mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 /*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125 static int get_update_sysctl_factor(void)
126 {
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144 }
145
146 static void update_sysctl(void)
147 {
148 unsigned int factor = get_update_sysctl_factor();
149
150 #define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155 #undef SET_SYSCTL
156 }
157
158 void sched_init_granularity(void)
159 {
160 update_sysctl();
161 }
162
163 #if BITS_PER_LONG == 32
164 # define WMULT_CONST (~0UL)
165 #else
166 # define WMULT_CONST (1UL << 32)
167 #endif
168
169 #define WMULT_SHIFT 32
170
171 /*
172 * Shift right and round:
173 */
174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176 /*
177 * delta *= weight / lw
178 */
179 static unsigned long
180 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182 {
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 }
217
218
219 const struct sched_class fair_sched_class;
220
221 /**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226
227 /* cpu runqueue to which this cfs_rq is attached */
228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229 {
230 return cfs_rq->rq;
231 }
232
233 /* An entity is a task if it doesn't "own" a runqueue */
234 #define entity_is_task(se) (!se->my_q)
235
236 static inline struct task_struct *task_of(struct sched_entity *se)
237 {
238 #ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240 #endif
241 return container_of(se, struct task_struct, se);
242 }
243
244 /* Walk up scheduling entities hierarchy */
245 #define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249 {
250 return p->se.cfs_rq;
251 }
252
253 /* runqueue on which this entity is (to be) queued */
254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255 {
256 return se->cfs_rq;
257 }
258
259 /* runqueue "owned" by this group */
260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261 {
262 return grp->my_q;
263 }
264
265 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
266 {
267 if (!cfs_rq->on_list) {
268 /*
269 * Ensure we either appear before our parent (if already
270 * enqueued) or force our parent to appear after us when it is
271 * enqueued. The fact that we always enqueue bottom-up
272 * reduces this to two cases.
273 */
274 if (cfs_rq->tg->parent &&
275 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
276 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 } else {
279 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 }
282
283 cfs_rq->on_list = 1;
284 }
285 }
286
287 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
288 {
289 if (cfs_rq->on_list) {
290 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
291 cfs_rq->on_list = 0;
292 }
293 }
294
295 /* Iterate thr' all leaf cfs_rq's on a runqueue */
296 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
297 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
298
299 /* Do the two (enqueued) entities belong to the same group ? */
300 static inline int
301 is_same_group(struct sched_entity *se, struct sched_entity *pse)
302 {
303 if (se->cfs_rq == pse->cfs_rq)
304 return 1;
305
306 return 0;
307 }
308
309 static inline struct sched_entity *parent_entity(struct sched_entity *se)
310 {
311 return se->parent;
312 }
313
314 /* return depth at which a sched entity is present in the hierarchy */
315 static inline int depth_se(struct sched_entity *se)
316 {
317 int depth = 0;
318
319 for_each_sched_entity(se)
320 depth++;
321
322 return depth;
323 }
324
325 static void
326 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
327 {
328 int se_depth, pse_depth;
329
330 /*
331 * preemption test can be made between sibling entities who are in the
332 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
333 * both tasks until we find their ancestors who are siblings of common
334 * parent.
335 */
336
337 /* First walk up until both entities are at same depth */
338 se_depth = depth_se(*se);
339 pse_depth = depth_se(*pse);
340
341 while (se_depth > pse_depth) {
342 se_depth--;
343 *se = parent_entity(*se);
344 }
345
346 while (pse_depth > se_depth) {
347 pse_depth--;
348 *pse = parent_entity(*pse);
349 }
350
351 while (!is_same_group(*se, *pse)) {
352 *se = parent_entity(*se);
353 *pse = parent_entity(*pse);
354 }
355 }
356
357 #else /* !CONFIG_FAIR_GROUP_SCHED */
358
359 static inline struct task_struct *task_of(struct sched_entity *se)
360 {
361 return container_of(se, struct task_struct, se);
362 }
363
364 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
365 {
366 return container_of(cfs_rq, struct rq, cfs);
367 }
368
369 #define entity_is_task(se) 1
370
371 #define for_each_sched_entity(se) \
372 for (; se; se = NULL)
373
374 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
375 {
376 return &task_rq(p)->cfs;
377 }
378
379 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
380 {
381 struct task_struct *p = task_of(se);
382 struct rq *rq = task_rq(p);
383
384 return &rq->cfs;
385 }
386
387 /* runqueue "owned" by this group */
388 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
389 {
390 return NULL;
391 }
392
393 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
394 {
395 }
396
397 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
398 {
399 }
400
401 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
402 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
403
404 static inline int
405 is_same_group(struct sched_entity *se, struct sched_entity *pse)
406 {
407 return 1;
408 }
409
410 static inline struct sched_entity *parent_entity(struct sched_entity *se)
411 {
412 return NULL;
413 }
414
415 static inline void
416 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
417 {
418 }
419
420 #endif /* CONFIG_FAIR_GROUP_SCHED */
421
422 static __always_inline
423 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
424
425 /**************************************************************
426 * Scheduling class tree data structure manipulation methods:
427 */
428
429 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
430 {
431 s64 delta = (s64)(vruntime - min_vruntime);
432 if (delta > 0)
433 min_vruntime = vruntime;
434
435 return min_vruntime;
436 }
437
438 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
439 {
440 s64 delta = (s64)(vruntime - min_vruntime);
441 if (delta < 0)
442 min_vruntime = vruntime;
443
444 return min_vruntime;
445 }
446
447 static inline int entity_before(struct sched_entity *a,
448 struct sched_entity *b)
449 {
450 return (s64)(a->vruntime - b->vruntime) < 0;
451 }
452
453 static void update_min_vruntime(struct cfs_rq *cfs_rq)
454 {
455 u64 vruntime = cfs_rq->min_vruntime;
456
457 if (cfs_rq->curr)
458 vruntime = cfs_rq->curr->vruntime;
459
460 if (cfs_rq->rb_leftmost) {
461 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
462 struct sched_entity,
463 run_node);
464
465 if (!cfs_rq->curr)
466 vruntime = se->vruntime;
467 else
468 vruntime = min_vruntime(vruntime, se->vruntime);
469 }
470
471 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
472 #ifndef CONFIG_64BIT
473 smp_wmb();
474 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
475 #endif
476 }
477
478 /*
479 * Enqueue an entity into the rb-tree:
480 */
481 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
482 {
483 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
484 struct rb_node *parent = NULL;
485 struct sched_entity *entry;
486 int leftmost = 1;
487
488 /*
489 * Find the right place in the rbtree:
490 */
491 while (*link) {
492 parent = *link;
493 entry = rb_entry(parent, struct sched_entity, run_node);
494 /*
495 * We dont care about collisions. Nodes with
496 * the same key stay together.
497 */
498 if (entity_before(se, entry)) {
499 link = &parent->rb_left;
500 } else {
501 link = &parent->rb_right;
502 leftmost = 0;
503 }
504 }
505
506 /*
507 * Maintain a cache of leftmost tree entries (it is frequently
508 * used):
509 */
510 if (leftmost)
511 cfs_rq->rb_leftmost = &se->run_node;
512
513 rb_link_node(&se->run_node, parent, link);
514 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
515 }
516
517 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
518 {
519 if (cfs_rq->rb_leftmost == &se->run_node) {
520 struct rb_node *next_node;
521
522 next_node = rb_next(&se->run_node);
523 cfs_rq->rb_leftmost = next_node;
524 }
525
526 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
527 }
528
529 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
530 {
531 struct rb_node *left = cfs_rq->rb_leftmost;
532
533 if (!left)
534 return NULL;
535
536 return rb_entry(left, struct sched_entity, run_node);
537 }
538
539 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
540 {
541 struct rb_node *next = rb_next(&se->run_node);
542
543 if (!next)
544 return NULL;
545
546 return rb_entry(next, struct sched_entity, run_node);
547 }
548
549 #ifdef CONFIG_SCHED_DEBUG
550 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
551 {
552 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
553
554 if (!last)
555 return NULL;
556
557 return rb_entry(last, struct sched_entity, run_node);
558 }
559
560 /**************************************************************
561 * Scheduling class statistics methods:
562 */
563
564 int sched_proc_update_handler(struct ctl_table *table, int write,
565 void __user *buffer, size_t *lenp,
566 loff_t *ppos)
567 {
568 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
569 int factor = get_update_sysctl_factor();
570
571 if (ret || !write)
572 return ret;
573
574 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
575 sysctl_sched_min_granularity);
576
577 #define WRT_SYSCTL(name) \
578 (normalized_sysctl_##name = sysctl_##name / (factor))
579 WRT_SYSCTL(sched_min_granularity);
580 WRT_SYSCTL(sched_latency);
581 WRT_SYSCTL(sched_wakeup_granularity);
582 #undef WRT_SYSCTL
583
584 return 0;
585 }
586 #endif
587
588 /*
589 * delta /= w
590 */
591 static inline unsigned long
592 calc_delta_fair(unsigned long delta, struct sched_entity *se)
593 {
594 if (unlikely(se->load.weight != NICE_0_LOAD))
595 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
596
597 return delta;
598 }
599
600 /*
601 * The idea is to set a period in which each task runs once.
602 *
603 * When there are too many tasks (sched_nr_latency) we have to stretch
604 * this period because otherwise the slices get too small.
605 *
606 * p = (nr <= nl) ? l : l*nr/nl
607 */
608 static u64 __sched_period(unsigned long nr_running)
609 {
610 u64 period = sysctl_sched_latency;
611 unsigned long nr_latency = sched_nr_latency;
612
613 if (unlikely(nr_running > nr_latency)) {
614 period = sysctl_sched_min_granularity;
615 period *= nr_running;
616 }
617
618 return period;
619 }
620
621 /*
622 * We calculate the wall-time slice from the period by taking a part
623 * proportional to the weight.
624 *
625 * s = p*P[w/rw]
626 */
627 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 {
629 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
630
631 for_each_sched_entity(se) {
632 struct load_weight *load;
633 struct load_weight lw;
634
635 cfs_rq = cfs_rq_of(se);
636 load = &cfs_rq->load;
637
638 if (unlikely(!se->on_rq)) {
639 lw = cfs_rq->load;
640
641 update_load_add(&lw, se->load.weight);
642 load = &lw;
643 }
644 slice = calc_delta_mine(slice, se->load.weight, load);
645 }
646 return slice;
647 }
648
649 /*
650 * We calculate the vruntime slice of a to be inserted task
651 *
652 * vs = s/w
653 */
654 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
655 {
656 return calc_delta_fair(sched_slice(cfs_rq, se), se);
657 }
658
659 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
660 static void update_cfs_shares(struct cfs_rq *cfs_rq);
661
662 /*
663 * Update the current task's runtime statistics. Skip current tasks that
664 * are not in our scheduling class.
665 */
666 static inline void
667 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
668 unsigned long delta_exec)
669 {
670 unsigned long delta_exec_weighted;
671
672 schedstat_set(curr->statistics.exec_max,
673 max((u64)delta_exec, curr->statistics.exec_max));
674
675 curr->sum_exec_runtime += delta_exec;
676 schedstat_add(cfs_rq, exec_clock, delta_exec);
677 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
678
679 curr->vruntime += delta_exec_weighted;
680 update_min_vruntime(cfs_rq);
681
682 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
683 cfs_rq->load_unacc_exec_time += delta_exec;
684 #endif
685 }
686
687 static void update_curr(struct cfs_rq *cfs_rq)
688 {
689 struct sched_entity *curr = cfs_rq->curr;
690 u64 now = rq_of(cfs_rq)->clock_task;
691 unsigned long delta_exec;
692
693 if (unlikely(!curr))
694 return;
695
696 /*
697 * Get the amount of time the current task was running
698 * since the last time we changed load (this cannot
699 * overflow on 32 bits):
700 */
701 delta_exec = (unsigned long)(now - curr->exec_start);
702 if (!delta_exec)
703 return;
704
705 __update_curr(cfs_rq, curr, delta_exec);
706 curr->exec_start = now;
707
708 if (entity_is_task(curr)) {
709 struct task_struct *curtask = task_of(curr);
710
711 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
712 cpuacct_charge(curtask, delta_exec);
713 account_group_exec_runtime(curtask, delta_exec);
714 }
715
716 account_cfs_rq_runtime(cfs_rq, delta_exec);
717 }
718
719 static inline void
720 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
723 }
724
725 /*
726 * Task is being enqueued - update stats:
727 */
728 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 /*
731 * Are we enqueueing a waiting task? (for current tasks
732 * a dequeue/enqueue event is a NOP)
733 */
734 if (se != cfs_rq->curr)
735 update_stats_wait_start(cfs_rq, se);
736 }
737
738 static void
739 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
740 {
741 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
742 rq_of(cfs_rq)->clock - se->statistics.wait_start));
743 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
744 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
745 rq_of(cfs_rq)->clock - se->statistics.wait_start);
746 #ifdef CONFIG_SCHEDSTATS
747 if (entity_is_task(se)) {
748 trace_sched_stat_wait(task_of(se),
749 rq_of(cfs_rq)->clock - se->statistics.wait_start);
750 }
751 #endif
752 schedstat_set(se->statistics.wait_start, 0);
753 }
754
755 static inline void
756 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
757 {
758 /*
759 * Mark the end of the wait period if dequeueing a
760 * waiting task:
761 */
762 if (se != cfs_rq->curr)
763 update_stats_wait_end(cfs_rq, se);
764 }
765
766 /*
767 * We are picking a new current task - update its stats:
768 */
769 static inline void
770 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
771 {
772 /*
773 * We are starting a new run period:
774 */
775 se->exec_start = rq_of(cfs_rq)->clock_task;
776 }
777
778 /**************************************************
779 * Scheduling class queueing methods:
780 */
781
782 #ifdef CONFIG_NUMA_BALANCING
783 /*
784 * numa task sample period in ms
785 */
786 unsigned int sysctl_numa_balancing_scan_period_min = 100;
787 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
788 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
789
790 /* Portion of address space to scan in MB */
791 unsigned int sysctl_numa_balancing_scan_size = 256;
792
793 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
794 unsigned int sysctl_numa_balancing_scan_delay = 1000;
795
796 static void task_numa_placement(struct task_struct *p)
797 {
798 int seq = ACCESS_ONCE(p->mm->numa_scan_seq);
799
800 if (p->numa_scan_seq == seq)
801 return;
802 p->numa_scan_seq = seq;
803
804 /* FIXME: Scheduling placement policy hints go here */
805 }
806
807 /*
808 * Got a PROT_NONE fault for a page on @node.
809 */
810 void task_numa_fault(int node, int pages, bool migrated)
811 {
812 struct task_struct *p = current;
813
814 if (!sched_feat_numa(NUMA))
815 return;
816
817 /* FIXME: Allocate task-specific structure for placement policy here */
818
819 /*
820 * If pages are properly placed (did not migrate) then scan slower.
821 * This is reset periodically in case of phase changes
822 */
823 if (!migrated)
824 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
825 p->numa_scan_period + jiffies_to_msecs(10));
826
827 task_numa_placement(p);
828 }
829
830 static void reset_ptenuma_scan(struct task_struct *p)
831 {
832 ACCESS_ONCE(p->mm->numa_scan_seq)++;
833 p->mm->numa_scan_offset = 0;
834 }
835
836 /*
837 * The expensive part of numa migration is done from task_work context.
838 * Triggered from task_tick_numa().
839 */
840 void task_numa_work(struct callback_head *work)
841 {
842 unsigned long migrate, next_scan, now = jiffies;
843 struct task_struct *p = current;
844 struct mm_struct *mm = p->mm;
845 struct vm_area_struct *vma;
846 unsigned long start, end;
847 long pages;
848
849 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
850
851 work->next = work; /* protect against double add */
852 /*
853 * Who cares about NUMA placement when they're dying.
854 *
855 * NOTE: make sure not to dereference p->mm before this check,
856 * exit_task_work() happens _after_ exit_mm() so we could be called
857 * without p->mm even though we still had it when we enqueued this
858 * work.
859 */
860 if (p->flags & PF_EXITING)
861 return;
862
863 /*
864 * We do not care about task placement until a task runs on a node
865 * other than the first one used by the address space. This is
866 * largely because migrations are driven by what CPU the task
867 * is running on. If it's never scheduled on another node, it'll
868 * not migrate so why bother trapping the fault.
869 */
870 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
871 mm->first_nid = numa_node_id();
872 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
873 /* Are we running on a new node yet? */
874 if (numa_node_id() == mm->first_nid &&
875 !sched_feat_numa(NUMA_FORCE))
876 return;
877
878 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
879 }
880
881 /*
882 * Reset the scan period if enough time has gone by. Objective is that
883 * scanning will be reduced if pages are properly placed. As tasks
884 * can enter different phases this needs to be re-examined. Lacking
885 * proper tracking of reference behaviour, this blunt hammer is used.
886 */
887 migrate = mm->numa_next_reset;
888 if (time_after(now, migrate)) {
889 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
890 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
891 xchg(&mm->numa_next_reset, next_scan);
892 }
893
894 /*
895 * Enforce maximal scan/migration frequency..
896 */
897 migrate = mm->numa_next_scan;
898 if (time_before(now, migrate))
899 return;
900
901 if (p->numa_scan_period == 0)
902 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
903
904 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
905 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
906 return;
907
908 /*
909 * Do not set pte_numa if the current running node is rate-limited.
910 * This loses statistics on the fault but if we are unwilling to
911 * migrate to this node, it is less likely we can do useful work
912 */
913 if (migrate_ratelimited(numa_node_id()))
914 return;
915
916 start = mm->numa_scan_offset;
917 pages = sysctl_numa_balancing_scan_size;
918 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
919 if (!pages)
920 return;
921
922 down_read(&mm->mmap_sem);
923 vma = find_vma(mm, start);
924 if (!vma) {
925 reset_ptenuma_scan(p);
926 start = 0;
927 vma = mm->mmap;
928 }
929 for (; vma; vma = vma->vm_next) {
930 if (!vma_migratable(vma))
931 continue;
932
933 /* Skip small VMAs. They are not likely to be of relevance */
934 if (((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) < HPAGE_PMD_NR)
935 continue;
936
937 do {
938 start = max(start, vma->vm_start);
939 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
940 end = min(end, vma->vm_end);
941 pages -= change_prot_numa(vma, start, end);
942
943 start = end;
944 if (pages <= 0)
945 goto out;
946 } while (end != vma->vm_end);
947 }
948
949 out:
950 /*
951 * It is possible to reach the end of the VMA list but the last few VMAs are
952 * not guaranteed to the vma_migratable. If they are not, we would find the
953 * !migratable VMA on the next scan but not reset the scanner to the start
954 * so check it now.
955 */
956 if (vma)
957 mm->numa_scan_offset = start;
958 else
959 reset_ptenuma_scan(p);
960 up_read(&mm->mmap_sem);
961 }
962
963 /*
964 * Drive the periodic memory faults..
965 */
966 void task_tick_numa(struct rq *rq, struct task_struct *curr)
967 {
968 struct callback_head *work = &curr->numa_work;
969 u64 period, now;
970
971 /*
972 * We don't care about NUMA placement if we don't have memory.
973 */
974 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
975 return;
976
977 /*
978 * Using runtime rather than walltime has the dual advantage that
979 * we (mostly) drive the selection from busy threads and that the
980 * task needs to have done some actual work before we bother with
981 * NUMA placement.
