_NEWLY_IDLE)
5157 sd->nr_balance_failed++;
5158
5159 if (need_active_balance(&env)) {
5160 raw_spin_lock_irqsave(&busiest->lock, flags);
5161
5162 /* don't kick the active_load_balance_cpu_stop,
5163 * if the curr task on busiest cpu can't be
5164 * moved to this_cpu
5165 */
5166 if (!cpumask_test_cpu(this_cpu,
5167 tsk_cpus_allowed(busiest->curr))) {
5168 raw_spin_unlock_irqrestore(&busiest->lock,
5169 flags);
5170 env.flags |= LBF_ALL_PINNED;
5171 goto out_one_pinned;
5172 }
5173
5174 /*
5175 * ->active_balance synchronizes accesses to
5176 * ->active_balance_work. Once set, it's cleared
5177 * only after active load balance is finished.
5178 */
5179 if (!busiest->active_balance) {
5180 busiest->active_balance = 1;
5181 busiest->push_cpu = this_cpu;
5182 active_balance = 1;
5183 }
5184 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5185
5186 if (active_balance) {
5187 stop_one_cpu_nowait(cpu_of(busiest),
5188 active_load_balance_cpu_stop, busiest,
5189 &busiest->active_balance_work);
5190 }
5191
5192 /*
5193 * We've kicked active balancing, reset the failure
5194 * counter.
5195 */
5196 sd->nr_balance_failed = sd->cache_nice_tries+1;
5197 }
5198 } else
5199 sd->nr_balance_failed = 0;
5200
5201 if (likely(!active_balance)) {
5202 /* We were unbalanced, so reset the balancing interval */
5203 sd->balance_interval = sd->min_interval;
5204 } else {
5205 /*
5206 * If we've begun active balancing, start to back off. This
5207 * case may not be covered by the all_pinned logic if there
5208 * is only 1 task on the busy runqueue (because we don't call
5209 * move_tasks).
5210 */
5211 if (sd->balance_interval < sd->max_interval)
5212 sd->balance_interval *= 2;
5213 }
5214
5215 goto out;
5216
5217 out_balanced:
5218 schedstat_inc(sd, lb_balanced[idle]);
5219
5220 sd->nr_balance_failed = 0;
5221
5222 out_one_pinned:
5223 /* tune up the balancing interval */
5224 if (((env.flags & LBF_ALL_PINNED) &&
5225 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5226 (sd->balance_interval < sd->max_interval))
5227 sd->balance_interval *= 2;
5228
5229 ld_moved = 0;
5230 out:
5231 return ld_moved;
5232 }
5233
5234 /*
5235 * idle_balance is called by schedule() if this_cpu is about to become
5236 * idle. Attempts to pull tasks from other CPUs.
5237 */
5238 void idle_balance(int this_cpu, struct rq *this_rq)
5239 {
5240 struct sched_domain *sd;
5241 int pulled_task = 0;
5242 unsigned long next_balance = jiffies + HZ;
5243
5244 this_rq->idle_stamp = this_rq->clock;
5245
5246 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5247 return;
5248
5249 /*
5250 * Drop the rq->lock, but keep IRQ/preempt disabled.
5251 */
5252 raw_spin_unlock(&this_rq->lock);
5253
5254 update_blocked_averages(this_cpu);
5255 rcu_read_lock();
5256 for_each_domain(this_cpu, sd) {
5257 unsigned long interval;
5258 int balance = 1;
5259
5260 if (!(sd->flags & SD_LOAD_BALANCE))
5261 continue;
5262
5263 if (sd->flags & SD_BALANCE_NEWIDLE) {
5264 /* If we've pulled tasks over stop searching: */
5265 pulled_task = load_balance(this_cpu, this_rq,
5266 sd, CPU_NEWLY_IDLE, &balance);
5267 }
5268
5269 interval = msecs_to_jiffies(sd->balance_interval);
5270 if (time_after(next_balance, sd->last_balance + interval))
5271 next_balance = sd->last_balance + interval;
5272 if (pulled_task) {
5273 this_rq->idle_stamp = 0;
5274 break;
5275 }
5276 }
5277 rcu_read_unlock();
5278
5279 raw_spin_lock(&this_rq->lock);
5280
5281 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5282 /*
5283 * We are going idle. next_balance may be set based on
5284 * a busy processor. So reset next_balance.
