Merge remote-tracking branch 'regulator/topic/palmas' into v3.9-rc8
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519
520 void resched_task(struct task_struct *p)
521 {
522 int cpu;
523
524 assert_raw_spin_locked(&task_rq(p)->lock);
525
526 if (test_tsk_need_resched(p))
527 return;
528
529 set_tsk_need_resched(p);
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539 }
540
541 void resched_cpu(int cpu)
542 {
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 return;
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551
552 #ifdef CONFIG_NO_HZ
553 /*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561 int get_nohz_timer_target(void)
562 {
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
567 rcu_read_lock();
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
575 }
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
606
607 /*
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
611 */
612 set_tsk_need_resched(rq->idle);
613
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
618 }
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625
626 #else /* CONFIG_NO_HZ */
627
628 static inline bool got_nohz_idle_kick(void)
629 {
630 return false;
631 }
632
633 #endif /* CONFIG_NO_HZ */
634
635 void sched_avg_update(struct rq *rq)
636 {
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
649 }
650
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 assert_raw_spin_locked(&task_rq(p)->lock);
655 set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667 int walk_tg_tree_from(struct task_group *from,
668 tg_visitor down, tg_visitor up, void *data)
669 {
670 struct task_group *parent, *child;
671 int ret;
672
673 parent = from;
674
675 down:
676 ret = (*down)(parent, data);
677 if (ret)
678 goto out;
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683 up:
684 continue;
685 }
686 ret = (*up)(parent, data);
687 if (ret || parent == from)
688 goto out;
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
694 out:
695 return ret;
696 }
697
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 return 0;
701 }
702 #endif
703
704 static void set_load_weight(struct task_struct *p)
705 {
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
713 load->weight = scale_load(WEIGHT_IDLEPRIO);
714 load->inv_weight = WMULT_IDLEPRIO;
715 return;
716 }
717
718 load->weight = scale_load(prio_to_weight[prio]);
719 load->inv_weight = prio_to_wmult[prio];
720 }
721
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 update_rq_clock(rq);
725 sched_info_queued(p);
726 p->sched_class->enqueue_task(rq, p, flags);
727 }
728
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 update_rq_clock(rq);
732 sched_info_dequeued(p);
733 p->sched_class->dequeue_task(rq, p, flags);
734 }
735
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
741 enqueue_task(rq, p, flags);
742 }
743
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
749 dequeue_task(rq, p, flags);
750 }
751
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 if (static_key_false((&paravirt_steal_rq_enabled))) {
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802 #endif
803
804 rq->clock_task += delta;
805
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840 }
841
842 /*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 return p->static_prio;
848 }
849
850 /*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 int prio;
860
861 if (task_has_rt_policy(p))
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866 }
867
868 /*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875 static int effective_prio(struct task_struct *p)
876 {
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886 }
887
888 /**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892 inline int task_curr(const struct task_struct *p)
893 {
894 return cpu_curr(task_cpu(p)) == p;
895 }
896
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
899 int oldprio)
900 {
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
907 }
908
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 rq->skip_clock_update = 1;
932 }
933
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952 #ifdef CONFIG_LOCKDEP
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
958 * see task_group().
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967
968 trace_sched_migrate_task(p, new_cpu);
969
970 if (task_cpu(p) != new_cpu) {
971 struct task_migration_notifier tmn;
972
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
975 p->se.nr_migrations++;
976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 }
984
985 __set_task_cpu(p, new_cpu);
986 }
987
988 struct migration_arg {
989 struct task_struct *task;
990 int dest_cpu;
991 };
992
993 static int migration_cpu_stop(void *data);
994
995 /*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 unsigned long flags;
1014 int running, on_rq;
1015 unsigned long ncsw;
1016 struct rq *rq;
1017
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
1026
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
1041 cpu_relax();
1042 }
1043
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
1050 trace_sched_wait_task(p);
1051 running = task_running(rq, p);
1052 on_rq = p->on_rq;
1053 ncsw = 0;
1054 if (!match_state || p->state == match_state)
1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 task_rq_unlock(rq, p, &flags);
1057
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
1074
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
1080 * So if it was still runnable (but just not actively
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 continue;
1090 }
1091
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
1099
1100 return ncsw;
1101 }
1102
1103 /***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116 void kick_process(struct task_struct *p)
1117 {
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128
1129 #ifdef CONFIG_SMP
1130 /*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
1137 enum { cpuset, possible, fail } state = cpuset;
1138 int dest_cpu;
1139
1140 /*
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1144 */
1145 if (nid != -1) {
1146 nodemask = cpumask_of_node(nid);
1147
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1151 continue;
1152 if (!cpu_active(dest_cpu))
1153 continue;
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 return dest_cpu;
1156 }
1157 }
1158
1159 for (;;) {
1160 /* Any allowed, online CPU? */
1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 if (!cpu_online(dest_cpu))
1163 continue;
1164 if (!cpu_active(dest_cpu))
1165 continue;
1166 goto out;
1167 }
1168
1169 switch (state) {
1170 case cpuset:
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1173 state = possible;
1174 break;
1175
1176 case possible:
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1178 state = fail;
1179 break;
1180
1181 case fail:
1182 BUG();
1183 break;
1184 }
1185 }
1186
1187 out:
1188 if (state != cpuset) {
1189 /*
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1192 * leave kernel.
1193 */
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1197 }
1198 }
1199
1200 return dest_cpu;
1201 }
1202
1203 /*
1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205 */
1206 static inline
1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208 {
1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210
1211 /*
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 * cpu.
1215 *
1216 * Since this is common to all placement strategies, this lives here.
1217 *
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1220 */
1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1222 !cpu_online(cpu)))
1223 cpu = select_fallback_rq(task_cpu(p), p);
1224
1225 return cpu;
1226 }
1227
1228 static void update_avg(u64 *avg, u64 sample)
1229 {
1230 s64 diff = sample - *avg;
1231 *avg += diff >> 3;
1232 }
1233 #endif
1234
1235 static void
1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1237 {
1238 #ifdef CONFIG_SCHEDSTATS
1239 struct rq *rq = this_rq();
1240
1241 #ifdef CONFIG_SMP
1242 int this_cpu = smp_processor_id();
1243
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 } else {
1248 struct sched_domain *sd;
1249
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251 rcu_read_lock();
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1255 break;
1256 }
1257 }
1258 rcu_read_unlock();
1259 }
1260
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
1264 #endif /* CONFIG_SMP */
1265
1266 schedstat_inc(rq, ttwu_count);
1267 schedstat_inc(p, se.statistics.nr_wakeups);
1268
1269 if (wake_flags & WF_SYNC)
1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1271
1272 #endif /* CONFIG_SCHEDSTATS */
1273 }
1274
1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276 {
1277 activate_task(rq, p, en_flags);
1278 p->on_rq = 1;
1279
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
1283 }
1284
1285 /*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
1288 static void
1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1290 {
1291 trace_sched_wakeup(p, true);
1292 check_preempt_curr(rq, p, wake_flags);
1293
1294 p->state = TASK_RUNNING;
1295 #ifdef CONFIG_SMP
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1298
1299 if (rq->idle_stamp) {
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1302
1303 if (delta > max)
1304 rq->avg_idle = max;
1305 else
1306 update_avg(&rq->avg_idle, delta);
1307 rq->idle_stamp = 0;
1308 }
1309 #endif
1310 }
1311
1312 static void
1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314 {
1315 #ifdef CONFIG_SMP
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1318 #endif
1319
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1322 }
1323
1324 /*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330 static int ttwu_remote(struct task_struct *p, int wake_flags)
1331 {
1332 struct rq *rq;
1333 int ret = 0;
1334
1335 rq = __task_rq_lock(p);
1336 if (p->on_rq) {
1337 ttwu_do_wakeup(rq, p, wake_flags);
1338 ret = 1;
1339 }
1340 __task_rq_unlock(rq);
1341
1342 return ret;
1343 }
1344
1345 #ifdef CONFIG_SMP
1346 static void sched_ttwu_pending(void)
1347 {
1348 struct rq *rq = this_rq();
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
1351
1352 raw_spin_lock(&rq->lock);
1353
1354 while (llist) {
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
1357 ttwu_do_activate(rq, p, 0);
1358 }
1359
1360 raw_spin_unlock(&rq->lock);
1361 }
1362
1363 void scheduler_ipi(void)
1364 {
1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366 return;
1367
1368 /*
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1372 * we do call them.
1373 *
1374 * Some archs already do call them, luckily irq_enter/exit nest
1375 * properly.
1376 *
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1380 */
1381 irq_enter();
1382 sched_ttwu_pending();
1383
1384 /*
1385 * Check if someone kicked us for doing the nohz idle load balance.
1386 */
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
1390 }
1391 irq_exit();
1392 }
1393
1394 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395 {
1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 smp_send_reschedule(cpu);
1398 }
1399
1400 bool cpus_share_cache(int this_cpu, int that_cpu)
1401 {
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403 }
1404 #endif /* CONFIG_SMP */
1405
1406 static void ttwu_queue(struct task_struct *p, int cpu)
1407 {
1408 struct rq *rq = cpu_rq(cpu);
1409
1410 #if defined(CONFIG_SMP)
1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 ttwu_queue_remote(p, cpu);
1414 return;
1415 }
1416 #endif
1417
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
1421 }
1422
1423 /**
1424 * try_to_wake_up - wake up a thread
1425 * @p: the thread to be awakened
1426 * @state: the mask of task states that can be woken
1427 * @wake_flags: wake modifier flags (WF_*)
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1437 */
1438 static int
1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1440 {
1441 unsigned long flags;
1442 int cpu, success = 0;
1443
1444 smp_wmb();
1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
1446 if (!(p->state & state))
1447 goto out;
1448
1449 success = 1; /* we're going to change ->state */
1450 cpu = task_cpu(p);
1451
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1453 goto stat;
1454
1455 #ifdef CONFIG_SMP
1456 /*
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
1459 */
1460 while (p->on_cpu)
1461 cpu_relax();
1462 /*
1463 * Pairs with the smp_wmb() in finish_lock_switch().
1464 */
1465 smp_rmb();
1466
1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1468 p->state = TASK_WAKING;
1469
1470 if (p->sched_class->task_waking)
1471 p->sched_class->task_waking(p);
1472
1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
1476 set_task_cpu(p, cpu);
1477 }
1478 #endif /* CONFIG_SMP */
1479
1480 ttwu_queue(p, cpu);
1481 stat:
1482 ttwu_stat(p, cpu, wake_flags);
1483 out:
1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1485
1486 return success;
1487 }
1488
1489 /**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
1493 * Put @p on the run-queue if it's not already there. The caller must
1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495 * the current task.
1496 */
1497 static void try_to_wake_up_local(struct task_struct *p)
1498 {
1499 struct rq *rq = task_rq(p);
1500
1501 if (WARN_ON_ONCE(rq != this_rq()) ||
1502 WARN_ON_ONCE(p == current))
1503 return;
1504
1505 lockdep_assert_held(&rq->lock);
1506
1507 if (!raw_spin_trylock(&p->pi_lock)) {
1508 raw_spin_unlock(&rq->lock);
1509 raw_spin_lock(&p->pi_lock);
1510 raw_spin_lock(&rq->lock);
1511 }
1512
1513 if (!(p->state & TASK_NORMAL))
1514 goto out;
1515
1516 if (!p->on_rq)
1517 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1518
1519 ttwu_do_wakeup(rq, p, 0);
1520 ttwu_stat(p, smp_processor_id(), 0);
1521 out:
1522 raw_spin_unlock(&p->pi_lock);
1523 }
1524
1525 /**
1526 * wake_up_process - Wake up a specific process
1527 * @p: The process to be woken up.
1528 *
1529 * Attempt to wake up the nominated process and move it to the set of runnable
1530 * processes. Returns 1 if the process was woken up, 0 if it was already
1531 * running.
1532 *
1533 * It may be assumed that this function implies a write memory barrier before
1534 * changing the task state if and only if any tasks are woken up.
1535 */
1536 int wake_up_process(struct task_struct *p)
1537 {
1538 WARN_ON(task_is_stopped_or_traced(p));
1539 return try_to_wake_up(p, TASK_NORMAL, 0);
1540 }
1541 EXPORT_SYMBOL(wake_up_process);
1542
1543 int wake_up_state(struct task_struct *p, unsigned int state)
1544 {
1545 return try_to_wake_up(p, state, 0);
1546 }
1547
1548 /*
1549 * Perform scheduler related setup for a newly forked process p.
1550 * p is forked by current.
1551 *
1552 * __sched_fork() is basic setup used by init_idle() too:
1553 */
1554 static void __sched_fork(struct task_struct *p)
1555 {
1556 p->on_rq = 0;
1557
1558 p->se.on_rq = 0;
1559 p->se.exec_start = 0;
1560 p->se.sum_exec_runtime = 0;
1561 p->se.prev_sum_exec_runtime = 0;
1562 p->se.nr_migrations = 0;
1563 p->se.vruntime = 0;
1564 INIT_LIST_HEAD(&p->se.group_node);
1565
1566 /*
1567 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1568 * removed when useful for applications beyond shares distribution (e.g.
1569 * load-balance).
1570 */
1571 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1572 p->se.avg.runnable_avg_period = 0;
1573 p->se.avg.runnable_avg_sum = 0;
1574 #endif
1575 #ifdef CONFIG_SCHEDSTATS
1576 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1577 #endif
1578
1579 INIT_LIST_HEAD(&p->rt.run_list);
1580
1581 #ifdef CONFIG_PREEMPT_NOTIFIERS
1582 INIT_HLIST_HEAD(&p->preempt_notifiers);
1583 #endif
1584
1585 #ifdef CONFIG_NUMA_BALANCING
1586 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1587 p->mm->numa_next_scan = jiffies;
1588 p->mm->numa_next_reset = jiffies;
1589 p->mm->numa_scan_seq = 0;
1590 }
1591
1592 p->node_stamp = 0ULL;
1593 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1594 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1595 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1596 p->numa_work.next = &p->numa_work;
1597 #endif /* CONFIG_NUMA_BALANCING */
1598 }
1599
1600 #ifdef CONFIG_NUMA_BALANCING
1601 #ifdef CONFIG_SCHED_DEBUG
1602 void set_numabalancing_state(bool enabled)
1603 {
1604 if (enabled)
1605 sched_feat_set("NUMA");
1606 else
1607 sched_feat_set("NO_NUMA");
1608 }
1609 #else
1610 __read_mostly bool numabalancing_enabled;
1611
1612 void set_numabalancing_state(bool enabled)
1613 {
1614 numabalancing_enabled = enabled;
1615 }
1616 #endif /* CONFIG_SCHED_DEBUG */
1617 #endif /* CONFIG_NUMA_BALANCING */
1618
1619 /*
1620 * fork()/clone()-time setup:
1621 */
1622 void sched_fork(struct task_struct *p)
1623 {
1624 unsigned long flags;
1625 int cpu = get_cpu();
1626
1627 __sched_fork(p);
1628 /*
1629 * We mark the process as running here. This guarantees that
1630 * nobody will actually run it, and a signal or other external
1631 * event cannot wake it up and insert it on the runqueue either.
1632 */
1633 p->state = TASK_RUNNING;
1634
1635 /*
1636 * Make sure we do not leak PI boosting priority to the child.
1637 */
1638 p->prio = current->normal_prio;
1639
1640 /*
1641 * Revert to default priority/policy on fork if requested.
1642 */
1643 if (unlikely(p->sched_reset_on_fork)) {
1644 if (task_has_rt_policy(p)) {
1645 p->policy = SCHED_NORMAL;
1646 p->static_prio = NICE_TO_PRIO(0);
1647 p->rt_priority = 0;
1648 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1649 p->static_prio = NICE_TO_PRIO(0);
1650
1651 p->prio = p->normal_prio = __normal_prio(p);
1652 set_load_weight(p);
1653
1654 /*
1655 * We don't need the reset flag anymore after the fork. It has
1656 * fulfilled its duty:
1657 */
1658 p->sched_reset_on_fork = 0;
1659 }
1660
1661 if (!rt_prio(p->prio))
1662 p->sched_class = &fair_sched_class;
1663
1664 if (p->sched_class->task_fork)
1665 p->sched_class->task_fork(p);
1666
1667 /*
1668 * The child is not yet in the pid-hash so no cgroup attach races,
1669 * and the cgroup is pinned to this child due to cgroup_fork()
1670 * is ran before sched_fork().
1671 *
1672 * Silence PROVE_RCU.
1673 */
1674 raw_spin_lock_irqsave(&p->pi_lock, flags);
1675 set_task_cpu(p, cpu);
1676 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1677
1678 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1679 if (likely(sched_info_on()))
1680 memset(&p->sched_info, 0, sizeof(p->sched_info));
1681 #endif
1682 #if defined(CONFIG_SMP)
1683 p->on_cpu = 0;
1684 #endif
1685 #ifdef CONFIG_PREEMPT_COUNT
1686 /* Want to start with kernel preemption disabled. */
1687 task_thread_info(p)->preempt_count = 1;
1688 #endif
1689 #ifdef CONFIG_SMP
1690 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1691 #endif
1692
1693 put_cpu();
1694 }
1695
1696 /*
1697 * wake_up_new_task - wake up a newly created task for the first time.
1698 *
1699 * This function will do some initial scheduler statistics housekeeping
1700 * that must be done for every newly created context, then puts the task
1701 * on the runqueue and wakes it.
1702 */
1703 void wake_up_new_task(struct task_struct *p)
1704 {
1705 unsigned long flags;
1706 struct rq *rq;
1707
1708 raw_spin_lock_irqsave(&p->pi_lock, flags);
1709 #ifdef CONFIG_SMP
1710 /*
1711 * Fork balancing, do it here and not earlier because:
1712 * - cpus_allowed can change in the fork path
1713 * - any previously selected cpu might disappear through hotplug
1714 */
1715 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1716 #endif
1717
1718 rq = __task_rq_lock(p);
1719 activate_task(rq, p, 0);
1720 p->on_rq = 1;
1721 trace_sched_wakeup_new(p, true);
1722 check_preempt_curr(rq, p, WF_FORK);
1723 #ifdef CONFIG_SMP
1724 if (p->sched_class->task_woken)
1725 p->sched_class->task_woken(rq, p);
1726 #endif
1727 task_rq_unlock(rq, p, &flags);
1728 }
1729
1730 #ifdef CONFIG_PREEMPT_NOTIFIERS
1731
1732 /**
1733 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1734 * @notifier: notifier struct to register
1735 */
1736 void preempt_notifier_register(struct preempt_notifier *notifier)
1737 {
1738 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1739 }
1740 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1741
1742 /**
1743 * preempt_notifier_unregister - no longer interested in preemption notifications
1744 * @notifier: notifier struct to unregister
1745 *
1746 * This is safe to call from within a preemption notifier.
1747 */
1748 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1749 {
1750 hlist_del(&notifier->link);
1751 }
1752 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1753
1754 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1755 {
1756 struct preempt_notifier *notifier;
1757
1758 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1759 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1760 }
1761
1762 static void
1763 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1764 struct task_struct *next)
1765 {
1766 struct preempt_notifier *notifier;
1767
1768 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1769 notifier->ops->sched_out(notifier, next);
1770 }
1771
1772 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1773
1774 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1775 {
1776 }
1777
1778 static void
1779 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1780 struct task_struct *next)
1781 {
1782 }
1783
1784 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1785
1786 /**
1787 * prepare_task_switch - prepare to switch tasks
1788 * @rq: the runqueue preparing to switch
1789 * @prev: the current task that is being switched out
1790 * @next: the task we are going to switch to.
1791 *
1792 * This is called with the rq lock held and interrupts off. It must
1793 * be paired with a subsequent finish_task_switch after the context
1794 * switch.
1795 *
1796 * prepare_task_switch sets up locking and calls architecture specific
1797 * hooks.
1798 */
1799 static inline void
1800 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1801 struct task_struct *next)
1802 {
1803 trace_sched_switch(prev, next);
1804 sched_info_switch(prev, next);
1805 perf_event_task_sched_out(prev, next);
1806 fire_sched_out_preempt_notifiers(prev, next);
1807 prepare_lock_switch(rq, next);
1808 prepare_arch_switch(next);
1809 }
1810
1811 /**
1812 * finish_task_switch - clean up after a task-switch
1813 * @rq: runqueue associated with task-switch
1814 * @prev: the thread we just switched away from.
1815 *
1816 * finish_task_switch must be called after the context switch, paired
1817 * with a prepare_task_switch call before the context switch.
1818 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1819 * and do any other architecture-specific cleanup actions.
1820 *
1821 * Note that we may have delayed dropping an mm in context_switch(). If
1822 * so, we finish that here outside of the runqueue lock. (Doing it
1823 * with the lock held can cause deadlocks; see schedule() for
1824 * details.)
1825 */
1826 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1827 __releases(rq->lock)
1828 {
1829 struct mm_struct *mm = rq->prev_mm;
1830 long prev_state;
1831
1832 rq->prev_mm = NULL;
1833
1834 /*
1835 * A task struct has one reference for the use as "current".
1836 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1837 * schedule one last time. The schedule call will never return, and
1838 * the scheduled task must drop that reference.
1839 * The test for TASK_DEAD must occur while the runqueue locks are
1840 * still held, otherwise prev could be scheduled on another cpu, die
1841 * there before we look at prev->state, and then the reference would
1842 * be dropped twice.
1843 * Manfred Spraul <manfred@colorfullife.com>
1844 */
1845 prev_state = prev->state;
1846 vtime_task_switch(prev);
1847 finish_arch_switch(prev);
1848 perf_event_task_sched_in(prev, current);
1849 finish_lock_switch(rq, prev);
1850 finish_arch_post_lock_switch();
1851
1852 fire_sched_in_preempt_notifiers(current);
1853 if (mm)
1854 mmdrop(mm);
1855 if (unlikely(prev_state == TASK_DEAD)) {
1856 /*
1857 * Remove function-return probe instances associated with this
1858 * task and put them back on the free list.
1859 */
1860 kprobe_flush_task(prev);
1861 put_task_struct(prev);
1862 }
1863 }
1864
1865 #ifdef CONFIG_SMP
1866
1867 /* assumes rq->lock is held */
1868 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1869 {
1870 if (prev->sched_class->pre_schedule)
1871 prev->sched_class->pre_schedule(rq, prev);
1872 }
1873
1874 /* rq->lock is NOT held, but preemption is disabled */
1875 static inline void post_schedule(struct rq *rq)
1876 {
1877 if (rq->post_schedule) {
1878 unsigned long flags;
1879
1880 raw_spin_lock_irqsave(&rq->lock, flags);
1881 if (rq->curr->sched_class->post_schedule)
1882 rq->curr->sched_class->post_schedule(rq);
1883 raw_spin_unlock_irqrestore(&rq->lock, flags);
1884
1885 rq->post_schedule = 0;
1886 }
1887 }
1888
1889 #else
1890
1891 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1892 {
1893 }
1894
1895 static inline void post_schedule(struct rq *rq)
1896 {
1897 }
1898
1899 #endif
1900
1901 /**
1902 * schedule_tail - first thing a freshly forked thread must call.
1903 * @prev: the thread we just switched away from.
1904 */
1905 asmlinkage void schedule_tail(struct task_struct *prev)
1906 __releases(rq->lock)
1907 {
1908 struct rq *rq = this_rq();
1909
1910 finish_task_switch(rq, prev);
1911
1912 /*
1913 * FIXME: do we need to worry about rq being invalidated by the
1914 * task_switch?
1915 */
1916 post_schedule(rq);
1917
1918 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1919 /* In this case, finish_task_switch does not reenable preemption */
1920 preempt_enable();
1921 #endif
1922 if (current->set_child_tid)
1923 put_user(task_pid_vnr(current), current->set_child_tid);
1924 }
1925
1926 /*
1927 * context_switch - switch to the new MM and the new
1928 * thread's register state.
1929 */
1930 static inline void
1931 context_switch(struct rq *rq, struct task_struct *prev,
1932 struct task_struct *next)
1933 {
1934 struct mm_struct *mm, *oldmm;
1935
1936 prepare_task_switch(rq, prev, next);
1937
1938 mm = next->mm;
1939 oldmm = prev->active_mm;
1940 /*
1941 * For paravirt, this is coupled with an exit in switch_to to
1942 * combine the page table reload and the switch backend into
1943 * one hypercall.
1944 */
1945 arch_start_context_switch(prev);
1946
1947 if (!mm) {
1948 next->active_mm = oldmm;
1949 atomic_inc(&oldmm->mm_count);
1950 enter_lazy_tlb(oldmm, next);
1951 } else
1952 switch_mm(oldmm, mm, next);
1953
1954 if (!prev->mm) {
1955 prev->active_mm = NULL;
1956 rq->prev_mm = oldmm;
1957 }
1958 /*
1959 * Since the runqueue lock will be released by the next
1960 * task (which is an invalid locking op but in the case
1961 * of the scheduler it's an obvious special-case), so we
1962 * do an early lockdep release here:
1963 */
1964 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1965 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1966 #endif
1967
1968 context_tracking_task_switch(prev, next);
1969 /* Here we just switch the register state and the stack. */
1970 switch_to(prev, next, prev);
1971
1972 barrier();
1973 /*
1974 * this_rq must be evaluated again because prev may have moved
1975 * CPUs since it called schedule(), thus the 'rq' on its stack
1976 * frame will be invalid.
1977 */
1978 finish_task_switch(this_rq(), prev);
1979 }
1980
1981 /*
1982 * nr_running and nr_context_switches:
1983 *
1984 * externally visible scheduler statistics: current number of runnable
1985 * threads, total number of context switches performed since bootup.