982 */
983 now = curr->se.sum_exec_runtime;
984 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
985
986 if (now - curr->node_stamp > period) {
987 if (!curr->node_stamp)
988 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
989 curr->node_stamp = now;
990
991 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
992 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
993 task_work_add(curr, work, true);
994 }
995 }
996 }
997 #else
998 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
999 {
1000 }
1001 #endif /* CONFIG_NUMA_BALANCING */
1002
1003 static void
1004 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1005 {
1006 update_load_add(&cfs_rq->load, se->load.weight);
1007 if (!parent_entity(se))
1008 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1009 #ifdef CONFIG_SMP
1010 if (entity_is_task(se))
1011 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1012 #endif
1013 cfs_rq->nr_running++;
1014 }
1015
1016 static void
1017 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1018 {
1019 update_load_sub(&cfs_rq->load, se->load.weight);
1020 if (!parent_entity(se))
1021 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1022 if (entity_is_task(se))
1023 list_del_init(&se->group_node);
1024 cfs_rq->nr_running--;
1025 }
1026
1027 #ifdef CONFIG_FAIR_GROUP_SCHED
1028 /* we need this in update_cfs_load and load-balance functions below */
1029 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1030 # ifdef CONFIG_SMP
1031 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
1032 int global_update)
1033 {
1034 struct task_group *tg = cfs_rq->tg;
1035 long load_avg;
1036
1037 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
1038 load_avg -= cfs_rq->load_contribution;
1039
1040 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
1041 atomic_add(load_avg, &tg->load_weight);
1042 cfs_rq->load_contribution += load_avg;
1043 }
1044 }
1045
1046 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
1047 {
1048 u64 period = sysctl_sched_shares_window;
1049 u64 now, delta;
1050 unsigned long load = cfs_rq->load.weight;
1051
1052 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
1053 return;
1054
1055 now = rq_of(cfs_rq)->clock_task;
1056 delta = now - cfs_rq->load_stamp;
1057
1058 /* truncate load history at 4 idle periods */
1059 if (cfs_rq->load_stamp > cfs_rq->load_last &&
1060 now - cfs_rq->load_last > 4 * period) {
1061 cfs_rq->load_period = 0;
1062 cfs_rq->load_avg = 0;
1063 delta = period - 1;
1064 }
1065
1066 cfs_rq->load_stamp = now;
1067 cfs_rq->load_unacc_exec_time = 0;
1068 cfs_rq->load_period += delta;
1069 if (load) {
1070 cfs_rq->load_last = now;
1071 cfs_rq->load_avg += delta * load;
1072 }
1073
1074 /* consider updating load contribution on each fold or truncate */
1075 if (global_update || cfs_rq->load_period > period
1076 || !cfs_rq->load_period)
1077 update_cfs_rq_load_contribution(cfs_rq, global_update);
1078
1079 while (cfs_rq->load_period > period) {
1080 /*
1081 * Inline assembly required to prevent the compiler
1082 * optimising this loop into a divmod call.
1083 * See __iter_div_u64_rem() for another example of this.
1084 */
1085 asm("" : "+rm" (cfs_rq->load_period));
1086 cfs_rq->load_period /= 2;
1087 cfs_rq->load_avg /= 2;
1088 }
1089
1090 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
1091 list_del_leaf_cfs_rq(cfs_rq);
1092 }
1093
1094 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1095 {
1096 long tg_weight;
1097
1098 /*
1099 * Use this CPU's actual weight instead of the last load_contribution
1100 * to gain a more accurate current total weight. See
1101 * update_cfs_rq_load_contribution().
1102 */
1103 tg_weight = atomic_read(&tg->load_weight);
1104 tg_weight -= cfs_rq->load_contribution;
1105 tg_weight += cfs_rq->load.weight;
1106
1107 return tg_weight;
1108 }
1109
1110 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1111 {
1112 long tg_weight, load, shares;
1113
1114 tg_weight = calc_tg_weight(tg, cfs_rq);
1115 load = cfs_rq->load.weight;
1116
1117 shares = (tg->shares * load);
1118 if (tg_weight)
1119 shares /= tg_weight;
1120
1121 if (shares < MIN_SHARES)
1122 shares = MIN_SHARES;
1123 if (shares > tg->shares)
1124 shares = tg->shares;
1125
1126 return shares;
1127 }
1128
1129 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1130 {
1131 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
1132 update_cfs_load(cfs_rq, 0);
1133 update_cfs_shares(cfs_rq);
1134 }
1135 }
1136 # else /* CONFIG_SMP */
1137 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
1138 {
1139 }
1140
1141 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1142 {
1143 return tg->shares;
1144 }
1145
1146 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1147 {
1148 }
1149 # endif /* CONFIG_SMP */
1150 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1151 unsigned long weight)
1152 {
1153 if (se->on_rq) {
1154 /* commit outstanding execution time */
1155 if (cfs_rq->curr == se)
1156 update_curr(cfs_rq);
1157 account_entity_dequeue(cfs_rq, se);
1158 }
1159
1160 update_load_set(&se->load, weight);
1161
1162 if (se->on_rq)
1163 account_entity_enqueue(cfs_rq, se);
1164 }
1165
1166 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1167 {
1168 struct task_group *tg;
1169 struct sched_entity *se;
1170 long shares;
1171
1172 tg = cfs_rq->tg;
1173 se = tg->se[cpu_of(rq_of(cfs_rq))];
1174 if (!se || throttled_hierarchy(cfs_rq))
1175 return;
1176 #ifndef CONFIG_SMP
1177 if (likely(se->load.weight == tg->shares))
1178 return;
1179 #endif
1180 shares = calc_cfs_shares(cfs_rq, tg);
1181
1182 reweight_entity(cfs_rq_of(se), se, shares);
1183 }
1184 #else /* CONFIG_FAIR_GROUP_SCHED */
1185 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
1186 {
1187 }
1188
1189 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1190 {
1191 }
1192
1193 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1194 {
1195 }
1196 #endif /* CONFIG_FAIR_GROUP_SCHED */
1197
1198 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1199 {
1200 #ifdef CONFIG_SCHEDSTATS
1201 struct task_struct *tsk = NULL;
1202
1203 if (entity_is_task(se))
1204 tsk = task_of(se);
1205
1206 if (se->statistics.sleep_start) {
1207 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1208
1209 if ((s64)delta < 0)
1210 delta = 0;
1211
1212 if (unlikely(delta > se->statistics.sleep_max))
1213 se->statistics.sleep_max = delta;
1214
1215 se->statistics.sleep_start = 0;
1216 se->statistics.sum_sleep_runtime += delta;
1217
1218 if (tsk) {
1219 account_scheduler_latency(tsk, delta >> 10, 1);
1220 trace_sched_stat_sleep(tsk, delta);
1221 }
1222 }
1223 if (se->statistics.block_start) {
1224 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1225
1226 if ((s64)delta < 0)
1227 delta = 0;
1228
1229 if (unlikely(delta > se->statistics.block_max))
1230 se->statistics.block_max = delta;
1231
1232 se->statistics.block_start = 0;
1233 se->statistics.sum_sleep_runtime += delta;
1234
1235 if (tsk) {
1236 if (tsk->in_iowait) {
1237 se->statistics.iowait_sum += delta;
1238 se->statistics.iowait_count++;
1239 trace_sched_stat_iowait(tsk, delta);
1240 }
1241
1242 trace_sched_stat_blocked(tsk, delta);
1243
1244 /*
1245 * Blocking time is in units of nanosecs, so shift by
1246 * 20 to get a milliseconds-range estimation of the
1247 * amount of time that the task spent sleeping:
1248 */
1249 if (unlikely(prof_on == SLEEP_PROFILING)) {
1250 profile_hits(SLEEP_PROFILING,
1251 (void *)get_wchan(tsk),
1252 delta >> 20);
1253 }
1254 account_scheduler_latency(tsk, delta >> 10, 0);
1255 }
1256 }
1257 #endif
1258 }
1259
1260 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1261 {
1262 #ifdef CONFIG_SCHED_DEBUG
1263 s64 d = se->vruntime - cfs_rq->min_vruntime;
1264
1265 if (d < 0)
1266 d = -d;
1267
1268 if (d > 3*sysctl_sched_latency)
1269 schedstat_inc(cfs_rq, nr_spread_over);
1270 #endif
1271 }
1272
1273 static void
1274 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1275 {
1276 u64 vruntime = cfs_rq->min_vruntime;
1277
1278 /*
1279 * The 'current' period is already promised to the current tasks,
1280 * however the extra weight of the new task will slow them down a
1281 * little, place the new task so that it fits in the slot that
1282 * stays open at the end.
1283 */
1284 if (initial && sched_feat(START_DEBIT))
1285 vruntime += sched_vslice(cfs_rq, se);
1286
1287 /* sleeps up to a single latency don't count. */
1288 if (!initial) {
1289 unsigned long thresh = sysctl_sched_latency;
1290
1291 /*
1292 * Halve their sleep time's effect, to allow
1293 * for a gentler effect of sleepers:
1294 */
1295 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1296 thresh >>= 1;
1297
1298 vruntime -= thresh;
1299 }
1300
1301 /* ensure we never gain time by being placed backwards. */
1302 vruntime = max_vruntime(se->vruntime, vruntime);
1303
1304 se->vruntime = vruntime;
1305 }
1306
1307 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1308
1309 static void
1310 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1311 {
1312 /*
1313 * Update the normalized vruntime before updating min_vruntime
1314 * through callig update_curr().
1315 */
1316 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1317 se->vruntime += cfs_rq->min_vruntime;
1318
1319 /*
1320 * Update run-time statistics of the 'current'.
1321 */
1322 update_curr(cfs_rq);
1323 update_cfs_load(cfs_rq, 0);
1324 account_entity_enqueue(cfs_rq, se);
1325 update_cfs_shares(cfs_rq);
1326
1327 if (flags & ENQUEUE_WAKEUP) {
1328 place_entity(cfs_rq, se, 0);
1329 enqueue_sleeper(cfs_rq, se);
1330 }
1331
1332 update_stats_enqueue(cfs_rq, se);
1333 check_spread(cfs_rq, se);
1334 if (se != cfs_rq->curr)
1335 __enqueue_entity(cfs_rq, se);
1336 se->on_rq = 1;
1337
1338 if (cfs_rq->nr_running == 1) {
1339 list_add_leaf_cfs_rq(cfs_rq);
1340 check_enqueue_throttle(cfs_rq);
1341 }
1342 }
1343
1344 static void __clear_buddies_last(struct sched_entity *se)
1345 {
1346 for_each_sched_entity(se) {
1347 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1348 if (cfs_rq->last == se)
1349 cfs_rq->last = NULL;
1350 else
1351 break;
1352 }
1353 }
1354
1355 static void __clear_buddies_next(struct sched_entity *se)
1356 {
1357 for_each_sched_entity(se) {
1358 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1359 if (cfs_rq->next == se)
1360 cfs_rq->next = NULL;
1361 else
1362 break;
1363 }
1364 }
1365
1366 static void __clear_buddies_skip(struct sched_entity *se)
1367 {
1368 for_each_sched_entity(se) {
1369 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1370 if (cfs_rq->skip == se)
1371 cfs_rq->skip = NULL;
1372 else
1373 break;
1374 }
1375 }
1376
1377 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1378 {
1379 if (cfs_rq->last == se)
1380 __clear_buddies_last(se);
1381
1382 if (cfs_rq->next == se)
1383 __clear_buddies_next(se);
1384
1385 if (cfs_rq->skip == se)
1386 __clear_buddies_skip(se);
1387 }
1388
1389 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1390
1391 static void
1392 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1393 {
1394 /*
1395 * Update run-time statistics of the 'current'.
1396 */
1397 update_curr(cfs_rq);
1398
1399 update_stats_dequeue(cfs_rq, se);
1400 if (flags & DEQUEUE_SLEEP) {
1401 #ifdef CONFIG_SCHEDSTATS
1402 if (entity_is_task(se)) {
1403 struct task_struct *tsk = task_of(se);
1404
1405 if (tsk->state & TASK_INTERRUPTIBLE)
1406 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1407 if (tsk->state & TASK_UNINTERRUPTIBLE)
1408 se->statistics.block_start = rq_of(cfs_rq)->clock;
1409 }
1410 #endif
1411 }
1412
1413 clear_buddies(cfs_rq, se);
1414
1415 if (se != cfs_rq->curr)
1416 __dequeue_entity(cfs_rq, se);
1417 se->on_rq = 0;
1418 update_cfs_load(cfs_rq, 0);
1419 account_entity_dequeue(cfs_rq, se);
1420
1421 /*
1422 * Normalize the entity after updating the min_vruntime because the
1423 * update can refer to the ->curr item and we need to reflect this
1424 * movement in our normalized position.
1425 */
1426 if (!(flags & DEQUEUE_SLEEP))
1427 se->vruntime -= cfs_rq->min_vruntime;
1428
1429 /* return excess runtime on last dequeue */
1430 return_cfs_rq_runtime(cfs_rq);
1431
1432 update_min_vruntime(cfs_rq);
1433 update_cfs_shares(cfs_rq);
1434 }
1435
1436 /*
1437 * Preempt the current task with a newly woken task if needed:
1438 */
1439 static void
1440 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1441 {
1442 unsigned long ideal_runtime, delta_exec;
1443 struct sched_entity *se;
1444 s64 delta;
1445
1446 ideal_runtime = sched_slice(cfs_rq, curr);
1447 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1448 if (delta_exec > ideal_runtime) {
1449 resched_task(rq_of(cfs_rq)->curr);
1450 /*
1451 * The current task ran long enough, ensure it doesn't get
1452 * re-elected due to buddy favours.
1453 */
1454 clear_buddies(cfs_rq, curr);
1455 return;
1456 }
1457
1458 /*
1459 * Ensure that a task that missed wakeup preemption by a
1460 * narrow margin doesn't have to wait for a full slice.
1461 * This also mitigates buddy induced latencies under load.
1462 */
1463 if (delta_exec < sysctl_sched_min_granularity)
1464 return;
1465
1466 se = __pick_first_entity(cfs_rq);
1467 delta = curr->vruntime - se->vruntime;
1468
1469 if (delta < 0)
1470 return;
1471
1472 if (delta > ideal_runtime)
1473 resched_task(rq_of(cfs_rq)->curr);
1474 }
1475
1476 static void
1477 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1478 {
1479 /* 'current' is not kept within the tree. */
1480 if (se->on_rq) {
1481 /*
1482 * Any task has to be enqueued before it get to execute on
1483 * a CPU. So account for the time it spent waiting on the
1484 * runqueue.
1485 */
1486 update_stats_wait_end(cfs_rq, se);
1487 __dequeue_entity(cfs_rq, se);
1488 }
1489
1490 update_stats_curr_start(cfs_rq, se);
1491 cfs_rq->curr = se;
1492 #ifdef CONFIG_SCHEDSTATS
1493 /*
1494 * Track our maximum slice length, if the CPU's load is at
1495 * least twice that of our own weight (i.e. dont track it
1496 * when there are only lesser-weight tasks around):
1497 */
1498 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1499 se->statistics.slice_max = max(se->statistics.slice_max,
1500 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1501 }
1502 #endif
1503 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1504 }
1505
1506 static int
1507 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1508
1509 /*
1510 * Pick the next process, keeping these things in mind, in this order:
1511 * 1) keep things fair between processes/task groups
1512 * 2) pick the "next" process, since someone really wants that to run
1513 * 3) pick the "last" process, for cache locality
1514 * 4) do not run the "skip" process, if something else is available
1515 */
1516 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1517 {
1518 struct sched_entity *se = __pick_first_entity(cfs_rq);
1519 struct sched_entity *left = se;
1520
1521 /*
1522 * Avoid running the skip buddy, if running something else can
1523 * be done without getting too unfair.
1524 */
1525 if (cfs_rq->skip == se) {
1526 struct sched_entity *second = __pick_next_entity(se);
1527 if (second && wakeup_preempt_entity(second, left) < 1)
1528 se = second;
1529 }
1530
1531 /*
1532 * Prefer last buddy, try to return the CPU to a preempted task.
1533 */
1534 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1535 se = cfs_rq->last;
1536
1537 /*
1538 * Someone really wants this to run. If it's not unfair, run it.
1539 */
1540 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1541 se = cfs_rq->next;
1542
1543 clear_buddies(cfs_rq, se);
1544
1545 return se;
1546 }
1547
1548 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1549
1550 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1551 {
1552 /*
1553 * If still on the runqueue then deactivate_task()
1554 * was not called and update_curr() has to be done:
1555 */
1556 if (prev->on_rq)
1557 update_curr(cfs_rq);
1558
1559 /* throttle cfs_rqs exceeding runtime */
1560 check_cfs_rq_runtime(cfs_rq);
1561
1562 check_spread(cfs_rq, prev);
1563 if (prev->on_rq) {
1564 update_stats_wait_start(cfs_rq, prev);
1565 /* Put 'current' back into the tree. */
1566 __enqueue_entity(cfs_rq, prev);
1567 }
1568 cfs_rq->curr = NULL;
1569 }
1570
1571 static void
1572 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1573 {
1574 /*
1575 * Update run-time statistics of the 'current'.
1576 */
1577 update_curr(cfs_rq);
1578
1579 /*
1580 * Update share accounting for long-running entities.
1581 */
1582 update_entity_shares_tick(cfs_rq);
1583
1584 #ifdef CONFIG_SCHED_HRTICK
1585 /*
1586 * queued ticks are scheduled to match the slice, so don't bother
1587 * validating it and just reschedule.
1588 */
1589 if (queued) {
1590 resched_task(rq_of(cfs_rq)->curr);
1591 return;
1592 }
1593 /*
1594 * don't let the period tick interfere with the hrtick preemption
1595 */
1596 if (!sched_feat(DOUBLE_TICK) &&
1597 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1598 return;
1599 #endif
1600
1601 if (cfs_rq->nr_running > 1)
1602 check_preempt_tick(cfs_rq, curr);
1603 }
1604
1605
1606 /**************************************************
1607 * CFS bandwidth control machinery
1608 */
1609
1610 #ifdef CONFIG_CFS_BANDWIDTH
1611
1612 #ifdef HAVE_JUMP_LABEL
1613 static struct static_key __cfs_bandwidth_used;
1614
1615 static inline bool cfs_bandwidth_used(void)
1616 {
1617 return static_key_false(&__cfs_bandwidth_used);
1618 }
1619
1620 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1621 {
1622 /* only need to count groups transitioning between enabled/!enabled */
1623 if (enabled && !was_enabled)
1624 static_key_slow_inc(&__cfs_bandwidth_used);
1625 else if (!enabled && was_enabled)
1626 static_key_slow_dec(&__cfs_bandwidth_used);
1627 }
1628 #else /* HAVE_JUMP_LABEL */
1629 static bool cfs_bandwidth_used(void)
1630 {
1631 return true;
1632 }
1633
1634 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1635 #endif /* HAVE_JUMP_LABEL */
1636
1637 /*
1638 * default period for cfs group bandwidth.
1639 * default: 0.1s, units: nanoseconds
1640 */
1641 static inline u64 default_cfs_period(void)
1642 {
1643 return 100000000ULL;
1644 }
1645
1646 static inline u64 sched_cfs_bandwidth_slice(void)
1647 {
1648 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1649 }
1650
1651 /*
1652 * Replenish runtime according to assigned quota and update expiration time.
1653 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1654 * additional synchronization around rq->lock.