5285 */
5286 this_rq->next_balance = next_balance;
5287 }
5288 }
5289
5290 /*
5291 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5292 * running tasks off the busiest CPU onto idle CPUs. It requires at
5293 * least 1 task to be running on each physical CPU where possible, and
5294 * avoids physical / logical imbalances.
5295 */
5296 static int active_load_balance_cpu_stop(void *data)
5297 {
5298 struct rq *busiest_rq = data;
5299 int busiest_cpu = cpu_of(busiest_rq);
5300 int target_cpu = busiest_rq->push_cpu;
5301 struct rq *target_rq = cpu_rq(target_cpu);
5302 struct sched_domain *sd;
5303
5304 raw_spin_lock_irq(&busiest_rq->lock);
5305
5306 /* make sure the requested cpu hasn't gone down in the meantime */
5307 if (unlikely(busiest_cpu != smp_processor_id() ||
5308 !busiest_rq->active_balance))
5309 goto out_unlock;
5310
5311 /* Is there any task to move? */
5312 if (busiest_rq->nr_running <= 1)
5313 goto out_unlock;
5314
5315 /*
5316 * This condition is "impossible", if it occurs
5317 * we need to fix it. Originally reported by
5318 * Bjorn Helgaas on a 128-cpu setup.
5319 */
5320 BUG_ON(busiest_rq == target_rq);
5321
5322 /* move a task from busiest_rq to target_rq */
5323 double_lock_balance(busiest_rq, target_rq);
5324
5325 /* Search for an sd spanning us and the target CPU. */
5326 rcu_read_lock();
5327 for_each_domain(target_cpu, sd) {
5328 if ((sd->flags & SD_LOAD_BALANCE) &&
5329 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5330 break;
5331 }
5332
5333 if (likely(sd)) {
5334 struct lb_env env = {
5335 .sd = sd,
5336 .dst_cpu = target_cpu,
5337 .dst_rq = target_rq,
5338 .src_cpu = busiest_rq->cpu,
5339 .src_rq = busiest_rq,
5340 .idle = CPU_IDLE,
5341 };
5342
5343 schedstat_inc(sd, alb_count);
5344
5345 if (move_one_task(&env))
5346 schedstat_inc(sd, alb_pushed);
5347 else
5348 schedstat_inc(sd, alb_failed);
5349 }
5350 rcu_read_unlock();
5351 double_unlock_balance(busiest_rq, target_rq);
5352 out_unlock:
5353 busiest_rq->active_balance = 0;
5354 raw_spin_unlock_irq(&busiest_rq->lock);
5355 return 0;
5356 }
5357
5358 #ifdef CONFIG_NO_HZ_COMMON
5359 /*
5360 * idle load balancing details
5361 * - When one of the busy CPUs notice that there may be an idle rebalancing
5362 * needed, they will kick the idle load balancer, which then does idle
5363 * load balancing for all the idle CPUs.
5364 */
5365 static struct {
5366 cpumask_var_t idle_cpus_mask;
5367 atomic_t nr_cpus;
5368 unsigned long next_balance; /* in jiffy units */
5369 } nohz ____cacheline_aligned;
5370
5371 static inline int find_new_ilb(int call_cpu)
5372 {
5373 int ilb = cpumask_first(nohz.idle_cpus_mask);
5374
5375 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5376 return ilb;
5377
5378 return nr_cpu_ids;
5379 }
5380
5381 /*
5382 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5383 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5384 * CPU (if there is one).
5385 */
5386 static void nohz_balancer_kick(int cpu)
5387 {
5388 int ilb_cpu;
5389
5390 nohz.next_balance++;
5391
5392 ilb_cpu = find_new_ilb(cpu);
5393
5394 if (ilb_cpu >= nr_cpu_ids)
5395 return;
5396
5397 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5398 return;
5399 /*
5400 * Use smp_send_reschedule() instead of resched_cpu().