1986 */
1987 unsigned long nr_running(void)
1988 {
1989 unsigned long i, sum = 0;
1990
1991 for_each_online_cpu(i)
1992 sum += cpu_rq(i)->nr_running;
1993
1994 return sum;
1995 }
1996
1997 unsigned long long nr_context_switches(void)
1998 {
1999 int i;
2000 unsigned long long sum = 0;
2001
2002 for_each_possible_cpu(i)
2003 sum += cpu_rq(i)->nr_switches;
2004
2005 return sum;
2006 }
2007
2008 unsigned long nr_iowait(void)
2009 {
2010 unsigned long i, sum = 0;
2011
2012 for_each_possible_cpu(i)
2013 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2014
2015 return sum;
2016 }
2017
2018 unsigned long nr_iowait_cpu(int cpu)
2019 {
2020 struct rq *this = cpu_rq(cpu);
2021 return atomic_read(&this->nr_iowait);
2022 }
2023
2024 unsigned long this_cpu_load(void)
2025 {
2026 struct rq *this = this_rq();
2027 return this->cpu_load[0];
2028 }
2029
2030
2031 /*
2032 * Global load-average calculations
2033 *
2034 * We take a distributed and async approach to calculating the global load-avg
2035 * in order to minimize overhead.
2036 *
2037 * The global load average is an exponentially decaying average of nr_running +
2038 * nr_uninterruptible.
2039 *
2040 * Once every LOAD_FREQ:
2041 *
2042 * nr_active = 0;
2043 * for_each_possible_cpu(cpu)
2044 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2045 *
2046 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2047 *
2048 * Due to a number of reasons the above turns in the mess below:
2049 *
2050 * - for_each_possible_cpu() is prohibitively expensive on machines with
2051 * serious number of cpus, therefore we need to take a distributed approach
2052 * to calculating nr_active.
2053 *
2054 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2055 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2056 *
2057 * So assuming nr_active := 0 when we start out -- true per definition, we
2058 * can simply take per-cpu deltas and fold those into a global accumulate
2059 * to obtain the same result. See calc_load_fold_active().
2060 *
2061 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2062 * across the machine, we assume 10 ticks is sufficient time for every
2063 * cpu to have completed this task.
2064 *
2065 * This places an upper-bound on the IRQ-off latency of the machine. Then
2066 * again, being late doesn't loose the delta, just wrecks the sample.
2067 *
2068 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2069 * this would add another cross-cpu cacheline miss and atomic operation
2070 * to the wakeup path. Instead we increment on whatever cpu the task ran
2071 * when it went into uninterruptible state and decrement on whatever cpu
2072 * did the wakeup. This means that only the sum of nr_uninterruptible over
2073 * all cpus yields the correct result.
2074 *
2075 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2076 */
2077
2078 /* Variables and functions for calc_load */
2079 static atomic_long_t calc_load_tasks;
2080 static unsigned long calc_load_update;
2081 unsigned long avenrun[3];
2082 EXPORT_SYMBOL(avenrun); /* should be removed */
2083
2084 /**
2085 * get_avenrun - get the load average array
2086 * @loads: pointer to dest load array
2087 * @offset: offset to add
2088 * @shift: shift count to shift the result left
2089 *
2090 * These values are estimates at best, so no need for locking.
2091 */
2092 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2093 {
2094 loads[0] = (avenrun[0] + offset) << shift;
2095 loads[1] = (avenrun[1] + offset) << shift;
2096 loads[2] = (avenrun[2] + offset) << shift;
2097 }
2098
2099 static long calc_load_fold_active(struct rq *this_rq)
2100 {
2101 long nr_active, delta = 0;
2102
2103 nr_active = this_rq->nr_running;
2104 nr_active += (long) this_rq->nr_uninterruptible;
2105
2106 if (nr_active != this_rq->calc_load_active) {
2107 delta = nr_active - this_rq->calc_load_active;
2108 this_rq->calc_load_active = nr_active;
2109 }
2110
2111 return delta;
2112 }
2113
2114 /*
2115 * a1 = a0 * e + a * (1 - e)
2116 */
2117 static unsigned long
2118 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2119 {
2120 load *= exp;
2121 load += active * (FIXED_1 - exp);
2122 load += 1UL << (FSHIFT - 1);
2123 return load >> FSHIFT;
2124 }
2125
2126 #ifdef CONFIG_NO_HZ
2127 /*
2128 * Handle NO_HZ for the global load-average.
2129 *
2130 * Since the above described distributed algorithm to compute the global
2131 * load-average relies on per-cpu sampling from the tick, it is affected by
2132 * NO_HZ.
2133 *
2134 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2135 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2136 * when we read the global state.
2137 *
2138 * Obviously reality has to ruin such a delightfully simple scheme:
2139 *
2140 * - When we go NO_HZ idle during the window, we can negate our sample
2141 * contribution, causing under-accounting.
2142 *
2143 * We avoid this by keeping two idle-delta counters and flipping them
2144 * when the window starts, thus separating old and new NO_HZ load.
2145 *
2146 * The only trick is the slight shift in index flip for read vs write.
2147 *
2148 * 0s 5s 10s 15s
2149 * +10 +10 +10 +10
2150 * |-|-----------|-|-----------|-|-----------|-|
2151 * r:0 0 1 1 0 0 1 1 0
2152 * w:0 1 1 0 0 1 1 0 0
2153 *
2154 * This ensures we'll fold the old idle contribution in this window while
2155 * accumlating the new one.
2156 *
2157 * - When we wake up from NO_HZ idle during the window, we push up our
2158 * contribution, since we effectively move our sample point to a known
2159 * busy state.
2160 *
2161 * This is solved by pushing the window forward, and thus skipping the
2162 * sample, for this cpu (effectively using the idle-delta for this cpu which
2163 * was in effect at the time the window opened). This also solves the issue
2164 * of having to deal with a cpu having been in NOHZ idle for multiple
2165 * LOAD_FREQ intervals.
2166 *
2167 * When making the ILB scale, we should try to pull this in as well.
2168 */
2169 static atomic_long_t calc_load_idle[2];
2170 static int calc_load_idx;
2171
2172 static inline int calc_load_write_idx(void)
2173 {
2174 int idx = calc_load_idx;
2175
2176 /*
2177 * See calc_global_nohz(), if we observe the new index, we also
2178 * need to observe the new update time.
2179 */
2180 smp_rmb();
2181
2182 /*
2183 * If the folding window started, make sure we start writing in the
2184 * next idle-delta.
2185 */
2186 if (!time_before(jiffies, calc_load_update))
2187 idx++;
2188
2189 return idx & 1;
2190 }
2191
2192 static inline int calc_load_read_idx(void)
2193 {
2194 return calc_load_idx & 1;
2195 }
2196
2197 void calc_load_enter_idle(void)
2198 {
2199 struct rq *this_rq = this_rq();
2200 long delta;
2201
2202 /*
2203 * We're going into NOHZ mode, if there's any pending delta, fold it
2204 * into the pending idle delta.
2205 */
2206 delta = calc_load_fold_active(this_rq);
2207 if (delta) {
2208 int idx = calc_load_write_idx();
2209 atomic_long_add(delta, &calc_load_idle[idx]);
2210 }
2211 }
2212
2213 void calc_load_exit_idle(void)
2214 {
2215 struct rq *this_rq = this_rq();
2216
2217 /*
2218 * If we're still before the sample window, we're done.
2219 */
2220 if (time_before(jiffies, this_rq->calc_load_update))
2221 return;
2222
2223 /*
2224 * We woke inside or after the sample window, this means we're already
2225 * accounted through the nohz accounting, so skip the entire deal and
2226 * sync up for the next window.
2227 */
2228 this_rq->calc_load_update = calc_load_update;
2229 if (time_before(jiffies, this_rq->calc_load_update + 10))
2230 this_rq->calc_load_update += LOAD_FREQ;
2231 }
2232
2233 static long calc_load_fold_idle(void)
2234 {
2235 int idx = calc_load_read_idx();
2236 long delta = 0;
2237
2238 if (atomic_long_read(&calc_load_idle[idx]))
2239 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2240
2241 return delta;
2242 }
2243
2244 /**
2245 * fixed_power_int - compute: x^n, in O(log n) time
2246 *
2247 * @x: base of the power
2248 * @frac_bits: fractional bits of @x
2249 * @n: power to raise @x to.
2250 *
2251 * By exploiting the relation between the definition of the natural power
2252 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2253 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2254 * (where: n_i \elem {0, 1}, the binary vector representing n),
2255 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2256 * of course trivially computable in O(log_2 n), the length of our binary
2257 * vector.
2258 */
2259 static unsigned long
2260 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2261 {
2262 unsigned long result = 1UL << frac_bits;
2263
2264 if (n) for (;;) {
2265 if (n & 1) {
2266 result *= x;
2267 result += 1UL << (frac_bits - 1);
2268 result >>= frac_bits;
2269 }
2270 n >>= 1;
2271 if (!n)
2272 break;
2273 x *= x;
2274 x += 1UL << (frac_bits - 1);
2275 x >>= frac_bits;
2276 }
2277
2278 return result;
2279 }
2280
2281 /*
2282 * a1 = a0 * e + a * (1 - e)
2283 *
2284 * a2 = a1 * e + a * (1 - e)
2285 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2286 * = a0 * e^2 + a * (1 - e) * (1 + e)
2287 *
2288 * a3 = a2 * e + a * (1 - e)
2289 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2290 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2291 *
2292 * ...
2293 *
2294 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2295 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2296 * = a0 * e^n + a * (1 - e^n)
2297 *
2298 * [1] application of the geometric series:
2299 *
2300 * n 1 - x^(n+1)
2301 * S_n := \Sum x^i = -------------
2302 * i=0 1 - x
2303 */
2304 static unsigned long
2305 calc_load_n(unsigned long load, unsigned long exp,
2306 unsigned long active, unsigned int n)
2307 {
2308
2309 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2310 }
2311
2312 /*
2313 * NO_HZ can leave us missing all per-cpu ticks calling
2314 * calc_load_account_active(), but since an idle CPU folds its delta into
2315 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2316 * in the pending idle delta if our idle period crossed a load cycle boundary.
2317 *
2318 * Once we've updated the global active value, we need to apply the exponential
2319 * weights adjusted to the number of cycles missed.
2320 */
2321 static void calc_global_nohz(void)
2322 {
2323 long delta, active, n;
2324
2325 if (!time_before(jiffies, calc_load_update + 10)) {
2326 /*
2327 * Catch-up, fold however many we are behind still
2328 */
2329 delta = jiffies - calc_load_update - 10;
2330 n = 1 + (delta / LOAD_FREQ);
2331
2332 active = atomic_long_read(&calc_load_tasks);
2333 active = active > 0 ? active * FIXED_1 : 0;
2334
2335 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2336 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2337 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2338
2339 calc_load_update += n * LOAD_FREQ;
2340 }
2341
2342 /*
2343 * Flip the idle index...
2344 *
2345 * Make sure we first write the new time then flip the index, so that
2346 * calc_load_write_idx() will see the new time when it reads the new
2347 * index, this avoids a double flip messing things up.
2348 */
2349 smp_wmb();
2350 calc_load_idx++;
2351 }
2352 #else /* !CONFIG_NO_HZ */
2353
2354 static inline long calc_load_fold_idle(void) { return 0; }
2355 static inline void calc_global_nohz(void) { }
2356
2357 #endif /* CONFIG_NO_HZ */
2358
2359 /*
2360 * calc_load - update the avenrun load estimates 10 ticks after the
2361 * CPUs have updated calc_load_tasks.
2362 */
2363 void calc_global_load(unsigned long ticks)
2364 {
2365 long active, delta;
2366
2367 if (time_before(jiffies, calc_load_update + 10))
2368 return;
2369
2370 /*
2371 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2372 */
2373 delta = calc_load_fold_idle();
2374 if (delta)
2375 atomic_long_add(delta, &calc_load_tasks);
2376
2377 active = atomic_long_read(&calc_load_tasks);
2378 active = active > 0 ? active * FIXED_1 : 0;
2379
2380 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2381 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2382 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2383
2384 calc_load_update += LOAD_FREQ;
2385
2386 /*
2387 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2388 */
2389 calc_global_nohz();
2390 }
2391
2392 /*
2393 * Called from update_cpu_load() to periodically update this CPU's
2394 * active count.
2395 */
2396 static void calc_load_account_active(struct rq *this_rq)
2397 {
2398 long delta;
2399
2400 if (time_before(jiffies, this_rq->calc_load_update))
2401 return;
2402
2403 delta = calc_load_fold_active(this_rq);
2404 if (delta)
2405 atomic_long_add(delta, &calc_load_tasks);
2406
2407 this_rq->calc_load_update += LOAD_FREQ;
2408 }
2409
2410 /*
2411 * End of global load-average stuff
2412 */
2413
2414 /*
2415 * The exact cpuload at various idx values, calculated at every tick would be
2416 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2417 *
2418 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2419 * on nth tick when cpu may be busy, then we have:
2420 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2421 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2422 *
2423 * decay_load_missed() below does efficient calculation of
2424 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2425 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2426 *
2427 * The calculation is approximated on a 128 point scale.
2428 * degrade_zero_ticks is the number of ticks after which load at any
2429 * particular idx is approximated to be zero.
2430 * degrade_factor is a precomputed table, a row for each load idx.
2431 * Each column corresponds to degradation factor for a power of two ticks,
2432 * based on 128 point scale.
2433 * Example:
2434 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2435 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2436 *
2437 * With this power of 2 load factors, we can degrade the load n times
2438 * by looking at 1 bits in n and doing as many mult/shift instead of
2439 * n mult/shifts needed by the exact degradation.
2440 */
2441 #define DEGRADE_SHIFT 7
2442 static const unsigned char
2443 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2444 static const unsigned char
2445 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2446 {0, 0, 0, 0, 0, 0, 0, 0},
2447 {64, 32, 8, 0, 0, 0, 0, 0},
2448 {96, 72, 40, 12, 1, 0, 0},
2449 {112, 98, 75, 43, 15, 1, 0},
2450 {120, 112, 98, 76, 45, 16, 2} };
2451
2452 /*
2453 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2454 * would be when CPU is idle and so we just decay the old load without
2455 * adding any new load.
2456 */
2457 static unsigned long
2458 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2459 {
2460 int j = 0;
2461
2462 if (!missed_updates)
2463 return load;
2464
2465 if (missed_updates >= degrade_zero_ticks[idx])
2466 return 0;
2467
2468 if (idx == 1)
2469 return load >> missed_updates;
2470
2471 while (missed_updates) {
2472 if (missed_updates % 2)
2473 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2474
2475 missed_updates >>= 1;
2476 j++;
2477 }
2478 return load;
2479 }
2480
2481 /*
2482 * Update rq->cpu_load[] statistics. This function is usually called every
2483 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2484 * every tick. We fix it up based on jiffies.
2485 */
2486 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2487 unsigned long pending_updates)
2488 {
2489 int i, scale;
2490
2491 this_rq->nr_load_updates++;
2492
2493 /* Update our load: */
2494 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2495 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2496 unsigned long old_load, new_load;
2497
2498 /* scale is effectively 1 << i now, and >> i divides by scale */
2499
2500 old_load = this_rq->cpu_load[i];
2501 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2502 new_load = this_load;
2503 /*
2504 * Round up the averaging division if load is increasing. This
2505 * prevents us from getting stuck on 9 if the load is 10, for
2506 * example.
2507 */
2508 if (new_load > old_load)
2509 new_load += scale - 1;
2510
2511 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2512 }
2513
2514 sched_avg_update(this_rq);
2515 }
2516
2517 #ifdef CONFIG_NO_HZ
2518 /*
2519 * There is no sane way to deal with nohz on smp when using jiffies because the
2520 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2521 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2522 *
2523 * Therefore we cannot use the delta approach from the regular tick since that
2524 * would seriously skew the load calculation. However we'll make do for those
2525 * updates happening while idle (nohz_idle_balance) or coming out of idle
2526 * (tick_nohz_idle_exit).
2527 *
2528 * This means we might still be one tick off for nohz periods.
2529 */
2530
2531 /*
2532 * Called from nohz_idle_balance() to update the load ratings before doing the
2533 * idle balance.
2534 */
2535 void update_idle_cpu_load(struct rq *this_rq)
2536 {
2537 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2538 unsigned long load = this_rq->load.weight;
2539 unsigned long pending_updates;
2540
2541 /*
2542 * bail if there's load or we're actually up-to-date.
2543 */
2544 if (load || curr_jiffies == this_rq->last_load_update_tick)
2545 return;
2546
2547 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2548 this_rq->last_load_update_tick = curr_jiffies;
2549
2550 __update_cpu_load(this_rq, load, pending_updates);
2551 }
2552
2553 /*
2554 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2555 */
2556 void update_cpu_load_nohz(void)
2557 {
2558 struct rq *this_rq = this_rq();
2559 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2560 unsigned long pending_updates;
2561
2562 if (curr_jiffies == this_rq->last_load_update_tick)
2563 return;
2564
2565 raw_spin_lock(&this_rq->lock);
2566 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2567 if (pending_updates) {
2568 this_rq->last_load_update_tick = curr_jiffies;
2569 /*
2570 * We were idle, this means load 0, the current load might be
2571 * !0 due to remote wakeups and the sort.
2572 */
2573 __update_cpu_load(this_rq, 0, pending_updates);
2574 }
2575 raw_spin_unlock(&this_rq->lock);
2576 }
2577 #endif /* CONFIG_NO_HZ */
2578
2579 /*
2580 * Called from scheduler_tick()
2581 */
2582 static void update_cpu_load_active(struct rq *this_rq)
2583 {
2584 /*
2585 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2586 */
2587 this_rq->last_load_update_tick = jiffies;
2588 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2589
2590 calc_load_account_active(this_rq);
2591 }
2592
2593 #ifdef CONFIG_SMP
2594
2595 /*
2596 * sched_exec - execve() is a valuable balancing opportunity, because at
2597 * this point the task has the smallest effective memory and cache footprint.
2598 */
2599 void sched_exec(void)
2600 {
2601 struct task_struct *p = current;
2602 unsigned long flags;
2603 int dest_cpu;
2604
2605 raw_spin_lock_irqsave(&p->pi_lock, flags);
2606 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2607 if (dest_cpu == smp_processor_id())
2608 goto unlock;
2609
2610 if (likely(cpu_active(dest_cpu))) {
2611 struct migration_arg arg = { p, dest_cpu };
2612
2613 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2614 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2615 return;
2616 }
2617 unlock:
2618 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2619 }
2620
2621 #endif
2622
2623 DEFINE_PER_CPU(struct kernel_stat, kstat);
2624 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2625
2626 EXPORT_PER_CPU_SYMBOL(kstat);
2627 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2628
2629 /*
2630 * Return any ns on the sched_clock that have not yet been accounted in
2631 * @p in case that task is currently running.
2632 *
2633 * Called with task_rq_lock() held on @rq.
2634 */
2635 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2636 {
2637 u64 ns = 0;
2638
2639 if (task_current(rq, p)) {
2640 update_rq_clock(rq);
2641 ns = rq->clock_task - p->se.exec_start;
2642 if ((s64)ns < 0)
2643 ns = 0;
2644 }
2645
2646 return ns;
2647 }
2648
2649 unsigned long long task_delta_exec(struct task_struct *p)
2650 {
2651 unsigned long flags;
2652 struct rq *rq;
2653 u64 ns = 0;
2654
2655 rq = task_rq_lock(p, &flags);
2656 ns = do_task_delta_exec(p, rq);
2657 task_rq_unlock(rq, p, &flags);
2658
2659 return ns;
2660 }
2661
2662 /*
2663 * Return accounted runtime for the task.
2664 * In case the task is currently running, return the runtime plus current's
2665 * pending runtime that have not been accounted yet.
2666 */
2667 unsigned long long task_sched_runtime(struct task_struct *p)
2668 {
2669 unsigned long flags;
2670 struct rq *rq;
2671 u64 ns = 0;
2672
2673 rq = task_rq_lock(p, &flags);
2674 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2675 task_rq_unlock(rq, p, &flags);
2676
2677 return ns;
2678 }
2679
2680 /*
2681 * This function gets called by the timer code, with HZ frequency.
2682 * We call it with interrupts disabled.
2683 */
2684 void scheduler_tick(void)
2685 {
2686 int cpu = smp_processor_id();
2687 struct rq *rq = cpu_rq(cpu);
2688 struct task_struct *curr = rq->curr;
2689
2690 sched_clock_tick();
2691
2692 raw_spin_lock(&rq->lock);
2693 update_rq_clock(rq);
2694 update_cpu_load_active(rq);
2695 curr->sched_class->task_tick(rq, curr, 0);
2696 raw_spin_unlock(&rq->lock);
2697
2698 perf_event_task_tick();
2699
2700 #ifdef CONFIG_SMP
2701 rq->idle_balance = idle_cpu(cpu);
2702 trigger_load_balance(rq, cpu);
2703 #endif
2704 }
2705
2706 notrace unsigned long get_parent_ip(unsigned long addr)
2707 {
2708 if (in_lock_functions(addr)) {
2709 addr = CALLER_ADDR2;
2710 if (in_lock_functions(addr))
2711 addr = CALLER_ADDR3;
2712 }
2713 return addr;
2714 }
2715
2716 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2717 defined(CONFIG_PREEMPT_TRACER))
2718
2719 void __kprobes add_preempt_count(int val)
2720 {
2721 #ifdef CONFIG_DEBUG_PREEMPT
2722 /*
2723 * Underflow?
2724 */
2725 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2726 return;
2727 #endif
2728 preempt_count() += val;
2729 #ifdef CONFIG_DEBUG_PREEMPT
2730 /*
2731 * Spinlock count overflowing soon?
2732 */
2733 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2734 PREEMPT_MASK - 10);
2735 #endif
2736 if (preempt_count() == val)
2737 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2738 }
2739 EXPORT_SYMBOL(add_preempt_count);
2740
2741 void __kprobes sub_preempt_count(int val)
2742 {
2743 #ifdef CONFIG_DEBUG_PREEMPT
2744 /*
2745 * Underflow?
2746 */
2747 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2748 return;
2749 /*
2750 * Is the spinlock portion underflowing?
2751 */
2752 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2753 !(preempt_count() & PREEMPT_MASK)))
2754 return;
2755 #endif
2756
2757 if (preempt_count() == val)
2758 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2759 preempt_count() -= val;
2760 }
2761 EXPORT_SYMBOL(sub_preempt_count);
2762
2763 #endif
2764
2765 /*
2766 * Print scheduling while atomic bug:
2767 */
2768 static noinline void __schedule_bug(struct task_struct *prev)
2769 {
2770 if (oops_in_progress)
2771 return;
2772
2773 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2774 prev->comm, prev->pid, preempt_count());
2775
2776 debug_show_held_locks(prev);
2777 print_modules();
2778 if (irqs_disabled())
2779 print_irqtrace_events(prev);
2780 dump_stack();
2781 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2782 }
2783
2784 /*
2785 * Various schedule()-time debugging checks and statistics:
2786 */
2787 static inline void schedule_debug(struct task_struct *prev)
2788 {
2789 /*
2790 * Test if we are atomic. Since do_exit() needs to call into
2791 * schedule() atomically, we ignore that path for now.
2792 * Otherwise, whine if we are scheduling when we should not be.
2793 */
2794 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2795 __schedule_bug(prev);
2796 rcu_sleep_check();
2797
2798 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2799
2800 schedstat_inc(this_rq(), sched_count);
2801 }
2802
2803 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2804 {
2805 if (prev->on_rq || rq->skip_clock_update < 0)
2806 update_rq_clock(rq);
2807 prev->sched_class->put_prev_task(rq, prev);
2808 }
2809
2810 /*
2811 * Pick up the highest-prio task:
2812 */
2813 static inline struct task_struct *
2814 pick_next_task(struct rq *rq)
2815 {
2816 const struct sched_class *class;
2817 struct task_struct *p;
2818
2819 /*
2820 * Optimization: we know that if all tasks are in
2821 * the fair class we can call that function directly:
2822 */
2823 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2824 p = fair_sched_class.pick_next_task(rq);
2825 if (likely(p))
2826 return p;
2827 }
2828
2829 for_each_class(class) {
2830 p = class->pick_next_task(rq);
2831 if (p)
2832 return p;
2833 }
2834
2835 BUG(); /* the idle class will always have a runnable task */
2836 }
2837
2838 /*
2839 * __schedule() is the main scheduler function.
2840 *
2841 * The main means of driving the scheduler and thus entering this function are:
2842 *
2843 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2844 *
2845 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2846 * paths. For example, see arch/x86/entry_64.S.
2847 *
2848 * To drive preemption between tasks, the scheduler sets the flag in timer
2849 * interrupt handler scheduler_tick().
2850 *
2851 * 3. Wakeups don't really cause entry into schedule(). They add a
2852 * task to the run-queue and that's it.
2853 *
2854 * Now, if the new task added to the run-queue preempts the current
2855 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2856 * called on the nearest possible occasion:
2857 *
2858 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2859 *
2860 * - in syscall or exception context, at the next outmost
2861 * preempt_enable(). (this might be as soon as the wake_up()'s
2862 * spin_unlock()!)
2863 *
2864 * - in IRQ context, return from interrupt-handler to
2865 * preemptible context
2866 *
2867 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2868 * then at the next:
2869 *
2870 * - cond_resched() call
2871 * - explicit schedule() call
2872 * - return from syscall or exception to user-space
2873 * - return from interrupt-handler to user-space
2874 */
2875 static void __sched __schedule(void)
2876 {
2877 struct task_struct *prev, *next;
2878 unsigned long *switch_count;
2879 struct rq *rq;
2880 int cpu;
2881
2882 need_resched:
2883 preempt_disable();
2884 cpu = smp_processor_id();
2885 rq = cpu_rq(cpu);
2886 rcu_note_context_switch(cpu);
2887 prev = rq->curr;
2888
2889 schedule_debug(prev);
2890
2891 if (sched_feat(HRTICK))
2892 hrtick_clear(rq);
2893
2894 raw_spin_lock_irq(&rq->lock);
2895
2896 switch_count = &prev->nivcsw;
2897 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2898 if (unlikely(signal_pending_state(prev->state, prev))) {
2899 prev->state = TASK_RUNNING;
2900 } else {
2901 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2902 prev->on_rq = 0;
2903
2904 /*
2905 * If a worker went to sleep, notify and ask workqueue
2906 * whether it wants to wake up a task to maintain
2907 * concurrency.