1655 *
1656 * requires cfs_b->lock
1657 */
1658 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1659 {
1660 u64 now;
1661
1662 if (cfs_b->quota == RUNTIME_INF)
1663 return;
1664
1665 now = sched_clock_cpu(smp_processor_id());
1666 cfs_b->runtime = cfs_b->quota;
1667 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1668 }
1669
1670 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1671 {
1672 return &tg->cfs_bandwidth;
1673 }
1674
1675 /* returns 0 on failure to allocate runtime */
1676 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1677 {
1678 struct task_group *tg = cfs_rq->tg;
1679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1680 u64 amount = 0, min_amount, expires;
1681
1682 /* note: this is a positive sum as runtime_remaining <= 0 */
1683 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1684
1685 raw_spin_lock(&cfs_b->lock);
1686 if (cfs_b->quota == RUNTIME_INF)
1687 amount = min_amount;
1688 else {
1689 /*
1690 * If the bandwidth pool has become inactive, then at least one
1691 * period must have elapsed since the last consumption.
1692 * Refresh the global state and ensure bandwidth timer becomes
1693 * active.
1694 */
1695 if (!cfs_b->timer_active) {
1696 __refill_cfs_bandwidth_runtime(cfs_b);
1697 __start_cfs_bandwidth(cfs_b);
1698 }
1699
1700 if (cfs_b->runtime > 0) {
1701 amount = min(cfs_b->runtime, min_amount);
1702 cfs_b->runtime -= amount;
1703 cfs_b->idle = 0;
1704 }
1705 }
1706 expires = cfs_b->runtime_expires;
1707 raw_spin_unlock(&cfs_b->lock);
1708
1709 cfs_rq->runtime_remaining += amount;
1710 /*
1711 * we may have advanced our local expiration to account for allowed
1712 * spread between our sched_clock and the one on which runtime was
1713 * issued.
1714 */
1715 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1716 cfs_rq->runtime_expires = expires;
1717
1718 return cfs_rq->runtime_remaining > 0;
1719 }
1720
1721 /*
1722 * Note: This depends on the synchronization provided by sched_clock and the
1723 * fact that rq->clock snapshots this value.
1724 */
1725 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1726 {
1727 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1728 struct rq *rq = rq_of(cfs_rq);
1729
1730 /* if the deadline is ahead of our clock, nothing to do */
1731 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1732 return;
1733
1734 if (cfs_rq->runtime_remaining < 0)
1735 return;
1736
1737 /*
1738 * If the local deadline has passed we have to consider the
1739 * possibility that our sched_clock is 'fast' and the global deadline
1740 * has not truly expired.
1741 *
1742 * Fortunately we can check determine whether this the case by checking
1743 * whether the global deadline has advanced.
1744 */
1745
1746 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1747 /* extend local deadline, drift is bounded above by 2 ticks */
1748 cfs_rq->runtime_expires += TICK_NSEC;
1749 } else {
1750 /* global deadline is ahead, expiration has passed */
1751 cfs_rq->runtime_remaining = 0;
1752 }
1753 }
1754
1755 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1756 unsigned long delta_exec)
1757 {
1758 /* dock delta_exec before expiring quota (as it could span periods) */
1759 cfs_rq->runtime_remaining -= delta_exec;
1760 expire_cfs_rq_runtime(cfs_rq);
1761
1762 if (likely(cfs_rq->runtime_remaining > 0))
1763 return;
1764
1765 /*
1766 * if we're unable to extend our runtime we resched so that the active
1767 * hierarchy can be throttled
1768 */
1769 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1770 resched_task(rq_of(cfs_rq)->curr);
1771 }
1772
1773 static __always_inline
1774 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1775 {
1776 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1777 return;
1778
1779 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1780 }
1781
1782 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1783 {
1784 return cfs_bandwidth_used() && cfs_rq->throttled;
1785 }
1786
1787 /* check whether cfs_rq, or any parent, is throttled */
1788 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1789 {
1790 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1791 }
1792
1793 /*
1794 * Ensure that neither of the group entities corresponding to src_cpu or
1795 * dest_cpu are members of a throttled hierarchy when performing group
1796 * load-balance operations.
1797 */
1798 static inline int throttled_lb_pair(struct task_group *tg,
1799 int src_cpu, int dest_cpu)
1800 {
1801 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1802
1803 src_cfs_rq = tg->cfs_rq[src_cpu];
1804 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1805
1806 return throttled_hierarchy(src_cfs_rq) ||
1807 throttled_hierarchy(dest_cfs_rq);
1808 }
1809
1810 /* updated child weight may affect parent so we have to do this bottom up */
1811 static int tg_unthrottle_up(struct task_group *tg, void *data)
1812 {
1813 struct rq *rq = data;
1814 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1815
1816 cfs_rq->throttle_count--;
1817 #ifdef CONFIG_SMP
1818 if (!cfs_rq->throttle_count) {
1819 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1820
1821 /* leaving throttled state, advance shares averaging windows */
1822 cfs_rq->load_stamp += delta;
1823 cfs_rq->load_last += delta;
1824
1825 /* update entity weight now that we are on_rq again */
1826 update_cfs_shares(cfs_rq);
1827 }
1828 #endif
1829
1830 return 0;
1831 }
1832
1833 static int tg_throttle_down(struct task_group *tg, void *data)
1834 {
1835 struct rq *rq = data;
1836 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1837
1838 /* group is entering throttled state, record last load */
1839 if (!cfs_rq->throttle_count)
1840 update_cfs_load(cfs_rq, 0);
1841 cfs_rq->throttle_count++;
1842
1843 return 0;
1844 }
1845
1846 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1847 {
1848 struct rq *rq = rq_of(cfs_rq);
1849 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1850 struct sched_entity *se;
1851 long task_delta, dequeue = 1;
1852
1853 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1854
1855 /* account load preceding throttle */
1856 rcu_read_lock();
1857 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1858 rcu_read_unlock();
1859
1860 task_delta = cfs_rq->h_nr_running;
1861 for_each_sched_entity(se) {
1862 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1863 /* throttled entity or throttle-on-deactivate */
1864 if (!se->on_rq)
1865 break;
1866
1867 if (dequeue)
1868 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1869 qcfs_rq->h_nr_running -= task_delta;
1870
1871 if (qcfs_rq->load.weight)
1872 dequeue = 0;
1873 }
1874
1875 if (!se)
1876 rq->nr_running -= task_delta;
1877
1878 cfs_rq->throttled = 1;
1879 cfs_rq->throttled_timestamp = rq->clock;
1880 raw_spin_lock(&cfs_b->lock);
1881 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1882 raw_spin_unlock(&cfs_b->lock);
1883 }
1884
1885 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1886 {
1887 struct rq *rq = rq_of(cfs_rq);
1888 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1889 struct sched_entity *se;
1890 int enqueue = 1;
1891 long task_delta;
1892
1893 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1894
1895 cfs_rq->throttled = 0;
1896 raw_spin_lock(&cfs_b->lock);
1897 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1898 list_del_rcu(&cfs_rq->throttled_list);
1899 raw_spin_unlock(&cfs_b->lock);
1900 cfs_rq->throttled_timestamp = 0;
1901
1902 update_rq_clock(rq);
1903 /* update hierarchical throttle state */
1904 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1905
1906 if (!cfs_rq->load.weight)
1907 return;
1908
1909 task_delta = cfs_rq->h_nr_running;
1910 for_each_sched_entity(se) {
1911 if (se->on_rq)
1912 enqueue = 0;
1913
1914 cfs_rq = cfs_rq_of(se);
1915 if (enqueue)
1916 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1917 cfs_rq->h_nr_running += task_delta;
1918
1919 if (cfs_rq_throttled(cfs_rq))
1920 break;
1921 }
1922
1923 if (!se)
1924 rq->nr_running += task_delta;
1925
1926 /* determine whether we need to wake up potentially idle cpu */
1927 if (rq->curr == rq->idle && rq->cfs.nr_running)
1928 resched_task(rq->curr);
1929 }
1930
1931 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1932 u64 remaining, u64 expires)
1933 {
1934 struct cfs_rq *cfs_rq;
1935 u64 runtime = remaining;
1936
1937 rcu_read_lock();
1938 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1939 throttled_list) {
1940 struct rq *rq = rq_of(cfs_rq);
1941
1942 raw_spin_lock(&rq->lock);
1943 if (!cfs_rq_throttled(cfs_rq))
1944 goto next;
1945
1946 runtime = -cfs_rq->runtime_remaining + 1;
1947 if (runtime > remaining)
1948 runtime = remaining;
1949 remaining -= runtime;
1950
1951 cfs_rq->runtime_remaining += runtime;
1952 cfs_rq->runtime_expires = expires;
1953
1954 /* we check whether we're throttled above */
1955 if (cfs_rq->runtime_remaining > 0)
1956 unthrottle_cfs_rq(cfs_rq);
1957
1958 next:
1959 raw_spin_unlock(&rq->lock);
1960
1961 if (!remaining)
1962 break;
1963 }
1964 rcu_read_unlock();
1965
1966 return remaining;
1967 }
1968
1969 /*
1970 * Responsible for refilling a task_group's bandwidth and unthrottling its
1971 * cfs_rqs as appropriate. If there has been no activity within the last
1972 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1973 * used to track this state.
1974 */
1975 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1976 {
1977 u64 runtime, runtime_expires;
1978 int idle = 1, throttled;
1979
1980 raw_spin_lock(&cfs_b->lock);
1981 /* no need to continue the timer with no bandwidth constraint */
1982 if (cfs_b->quota == RUNTIME_INF)
1983 goto out_unlock;
1984
1985 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1986 /* idle depends on !throttled (for the case of a large deficit) */
1987 idle = cfs_b->idle && !throttled;
1988 cfs_b->nr_periods += overrun;
1989
1990 /* if we're going inactive then everything else can be deferred */
1991 if (idle)
1992 goto out_unlock;
1993
1994 __refill_cfs_bandwidth_runtime(cfs_b);
1995
1996 if (!throttled) {
1997 /* mark as potentially idle for the upcoming period */
1998 cfs_b->idle = 1;
1999 goto out_unlock;
2000 }
2001
2002 /* account preceding periods in which throttling occurred */
2003 cfs_b->nr_throttled += overrun;
2004
2005 /*
2006 * There are throttled entities so we must first use the new bandwidth
2007 * to unthrottle them before making it generally available. This
2008 * ensures that all existing debts will be paid before a new cfs_rq is
2009 * allowed to run.
2010 */
2011 runtime = cfs_b->runtime;
2012 runtime_expires = cfs_b->runtime_expires;
2013 cfs_b->runtime = 0;
2014
2015 /*
2016 * This check is repeated as we are holding onto the new bandwidth
2017 * while we unthrottle. This can potentially race with an unthrottled
2018 * group trying to acquire new bandwidth from the global pool.
2019 */
2020 while (throttled && runtime > 0) {
2021 raw_spin_unlock(&cfs_b->lock);
2022 /* we can't nest cfs_b->lock while distributing bandwidth */
2023 runtime = distribute_cfs_runtime(cfs_b, runtime,
2024 runtime_expires);
2025 raw_spin_lock(&cfs_b->lock);
2026
2027 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2028 }
2029
2030 /* return (any) remaining runtime */
2031 cfs_b->runtime = runtime;
2032 /*
2033 * While we are ensured activity in the period following an
2034 * unthrottle, this also covers the case in which the new bandwidth is
2035 * insufficient to cover the existing bandwidth deficit. (Forcing the
2036 * timer to remain active while there are any throttled entities.)
2037 */
2038 cfs_b->idle = 0;
2039 out_unlock:
2040 if (idle)
2041 cfs_b->timer_active = 0;
2042 raw_spin_unlock(&cfs_b->lock);
2043
2044 return idle;
2045 }
2046
2047 /* a cfs_rq won't donate quota below this amount */
2048 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2049 /* minimum remaining period time to redistribute slack quota */
2050 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2051 /* how long we wait to gather additional slack before distributing */
2052 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2053
2054 /* are we near the end of the current quota period? */
2055 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2056 {
2057 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2058 u64 remaining;
2059
2060 /* if the call-back is running a quota refresh is already occurring */
2061 if (hrtimer_callback_running(refresh_timer))
2062 return 1;
2063
2064 /* is a quota refresh about to occur? */
2065 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2066 if (remaining < min_expire)
2067 return 1;
2068
2069 return 0;
2070 }
2071
2072 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2073 {
2074 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2075
2076 /* if there's a quota refresh soon don't bother with slack */
2077 if (runtime_refresh_within(cfs_b, min_left))
2078 return;
2079
2080 start_bandwidth_timer(&cfs_b->slack_timer,
2081 ns_to_ktime(cfs_bandwidth_slack_period));
2082 }
2083
2084 /* we know any runtime found here is valid as update_curr() precedes return */
2085 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2086 {
2087 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2088 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2089
2090 if (slack_runtime <= 0)
2091 return;
2092
2093 raw_spin_lock(&cfs_b->lock);
2094 if (cfs_b->quota != RUNTIME_INF &&
2095 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2096 cfs_b->runtime += slack_runtime;
2097
2098 /* we are under rq->lock, defer unthrottling using a timer */
2099 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2100 !list_empty(&cfs_b->throttled_cfs_rq))
2101 start_cfs_slack_bandwidth(cfs_b);
2102 }
2103 raw_spin_unlock(&cfs_b->lock);
2104
2105 /* even if it's not valid for return we don't want to try again */
2106 cfs_rq->runtime_remaining -= slack_runtime;
2107 }
2108
2109 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2110 {
2111 if (!cfs_bandwidth_used())
2112 return;
2113
2114 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2115 return;
2116
2117 __return_cfs_rq_runtime(cfs_rq);
2118 }
2119
2120 /*
2121 * This is done with a timer (instead of inline with bandwidth return) since
2122 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2123 */
2124 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2125 {
2126 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2127 u64 expires;
2128
2129 /* confirm we're still not at a refresh boundary */
2130 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2131 return;
2132
2133 raw_spin_lock(&cfs_b->lock);
2134 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2135 runtime = cfs_b->runtime;
2136 cfs_b->runtime = 0;
2137 }
2138 expires = cfs_b->runtime_expires;
2139 raw_spin_unlock(&cfs_b->lock);
2140
2141 if (!runtime)
2142 return;
2143
2144 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2145
2146 raw_spin_lock(&cfs_b->lock);
2147 if (expires == cfs_b->runtime_expires)
2148 cfs_b->runtime = runtime;
2149 raw_spin_unlock(&cfs_b->lock);
2150 }
2151
2152 /*
2153 * When a group wakes up we want to make sure that its quota is not already
2154 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2155 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2156 */
2157 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2158 {
2159 if (!cfs_bandwidth_used())
2160 return;
2161
2162 /* an active group must be handled by the update_curr()->put() path */
2163 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2164 return;
2165
2166 /* ensure the group is not already throttled */
2167 if (cfs_rq_throttled(cfs_rq))
2168 return;
2169
2170 /* update runtime allocation */
2171 account_cfs_rq_runtime(cfs_rq, 0);
2172 if (cfs_rq->runtime_remaining <= 0)
2173 throttle_cfs_rq(cfs_rq);
2174 }
2175
2176 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2177 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2178 {
2179 if (!cfs_bandwidth_used())
2180 return;
2181
2182 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2183 return;
2184
2185 /*
2186 * it's possible for a throttled entity to be forced into a running
2187 * state (e.g. set_curr_task), in this case we're finished.
2188 */
2189 if (cfs_rq_throttled(cfs_rq))
2190 return;
2191
2192 throttle_cfs_rq(cfs_rq);
2193 }
2194
2195 static inline u64 default_cfs_period(void);
2196 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2197 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2198
2199 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2200 {
2201 struct cfs_bandwidth *cfs_b =
2202 container_of(timer, struct cfs_bandwidth, slack_timer);
2203 do_sched_cfs_slack_timer(cfs_b);
2204
2205 return HRTIMER_NORESTART;
2206 }
2207
2208 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2209 {
2210 struct cfs_bandwidth *cfs_b =
2211 container_of(timer, struct cfs_bandwidth, period_timer);
2212 ktime_t now;
2213 int overrun;
2214 int idle = 0;
2215
2216 for (;;) {
2217 now = hrtimer_cb_get_time(timer);
2218 overrun = hrtimer_forward(timer, now, cfs_b->period);
2219
2220 if (!overrun)
2221 break;
2222
2223 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2224 }
2225
2226 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2227 }
2228
2229 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2230 {
2231 raw_spin_lock_init(&cfs_b->lock);
2232 cfs_b->runtime = 0;
2233 cfs_b->quota = RUNTIME_INF;
2234 cfs_b->period = ns_to_ktime(default_cfs_period());
2235
2236 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2237 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2238 cfs_b->period_timer.function = sched_cfs_period_timer;
2239 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2240 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2241 }
2242
2243 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2244 {
2245 cfs_rq->runtime_enabled = 0;
2246 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2247 }
2248
2249 /* requires cfs_b->lock, may release to reprogram timer */
2250 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2251 {
2252 /*
2253 * The timer may be active because we're trying to set a new bandwidth
2254 * period or because we're racing with the tear-down path
2255 * (timer_active==0 becomes visible before the hrtimer call-back
2256 * terminates). In either case we ensure that it's re-programmed
2257 */
2258 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2259 raw_spin_unlock(&cfs_b->lock);
2260 /* ensure cfs_b->lock is available while we wait */
2261 hrtimer_cancel(&cfs_b->period_timer);
2262
2263 raw_spin_lock(&cfs_b->lock);
2264 /* if someone else restarted the timer then we're done */
2265 if (cfs_b->timer_active)
2266 return;
2267 }
2268
2269 cfs_b->timer_active = 1;
2270 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2271 }
2272
2273 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2274 {
2275 hrtimer_cancel(&cfs_b->period_timer);
2276 hrtimer_cancel(&cfs_b->slack_timer);
2277 }
2278
2279 static void unthrottle_offline_cfs_rqs(struct rq *rq)
2280 {
2281 struct cfs_rq *cfs_rq;
2282
2283 for_each_leaf_cfs_rq(rq, cfs_rq) {
2284 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2285
2286 if (!cfs_rq->runtime_enabled)
2287 continue;
2288
2289 /*
2290 * clock_task is not advancing so we just need to make sure
2291 * there's some valid quota amount
2292 */
2293 cfs_rq->runtime_remaining = cfs_b->quota;
2294 if (cfs_rq_throttled(cfs_rq))
2295 unthrottle_cfs_rq(cfs_rq);
2296 }
2297 }
2298
2299 #else /* CONFIG_CFS_BANDWIDTH */
2300 static __always_inline
2301 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2302 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2303 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2304 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2305
2306 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2307 {
2308 return 0;
2309 }
2310
2311 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2312 {
2313 return 0;
2314 }
2315
2316 static inline int throttled_lb_pair(struct task_group *tg,
2317 int src_cpu, int dest_cpu)
2318 {
2319 return 0;
2320 }
2321
2322 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2323
2324 #ifdef CONFIG_FAIR_GROUP_SCHED
2325 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2326 #endif
2327
2328 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2329 {
2330 return NULL;
2331 }
2332 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2333 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2334
2335 #endif /* CONFIG_CFS_BANDWIDTH */
2336
2337 /**************************************************
2338 * CFS operations on tasks:
2339 */
2340
2341 #ifdef CONFIG_SCHED_HRTICK
2342 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2343 {
2344 struct sched_entity *se = &p->se;
2345 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2346
2347 WARN_ON(task_rq(p) != rq);
2348
2349 if (cfs_rq->nr_running > 1) {
2350 u64 slice = sched_slice(cfs_rq, se);
2351 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2352 s64 delta = slice - ran;
2353
2354 if (delta < 0) {
2355 if (rq->curr == p)
2356 resched_task(p);
2357 return;
2358 }
2359
2360 /*
2361 * Don't schedule slices shorter than 10000ns, that just
2362 * doesn't make sense. Rely on vruntime for fairness.