5401 * This way we generate a sched IPI on the target cpu which
5402 * is idle. And the softirq performing nohz idle load balance
5403 * will be run before returning from the IPI.
5404 */
5405 smp_send_reschedule(ilb_cpu);
5406 return;
5407 }
5408
5409 static inline void nohz_balance_exit_idle(int cpu)
5410 {
5411 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5412 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5413 atomic_dec(&nohz.nr_cpus);
5414 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5415 }
5416 }
5417
5418 static inline void set_cpu_sd_state_busy(void)
5419 {
5420 struct sched_domain *sd;
5421 int cpu = smp_processor_id();
5422
5423 rcu_read_lock();
5424 sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5425
5426 if (!sd || !sd->nohz_idle)
5427 goto unlock;
5428 sd->nohz_idle = 0;
5429
5430 for (; sd; sd = sd->parent)
5431 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5432 unlock:
5433 rcu_read_unlock();
5434 }
5435
5436 void set_cpu_sd_state_idle(void)
5437 {
5438 struct sched_domain *sd;
5439 int cpu = smp_processor_id();
5440
5441 rcu_read_lock();
5442 sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5443
5444 if (!sd || sd->nohz_idle)
5445 goto unlock;
5446 sd->nohz_idle = 1;
5447
5448 for (; sd; sd = sd->parent)
5449 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5450 unlock:
5451 rcu_read_unlock();
5452 }
5453
5454 /*
5455 * This routine will record that the cpu is going idle with tick stopped.
5456 * This info will be used in performing idle load balancing in the future.
5457 */
5458 void nohz_balance_enter_idle(int cpu)
5459 {
5460 /*
5461 * If this cpu is going down, then nothing needs to be done.
5462 */
5463 if (!cpu_active(cpu))
5464 return;
5465
5466 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5467 return;
5468
5469 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5470 atomic_inc(&nohz.nr_cpus);
5471 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5472 }
5473
5474 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5475 unsigned long action, void *hcpu)
5476 {
5477 switch (action & ~CPU_TASKS_FROZEN) {
5478 case CPU_DYING:
5479 nohz_balance_exit_idle(smp_processor_id());
5480 return NOTIFY_OK;
5481 default:
5482 return NOTIFY_DONE;
5483 }
5484 }
5485 #endif
5486
5487 static DEFINE_SPINLOCK(balancing);
5488
5489 /*
5490 * Scale the max load_balance interval with the number of CPUs in the system.
5491 * This trades load-balance latency on larger machines for less cross talk.
5492 */
5493 void update_max_interval(void)
5494 {
5495 max_load_balance_interval = HZ*num_online_cpus()/10;
5496 }
5497
5498 /*
5499 * It checks each scheduling domain to see if it is due to be balanced,
5500 * and initiates a balancing operation if so.
5501 *
5502 * Balancing parameters are set up in init_sched_domains.
5503 */
5504 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5505 {
5506 int balance = 1;
5507 struct rq *rq = cpu_rq(cpu);
5508 unsigned long interval;
5509 struct sched_domain *sd;
5510 /* Earliest time when we have to do rebalance again */
5511 unsigned long next_balance = jiffies + 60*HZ;
5512 int update_next_balance = 0;
5513 int need_serialize;
5514
5515 update_blocked_averages(cpu);
5516
5517 rcu_read_lock();
5518 for_each_domain(cpu, sd) {
5519 if (!(sd->flags & SD_LOAD_BALANCE))
5520 continue;
5521
5522 interval = sd->balance_interval;
5523 if (idle != CPU_IDLE)
5524 interval *= sd->busy_factor;
5525
5526 /* scale ms to jiffies */
5527 interval = msecs_to_jiffies(interval);
5528 interval = clamp(interval, 1UL, max_load_balance_interval);
5529
5530 need_serialize = sd->flags & SD_SERIALIZE;
5531
5532 if (need_serialize) {
5533 if (!spin_trylock(&balancing))
5534 goto out;
5535 }
5536
5537 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5538 if (load_balance(cpu, rq, sd, idle, &balance)) {
5539 /*
5540 * The LBF_SOME_PINNED logic could have changed
5541 * env->dst_cpu, so we can't know our idle
5542 * state even if we migrated tasks. Update it.