2908 */
2909 if (prev->flags & PF_WQ_WORKER) {
2910 struct task_struct *to_wakeup;
2911
2912 to_wakeup = wq_worker_sleeping(prev, cpu);
2913 if (to_wakeup)
2914 try_to_wake_up_local(to_wakeup);
2915 }
2916 }
2917 switch_count = &prev->nvcsw;
2918 }
2919
2920 pre_schedule(rq, prev);
2921
2922 if (unlikely(!rq->nr_running))
2923 idle_balance(cpu, rq);
2924
2925 put_prev_task(rq, prev);
2926 next = pick_next_task(rq);
2927 clear_tsk_need_resched(prev);
2928 rq->skip_clock_update = 0;
2929
2930 if (likely(prev != next)) {
2931 rq->nr_switches++;
2932 rq->curr = next;
2933 ++*switch_count;
2934
2935 context_switch(rq, prev, next); /* unlocks the rq */
2936 /*
2937 * The context switch have flipped the stack from under us
2938 * and restored the local variables which were saved when
2939 * this task called schedule() in the past. prev == current
2940 * is still correct, but it can be moved to another cpu/rq.
2941 */
2942 cpu = smp_processor_id();
2943 rq = cpu_rq(cpu);
2944 } else
2945 raw_spin_unlock_irq(&rq->lock);
2946
2947 post_schedule(rq);
2948
2949 sched_preempt_enable_no_resched();
2950 if (need_resched())
2951 goto need_resched;
2952 }
2953
2954 static inline void sched_submit_work(struct task_struct *tsk)
2955 {
2956 if (!tsk->state || tsk_is_pi_blocked(tsk))
2957 return;
2958 /*
2959 * If we are going to sleep and we have plugged IO queued,
2960 * make sure to submit it to avoid deadlocks.
2961 */
2962 if (blk_needs_flush_plug(tsk))
2963 blk_schedule_flush_plug(tsk);
2964 }
2965
2966 asmlinkage void __sched schedule(void)
2967 {
2968 struct task_struct *tsk = current;
2969
2970 sched_submit_work(tsk);
2971 __schedule();
2972 }
2973 EXPORT_SYMBOL(schedule);
2974
2975 #ifdef CONFIG_CONTEXT_TRACKING
2976 asmlinkage void __sched schedule_user(void)
2977 {
2978 /*
2979 * If we come here after a random call to set_need_resched(),
2980 * or we have been woken up remotely but the IPI has not yet arrived,
2981 * we haven't yet exited the RCU idle mode. Do it here manually until
2982 * we find a better solution.
2983 */
2984 user_exit();
2985 schedule();
2986 user_enter();
2987 }
2988 #endif
2989
2990 /**
2991 * schedule_preempt_disabled - called with preemption disabled
2992 *
2993 * Returns with preemption disabled. Note: preempt_count must be 1
2994 */
2995 void __sched schedule_preempt_disabled(void)
2996 {
2997 sched_preempt_enable_no_resched();
2998 schedule();
2999 preempt_disable();
3000 }
3001
3002 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3003
3004 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3005 {
3006 if (lock->owner != owner)
3007 return false;
3008
3009 /*
3010 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3011 * lock->owner still matches owner, if that fails, owner might
3012 * point to free()d memory, if it still matches, the rcu_read_lock()
3013 * ensures the memory stays valid.
3014 */
3015 barrier();
3016
3017 return owner->on_cpu;
3018 }
3019
3020 /*
3021 * Look out! "owner" is an entirely speculative pointer
3022 * access and not reliable.
3023 */
3024 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3025 {
3026 if (!sched_feat(OWNER_SPIN))
3027 return 0;
3028
3029 rcu_read_lock();
3030 while (owner_running(lock, owner)) {
3031 if (need_resched())
3032 break;
3033
3034 arch_mutex_cpu_relax();
3035 }
3036 rcu_read_unlock();
3037
3038 /*
3039 * We break out the loop above on need_resched() and when the
3040 * owner changed, which is a sign for heavy contention. Return
3041 * success only when lock->owner is NULL.
3042 */
3043 return lock->owner == NULL;
3044 }
3045 #endif
3046
3047 #ifdef CONFIG_PREEMPT
3048 /*
3049 * this is the entry point to schedule() from in-kernel preemption
3050 * off of preempt_enable. Kernel preemptions off return from interrupt
3051 * occur there and call schedule directly.
3052 */
3053 asmlinkage void __sched notrace preempt_schedule(void)
3054 {
3055 struct thread_info *ti = current_thread_info();
3056
3057 /*
3058 * If there is a non-zero preempt_count or interrupts are disabled,
3059 * we do not want to preempt the current task. Just return..
3060 */
3061 if (likely(ti->preempt_count || irqs_disabled()))
3062 return;
3063
3064 do {
3065 add_preempt_count_notrace(PREEMPT_ACTIVE);
3066 __schedule();
3067 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3068
3069 /*
3070 * Check again in case we missed a preemption opportunity
3071 * between schedule and now.
3072 */
3073 barrier();
3074 } while (need_resched());
3075 }
3076 EXPORT_SYMBOL(preempt_schedule);
3077
3078 /*
3079 * this is the entry point to schedule() from kernel preemption
3080 * off of irq context.
3081 * Note, that this is called and return with irqs disabled. This will
3082 * protect us against recursive calling from irq.
3083 */
3084 asmlinkage void __sched preempt_schedule_irq(void)
3085 {
3086 struct thread_info *ti = current_thread_info();
3087
3088 /* Catch callers which need to be fixed */
3089 BUG_ON(ti->preempt_count || !irqs_disabled());
3090
3091 user_exit();
3092 do {
3093 add_preempt_count(PREEMPT_ACTIVE);
3094 local_irq_enable();
3095 __schedule();
3096 local_irq_disable();
3097 sub_preempt_count(PREEMPT_ACTIVE);
3098
3099 /*
3100 * Check again in case we missed a preemption opportunity
3101 * between schedule and now.
3102 */
3103 barrier();
3104 } while (need_resched());
3105 }
3106
3107 #endif /* CONFIG_PREEMPT */
3108
3109 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3110 void *key)
3111 {
3112 return try_to_wake_up(curr->private, mode, wake_flags);
3113 }
3114 EXPORT_SYMBOL(default_wake_function);
3115
3116 /*
3117 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3118 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3119 * number) then we wake all the non-exclusive tasks and one exclusive task.
3120 *
3121 * There are circumstances in which we can try to wake a task which has already
3122 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3123 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3124 */
3125 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3126 int nr_exclusive, int wake_flags, void *key)
3127 {
3128 wait_queue_t *curr, *next;
3129
3130 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3131 unsigned flags = curr->flags;
3132
3133 if (curr->func(curr, mode, wake_flags, key) &&
3134 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3135 break;
3136 }
3137 }
3138
3139 /**
3140 * __wake_up - wake up threads blocked on a waitqueue.
3141 * @q: the waitqueue
3142 * @mode: which threads
3143 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3144 * @key: is directly passed to the wakeup function
3145 *
3146 * It may be assumed that this function implies a write memory barrier before
3147 * changing the task state if and only if any tasks are woken up.
3148 */
3149 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3150 int nr_exclusive, void *key)
3151 {
3152 unsigned long flags;
3153
3154 spin_lock_irqsave(&q->lock, flags);
3155 __wake_up_common(q, mode, nr_exclusive, 0, key);
3156 spin_unlock_irqrestore(&q->lock, flags);
3157 }
3158 EXPORT_SYMBOL(__wake_up);
3159
3160 /*
3161 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3162 */
3163 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3164 {
3165 __wake_up_common(q, mode, nr, 0, NULL);
3166 }
3167 EXPORT_SYMBOL_GPL(__wake_up_locked);
3168
3169 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3170 {
3171 __wake_up_common(q, mode, 1, 0, key);
3172 }
3173 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3174
3175 /**
3176 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3177 * @q: the waitqueue
3178 * @mode: which threads
3179 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3180 * @key: opaque value to be passed to wakeup targets
3181 *
3182 * The sync wakeup differs that the waker knows that it will schedule
3183 * away soon, so while the target thread will be woken up, it will not
3184 * be migrated to another CPU - ie. the two threads are 'synchronized'
3185 * with each other. This can prevent needless bouncing between CPUs.
3186 *
3187 * On UP it can prevent extra preemption.
3188 *
3189 * It may be assumed that this function implies a write memory barrier before
3190 * changing the task state if and only if any tasks are woken up.
3191 */
3192 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3193 int nr_exclusive, void *key)
3194 {
3195 unsigned long flags;
3196 int wake_flags = WF_SYNC;
3197
3198 if (unlikely(!q))
3199 return;
3200
3201 if (unlikely(!nr_exclusive))
3202 wake_flags = 0;
3203
3204 spin_lock_irqsave(&q->lock, flags);
3205 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3206 spin_unlock_irqrestore(&q->lock, flags);
3207 }
3208 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3209
3210 /*
3211 * __wake_up_sync - see __wake_up_sync_key()
3212 */
3213 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3214 {
3215 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3216 }
3217 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3218
3219 /**
3220 * complete: - signals a single thread waiting on this completion
3221 * @x: holds the state of this particular completion
3222 *
3223 * This will wake up a single thread waiting on this completion. Threads will be
3224 * awakened in the same order in which they were queued.
3225 *
3226 * See also complete_all(), wait_for_completion() and related routines.
3227 *
3228 * It may be assumed that this function implies a write memory barrier before
3229 * changing the task state if and only if any tasks are woken up.
3230 */
3231 void complete(struct completion *x)
3232 {
3233 unsigned long flags;
3234
3235 spin_lock_irqsave(&x->wait.lock, flags);
3236 x->done++;
3237 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3238 spin_unlock_irqrestore(&x->wait.lock, flags);
3239 }
3240 EXPORT_SYMBOL(complete);
3241
3242 /**
3243 * complete_all: - signals all threads waiting on this completion
3244 * @x: holds the state of this particular completion
3245 *
3246 * This will wake up all threads waiting on this particular completion event.
3247 *
3248 * It may be assumed that this function implies a write memory barrier before
3249 * changing the task state if and only if any tasks are woken up.
3250 */
3251 void complete_all(struct completion *x)
3252 {
3253 unsigned long flags;
3254
3255 spin_lock_irqsave(&x->wait.lock, flags);
3256 x->done += UINT_MAX/2;
3257 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3258 spin_unlock_irqrestore(&x->wait.lock, flags);
3259 }
3260 EXPORT_SYMBOL(complete_all);
3261
3262 static inline long __sched
3263 do_wait_for_common(struct completion *x,
3264 long (*action)(long), long timeout, int state)
3265 {
3266 if (!x->done) {
3267 DECLARE_WAITQUEUE(wait, current);
3268
3269 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3270 do {
3271 if (signal_pending_state(state, current)) {
3272 timeout = -ERESTARTSYS;
3273 break;
3274 }
3275 __set_current_state(state);
3276 spin_unlock_irq(&x->wait.lock);
3277 timeout = action(timeout);
3278 spin_lock_irq(&x->wait.lock);
3279 } while (!x->done && timeout);
3280 __remove_wait_queue(&x->wait, &wait);
3281 if (!x->done)
3282 return timeout;
3283 }
3284 x->done--;
3285 return timeout ?: 1;
3286 }
3287
3288 static inline long __sched
3289 __wait_for_common(struct completion *x,
3290 long (*action)(long), long timeout, int state)
3291 {
3292 might_sleep();
3293
3294 spin_lock_irq(&x->wait.lock);
3295 timeout = do_wait_for_common(x, action, timeout, state);
3296 spin_unlock_irq(&x->wait.lock);
3297 return timeout;
3298 }
3299
3300 static long __sched
3301 wait_for_common(struct completion *x, long timeout, int state)
3302 {
3303 return __wait_for_common(x, schedule_timeout, timeout, state);
3304 }
3305
3306 static long __sched
3307 wait_for_common_io(struct completion *x, long timeout, int state)
3308 {
3309 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3310 }
3311
3312 /**
3313 * wait_for_completion: - waits for completion of a task
3314 * @x: holds the state of this particular completion
3315 *
3316 * This waits to be signaled for completion of a specific task. It is NOT
3317 * interruptible and there is no timeout.
3318 *
3319 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3320 * and interrupt capability. Also see complete().
3321 */
3322 void __sched wait_for_completion(struct completion *x)
3323 {
3324 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3325 }
3326 EXPORT_SYMBOL(wait_for_completion);
3327
3328 /**
3329 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3330 * @x: holds the state of this particular completion
3331 * @timeout: timeout value in jiffies
3332 *
3333 * This waits for either a completion of a specific task to be signaled or for a
3334 * specified timeout to expire. The timeout is in jiffies. It is not
3335 * interruptible.
3336 *
3337 * The return value is 0 if timed out, and positive (at least 1, or number of
3338 * jiffies left till timeout) if completed.
3339 */
3340 unsigned long __sched
3341 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3342 {
3343 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3344 }
3345 EXPORT_SYMBOL(wait_for_completion_timeout);
3346
3347 /**
3348 * wait_for_completion_io: - waits for completion of a task
3349 * @x: holds the state of this particular completion
3350 *
3351 * This waits to be signaled for completion of a specific task. It is NOT
3352 * interruptible and there is no timeout. The caller is accounted as waiting
3353 * for IO.
3354 */
3355 void __sched wait_for_completion_io(struct completion *x)
3356 {
3357 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3358 }
3359 EXPORT_SYMBOL(wait_for_completion_io);
3360
3361 /**
3362 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3363 * @x: holds the state of this particular completion
3364 * @timeout: timeout value in jiffies
3365 *
3366 * This waits for either a completion of a specific task to be signaled or for a
3367 * specified timeout to expire. The timeout is in jiffies. It is not
3368 * interruptible. The caller is accounted as waiting for IO.
3369 *
3370 * The return value is 0 if timed out, and positive (at least 1, or number of
3371 * jiffies left till timeout) if completed.
3372 */
3373 unsigned long __sched
3374 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3375 {
3376 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3377 }
3378 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3379
3380 /**
3381 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3382 * @x: holds the state of this particular completion
3383 *
3384 * This waits for completion of a specific task to be signaled. It is
3385 * interruptible.
3386 *
3387 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3388 */
3389 int __sched wait_for_completion_interruptible(struct completion *x)
3390 {
3391 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3392 if (t == -ERESTARTSYS)
3393 return t;
3394 return 0;
3395 }
3396 EXPORT_SYMBOL(wait_for_completion_interruptible);
3397
3398 /**
3399 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3400 * @x: holds the state of this particular completion
3401 * @timeout: timeout value in jiffies
3402 *
3403 * This waits for either a completion of a specific task to be signaled or for a
3404 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3405 *
3406 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3407 * positive (at least 1, or number of jiffies left till timeout) if completed.
3408 */
3409 long __sched
3410 wait_for_completion_interruptible_timeout(struct completion *x,
3411 unsigned long timeout)
3412 {
3413 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3414 }
3415 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3416
3417 /**
3418 * wait_for_completion_killable: - waits for completion of a task (killable)
3419 * @x: holds the state of this particular completion
3420 *
3421 * This waits to be signaled for completion of a specific task. It can be
3422 * interrupted by a kill signal.
3423 *
3424 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3425 */
3426 int __sched wait_for_completion_killable(struct completion *x)
3427 {
3428 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3429 if (t == -ERESTARTSYS)
3430 return t;
3431 return 0;
3432 }
3433 EXPORT_SYMBOL(wait_for_completion_killable);
3434
3435 /**
3436 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3437 * @x: holds the state of this particular completion
3438 * @timeout: timeout value in jiffies
3439 *
3440 * This waits for either a completion of a specific task to be
3441 * signaled or for a specified timeout to expire. It can be
3442 * interrupted by a kill signal. The timeout is in jiffies.
3443 *
3444 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3445 * positive (at least 1, or number of jiffies left till timeout) if completed.
3446 */
3447 long __sched
3448 wait_for_completion_killable_timeout(struct completion *x,
3449 unsigned long timeout)
3450 {
3451 return wait_for_common(x, timeout, TASK_KILLABLE);
3452 }
3453 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3454
3455 /**
3456 * try_wait_for_completion - try to decrement a completion without blocking
3457 * @x: completion structure
3458 *
3459 * Returns: 0 if a decrement cannot be done without blocking
3460 * 1 if a decrement succeeded.
3461 *
3462 * If a completion is being used as a counting completion,
3463 * attempt to decrement the counter without blocking. This
3464 * enables us to avoid waiting if the resource the completion
3465 * is protecting is not available.
3466 */
3467 bool try_wait_for_completion(struct completion *x)
3468 {
3469 unsigned long flags;
3470 int ret = 1;
3471
3472 spin_lock_irqsave(&x->wait.lock, flags);
3473 if (!x->done)
3474 ret = 0;
3475 else
3476 x->done--;
3477 spin_unlock_irqrestore(&x->wait.lock, flags);
3478 return ret;
3479 }
3480 EXPORT_SYMBOL(try_wait_for_completion);
3481
3482 /**
3483 * completion_done - Test to see if a completion has any waiters
3484 * @x: completion structure
3485 *
3486 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3487 * 1 if there are no waiters.
3488 *
3489 */
3490 bool completion_done(struct completion *x)
3491 {
3492 unsigned long flags;
3493 int ret = 1;
3494
3495 spin_lock_irqsave(&x->wait.lock, flags);
3496 if (!x->done)
3497 ret = 0;
3498 spin_unlock_irqrestore(&x->wait.lock, flags);
3499 return ret;
3500 }
3501 EXPORT_SYMBOL(completion_done);
3502
3503 static long __sched
3504 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3505 {
3506 unsigned long flags;
3507 wait_queue_t wait;
3508
3509 init_waitqueue_entry(&wait, current);
3510
3511 __set_current_state(state);
3512
3513 spin_lock_irqsave(&q->lock, flags);
3514 __add_wait_queue(q, &wait);
3515 spin_unlock(&q->lock);
3516 timeout = schedule_timeout(timeout);
3517 spin_lock_irq(&q->lock);
3518 __remove_wait_queue(q, &wait);
3519 spin_unlock_irqrestore(&q->lock, flags);
3520
3521 return timeout;
3522 }
3523
3524 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3525 {
3526 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3527 }
3528 EXPORT_SYMBOL(interruptible_sleep_on);
3529
3530 long __sched
3531 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3532 {
3533 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3534 }
3535 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3536
3537 void __sched sleep_on(wait_queue_head_t *q)
3538 {
3539 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3540 }
3541 EXPORT_SYMBOL(sleep_on);
3542
3543 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3544 {
3545 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3546 }
3547 EXPORT_SYMBOL(sleep_on_timeout);
3548
3549 #ifdef CONFIG_RT_MUTEXES
3550
3551 /*
3552 * rt_mutex_setprio - set the current priority of a task
3553 * @p: task
3554 * @prio: prio value (kernel-internal form)
3555 *
3556 * This function changes the 'effective' priority of a task. It does
3557 * not touch ->normal_prio like __setscheduler().
3558 *
3559 * Used by the rt_mutex code to implement priority inheritance logic.
3560 */
3561 void rt_mutex_setprio(struct task_struct *p, int prio)
3562 {
3563 int oldprio, on_rq, running;
3564 struct rq *rq;
3565 const struct sched_class *prev_class;
3566
3567 BUG_ON(prio < 0 || prio > MAX_PRIO);
3568
3569 rq = __task_rq_lock(p);
3570
3571 /*
3572 * Idle task boosting is a nono in general. There is one
3573 * exception, when PREEMPT_RT and NOHZ is active:
3574 *
3575 * The idle task calls get_next_timer_interrupt() and holds
3576 * the timer wheel base->lock on the CPU and another CPU wants
3577 * to access the timer (probably to cancel it). We can safely
3578 * ignore the boosting request, as the idle CPU runs this code
3579 * with interrupts disabled and will complete the lock
3580 * protected section without being interrupted. So there is no
3581 * real need to boost.
3582 */
3583 if (unlikely(p == rq->idle)) {
3584 WARN_ON(p != rq->curr);
3585 WARN_ON(p->pi_blocked_on);
3586 goto out_unlock;
3587 }
3588
3589 trace_sched_pi_setprio(p, prio);
3590 oldprio = p->prio;
3591 prev_class = p->sched_class;
3592 on_rq = p->on_rq;
3593 running = task_current(rq, p);
3594 if (on_rq)
3595 dequeue_task(rq, p, 0);
3596 if (running)
3597 p->sched_class->put_prev_task(rq, p);
3598
3599 if (rt_prio(prio))
3600 p->sched_class = &rt_sched_class;
3601 else
3602 p->sched_class = &fair_sched_class;
3603
3604 p->prio = prio;
3605
3606 if (running)
3607 p->sched_class->set_curr_task(rq);
3608 if (on_rq)
3609 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3610
3611 check_class_changed(rq, p, prev_class, oldprio);
3612 out_unlock:
3613 __task_rq_unlock(rq);
3614 }
3615 #endif
3616 void set_user_nice(struct task_struct *p, long nice)
3617 {
3618 int old_prio, delta, on_rq;
3619 unsigned long flags;
3620 struct rq *rq;
3621
3622 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3623 return;
3624 /*
3625 * We have to be careful, if called from sys_setpriority(),
3626 * the task might be in the middle of scheduling on another CPU.
3627 */
3628 rq = task_rq_lock(p, &flags);
3629 /*
3630 * The RT priorities are set via sched_setscheduler(), but we still
3631 * allow the 'normal' nice value to be set - but as expected
3632 * it wont have any effect on scheduling until the task is
3633 * SCHED_FIFO/SCHED_RR:
3634 */
3635 if (task_has_rt_policy(p)) {
3636 p->static_prio = NICE_TO_PRIO(nice);
3637 goto out_unlock;
3638 }
3639 on_rq = p->on_rq;
3640 if (on_rq)
3641 dequeue_task(rq, p, 0);
3642
3643 p->static_prio = NICE_TO_PRIO(nice);
3644 set_load_weight(p);
3645 old_prio = p->prio;
3646 p->prio = effective_prio(p);
3647 delta = p->prio - old_prio;
3648
3649 if (on_rq) {
3650 enqueue_task(rq, p, 0);
3651 /*
3652 * If the task increased its priority or is running and
3653 * lowered its priority, then reschedule its CPU:
3654 */
3655 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3656 resched_task(rq->curr);
3657 }
3658 out_unlock:
3659 task_rq_unlock(rq, p, &flags);
3660 }
3661 EXPORT_SYMBOL(set_user_nice);
3662
3663 /*
3664 * can_nice - check if a task can reduce its nice value
3665 * @p: task
3666 * @nice: nice value
3667 */
3668 int can_nice(const struct task_struct *p, const int nice)
3669 {
3670 /* convert nice value [19,-20] to rlimit style value [1,40] */
3671 int nice_rlim = 20 - nice;
3672
3673 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3674 capable(CAP_SYS_NICE));
3675 }
3676
3677 #ifdef __ARCH_WANT_SYS_NICE
3678
3679 /*
3680 * sys_nice - change the priority of the current process.
3681 * @increment: priority increment
3682 *
3683 * sys_setpriority is a more generic, but much slower function that
3684 * does similar things.
3685 */
3686 SYSCALL_DEFINE1(nice, int, increment)
3687 {
3688 long nice, retval;
3689
3690 /*
3691 * Setpriority might change our priority at the same moment.
3692 * We don't have to worry. Conceptually one call occurs first
3693 * and we have a single winner.
3694 */
3695 if (increment < -40)
3696 increment = -40;
3697 if (increment > 40)
3698 increment = 40;
3699
3700 nice = TASK_NICE(current) + increment;
3701 if (nice < -20)
3702 nice = -20;
3703 if (nice > 19)
3704 nice = 19;
3705
3706 if (increment < 0 && !can_nice(current, nice))
3707 return -EPERM;
3708
3709 retval = security_task_setnice(current, nice);
3710 if (retval)
3711 return retval;
3712
3713 set_user_nice(current, nice);
3714 return 0;
3715 }
3716
3717 #endif
3718
3719 /**
3720 * task_prio - return the priority value of a given task.
3721 * @p: the task in question.
3722 *
3723 * This is the priority value as seen by users in /proc.
3724 * RT tasks are offset by -200. Normal tasks are centered
3725 * around 0, value goes from -16 to +15.
3726 */
3727 int task_prio(const struct task_struct *p)
3728 {
3729 return p->prio - MAX_RT_PRIO;
3730 }
3731
3732 /**
3733 * task_nice - return the nice value of a given task.
3734 * @p: the task in question.
3735 */
3736 int task_nice(const struct task_struct *p)
3737 {
3738 return TASK_NICE(p);
3739 }
3740 EXPORT_SYMBOL(task_nice);
3741
3742 /**
3743 * idle_cpu - is a given cpu idle currently?
3744 * @cpu: the processor in question.
3745 */
3746 int idle_cpu(int cpu)
3747 {
3748 struct rq *rq = cpu_rq(cpu);
3749
3750 if (rq->curr != rq->idle)
3751 return 0;
3752
3753 if (rq->nr_running)
3754 return 0;
3755
3756 #ifdef CONFIG_SMP
3757 if (!llist_empty(&rq->wake_list))
3758 return 0;
3759 #endif
3760
3761 return 1;
3762 }
3763
3764 /**
3765 * idle_task - return the idle task for a given cpu.
3766 * @cpu: the processor in question.
3767 */
3768 struct task_struct *idle_task(int cpu)
3769 {
3770 return cpu_rq(cpu)->idle;
3771 }
3772
3773 /**
3774 * find_process_by_pid - find a process with a matching PID value.
3775 * @pid: the pid in question.