2363 */
2364 if (rq->curr != p)
2365 delta = max_t(s64, 10000LL, delta);
2366
2367 hrtick_start(rq, delta);
2368 }
2369 }
2370
2371 /*
2372 * called from enqueue/dequeue and updates the hrtick when the
2373 * current task is from our class and nr_running is low enough
2374 * to matter.
2375 */
2376 static void hrtick_update(struct rq *rq)
2377 {
2378 struct task_struct *curr = rq->curr;
2379
2380 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2381 return;
2382
2383 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2384 hrtick_start_fair(rq, curr);
2385 }
2386 #else /* !CONFIG_SCHED_HRTICK */
2387 static inline void
2388 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2389 {
2390 }
2391
2392 static inline void hrtick_update(struct rq *rq)
2393 {
2394 }
2395 #endif
2396
2397 /*
2398 * The enqueue_task method is called before nr_running is
2399 * increased. Here we update the fair scheduling stats and
2400 * then put the task into the rbtree:
2401 */
2402 static void
2403 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2404 {
2405 struct cfs_rq *cfs_rq;
2406 struct sched_entity *se = &p->se;
2407
2408 for_each_sched_entity(se) {
2409 if (se->on_rq)
2410 break;
2411 cfs_rq = cfs_rq_of(se);
2412 enqueue_entity(cfs_rq, se, flags);
2413
2414 /*
2415 * end evaluation on encountering a throttled cfs_rq
2416 *
2417 * note: in the case of encountering a throttled cfs_rq we will
2418 * post the final h_nr_running increment below.
2419 */
2420 if (cfs_rq_throttled(cfs_rq))
2421 break;
2422 cfs_rq->h_nr_running++;
2423
2424 flags = ENQUEUE_WAKEUP;
2425 }
2426
2427 for_each_sched_entity(se) {
2428 cfs_rq = cfs_rq_of(se);
2429 cfs_rq->h_nr_running++;
2430
2431 if (cfs_rq_throttled(cfs_rq))
2432 break;
2433
2434 update_cfs_load(cfs_rq, 0);
2435 update_cfs_shares(cfs_rq);
2436 }
2437
2438 if (!se)
2439 inc_nr_running(rq);
2440 hrtick_update(rq);
2441 }
2442
2443 static void set_next_buddy(struct sched_entity *se);
2444
2445 /*
2446 * The dequeue_task method is called before nr_running is
2447 * decreased. We remove the task from the rbtree and
2448 * update the fair scheduling stats:
2449 */
2450 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2451 {
2452 struct cfs_rq *cfs_rq;
2453 struct sched_entity *se = &p->se;
2454 int task_sleep = flags & DEQUEUE_SLEEP;
2455
2456 for_each_sched_entity(se) {
2457 cfs_rq = cfs_rq_of(se);
2458 dequeue_entity(cfs_rq, se, flags);
2459
2460 /*
2461 * end evaluation on encountering a throttled cfs_rq
2462 *
2463 * note: in the case of encountering a throttled cfs_rq we will
2464 * post the final h_nr_running decrement below.
2465 */
2466 if (cfs_rq_throttled(cfs_rq))
2467 break;
2468 cfs_rq->h_nr_running--;
2469
2470 /* Don't dequeue parent if it has other entities besides us */
2471 if (cfs_rq->load.weight) {
2472 /*
2473 * Bias pick_next to pick a task from this cfs_rq, as
2474 * p is sleeping when it is within its sched_slice.
2475 */
2476 if (task_sleep && parent_entity(se))
2477 set_next_buddy(parent_entity(se));
2478
2479 /* avoid re-evaluating load for this entity */
2480 se = parent_entity(se);
2481 break;
2482 }
2483 flags |= DEQUEUE_SLEEP;
2484 }
2485
2486 for_each_sched_entity(se) {
2487 cfs_rq = cfs_rq_of(se);
2488 cfs_rq->h_nr_running--;
2489
2490 if (cfs_rq_throttled(cfs_rq))
2491 break;
2492
2493 update_cfs_load(cfs_rq, 0);
2494 update_cfs_shares(cfs_rq);
2495 }
2496
2497 if (!se)
2498 dec_nr_running(rq);
2499 hrtick_update(rq);
2500 }
2501
2502 #ifdef CONFIG_SMP
2503 /* Used instead of source_load when we know the type == 0 */
2504 static unsigned long weighted_cpuload(const int cpu)
2505 {
2506 return cpu_rq(cpu)->load.weight;
2507 }
2508
2509 /*
2510 * Return a low guess at the load of a migration-source cpu weighted
2511 * according to the scheduling class and "nice" value.
2512 *
2513 * We want to under-estimate the load of migration sources, to
2514 * balance conservatively.
2515 */
2516 static unsigned long source_load(int cpu, int type)
2517 {
2518 struct rq *rq = cpu_rq(cpu);
2519 unsigned long total = weighted_cpuload(cpu);
2520
2521 if (type == 0 || !sched_feat(LB_BIAS))
2522 return total;
2523
2524 return min(rq->cpu_load[type-1], total);
2525 }
2526
2527 /*
2528 * Return a high guess at the load of a migration-target cpu weighted
2529 * according to the scheduling class and "nice" value.
2530 */
2531 static unsigned long target_load(int cpu, int type)
2532 {
2533 struct rq *rq = cpu_rq(cpu);
2534 unsigned long total = weighted_cpuload(cpu);
2535
2536 if (type == 0 || !sched_feat(LB_BIAS))
2537 return total;
2538
2539 return max(rq->cpu_load[type-1], total);
2540 }
2541
2542 static unsigned long power_of(int cpu)
2543 {
2544 return cpu_rq(cpu)->cpu_power;
2545 }
2546
2547 static unsigned long cpu_avg_load_per_task(int cpu)
2548 {
2549 struct rq *rq = cpu_rq(cpu);
2550 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2551
2552 if (nr_running)
2553 return rq->load.weight / nr_running;
2554
2555 return 0;
2556 }
2557
2558
2559 static void task_waking_fair(struct task_struct *p)
2560 {
2561 struct sched_entity *se = &p->se;
2562 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2563 u64 min_vruntime;
2564
2565 #ifndef CONFIG_64BIT
2566 u64 min_vruntime_copy;
2567
2568 do {
2569 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2570 smp_rmb();
2571 min_vruntime = cfs_rq->min_vruntime;
2572 } while (min_vruntime != min_vruntime_copy);
2573 #else
2574 min_vruntime = cfs_rq->min_vruntime;
2575 #endif
2576
2577 se->vruntime -= min_vruntime;
2578 }
2579
2580 #ifdef CONFIG_FAIR_GROUP_SCHED
2581 /*
2582 * effective_load() calculates the load change as seen from the root_task_group
2583 *
2584 * Adding load to a group doesn't make a group heavier, but can cause movement
2585 * of group shares between cpus. Assuming the shares were perfectly aligned one
2586 * can calculate the shift in shares.
2587 *
2588 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2589 * on this @cpu and results in a total addition (subtraction) of @wg to the
2590 * total group weight.
2591 *
2592 * Given a runqueue weight distribution (rw_i) we can compute a shares
2593 * distribution (s_i) using:
2594 *
2595 * s_i = rw_i / \Sum rw_j (1)
2596 *
2597 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2598 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2599 * shares distribution (s_i):
2600 *
2601 * rw_i = { 2, 4, 1, 0 }
2602 * s_i = { 2/7, 4/7, 1/7, 0 }
2603 *
2604 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2605 * task used to run on and the CPU the waker is running on), we need to
2606 * compute the effect of waking a task on either CPU and, in case of a sync
2607 * wakeup, compute the effect of the current task going to sleep.
2608 *
2609 * So for a change of @wl to the local @cpu with an overall group weight change
2610 * of @wl we can compute the new shares distribution (s'_i) using:
2611 *
2612 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2613 *
2614 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2615 * differences in waking a task to CPU 0. The additional task changes the
2616 * weight and shares distributions like:
2617 *
2618 * rw'_i = { 3, 4, 1, 0 }
2619 * s'_i = { 3/8, 4/8, 1/8, 0 }
2620 *
2621 * We can then compute the difference in effective weight by using:
2622 *
2623 * dw_i = S * (s'_i - s_i) (3)
2624 *
2625 * Where 'S' is the group weight as seen by its parent.
2626 *
2627 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2628 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2629 * 4/7) times the weight of the group.
2630 */
2631 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2632 {
2633 struct sched_entity *se = tg->se[cpu];
2634
2635 if (!tg->parent) /* the trivial, non-cgroup case */
2636 return wl;
2637
2638 for_each_sched_entity(se) {
2639 long w, W;
2640
2641 tg = se->my_q->tg;
2642
2643 /*
2644 * W = @wg + \Sum rw_j
2645 */
2646 W = wg + calc_tg_weight(tg, se->my_q);
2647
2648 /*
2649 * w = rw_i + @wl
2650 */
2651 w = se->my_q->load.weight + wl;
2652
2653 /*
2654 * wl = S * s'_i; see (2)
2655 */
2656 if (W > 0 && w < W)
2657 wl = (w * tg->shares) / W;
2658 else
2659 wl = tg->shares;
2660
2661 /*
2662 * Per the above, wl is the new se->load.weight value; since
2663 * those are clipped to [MIN_SHARES, ...) do so now. See
2664 * calc_cfs_shares().
2665 */
2666 if (wl < MIN_SHARES)
2667 wl = MIN_SHARES;
2668
2669 /*
2670 * wl = dw_i = S * (s'_i - s_i); see (3)
2671 */
2672 wl -= se->load.weight;
2673
2674 /*
2675 * Recursively apply this logic to all parent groups to compute
2676 * the final effective load change on the root group. Since
2677 * only the @tg group gets extra weight, all parent groups can
2678 * only redistribute existing shares. @wl is the shift in shares
2679 * resulting from this level per the above.
2680 */
2681 wg = 0;
2682 }
2683
2684 return wl;
2685 }
2686 #else
2687
2688 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2689 unsigned long wl, unsigned long wg)
2690 {
2691 return wl;
2692 }
2693
2694 #endif
2695
2696 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2697 {
2698 s64 this_load, load;
2699 int idx, this_cpu, prev_cpu;
2700 unsigned long tl_per_task;
2701 struct task_group *tg;
2702 unsigned long weight;
2703 int balanced;
2704
2705 idx = sd->wake_idx;
2706 this_cpu = smp_processor_id();
2707 prev_cpu = task_cpu(p);
2708 load = source_load(prev_cpu, idx);
2709 this_load = target_load(this_cpu, idx);
2710
2711 /*
2712 * If sync wakeup then subtract the (maximum possible)
2713 * effect of the currently running task from the load
2714 * of the current CPU:
2715 */
2716 if (sync) {
2717 tg = task_group(current);
2718 weight = current->se.load.weight;
2719
2720 this_load += effective_load(tg, this_cpu, -weight, -weight);
2721 load += effective_load(tg, prev_cpu, 0, -weight);
2722 }
2723
2724 tg = task_group(p);
2725 weight = p->se.load.weight;
2726
2727 /*
2728 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2729 * due to the sync cause above having dropped this_load to 0, we'll
2730 * always have an imbalance, but there's really nothing you can do
2731 * about that, so that's good too.
2732 *
2733 * Otherwise check if either cpus are near enough in load to allow this
2734 * task to be woken on this_cpu.
2735 */
2736 if (this_load > 0) {
2737 s64 this_eff_load, prev_eff_load;
2738
2739 this_eff_load = 100;
2740 this_eff_load *= power_of(prev_cpu);
2741 this_eff_load *= this_load +
2742 effective_load(tg, this_cpu, weight, weight);
2743
2744 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2745 prev_eff_load *= power_of(this_cpu);
2746 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2747
2748 balanced = this_eff_load <= prev_eff_load;
2749 } else
2750 balanced = true;
2751
2752 /*
2753 * If the currently running task will sleep within
2754 * a reasonable amount of time then attract this newly
2755 * woken task:
2756 */
2757 if (sync && balanced)
2758 return 1;
2759
2760 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2761 tl_per_task = cpu_avg_load_per_task(this_cpu);
2762
2763 if (balanced ||
2764 (this_load <= load &&
2765 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2766 /*
2767 * This domain has SD_WAKE_AFFINE and
2768 * p is cache cold in this domain, and
2769 * there is no bad imbalance.
2770 */
2771 schedstat_inc(sd, ttwu_move_affine);
2772 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2773
2774 return 1;
2775 }
2776 return 0;
2777 }
2778
2779 /*
2780 * find_idlest_group finds and returns the least busy CPU group within the
2781 * domain.
2782 */
2783 static struct sched_group *
2784 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2785 int this_cpu, int load_idx)
2786 {
2787 struct sched_group *idlest = NULL, *group = sd->groups;
2788 unsigned long min_load = ULONG_MAX, this_load = 0;
2789 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2790
2791 do {
2792 unsigned long load, avg_load;
2793 int local_group;
2794 int i;
2795
2796 /* Skip over this group if it has no CPUs allowed */
2797 if (!cpumask_intersects(sched_group_cpus(group),
2798 tsk_cpus_allowed(p)))
2799 continue;
2800
2801 local_group = cpumask_test_cpu(this_cpu,
2802 sched_group_cpus(group));
2803
2804 /* Tally up the load of all CPUs in the group */
2805 avg_load = 0;
2806
2807 for_each_cpu(i, sched_group_cpus(group)) {
2808 /* Bias balancing toward cpus of our domain */
2809 if (local_group)
2810 load = source_load(i, load_idx);
2811 else
2812 load = target_load(i, load_idx);
2813
2814 avg_load += load;
2815 }
2816
2817 /* Adjust by relative CPU power of the group */
2818 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2819
2820 if (local_group) {
2821 this_load = avg_load;
2822 } else if (avg_load < min_load) {
2823 min_load = avg_load;
2824 idlest = group;
2825 }
2826 } while (group = group->next, group != sd->groups);
2827
2828 if (!idlest || 100*this_load < imbalance*min_load)
2829 return NULL;
2830 return idlest;
2831 }
2832
2833 /*
2834 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2835 */
2836 static int
2837 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2838 {
2839 unsigned long load, min_load = ULONG_MAX;
2840 int idlest = -1;
2841 int i;
2842
2843 /* Traverse only the allowed CPUs */
2844 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2845 load = weighted_cpuload(i);
2846
2847 if (load < min_load || (load == min_load && i == this_cpu)) {
2848 min_load = load;
2849 idlest = i;
2850 }
2851 }
2852
2853 return idlest;
2854 }
2855
2856 /*
2857 * Try and locate an idle CPU in the sched_domain.
2858 */
2859 static int select_idle_sibling(struct task_struct *p, int target)
2860 {
2861 int cpu = smp_processor_id();
2862 int prev_cpu = task_cpu(p);
2863 struct sched_domain *sd;
2864 struct sched_group *sg;
2865 int i;
2866
2867 /*
2868 * If the task is going to be woken-up on this cpu and if it is
2869 * already idle, then it is the right target.
2870 */
2871 if (target == cpu && idle_cpu(cpu))
2872 return cpu;
2873
2874 /*
2875 * If the task is going to be woken-up on the cpu where it previously
2876 * ran and if it is currently idle, then it the right target.
2877 */
2878 if (target == prev_cpu && idle_cpu(prev_cpu))
2879 return prev_cpu;
2880
2881 /*
2882 * Otherwise, iterate the domains and find an elegible idle cpu.
2883 */
2884 sd = rcu_dereference(per_cpu(sd_llc, target));
2885 for_each_lower_domain(sd) {
2886 sg = sd->groups;
2887 do {
2888 if (!cpumask_intersects(sched_group_cpus(sg),
2889 tsk_cpus_allowed(p)))
2890 goto next;
2891
2892 for_each_cpu(i, sched_group_cpus(sg)) {
2893 if (!idle_cpu(i))
2894 goto next;
2895 }
2896
2897 target = cpumask_first_and(sched_group_cpus(sg),
2898 tsk_cpus_allowed(p));
2899 goto done;
2900 next:
2901 sg = sg->next;
2902 } while (sg != sd->groups);
2903 }
2904 done:
2905 return target;
2906 }
2907
2908 /*
2909 * sched_balance_self: balance the current task (running on cpu) in domains
2910 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2911 * SD_BALANCE_EXEC.
2912 *
2913 * Balance, ie. select the least loaded group.
2914 *
2915 * Returns the target CPU number, or the same CPU if no balancing is needed.
2916 *
2917 * preempt must be disabled.
2918 */
2919 static int
2920 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2921 {
2922 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2923 int cpu = smp_processor_id();
2924 int prev_cpu = task_cpu(p);
2925 int new_cpu = cpu;
2926 int want_affine = 0;
2927 int sync = wake_flags & WF_SYNC;
2928
2929 if (p->nr_cpus_allowed == 1)
2930 return prev_cpu;
2931
2932 if (sd_flag & SD_BALANCE_WAKE) {
2933 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2934 want_affine = 1;
2935 new_cpu = prev_cpu;
2936 }
2937
2938 rcu_read_lock();
2939 for_each_domain(cpu, tmp) {
2940 if (!(tmp->flags & SD_LOAD_BALANCE))
2941 continue;
2942
2943 /*
2944 * If both cpu and prev_cpu are part of this domain,
2945 * cpu is a valid SD_WAKE_AFFINE target.
2946 */
2947 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2948 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2949 affine_sd = tmp;
2950 break;
2951 }
2952
2953 if (tmp->flags & sd_flag)
2954 sd = tmp;
2955 }
2956
2957 if (affine_sd) {
2958 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
2959 prev_cpu = cpu;
2960
2961 new_cpu = select_idle_sibling(p, prev_cpu);
2962 goto unlock;
2963 }
2964
2965 while (sd) {
2966 int load_idx = sd->forkexec_idx;
2967 struct sched_group *group;
2968 int weight;
2969
2970 if (!(sd->flags & sd_flag)) {
2971 sd = sd->child;
2972 continue;
2973 }
2974
2975 if (sd_flag & SD_BALANCE_WAKE)
2976 load_idx = sd->wake_idx;
2977
2978 group = find_idlest_group(sd, p, cpu, load_idx);
2979 if (!group) {
2980 sd = sd->child;
2981 continue;
2982 }
2983
2984 new_cpu = find_idlest_cpu(group, p, cpu);
2985 if (new_cpu == -1 || new_cpu == cpu) {
2986 /* Now try balancing at a lower domain level of cpu */
2987 sd = sd->child;
2988 continue;
2989 }
2990
2991 /* Now try balancing at a lower domain level of new_cpu */
2992 cpu = new_cpu;
2993 weight = sd->span_weight;
2994 sd = NULL;
2995 for_each_domain(cpu, tmp) {
2996 if (weight <= tmp->span_weight)
2997 break;
2998 if (tmp->flags & sd_flag)
2999 sd = tmp;
3000 }
3001 /* while loop will break here if sd == NULL */
3002 }
3003 unlock:
3004 rcu_read_unlock();
3005
3006 return new_cpu;
3007 }
3008 #endif /* CONFIG_SMP */
3009
3010 static unsigned long
3011 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3012 {
3013 unsigned long gran = sysctl_sched_wakeup_granularity;
3014
3015 /*
3016 * Since its curr running now, convert the gran from real-time
3017 * to virtual-time in his units.
3018 *
3019 * By using 'se' instead of 'curr' we penalize light tasks, so
3020 * they get preempted easier. That is, if 'se' < 'curr' then
3021 * the resulting gran will be larger, therefore penalizing the
3022 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3023 * be smaller, again penalizing the lighter task.