5543 */
5544 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5545 }
5546 sd->last_balance = jiffies;
5547 }
5548 if (need_serialize)
5549 spin_unlock(&balancing);
5550 out:
5551 if (time_after(next_balance, sd->last_balance + interval)) {
5552 next_balance = sd->last_balance + interval;
5553 update_next_balance = 1;
5554 }
5555
5556 /*
5557 * Stop the load balance at this level. There is another
5558 * CPU in our sched group which is doing load balancing more
5559 * actively.
5560 */
5561 if (!balance)
5562 break;
5563 }
5564 rcu_read_unlock();
5565
5566 /*
5567 * next_balance will be updated only when there is a need.
5568 * When the cpu is attached to null domain for ex, it will not be
5569 * updated.
5570 */
5571 if (likely(update_next_balance))
5572 rq->next_balance = next_balance;
5573 }
5574
5575 #ifdef CONFIG_NO_HZ_COMMON
5576 /*
5577 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5578 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5579 */
5580 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5581 {
5582 struct rq *this_rq = cpu_rq(this_cpu);
5583 struct rq *rq;
5584 int balance_cpu;
5585
5586 if (idle != CPU_IDLE ||
5587 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5588 goto end;
5589
5590 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5591 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5592 continue;
5593
5594 /*
5595 * If this cpu gets work to do, stop the load balancing
5596 * work being done for other cpus. Next load
5597 * balancing owner will pick it up.
5598 */
5599 if (need_resched())
5600 break;
5601
5602 rq = cpu_rq(balance_cpu);
5603
5604 raw_spin_lock_irq(&rq->lock);
5605 update_rq_clock(rq);
5606 update_idle_cpu_load(rq);
5607 raw_spin_unlock_irq(&rq->lock);
5608
5609 rebalance_domains(balance_cpu, CPU_IDLE);
5610
5611 if (time_after(this_rq->next_balance, rq->next_balance))
5612 this_rq->next_balance = rq->next_balance;
5613 }
5614 nohz.next_balance = this_rq->next_balance;
5615 end:
5616 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5617 }
5618
5619 /*
5620 * Current heuristic for kicking the idle load balancer in the presence
5621 * of an idle cpu is the system.
5622 * - This rq has more than one task.
5623 * - At any scheduler domain level, this cpu's scheduler group has multiple
5624 * busy cpu's exceeding the group's power.
5625 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5626 * domain span are idle.
5627 */
5628 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5629 {
5630 unsigned long now = jiffies;
5631 struct sched_domain *sd;
5632
5633 if (unlikely(idle_cpu(cpu)))
5634 return 0;
5635
5636 /*
5637 * We may be recently in ticked or tickless idle mode. At the first
5638 * busy tick after returning from idle, we will update the busy stats.
5639 */
5640 set_cpu_sd_state_busy();
5641 nohz_balance_exit_idle(cpu);
5642
5643 /*
5644 * None are in tickless mode and hence no need for NOHZ idle load
5645 * balancing.
5646 */
5647 if (likely(!atomic_read(&nohz.nr_cpus)))
5648 return 0;
5649
5650 if (time_before(now, nohz.next_balance))
5651 return 0;
5652
5653 if (rq->nr_running >= 2)
5654 goto need_kick;
5655
5656 rcu_read_lock();
5657 for_each_domain(cpu, sd) {
5658 struct sched_group *sg = sd->groups;
5659 struct sched_group_power *sgp = sg->sgp;
5660 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5661
5662 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5663 goto need_kick_unlock;
5664
5665 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5666 && (cpumask_first_and(nohz.idle_cpus_mask,
5667 sched_domain_span(sd)) < cpu))
5668 goto need_kick_unlock;
5669
5670 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5671 break;
5672 }
5673 rcu_read_unlock();
5674 return 0;
5675
5676 need_kick_unlock:
5677 rcu_read_unlock();
5678 need_kick:
5679 return 1;
5680 }
5681 #else
5682 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5683 #endif
5684
5685 /*
5686 * run_rebalance_domains is triggered when needed from the scheduler tick.