3776 */
3777 static struct task_struct *find_process_by_pid(pid_t pid)
3778 {
3779 return pid ? find_task_by_vpid(pid) : current;
3780 }
3781
3782 /* Actually do priority change: must hold rq lock. */
3783 static void
3784 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3785 {
3786 p->policy = policy;
3787 p->rt_priority = prio;
3788 p->normal_prio = normal_prio(p);
3789 /* we are holding p->pi_lock already */
3790 p->prio = rt_mutex_getprio(p);
3791 if (rt_prio(p->prio))
3792 p->sched_class = &rt_sched_class;
3793 else
3794 p->sched_class = &fair_sched_class;
3795 set_load_weight(p);
3796 }
3797
3798 /*
3799 * check the target process has a UID that matches the current process's
3800 */
3801 static bool check_same_owner(struct task_struct *p)
3802 {
3803 const struct cred *cred = current_cred(), *pcred;
3804 bool match;
3805
3806 rcu_read_lock();
3807 pcred = __task_cred(p);
3808 match = (uid_eq(cred->euid, pcred->euid) ||
3809 uid_eq(cred->euid, pcred->uid));
3810 rcu_read_unlock();
3811 return match;
3812 }
3813
3814 static int __sched_setscheduler(struct task_struct *p, int policy,
3815 const struct sched_param *param, bool user)
3816 {
3817 int retval, oldprio, oldpolicy = -1, on_rq, running;
3818 unsigned long flags;
3819 const struct sched_class *prev_class;
3820 struct rq *rq;
3821 int reset_on_fork;
3822
3823 /* may grab non-irq protected spin_locks */
3824 BUG_ON(in_interrupt());
3825 recheck:
3826 /* double check policy once rq lock held */
3827 if (policy < 0) {
3828 reset_on_fork = p->sched_reset_on_fork;
3829 policy = oldpolicy = p->policy;
3830 } else {
3831 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3832 policy &= ~SCHED_RESET_ON_FORK;
3833
3834 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3835 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3836 policy != SCHED_IDLE)
3837 return -EINVAL;
3838 }
3839
3840 /*
3841 * Valid priorities for SCHED_FIFO and SCHED_RR are
3842 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3843 * SCHED_BATCH and SCHED_IDLE is 0.
3844 */
3845 if (param->sched_priority < 0 ||
3846 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3847 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3848 return -EINVAL;
3849 if (rt_policy(policy) != (param->sched_priority != 0))
3850 return -EINVAL;
3851
3852 /*
3853 * Allow unprivileged RT tasks to decrease priority:
3854 */
3855 if (user && !capable(CAP_SYS_NICE)) {
3856 if (rt_policy(policy)) {
3857 unsigned long rlim_rtprio =
3858 task_rlimit(p, RLIMIT_RTPRIO);
3859
3860 /* can't set/change the rt policy */
3861 if (policy != p->policy && !rlim_rtprio)
3862 return -EPERM;
3863
3864 /* can't increase priority */
3865 if (param->sched_priority > p->rt_priority &&
3866 param->sched_priority > rlim_rtprio)
3867 return -EPERM;
3868 }
3869
3870 /*
3871 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3872 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3873 */
3874 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3875 if (!can_nice(p, TASK_NICE(p)))
3876 return -EPERM;
3877 }
3878
3879 /* can't change other user's priorities */
3880 if (!check_same_owner(p))
3881 return -EPERM;
3882
3883 /* Normal users shall not reset the sched_reset_on_fork flag */
3884 if (p->sched_reset_on_fork && !reset_on_fork)
3885 return -EPERM;
3886 }
3887
3888 if (user) {
3889 retval = security_task_setscheduler(p);
3890 if (retval)
3891 return retval;
3892 }
3893
3894 /*
3895 * make sure no PI-waiters arrive (or leave) while we are
3896 * changing the priority of the task:
3897 *
3898 * To be able to change p->policy safely, the appropriate
3899 * runqueue lock must be held.
3900 */
3901 rq = task_rq_lock(p, &flags);
3902
3903 /*
3904 * Changing the policy of the stop threads its a very bad idea
3905 */
3906 if (p == rq->stop) {
3907 task_rq_unlock(rq, p, &flags);
3908 return -EINVAL;
3909 }
3910
3911 /*
3912 * If not changing anything there's no need to proceed further:
3913 */
3914 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3915 param->sched_priority == p->rt_priority))) {
3916 task_rq_unlock(rq, p, &flags);
3917 return 0;
3918 }
3919
3920 #ifdef CONFIG_RT_GROUP_SCHED
3921 if (user) {
3922 /*
3923 * Do not allow realtime tasks into groups that have no runtime
3924 * assigned.
3925 */
3926 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3927 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3928 !task_group_is_autogroup(task_group(p))) {
3929 task_rq_unlock(rq, p, &flags);
3930 return -EPERM;
3931 }
3932 }
3933 #endif
3934
3935 /* recheck policy now with rq lock held */
3936 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3937 policy = oldpolicy = -1;
3938 task_rq_unlock(rq, p, &flags);
3939 goto recheck;
3940 }
3941 on_rq = p->on_rq;
3942 running = task_current(rq, p);
3943 if (on_rq)
3944 dequeue_task(rq, p, 0);
3945 if (running)
3946 p->sched_class->put_prev_task(rq, p);
3947
3948 p->sched_reset_on_fork = reset_on_fork;
3949
3950 oldprio = p->prio;
3951 prev_class = p->sched_class;
3952 __setscheduler(rq, p, policy, param->sched_priority);
3953
3954 if (running)
3955 p->sched_class->set_curr_task(rq);
3956 if (on_rq)
3957 enqueue_task(rq, p, 0);
3958
3959 check_class_changed(rq, p, prev_class, oldprio);
3960 task_rq_unlock(rq, p, &flags);
3961
3962 rt_mutex_adjust_pi(p);
3963
3964 return 0;
3965 }
3966
3967 /**
3968 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3969 * @p: the task in question.
3970 * @policy: new policy.
3971 * @param: structure containing the new RT priority.
3972 *
3973 * NOTE that the task may be already dead.
3974 */
3975 int sched_setscheduler(struct task_struct *p, int policy,
3976 const struct sched_param *param)
3977 {
3978 return __sched_setscheduler(p, policy, param, true);
3979 }
3980 EXPORT_SYMBOL_GPL(sched_setscheduler);
3981
3982 /**
3983 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3984 * @p: the task in question.
3985 * @policy: new policy.
3986 * @param: structure containing the new RT priority.
3987 *
3988 * Just like sched_setscheduler, only don't bother checking if the
3989 * current context has permission. For example, this is needed in
3990 * stop_machine(): we create temporary high priority worker threads,
3991 * but our caller might not have that capability.
3992 */
3993 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3994 const struct sched_param *param)
3995 {
3996 return __sched_setscheduler(p, policy, param, false);
3997 }
3998
3999 static int
4000 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4001 {
4002 struct sched_param lparam;
4003 struct task_struct *p;
4004 int retval;
4005
4006 if (!param || pid < 0)
4007 return -EINVAL;
4008 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4009 return -EFAULT;
4010
4011 rcu_read_lock();
4012 retval = -ESRCH;
4013 p = find_process_by_pid(pid);
4014 if (p != NULL)
4015 retval = sched_setscheduler(p, policy, &lparam);
4016 rcu_read_unlock();
4017
4018 return retval;
4019 }
4020
4021 /**
4022 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4023 * @pid: the pid in question.
4024 * @policy: new policy.
4025 * @param: structure containing the new RT priority.
4026 */
4027 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4028 struct sched_param __user *, param)
4029 {
4030 /* negative values for policy are not valid */
4031 if (policy < 0)
4032 return -EINVAL;
4033
4034 return do_sched_setscheduler(pid, policy, param);
4035 }
4036
4037 /**
4038 * sys_sched_setparam - set/change the RT priority of a thread
4039 * @pid: the pid in question.
4040 * @param: structure containing the new RT priority.
4041 */
4042 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4043 {
4044 return do_sched_setscheduler(pid, -1, param);
4045 }
4046
4047 /**
4048 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4049 * @pid: the pid in question.
4050 */
4051 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4052 {
4053 struct task_struct *p;
4054 int retval;
4055
4056 if (pid < 0)
4057 return -EINVAL;
4058
4059 retval = -ESRCH;
4060 rcu_read_lock();
4061 p = find_process_by_pid(pid);
4062 if (p) {
4063 retval = security_task_getscheduler(p);
4064 if (!retval)
4065 retval = p->policy
4066 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4067 }
4068 rcu_read_unlock();
4069 return retval;
4070 }
4071
4072 /**
4073 * sys_sched_getparam - get the RT priority of a thread
4074 * @pid: the pid in question.
4075 * @param: structure containing the RT priority.
4076 */
4077 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4078 {
4079 struct sched_param lp;
4080 struct task_struct *p;
4081 int retval;
4082
4083 if (!param || pid < 0)
4084 return -EINVAL;
4085
4086 rcu_read_lock();
4087 p = find_process_by_pid(pid);
4088 retval = -ESRCH;
4089 if (!p)
4090 goto out_unlock;
4091
4092 retval = security_task_getscheduler(p);
4093 if (retval)
4094 goto out_unlock;
4095
4096 lp.sched_priority = p->rt_priority;
4097 rcu_read_unlock();
4098
4099 /*
4100 * This one might sleep, we cannot do it with a spinlock held ...
4101 */
4102 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4103
4104 return retval;
4105
4106 out_unlock:
4107 rcu_read_unlock();
4108 return retval;
4109 }
4110
4111 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4112 {
4113 cpumask_var_t cpus_allowed, new_mask;
4114 struct task_struct *p;
4115 int retval;
4116
4117 get_online_cpus();
4118 rcu_read_lock();
4119
4120 p = find_process_by_pid(pid);
4121 if (!p) {
4122 rcu_read_unlock();
4123 put_online_cpus();
4124 return -ESRCH;
4125 }
4126
4127 /* Prevent p going away */
4128 get_task_struct(p);
4129 rcu_read_unlock();
4130
4131 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4132 retval = -ENOMEM;
4133 goto out_put_task;
4134 }
4135 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4136 retval = -ENOMEM;
4137 goto out_free_cpus_allowed;
4138 }
4139 retval = -EPERM;
4140 if (!check_same_owner(p)) {
4141 rcu_read_lock();
4142 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4143 rcu_read_unlock();
4144 goto out_unlock;
4145 }
4146 rcu_read_unlock();
4147 }
4148
4149 retval = security_task_setscheduler(p);
4150 if (retval)
4151 goto out_unlock;
4152
4153 cpuset_cpus_allowed(p, cpus_allowed);
4154 cpumask_and(new_mask, in_mask, cpus_allowed);
4155 again:
4156 retval = set_cpus_allowed_ptr(p, new_mask);
4157
4158 if (!retval) {
4159 cpuset_cpus_allowed(p, cpus_allowed);
4160 if (!cpumask_subset(new_mask, cpus_allowed)) {
4161 /*
4162 * We must have raced with a concurrent cpuset
4163 * update. Just reset the cpus_allowed to the
4164 * cpuset's cpus_allowed
4165 */
4166 cpumask_copy(new_mask, cpus_allowed);
4167 goto again;
4168 }
4169 }
4170 out_unlock:
4171 free_cpumask_var(new_mask);
4172 out_free_cpus_allowed:
4173 free_cpumask_var(cpus_allowed);
4174 out_put_task:
4175 put_task_struct(p);
4176 put_online_cpus();
4177 return retval;
4178 }
4179
4180 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4181 struct cpumask *new_mask)
4182 {
4183 if (len < cpumask_size())
4184 cpumask_clear(new_mask);
4185 else if (len > cpumask_size())
4186 len = cpumask_size();
4187
4188 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4189 }
4190
4191 /**
4192 * sys_sched_setaffinity - set the cpu affinity of a process
4193 * @pid: pid of the process
4194 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4195 * @user_mask_ptr: user-space pointer to the new cpu mask
4196 */
4197 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4198 unsigned long __user *, user_mask_ptr)
4199 {
4200 cpumask_var_t new_mask;
4201 int retval;
4202
4203 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4204 return -ENOMEM;
4205
4206 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4207 if (retval == 0)
4208 retval = sched_setaffinity(pid, new_mask);
4209 free_cpumask_var(new_mask);
4210 return retval;
4211 }
4212
4213 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4214 {
4215 struct task_struct *p;
4216 unsigned long flags;
4217 int retval;
4218
4219 get_online_cpus();
4220 rcu_read_lock();
4221
4222 retval = -ESRCH;
4223 p = find_process_by_pid(pid);
4224 if (!p)
4225 goto out_unlock;
4226
4227 retval = security_task_getscheduler(p);
4228 if (retval)
4229 goto out_unlock;
4230
4231 raw_spin_lock_irqsave(&p->pi_lock, flags);
4232 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4233 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4234
4235 out_unlock:
4236 rcu_read_unlock();
4237 put_online_cpus();
4238
4239 return retval;
4240 }
4241
4242 /**
4243 * sys_sched_getaffinity - get the cpu affinity of a process
4244 * @pid: pid of the process
4245 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4246 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4247 */
4248 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4249 unsigned long __user *, user_mask_ptr)
4250 {
4251 int ret;
4252 cpumask_var_t mask;
4253
4254 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4255 return -EINVAL;
4256 if (len & (sizeof(unsigned long)-1))
4257 return -EINVAL;
4258
4259 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4260 return -ENOMEM;
4261
4262 ret = sched_getaffinity(pid, mask);
4263 if (ret == 0) {
4264 size_t retlen = min_t(size_t, len, cpumask_size());
4265
4266 if (copy_to_user(user_mask_ptr, mask, retlen))
4267 ret = -EFAULT;
4268 else
4269 ret = retlen;
4270 }
4271 free_cpumask_var(mask);
4272
4273 return ret;
4274 }
4275
4276 /**
4277 * sys_sched_yield - yield the current processor to other threads.
4278 *
4279 * This function yields the current CPU to other tasks. If there are no
4280 * other threads running on this CPU then this function will return.
4281 */
4282 SYSCALL_DEFINE0(sched_yield)
4283 {
4284 struct rq *rq = this_rq_lock();
4285
4286 schedstat_inc(rq, yld_count);
4287 current->sched_class->yield_task(rq);
4288
4289 /*
4290 * Since we are going to call schedule() anyway, there's
4291 * no need to preempt or enable interrupts:
4292 */
4293 __release(rq->lock);
4294 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4295 do_raw_spin_unlock(&rq->lock);
4296 sched_preempt_enable_no_resched();
4297
4298 schedule();
4299
4300 return 0;
4301 }
4302
4303 static inline int should_resched(void)
4304 {
4305 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4306 }
4307
4308 static void __cond_resched(void)
4309 {
4310 add_preempt_count(PREEMPT_ACTIVE);
4311 __schedule();
4312 sub_preempt_count(PREEMPT_ACTIVE);
4313 }
4314
4315 int __sched _cond_resched(void)
4316 {
4317 if (should_resched()) {
4318 __cond_resched();
4319 return 1;
4320 }
4321 return 0;
4322 }
4323 EXPORT_SYMBOL(_cond_resched);
4324
4325 /*
4326 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4327 * call schedule, and on return reacquire the lock.
4328 *
4329 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4330 * operations here to prevent schedule() from being called twice (once via
4331 * spin_unlock(), once by hand).
4332 */
4333 int __cond_resched_lock(spinlock_t *lock)
4334 {
4335 int resched = should_resched();
4336 int ret = 0;
4337
4338 lockdep_assert_held(lock);
4339
4340 if (spin_needbreak(lock) || resched) {
4341 spin_unlock(lock);
4342 if (resched)
4343 __cond_resched();
4344 else
4345 cpu_relax();
4346 ret = 1;
4347 spin_lock(lock);
4348 }
4349 return ret;
4350 }
4351 EXPORT_SYMBOL(__cond_resched_lock);
4352
4353 int __sched __cond_resched_softirq(void)
4354 {
4355 BUG_ON(!in_softirq());
4356
4357 if (should_resched()) {
4358 local_bh_enable();
4359 __cond_resched();
4360 local_bh_disable();
4361 return 1;
4362 }
4363 return 0;
4364 }
4365 EXPORT_SYMBOL(__cond_resched_softirq);
4366
4367 /**
4368 * yield - yield the current processor to other threads.
4369 *
4370 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4371 *
4372 * The scheduler is at all times free to pick the calling task as the most
4373 * eligible task to run, if removing the yield() call from your code breaks
4374 * it, its already broken.
4375 *
4376 * Typical broken usage is:
4377 *
4378 * while (!event)
4379 * yield();
4380 *
4381 * where one assumes that yield() will let 'the other' process run that will
4382 * make event true. If the current task is a SCHED_FIFO task that will never
4383 * happen. Never use yield() as a progress guarantee!!
4384 *
4385 * If you want to use yield() to wait for something, use wait_event().
4386 * If you want to use yield() to be 'nice' for others, use cond_resched().
4387 * If you still want to use yield(), do not!
4388 */
4389 void __sched yield(void)
4390 {
4391 set_current_state(TASK_RUNNING);
4392 sys_sched_yield();
4393 }
4394 EXPORT_SYMBOL(yield);
4395
4396 /**
4397 * yield_to - yield the current processor to another thread in
4398 * your thread group, or accelerate that thread toward the
4399 * processor it's on.
4400 * @p: target task
4401 * @preempt: whether task preemption is allowed or not
4402 *
4403 * It's the caller's job to ensure that the target task struct
4404 * can't go away on us before we can do any checks.
4405 *
4406 * Returns:
4407 * true (>0) if we indeed boosted the target task.
4408 * false (0) if we failed to boost the target.
4409 * -ESRCH if there's no task to yield to.
4410 */
4411 bool __sched yield_to(struct task_struct *p, bool preempt)
4412 {
4413 struct task_struct *curr = current;
4414 struct rq *rq, *p_rq;
4415 unsigned long flags;
4416 int yielded = 0;
4417
4418 local_irq_save(flags);
4419 rq = this_rq();
4420
4421 again:
4422 p_rq = task_rq(p);
4423 /*
4424 * If we're the only runnable task on the rq and target rq also
4425 * has only one task, there's absolutely no point in yielding.
4426 */
4427 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4428 yielded = -ESRCH;
4429 goto out_irq;
4430 }
4431
4432 double_rq_lock(rq, p_rq);
4433 while (task_rq(p) != p_rq) {
4434 double_rq_unlock(rq, p_rq);
4435 goto again;
4436 }
4437
4438 if (!curr->sched_class->yield_to_task)
4439 goto out_unlock;
4440
4441 if (curr->sched_class != p->sched_class)
4442 goto out_unlock;
4443
4444 if (task_running(p_rq, p) || p->state)
4445 goto out_unlock;
4446
4447 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4448 if (yielded) {
4449 schedstat_inc(rq, yld_count);
4450 /*
4451 * Make p's CPU reschedule; pick_next_entity takes care of
4452 * fairness.
4453 */
4454 if (preempt && rq != p_rq)
4455 resched_task(p_rq->curr);
4456 }
4457
4458 out_unlock:
4459 double_rq_unlock(rq, p_rq);
4460 out_irq:
4461 local_irq_restore(flags);
4462
4463 if (yielded > 0)
4464 schedule();
4465
4466 return yielded;
4467 }
4468 EXPORT_SYMBOL_GPL(yield_to);
4469
4470 /*
4471 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4472 * that process accounting knows that this is a task in IO wait state.
4473 */
4474 void __sched io_schedule(void)
4475 {
4476 struct rq *rq = raw_rq();
4477
4478 delayacct_blkio_start();
4479 atomic_inc(&rq->nr_iowait);
4480 blk_flush_plug(current);
4481 current->in_iowait = 1;
4482 schedule();
4483 current->in_iowait = 0;
4484 atomic_dec(&rq->nr_iowait);
4485 delayacct_blkio_end();
4486 }
4487 EXPORT_SYMBOL(io_schedule);
4488
4489 long __sched io_schedule_timeout(long timeout)
4490 {
4491 struct rq *rq = raw_rq();
4492 long ret;
4493
4494 delayacct_blkio_start();
4495 atomic_inc(&rq->nr_iowait);
4496 blk_flush_plug(current);
4497 current->in_iowait = 1;
4498 ret = schedule_timeout(timeout);
4499 current->in_iowait = 0;
4500 atomic_dec(&rq->nr_iowait);
4501 delayacct_blkio_end();
4502 return ret;
4503 }
4504
4505 /**
4506 * sys_sched_get_priority_max - return maximum RT priority.
4507 * @policy: scheduling class.
4508 *
4509 * this syscall returns the maximum rt_priority that can be used
4510 * by a given scheduling class.
4511 */
4512 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4513 {
4514 int ret = -EINVAL;
4515
4516 switch (policy) {
4517 case SCHED_FIFO:
4518 case SCHED_RR:
4519 ret = MAX_USER_RT_PRIO-1;
4520 break;
4521 case SCHED_NORMAL:
4522 case SCHED_BATCH:
4523 case SCHED_IDLE:
4524 ret = 0;
4525 break;
4526 }
4527 return ret;
4528 }
4529
4530 /**
4531 * sys_sched_get_priority_min - return minimum RT priority.
4532 * @policy: scheduling class.
4533 *
4534 * this syscall returns the minimum rt_priority that can be used
4535 * by a given scheduling class.
4536 */
4537 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4538 {
4539 int ret = -EINVAL;
4540
4541 switch (policy) {
4542 case SCHED_FIFO:
4543 case SCHED_RR:
4544 ret = 1;
4545 break;
4546 case SCHED_NORMAL:
4547 case SCHED_BATCH:
4548 case SCHED_IDLE:
4549 ret = 0;
4550 }
4551 return ret;
4552 }
4553
4554 /**
4555 * sys_sched_rr_get_interval - return the default timeslice of a process.
4556 * @pid: pid of the process.
4557 * @interval: userspace pointer to the timeslice value.
4558 *
4559 * this syscall writes the default timeslice value of a given process
4560 * into the user-space timespec buffer. A value of '0' means infinity.
4561 */
4562 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4563 struct timespec __user *, interval)
4564 {
4565 struct task_struct *p;
4566 unsigned int time_slice;
4567 unsigned long flags;
4568 struct rq *rq;
4569 int retval;
4570 struct timespec t;
4571
4572 if (pid < 0)
4573 return -EINVAL;
4574
4575 retval = -ESRCH;
4576 rcu_read_lock();
4577 p = find_process_by_pid(pid);
4578 if (!p)
4579 goto out_unlock;
4580
4581 retval = security_task_getscheduler(p);
4582 if (retval)
4583 goto out_unlock;
4584
4585 rq = task_rq_lock(p, &flags);
4586 time_slice = p->sched_class->get_rr_interval(rq, p);
4587 task_rq_unlock(rq, p, &flags);
4588
4589 rcu_read_unlock();
4590 jiffies_to_timespec(time_slice, &t);
4591 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4592 return retval;
4593
4594 out_unlock:
4595 rcu_read_unlock();
4596 return retval;
4597 }
4598
4599 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4600
4601 void sched_show_task(struct task_struct *p)
4602 {
4603 unsigned long free = 0;
4604 int ppid;
4605 unsigned state;
4606
4607 state = p->state ? __ffs(p->state) + 1 : 0;
4608 printk(KERN_INFO "%-15.15s %c", p->comm,
4609 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4610 #if BITS_PER_LONG == 32
4611 if (state == TASK_RUNNING)
4612 printk(KERN_CONT " running ");
4613 else
4614 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4615 #else
4616 if (state == TASK_RUNNING)
4617 printk(KERN_CONT " running task ");
4618 else
4619 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4620 #endif
4621 #ifdef CONFIG_DEBUG_STACK_USAGE
4622 free = stack_not_used(p);
4623 #endif
4624 rcu_read_lock();
4625 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4626 rcu_read_unlock();
4627 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4628 task_pid_nr(p), ppid,
4629 (unsigned long)task_thread_info(p)->flags);
4630
4631 show_stack(p, NULL);
4632 }
4633
4634 void show_state_filter(unsigned long state_filter)
4635 {
4636 struct task_struct *g, *p;
4637
4638 #if BITS_PER_LONG == 32
4639 printk(KERN_INFO
4640 " task PC stack pid father\n");
4641 #else
4642 printk(KERN_INFO
4643 " task PC stack pid father\n");
4644 #endif
4645 rcu_read_lock();
4646 do_each_thread(g, p) {
4647 /*
4648 * reset the NMI-timeout, listing all files on a slow
4649 * console might take a lot of time:
4650 */
4651 touch_nmi_watchdog();
4652 if (!state_filter || (p->state & state_filter))
4653 sched_show_task(p);
4654 } while_each_thread(g, p);
4655
4656 touch_all_softlockup_watchdogs();
4657
4658 #ifdef CONFIG_SCHED_DEBUG
4659 sysrq_sched_debug_show();
4660 #endif
4661 rcu_read_unlock();
4662 /*
4663 * Only show locks if all tasks are dumped:
4664 */
4665 if (!state_filter)
4666 debug_show_all_locks();
4667 }
4668
4669 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4670 {
4671 idle->sched_class = &idle_sched_class;
4672 }
4673
4674 /**
4675 * init_idle - set up an idle thread for a given CPU
4676 * @idle: task in question
4677 * @cpu: cpu the idle task belongs to
4678 *
4679 * NOTE: this function does not set the idle thread's NEED_RESCHED
4680 * flag, to make booting more robust.
4681 */
4682 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4683 {
4684 struct rq *rq = cpu_rq(cpu);
4685 unsigned long flags;
4686
4687 raw_spin_lock_irqsave(&rq->lock, flags);
4688
4689 __sched_fork(idle);
4690 idle->state = TASK_RUNNING;
4691 idle->se.exec_start = sched_clock();
4692
4693 do_set_cpus_allowed(idle, cpumask_of(cpu));
4694 /*
4695 * We're having a chicken and egg problem, even though we are
4696 * holding rq->lock, the cpu isn't yet set to this cpu so the
4697 * lockdep check in task_group() will fail.