3024 *
3025 * This is especially important for buddies when the leftmost
3026 * task is higher priority than the buddy.
3027 */
3028 return calc_delta_fair(gran, se);
3029 }
3030
3031 /*
3032 * Should 'se' preempt 'curr'.
3033 *
3034 * |s1
3035 * |s2
3036 * |s3
3037 * g
3038 * |<--->|c
3039 *
3040 * w(c, s1) = -1
3041 * w(c, s2) = 0
3042 * w(c, s3) = 1
3043 *
3044 */
3045 static int
3046 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3047 {
3048 s64 gran, vdiff = curr->vruntime - se->vruntime;
3049
3050 if (vdiff <= 0)
3051 return -1;
3052
3053 gran = wakeup_gran(curr, se);
3054 if (vdiff > gran)
3055 return 1;
3056
3057 return 0;
3058 }
3059
3060 static void set_last_buddy(struct sched_entity *se)
3061 {
3062 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3063 return;
3064
3065 for_each_sched_entity(se)
3066 cfs_rq_of(se)->last = se;
3067 }
3068
3069 static void set_next_buddy(struct sched_entity *se)
3070 {
3071 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3072 return;
3073
3074 for_each_sched_entity(se)
3075 cfs_rq_of(se)->next = se;
3076 }
3077
3078 static void set_skip_buddy(struct sched_entity *se)
3079 {
3080 for_each_sched_entity(se)
3081 cfs_rq_of(se)->skip = se;
3082 }
3083
3084 /*
3085 * Preempt the current task with a newly woken task if needed:
3086 */
3087 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3088 {
3089 struct task_struct *curr = rq->curr;
3090 struct sched_entity *se = &curr->se, *pse = &p->se;
3091 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3092 int scale = cfs_rq->nr_running >= sched_nr_latency;
3093 int next_buddy_marked = 0;
3094
3095 if (unlikely(se == pse))
3096 return;
3097
3098 /*
3099 * This is possible from callers such as move_task(), in which we
3100 * unconditionally check_prempt_curr() after an enqueue (which may have
3101 * lead to a throttle). This both saves work and prevents false
3102 * next-buddy nomination below.
3103 */
3104 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3105 return;
3106
3107 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3108 set_next_buddy(pse);
3109 next_buddy_marked = 1;
3110 }
3111
3112 /*
3113 * We can come here with TIF_NEED_RESCHED already set from new task
3114 * wake up path.
3115 *
3116 * Note: this also catches the edge-case of curr being in a throttled
3117 * group (e.g. via set_curr_task), since update_curr() (in the
3118 * enqueue of curr) will have resulted in resched being set. This
3119 * prevents us from potentially nominating it as a false LAST_BUDDY
3120 * below.
3121 */
3122 if (test_tsk_need_resched(curr))
3123 return;
3124
3125 /* Idle tasks are by definition preempted by non-idle tasks. */
3126 if (unlikely(curr->policy == SCHED_IDLE) &&
3127 likely(p->policy != SCHED_IDLE))
3128 goto preempt;
3129
3130 /*
3131 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3132 * is driven by the tick):
3133 */
3134 if (unlikely(p->policy != SCHED_NORMAL))
3135 return;
3136
3137 find_matching_se(&se, &pse);
3138 update_curr(cfs_rq_of(se));
3139 BUG_ON(!pse);
3140 if (wakeup_preempt_entity(se, pse) == 1) {
3141 /*
3142 * Bias pick_next to pick the sched entity that is
3143 * triggering this preemption.
3144 */
3145 if (!next_buddy_marked)
3146 set_next_buddy(pse);
3147 goto preempt;
3148 }
3149
3150 return;
3151
3152 preempt:
3153 resched_task(curr);
3154 /*
3155 * Only set the backward buddy when the current task is still
3156 * on the rq. This can happen when a wakeup gets interleaved
3157 * with schedule on the ->pre_schedule() or idle_balance()
3158 * point, either of which can * drop the rq lock.
3159 *
3160 * Also, during early boot the idle thread is in the fair class,
3161 * for obvious reasons its a bad idea to schedule back to it.
3162 */
3163 if (unlikely(!se->on_rq || curr == rq->idle))
3164 return;
3165
3166 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3167 set_last_buddy(se);
3168 }
3169
3170 static struct task_struct *pick_next_task_fair(struct rq *rq)
3171 {
3172 struct task_struct *p;
3173 struct cfs_rq *cfs_rq = &rq->cfs;
3174 struct sched_entity *se;
3175
3176 if (!cfs_rq->nr_running)
3177 return NULL;
3178
3179 do {
3180 se = pick_next_entity(cfs_rq);
3181 set_next_entity(cfs_rq, se);
3182 cfs_rq = group_cfs_rq(se);
3183 } while (cfs_rq);
3184
3185 p = task_of(se);
3186 if (hrtick_enabled(rq))
3187 hrtick_start_fair(rq, p);
3188
3189 return p;
3190 }
3191
3192 /*
3193 * Account for a descheduled task:
3194 */
3195 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3196 {
3197 struct sched_entity *se = &prev->se;
3198 struct cfs_rq *cfs_rq;
3199
3200 for_each_sched_entity(se) {
3201 cfs_rq = cfs_rq_of(se);
3202 put_prev_entity(cfs_rq, se);
3203 }
3204 }
3205
3206 /*
3207 * sched_yield() is very simple
3208 *
3209 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3210 */
3211 static void yield_task_fair(struct rq *rq)
3212 {
3213 struct task_struct *curr = rq->curr;
3214 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3215 struct sched_entity *se = &curr->se;
3216
3217 /*
3218 * Are we the only task in the tree?
3219 */
3220 if (unlikely(rq->nr_running == 1))
3221 return;
3222
3223 clear_buddies(cfs_rq, se);
3224
3225 if (curr->policy != SCHED_BATCH) {
3226 update_rq_clock(rq);
3227 /*
3228 * Update run-time statistics of the 'current'.
3229 */
3230 update_curr(cfs_rq);
3231 /*
3232 * Tell update_rq_clock() that we've just updated,
3233 * so we don't do microscopic update in schedule()
3234 * and double the fastpath cost.
3235 */
3236 rq->skip_clock_update = 1;
3237 }
3238
3239 set_skip_buddy(se);
3240 }
3241
3242 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3243 {
3244 struct sched_entity *se = &p->se;
3245
3246 /* throttled hierarchies are not runnable */
3247 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3248 return false;
3249
3250 /* Tell the scheduler that we'd really like pse to run next. */
3251 set_next_buddy(se);
3252
3253 yield_task_fair(rq);
3254
3255 return true;
3256 }
3257
3258 #ifdef CONFIG_SMP
3259 /**************************************************
3260 * Fair scheduling class load-balancing methods:
3261 */
3262
3263 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3264
3265 #define LBF_ALL_PINNED 0x01
3266 #define LBF_NEED_BREAK 0x02
3267 #define LBF_SOME_PINNED 0x04
3268
3269 struct lb_env {
3270 struct sched_domain *sd;
3271
3272 struct rq *src_rq;
3273 int src_cpu;
3274
3275 int dst_cpu;
3276 struct rq *dst_rq;
3277
3278 struct cpumask *dst_grpmask;
3279 int new_dst_cpu;
3280 enum cpu_idle_type idle;
3281 long imbalance;
3282 /* The set of CPUs under consideration for load-balancing */
3283 struct cpumask *cpus;
3284
3285 unsigned int flags;
3286
3287 unsigned int loop;
3288 unsigned int loop_break;
3289 unsigned int loop_max;
3290 };
3291
3292 /*
3293 * move_task - move a task from one runqueue to another runqueue.
3294 * Both runqueues must be locked.
3295 */
3296 static void move_task(struct task_struct *p, struct lb_env *env)
3297 {
3298 deactivate_task(env->src_rq, p, 0);
3299 set_task_cpu(p, env->dst_cpu);
3300 activate_task(env->dst_rq, p, 0);
3301 check_preempt_curr(env->dst_rq, p, 0);
3302 }
3303
3304 /*
3305 * Is this task likely cache-hot:
3306 */
3307 static int
3308 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3309 {
3310 s64 delta;
3311
3312 if (p->sched_class != &fair_sched_class)
3313 return 0;
3314
3315 if (unlikely(p->policy == SCHED_IDLE))
3316 return 0;
3317
3318 /*
3319 * Buddy candidates are cache hot:
3320 */
3321 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3322 (&p->se == cfs_rq_of(&p->se)->next ||
3323 &p->se == cfs_rq_of(&p->se)->last))
3324 return 1;
3325
3326 if (sysctl_sched_migration_cost == -1)
3327 return 1;
3328 if (sysctl_sched_migration_cost == 0)
3329 return 0;
3330
3331 delta = now - p->se.exec_start;
3332
3333 return delta < (s64)sysctl_sched_migration_cost;
3334 }
3335
3336 /*
3337 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3338 */
3339 static
3340 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3341 {
3342 int tsk_cache_hot = 0;
3343 /*
3344 * We do not migrate tasks that are:
3345 * 1) running (obviously), or
3346 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3347 * 3) are cache-hot on their current CPU.
3348 */
3349 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3350 int new_dst_cpu;
3351
3352 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3353
3354 /*
3355 * Remember if this task can be migrated to any other cpu in
3356 * our sched_group. We may want to revisit it if we couldn't
3357 * meet load balance goals by pulling other tasks on src_cpu.
3358 *
3359 * Also avoid computing new_dst_cpu if we have already computed
3360 * one in current iteration.
3361 */
3362 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3363 return 0;
3364
3365 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3366 tsk_cpus_allowed(p));
3367 if (new_dst_cpu < nr_cpu_ids) {
3368 env->flags |= LBF_SOME_PINNED;
3369 env->new_dst_cpu = new_dst_cpu;
3370 }
3371 return 0;
3372 }
3373
3374 /* Record that we found atleast one task that could run on dst_cpu */
3375 env->flags &= ~LBF_ALL_PINNED;
3376
3377 if (task_running(env->src_rq, p)) {
3378 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3379 return 0;
3380 }
3381
3382 /*
3383 * Aggressive migration if:
3384 * 1) task is cache cold, or
3385 * 2) too many balance attempts have failed.
3386 */
3387
3388 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3389 if (!tsk_cache_hot ||
3390 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3391 #ifdef CONFIG_SCHEDSTATS
3392 if (tsk_cache_hot) {
3393 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3394 schedstat_inc(p, se.statistics.nr_forced_migrations);
3395 }
3396 #endif
3397 return 1;
3398 }
3399
3400 if (tsk_cache_hot) {
3401 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3402 return 0;
3403 }
3404 return 1;
3405 }
3406
3407 /*
3408 * move_one_task tries to move exactly one task from busiest to this_rq, as
3409 * part of active balancing operations within "domain".
3410 * Returns 1 if successful and 0 otherwise.
3411 *
3412 * Called with both runqueues locked.
3413 */
3414 static int move_one_task(struct lb_env *env)
3415 {
3416 struct task_struct *p, *n;
3417
3418 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3419 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3420 continue;
3421
3422 if (!can_migrate_task(p, env))
3423 continue;
3424
3425 move_task(p, env);
3426 /*
3427 * Right now, this is only the second place move_task()
3428 * is called, so we can safely collect move_task()
3429 * stats here rather than inside move_task().
3430 */
3431 schedstat_inc(env->sd, lb_gained[env->idle]);
3432 return 1;
3433 }
3434 return 0;
3435 }
3436
3437 static unsigned long task_h_load(struct task_struct *p);
3438
3439 static const unsigned int sched_nr_migrate_break = 32;
3440
3441 /*
3442 * move_tasks tries to move up to imbalance weighted load from busiest to
3443 * this_rq, as part of a balancing operation within domain "sd".
3444 * Returns 1 if successful and 0 otherwise.
3445 *
3446 * Called with both runqueues locked.
3447 */
3448 static int move_tasks(struct lb_env *env)
3449 {
3450 struct list_head *tasks = &env->src_rq->cfs_tasks;
3451 struct task_struct *p;
3452 unsigned long load;
3453 int pulled = 0;
3454
3455 if (env->imbalance <= 0)
3456 return 0;
3457
3458 while (!list_empty(tasks)) {
3459 p = list_first_entry(tasks, struct task_struct, se.group_node);
3460
3461 env->loop++;
3462 /* We've more or less seen every task there is, call it quits */
3463 if (env->loop > env->loop_max)
3464 break;
3465
3466 /* take a breather every nr_migrate tasks */
3467 if (env->loop > env->loop_break) {
3468 env->loop_break += sched_nr_migrate_break;
3469 env->flags |= LBF_NEED_BREAK;
3470 break;
3471 }
3472
3473 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3474 goto next;
3475
3476 load = task_h_load(p);
3477
3478 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3479 goto next;
3480
3481 if ((load / 2) > env->imbalance)
3482 goto next;
3483
3484 if (!can_migrate_task(p, env))
3485 goto next;
3486
3487 move_task(p, env);
3488 pulled++;
3489 env->imbalance -= load;
3490
3491 #ifdef CONFIG_PREEMPT
3492 /*
3493 * NEWIDLE balancing is a source of latency, so preemptible
3494 * kernels will stop after the first task is pulled to minimize
3495 * the critical section.
3496 */
3497 if (env->idle == CPU_NEWLY_IDLE)
3498 break;
3499 #endif
3500
3501 /*
3502 * We only want to steal up to the prescribed amount of
3503 * weighted load.
3504 */
3505 if (env->imbalance <= 0)
3506 break;
3507
3508 continue;
3509 next:
3510 list_move_tail(&p->se.group_node, tasks);
3511 }
3512
3513 /*
3514 * Right now, this is one of only two places move_task() is called,
3515 * so we can safely collect move_task() stats here rather than
3516 * inside move_task().
3517 */
3518 schedstat_add(env->sd, lb_gained[env->idle], pulled);
3519
3520 return pulled;
3521 }
3522
3523 #ifdef CONFIG_FAIR_GROUP_SCHED
3524 /*
3525 * update tg->load_weight by folding this cpu's load_avg
3526 */
3527 static int update_shares_cpu(struct task_group *tg, int cpu)
3528 {
3529 struct cfs_rq *cfs_rq;
3530 unsigned long flags;
3531 struct rq *rq;
3532
3533 if (!tg->se[cpu])
3534 return 0;
3535
3536 rq = cpu_rq(cpu);
3537 cfs_rq = tg->cfs_rq[cpu];
3538
3539 raw_spin_lock_irqsave(&rq->lock, flags);
3540
3541 update_rq_clock(rq);
3542 update_cfs_load(cfs_rq, 1);
3543
3544 /*
3545 * We need to update shares after updating tg->load_weight in
3546 * order to adjust the weight of groups with long running tasks.
3547 */
3548 update_cfs_shares(cfs_rq);
3549
3550 raw_spin_unlock_irqrestore(&rq->lock, flags);
3551
3552 return 0;
3553 }
3554
3555 static void update_shares(int cpu)
3556 {
3557 struct cfs_rq *cfs_rq;
3558 struct rq *rq = cpu_rq(cpu);
3559
3560 rcu_read_lock();
3561 /*
3562 * Iterates the task_group tree in a bottom up fashion, see
3563 * list_add_leaf_cfs_rq() for details.
3564 */
3565 for_each_leaf_cfs_rq(rq, cfs_rq) {
3566 /* throttled entities do not contribute to load */
3567 if (throttled_hierarchy(cfs_rq))
3568 continue;
3569
3570 update_shares_cpu(cfs_rq->tg, cpu);
3571 }
3572 rcu_read_unlock();
3573 }
3574
3575 /*
3576 * Compute the cpu's hierarchical load factor for each task group.
3577 * This needs to be done in a top-down fashion because the load of a child
3578 * group is a fraction of its parents load.
3579 */
3580 static int tg_load_down(struct task_group *tg, void *data)
3581 {
3582 unsigned long load;
3583 long cpu = (long)data;
3584
3585 if (!tg->parent) {
3586 load = cpu_rq(cpu)->load.weight;
3587 } else {
3588 load = tg->parent->cfs_rq[cpu]->h_load;
3589 load *= tg->se[cpu]->load.weight;
3590 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3591 }
3592
3593 tg->cfs_rq[cpu]->h_load = load;
3594
3595 return 0;
3596 }
3597
3598 static void update_h_load(long cpu)
3599 {
3600 struct rq *rq = cpu_rq(cpu);
3601 unsigned long now = jiffies;
3602
3603 if (rq->h_load_throttle == now)
3604 return;
3605
3606 rq->h_load_throttle = now;
3607
3608 rcu_read_lock();
3609 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3610 rcu_read_unlock();
3611 }
3612
3613 static unsigned long task_h_load(struct task_struct *p)
3614 {
3615 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3616 unsigned long load;
3617
3618 load = p->se.load.weight;
3619 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3620
3621 return load;
3622 }
3623 #else
3624 static inline void update_shares(int cpu)
3625 {
3626 }
3627
3628 static inline void update_h_load(long cpu)
3629 {
3630 }
3631
3632 static unsigned long task_h_load(struct task_struct *p)
3633 {
3634 return p->se.load.weight;
3635 }
3636 #endif
3637
3638 /********** Helpers for find_busiest_group ************************/
3639 /*
3640 * sd_lb_stats - Structure to store the statistics of a sched_domain
3641 * during load balancing.
3642 */
3643 struct sd_lb_stats {
3644 struct sched_group *busiest; /* Busiest group in this sd */
3645 struct sched_group *this; /* Local group in this sd */
3646 unsigned long total_load; /* Total load of all groups in sd */
3647 unsigned long total_pwr; /* Total power of all groups in sd */
3648 unsigned long avg_load; /* Average load across all groups in sd */
3649
3650 /** Statistics of this group */
3651 unsigned long this_load;
3652 unsigned long this_load_per_task;
3653 unsigned long this_nr_running;
3654 unsigned long this_has_capacity;
3655 unsigned int this_idle_cpus;
3656
3657 /* Statistics of the busiest group */
3658 unsigned int busiest_idle_cpus;
3659 unsigned long max_load;
3660 unsigned long busiest_load_per_task;
3661 unsigned long busiest_nr_running;
3662 unsigned long busiest_group_capacity;
3663 unsigned long busiest_has_capacity;
3664 unsigned int busiest_group_weight;
3665
3666 int group_imb; /* Is there imbalance in this sd */
3667 };
3668
3669 /*
3670 * sg_lb_stats - stats of a sched_group required for load_balancing
3671 */
3672 struct sg_lb_stats {
3673 unsigned long avg_load; /*Avg load across the CPUs of the group */
3674 unsigned long group_load; /* Total load over the CPUs of the group */
3675 unsigned long sum_nr_running; /* Nr tasks running in the group */
3676 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3677 unsigned long group_capacity;
3678 unsigned long idle_cpus;
3679 unsigned long group_weight;
3680 int group_imb; /* Is there an imbalance in the group ? */
3681 int group_has_capacity; /* Is there extra capacity in the group? */
3682 };
3683
3684 /**
3685 * get_sd_load_idx - Obtain the load index for a given sched domain.
3686 * @sd: The sched_domain whose load_idx is to be obtained.