5687 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5688 */
5689 static void run_rebalance_domains(struct softirq_action *h)
5690 {
5691 int this_cpu = smp_processor_id();
5692 struct rq *this_rq = cpu_rq(this_cpu);
5693 enum cpu_idle_type idle = this_rq->idle_balance ?
5694 CPU_IDLE : CPU_NOT_IDLE;
5695
5696 rebalance_domains(this_cpu, idle);
5697
5698 /*
5699 * If this cpu has a pending nohz_balance_kick, then do the
5700 * balancing on behalf of the other idle cpus whose ticks are
5701 * stopped.
5702 */
5703 nohz_idle_balance(this_cpu, idle);
5704 }
5705
5706 static inline int on_null_domain(int cpu)
5707 {
5708 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5709 }
5710
5711 /*
5712 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5713 */
5714 void trigger_load_balance(struct rq *rq, int cpu)
5715 {
5716 /* Don't need to rebalance while attached to NULL domain */
5717 if (time_after_eq(jiffies, rq->next_balance) &&
5718 likely(!on_null_domain(cpu)))
5719 raise_softirq(SCHED_SOFTIRQ);
5720 #ifdef CONFIG_NO_HZ_COMMON
5721 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5722 nohz_balancer_kick(cpu);
5723 #endif
5724 }
5725
5726 static void rq_online_fair(struct rq *rq)
5727 {
5728 update_sysctl();
5729 }
5730
5731 static void rq_offline_fair(struct rq *rq)
5732 {
5733 update_sysctl();
5734
5735 /* Ensure any throttled groups are reachable by pick_next_task */
5736 unthrottle_offline_cfs_rqs(rq);
5737 }
5738
5739 #endif /* CONFIG_SMP */
5740
5741 /*
5742 * scheduler tick hitting a task of our scheduling class:
5743 */
5744 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5745 {
5746 struct cfs_rq *cfs_rq;
5747 struct sched_entity *se = &curr->se;
5748
5749 for_each_sched_entity(se) {
5750 cfs_rq = cfs_rq_of(se);
5751 entity_tick(cfs_rq, se, queued);
5752 }
5753
5754 if (sched_feat_numa(NUMA))
5755 task_tick_numa(rq, curr);
5756
5757 update_rq_runnable_avg(rq, 1);
5758 }
5759
5760 /*
5761 * called on fork with the child task as argument from the parent's context
5762 * - child not yet on the tasklist
5763 * - preemption disabled
5764 */
5765 static void task_fork_fair(struct task_struct *p)
5766 {
5767 struct cfs_rq *cfs_rq;
5768 struct sched_entity *se = &p->se, *curr;
5769 int this_cpu = smp_processor_id();
5770 struct rq *rq = this_rq();
5771 unsigned long flags;
5772
5773 raw_spin_lock_irqsave(&rq->lock, flags);
5774
5775 update_rq_clock(rq);
5776
5777 cfs_rq = task_cfs_rq(current);
5778 curr = cfs_rq->curr;
5779
5780 if (unlikely(task_cpu(p) != this_cpu)) {
5781 rcu_read_lock();
5782 __set_task_cpu(p, this_cpu);
5783 rcu_read_unlock();
5784 }
5785
5786 update_curr(cfs_rq);
5787
5788 if (curr)
5789 se->vruntime = curr->vruntime;
5790 place_entity(cfs_rq, se, 1);
5791
5792 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5793 /*
5794 * Upon rescheduling, sched_class::put_prev_task() will place
5795 * 'current' within the tree based on its new key value.