4698 *
4699 * Similar case to sched_fork(). / Alternatively we could
4700 * use task_rq_lock() here and obtain the other rq->lock.
4701 *
4702 * Silence PROVE_RCU
4703 */
4704 rcu_read_lock();
4705 __set_task_cpu(idle, cpu);
4706 rcu_read_unlock();
4707
4708 rq->curr = rq->idle = idle;
4709 #if defined(CONFIG_SMP)
4710 idle->on_cpu = 1;
4711 #endif
4712 raw_spin_unlock_irqrestore(&rq->lock, flags);
4713
4714 /* Set the preempt count _outside_ the spinlocks! */
4715 task_thread_info(idle)->preempt_count = 0;
4716
4717 /*
4718 * The idle tasks have their own, simple scheduling class:
4719 */
4720 idle->sched_class = &idle_sched_class;
4721 ftrace_graph_init_idle_task(idle, cpu);
4722 vtime_init_idle(idle);
4723 #if defined(CONFIG_SMP)
4724 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4725 #endif
4726 }
4727
4728 #ifdef CONFIG_SMP
4729 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4730 {
4731 if (p->sched_class && p->sched_class->set_cpus_allowed)
4732 p->sched_class->set_cpus_allowed(p, new_mask);
4733
4734 cpumask_copy(&p->cpus_allowed, new_mask);
4735 p->nr_cpus_allowed = cpumask_weight(new_mask);
4736 }
4737
4738 /*
4739 * This is how migration works:
4740 *
4741 * 1) we invoke migration_cpu_stop() on the target CPU using
4742 * stop_one_cpu().
4743 * 2) stopper starts to run (implicitly forcing the migrated thread
4744 * off the CPU)
4745 * 3) it checks whether the migrated task is still in the wrong runqueue.
4746 * 4) if it's in the wrong runqueue then the migration thread removes
4747 * it and puts it into the right queue.
4748 * 5) stopper completes and stop_one_cpu() returns and the migration
4749 * is done.
4750 */
4751
4752 /*
4753 * Change a given task's CPU affinity. Migrate the thread to a
4754 * proper CPU and schedule it away if the CPU it's executing on
4755 * is removed from the allowed bitmask.
4756 *
4757 * NOTE: the caller must have a valid reference to the task, the
4758 * task must not exit() & deallocate itself prematurely. The
4759 * call is not atomic; no spinlocks may be held.
4760 */
4761 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4762 {
4763 unsigned long flags;
4764 struct rq *rq;
4765 unsigned int dest_cpu;
4766 int ret = 0;
4767
4768 rq = task_rq_lock(p, &flags);
4769
4770 if (cpumask_equal(&p->cpus_allowed, new_mask))
4771 goto out;
4772
4773 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4774 ret = -EINVAL;
4775 goto out;
4776 }
4777
4778 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4779 ret = -EINVAL;
4780 goto out;
4781 }
4782
4783 do_set_cpus_allowed(p, new_mask);
4784
4785 /* Can the task run on the task's current CPU? If so, we're done */
4786 if (cpumask_test_cpu(task_cpu(p), new_mask))
4787 goto out;
4788
4789 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4790 if (p->on_rq) {
4791 struct migration_arg arg = { p, dest_cpu };
4792 /* Need help from migration thread: drop lock and wait. */
4793 task_rq_unlock(rq, p, &flags);
4794 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4795 tlb_migrate_finish(p->mm);
4796 return 0;
4797 }
4798 out:
4799 task_rq_unlock(rq, p, &flags);
4800
4801 return ret;
4802 }
4803 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4804
4805 /*
4806 * Move (not current) task off this cpu, onto dest cpu. We're doing
4807 * this because either it can't run here any more (set_cpus_allowed()
4808 * away from this CPU, or CPU going down), or because we're
4809 * attempting to rebalance this task on exec (sched_exec).
4810 *
4811 * So we race with normal scheduler movements, but that's OK, as long
4812 * as the task is no longer on this CPU.
4813 *
4814 * Returns non-zero if task was successfully migrated.
4815 */
4816 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4817 {
4818 struct rq *rq_dest, *rq_src;
4819 int ret = 0;
4820
4821 if (unlikely(!cpu_active(dest_cpu)))
4822 return ret;
4823
4824 rq_src = cpu_rq(src_cpu);
4825 rq_dest = cpu_rq(dest_cpu);
4826
4827 raw_spin_lock(&p->pi_lock);
4828 double_rq_lock(rq_src, rq_dest);
4829 /* Already moved. */
4830 if (task_cpu(p) != src_cpu)
4831 goto done;
4832 /* Affinity changed (again). */
4833 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4834 goto fail;
4835
4836 /*
4837 * If we're not on a rq, the next wake-up will ensure we're
4838 * placed properly.
4839 */
4840 if (p->on_rq) {
4841 dequeue_task(rq_src, p, 0);
4842 set_task_cpu(p, dest_cpu);
4843 enqueue_task(rq_dest, p, 0);
4844 check_preempt_curr(rq_dest, p, 0);
4845 }
4846 done:
4847 ret = 1;
4848 fail:
4849 double_rq_unlock(rq_src, rq_dest);
4850 raw_spin_unlock(&p->pi_lock);
4851 return ret;
4852 }
4853
4854 /*
4855 * migration_cpu_stop - this will be executed by a highprio stopper thread
4856 * and performs thread migration by bumping thread off CPU then
4857 * 'pushing' onto another runqueue.
4858 */
4859 static int migration_cpu_stop(void *data)
4860 {
4861 struct migration_arg *arg = data;
4862
4863 /*
4864 * The original target cpu might have gone down and we might
4865 * be on another cpu but it doesn't matter.
4866 */
4867 local_irq_disable();
4868 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4869 local_irq_enable();
4870 return 0;
4871 }
4872
4873 #ifdef CONFIG_HOTPLUG_CPU
4874
4875 /*
4876 * Ensures that the idle task is using init_mm right before its cpu goes
4877 * offline.
4878 */
4879 void idle_task_exit(void)
4880 {
4881 struct mm_struct *mm = current->active_mm;
4882
4883 BUG_ON(cpu_online(smp_processor_id()));
4884
4885 if (mm != &init_mm)
4886 switch_mm(mm, &init_mm, current);
4887 mmdrop(mm);
4888 }
4889
4890 /*
4891 * Since this CPU is going 'away' for a while, fold any nr_active delta
4892 * we might have. Assumes we're called after migrate_tasks() so that the
4893 * nr_active count is stable.
4894 *
4895 * Also see the comment "Global load-average calculations".
4896 */
4897 static void calc_load_migrate(struct rq *rq)
4898 {
4899 long delta = calc_load_fold_active(rq);
4900 if (delta)
4901 atomic_long_add(delta, &calc_load_tasks);
4902 }
4903
4904 /*
4905 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4906 * try_to_wake_up()->select_task_rq().
4907 *
4908 * Called with rq->lock held even though we'er in stop_machine() and
4909 * there's no concurrency possible, we hold the required locks anyway
4910 * because of lock validation efforts.
4911 */
4912 static void migrate_tasks(unsigned int dead_cpu)
4913 {
4914 struct rq *rq = cpu_rq(dead_cpu);
4915 struct task_struct *next, *stop = rq->stop;
4916 int dest_cpu;
4917
4918 /*
4919 * Fudge the rq selection such that the below task selection loop
4920 * doesn't get stuck on the currently eligible stop task.
4921 *
4922 * We're currently inside stop_machine() and the rq is either stuck
4923 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4924 * either way we should never end up calling schedule() until we're
4925 * done here.
4926 */
4927 rq->stop = NULL;
4928
4929 for ( ; ; ) {
4930 /*
4931 * There's this thread running, bail when that's the only
4932 * remaining thread.
4933 */
4934 if (rq->nr_running == 1)
4935 break;
4936
4937 next = pick_next_task(rq);
4938 BUG_ON(!next);
4939 next->sched_class->put_prev_task(rq, next);
4940
4941 /* Find suitable destination for @next, with force if needed. */
4942 dest_cpu = select_fallback_rq(dead_cpu, next);
4943 raw_spin_unlock(&rq->lock);
4944
4945 __migrate_task(next, dead_cpu, dest_cpu);
4946
4947 raw_spin_lock(&rq->lock);
4948 }
4949
4950 rq->stop = stop;
4951 }
4952
4953 #endif /* CONFIG_HOTPLUG_CPU */
4954
4955 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4956
4957 static struct ctl_table sd_ctl_dir[] = {
4958 {
4959 .procname = "sched_domain",
4960 .mode = 0555,
4961 },
4962 {}
4963 };
4964
4965 static struct ctl_table sd_ctl_root[] = {
4966 {
4967 .procname = "kernel",
4968 .mode = 0555,
4969 .child = sd_ctl_dir,
4970 },
4971 {}
4972 };
4973
4974 static struct ctl_table *sd_alloc_ctl_entry(int n)
4975 {
4976 struct ctl_table *entry =
4977 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4978
4979 return entry;
4980 }
4981
4982 static void sd_free_ctl_entry(struct ctl_table **tablep)
4983 {
4984 struct ctl_table *entry;
4985
4986 /*
4987 * In the intermediate directories, both the child directory and
4988 * procname are dynamically allocated and could fail but the mode
4989 * will always be set. In the lowest directory the names are
4990 * static strings and all have proc handlers.
4991 */
4992 for (entry = *tablep; entry->mode; entry++) {
4993 if (entry->child)
4994 sd_free_ctl_entry(&entry->child);
4995 if (entry->proc_handler == NULL)
4996 kfree(entry->procname);
4997 }
4998
4999 kfree(*tablep);
5000 *tablep = NULL;
5001 }
5002
5003 static int min_load_idx = 0;
5004 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5005
5006 static void
5007 set_table_entry(struct ctl_table *entry,
5008 const char *procname, void *data, int maxlen,
5009 umode_t mode, proc_handler *proc_handler,
5010 bool load_idx)
5011 {
5012 entry->procname = procname;
5013 entry->data = data;
5014 entry->maxlen = maxlen;
5015 entry->mode = mode;
5016 entry->proc_handler = proc_handler;
5017
5018 if (load_idx) {
5019 entry->extra1 = &min_load_idx;
5020 entry->extra2 = &max_load_idx;
5021 }
5022 }
5023
5024 static struct ctl_table *
5025 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5026 {
5027 struct ctl_table *table = sd_alloc_ctl_entry(13);
5028
5029 if (table == NULL)
5030 return NULL;
5031
5032 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5033 sizeof(long), 0644, proc_doulongvec_minmax, false);
5034 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5035 sizeof(long), 0644, proc_doulongvec_minmax, false);
5036 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5037 sizeof(int), 0644, proc_dointvec_minmax, true);
5038 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5039 sizeof(int), 0644, proc_dointvec_minmax, true);
5040 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5041 sizeof(int), 0644, proc_dointvec_minmax, true);
5042 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5043 sizeof(int), 0644, proc_dointvec_minmax, true);
5044 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5045 sizeof(int), 0644, proc_dointvec_minmax, true);
5046 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5047 sizeof(int), 0644, proc_dointvec_minmax, false);
5048 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5049 sizeof(int), 0644, proc_dointvec_minmax, false);
5050 set_table_entry(&table[9], "cache_nice_tries",
5051 &sd->cache_nice_tries,
5052 sizeof(int), 0644, proc_dointvec_minmax, false);
5053 set_table_entry(&table[10], "flags", &sd->flags,
5054 sizeof(int), 0644, proc_dointvec_minmax, false);
5055 set_table_entry(&table[11], "name", sd->name,
5056 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5057 /* &table[12] is terminator */
5058
5059 return table;
5060 }
5061
5062 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5063 {
5064 struct ctl_table *entry, *table;
5065 struct sched_domain *sd;
5066 int domain_num = 0, i;
5067 char buf[32];
5068
5069 for_each_domain(cpu, sd)
5070 domain_num++;
5071 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5072 if (table == NULL)
5073 return NULL;
5074
5075 i = 0;
5076 for_each_domain(cpu, sd) {
5077 snprintf(buf, 32, "domain%d", i);
5078 entry->procname = kstrdup(buf, GFP_KERNEL);
5079 entry->mode = 0555;
5080 entry->child = sd_alloc_ctl_domain_table(sd);
5081 entry++;
5082 i++;
5083 }
5084 return table;
5085 }
5086
5087 static struct ctl_table_header *sd_sysctl_header;
5088 static void register_sched_domain_sysctl(void)
5089 {
5090 int i, cpu_num = num_possible_cpus();
5091 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5092 char buf[32];
5093
5094 WARN_ON(sd_ctl_dir[0].child);
5095 sd_ctl_dir[0].child = entry;
5096
5097 if (entry == NULL)
5098 return;
5099
5100 for_each_possible_cpu(i) {
5101 snprintf(buf, 32, "cpu%d", i);
5102 entry->procname = kstrdup(buf, GFP_KERNEL);
5103 entry->mode = 0555;
5104 entry->child = sd_alloc_ctl_cpu_table(i);
5105 entry++;
5106 }
5107
5108 WARN_ON(sd_sysctl_header);
5109 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5110 }
5111
5112 /* may be called multiple times per register */
5113 static void unregister_sched_domain_sysctl(void)
5114 {
5115 if (sd_sysctl_header)
5116 unregister_sysctl_table(sd_sysctl_header);
5117 sd_sysctl_header = NULL;
5118 if (sd_ctl_dir[0].child)
5119 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5120 }
5121 #else
5122 static void register_sched_domain_sysctl(void)
5123 {
5124 }
5125 static void unregister_sched_domain_sysctl(void)
5126 {
5127 }
5128 #endif
5129
5130 static void set_rq_online(struct rq *rq)
5131 {
5132 if (!rq->online) {
5133 const struct sched_class *class;
5134
5135 cpumask_set_cpu(rq->cpu, rq->rd->online);
5136 rq->online = 1;
5137
5138 for_each_class(class) {
5139 if (class->rq_online)
5140 class->rq_online(rq);
5141 }
5142 }
5143 }
5144
5145 static void set_rq_offline(struct rq *rq)
5146 {
5147 if (rq->online) {
5148 const struct sched_class *class;
5149
5150 for_each_class(class) {
5151 if (class->rq_offline)
5152 class->rq_offline(rq);
5153 }
5154
5155 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5156 rq->online = 0;
5157 }
5158 }
5159
5160 /*
5161 * migration_call - callback that gets triggered when a CPU is added.
5162 * Here we can start up the necessary migration thread for the new CPU.
5163 */
5164 static int __cpuinit
5165 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5166 {
5167 int cpu = (long)hcpu;
5168 unsigned long flags;
5169 struct rq *rq = cpu_rq(cpu);
5170
5171 switch (action & ~CPU_TASKS_FROZEN) {
5172
5173 case CPU_UP_PREPARE:
5174 rq->calc_load_update = calc_load_update;
5175 break;
5176
5177 case CPU_ONLINE:
5178 /* Update our root-domain */
5179 raw_spin_lock_irqsave(&rq->lock, flags);
5180 if (rq->rd) {
5181 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5182
5183 set_rq_online(rq);
5184 }
5185 raw_spin_unlock_irqrestore(&rq->lock, flags);
5186 break;
5187
5188 #ifdef CONFIG_HOTPLUG_CPU
5189 case CPU_DYING:
5190 sched_ttwu_pending();
5191 /* Update our root-domain */
5192 raw_spin_lock_irqsave(&rq->lock, flags);
5193 if (rq->rd) {
5194 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5195 set_rq_offline(rq);
5196 }
5197 migrate_tasks(cpu);
5198 BUG_ON(rq->nr_running != 1); /* the migration thread */
5199 raw_spin_unlock_irqrestore(&rq->lock, flags);
5200 break;
5201
5202 case CPU_DEAD:
5203 calc_load_migrate(rq);
5204 break;
5205 #endif
5206 }
5207
5208 update_max_interval();
5209
5210 return NOTIFY_OK;
5211 }
5212
5213 /*
5214 * Register at high priority so that task migration (migrate_all_tasks)
5215 * happens before everything else. This has to be lower priority than
5216 * the notifier in the perf_event subsystem, though.
5217 */
5218 static struct notifier_block __cpuinitdata migration_notifier = {
5219 .notifier_call = migration_call,
5220 .priority = CPU_PRI_MIGRATION,
5221 };
5222
5223 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5224 unsigned long action, void *hcpu)
5225 {
5226 switch (action & ~CPU_TASKS_FROZEN) {
5227 case CPU_STARTING:
5228 case CPU_DOWN_FAILED:
5229 set_cpu_active((long)hcpu, true);
5230 return NOTIFY_OK;
5231 default:
5232 return NOTIFY_DONE;
5233 }
5234 }
5235
5236 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5237 unsigned long action, void *hcpu)
5238 {
5239 switch (action & ~CPU_TASKS_FROZEN) {
5240 case CPU_DOWN_PREPARE:
5241 set_cpu_active((long)hcpu, false);
5242 return NOTIFY_OK;
5243 default:
5244 return NOTIFY_DONE;
5245 }
5246 }
5247
5248 static int __init migration_init(void)
5249 {
5250 void *cpu = (void *)(long)smp_processor_id();
5251 int err;
5252
5253 /* Initialize migration for the boot CPU */
5254 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5255 BUG_ON(err == NOTIFY_BAD);
5256 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5257 register_cpu_notifier(&migration_notifier);
5258
5259 /* Register cpu active notifiers */
5260 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5261 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5262
5263 return 0;
5264 }
5265 early_initcall(migration_init);
5266 #endif
5267
5268 #ifdef CONFIG_SMP
5269
5270 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5271
5272 #ifdef CONFIG_SCHED_DEBUG
5273
5274 static __read_mostly int sched_debug_enabled;
5275
5276 static int __init sched_debug_setup(char *str)
5277 {
5278 sched_debug_enabled = 1;
5279
5280 return 0;
5281 }
5282 early_param("sched_debug", sched_debug_setup);
5283
5284 static inline bool sched_debug(void)
5285 {
5286 return sched_debug_enabled;
5287 }
5288
5289 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5290 struct cpumask *groupmask)
5291 {
5292 struct sched_group *group = sd->groups;
5293 char str[256];
5294
5295 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5296 cpumask_clear(groupmask);
5297
5298 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5299
5300 if (!(sd->flags & SD_LOAD_BALANCE)) {
5301 printk("does not load-balance\n");
5302 if (sd->parent)
5303 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5304 " has parent");
5305 return -1;
5306 }
5307
5308 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5309
5310 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5311 printk(KERN_ERR "ERROR: domain->span does not contain "
5312 "CPU%d\n", cpu);
5313 }
5314 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5315 printk(KERN_ERR "ERROR: domain->groups does not contain"
5316 " CPU%d\n", cpu);
5317 }
5318
5319 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5320 do {
5321 if (!group) {
5322 printk("\n");
5323 printk(KERN_ERR "ERROR: group is NULL\n");
5324 break;
5325 }
5326
5327 /*
5328 * Even though we initialize ->power to something semi-sane,
5329 * we leave power_orig unset. This allows us to detect if
5330 * domain iteration is still funny without causing /0 traps.
5331 */
5332 if (!group->sgp->power_orig) {
5333 printk(KERN_CONT "\n");
5334 printk(KERN_ERR "ERROR: domain->cpu_power not "
5335 "set\n");
5336 break;
5337 }
5338
5339 if (!cpumask_weight(sched_group_cpus(group))) {
5340 printk(KERN_CONT "\n");
5341 printk(KERN_ERR "ERROR: empty group\n");
5342 break;
5343 }
5344
5345 if (!(sd->flags & SD_OVERLAP) &&
5346 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5347 printk(KERN_CONT "\n");
5348 printk(KERN_ERR "ERROR: repeated CPUs\n");
5349 break;
5350 }
5351
5352 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5353
5354 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5355
5356 printk(KERN_CONT " %s", str);
5357 if (group->sgp->power != SCHED_POWER_SCALE) {
5358 printk(KERN_CONT " (cpu_power = %d)",
5359 group->sgp->power);
5360 }
5361
5362 group = group->next;
5363 } while (group != sd->groups);
5364 printk(KERN_CONT "\n");
5365
5366 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5367 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5368
5369 if (sd->parent &&
5370 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5371 printk(KERN_ERR "ERROR: parent span is not a superset "
5372 "of domain->span\n");
5373 return 0;
5374 }
5375
5376 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5377 {
5378 int level = 0;
5379
5380 if (!sched_debug_enabled)
5381 return;
5382
5383 if (!sd) {
5384 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5385 return;
5386 }
5387
5388 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5389
5390 for (;;) {
5391 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5392 break;
5393 level++;
5394 sd = sd->parent;
5395 if (!sd)
5396 break;
5397 }
5398 }
5399 #else /* !CONFIG_SCHED_DEBUG */
5400 # define sched_domain_debug(sd, cpu) do { } while (0)
5401 static inline bool sched_debug(void)
5402 {
5403 return false;
5404 }
5405 #endif /* CONFIG_SCHED_DEBUG */
5406
5407 static int sd_degenerate(struct sched_domain *sd)
5408 {
5409 if (cpumask_weight(sched_domain_span(sd)) == 1)
5410 return 1;
5411
5412 /* Following flags need at least 2 groups */
5413 if (sd->flags & (SD_LOAD_BALANCE |
5414 SD_BALANCE_NEWIDLE |
5415 SD_BALANCE_FORK |
5416 SD_BALANCE_EXEC |
5417 SD_SHARE_CPUPOWER |
5418 SD_SHARE_PKG_RESOURCES)) {
5419 if (sd->groups != sd->groups->next)
5420 return 0;
5421 }
5422
5423 /* Following flags don't use groups */
5424 if (sd->flags & (SD_WAKE_AFFINE))
5425 return 0;
5426
5427 return 1;
5428 }
5429
5430 static int
5431 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5432 {
5433 unsigned long cflags = sd->flags, pflags = parent->flags;
5434
5435 if (sd_degenerate(parent))
5436 return 1;
5437
5438 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5439 return 0;
5440
5441 /* Flags needing groups don't count if only 1 group in parent */
5442 if (parent->groups == parent->groups->next) {
5443 pflags &= ~(SD_LOAD_BALANCE |
5444 SD_BALANCE_NEWIDLE |
5445 SD_BALANCE_FORK |
5446 SD_BALANCE_EXEC |
5447 SD_SHARE_CPUPOWER |
5448 SD_SHARE_PKG_RESOURCES);
5449 if (nr_node_ids == 1)
5450 pflags &= ~SD_SERIALIZE;
5451 }
5452 if (~cflags & pflags)
5453 return 0;
5454
5455 return 1;
5456 }
5457
5458 static void free_rootdomain(struct rcu_head *rcu)
5459 {
5460 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5461
5462 cpupri_cleanup(&rd->cpupri);
5463 free_cpumask_var(rd->rto_mask);
5464 free_cpumask_var(rd->online);
5465 free_cpumask_var(rd->span);
5466 kfree(rd);
5467 }
5468
5469 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5470 {
5471 struct root_domain *old_rd = NULL;
5472 unsigned long flags;
5473
5474 raw_spin_lock_irqsave(&rq->lock, flags);
5475
5476 if (rq->rd) {
5477 old_rd = rq->rd;
5478
5479 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5480 set_rq_offline(rq);
5481
5482 cpumask_clear_cpu(rq->cpu, old_rd->span);
5483
5484 /*
5485 * If we dont want to free the old_rt yet then
5486 * set old_rd to NULL to skip the freeing later
5487 * in this function:
5488 */
5489 if (!atomic_dec_and_test(&old_rd->refcount))
5490 old_rd = NULL;
5491 }
5492
5493 atomic_inc(&rd->refcount);
5494 rq->rd = rd;
5495
5496 cpumask_set_cpu(rq->cpu, rd->span);
5497 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5498 set_rq_online(rq);
5499
5500 raw_spin_unlock_irqrestore(&rq->lock, flags);
5501
5502 if (old_rd)
5503 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5504 }
5505
5506 static int init_rootdomain(struct root_domain *rd)
5507 {
5508 memset(rd, 0, sizeof(*rd));
5509
5510 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5511 goto out;
5512 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5513 goto free_span;
5514 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5515 goto free_online;
5516
5517 if (cpupri_init(&rd->cpupri) != 0)
5518 goto free_rto_mask;
5519 return 0;
5520
5521 free_rto_mask:
5522 free_cpumask_var(rd->rto_mask);
5523 free_online:
5524 free_cpumask_var(rd->online);
5525 free_span:
5526 free_cpumask_var(rd->span);
5527 out:
5528 return -ENOMEM;
5529 }
5530
5531 /*
5532 * By default the system creates a single root-domain with all cpus as
5533 * members (mimicking the global state we have today).
5534 */
5535 struct root_domain def_root_domain;
5536
5537 static void init_defrootdomain(void)
5538 {
5539 init_rootdomain(&def_root_domain);
5540
5541 atomic_set(&def_root_domain.refcount, 1);
5542 }
5543
5544 static struct root_domain *alloc_rootdomain(void)
5545 {
5546 struct root_domain *rd;
5547
5548 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5549 if (!rd)
5550 return NULL;
5551
5552 if (init_rootdomain(rd) != 0) {
5553 kfree(rd);
5554 return NULL;
5555 }
5556
5557 return rd;
5558 }
5559
5560 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5561 {
5562 struct sched_group *tmp, *first;
5563
5564 if (!sg)
5565 return;
5566
5567 first = sg;
5568 do {
5569 tmp = sg->next;
5570
5571 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5572 kfree(sg->sgp);
5573
5574 kfree(sg);
5575 sg = tmp;
5576 } while (sg != first);
5577 }
5578
5579 static void free_sched_domain(struct rcu_head *rcu)
5580 {
5581 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5582
5583 /*
5584 * If its an overlapping domain it has private groups, iterate and
5585 * nuke them all.