3687 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3688 */
3689 static inline int get_sd_load_idx(struct sched_domain *sd,
3690 enum cpu_idle_type idle)
3691 {
3692 int load_idx;
3693
3694 switch (idle) {
3695 case CPU_NOT_IDLE:
3696 load_idx = sd->busy_idx;
3697 break;
3698
3699 case CPU_NEWLY_IDLE:
3700 load_idx = sd->newidle_idx;
3701 break;
3702 default:
3703 load_idx = sd->idle_idx;
3704 break;
3705 }
3706
3707 return load_idx;
3708 }
3709
3710 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3711 {
3712 return SCHED_POWER_SCALE;
3713 }
3714
3715 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3716 {
3717 return default_scale_freq_power(sd, cpu);
3718 }
3719
3720 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3721 {
3722 unsigned long weight = sd->span_weight;
3723 unsigned long smt_gain = sd->smt_gain;
3724
3725 smt_gain /= weight;
3726
3727 return smt_gain;
3728 }
3729
3730 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3731 {
3732 return default_scale_smt_power(sd, cpu);
3733 }
3734
3735 unsigned long scale_rt_power(int cpu)
3736 {
3737 struct rq *rq = cpu_rq(cpu);
3738 u64 total, available, age_stamp, avg;
3739
3740 /*
3741 * Since we're reading these variables without serialization make sure
3742 * we read them once before doing sanity checks on them.
3743 */
3744 age_stamp = ACCESS_ONCE(rq->age_stamp);
3745 avg = ACCESS_ONCE(rq->rt_avg);
3746
3747 total = sched_avg_period() + (rq->clock - age_stamp);
3748
3749 if (unlikely(total < avg)) {
3750 /* Ensures that power won't end up being negative */
3751 available = 0;
3752 } else {
3753 available = total - avg;
3754 }
3755
3756 if (unlikely((s64)total < SCHED_POWER_SCALE))
3757 total = SCHED_POWER_SCALE;
3758
3759 total >>= SCHED_POWER_SHIFT;
3760
3761 return div_u64(available, total);
3762 }
3763
3764 static void update_cpu_power(struct sched_domain *sd, int cpu)
3765 {
3766 unsigned long weight = sd->span_weight;
3767 unsigned long power = SCHED_POWER_SCALE;
3768 struct sched_group *sdg = sd->groups;
3769
3770 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3771 if (sched_feat(ARCH_POWER))
3772 power *= arch_scale_smt_power(sd, cpu);
3773 else
3774 power *= default_scale_smt_power(sd, cpu);
3775
3776 power >>= SCHED_POWER_SHIFT;
3777 }
3778
3779 sdg->sgp->power_orig = power;
3780
3781 if (sched_feat(ARCH_POWER))
3782 power *= arch_scale_freq_power(sd, cpu);
3783 else
3784 power *= default_scale_freq_power(sd, cpu);
3785
3786 power >>= SCHED_POWER_SHIFT;
3787
3788 power *= scale_rt_power(cpu);
3789 power >>= SCHED_POWER_SHIFT;
3790
3791 if (!power)
3792 power = 1;
3793
3794 cpu_rq(cpu)->cpu_power = power;
3795 sdg->sgp->power = power;
3796 }
3797
3798 void update_group_power(struct sched_domain *sd, int cpu)
3799 {
3800 struct sched_domain *child = sd->child;
3801 struct sched_group *group, *sdg = sd->groups;
3802 unsigned long power;
3803 unsigned long interval;
3804
3805 interval = msecs_to_jiffies(sd->balance_interval);
3806 interval = clamp(interval, 1UL, max_load_balance_interval);
3807 sdg->sgp->next_update = jiffies + interval;
3808
3809 if (!child) {
3810 update_cpu_power(sd, cpu);
3811 return;
3812 }
3813
3814 power = 0;
3815
3816 if (child->flags & SD_OVERLAP) {
3817 /*
3818 * SD_OVERLAP domains cannot assume that child groups
3819 * span the current group.
3820 */
3821
3822 for_each_cpu(cpu, sched_group_cpus(sdg))
3823 power += power_of(cpu);
3824 } else {
3825 /*
3826 * !SD_OVERLAP domains can assume that child groups
3827 * span the current group.
3828 */
3829
3830 group = child->groups;
3831 do {
3832 power += group->sgp->power;
3833 group = group->next;
3834 } while (group != child->groups);
3835 }
3836
3837 sdg->sgp->power_orig = sdg->sgp->power = power;
3838 }
3839
3840 /*
3841 * Try and fix up capacity for tiny siblings, this is needed when
3842 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3843 * which on its own isn't powerful enough.
3844 *
3845 * See update_sd_pick_busiest() and check_asym_packing().
3846 */
3847 static inline int
3848 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3849 {
3850 /*
3851 * Only siblings can have significantly less than SCHED_POWER_SCALE
3852 */
3853 if (!(sd->flags & SD_SHARE_CPUPOWER))
3854 return 0;
3855
3856 /*
3857 * If ~90% of the cpu_power is still there, we're good.
3858 */
3859 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3860 return 1;
3861
3862 return 0;
3863 }
3864
3865 /**
3866 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3867 * @env: The load balancing environment.
3868 * @group: sched_group whose statistics are to be updated.
3869 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3870 * @local_group: Does group contain this_cpu.
3871 * @balance: Should we balance.
3872 * @sgs: variable to hold the statistics for this group.
3873 */
3874 static inline void update_sg_lb_stats(struct lb_env *env,
3875 struct sched_group *group, int load_idx,
3876 int local_group, int *balance, struct sg_lb_stats *sgs)
3877 {
3878 unsigned long nr_running, max_nr_running, min_nr_running;
3879 unsigned long load, max_cpu_load, min_cpu_load;
3880 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3881 unsigned long avg_load_per_task = 0;
3882 int i;
3883
3884 if (local_group)
3885 balance_cpu = group_balance_cpu(group);
3886
3887 /* Tally up the load of all CPUs in the group */
3888 max_cpu_load = 0;
3889 min_cpu_load = ~0UL;
3890 max_nr_running = 0;
3891 min_nr_running = ~0UL;
3892
3893 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
3894 struct rq *rq = cpu_rq(i);
3895
3896 nr_running = rq->nr_running;
3897
3898 /* Bias balancing toward cpus of our domain */
3899 if (local_group) {
3900 if (idle_cpu(i) && !first_idle_cpu &&
3901 cpumask_test_cpu(i, sched_group_mask(group))) {
3902 first_idle_cpu = 1;
3903 balance_cpu = i;
3904 }
3905
3906 load = target_load(i, load_idx);
3907 } else {
3908 load = source_load(i, load_idx);
3909 if (load > max_cpu_load)
3910 max_cpu_load = load;
3911 if (min_cpu_load > load)
3912 min_cpu_load = load;
3913
3914 if (nr_running > max_nr_running)
3915 max_nr_running = nr_running;
3916 if (min_nr_running > nr_running)
3917 min_nr_running = nr_running;
3918 }
3919
3920 sgs->group_load += load;
3921 sgs->sum_nr_running += nr_running;
3922 sgs->sum_weighted_load += weighted_cpuload(i);
3923 if (idle_cpu(i))
3924 sgs->idle_cpus++;
3925 }
3926
3927 /*
3928 * First idle cpu or the first cpu(busiest) in this sched group
3929 * is eligible for doing load balancing at this and above
3930 * domains. In the newly idle case, we will allow all the cpu's
3931 * to do the newly idle load balance.
3932 */
3933 if (local_group) {
3934 if (env->idle != CPU_NEWLY_IDLE) {
3935 if (balance_cpu != env->dst_cpu) {
3936 *balance = 0;
3937 return;
3938 }
3939 update_group_power(env->sd, env->dst_cpu);
3940 } else if (time_after_eq(jiffies, group->sgp->next_update))
3941 update_group_power(env->sd, env->dst_cpu);
3942 }
3943
3944 /* Adjust by relative CPU power of the group */
3945 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3946
3947 /*
3948 * Consider the group unbalanced when the imbalance is larger
3949 * than the average weight of a task.
3950 *
3951 * APZ: with cgroup the avg task weight can vary wildly and
3952 * might not be a suitable number - should we keep a
3953 * normalized nr_running number somewhere that negates
3954 * the hierarchy?
3955 */
3956 if (sgs->sum_nr_running)
3957 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3958
3959 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3960 (max_nr_running - min_nr_running) > 1)
3961 sgs->group_imb = 1;
3962
3963 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3964 SCHED_POWER_SCALE);
3965 if (!sgs->group_capacity)
3966 sgs->group_capacity = fix_small_capacity(env->sd, group);
3967 sgs->group_weight = group->group_weight;
3968
3969 if (sgs->group_capacity > sgs->sum_nr_running)
3970 sgs->group_has_capacity = 1;
3971 }
3972
3973 /**
3974 * update_sd_pick_busiest - return 1 on busiest group
3975 * @env: The load balancing environment.
3976 * @sds: sched_domain statistics
3977 * @sg: sched_group candidate to be checked for being the busiest
3978 * @sgs: sched_group statistics
3979 *
3980 * Determine if @sg is a busier group than the previously selected
3981 * busiest group.
3982 */
3983 static bool update_sd_pick_busiest(struct lb_env *env,
3984 struct sd_lb_stats *sds,
3985 struct sched_group *sg,
3986 struct sg_lb_stats *sgs)
3987 {
3988 if (sgs->avg_load <= sds->max_load)
3989 return false;
3990
3991 if (sgs->sum_nr_running > sgs->group_capacity)
3992 return true;
3993
3994 if (sgs->group_imb)
3995 return true;
3996
3997 /*
3998 * ASYM_PACKING needs to move all the work to the lowest
3999 * numbered CPUs in the group, therefore mark all groups
4000 * higher than ourself as busy.
4001 */
4002 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4003 env->dst_cpu < group_first_cpu(sg)) {
4004 if (!sds->busiest)
4005 return true;
4006
4007 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4008 return true;
4009 }
4010
4011 return false;
4012 }
4013
4014 /**
4015 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4016 * @env: The load balancing environment.
4017 * @balance: Should we balance.
4018 * @sds: variable to hold the statistics for this sched_domain.
4019 */
4020 static inline void update_sd_lb_stats(struct lb_env *env,
4021 int *balance, struct sd_lb_stats *sds)
4022 {
4023 struct sched_domain *child = env->sd->child;
4024 struct sched_group *sg = env->sd->groups;
4025 struct sg_lb_stats sgs;
4026 int load_idx, prefer_sibling = 0;
4027
4028 if (child && child->flags & SD_PREFER_SIBLING)
4029 prefer_sibling = 1;
4030
4031 load_idx = get_sd_load_idx(env->sd, env->idle);
4032
4033 do {
4034 int local_group;
4035
4036 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4037 memset(&sgs, 0, sizeof(sgs));
4038 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4039
4040 if (local_group && !(*balance))
4041 return;
4042
4043 sds->total_load += sgs.group_load;
4044 sds->total_pwr += sg->sgp->power;
4045
4046 /*
4047 * In case the child domain prefers tasks go to siblings
4048 * first, lower the sg capacity to one so that we'll try
4049 * and move all the excess tasks away. We lower the capacity
4050 * of a group only if the local group has the capacity to fit
4051 * these excess tasks, i.e. nr_running < group_capacity. The
4052 * extra check prevents the case where you always pull from the
4053 * heaviest group when it is already under-utilized (possible
4054 * with a large weight task outweighs the tasks on the system).
4055 */
4056 if (prefer_sibling && !local_group && sds->this_has_capacity)
4057 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4058
4059 if (local_group) {
4060 sds->this_load = sgs.avg_load;
4061 sds->this = sg;
4062 sds->this_nr_running = sgs.sum_nr_running;
4063 sds->this_load_per_task = sgs.sum_weighted_load;
4064 sds->this_has_capacity = sgs.group_has_capacity;
4065 sds->this_idle_cpus = sgs.idle_cpus;
4066 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4067 sds->max_load = sgs.avg_load;
4068 sds->busiest = sg;
4069 sds->busiest_nr_running = sgs.sum_nr_running;
4070 sds->busiest_idle_cpus = sgs.idle_cpus;
4071 sds->busiest_group_capacity = sgs.group_capacity;
4072 sds->busiest_load_per_task = sgs.sum_weighted_load;
4073 sds->busiest_has_capacity = sgs.group_has_capacity;
4074 sds->busiest_group_weight = sgs.group_weight;
4075 sds->group_imb = sgs.group_imb;
4076 }
4077
4078 sg = sg->next;
4079 } while (sg != env->sd->groups);
4080 }
4081
4082 /**
4083 * check_asym_packing - Check to see if the group is packed into the
4084 * sched doman.
4085 *
4086 * This is primarily intended to used at the sibling level. Some
4087 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4088 * case of POWER7, it can move to lower SMT modes only when higher
4089 * threads are idle. When in lower SMT modes, the threads will
4090 * perform better since they share less core resources. Hence when we
4091 * have idle threads, we want them to be the higher ones.
4092 *
4093 * This packing function is run on idle threads. It checks to see if
4094 * the busiest CPU in this domain (core in the P7 case) has a higher
4095 * CPU number than the packing function is being run on. Here we are
4096 * assuming lower CPU number will be equivalent to lower a SMT thread
4097 * number.
4098 *
4099 * Returns 1 when packing is required and a task should be moved to
4100 * this CPU. The amount of the imbalance is returned in *imbalance.
4101 *
4102 * @env: The load balancing environment.
4103 * @sds: Statistics of the sched_domain which is to be packed
4104 */
4105 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4106 {
4107 int busiest_cpu;
4108
4109 if (!(env->sd->flags & SD_ASYM_PACKING))
4110 return 0;
4111
4112 if (!sds->busiest)
4113 return 0;
4114
4115 busiest_cpu = group_first_cpu(sds->busiest);
4116 if (env->dst_cpu > busiest_cpu)
4117 return 0;
4118
4119 env->imbalance = DIV_ROUND_CLOSEST(
4120 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4121
4122 return 1;
4123 }
4124
4125 /**
4126 * fix_small_imbalance - Calculate the minor imbalance that exists
4127 * amongst the groups of a sched_domain, during
4128 * load balancing.
4129 * @env: The load balancing environment.
4130 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4131 */
4132 static inline
4133 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4134 {
4135 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4136 unsigned int imbn = 2;
4137 unsigned long scaled_busy_load_per_task;
4138
4139 if (sds->this_nr_running) {
4140 sds->this_load_per_task /= sds->this_nr_running;
4141 if (sds->busiest_load_per_task >
4142 sds->this_load_per_task)
4143 imbn = 1;
4144 } else {
4145 sds->this_load_per_task =
4146 cpu_avg_load_per_task(env->dst_cpu);
4147 }
4148
4149 scaled_busy_load_per_task = sds->busiest_load_per_task
4150 * SCHED_POWER_SCALE;
4151 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4152
4153 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4154 (scaled_busy_load_per_task * imbn)) {
4155 env->imbalance = sds->busiest_load_per_task;
4156 return;
4157 }
4158
4159 /*
4160 * OK, we don't have enough imbalance to justify moving tasks,
4161 * however we may be able to increase total CPU power used by
4162 * moving them.
4163 */
4164
4165 pwr_now += sds->busiest->sgp->power *
4166 min(sds->busiest_load_per_task, sds->max_load);
4167 pwr_now += sds->this->sgp->power *
4168 min(sds->this_load_per_task, sds->this_load);
4169 pwr_now /= SCHED_POWER_SCALE;
4170
4171 /* Amount of load we'd subtract */
4172 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4173 sds->busiest->sgp->power;
4174 if (sds->max_load > tmp)
4175 pwr_move += sds->busiest->sgp->power *
4176 min(sds->busiest_load_per_task, sds->max_load - tmp);
4177
4178 /* Amount of load we'd add */
4179 if (sds->max_load * sds->busiest->sgp->power <
4180 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4181 tmp = (sds->max_load * sds->busiest->sgp->power) /
4182 sds->this->sgp->power;
4183 else
4184 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4185 sds->this->sgp->power;
4186 pwr_move += sds->this->sgp->power *
4187 min(sds->this_load_per_task, sds->this_load + tmp);
4188 pwr_move /= SCHED_POWER_SCALE;
4189
4190 /* Move if we gain throughput */
4191 if (pwr_move > pwr_now)
4192 env->imbalance = sds->busiest_load_per_task;
4193 }
4194
4195 /**
4196 * calculate_imbalance - Calculate the amount of imbalance present within the
4197 * groups of a given sched_domain during load balance.
4198 * @env: load balance environment
4199 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4200 */
4201 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4202 {
4203 unsigned long max_pull, load_above_capacity = ~0UL;
4204
4205 sds->busiest_load_per_task /= sds->busiest_nr_running;
4206 if (sds->group_imb) {
4207 sds->busiest_load_per_task =
4208 min(sds->busiest_load_per_task, sds->avg_load);
4209 }
4210
4211 /*
4212 * In the presence of smp nice balancing, certain scenarios can have
4213 * max load less than avg load(as we skip the groups at or below
4214 * its cpu_power, while calculating max_load..)
4215 */
4216 if (sds->max_load < sds->avg_load) {
4217 env->imbalance = 0;
4218 return fix_small_imbalance(env, sds);
4219 }
4220
4221 if (!sds->group_imb) {
4222 /*
4223 * Don't want to pull so many tasks that a group would go idle.
4224 */
4225 load_above_capacity = (sds->busiest_nr_running -
4226 sds->busiest_group_capacity);
4227
4228 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4229
4230 load_above_capacity /= sds->busiest->sgp->power;
4231 }
4232
4233 /*
4234 * We're trying to get all the cpus to the average_load, so we don't
4235 * want to push ourselves above the average load, nor do we wish to
4236 * reduce the max loaded cpu below the average load. At the same time,
4237 * we also don't want to reduce the group load below the group capacity
4238 * (so that we can implement power-savings policies etc). Thus we look
4239 * for the minimum possible imbalance.
4240 * Be careful of negative numbers as they'll appear as very large values
4241 * with unsigned longs.
4242 */
4243 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4244
4245 /* How much load to actually move to equalise the imbalance */
4246 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4247 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4248 / SCHED_POWER_SCALE;
4249
4250 /*
4251 * if *imbalance is less than the average load per runnable task
4252 * there is no guarantee that any tasks will be moved so we'll have
4253 * a think about bumping its value to force at least one task to be
4254 * moved
4255 */
4256 if (env->imbalance < sds->busiest_load_per_task)
4257 return fix_small_imbalance(env, sds);
4258
4259 }
4260
4261 /******* find_busiest_group() helpers end here *********************/
4262
4263 /**
4264 * find_busiest_group - Returns the busiest group within the sched_domain
4265 * if there is an imbalance. If there isn't an imbalance, and
4266 * the user has opted for power-savings, it returns a group whose
4267 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4268 * such a group exists.
4269 *
4270 * Also calculates the amount of weighted load which should be moved
4271 * to restore balance.
4272 *
4273 * @env: The load balancing environment.
4274 * @balance: Pointer to a variable indicating if this_cpu
4275 * is the appropriate cpu to perform load balancing at this_level.
4276 *
4277 * Returns: - the busiest group if imbalance exists.
4278 * - If no imbalance and user has opted for power-savings balance,
4279 * return the least loaded group whose CPUs can be
4280 * put to idle by rebalancing its tasks onto our group.
4281 */
4282 static struct sched_group *
4283 find_busiest_group(struct lb_env *env, int *balance)
4284 {
4285 struct sd_lb_stats sds;
4286
4287 memset(&sds, 0, sizeof(sds));
4288
4289 /*
4290 * Compute the various statistics relavent for load balancing at
4291 * this level.
4292 */
4293 update_sd_lb_stats(env, balance, &sds);
4294
4295 /*
4296 * this_cpu is not the appropriate cpu to perform load balancing at
4297 * this level.