5796 */
5797 swap(curr->vruntime, se->vruntime);
5798 resched_task(rq->curr);
5799 }
5800
5801 se->vruntime -= cfs_rq->min_vruntime;
5802
5803 raw_spin_unlock_irqrestore(&rq->lock, flags);
5804 }
5805
5806 /*
5807 * Priority of the task has changed. Check to see if we preempt
5808 * the current task.
5809 */
5810 static void
5811 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5812 {
5813 if (!p->se.on_rq)
5814 return;
5815
5816 /*
5817 * Reschedule if we are currently running on this runqueue and
5818 * our priority decreased, or if we are not currently running on
5819 * this runqueue and our priority is higher than the current's
5820 */
5821 if (rq->curr == p) {
5822 if (p->prio > oldprio)
5823 resched_task(rq->curr);
5824 } else
5825 check_preempt_curr(rq, p, 0);
5826 }
5827
5828 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5829 {
5830 struct sched_entity *se = &p->se;
5831 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5832
5833 /*
5834 * Ensure the task's vruntime is normalized, so that when its
5835 * switched back to the fair class the enqueue_entity(.flags=0) will
5836 * do the right thing.
5837 *
5838 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5839 * have normalized the vruntime, if it was !on_rq, then only when
5840 * the task is sleeping will it still have non-normalized vruntime.
5841 */
5842 if (!se->on_rq && p->state != TASK_RUNNING) {
5843 /*
5844 * Fix up our vruntime so that the current sleep doesn't
5845 * cause 'unlimited' sleep bonus.
5846 */
5847 place_entity(cfs_rq, se, 0);
5848 se->vruntime -= cfs_rq->min_vruntime;
5849 }
5850
5851 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5852 /*
5853 * Remove our load from contribution when we leave sched_fair
5854 * and ensure we don't carry in an old decay_count if we
5855 * switch back.
5856 */
5857 if (p->se.avg.decay_count) {
5858 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5859 __synchronize_entity_decay(&p->se);
5860 subtract_blocked_load_contrib(cfs_rq,
5861 p->se.avg.load_avg_contrib);
5862 }
5863 #endif
5864 }
5865
5866 /*
5867 * We switched to the sched_fair class.
5868 */
5869 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5870 {
5871 if (!p->se.on_rq)
5872 return;
5873
5874 /*
5875 * We were most likely switched from sched_rt, so
5876 * kick off the schedule if running, otherwise just see
5877 * if we can still preempt the current task.
5878 */
5879 if (rq->curr == p)
5880 resched_task(rq->curr);
5881 else
5882 check_preempt_curr(rq, p, 0);
5883 }
5884
5885 /* Account for a task changing its policy or group.
5886 *
5887 * This routine is mostly called to set cfs_rq->curr field when a task
5888 * migrates between groups/classes.
5889 */
5890 static void set_curr_task_fair(struct rq *rq)
5891 {
5892 struct sched_entity *se = &rq->curr->se;
5893
5894 for_each_sched_entity(se) {
5895 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5896
5897 set_next_entity(cfs_rq, se);
5898 /* ensure bandwidth has been allocated on our new cfs_rq */
5899 account_cfs_rq_runtime(cfs_rq, 0);
5900 }
5901 }
5902
5903 void init_cfs_rq(struct cfs_rq *cfs_rq)
5904 {
5905 cfs_rq->tasks_timeline = RB_ROOT;
5906 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5907 #ifndef CONFIG_64BIT
5908 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5909 #endif
5910 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5911 atomic64_set(&cfs_rq->decay_counter, 1);
5912 atomic64_set(&cfs_rq->removed_load, 0);
5913 #endif
5914 }
5915
5916 #ifdef CONFIG_FAIR_GROUP_SCHED
5917 static void task_move_group_fair(struct task_struct *p, int on_rq)
5918 {
5919 struct cfs_rq *cfs_rq;
5920 /*
5921 * If the task was not on the rq at the time of this cgroup movement
5922 * it must have been asleep, sleeping tasks keep their ->vruntime
5923 * absolute on their old rq until wakeup (needed for the fair sleeper
5924 * bonus in place_entity()).