5586 */
5587 if (sd->flags & SD_OVERLAP) {
5588 free_sched_groups(sd->groups, 1);
5589 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5590 kfree(sd->groups->sgp);
5591 kfree(sd->groups);
5592 }
5593 kfree(sd);
5594 }
5595
5596 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5597 {
5598 call_rcu(&sd->rcu, free_sched_domain);
5599 }
5600
5601 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5602 {
5603 for (; sd; sd = sd->parent)
5604 destroy_sched_domain(sd, cpu);
5605 }
5606
5607 /*
5608 * Keep a special pointer to the highest sched_domain that has
5609 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5610 * allows us to avoid some pointer chasing select_idle_sibling().
5611 *
5612 * Also keep a unique ID per domain (we use the first cpu number in
5613 * the cpumask of the domain), this allows us to quickly tell if
5614 * two cpus are in the same cache domain, see cpus_share_cache().
5615 */
5616 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5617 DEFINE_PER_CPU(int, sd_llc_id);
5618
5619 static void update_top_cache_domain(int cpu)
5620 {
5621 struct sched_domain *sd;
5622 int id = cpu;
5623
5624 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5625 if (sd)
5626 id = cpumask_first(sched_domain_span(sd));
5627
5628 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5629 per_cpu(sd_llc_id, cpu) = id;
5630 }
5631
5632 /*
5633 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5634 * hold the hotplug lock.
5635 */
5636 static void
5637 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5638 {
5639 struct rq *rq = cpu_rq(cpu);
5640 struct sched_domain *tmp;
5641
5642 /* Remove the sched domains which do not contribute to scheduling. */
5643 for (tmp = sd; tmp; ) {
5644 struct sched_domain *parent = tmp->parent;
5645 if (!parent)
5646 break;
5647
5648 if (sd_parent_degenerate(tmp, parent)) {
5649 tmp->parent = parent->parent;
5650 if (parent->parent)
5651 parent->parent->child = tmp;
5652 destroy_sched_domain(parent, cpu);
5653 } else
5654 tmp = tmp->parent;
5655 }
5656
5657 if (sd && sd_degenerate(sd)) {
5658 tmp = sd;
5659 sd = sd->parent;
5660 destroy_sched_domain(tmp, cpu);
5661 if (sd)
5662 sd->child = NULL;
5663 }
5664
5665 sched_domain_debug(sd, cpu);
5666
5667 rq_attach_root(rq, rd);
5668 tmp = rq->sd;
5669 rcu_assign_pointer(rq->sd, sd);
5670 destroy_sched_domains(tmp, cpu);
5671
5672 update_top_cache_domain(cpu);
5673 }
5674
5675 /* cpus with isolated domains */
5676 static cpumask_var_t cpu_isolated_map;
5677
5678 /* Setup the mask of cpus configured for isolated domains */
5679 static int __init isolated_cpu_setup(char *str)
5680 {
5681 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5682 cpulist_parse(str, cpu_isolated_map);
5683 return 1;
5684 }
5685
5686 __setup("isolcpus=", isolated_cpu_setup);
5687
5688 static const struct cpumask *cpu_cpu_mask(int cpu)
5689 {
5690 return cpumask_of_node(cpu_to_node(cpu));
5691 }
5692
5693 struct sd_data {
5694 struct sched_domain **__percpu sd;
5695 struct sched_group **__percpu sg;
5696 struct sched_group_power **__percpu sgp;
5697 };
5698
5699 struct s_data {
5700 struct sched_domain ** __percpu sd;
5701 struct root_domain *rd;
5702 };
5703
5704 enum s_alloc {
5705 sa_rootdomain,
5706 sa_sd,
5707 sa_sd_storage,
5708 sa_none,
5709 };
5710
5711 struct sched_domain_topology_level;
5712
5713 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5714 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5715
5716 #define SDTL_OVERLAP 0x01
5717
5718 struct sched_domain_topology_level {
5719 sched_domain_init_f init;
5720 sched_domain_mask_f mask;
5721 int flags;
5722 int numa_level;
5723 struct sd_data data;
5724 };
5725
5726 /*
5727 * Build an iteration mask that can exclude certain CPUs from the upwards
5728 * domain traversal.
5729 *
5730 * Asymmetric node setups can result in situations where the domain tree is of
5731 * unequal depth, make sure to skip domains that already cover the entire
5732 * range.
5733 *
5734 * In that case build_sched_domains() will have terminated the iteration early
5735 * and our sibling sd spans will be empty. Domains should always include the
5736 * cpu they're built on, so check that.
5737 *
5738 */
5739 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5740 {
5741 const struct cpumask *span = sched_domain_span(sd);
5742 struct sd_data *sdd = sd->private;
5743 struct sched_domain *sibling;
5744 int i;
5745
5746 for_each_cpu(i, span) {
5747 sibling = *per_cpu_ptr(sdd->sd, i);
5748 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5749 continue;
5750
5751 cpumask_set_cpu(i, sched_group_mask(sg));
5752 }
5753 }
5754
5755 /*
5756 * Return the canonical balance cpu for this group, this is the first cpu
5757 * of this group that's also in the iteration mask.
5758 */
5759 int group_balance_cpu(struct sched_group *sg)
5760 {
5761 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5762 }
5763
5764 static int
5765 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5766 {
5767 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5768 const struct cpumask *span = sched_domain_span(sd);
5769 struct cpumask *covered = sched_domains_tmpmask;
5770 struct sd_data *sdd = sd->private;
5771 struct sched_domain *child;
5772 int i;
5773
5774 cpumask_clear(covered);
5775
5776 for_each_cpu(i, span) {
5777 struct cpumask *sg_span;
5778
5779 if (cpumask_test_cpu(i, covered))
5780 continue;
5781
5782 child = *per_cpu_ptr(sdd->sd, i);
5783
5784 /* See the comment near build_group_mask(). */
5785 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5786 continue;
5787
5788 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5789 GFP_KERNEL, cpu_to_node(cpu));
5790
5791 if (!sg)
5792 goto fail;
5793
5794 sg_span = sched_group_cpus(sg);
5795 if (child->child) {
5796 child = child->child;
5797 cpumask_copy(sg_span, sched_domain_span(child));
5798 } else
5799 cpumask_set_cpu(i, sg_span);
5800
5801 cpumask_or(covered, covered, sg_span);
5802
5803 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5804 if (atomic_inc_return(&sg->sgp->ref) == 1)
5805 build_group_mask(sd, sg);
5806
5807 /*
5808 * Initialize sgp->power such that even if we mess up the
5809 * domains and no possible iteration will get us here, we won't
5810 * die on a /0 trap.
5811 */
5812 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5813
5814 /*
5815 * Make sure the first group of this domain contains the
5816 * canonical balance cpu. Otherwise the sched_domain iteration
5817 * breaks. See update_sg_lb_stats().
5818 */
5819 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5820 group_balance_cpu(sg) == cpu)
5821 groups = sg;
5822
5823 if (!first)
5824 first = sg;
5825 if (last)
5826 last->next = sg;
5827 last = sg;
5828 last->next = first;
5829 }
5830 sd->groups = groups;
5831
5832 return 0;
5833
5834 fail:
5835 free_sched_groups(first, 0);
5836
5837 return -ENOMEM;
5838 }
5839
5840 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5841 {
5842 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5843 struct sched_domain *child = sd->child;
5844
5845 if (child)
5846 cpu = cpumask_first(sched_domain_span(child));
5847
5848 if (sg) {
5849 *sg = *per_cpu_ptr(sdd->sg, cpu);
5850 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5851 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5852 }
5853
5854 return cpu;
5855 }
5856
5857 /*
5858 * build_sched_groups will build a circular linked list of the groups
5859 * covered by the given span, and will set each group's ->cpumask correctly,
5860 * and ->cpu_power to 0.
5861 *
5862 * Assumes the sched_domain tree is fully constructed
5863 */
5864 static int
5865 build_sched_groups(struct sched_domain *sd, int cpu)
5866 {
5867 struct sched_group *first = NULL, *last = NULL;
5868 struct sd_data *sdd = sd->private;
5869 const struct cpumask *span = sched_domain_span(sd);
5870 struct cpumask *covered;
5871 int i;
5872
5873 get_group(cpu, sdd, &sd->groups);
5874 atomic_inc(&sd->groups->ref);
5875
5876 if (cpu != cpumask_first(sched_domain_span(sd)))
5877 return 0;
5878
5879 lockdep_assert_held(&sched_domains_mutex);
5880 covered = sched_domains_tmpmask;
5881
5882 cpumask_clear(covered);
5883
5884 for_each_cpu(i, span) {
5885 struct sched_group *sg;
5886 int group = get_group(i, sdd, &sg);
5887 int j;
5888
5889 if (cpumask_test_cpu(i, covered))
5890 continue;
5891
5892 cpumask_clear(sched_group_cpus(sg));
5893 sg->sgp->power = 0;
5894 cpumask_setall(sched_group_mask(sg));
5895
5896 for_each_cpu(j, span) {
5897 if (get_group(j, sdd, NULL) != group)
5898 continue;
5899
5900 cpumask_set_cpu(j, covered);
5901 cpumask_set_cpu(j, sched_group_cpus(sg));
5902 }
5903
5904 if (!first)
5905 first = sg;
5906 if (last)
5907 last->next = sg;
5908 last = sg;
5909 }
5910 last->next = first;
5911
5912 return 0;
5913 }
5914
5915 /*
5916 * Initialize sched groups cpu_power.
5917 *
5918 * cpu_power indicates the capacity of sched group, which is used while
5919 * distributing the load between different sched groups in a sched domain.
5920 * Typically cpu_power for all the groups in a sched domain will be same unless
5921 * there are asymmetries in the topology. If there are asymmetries, group
5922 * having more cpu_power will pickup more load compared to the group having
5923 * less cpu_power.
5924 */
5925 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5926 {
5927 struct sched_group *sg = sd->groups;
5928
5929 WARN_ON(!sd || !sg);
5930
5931 do {
5932 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5933 sg = sg->next;
5934 } while (sg != sd->groups);
5935
5936 if (cpu != group_balance_cpu(sg))
5937 return;
5938
5939 update_group_power(sd, cpu);
5940 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5941 }
5942
5943 int __weak arch_sd_sibling_asym_packing(void)
5944 {
5945 return 0*SD_ASYM_PACKING;
5946 }
5947
5948 /*
5949 * Initializers for schedule domains
5950 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5951 */
5952
5953 #ifdef CONFIG_SCHED_DEBUG
5954 # define SD_INIT_NAME(sd, type) sd->name = #type
5955 #else
5956 # define SD_INIT_NAME(sd, type) do { } while (0)
5957 #endif
5958
5959 #define SD_INIT_FUNC(type) \
5960 static noinline struct sched_domain * \
5961 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5962 { \
5963 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5964 *sd = SD_##type##_INIT; \
5965 SD_INIT_NAME(sd, type); \
5966 sd->private = &tl->data; \
5967 return sd; \
5968 }
5969
5970 SD_INIT_FUNC(CPU)
5971 #ifdef CONFIG_SCHED_SMT
5972 SD_INIT_FUNC(SIBLING)
5973 #endif
5974 #ifdef CONFIG_SCHED_MC
5975 SD_INIT_FUNC(MC)
5976 #endif
5977 #ifdef CONFIG_SCHED_BOOK
5978 SD_INIT_FUNC(BOOK)
5979 #endif
5980
5981 static int default_relax_domain_level = -1;
5982 int sched_domain_level_max;
5983
5984 static int __init setup_relax_domain_level(char *str)
5985 {
5986 if (kstrtoint(str, 0, &default_relax_domain_level))
5987 pr_warn("Unable to set relax_domain_level\n");
5988
5989 return 1;
5990 }
5991 __setup("relax_domain_level=", setup_relax_domain_level);
5992
5993 static void set_domain_attribute(struct sched_domain *sd,
5994 struct sched_domain_attr *attr)
5995 {
5996 int request;
5997
5998 if (!attr || attr->relax_domain_level < 0) {
5999 if (default_relax_domain_level < 0)
6000 return;
6001 else
6002 request = default_relax_domain_level;
6003 } else
6004 request = attr->relax_domain_level;
6005 if (request < sd->level) {
6006 /* turn off idle balance on this domain */
6007 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6008 } else {
6009 /* turn on idle balance on this domain */
6010 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6011 }
6012 }
6013
6014 static void __sdt_free(const struct cpumask *cpu_map);
6015 static int __sdt_alloc(const struct cpumask *cpu_map);
6016
6017 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6018 const struct cpumask *cpu_map)
6019 {
6020 switch (what) {
6021 case sa_rootdomain:
6022 if (!atomic_read(&d->rd->refcount))
6023 free_rootdomain(&d->rd->rcu); /* fall through */
6024 case sa_sd:
6025 free_percpu(d->sd); /* fall through */
6026 case sa_sd_storage:
6027 __sdt_free(cpu_map); /* fall through */
6028 case sa_none:
6029 break;
6030 }
6031 }
6032
6033 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6034 const struct cpumask *cpu_map)
6035 {
6036 memset(d, 0, sizeof(*d));
6037
6038 if (__sdt_alloc(cpu_map))
6039 return sa_sd_storage;
6040 d->sd = alloc_percpu(struct sched_domain *);
6041 if (!d->sd)
6042 return sa_sd_storage;
6043 d->rd = alloc_rootdomain();
6044 if (!d->rd)
6045 return sa_sd;
6046 return sa_rootdomain;
6047 }
6048
6049 /*
6050 * NULL the sd_data elements we've used to build the sched_domain and
6051 * sched_group structure so that the subsequent __free_domain_allocs()
6052 * will not free the data we're using.
6053 */
6054 static void claim_allocations(int cpu, struct sched_domain *sd)
6055 {
6056 struct sd_data *sdd = sd->private;
6057
6058 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6059 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6060
6061 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6062 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6063
6064 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6065 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6066 }
6067
6068 #ifdef CONFIG_SCHED_SMT
6069 static const struct cpumask *cpu_smt_mask(int cpu)
6070 {
6071 return topology_thread_cpumask(cpu);
6072 }
6073 #endif
6074
6075 /*
6076 * Topology list, bottom-up.
6077 */
6078 static struct sched_domain_topology_level default_topology[] = {
6079 #ifdef CONFIG_SCHED_SMT
6080 { sd_init_SIBLING, cpu_smt_mask, },
6081 #endif
6082 #ifdef CONFIG_SCHED_MC
6083 { sd_init_MC, cpu_coregroup_mask, },
6084 #endif
6085 #ifdef CONFIG_SCHED_BOOK
6086 { sd_init_BOOK, cpu_book_mask, },
6087 #endif
6088 { sd_init_CPU, cpu_cpu_mask, },
6089 { NULL, },
6090 };
6091
6092 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6093
6094 #ifdef CONFIG_NUMA
6095
6096 static int sched_domains_numa_levels;
6097 static int *sched_domains_numa_distance;
6098 static struct cpumask ***sched_domains_numa_masks;
6099 static int sched_domains_curr_level;
6100
6101 static inline int sd_local_flags(int level)
6102 {
6103 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6104 return 0;
6105
6106 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6107 }
6108
6109 static struct sched_domain *
6110 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6111 {
6112 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6113 int level = tl->numa_level;
6114 int sd_weight = cpumask_weight(
6115 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6116
6117 *sd = (struct sched_domain){
6118 .min_interval = sd_weight,
6119 .max_interval = 2*sd_weight,
6120 .busy_factor = 32,
6121 .imbalance_pct = 125,
6122 .cache_nice_tries = 2,
6123 .busy_idx = 3,
6124 .idle_idx = 2,
6125 .newidle_idx = 0,
6126 .wake_idx = 0,
6127 .forkexec_idx = 0,
6128
6129 .flags = 1*SD_LOAD_BALANCE
6130 | 1*SD_BALANCE_NEWIDLE
6131 | 0*SD_BALANCE_EXEC
6132 | 0*SD_BALANCE_FORK
6133 | 0*SD_BALANCE_WAKE
6134 | 0*SD_WAKE_AFFINE
6135 | 0*SD_SHARE_CPUPOWER
6136 | 0*SD_SHARE_PKG_RESOURCES
6137 | 1*SD_SERIALIZE
6138 | 0*SD_PREFER_SIBLING
6139 | sd_local_flags(level)
6140 ,
6141 .last_balance = jiffies,
6142 .balance_interval = sd_weight,
6143 };
6144 SD_INIT_NAME(sd, NUMA);
6145 sd->private = &tl->data;
6146
6147 /*
6148 * Ugly hack to pass state to sd_numa_mask()...
6149 */
6150 sched_domains_curr_level = tl->numa_level;
6151
6152 return sd;
6153 }
6154
6155 static const struct cpumask *sd_numa_mask(int cpu)
6156 {
6157 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6158 }
6159
6160 static void sched_numa_warn(const char *str)
6161 {
6162 static int done = false;
6163 int i,j;
6164
6165 if (done)
6166 return;
6167
6168 done = true;
6169
6170 printk(KERN_WARNING "ERROR: %s\n\n", str);
6171
6172 for (i = 0; i < nr_node_ids; i++) {
6173 printk(KERN_WARNING " ");
6174 for (j = 0; j < nr_node_ids; j++)
6175 printk(KERN_CONT "%02d ", node_distance(i,j));
6176 printk(KERN_CONT "\n");
6177 }
6178 printk(KERN_WARNING "\n");
6179 }
6180
6181 static bool find_numa_distance(int distance)
6182 {
6183 int i;
6184
6185 if (distance == node_distance(0, 0))
6186 return true;
6187
6188 for (i = 0; i < sched_domains_numa_levels; i++) {
6189 if (sched_domains_numa_distance[i] == distance)
6190 return true;
6191 }
6192
6193 return false;
6194 }
6195
6196 static void sched_init_numa(void)
6197 {
6198 int next_distance, curr_distance = node_distance(0, 0);
6199 struct sched_domain_topology_level *tl;
6200 int level = 0;
6201 int i, j, k;
6202
6203 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6204 if (!sched_domains_numa_distance)
6205 return;
6206
6207 /*
6208 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6209 * unique distances in the node_distance() table.
6210 *
6211 * Assumes node_distance(0,j) includes all distances in
6212 * node_distance(i,j) in order to avoid cubic time.
6213 */
6214 next_distance = curr_distance;
6215 for (i = 0; i < nr_node_ids; i++) {
6216 for (j = 0; j < nr_node_ids; j++) {
6217 for (k = 0; k < nr_node_ids; k++) {
6218 int distance = node_distance(i, k);
6219
6220 if (distance > curr_distance &&
6221 (distance < next_distance ||
6222 next_distance == curr_distance))
6223 next_distance = distance;
6224
6225 /*
6226 * While not a strong assumption it would be nice to know
6227 * about cases where if node A is connected to B, B is not
6228 * equally connected to A.
6229 */
6230 if (sched_debug() && node_distance(k, i) != distance)
6231 sched_numa_warn("Node-distance not symmetric");
6232
6233 if (sched_debug() && i && !find_numa_distance(distance))
6234 sched_numa_warn("Node-0 not representative");
6235 }
6236 if (next_distance != curr_distance) {
6237 sched_domains_numa_distance[level++] = next_distance;
6238 sched_domains_numa_levels = level;
6239 curr_distance = next_distance;
6240 } else break;
6241 }
6242
6243 /*
6244 * In case of sched_debug() we verify the above assumption.
6245 */
6246 if (!sched_debug())
6247 break;
6248 }
6249 /*
6250 * 'level' contains the number of unique distances, excluding the
6251 * identity distance node_distance(i,i).
6252 *
6253 * The sched_domains_nume_distance[] array includes the actual distance
6254 * numbers.
6255 */
6256
6257 /*
6258 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6259 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6260 * the array will contain less then 'level' members. This could be
6261 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6262 * in other functions.
6263 *
6264 * We reset it to 'level' at the end of this function.
6265 */
6266 sched_domains_numa_levels = 0;
6267
6268 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6269 if (!sched_domains_numa_masks)
6270 return;
6271
6272 /*
6273 * Now for each level, construct a mask per node which contains all
6274 * cpus of nodes that are that many hops away from us.
6275 */
6276 for (i = 0; i < level; i++) {
6277 sched_domains_numa_masks[i] =
6278 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6279 if (!sched_domains_numa_masks[i])
6280 return;
6281
6282 for (j = 0; j < nr_node_ids; j++) {
6283 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6284 if (!mask)
6285 return;
6286
6287 sched_domains_numa_masks[i][j] = mask;
6288
6289 for (k = 0; k < nr_node_ids; k++) {
6290 if (node_distance(j, k) > sched_domains_numa_distance[i])
6291 continue;
6292
6293 cpumask_or(mask, mask, cpumask_of_node(k));
6294 }
6295 }
6296 }
6297
6298 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6299 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6300 if (!tl)
6301 return;
6302
6303 /*
6304 * Copy the default topology bits..
6305 */
6306 for (i = 0; default_topology[i].init; i++)
6307 tl[i] = default_topology[i];
6308
6309 /*
6310 * .. and append 'j' levels of NUMA goodness.
6311 */
6312 for (j = 0; j < level; i++, j++) {
6313 tl[i] = (struct sched_domain_topology_level){
6314 .init = sd_numa_init,
6315 .mask = sd_numa_mask,
6316 .flags = SDTL_OVERLAP,
6317 .numa_level = j,
6318 };
6319 }
6320
6321 sched_domain_topology = tl;
6322
6323 sched_domains_numa_levels = level;
6324 }
6325
6326 static void sched_domains_numa_masks_set(int cpu)
6327 {
6328 int i, j;
6329 int node = cpu_to_node(cpu);
6330
6331 for (i = 0; i < sched_domains_numa_levels; i++) {
6332 for (j = 0; j < nr_node_ids; j++) {
6333 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6334 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6335 }
6336 }
6337 }
6338
6339 static void sched_domains_numa_masks_clear(int cpu)
6340 {
6341 int i, j;
6342 for (i = 0; i < sched_domains_numa_levels; i++) {
6343 for (j = 0; j < nr_node_ids; j++)
6344 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6345 }
6346 }
6347
6348 /*
6349 * Update sched_domains_numa_masks[level][node] array when new cpus
6350 * are onlined.
6351 */
6352 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6353 unsigned long action,
6354 void *hcpu)
6355 {
6356 int cpu = (long)hcpu;
6357
6358 switch (action & ~CPU_TASKS_FROZEN) {
6359 case CPU_ONLINE:
6360 sched_domains_numa_masks_set(cpu);
6361 break;
6362
6363 case CPU_DEAD:
6364 sched_domains_numa_masks_clear(cpu);
6365 break;
6366
6367 default:
6368 return NOTIFY_DONE;
6369 }
6370
6371 return NOTIFY_OK;
6372 }
6373 #else
6374 static inline void sched_init_numa(void)
6375 {
6376 }
6377
6378 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6379 unsigned long action,
6380 void *hcpu)
6381 {
6382 return 0;
6383 }
6384 #endif /* CONFIG_NUMA */
6385
6386 static int __sdt_alloc(const struct cpumask *cpu_map)
6387 {
6388 struct sched_domain_topology_level *tl;
6389 int j;
6390
6391 for (tl = sched_domain_topology; tl->init; tl++) {
6392 struct sd_data *sdd = &tl->data;
6393
6394 sdd->sd = alloc_percpu(struct sched_domain *);
6395 if (!sdd->sd)
6396 return -ENOMEM;
6397
6398 sdd->sg = alloc_percpu(struct sched_group *);
6399 if (!sdd->sg)
6400 return -ENOMEM;
6401
6402 sdd->sgp = alloc_percpu(struct sched_group_power *);
6403 if (!sdd->sgp)
6404 return -ENOMEM;
6405
6406 for_each_cpu(j, cpu_map) {
6407 struct sched_domain *sd;
6408 struct sched_group *sg;
6409 struct sched_group_power *sgp;
6410
6411 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6412 GFP_KERNEL, cpu_to_node(j));
6413 if (!sd)
6414 return -ENOMEM;
6415
6416 *per_cpu_ptr(sdd->sd, j) = sd;
6417
6418 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6419 GFP_KERNEL, cpu_to_node(j));
6420 if (!sg)
6421 return -ENOMEM;
6422
6423 sg->next = sg;
6424
6425 *per_cpu_ptr(sdd->sg, j) = sg;
6426
6427 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6428 GFP_KERNEL, cpu_to_node(j));
6429 if (!sgp)
6430 return -ENOMEM;
6431
6432 *per_cpu_ptr(sdd->sgp, j) = sgp;
6433 }
6434 }
6435
6436 return 0;
6437 }
6438
6439 static void __sdt_free(const struct cpumask *cpu_map)
6440 {
6441 struct sched_domain_topology_level *tl;
6442 int j;
6443
6444 for (tl = sched_domain_topology; tl->init; tl++) {
6445 struct sd_data *sdd = &tl->data;
6446
6447 for_each_cpu(j, cpu_map) {
6448 struct sched_domain *sd;
6449
6450 if (sdd->sd) {
6451 sd = *per_cpu_ptr(sdd->sd, j);
6452 if (sd && (sd->flags & SD_OVERLAP))
6453 free_sched_groups(sd->groups, 0);
6454 kfree(*per_cpu_ptr(sdd->sd, j));
6455 }
6456
6457 if (sdd->sg)
6458 kfree(*per_cpu_ptr(sdd->sg, j));
6459 if (sdd->sgp)
6460 kfree(*per_cpu_ptr(sdd->sgp, j));
6461 }
6462 free_percpu(sdd->sd);
6463 sdd->sd = NULL;
6464 free_percpu(sdd->sg);
6465 sdd->sg = NULL;
6466 free_percpu(sdd->sgp);
6467 sdd->sgp = NULL;
6468 }
6469 }
6470
6471 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6472 struct s_data *d, const struct cpumask *cpu_map,
6473 struct sched_domain_attr *attr, struct sched_domain *child,
6474 int cpu)
6475 {
6476 struct sched_domain *sd = tl->init(tl, cpu);
6477 if (!sd)
6478 return child;
6479
6480 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6481 if (child) {
6482 sd->level = child->level + 1;
6483 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6484 child->parent = sd;
6485 }
6486 sd->child = child;
6487 set_domain_attribute(sd, attr);
6488
6489 return sd;
6490 }
6491
6492 /*
6493 * Build sched domains for a given set of cpus and attach the sched domains
6494 * to the individual cpus
6495 */
6496 static int build_sched_domains(const struct cpumask *cpu_map,
6497 struct sched_domain_attr *attr)
6498 {
6499 enum s_alloc alloc_state = sa_none;
6500 struct sched_domain *sd;
6501 struct s_data d;
6502 int i, ret = -ENOMEM;
6503
6504 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6505 if (alloc_state != sa_rootdomain)
6506 goto error;
6507
6508 /* Set up domains for cpus specified by the cpu_map. */
6509 for_each_cpu(i, cpu_map) {
6510 struct sched_domain_topology_level *tl;
6511
6512 sd = NULL;
6513 for (tl = sched_domain_topology; tl->init; tl++) {
6514 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6515 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6516 sd->flags |= SD_OVERLAP;
6517 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6518 break;
6519 }
6520
6521 while (sd->child)
6522 sd = sd->child;
6523
6524 *per_cpu_ptr(d.sd, i) = sd;
6525 }
6526
6527 /* Build the groups for the domains */
6528 for_each_cpu(i, cpu_map) {
6529 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6530 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6531 if (sd->flags & SD_OVERLAP) {
6532 if (build_overlap_sched_groups(sd, i))
6533 goto error;
6534 } else {
6535 if (build_sched_groups(sd, i))
6536 goto error;
6537 }
6538 }
6539 }
6540
6541 /* Calculate CPU power for physical packages and nodes */
6542 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6543 if (!cpumask_test_cpu(i, cpu_map))
6544 continue;
6545
6546 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6547 claim_allocations(i, sd);
6548 init_sched_groups_power(i, sd);
6549 }
6550 }
6551
6552 /* Attach the domains */
6553 rcu_read_lock();
6554 for_each_cpu(i, cpu_map) {
6555 sd = *per_cpu_ptr(d.sd, i);
6556 cpu_attach_domain(sd, d.rd, i);
6557 }
6558 rcu_read_unlock();
6559
6560 ret = 0;
6561 error:
6562 __free_domain_allocs(&d, alloc_state, cpu_map);
6563 return ret;
6564 }
6565
6566 static cpumask_var_t *doms_cur; /* current sched domains */
6567 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6568 static struct sched_domain_attr *dattr_cur;
6569 /* attribues of custom domains in 'doms_cur' */
6570
6571 /*
6572 * Special case: If a kmalloc of a doms_cur partition (array of
6573 * cpumask) fails, then fallback to a single sched domain,
6574 * as determined by the single cpumask fallback_doms.