4298 */
4299 if (!(*balance))
4300 goto ret;
4301
4302 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4303 check_asym_packing(env, &sds))
4304 return sds.busiest;
4305
4306 /* There is no busy sibling group to pull tasks from */
4307 if (!sds.busiest || sds.busiest_nr_running == 0)
4308 goto out_balanced;
4309
4310 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4311
4312 /*
4313 * If the busiest group is imbalanced the below checks don't
4314 * work because they assumes all things are equal, which typically
4315 * isn't true due to cpus_allowed constraints and the like.
4316 */
4317 if (sds.group_imb)
4318 goto force_balance;
4319
4320 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4321 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4322 !sds.busiest_has_capacity)
4323 goto force_balance;
4324
4325 /*
4326 * If the local group is more busy than the selected busiest group
4327 * don't try and pull any tasks.
4328 */
4329 if (sds.this_load >= sds.max_load)
4330 goto out_balanced;
4331
4332 /*
4333 * Don't pull any tasks if this group is already above the domain
4334 * average load.
4335 */
4336 if (sds.this_load >= sds.avg_load)
4337 goto out_balanced;
4338
4339 if (env->idle == CPU_IDLE) {
4340 /*
4341 * This cpu is idle. If the busiest group load doesn't
4342 * have more tasks than the number of available cpu's and
4343 * there is no imbalance between this and busiest group
4344 * wrt to idle cpu's, it is balanced.
4345 */
4346 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4347 sds.busiest_nr_running <= sds.busiest_group_weight)
4348 goto out_balanced;
4349 } else {
4350 /*
4351 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4352 * imbalance_pct to be conservative.
4353 */
4354 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4355 goto out_balanced;
4356 }
4357
4358 force_balance:
4359 /* Looks like there is an imbalance. Compute it */
4360 calculate_imbalance(env, &sds);
4361 return sds.busiest;
4362
4363 out_balanced:
4364 ret:
4365 env->imbalance = 0;
4366 return NULL;
4367 }
4368
4369 /*
4370 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4371 */
4372 static struct rq *find_busiest_queue(struct lb_env *env,
4373 struct sched_group *group)
4374 {
4375 struct rq *busiest = NULL, *rq;
4376 unsigned long max_load = 0;
4377 int i;
4378
4379 for_each_cpu(i, sched_group_cpus(group)) {
4380 unsigned long power = power_of(i);
4381 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4382 SCHED_POWER_SCALE);
4383 unsigned long wl;
4384
4385 if (!capacity)
4386 capacity = fix_small_capacity(env->sd, group);
4387
4388 if (!cpumask_test_cpu(i, env->cpus))
4389 continue;
4390
4391 rq = cpu_rq(i);
4392 wl = weighted_cpuload(i);
4393
4394 /*
4395 * When comparing with imbalance, use weighted_cpuload()
4396 * which is not scaled with the cpu power.
4397 */
4398 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4399 continue;
4400
4401 /*
4402 * For the load comparisons with the other cpu's, consider
4403 * the weighted_cpuload() scaled with the cpu power, so that
4404 * the load can be moved away from the cpu that is potentially
4405 * running at a lower capacity.
4406 */
4407 wl = (wl * SCHED_POWER_SCALE) / power;
4408
4409 if (wl > max_load) {
4410 max_load = wl;
4411 busiest = rq;
4412 }
4413 }
4414
4415 return busiest;
4416 }
4417
4418 /*
4419 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4420 * so long as it is large enough.
4421 */
4422 #define MAX_PINNED_INTERVAL 512
4423
4424 /* Working cpumask for load_balance and load_balance_newidle. */
4425 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4426
4427 static int need_active_balance(struct lb_env *env)
4428 {
4429 struct sched_domain *sd = env->sd;
4430
4431 if (env->idle == CPU_NEWLY_IDLE) {
4432
4433 /*
4434 * ASYM_PACKING needs to force migrate tasks from busy but
4435 * higher numbered CPUs in order to pack all tasks in the
4436 * lowest numbered CPUs.
4437 */
4438 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4439 return 1;
4440 }
4441
4442 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4443 }
4444
4445 static int active_load_balance_cpu_stop(void *data);
4446
4447 /*
4448 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4449 * tasks if there is an imbalance.
4450 */
4451 static int load_balance(int this_cpu, struct rq *this_rq,
4452 struct sched_domain *sd, enum cpu_idle_type idle,
4453 int *balance)
4454 {
4455 int ld_moved, cur_ld_moved, active_balance = 0;
4456 int lb_iterations, max_lb_iterations;
4457 struct sched_group *group;
4458 struct rq *busiest;
4459 unsigned long flags;
4460 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4461
4462 struct lb_env env = {
4463 .sd = sd,
4464 .dst_cpu = this_cpu,
4465 .dst_rq = this_rq,
4466 .dst_grpmask = sched_group_cpus(sd->groups),
4467 .idle = idle,
4468 .loop_break = sched_nr_migrate_break,
4469 .cpus = cpus,
4470 };
4471
4472 cpumask_copy(cpus, cpu_active_mask);
4473 max_lb_iterations = cpumask_weight(env.dst_grpmask);
4474
4475 schedstat_inc(sd, lb_count[idle]);
4476
4477 redo:
4478 group = find_busiest_group(&env, balance);
4479
4480 if (*balance == 0)
4481 goto out_balanced;
4482
4483 if (!group) {
4484 schedstat_inc(sd, lb_nobusyg[idle]);
4485 goto out_balanced;
4486 }
4487
4488 busiest = find_busiest_queue(&env, group);
4489 if (!busiest) {
4490 schedstat_inc(sd, lb_nobusyq[idle]);
4491 goto out_balanced;
4492 }
4493
4494 BUG_ON(busiest == env.dst_rq);
4495
4496 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4497
4498 ld_moved = 0;
4499 lb_iterations = 1;
4500 if (busiest->nr_running > 1) {
4501 /*
4502 * Attempt to move tasks. If find_busiest_group has found
4503 * an imbalance but busiest->nr_running <= 1, the group is
4504 * still unbalanced. ld_moved simply stays zero, so it is
4505 * correctly treated as an imbalance.
4506 */
4507 env.flags |= LBF_ALL_PINNED;
4508 env.src_cpu = busiest->cpu;
4509 env.src_rq = busiest;
4510 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
4511
4512 update_h_load(env.src_cpu);
4513 more_balance:
4514 local_irq_save(flags);
4515 double_rq_lock(env.dst_rq, busiest);
4516
4517 /*
4518 * cur_ld_moved - load moved in current iteration
4519 * ld_moved - cumulative load moved across iterations
4520 */
4521 cur_ld_moved = move_tasks(&env);
4522 ld_moved += cur_ld_moved;
4523 double_rq_unlock(env.dst_rq, busiest);
4524 local_irq_restore(flags);
4525
4526 if (env.flags & LBF_NEED_BREAK) {
4527 env.flags &= ~LBF_NEED_BREAK;
4528 goto more_balance;
4529 }
4530
4531 /*
4532 * some other cpu did the load balance for us.
4533 */
4534 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4535 resched_cpu(env.dst_cpu);
4536
4537 /*
4538 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4539 * us and move them to an alternate dst_cpu in our sched_group
4540 * where they can run. The upper limit on how many times we
4541 * iterate on same src_cpu is dependent on number of cpus in our
4542 * sched_group.
4543 *
4544 * This changes load balance semantics a bit on who can move
4545 * load to a given_cpu. In addition to the given_cpu itself
4546 * (or a ilb_cpu acting on its behalf where given_cpu is
4547 * nohz-idle), we now have balance_cpu in a position to move
4548 * load to given_cpu. In rare situations, this may cause
4549 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4550 * _independently_ and at _same_ time to move some load to
4551 * given_cpu) causing exceess load to be moved to given_cpu.
4552 * This however should not happen so much in practice and
4553 * moreover subsequent load balance cycles should correct the
4554 * excess load moved.
4555 */
4556 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4557 lb_iterations++ < max_lb_iterations) {
4558
4559 env.dst_rq = cpu_rq(env.new_dst_cpu);
4560 env.dst_cpu = env.new_dst_cpu;
4561 env.flags &= ~LBF_SOME_PINNED;
4562 env.loop = 0;
4563 env.loop_break = sched_nr_migrate_break;
4564 /*
4565 * Go back to "more_balance" rather than "redo" since we
4566 * need to continue with same src_cpu.
4567 */
4568 goto more_balance;
4569 }
4570
4571 /* All tasks on this runqueue were pinned by CPU affinity */
4572 if (unlikely(env.flags & LBF_ALL_PINNED)) {
4573 cpumask_clear_cpu(cpu_of(busiest), cpus);
4574 if (!cpumask_empty(cpus)) {
4575 env.loop = 0;
4576 env.loop_break = sched_nr_migrate_break;
4577 goto redo;
4578 }
4579 goto out_balanced;
4580 }
4581 }
4582
4583 if (!ld_moved) {
4584 schedstat_inc(sd, lb_failed[idle]);
4585 /*
4586 * Increment the failure counter only on periodic balance.
4587 * We do not want newidle balance, which can be very
4588 * frequent, pollute the failure counter causing
4589 * excessive cache_hot migrations and active balances.
4590 */
4591 if (idle != CPU_NEWLY_IDLE)
4592 sd->nr_balance_failed++;
4593
4594 if (need_active_balance(&env)) {
4595 raw_spin_lock_irqsave(&busiest->lock, flags);
4596
4597 /* don't kick the active_load_balance_cpu_stop,
4598 * if the curr task on busiest cpu can't be
4599 * moved to this_cpu
4600 */
4601 if (!cpumask_test_cpu(this_cpu,
4602 tsk_cpus_allowed(busiest->curr))) {
4603 raw_spin_unlock_irqrestore(&busiest->lock,
4604 flags);
4605 env.flags |= LBF_ALL_PINNED;
4606 goto out_one_pinned;
4607 }
4608
4609 /*
4610 * ->active_balance synchronizes accesses to
4611 * ->active_balance_work. Once set, it's cleared
4612 * only after active load balance is finished.
4613 */
4614 if (!busiest->active_balance) {
4615 busiest->active_balance = 1;
4616 busiest->push_cpu = this_cpu;
4617 active_balance = 1;
4618 }
4619 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4620
4621 if (active_balance) {
4622 stop_one_cpu_nowait(cpu_of(busiest),
4623 active_load_balance_cpu_stop, busiest,
4624 &busiest->active_balance_work);
4625 }
4626
4627 /*
4628 * We've kicked active balancing, reset the failure
4629 * counter.
4630 */
4631 sd->nr_balance_failed = sd->cache_nice_tries+1;
4632 }
4633 } else
4634 sd->nr_balance_failed = 0;
4635
4636 if (likely(!active_balance)) {
4637 /* We were unbalanced, so reset the balancing interval */
4638 sd->balance_interval = sd->min_interval;
4639 } else {
4640 /*
4641 * If we've begun active balancing, start to back off. This
4642 * case may not be covered by the all_pinned logic if there
4643 * is only 1 task on the busy runqueue (because we don't call
4644 * move_tasks).
4645 */
4646 if (sd->balance_interval < sd->max_interval)
4647 sd->balance_interval *= 2;
4648 }
4649
4650 goto out;
4651
4652 out_balanced:
4653 schedstat_inc(sd, lb_balanced[idle]);
4654
4655 sd->nr_balance_failed = 0;
4656
4657 out_one_pinned:
4658 /* tune up the balancing interval */
4659 if (((env.flags & LBF_ALL_PINNED) &&
4660 sd->balance_interval < MAX_PINNED_INTERVAL) ||
4661 (sd->balance_interval < sd->max_interval))
4662 sd->balance_interval *= 2;
4663
4664 ld_moved = 0;
4665 out:
4666 return ld_moved;
4667 }
4668
4669 /*
4670 * idle_balance is called by schedule() if this_cpu is about to become
4671 * idle. Attempts to pull tasks from other CPUs.
4672 */
4673 void idle_balance(int this_cpu, struct rq *this_rq)
4674 {
4675 struct sched_domain *sd;
4676 int pulled_task = 0;
4677 unsigned long next_balance = jiffies + HZ;
4678
4679 this_rq->idle_stamp = this_rq->clock;
4680
4681 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4682 return;
4683
4684 /*
4685 * Drop the rq->lock, but keep IRQ/preempt disabled.
4686 */
4687 raw_spin_unlock(&this_rq->lock);
4688
4689 update_shares(this_cpu);
4690 rcu_read_lock();
4691 for_each_domain(this_cpu, sd) {
4692 unsigned long interval;
4693 int balance = 1;
4694
4695 if (!(sd->flags & SD_LOAD_BALANCE))
4696 continue;
4697
4698 if (sd->flags & SD_BALANCE_NEWIDLE) {
4699 /* If we've pulled tasks over stop searching: */
4700 pulled_task = load_balance(this_cpu, this_rq,
4701 sd, CPU_NEWLY_IDLE, &balance);
4702 }
4703
4704 interval = msecs_to_jiffies(sd->balance_interval);
4705 if (time_after(next_balance, sd->last_balance + interval))
4706 next_balance = sd->last_balance + interval;
4707 if (pulled_task) {
4708 this_rq->idle_stamp = 0;
4709 break;
4710 }
4711 }
4712 rcu_read_unlock();
4713
4714 raw_spin_lock(&this_rq->lock);
4715
4716 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4717 /*
4718 * We are going idle. next_balance may be set based on
4719 * a busy processor. So reset next_balance.
4720 */
4721 this_rq->next_balance = next_balance;
4722 }
4723 }
4724
4725 /*
4726 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4727 * running tasks off the busiest CPU onto idle CPUs. It requires at
4728 * least 1 task to be running on each physical CPU where possible, and
4729 * avoids physical / logical imbalances.
4730 */
4731 static int active_load_balance_cpu_stop(void *data)
4732 {
4733 struct rq *busiest_rq = data;
4734 int busiest_cpu = cpu_of(busiest_rq);
4735 int target_cpu = busiest_rq->push_cpu;
4736 struct rq *target_rq = cpu_rq(target_cpu);
4737 struct sched_domain *sd;
4738
4739 raw_spin_lock_irq(&busiest_rq->lock);
4740
4741 /* make sure the requested cpu hasn't gone down in the meantime */
4742 if (unlikely(busiest_cpu != smp_processor_id() ||
4743 !busiest_rq->active_balance))
4744 goto out_unlock;
4745
4746 /* Is there any task to move? */
4747 if (busiest_rq->nr_running <= 1)
4748 goto out_unlock;
4749
4750 /*
4751 * This condition is "impossible", if it occurs
4752 * we need to fix it. Originally reported by
4753 * Bjorn Helgaas on a 128-cpu setup.
4754 */
4755 BUG_ON(busiest_rq == target_rq);
4756
4757 /* move a task from busiest_rq to target_rq */
4758 double_lock_balance(busiest_rq, target_rq);
4759
4760 /* Search for an sd spanning us and the target CPU. */
4761 rcu_read_lock();
4762 for_each_domain(target_cpu, sd) {
4763 if ((sd->flags & SD_LOAD_BALANCE) &&
4764 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4765 break;
4766 }
4767
4768 if (likely(sd)) {
4769 struct lb_env env = {
4770 .sd = sd,
4771 .dst_cpu = target_cpu,
4772 .dst_rq = target_rq,
4773 .src_cpu = busiest_rq->cpu,
4774 .src_rq = busiest_rq,
4775 .idle = CPU_IDLE,
4776 };
4777
4778 schedstat_inc(sd, alb_count);
4779
4780 if (move_one_task(&env))
4781 schedstat_inc(sd, alb_pushed);
4782 else
4783 schedstat_inc(sd, alb_failed);
4784 }
4785 rcu_read_unlock();
4786 double_unlock_balance(busiest_rq, target_rq);
4787 out_unlock:
4788 busiest_rq->active_balance = 0;
4789 raw_spin_unlock_irq(&busiest_rq->lock);
4790 return 0;
4791 }
4792
4793 #ifdef CONFIG_NO_HZ
4794 /*
4795 * idle load balancing details
4796 * - When one of the busy CPUs notice that there may be an idle rebalancing
4797 * needed, they will kick the idle load balancer, which then does idle
4798 * load balancing for all the idle CPUs.
4799 */
4800 static struct {
4801 cpumask_var_t idle_cpus_mask;
4802 atomic_t nr_cpus;
4803 unsigned long next_balance; /* in jiffy units */
4804 } nohz ____cacheline_aligned;
4805
4806 static inline int find_new_ilb(int call_cpu)
4807 {
4808 int ilb = cpumask_first(nohz.idle_cpus_mask);
4809
4810 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4811 return ilb;
4812
4813 return nr_cpu_ids;
4814 }
4815
4816 /*
4817 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4818 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4819 * CPU (if there is one).
4820 */
4821 static void nohz_balancer_kick(int cpu)
4822 {
4823 int ilb_cpu;
4824
4825 nohz.next_balance++;
4826
4827 ilb_cpu = find_new_ilb(cpu);
4828
4829 if (ilb_cpu >= nr_cpu_ids)
4830 return;
4831
4832 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4833 return;
4834 /*
4835 * Use smp_send_reschedule() instead of resched_cpu().
4836 * This way we generate a sched IPI on the target cpu which
4837 * is idle. And the softirq performing nohz idle load balance
4838 * will be run before returning from the IPI.
4839 */
4840 smp_send_reschedule(ilb_cpu);
4841 return;
4842 }
4843
4844 static inline void nohz_balance_exit_idle(int cpu)
4845 {
4846 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4847 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4848 atomic_dec(&nohz.nr_cpus);
4849 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4850 }
4851 }
4852
4853 static inline void set_cpu_sd_state_busy(void)
4854 {
4855 struct sched_domain *sd;
4856 int cpu = smp_processor_id();
4857
4858 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4859 return;
4860 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4861
4862 rcu_read_lock();
4863 for_each_domain(cpu, sd)
4864 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4865 rcu_read_unlock();
4866 }
4867
4868 void set_cpu_sd_state_idle(void)
4869 {
4870 struct sched_domain *sd;
4871 int cpu = smp_processor_id();
4872
4873 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4874 return;
4875 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4876
4877 rcu_read_lock();
4878 for_each_domain(cpu, sd)
4879 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4880 rcu_read_unlock();
4881 }
4882
4883 /*
4884 * This routine will record that the cpu is going idle with tick stopped.
4885 * This info will be used in performing idle load balancing in the future.
4886 */
4887 void nohz_balance_enter_idle(int cpu)
4888 {
4889 /*
4890 * If this cpu is going down, then nothing needs to be done.
4891 */
4892 if (!cpu_active(cpu))
4893 return;
4894
4895 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4896 return;
4897
4898 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4899 atomic_inc(&nohz.nr_cpus);
4900 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4901 }
4902
4903 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4904 unsigned long action, void *hcpu)
4905 {
4906 switch (action & ~CPU_TASKS_FROZEN) {
4907 case CPU_DYING:
4908 nohz_balance_exit_idle(smp_processor_id());
4909 return NOTIFY_OK;
4910 default:
4911 return NOTIFY_DONE;
4912 }
4913 }
4914 #endif
4915
4916 static DEFINE_SPINLOCK(balancing);
4917
4918 /*
4919 * Scale the max load_balance interval with the number of CPUs in the system.
4920 * This trades load-balance latency on larger machines for less cross talk.
4921 */
4922 void update_max_interval(void)
4923 {
4924 max_load_balance_interval = HZ*num_online_cpus()/10;
4925 }
4926
4927 /*
4928 * It checks each scheduling domain to see if it is due to be balanced,
4929 * and initiates a balancing operation if so.