5925 *
5926 * If it was on the rq, we've just 'preempted' it, which does convert
5927 * ->vruntime to a relative base.
5928 *
5929 * Make sure both cases convert their relative position when migrating
5930 * to another cgroup's rq. This does somewhat interfere with the
5931 * fair sleeper stuff for the first placement, but who cares.
5932 */
5933 /*
5934 * When !on_rq, vruntime of the task has usually NOT been normalized.
5935 * But there are some cases where it has already been normalized:
5936 *
5937 * - Moving a forked child which is waiting for being woken up by
5938 * wake_up_new_task().
5939 * - Moving a task which has been woken up by try_to_wake_up() and
5940 * waiting for actually being woken up by sched_ttwu_pending().
5941 *
5942 * To prevent boost or penalty in the new cfs_rq caused by delta
5943 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5944 */
5945 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5946 on_rq = 1;
5947
5948 if (!on_rq)
5949 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5950 set_task_rq(p, task_cpu(p));
5951 if (!on_rq) {
5952 cfs_rq = cfs_rq_of(&p->se);
5953 p->se.vruntime += cfs_rq->min_vruntime;
5954 #ifdef CONFIG_SMP
5955 /*
5956 * migrate_task_rq_fair() will have removed our previous
5957 * contribution, but we must synchronize for ongoing future
5958 * decay.
5959 */
5960 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5961 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5962 #endif
5963 }
5964 }
5965
5966 void free_fair_sched_group(struct task_group *tg)
5967 {
5968 int i;
5969
5970 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5971
5972 for_each_possible_cpu(i) {
5973 if (tg->cfs_rq)
5974 kfree(tg->cfs_rq[i]);
5975 if (tg->se)
5976 kfree(tg->se[i]);
5977 }
5978
5979 kfree(tg->cfs_rq);
5980 kfree(tg->se);
5981 }
5982
5983 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5984 {
5985 struct cfs_rq *cfs_rq;
5986 struct sched_entity *se;
5987 int i;
5988
5989 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5990 if (!tg->cfs_rq)
5991 goto err;
5992 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5993 if (!tg->se)
5994 goto err;
5995
5996 tg->shares = NICE_0_LOAD;
5997
5998 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5999
6000 for_each_possible_cpu(i) {
6001 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6002 GFP_KERNEL, cpu_to_node(i));
6003 if (!cfs_rq)
6004 goto err;
6005
6006 se = kzalloc_node(sizeof(struct sched_entity),
6007 GFP_KERNEL, cpu_to_node(i));
6008 if (!se)
6009 goto err_free_rq;
6010
6011 init_cfs_rq(cfs_rq);
6012 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6013 }
6014
6015 return 1;
6016
6017 err_free_rq:
6018 kfree(cfs_rq);
6019 err:
6020 return 0;
6021 }
6022
6023 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6024 {
6025 struct rq *rq = cpu_rq(cpu);
6026 unsigned long flags;
6027
6028 /*
6029 * Only empty task groups can be destroyed; so we can speculatively
6030 * check on_list without danger of it being re-added.
6031 */
6032 if (!tg->cfs_rq[cpu]->on_list)
6033 return;
6034
6035 raw_spin_lock_irqsave(&rq->lock, flags);
6036 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6037 raw_spin_unlock_irqrestore(&rq->lock, flags);
6038 }
6039
6040 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6041 struct sched_entity *se, int cpu,
6042 struct sched_entity *parent)
6043 {
6044 struct rq *rq = cpu_rq(cpu);
6045
6046 cfs_rq->tg = tg;
6047 cfs_rq->rq = rq;
6048 init_cfs_rq_runtime(cfs_rq);
6049
6050 tg->cfs_rq[cpu] = cfs_rq;
6051 tg->se[cpu] = se;
6052
6053 /* se could be NULL for root_task_group */
6054 if (!se)
6055 return;
6056
6057 if (!parent)
6058 se->cfs_rq = &rq->cfs;
6059 else
6060 se->cfs_rq = parent->my_q;
6061
6062 se->my_q = cfs_rq;
6063 update_load_set(&se->load, 0);
6064 se->parent = parent;
6065 }
6066
6067 static DEFINE_MUTEX(shares_mutex);
6068
6069 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6070 {
6071 int i;
6072 unsigned long flags;
6073
6074 /*
6075 * We can't change the weight of the root cgroup.