6575 */
6576 static cpumask_var_t fallback_doms;
6577
6578 /*
6579 * arch_update_cpu_topology lets virtualized architectures update the
6580 * cpu core maps. It is supposed to return 1 if the topology changed
6581 * or 0 if it stayed the same.
6582 */
6583 int __attribute__((weak)) arch_update_cpu_topology(void)
6584 {
6585 return 0;
6586 }
6587
6588 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6589 {
6590 int i;
6591 cpumask_var_t *doms;
6592
6593 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6594 if (!doms)
6595 return NULL;
6596 for (i = 0; i < ndoms; i++) {
6597 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6598 free_sched_domains(doms, i);
6599 return NULL;
6600 }
6601 }
6602 return doms;
6603 }
6604
6605 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6606 {
6607 unsigned int i;
6608 for (i = 0; i < ndoms; i++)
6609 free_cpumask_var(doms[i]);
6610 kfree(doms);
6611 }
6612
6613 /*
6614 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6615 * For now this just excludes isolated cpus, but could be used to
6616 * exclude other special cases in the future.
6617 */
6618 static int init_sched_domains(const struct cpumask *cpu_map)
6619 {
6620 int err;
6621
6622 arch_update_cpu_topology();
6623 ndoms_cur = 1;
6624 doms_cur = alloc_sched_domains(ndoms_cur);
6625 if (!doms_cur)
6626 doms_cur = &fallback_doms;
6627 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6628 err = build_sched_domains(doms_cur[0], NULL);
6629 register_sched_domain_sysctl();
6630
6631 return err;
6632 }
6633
6634 /*
6635 * Detach sched domains from a group of cpus specified in cpu_map
6636 * These cpus will now be attached to the NULL domain
6637 */
6638 static void detach_destroy_domains(const struct cpumask *cpu_map)
6639 {
6640 int i;
6641
6642 rcu_read_lock();
6643 for_each_cpu(i, cpu_map)
6644 cpu_attach_domain(NULL, &def_root_domain, i);
6645 rcu_read_unlock();
6646 }
6647
6648 /* handle null as "default" */
6649 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6650 struct sched_domain_attr *new, int idx_new)
6651 {
6652 struct sched_domain_attr tmp;
6653
6654 /* fast path */
6655 if (!new && !cur)
6656 return 1;
6657
6658 tmp = SD_ATTR_INIT;
6659 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6660 new ? (new + idx_new) : &tmp,
6661 sizeof(struct sched_domain_attr));
6662 }
6663
6664 /*
6665 * Partition sched domains as specified by the 'ndoms_new'
6666 * cpumasks in the array doms_new[] of cpumasks. This compares
6667 * doms_new[] to the current sched domain partitioning, doms_cur[].
6668 * It destroys each deleted domain and builds each new domain.
6669 *
6670 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6671 * The masks don't intersect (don't overlap.) We should setup one
6672 * sched domain for each mask. CPUs not in any of the cpumasks will
6673 * not be load balanced. If the same cpumask appears both in the
6674 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6675 * it as it is.
6676 *
6677 * The passed in 'doms_new' should be allocated using
6678 * alloc_sched_domains. This routine takes ownership of it and will
6679 * free_sched_domains it when done with it. If the caller failed the
6680 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6681 * and partition_sched_domains() will fallback to the single partition
6682 * 'fallback_doms', it also forces the domains to be rebuilt.
6683 *
6684 * If doms_new == NULL it will be replaced with cpu_online_mask.
6685 * ndoms_new == 0 is a special case for destroying existing domains,
6686 * and it will not create the default domain.
6687 *
6688 * Call with hotplug lock held
6689 */
6690 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6691 struct sched_domain_attr *dattr_new)
6692 {
6693 int i, j, n;
6694 int new_topology;
6695
6696 mutex_lock(&sched_domains_mutex);
6697
6698 /* always unregister in case we don't destroy any domains */
6699 unregister_sched_domain_sysctl();
6700
6701 /* Let architecture update cpu core mappings. */
6702 new_topology = arch_update_cpu_topology();
6703
6704 n = doms_new ? ndoms_new : 0;
6705
6706 /* Destroy deleted domains */
6707 for (i = 0; i < ndoms_cur; i++) {
6708 for (j = 0; j < n && !new_topology; j++) {
6709 if (cpumask_equal(doms_cur[i], doms_new[j])
6710 && dattrs_equal(dattr_cur, i, dattr_new, j))
6711 goto match1;
6712 }
6713 /* no match - a current sched domain not in new doms_new[] */
6714 detach_destroy_domains(doms_cur[i]);
6715 match1:
6716 ;
6717 }
6718
6719 if (doms_new == NULL) {
6720 ndoms_cur = 0;
6721 doms_new = &fallback_doms;
6722 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6723 WARN_ON_ONCE(dattr_new);
6724 }
6725
6726 /* Build new domains */
6727 for (i = 0; i < ndoms_new; i++) {
6728 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6729 if (cpumask_equal(doms_new[i], doms_cur[j])
6730 && dattrs_equal(dattr_new, i, dattr_cur, j))
6731 goto match2;
6732 }
6733 /* no match - add a new doms_new */
6734 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6735 match2:
6736 ;
6737 }
6738
6739 /* Remember the new sched domains */
6740 if (doms_cur != &fallback_doms)
6741 free_sched_domains(doms_cur, ndoms_cur);
6742 kfree(dattr_cur); /* kfree(NULL) is safe */
6743 doms_cur = doms_new;
6744 dattr_cur = dattr_new;
6745 ndoms_cur = ndoms_new;
6746
6747 register_sched_domain_sysctl();
6748
6749 mutex_unlock(&sched_domains_mutex);
6750 }
6751
6752 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6753
6754 /*
6755 * Update cpusets according to cpu_active mask. If cpusets are
6756 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6757 * around partition_sched_domains().
6758 *
6759 * If we come here as part of a suspend/resume, don't touch cpusets because we
6760 * want to restore it back to its original state upon resume anyway.
6761 */
6762 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6763 void *hcpu)
6764 {
6765 switch (action) {
6766 case CPU_ONLINE_FROZEN:
6767 case CPU_DOWN_FAILED_FROZEN:
6768
6769 /*
6770 * num_cpus_frozen tracks how many CPUs are involved in suspend
6771 * resume sequence. As long as this is not the last online
6772 * operation in the resume sequence, just build a single sched
6773 * domain, ignoring cpusets.
6774 */
6775 num_cpus_frozen--;
6776 if (likely(num_cpus_frozen)) {
6777 partition_sched_domains(1, NULL, NULL);
6778 break;
6779 }
6780
6781 /*
6782 * This is the last CPU online operation. So fall through and
6783 * restore the original sched domains by considering the
6784 * cpuset configurations.
6785 */
6786
6787 case CPU_ONLINE:
6788 case CPU_DOWN_FAILED:
6789 cpuset_update_active_cpus(true);
6790 break;
6791 default:
6792 return NOTIFY_DONE;
6793 }
6794 return NOTIFY_OK;
6795 }
6796
6797 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6798 void *hcpu)
6799 {
6800 switch (action) {
6801 case CPU_DOWN_PREPARE:
6802 cpuset_update_active_cpus(false);
6803 break;
6804 case CPU_DOWN_PREPARE_FROZEN:
6805 num_cpus_frozen++;
6806 partition_sched_domains(1, NULL, NULL);
6807 break;
6808 default:
6809 return NOTIFY_DONE;
6810 }
6811 return NOTIFY_OK;
6812 }
6813
6814 void __init sched_init_smp(void)
6815 {
6816 cpumask_var_t non_isolated_cpus;
6817
6818 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6819 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6820
6821 sched_init_numa();
6822
6823 get_online_cpus();
6824 mutex_lock(&sched_domains_mutex);
6825 init_sched_domains(cpu_active_mask);
6826 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6827 if (cpumask_empty(non_isolated_cpus))
6828 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6829 mutex_unlock(&sched_domains_mutex);
6830 put_online_cpus();
6831
6832 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6833 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6834 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6835
6836 /* RT runtime code needs to handle some hotplug events */
6837 hotcpu_notifier(update_runtime, 0);
6838
6839 init_hrtick();
6840
6841 /* Move init over to a non-isolated CPU */
6842 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6843 BUG();
6844 sched_init_granularity();
6845 free_cpumask_var(non_isolated_cpus);
6846
6847 init_sched_rt_class();
6848 }
6849 #else
6850 void __init sched_init_smp(void)
6851 {
6852 sched_init_granularity();
6853 }
6854 #endif /* CONFIG_SMP */
6855
6856 const_debug unsigned int sysctl_timer_migration = 1;
6857
6858 int in_sched_functions(unsigned long addr)
6859 {
6860 return in_lock_functions(addr) ||
6861 (addr >= (unsigned long)__sched_text_start
6862 && addr < (unsigned long)__sched_text_end);
6863 }
6864
6865 #ifdef CONFIG_CGROUP_SCHED
6866 struct task_group root_task_group;
6867 LIST_HEAD(task_groups);
6868 #endif
6869
6870 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6871
6872 void __init sched_init(void)
6873 {
6874 int i, j;
6875 unsigned long alloc_size = 0, ptr;
6876
6877 #ifdef CONFIG_FAIR_GROUP_SCHED
6878 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6879 #endif
6880 #ifdef CONFIG_RT_GROUP_SCHED
6881 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6882 #endif
6883 #ifdef CONFIG_CPUMASK_OFFSTACK
6884 alloc_size += num_possible_cpus() * cpumask_size();
6885 #endif
6886 if (alloc_size) {
6887 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6888
6889 #ifdef CONFIG_FAIR_GROUP_SCHED
6890 root_task_group.se = (struct sched_entity **)ptr;
6891 ptr += nr_cpu_ids * sizeof(void **);
6892
6893 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6894 ptr += nr_cpu_ids * sizeof(void **);
6895
6896 #endif /* CONFIG_FAIR_GROUP_SCHED */
6897 #ifdef CONFIG_RT_GROUP_SCHED
6898 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6899 ptr += nr_cpu_ids * sizeof(void **);
6900
6901 root_task_group.rt_rq = (struct rt_rq **)ptr;
6902 ptr += nr_cpu_ids * sizeof(void **);
6903
6904 #endif /* CONFIG_RT_GROUP_SCHED */
6905 #ifdef CONFIG_CPUMASK_OFFSTACK
6906 for_each_possible_cpu(i) {
6907 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6908 ptr += cpumask_size();
6909 }
6910 #endif /* CONFIG_CPUMASK_OFFSTACK */
6911 }
6912
6913 #ifdef CONFIG_SMP
6914 init_defrootdomain();
6915 #endif
6916
6917 init_rt_bandwidth(&def_rt_bandwidth,
6918 global_rt_period(), global_rt_runtime());
6919
6920 #ifdef CONFIG_RT_GROUP_SCHED
6921 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6922 global_rt_period(), global_rt_runtime());
6923 #endif /* CONFIG_RT_GROUP_SCHED */
6924
6925 #ifdef CONFIG_CGROUP_SCHED
6926 list_add(&root_task_group.list, &task_groups);
6927 INIT_LIST_HEAD(&root_task_group.children);
6928 INIT_LIST_HEAD(&root_task_group.siblings);
6929 autogroup_init(&init_task);
6930
6931 #endif /* CONFIG_CGROUP_SCHED */
6932
6933 #ifdef CONFIG_CGROUP_CPUACCT
6934 root_cpuacct.cpustat = &kernel_cpustat;
6935 root_cpuacct.cpuusage = alloc_percpu(u64);
6936 /* Too early, not expected to fail */
6937 BUG_ON(!root_cpuacct.cpuusage);
6938 #endif
6939 for_each_possible_cpu(i) {
6940 struct rq *rq;
6941
6942 rq = cpu_rq(i);
6943 raw_spin_lock_init(&rq->lock);
6944 rq->nr_running = 0;
6945 rq->calc_load_active = 0;
6946 rq->calc_load_update = jiffies + LOAD_FREQ;
6947 init_cfs_rq(&rq->cfs);
6948 init_rt_rq(&rq->rt, rq);
6949 #ifdef CONFIG_FAIR_GROUP_SCHED
6950 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6951 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6952 /*
6953 * How much cpu bandwidth does root_task_group get?
6954 *
6955 * In case of task-groups formed thr' the cgroup filesystem, it
6956 * gets 100% of the cpu resources in the system. This overall
6957 * system cpu resource is divided among the tasks of
6958 * root_task_group and its child task-groups in a fair manner,
6959 * based on each entity's (task or task-group's) weight
6960 * (se->load.weight).
6961 *
6962 * In other words, if root_task_group has 10 tasks of weight
6963 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6964 * then A0's share of the cpu resource is:
6965 *
6966 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6967 *
6968 * We achieve this by letting root_task_group's tasks sit
6969 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6970 */
6971 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6972 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6973 #endif /* CONFIG_FAIR_GROUP_SCHED */
6974
6975 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6976 #ifdef CONFIG_RT_GROUP_SCHED
6977 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6978 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6979 #endif
6980
6981 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6982 rq->cpu_load[j] = 0;
6983
6984 rq->last_load_update_tick = jiffies;
6985
6986 #ifdef CONFIG_SMP
6987 rq->sd = NULL;
6988 rq->rd = NULL;
6989 rq->cpu_power = SCHED_POWER_SCALE;
6990 rq->post_schedule = 0;
6991 rq->active_balance = 0;
6992 rq->next_balance = jiffies;
6993 rq->push_cpu = 0;
6994 rq->cpu = i;
6995 rq->online = 0;
6996 rq->idle_stamp = 0;
6997 rq->avg_idle = 2*sysctl_sched_migration_cost;
6998
6999 INIT_LIST_HEAD(&rq->cfs_tasks);
7000
7001 rq_attach_root(rq, &def_root_domain);
7002 #ifdef CONFIG_NO_HZ
7003 rq->nohz_flags = 0;
7004 #endif
7005 #endif
7006 init_rq_hrtick(rq);
7007 atomic_set(&rq->nr_iowait, 0);
7008 }
7009
7010 set_load_weight(&init_task);
7011
7012 #ifdef CONFIG_PREEMPT_NOTIFIERS
7013 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7014 #endif
7015
7016 #ifdef CONFIG_RT_MUTEXES
7017 plist_head_init(&init_task.pi_waiters);
7018 #endif
7019
7020 /*
7021 * The boot idle thread does lazy MMU switching as well:
7022 */
7023 atomic_inc(&init_mm.mm_count);
7024 enter_lazy_tlb(&init_mm, current);
7025
7026 /*
7027 * Make us the idle thread. Technically, schedule() should not be
7028 * called from this thread, however somewhere below it might be,
7029 * but because we are the idle thread, we just pick up running again
7030 * when this runqueue becomes "idle".
7031 */
7032 init_idle(current, smp_processor_id());
7033
7034 calc_load_update = jiffies + LOAD_FREQ;
7035
7036 /*
7037 * During early bootup we pretend to be a normal task:
7038 */
7039 current->sched_class = &fair_sched_class;
7040
7041 #ifdef CONFIG_SMP
7042 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7043 /* May be allocated at isolcpus cmdline parse time */
7044 if (cpu_isolated_map == NULL)
7045 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7046 idle_thread_set_boot_cpu();
7047 #endif
7048 init_sched_fair_class();
7049
7050 scheduler_running = 1;
7051 }
7052
7053 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7054 static inline int preempt_count_equals(int preempt_offset)
7055 {
7056 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7057
7058 return (nested == preempt_offset);
7059 }
7060
7061 void __might_sleep(const char *file, int line, int preempt_offset)
7062 {
7063 static unsigned long prev_jiffy; /* ratelimiting */
7064
7065 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7066 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7067 system_state != SYSTEM_RUNNING || oops_in_progress)
7068 return;
7069 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7070 return;
7071 prev_jiffy = jiffies;
7072
7073 printk(KERN_ERR
7074 "BUG: sleeping function called from invalid context at %s:%d\n",
7075 file, line);
7076 printk(KERN_ERR
7077 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7078 in_atomic(), irqs_disabled(),
7079 current->pid, current->comm);
7080
7081 debug_show_held_locks(current);
7082 if (irqs_disabled())
7083 print_irqtrace_events(current);
7084 dump_stack();
7085 }
7086 EXPORT_SYMBOL(__might_sleep);
7087 #endif
7088
7089 #ifdef CONFIG_MAGIC_SYSRQ
7090 static void normalize_task(struct rq *rq, struct task_struct *p)
7091 {
7092 const struct sched_class *prev_class = p->sched_class;
7093 int old_prio = p->prio;
7094 int on_rq;
7095
7096 on_rq = p->on_rq;
7097 if (on_rq)
7098 dequeue_task(rq, p, 0);
7099 __setscheduler(rq, p, SCHED_NORMAL, 0);
7100 if (on_rq) {
7101 enqueue_task(rq, p, 0);
7102 resched_task(rq->curr);
7103 }
7104
7105 check_class_changed(rq, p, prev_class, old_prio);
7106 }
7107
7108 void normalize_rt_tasks(void)
7109 {
7110 struct task_struct *g, *p;
7111 unsigned long flags;
7112 struct rq *rq;
7113
7114 read_lock_irqsave(&tasklist_lock, flags);
7115 do_each_thread(g, p) {
7116 /*
7117 * Only normalize user tasks:
7118 */
7119 if (!p->mm)
7120 continue;
7121
7122 p->se.exec_start = 0;
7123 #ifdef CONFIG_SCHEDSTATS
7124 p->se.statistics.wait_start = 0;
7125 p->se.statistics.sleep_start = 0;
7126 p->se.statistics.block_start = 0;
7127 #endif
7128
7129 if (!rt_task(p)) {
7130 /*
7131 * Renice negative nice level userspace
7132 * tasks back to 0:
7133 */
7134 if (TASK_NICE(p) < 0 && p->mm)
7135 set_user_nice(p, 0);
7136 continue;
7137 }
7138
7139 raw_spin_lock(&p->pi_lock);
7140 rq = __task_rq_lock(p);
7141
7142 normalize_task(rq, p);
7143
7144 __task_rq_unlock(rq);
7145 raw_spin_unlock(&p->pi_lock);
7146 } while_each_thread(g, p);
7147
7148 read_unlock_irqrestore(&tasklist_lock, flags);
7149 }
7150
7151 #endif /* CONFIG_MAGIC_SYSRQ */
7152
7153 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7154 /*
7155 * These functions are only useful for the IA64 MCA handling, or kdb.
7156 *
7157 * They can only be called when the whole system has been
7158 * stopped - every CPU needs to be quiescent, and no scheduling
7159 * activity can take place. Using them for anything else would
7160 * be a serious bug, and as a result, they aren't even visible
7161 * under any other configuration.
7162 */
7163
7164 /**
7165 * curr_task - return the current task for a given cpu.
7166 * @cpu: the processor in question.
7167 *
7168 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7169 */
7170 struct task_struct *curr_task(int cpu)
7171 {
7172 return cpu_curr(cpu);
7173 }
7174
7175 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7176
7177 #ifdef CONFIG_IA64
7178 /**
7179 * set_curr_task - set the current task for a given cpu.
7180 * @cpu: the processor in question.
7181 * @p: the task pointer to set.
7182 *
7183 * Description: This function must only be used when non-maskable interrupts
7184 * are serviced on a separate stack. It allows the architecture to switch the
7185 * notion of the current task on a cpu in a non-blocking manner. This function
7186 * must be called with all CPU's synchronized, and interrupts disabled, the
7187 * and caller must save the original value of the current task (see
7188 * curr_task() above) and restore that value before reenabling interrupts and
7189 * re-starting the system.
7190 *
7191 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7192 */
7193 void set_curr_task(int cpu, struct task_struct *p)
7194 {
7195 cpu_curr(cpu) = p;
7196 }
7197
7198 #endif
7199
7200 #ifdef CONFIG_CGROUP_SCHED
7201 /* task_group_lock serializes the addition/removal of task groups */
7202 static DEFINE_SPINLOCK(task_group_lock);
7203
7204 static void free_sched_group(struct task_group *tg)
7205 {
7206 free_fair_sched_group(tg);
7207 free_rt_sched_group(tg);
7208 autogroup_free(tg);
7209 kfree(tg);
7210 }
7211
7212 /* allocate runqueue etc for a new task group */
7213 struct task_group *sched_create_group(struct task_group *parent)
7214 {
7215 struct task_group *tg;
7216
7217 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7218 if (!tg)
7219 return ERR_PTR(-ENOMEM);
7220
7221 if (!alloc_fair_sched_group(tg, parent))
7222 goto err;
7223
7224 if (!alloc_rt_sched_group(tg, parent))
7225 goto err;
7226
7227 return tg;
7228
7229 err:
7230 free_sched_group(tg);
7231 return ERR_PTR(-ENOMEM);
7232 }
7233
7234 void sched_online_group(struct task_group *tg, struct task_group *parent)
7235 {
7236 unsigned long flags;
7237
7238 spin_lock_irqsave(&task_group_lock, flags);
7239 list_add_rcu(&tg->list, &task_groups);
7240
7241 WARN_ON(!parent); /* root should already exist */
7242
7243 tg->parent = parent;
7244 INIT_LIST_HEAD(&tg->children);
7245 list_add_rcu(&tg->siblings, &parent->children);
7246 spin_unlock_irqrestore(&task_group_lock, flags);
7247 }
7248
7249 /* rcu callback to free various structures associated with a task group */
7250 static void free_sched_group_rcu(struct rcu_head *rhp)
7251 {
7252 /* now it should be safe to free those cfs_rqs */
7253 free_sched_group(container_of(rhp, struct task_group, rcu));
7254 }
7255
7256 /* Destroy runqueue etc associated with a task group */
7257 void sched_destroy_group(struct task_group *tg)
7258 {
7259 /* wait for possible concurrent references to cfs_rqs complete */
7260 call_rcu(&tg->rcu, free_sched_group_rcu);
7261 }
7262
7263 void sched_offline_group(struct task_group *tg)
7264 {
7265 unsigned long flags;
7266 int i;
7267
7268 /* end participation in shares distribution */
7269 for_each_possible_cpu(i)
7270 unregister_fair_sched_group(tg, i);
7271
7272 spin_lock_irqsave(&task_group_lock, flags);
7273 list_del_rcu(&tg->list);
7274 list_del_rcu(&tg->siblings);
7275 spin_unlock_irqrestore(&task_group_lock, flags);
7276 }
7277
7278 /* change task's runqueue when it moves between groups.
7279 * The caller of this function should have put the task in its new group
7280 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7281 * reflect its new group.