4930 *
4931 * Balancing parameters are set up in arch_init_sched_domains.
4932 */
4933 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4934 {
4935 int balance = 1;
4936 struct rq *rq = cpu_rq(cpu);
4937 unsigned long interval;
4938 struct sched_domain *sd;
4939 /* Earliest time when we have to do rebalance again */
4940 unsigned long next_balance = jiffies + 60*HZ;
4941 int update_next_balance = 0;
4942 int need_serialize;
4943
4944 update_shares(cpu);
4945
4946 rcu_read_lock();
4947 for_each_domain(cpu, sd) {
4948 if (!(sd->flags & SD_LOAD_BALANCE))
4949 continue;
4950
4951 interval = sd->balance_interval;
4952 if (idle != CPU_IDLE)
4953 interval *= sd->busy_factor;
4954
4955 /* scale ms to jiffies */
4956 interval = msecs_to_jiffies(interval);
4957 interval = clamp(interval, 1UL, max_load_balance_interval);
4958
4959 need_serialize = sd->flags & SD_SERIALIZE;
4960
4961 if (need_serialize) {
4962 if (!spin_trylock(&balancing))
4963 goto out;
4964 }
4965
4966 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4967 if (load_balance(cpu, rq, sd, idle, &balance)) {
4968 /*
4969 * We've pulled tasks over so either we're no
4970 * longer idle.
4971 */
4972 idle = CPU_NOT_IDLE;
4973 }
4974 sd->last_balance = jiffies;
4975 }
4976 if (need_serialize)
4977 spin_unlock(&balancing);
4978 out:
4979 if (time_after(next_balance, sd->last_balance + interval)) {
4980 next_balance = sd->last_balance + interval;
4981 update_next_balance = 1;
4982 }
4983
4984 /*
4985 * Stop the load balance at this level. There is another
4986 * CPU in our sched group which is doing load balancing more
4987 * actively.
4988 */
4989 if (!balance)
4990 break;
4991 }
4992 rcu_read_unlock();
4993
4994 /*
4995 * next_balance will be updated only when there is a need.
4996 * When the cpu is attached to null domain for ex, it will not be
4997 * updated.
4998 */
4999 if (likely(update_next_balance))
5000 rq->next_balance = next_balance;
5001 }
5002
5003 #ifdef CONFIG_NO_HZ
5004 /*
5005 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5006 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5007 */
5008 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5009 {
5010 struct rq *this_rq = cpu_rq(this_cpu);
5011 struct rq *rq;
5012 int balance_cpu;
5013
5014 if (idle != CPU_IDLE ||
5015 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5016 goto end;
5017
5018 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5019 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5020 continue;
5021
5022 /*
5023 * If this cpu gets work to do, stop the load balancing
5024 * work being done for other cpus. Next load
5025 * balancing owner will pick it up.
5026 */
5027 if (need_resched())
5028 break;
5029
5030 rq = cpu_rq(balance_cpu);
5031
5032 raw_spin_lock_irq(&rq->lock);
5033 update_rq_clock(rq);
5034 update_idle_cpu_load(rq);
5035 raw_spin_unlock_irq(&rq->lock);
5036
5037 rebalance_domains(balance_cpu, CPU_IDLE);
5038
5039 if (time_after(this_rq->next_balance, rq->next_balance))
5040 this_rq->next_balance = rq->next_balance;
5041 }
5042 nohz.next_balance = this_rq->next_balance;
5043 end:
5044 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5045 }
5046
5047 /*
5048 * Current heuristic for kicking the idle load balancer in the presence
5049 * of an idle cpu is the system.
5050 * - This rq has more than one task.
5051 * - At any scheduler domain level, this cpu's scheduler group has multiple
5052 * busy cpu's exceeding the group's power.
5053 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5054 * domain span are idle.
5055 */
5056 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5057 {
5058 unsigned long now = jiffies;
5059 struct sched_domain *sd;
5060
5061 if (unlikely(idle_cpu(cpu)))
5062 return 0;
5063
5064 /*
5065 * We may be recently in ticked or tickless idle mode. At the first
5066 * busy tick after returning from idle, we will update the busy stats.
5067 */
5068 set_cpu_sd_state_busy();
5069 nohz_balance_exit_idle(cpu);
5070
5071 /*
5072 * None are in tickless mode and hence no need for NOHZ idle load
5073 * balancing.
5074 */
5075 if (likely(!atomic_read(&nohz.nr_cpus)))
5076 return 0;
5077
5078 if (time_before(now, nohz.next_balance))
5079 return 0;
5080
5081 if (rq->nr_running >= 2)
5082 goto need_kick;
5083
5084 rcu_read_lock();
5085 for_each_domain(cpu, sd) {
5086 struct sched_group *sg = sd->groups;
5087 struct sched_group_power *sgp = sg->sgp;
5088 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5089
5090 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5091 goto need_kick_unlock;
5092
5093 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5094 && (cpumask_first_and(nohz.idle_cpus_mask,
5095 sched_domain_span(sd)) < cpu))
5096 goto need_kick_unlock;
5097
5098 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5099 break;
5100 }
5101 rcu_read_unlock();
5102 return 0;
5103
5104 need_kick_unlock:
5105 rcu_read_unlock();
5106 need_kick:
5107 return 1;
5108 }
5109 #else
5110 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5111 #endif
5112
5113 /*
5114 * run_rebalance_domains is triggered when needed from the scheduler tick.
5115 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5116 */
5117 static void run_rebalance_domains(struct softirq_action *h)
5118 {
5119 int this_cpu = smp_processor_id();
5120 struct rq *this_rq = cpu_rq(this_cpu);
5121 enum cpu_idle_type idle = this_rq->idle_balance ?
5122 CPU_IDLE : CPU_NOT_IDLE;
5123
5124 rebalance_domains(this_cpu, idle);
5125
5126 /*
5127 * If this cpu has a pending nohz_balance_kick, then do the
5128 * balancing on behalf of the other idle cpus whose ticks are
5129 * stopped.
5130 */
5131 nohz_idle_balance(this_cpu, idle);
5132 }
5133
5134 static inline int on_null_domain(int cpu)
5135 {
5136 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5137 }
5138
5139 /*
5140 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5141 */
5142 void trigger_load_balance(struct rq *rq, int cpu)
5143 {
5144 /* Don't need to rebalance while attached to NULL domain */
5145 if (time_after_eq(jiffies, rq->next_balance) &&
5146 likely(!on_null_domain(cpu)))
5147 raise_softirq(SCHED_SOFTIRQ);
5148 #ifdef CONFIG_NO_HZ
5149 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5150 nohz_balancer_kick(cpu);
5151 #endif
5152 }
5153
5154 static void rq_online_fair(struct rq *rq)
5155 {
5156 update_sysctl();
5157 }
5158
5159 static void rq_offline_fair(struct rq *rq)
5160 {
5161 update_sysctl();
5162
5163 /* Ensure any throttled groups are reachable by pick_next_task */
5164 unthrottle_offline_cfs_rqs(rq);
5165 }
5166
5167 #endif /* CONFIG_SMP */
5168
5169 /*
5170 * scheduler tick hitting a task of our scheduling class:
5171 */
5172 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5173 {
5174 struct cfs_rq *cfs_rq;
5175 struct sched_entity *se = &curr->se;
5176
5177 for_each_sched_entity(se) {
5178 cfs_rq = cfs_rq_of(se);
5179 entity_tick(cfs_rq, se, queued);
5180 }
5181
5182 if (sched_feat_numa(NUMA))
5183 task_tick_numa(rq, curr);
5184 }
5185
5186 /*
5187 * called on fork with the child task as argument from the parent's context
5188 * - child not yet on the tasklist
5189 * - preemption disabled
5190 */
5191 static void task_fork_fair(struct task_struct *p)
5192 {
5193 struct cfs_rq *cfs_rq;
5194 struct sched_entity *se = &p->se, *curr;
5195 int this_cpu = smp_processor_id();
5196 struct rq *rq = this_rq();
5197 unsigned long flags;
5198
5199 raw_spin_lock_irqsave(&rq->lock, flags);
5200
5201 update_rq_clock(rq);
5202
5203 cfs_rq = task_cfs_rq(current);
5204 curr = cfs_rq->curr;
5205
5206 if (unlikely(task_cpu(p) != this_cpu)) {
5207 rcu_read_lock();
5208 __set_task_cpu(p, this_cpu);
5209 rcu_read_unlock();
5210 }
5211
5212 update_curr(cfs_rq);
5213
5214 if (curr)
5215 se->vruntime = curr->vruntime;
5216 place_entity(cfs_rq, se, 1);
5217
5218 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5219 /*
5220 * Upon rescheduling, sched_class::put_prev_task() will place
5221 * 'current' within the tree based on its new key value.
5222 */
5223 swap(curr->vruntime, se->vruntime);
5224 resched_task(rq->curr);
5225 }
5226
5227 se->vruntime -= cfs_rq->min_vruntime;
5228
5229 raw_spin_unlock_irqrestore(&rq->lock, flags);
5230 }
5231
5232 /*
5233 * Priority of the task has changed. Check to see if we preempt
5234 * the current task.
5235 */
5236 static void
5237 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5238 {
5239 if (!p->se.on_rq)
5240 return;
5241
5242 /*
5243 * Reschedule if we are currently running on this runqueue and
5244 * our priority decreased, or if we are not currently running on
5245 * this runqueue and our priority is higher than the current's
5246 */
5247 if (rq->curr == p) {
5248 if (p->prio > oldprio)
5249 resched_task(rq->curr);
5250 } else
5251 check_preempt_curr(rq, p, 0);
5252 }
5253
5254 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5255 {
5256 struct sched_entity *se = &p->se;
5257 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5258
5259 /*
5260 * Ensure the task's vruntime is normalized, so that when its
5261 * switched back to the fair class the enqueue_entity(.flags=0) will
5262 * do the right thing.
5263 *
5264 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5265 * have normalized the vruntime, if it was !on_rq, then only when
5266 * the task is sleeping will it still have non-normalized vruntime.
5267 */
5268 if (!se->on_rq && p->state != TASK_RUNNING) {
5269 /*
5270 * Fix up our vruntime so that the current sleep doesn't
5271 * cause 'unlimited' sleep bonus.
5272 */
5273 place_entity(cfs_rq, se, 0);
5274 se->vruntime -= cfs_rq->min_vruntime;
5275 }
5276 }
5277
5278 /*
5279 * We switched to the sched_fair class.
5280 */
5281 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5282 {
5283 if (!p->se.on_rq)
5284 return;
5285
5286 /*
5287 * We were most likely switched from sched_rt, so
5288 * kick off the schedule if running, otherwise just see
5289 * if we can still preempt the current task.
5290 */
5291 if (rq->curr == p)
5292 resched_task(rq->curr);
5293 else
5294 check_preempt_curr(rq, p, 0);
5295 }
5296
5297 /* Account for a task changing its policy or group.
5298 *
5299 * This routine is mostly called to set cfs_rq->curr field when a task
5300 * migrates between groups/classes.
5301 */
5302 static void set_curr_task_fair(struct rq *rq)
5303 {
5304 struct sched_entity *se = &rq->curr->se;
5305
5306 for_each_sched_entity(se) {
5307 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5308
5309 set_next_entity(cfs_rq, se);
5310 /* ensure bandwidth has been allocated on our new cfs_rq */
5311 account_cfs_rq_runtime(cfs_rq, 0);
5312 }
5313 }
5314
5315 void init_cfs_rq(struct cfs_rq *cfs_rq)
5316 {
5317 cfs_rq->tasks_timeline = RB_ROOT;
5318 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5319 #ifndef CONFIG_64BIT
5320 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5321 #endif
5322 }
5323
5324 #ifdef CONFIG_FAIR_GROUP_SCHED
5325 static void task_move_group_fair(struct task_struct *p, int on_rq)
5326 {
5327 /*
5328 * If the task was not on the rq at the time of this cgroup movement
5329 * it must have been asleep, sleeping tasks keep their ->vruntime
5330 * absolute on their old rq until wakeup (needed for the fair sleeper
5331 * bonus in place_entity()).
5332 *
5333 * If it was on the rq, we've just 'preempted' it, which does convert
5334 * ->vruntime to a relative base.
5335 *
5336 * Make sure both cases convert their relative position when migrating
5337 * to another cgroup's rq. This does somewhat interfere with the
5338 * fair sleeper stuff for the first placement, but who cares.
5339 */
5340 /*
5341 * When !on_rq, vruntime of the task has usually NOT been normalized.
5342 * But there are some cases where it has already been normalized:
5343 *
5344 * - Moving a forked child which is waiting for being woken up by
5345 * wake_up_new_task().
5346 * - Moving a task which has been woken up by try_to_wake_up() and
5347 * waiting for actually being woken up by sched_ttwu_pending().
5348 *
5349 * To prevent boost or penalty in the new cfs_rq caused by delta
5350 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5351 */
5352 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5353 on_rq = 1;
5354
5355 if (!on_rq)
5356 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5357 set_task_rq(p, task_cpu(p));
5358 if (!on_rq)
5359 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5360 }
5361
5362 void free_fair_sched_group(struct task_group *tg)
5363 {
5364 int i;
5365
5366 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5367
5368 for_each_possible_cpu(i) {
5369 if (tg->cfs_rq)
5370 kfree(tg->cfs_rq[i]);
5371 if (tg->se)
5372 kfree(tg->se[i]);
5373 }
5374
5375 kfree(tg->cfs_rq);
5376 kfree(tg->se);
5377 }
5378
5379 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5380 {
5381 struct cfs_rq *cfs_rq;
5382 struct sched_entity *se;
5383 int i;
5384
5385 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5386 if (!tg->cfs_rq)
5387 goto err;
5388 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5389 if (!tg->se)
5390 goto err;
5391
5392 tg->shares = NICE_0_LOAD;
5393
5394 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5395
5396 for_each_possible_cpu(i) {
5397 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5398 GFP_KERNEL, cpu_to_node(i));
5399 if (!cfs_rq)
5400 goto err;
5401
5402 se = kzalloc_node(sizeof(struct sched_entity),
5403 GFP_KERNEL, cpu_to_node(i));
5404 if (!se)
5405 goto err_free_rq;
5406
5407 init_cfs_rq(cfs_rq);
5408 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5409 }
5410
5411 return 1;
5412
5413 err_free_rq:
5414 kfree(cfs_rq);
5415 err:
5416 return 0;
5417 }
5418
5419 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5420 {
5421 struct rq *rq = cpu_rq(cpu);
5422 unsigned long flags;
5423
5424 /*
5425 * Only empty task groups can be destroyed; so we can speculatively
5426 * check on_list without danger of it being re-added.
5427 */
5428 if (!tg->cfs_rq[cpu]->on_list)
5429 return;
5430
5431 raw_spin_lock_irqsave(&rq->lock, flags);
5432 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5433 raw_spin_unlock_irqrestore(&rq->lock, flags);
5434 }
5435
5436 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5437 struct sched_entity *se, int cpu,
5438 struct sched_entity *parent)
5439 {
5440 struct rq *rq = cpu_rq(cpu);
5441
5442 cfs_rq->tg = tg;
5443 cfs_rq->rq = rq;
5444 #ifdef CONFIG_SMP
5445 /* allow initial update_cfs_load() to truncate */
5446 cfs_rq->load_stamp = 1;
5447 #endif
5448 init_cfs_rq_runtime(cfs_rq);
5449
5450 tg->cfs_rq[cpu] = cfs_rq;
5451 tg->se[cpu] = se;
5452
5453 /* se could be NULL for root_task_group */
5454 if (!se)
5455 return;
5456
5457 if (!parent)
5458 se->cfs_rq = &rq->cfs;
5459 else
5460 se->cfs_rq = parent->my_q;
5461
5462 se->my_q = cfs_rq;
5463 update_load_set(&se->load, 0);
5464 se->parent = parent;
5465 }
5466
5467 static DEFINE_MUTEX(shares_mutex);
5468
5469 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5470 {
5471 int i;
5472 unsigned long flags;
5473
5474 /*
5475 * We can't change the weight of the root cgroup.
5476 */
5477 if (!tg->se[0])
5478 return -EINVAL;
5479
5480 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5481
5482 mutex_lock(&shares_mutex);
5483 if (tg->shares == shares)
5484 goto done;
5485
5486 tg->shares = shares;
5487 for_each_possible_cpu(i) {
5488 struct rq *rq = cpu_rq(i);
5489 struct sched_entity *se;
5490
5491 se = tg->se[i];
5492 /* Propagate contribution to hierarchy */
5493 raw_spin_lock_irqsave(&rq->lock, flags);
5494 for_each_sched_entity(se)
5495 update_cfs_shares(group_cfs_rq(se));
5496 raw_spin_unlock_irqrestore(&rq->lock, flags);
5497 }
5498
5499 done:
5500 mutex_unlock(&shares_mutex);
5501 return 0;
5502 }
5503 #else /* CONFIG_FAIR_GROUP_SCHED */
5504
5505 void free_fair_sched_group(struct task_group *tg) { }
5506
5507 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5508 {
5509 return 1;
5510 }
5511
5512 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5513
5514 #endif /* CONFIG_FAIR_GROUP_SCHED */
5515
5516
5517 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5518 {
5519 struct sched_entity *se = &task->se;
5520 unsigned int rr_interval = 0;
5521
5522 /*
5523 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5524 * idle runqueue:
5525 */
5526 if (rq->cfs.load.weight)
5527 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5528
5529 return rr_interval;
5530 }
5531
5532 /*
5533 * All the scheduling class methods:
5534 */
5535 const struct sched_class fair_sched_class = {
5536 .next = &idle_sched_class,
5537 .enqueue_task = enqueue_task_fair,
5538 .dequeue_task = dequeue_task_fair,
5539 .yield_task = yield_task_fair,
5540 .yield_to_task = yield_to_task_fair,
5541
5542 .check_preempt_curr = check_preempt_wakeup,
5543
5544 .pick_next_task = pick_next_task_fair,
5545 .put_prev_task = put_prev_task_fair,
5546
5547 #ifdef CONFIG_SMP
5548 .select_task_rq = select_task_rq_fair,
5549
5550 .rq_online = rq_online_fair,
5551 .rq_offline = rq_offline_fair,
5552
5553 .task_waking = task_waking_fair,
5554 #endif
5555
5556 .set_curr_task = set_curr_task_fair,
5557 .task_tick = task_tick_fair,
5558 .task_fork = task_fork_fair,
5559
5560 .prio_changed = prio_changed_fair,
5561 .switched_from = switched_from_fair,
5562 .switched_to = switched_to_fair,
5563
5564 .get_rr_interval = get_rr_interval_fair,
5565
5566 #ifdef CONFIG_FAIR_GROUP_SCHED
5567 .task_move_group = task_move_group_fair,
5568 #endif
5569 };
5570
5571 #ifdef CONFIG_SCHED_DEBUG
5572 void print_cfs_stats(struct seq_file *m, int cpu)
5573 {
5574 struct cfs_rq *cfs_rq;
5575
5576 rcu_read_lock();
5577 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5578 print_cfs_rq(m, cpu, cfs_rq);
5579 rcu_read_unlock();
5580 }
5581 #endif
5582
5583 __init void init_sched_fair_class(void)
5584 {
5585 #ifdef CONFIG_SMP
5586 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5587
5588 #ifdef CONFIG_NO_HZ
5589 nohz.next_balance = jiffies;
5590 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5591 cpu_notifier(sched_ilb_notifier, 0);
5592 #endif
5593 #endif /* SMP */
5594
5595 }