6076 */
6077 if (!tg->se[0])
6078 return -EINVAL;
6079
6080 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6081
6082 mutex_lock(&shares_mutex);
6083 if (tg->shares == shares)
6084 goto done;
6085
6086 tg->shares = shares;
6087 for_each_possible_cpu(i) {
6088 struct rq *rq = cpu_rq(i);
6089 struct sched_entity *se;
6090
6091 se = tg->se[i];
6092 /* Propagate contribution to hierarchy */
6093 raw_spin_lock_irqsave(&rq->lock, flags);
6094 for_each_sched_entity(se)
6095 update_cfs_shares(group_cfs_rq(se));
6096 raw_spin_unlock_irqrestore(&rq->lock, flags);
6097 }
6098
6099 done:
6100 mutex_unlock(&shares_mutex);
6101 return 0;
6102 }
6103 #else /* CONFIG_FAIR_GROUP_SCHED */
6104
6105 void free_fair_sched_group(struct task_group *tg) { }
6106
6107 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6108 {
6109 return 1;
6110 }
6111
6112 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6113
6114 #endif /* CONFIG_FAIR_GROUP_SCHED */
6115
6116
6117 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6118 {
6119 struct sched_entity *se = &task->se;
6120 unsigned int rr_interval = 0;
6121
6122 /*
6123 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6124 * idle runqueue:
6125 */
6126 if (rq->cfs.load.weight)
6127 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6128
6129 return rr_interval;
6130 }
6131
6132 /*
6133 * All the scheduling class methods:
6134 */
6135 const struct sched_class fair_sched_class = {
6136 .next = &idle_sched_class,
6137 .enqueue_task = enqueue_task_fair,
6138 .dequeue_task = dequeue_task_fair,
6139 .yield_task = yield_task_fair,
6140 .yield_to_task = yield_to_task_fair,
6141
6142 .check_preempt_curr = check_preempt_wakeup,
6143
6144 .pick_next_task = pick_next_task_fair,
6145 .put_prev_task = put_prev_task_fair,
6146
6147 #ifdef CONFIG_SMP
6148 .select_task_rq = select_task_rq_fair,
6149 #ifdef CONFIG_FAIR_GROUP_SCHED
6150 .migrate_task_rq = migrate_task_rq_fair,
6151 #endif
6152 .rq_online = rq_online_fair,
6153 .rq_offline = rq_offline_fair,
6154
6155 .task_waking = task_waking_fair,
6156 #endif
6157
6158 .set_curr_task = set_curr_task_fair,
6159 .task_tick = task_tick_fair,
6160 .task_fork = task_fork_fair,
6161
6162 .prio_changed = prio_changed_fair,
6163 .switched_from = switched_from_fair,
6164 .switched_to = switched_to_fair,
6165
6166 .get_rr_interval = get_rr_interval_fair,
6167
6168 #ifdef CONFIG_FAIR_GROUP_SCHED
6169 .task_move_group = task_move_group_fair,
6170 #endif
6171 };
6172
6173 #ifdef CONFIG_SCHED_DEBUG
6174 void print_cfs_stats(struct seq_file *m, int cpu)
6175 {
6176 struct cfs_rq *cfs_rq;
6177
6178 rcu_read_lock();
6179 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6180 print_cfs_rq(m, cpu, cfs_rq);
6181 rcu_read_unlock();
6182 }
6183 #endif
6184
6185 __init void init_sched_fair_class(void)
6186 {
6187 #ifdef CONFIG_SMP
6188 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6189
6190 #ifdef CONFIG_NO_HZ_COMMON
6191 nohz.next_balance = jiffies;
6192 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6193 cpu_notifier(sched_ilb_notifier, 0);
6194 #endif
6195 #endif /* SMP */
6196
6197 }