7282 */
7283 void sched_move_task(struct task_struct *tsk)
7284 {
7285 struct task_group *tg;
7286 int on_rq, running;
7287 unsigned long flags;
7288 struct rq *rq;
7289
7290 rq = task_rq_lock(tsk, &flags);
7291
7292 running = task_current(rq, tsk);
7293 on_rq = tsk->on_rq;
7294
7295 if (on_rq)
7296 dequeue_task(rq, tsk, 0);
7297 if (unlikely(running))
7298 tsk->sched_class->put_prev_task(rq, tsk);
7299
7300 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7301 lockdep_is_held(&tsk->sighand->siglock)),
7302 struct task_group, css);
7303 tg = autogroup_task_group(tsk, tg);
7304 tsk->sched_task_group = tg;
7305
7306 #ifdef CONFIG_FAIR_GROUP_SCHED
7307 if (tsk->sched_class->task_move_group)
7308 tsk->sched_class->task_move_group(tsk, on_rq);
7309 else
7310 #endif
7311 set_task_rq(tsk, task_cpu(tsk));
7312
7313 if (unlikely(running))
7314 tsk->sched_class->set_curr_task(rq);
7315 if (on_rq)
7316 enqueue_task(rq, tsk, 0);
7317
7318 task_rq_unlock(rq, tsk, &flags);
7319 }
7320 #endif /* CONFIG_CGROUP_SCHED */
7321
7322 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7323 static unsigned long to_ratio(u64 period, u64 runtime)
7324 {
7325 if (runtime == RUNTIME_INF)
7326 return 1ULL << 20;
7327
7328 return div64_u64(runtime << 20, period);
7329 }
7330 #endif
7331
7332 #ifdef CONFIG_RT_GROUP_SCHED
7333 /*
7334 * Ensure that the real time constraints are schedulable.
7335 */
7336 static DEFINE_MUTEX(rt_constraints_mutex);
7337
7338 /* Must be called with tasklist_lock held */
7339 static inline int tg_has_rt_tasks(struct task_group *tg)
7340 {
7341 struct task_struct *g, *p;
7342
7343 do_each_thread(g, p) {
7344 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7345 return 1;
7346 } while_each_thread(g, p);
7347
7348 return 0;
7349 }
7350
7351 struct rt_schedulable_data {
7352 struct task_group *tg;
7353 u64 rt_period;
7354 u64 rt_runtime;
7355 };
7356
7357 static int tg_rt_schedulable(struct task_group *tg, void *data)
7358 {
7359 struct rt_schedulable_data *d = data;
7360 struct task_group *child;
7361 unsigned long total, sum = 0;
7362 u64 period, runtime;
7363
7364 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7365 runtime = tg->rt_bandwidth.rt_runtime;
7366
7367 if (tg == d->tg) {
7368 period = d->rt_period;
7369 runtime = d->rt_runtime;
7370 }
7371
7372 /*
7373 * Cannot have more runtime than the period.
7374 */
7375 if (runtime > period && runtime != RUNTIME_INF)
7376 return -EINVAL;
7377
7378 /*
7379 * Ensure we don't starve existing RT tasks.
7380 */
7381 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7382 return -EBUSY;
7383
7384 total = to_ratio(period, runtime);
7385
7386 /*
7387 * Nobody can have more than the global setting allows.
7388 */
7389 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7390 return -EINVAL;
7391
7392 /*
7393 * The sum of our children's runtime should not exceed our own.
7394 */
7395 list_for_each_entry_rcu(child, &tg->children, siblings) {
7396 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7397 runtime = child->rt_bandwidth.rt_runtime;
7398
7399 if (child == d->tg) {
7400 period = d->rt_period;
7401 runtime = d->rt_runtime;
7402 }
7403
7404 sum += to_ratio(period, runtime);
7405 }
7406
7407 if (sum > total)
7408 return -EINVAL;
7409
7410 return 0;
7411 }
7412
7413 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7414 {
7415 int ret;
7416
7417 struct rt_schedulable_data data = {
7418 .tg = tg,
7419 .rt_period = period,
7420 .rt_runtime = runtime,
7421 };
7422
7423 rcu_read_lock();
7424 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7425 rcu_read_unlock();
7426
7427 return ret;
7428 }
7429
7430 static int tg_set_rt_bandwidth(struct task_group *tg,
7431 u64 rt_period, u64 rt_runtime)
7432 {
7433 int i, err = 0;
7434
7435 mutex_lock(&rt_constraints_mutex);
7436 read_lock(&tasklist_lock);
7437 err = __rt_schedulable(tg, rt_period, rt_runtime);
7438 if (err)
7439 goto unlock;
7440
7441 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7442 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7443 tg->rt_bandwidth.rt_runtime = rt_runtime;
7444
7445 for_each_possible_cpu(i) {
7446 struct rt_rq *rt_rq = tg->rt_rq[i];
7447
7448 raw_spin_lock(&rt_rq->rt_runtime_lock);
7449 rt_rq->rt_runtime = rt_runtime;
7450 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7451 }
7452 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7453 unlock:
7454 read_unlock(&tasklist_lock);
7455 mutex_unlock(&rt_constraints_mutex);
7456
7457 return err;
7458 }
7459
7460 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7461 {
7462 u64 rt_runtime, rt_period;
7463
7464 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7465 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7466 if (rt_runtime_us < 0)
7467 rt_runtime = RUNTIME_INF;
7468
7469 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7470 }
7471
7472 long sched_group_rt_runtime(struct task_group *tg)
7473 {
7474 u64 rt_runtime_us;
7475
7476 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7477 return -1;
7478
7479 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7480 do_div(rt_runtime_us, NSEC_PER_USEC);
7481 return rt_runtime_us;
7482 }
7483
7484 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7485 {
7486 u64 rt_runtime, rt_period;
7487
7488 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7489 rt_runtime = tg->rt_bandwidth.rt_runtime;
7490
7491 if (rt_period == 0)
7492 return -EINVAL;
7493
7494 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7495 }
7496
7497 long sched_group_rt_period(struct task_group *tg)
7498 {
7499 u64 rt_period_us;
7500
7501 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7502 do_div(rt_period_us, NSEC_PER_USEC);
7503 return rt_period_us;
7504 }
7505
7506 static int sched_rt_global_constraints(void)
7507 {
7508 u64 runtime, period;
7509 int ret = 0;
7510
7511 if (sysctl_sched_rt_period <= 0)
7512 return -EINVAL;
7513
7514 runtime = global_rt_runtime();
7515 period = global_rt_period();
7516
7517 /*
7518 * Sanity check on the sysctl variables.
7519 */
7520 if (runtime > period && runtime != RUNTIME_INF)
7521 return -EINVAL;
7522
7523 mutex_lock(&rt_constraints_mutex);
7524 read_lock(&tasklist_lock);
7525 ret = __rt_schedulable(NULL, 0, 0);
7526 read_unlock(&tasklist_lock);
7527 mutex_unlock(&rt_constraints_mutex);
7528
7529 return ret;
7530 }
7531
7532 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7533 {
7534 /* Don't accept realtime tasks when there is no way for them to run */
7535 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7536 return 0;
7537
7538 return 1;
7539 }
7540
7541 #else /* !CONFIG_RT_GROUP_SCHED */
7542 static int sched_rt_global_constraints(void)
7543 {
7544 unsigned long flags;
7545 int i;
7546
7547 if (sysctl_sched_rt_period <= 0)
7548 return -EINVAL;
7549
7550 /*
7551 * There's always some RT tasks in the root group
7552 * -- migration, kstopmachine etc..
7553 */
7554 if (sysctl_sched_rt_runtime == 0)
7555 return -EBUSY;
7556
7557 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7558 for_each_possible_cpu(i) {
7559 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7560
7561 raw_spin_lock(&rt_rq->rt_runtime_lock);
7562 rt_rq->rt_runtime = global_rt_runtime();
7563 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7564 }
7565 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7566
7567 return 0;
7568 }
7569 #endif /* CONFIG_RT_GROUP_SCHED */
7570
7571 int sched_rr_handler(struct ctl_table *table, int write,
7572 void __user *buffer, size_t *lenp,
7573 loff_t *ppos)
7574 {
7575 int ret;
7576 static DEFINE_MUTEX(mutex);
7577
7578 mutex_lock(&mutex);
7579 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7580 /* make sure that internally we keep jiffies */
7581 /* also, writing zero resets timeslice to default */
7582 if (!ret && write) {
7583 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7584 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7585 }
7586 mutex_unlock(&mutex);
7587 return ret;
7588 }
7589
7590 int sched_rt_handler(struct ctl_table *table, int write,
7591 void __user *buffer, size_t *lenp,
7592 loff_t *ppos)
7593 {
7594 int ret;
7595 int old_period, old_runtime;
7596 static DEFINE_MUTEX(mutex);
7597
7598 mutex_lock(&mutex);
7599 old_period = sysctl_sched_rt_period;
7600 old_runtime = sysctl_sched_rt_runtime;
7601
7602 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7603
7604 if (!ret && write) {
7605 ret = sched_rt_global_constraints();
7606 if (ret) {
7607 sysctl_sched_rt_period = old_period;
7608 sysctl_sched_rt_runtime = old_runtime;
7609 } else {
7610 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7611 def_rt_bandwidth.rt_period =
7612 ns_to_ktime(global_rt_period());
7613 }
7614 }
7615 mutex_unlock(&mutex);
7616
7617 return ret;
7618 }
7619
7620 #ifdef CONFIG_CGROUP_SCHED
7621
7622 /* return corresponding task_group object of a cgroup */
7623 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7624 {
7625 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7626 struct task_group, css);
7627 }
7628
7629 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7630 {
7631 struct task_group *tg, *parent;
7632
7633 if (!cgrp->parent) {
7634 /* This is early initialization for the top cgroup */
7635 return &root_task_group.css;
7636 }
7637
7638 parent = cgroup_tg(cgrp->parent);
7639 tg = sched_create_group(parent);
7640 if (IS_ERR(tg))
7641 return ERR_PTR(-ENOMEM);
7642
7643 return &tg->css;
7644 }
7645
7646 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7647 {
7648 struct task_group *tg = cgroup_tg(cgrp);
7649 struct task_group *parent;
7650
7651 if (!cgrp->parent)
7652 return 0;
7653
7654 parent = cgroup_tg(cgrp->parent);
7655 sched_online_group(tg, parent);
7656 return 0;
7657 }
7658
7659 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7660 {
7661 struct task_group *tg = cgroup_tg(cgrp);
7662
7663 sched_destroy_group(tg);
7664 }
7665
7666 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7667 {
7668 struct task_group *tg = cgroup_tg(cgrp);
7669
7670 sched_offline_group(tg);
7671 }
7672
7673 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7674 struct cgroup_taskset *tset)
7675 {
7676 struct task_struct *task;
7677
7678 cgroup_taskset_for_each(task, cgrp, tset) {
7679 #ifdef CONFIG_RT_GROUP_SCHED
7680 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7681 return -EINVAL;
7682 #else
7683 /* We don't support RT-tasks being in separate groups */
7684 if (task->sched_class != &fair_sched_class)
7685 return -EINVAL;
7686 #endif
7687 }
7688 return 0;
7689 }
7690
7691 static void cpu_cgroup_attach(struct cgroup *cgrp,
7692 struct cgroup_taskset *tset)
7693 {
7694 struct task_struct *task;
7695
7696 cgroup_taskset_for_each(task, cgrp, tset)
7697 sched_move_task(task);
7698 }
7699
7700 static void
7701 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7702 struct task_struct *task)
7703 {
7704 /*
7705 * cgroup_exit() is called in the copy_process() failure path.
7706 * Ignore this case since the task hasn't ran yet, this avoids
7707 * trying to poke a half freed task state from generic code.
7708 */
7709 if (!(task->flags & PF_EXITING))
7710 return;
7711
7712 sched_move_task(task);
7713 }
7714
7715 #ifdef CONFIG_FAIR_GROUP_SCHED
7716 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7717 u64 shareval)
7718 {
7719 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7720 }
7721
7722 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7723 {
7724 struct task_group *tg = cgroup_tg(cgrp);
7725
7726 return (u64) scale_load_down(tg->shares);
7727 }
7728
7729 #ifdef CONFIG_CFS_BANDWIDTH
7730 static DEFINE_MUTEX(cfs_constraints_mutex);
7731
7732 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7733 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7734
7735 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7736
7737 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7738 {
7739 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7740 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7741
7742 if (tg == &root_task_group)
7743 return -EINVAL;
7744
7745 /*
7746 * Ensure we have at some amount of bandwidth every period. This is
7747 * to prevent reaching a state of large arrears when throttled via
7748 * entity_tick() resulting in prolonged exit starvation.
7749 */
7750 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7751 return -EINVAL;
7752
7753 /*
7754 * Likewise, bound things on the otherside by preventing insane quota
7755 * periods. This also allows us to normalize in computing quota
7756 * feasibility.
7757 */
7758 if (period > max_cfs_quota_period)
7759 return -EINVAL;
7760
7761 mutex_lock(&cfs_constraints_mutex);
7762 ret = __cfs_schedulable(tg, period, quota);
7763 if (ret)
7764 goto out_unlock;
7765
7766 runtime_enabled = quota != RUNTIME_INF;
7767 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7768 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7769 raw_spin_lock_irq(&cfs_b->lock);
7770 cfs_b->period = ns_to_ktime(period);
7771 cfs_b->quota = quota;
7772
7773 __refill_cfs_bandwidth_runtime(cfs_b);
7774 /* restart the period timer (if active) to handle new period expiry */
7775 if (runtime_enabled && cfs_b->timer_active) {
7776 /* force a reprogram */
7777 cfs_b->timer_active = 0;
7778 __start_cfs_bandwidth(cfs_b);
7779 }
7780 raw_spin_unlock_irq(&cfs_b->lock);
7781
7782 for_each_possible_cpu(i) {
7783 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7784 struct rq *rq = cfs_rq->rq;
7785
7786 raw_spin_lock_irq(&rq->lock);
7787 cfs_rq->runtime_enabled = runtime_enabled;
7788 cfs_rq->runtime_remaining = 0;
7789
7790 if (cfs_rq->throttled)
7791 unthrottle_cfs_rq(cfs_rq);
7792 raw_spin_unlock_irq(&rq->lock);
7793 }
7794 out_unlock:
7795 mutex_unlock(&cfs_constraints_mutex);
7796
7797 return ret;
7798 }
7799
7800 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7801 {
7802 u64 quota, period;
7803
7804 period = ktime_to_ns(tg->cfs_bandwidth.period);
7805 if (cfs_quota_us < 0)
7806 quota = RUNTIME_INF;
7807 else
7808 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7809
7810 return tg_set_cfs_bandwidth(tg, period, quota);
7811 }
7812
7813 long tg_get_cfs_quota(struct task_group *tg)
7814 {
7815 u64 quota_us;
7816
7817 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7818 return -1;
7819
7820 quota_us = tg->cfs_bandwidth.quota;
7821 do_div(quota_us, NSEC_PER_USEC);
7822
7823 return quota_us;
7824 }
7825
7826 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7827 {
7828 u64 quota, period;
7829
7830 period = (u64)cfs_period_us * NSEC_PER_USEC;
7831 quota = tg->cfs_bandwidth.quota;
7832
7833 return tg_set_cfs_bandwidth(tg, period, quota);
7834 }
7835
7836 long tg_get_cfs_period(struct task_group *tg)
7837 {
7838 u64 cfs_period_us;
7839
7840 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7841 do_div(cfs_period_us, NSEC_PER_USEC);
7842
7843 return cfs_period_us;
7844 }
7845
7846 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7847 {
7848 return tg_get_cfs_quota(cgroup_tg(cgrp));
7849 }
7850
7851 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7852 s64 cfs_quota_us)
7853 {
7854 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7855 }
7856
7857 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7858 {
7859 return tg_get_cfs_period(cgroup_tg(cgrp));
7860 }
7861
7862 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7863 u64 cfs_period_us)
7864 {
7865 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7866 }
7867
7868 struct cfs_schedulable_data {
7869 struct task_group *tg;
7870 u64 period, quota;
7871 };
7872
7873 /*
7874 * normalize group quota/period to be quota/max_period
7875 * note: units are usecs
7876 */
7877 static u64 normalize_cfs_quota(struct task_group *tg,
7878 struct cfs_schedulable_data *d)
7879 {
7880 u64 quota, period;
7881
7882 if (tg == d->tg) {
7883 period = d->period;
7884 quota = d->quota;
7885 } else {
7886 period = tg_get_cfs_period(tg);
7887 quota = tg_get_cfs_quota(tg);
7888 }
7889
7890 /* note: these should typically be equivalent */
7891 if (quota == RUNTIME_INF || quota == -1)
7892 return RUNTIME_INF;
7893
7894 return to_ratio(period, quota);
7895 }
7896
7897 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7898 {
7899 struct cfs_schedulable_data *d = data;
7900 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7901 s64 quota = 0, parent_quota = -1;
7902
7903 if (!tg->parent) {
7904 quota = RUNTIME_INF;
7905 } else {
7906 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7907
7908 quota = normalize_cfs_quota(tg, d);
7909 parent_quota = parent_b->hierarchal_quota;
7910
7911 /*
7912 * ensure max(child_quota) <= parent_quota, inherit when no
7913 * limit is set
7914 */
7915 if (quota == RUNTIME_INF)
7916 quota = parent_quota;
7917 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7918 return -EINVAL;
7919 }
7920 cfs_b->hierarchal_quota = quota;
7921
7922 return 0;
7923 }
7924
7925 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7926 {
7927 int ret;
7928 struct cfs_schedulable_data data = {
7929 .tg = tg,
7930 .period = period,
7931 .quota = quota,
7932 };
7933
7934 if (quota != RUNTIME_INF) {
7935 do_div(data.period, NSEC_PER_USEC);
7936 do_div(data.quota, NSEC_PER_USEC);
7937 }
7938
7939 rcu_read_lock();
7940 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7941 rcu_read_unlock();
7942
7943 return ret;
7944 }
7945
7946 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7947 struct cgroup_map_cb *cb)
7948 {
7949 struct task_group *tg = cgroup_tg(cgrp);
7950 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7951
7952 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7953 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7954 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7955
7956 return 0;
7957 }
7958 #endif /* CONFIG_CFS_BANDWIDTH */
7959 #endif /* CONFIG_FAIR_GROUP_SCHED */
7960
7961 #ifdef CONFIG_RT_GROUP_SCHED
7962 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7963 s64 val)
7964 {
7965 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7966 }
7967
7968 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7969 {
7970 return sched_group_rt_runtime(cgroup_tg(cgrp));
7971 }
7972
7973 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7974 u64 rt_period_us)
7975 {
7976 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7977 }
7978
7979 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7980 {
7981 return sched_group_rt_period(cgroup_tg(cgrp));
7982 }
7983 #endif /* CONFIG_RT_GROUP_SCHED */
7984
7985 static struct cftype cpu_files[] = {
7986 #ifdef CONFIG_FAIR_GROUP_SCHED
7987 {
7988 .name = "shares",
7989 .read_u64 = cpu_shares_read_u64,
7990 .write_u64 = cpu_shares_write_u64,
7991 },
7992 #endif
7993 #ifdef CONFIG_CFS_BANDWIDTH
7994 {
7995 .name = "cfs_quota_us",
7996 .read_s64 = cpu_cfs_quota_read_s64,
7997 .write_s64 = cpu_cfs_quota_write_s64,
7998 },
7999 {
8000 .name = "cfs_period_us",
8001 .read_u64 = cpu_cfs_period_read_u64,
8002 .write_u64 = cpu_cfs_period_write_u64,
8003 },
8004 {
8005 .name = "stat",
8006 .read_map = cpu_stats_show,
8007 },
8008 #endif
8009 #ifdef CONFIG_RT_GROUP_SCHED
8010 {
8011 .name = "rt_runtime_us",
8012 .read_s64 = cpu_rt_runtime_read,
8013 .write_s64 = cpu_rt_runtime_write,
8014 },
8015 {
8016 .name = "rt_period_us",
8017 .read_u64 = cpu_rt_period_read_uint,
8018 .write_u64 = cpu_rt_period_write_uint,
8019 },
8020 #endif
8021 { } /* terminate */
8022 };
8023
8024 struct cgroup_subsys cpu_cgroup_subsys = {
8025 .name = "cpu",
8026 .css_alloc = cpu_cgroup_css_alloc,
8027 .css_free = cpu_cgroup_css_free,
8028 .css_online = cpu_cgroup_css_online,
8029 .css_offline = cpu_cgroup_css_offline,
8030 .can_attach = cpu_cgroup_can_attach,
8031 .attach = cpu_cgroup_attach,
8032 .exit = cpu_cgroup_exit,
8033 .subsys_id = cpu_cgroup_subsys_id,
8034 .base_cftypes = cpu_files,
8035 .early_init = 1,
8036 };
8037
8038 #endif /* CONFIG_CGROUP_SCHED */
8039
8040 #ifdef CONFIG_CGROUP_CPUACCT
8041
8042 /*
8043 * CPU accounting code for task groups.
8044 *
8045 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8046 * (balbir@in.ibm.com).
8047 */
8048
8049 struct cpuacct root_cpuacct;
8050
8051 /* create a new cpu accounting group */
8052 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8053 {
8054 struct cpuacct *ca;
8055
8056 if (!cgrp->parent)
8057 return &root_cpuacct.css;
8058
8059 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8060 if (!ca)
8061 goto out;
8062
8063 ca->cpuusage = alloc_percpu(u64);
8064 if (!ca->cpuusage)
8065 goto out_free_ca;
8066
8067 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8068 if (!ca->cpustat)
8069 goto out_free_cpuusage;
8070
8071 return &ca->css;
8072
8073 out_free_cpuusage:
8074 free_percpu(ca->cpuusage);
8075 out_free_ca:
8076 kfree(ca);
8077 out:
8078 return ERR_PTR(-ENOMEM);
8079 }
8080
8081 /* destroy an existing cpu accounting group */
8082 static void cpuacct_css_free(struct cgroup *cgrp)
8083 {
8084 struct cpuacct *ca = cgroup_ca(cgrp);
8085
8086 free_percpu(ca->cpustat);
8087 free_percpu(ca->cpuusage);
8088 kfree(ca);
8089 }
8090
8091 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8092 {
8093 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8094 u64 data;
8095
8096 #ifndef CONFIG_64BIT
8097 /*
8098 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8099 */
8100 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8101 data = *cpuusage;
8102 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8103 #else
8104 data = *cpuusage;
8105 #endif
8106
8107 return data;
8108 }
8109
8110 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8111 {
8112 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8113
8114 #ifndef CONFIG_64BIT
8115 /*
8116 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8117 */
8118 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8119 *cpuusage = val;
8120 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8121 #else
8122 *cpuusage = val;
8123 #endif
8124 }
8125
8126 /* return total cpu usage (in nanoseconds) of a group */
8127 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8128 {
8129 struct cpuacct *ca = cgroup_ca(cgrp);
8130 u64 totalcpuusage = 0;
8131 int i;
8132
8133 for_each_present_cpu(i)
8134 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8135
8136 return totalcpuusage;
8137 }
8138
8139 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8140 u64 reset)
8141 {
8142 struct cpuacct *ca = cgroup_ca(cgrp);
8143 int err = 0;
8144 int i;
8145
8146 if (reset) {
8147 err = -EINVAL;
8148 goto out;
8149 }
8150
8151 for_each_present_cpu(i)
8152 cpuacct_cpuusage_write(ca, i, 0);
8153
8154 out:
8155 return err;
8156 }
8157
8158 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8159 struct seq_file *m)
8160 {
8161 struct cpuacct *ca = cgroup_ca(cgroup);
8162 u64 percpu;
8163 int i;
8164
8165 for_each_present_cpu(i) {
8166 percpu = cpuacct_cpuusage_read(ca, i);
8167 seq_printf(m, "%llu ", (unsigned long long) percpu);
8168 }
8169 seq_printf(m, "\n");
8170 return 0;
8171 }
8172
8173 static const char *cpuacct_stat_desc[] = {
8174 [CPUACCT_STAT_USER] = "user",
8175 [CPUACCT_STAT_SYSTEM] = "system",
8176 };
8177
8178 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8179 struct cgroup_map_cb *cb)
8180 {
8181 struct cpuacct *ca = cgroup_ca(cgrp);
8182 int cpu;
8183 s64 val = 0;
8184
8185 for_each_online_cpu(cpu) {
8186 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8187 val += kcpustat->cpustat[CPUTIME_USER];
8188 val += kcpustat->cpustat[CPUTIME_NICE];
8189 }
8190 val = cputime64_to_clock_t(val);
8191 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8192
8193 val = 0;
8194 for_each_online_cpu(cpu) {
8195 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8196 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8197 val += kcpustat->cpustat[CPUTIME_IRQ];
8198 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8199 }
8200
8201 val = cputime64_to_clock_t(val);
8202 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8203
8204 return 0;
8205 }
8206
8207 static struct cftype files[] = {
8208 {
8209 .name = "usage",
8210 .read_u64 = cpuusage_read,
8211 .write_u64 = cpuusage_write,
8212 },
8213 {
8214 .name = "usage_percpu",
8215 .read_seq_string = cpuacct_percpu_seq_read,
8216 },
8217 {
8218 .name = "stat",
8219 .read_map = cpuacct_stats_show,
8220 },
8221 { } /* terminate */
8222 };
8223
8224 /*
8225 * charge this task's execution time to its accounting group.
8226 *
8227 * called with rq->lock held.
8228 */
8229 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8230 {
8231 struct cpuacct *ca;
8232 int cpu;
8233
8234 if (unlikely(!cpuacct_subsys.active))
8235 return;
8236
8237 cpu = task_cpu(tsk);
8238
8239 rcu_read_lock();
8240
8241 ca = task_ca(tsk);
8242
8243 for (; ca; ca = parent_ca(ca)) {
8244 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8245 *cpuusage += cputime;
8246 }
8247
8248 rcu_read_unlock();
8249 }
8250
8251 struct cgroup_subsys cpuacct_subsys = {
8252 .name = "cpuacct",
8253 .css_alloc = cpuacct_css_alloc,
8254 .css_free = cpuacct_css_free,
8255 .subsys_id = cpuacct_subsys_id,
8256 .base_cftypes = files,
8257 };
8258 #endif /* CONFIG_CGROUP_CPUACCT */
8259
8260 void dump_cpu_task(int cpu)
8261 {
8262 pr_info("Task dump for CPU %d:\n", cpu);
8263 sched_show_task(cpu_curr(cpu));
8264 }