sched/core: Fix a race between try_to_wake_up() and a woken up task
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515 void resched_task(struct task_struct *p)
516 {
517 int cpu;
518
519 assert_raw_spin_locked(&task_rq(p)->lock);
520
521 if (test_tsk_need_resched(p))
522 return;
523
524 set_tsk_need_resched(p);
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id())
528 return;
529
530 /* NEED_RESCHED must be visible before we test polling */
531 smp_mb();
532 if (!tsk_is_polling(p))
533 smp_send_reschedule(cpu);
534 }
535
536 void resched_cpu(int cpu)
537 {
538 struct rq *rq = cpu_rq(cpu);
539 unsigned long flags;
540
541 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542 return;
543 resched_task(cpu_curr(cpu));
544 raw_spin_unlock_irqrestore(&rq->lock, flags);
545 }
546
547 #ifdef CONFIG_NO_HZ_COMMON
548 /*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu. This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556 int get_nohz_timer_target(void)
557 {
558 int cpu = smp_processor_id();
559 int i;
560 struct sched_domain *sd;
561
562 rcu_read_lock();
563 for_each_domain(cpu, sd) {
564 for_each_cpu(i, sched_domain_span(sd)) {
565 if (!idle_cpu(i)) {
566 cpu = i;
567 goto unlock;
568 }
569 }
570 }
571 unlock:
572 rcu_read_unlock();
573 return cpu;
574 }
575 /*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
585 static void wake_up_idle_cpu(int cpu)
586 {
587 struct rq *rq = cpu_rq(cpu);
588
589 if (cpu == smp_processor_id())
590 return;
591
592 /*
593 * This is safe, as this function is called with the timer
594 * wheel base lock of (cpu) held. When the CPU is on the way
595 * to idle and has not yet set rq->curr to idle then it will
596 * be serialized on the timer wheel base lock and take the new
597 * timer into account automatically.
598 */
599 if (rq->curr != rq->idle)
600 return;
601
602 /*
603 * We can set TIF_RESCHED on the idle task of the other CPU
604 * lockless. The worst case is that the other CPU runs the
605 * idle task through an additional NOOP schedule()
606 */
607 set_tsk_need_resched(rq->idle);
608
609 /* NEED_RESCHED must be visible before we test polling */
610 smp_mb();
611 if (!tsk_is_polling(rq->idle))
612 smp_send_reschedule(cpu);
613 }
614
615 static bool wake_up_full_nohz_cpu(int cpu)
616 {
617 if (tick_nohz_full_cpu(cpu)) {
618 if (cpu != smp_processor_id() ||
619 tick_nohz_tick_stopped())
620 smp_send_reschedule(cpu);
621 return true;
622 }
623
624 return false;
625 }
626
627 void wake_up_nohz_cpu(int cpu)
628 {
629 if (!wake_up_full_nohz_cpu(cpu))
630 wake_up_idle_cpu(cpu);
631 }
632
633 static inline bool got_nohz_idle_kick(void)
634 {
635 int cpu = smp_processor_id();
636
637 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638 return false;
639
640 if (idle_cpu(cpu) && !need_resched())
641 return true;
642
643 /*
644 * We can't run Idle Load Balance on this CPU for this time so we
645 * cancel it and clear NOHZ_BALANCE_KICK
646 */
647 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648 return false;
649 }
650
651 #else /* CONFIG_NO_HZ_COMMON */
652
653 static inline bool got_nohz_idle_kick(void)
654 {
655 return false;
656 }
657
658 #endif /* CONFIG_NO_HZ_COMMON */
659
660 #ifdef CONFIG_NO_HZ_FULL
661 bool sched_can_stop_tick(void)
662 {
663 struct rq *rq;
664
665 rq = this_rq();
666
667 /* Make sure rq->nr_running update is visible after the IPI */
668 smp_rmb();
669
670 /* More than one running task need preemption */
671 if (rq->nr_running > 1)
672 return false;
673
674 return true;
675 }
676 #endif /* CONFIG_NO_HZ_FULL */
677
678 void sched_avg_update(struct rq *rq)
679 {
680 s64 period = sched_avg_period();
681
682 while ((s64)(rq->clock - rq->age_stamp) > period) {
683 /*
684 * Inline assembly required to prevent the compiler
685 * optimising this loop into a divmod call.
686 * See __iter_div_u64_rem() for another example of this.
687 */
688 asm("" : "+rm" (rq->age_stamp));
689 rq->age_stamp += period;
690 rq->rt_avg /= 2;
691 }
692 }
693
694 #else /* !CONFIG_SMP */
695 void resched_task(struct task_struct *p)
696 {
697 assert_raw_spin_locked(&task_rq(p)->lock);
698 set_tsk_need_resched(p);
699 }
700 #endif /* CONFIG_SMP */
701
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712 {
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718 down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726 up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737 out:
738 return ret;
739 }
740
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 return 0;
744 }
745 #endif
746
747 static void set_load_weight(struct task_struct *p)
748 {
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 return;
759 }
760
761 load->weight = scale_load(prio_to_weight[prio]);
762 load->inv_weight = prio_to_wmult[prio];
763 }
764
765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 update_rq_clock(rq);
768 sched_info_queued(p);
769 p->sched_class->enqueue_task(rq, p, flags);
770 }
771
772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 update_rq_clock(rq);
775 sched_info_dequeued(p);
776 p->sched_class->dequeue_task(rq, p, flags);
777 }
778
779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
784 enqueue_task(rq, p, flags);
785 }
786
787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 {
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
792 dequeue_task(rq, p, flags);
793 }
794
795 static void update_rq_clock_task(struct rq *rq, s64 delta)
796 {
797 /*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803 #endif
804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
827 #endif
828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 if (static_key_false((&paravirt_steal_rq_enabled))) {
830 u64 st;
831
832 steal = paravirt_steal_clock(cpu_of(rq));
833 steal -= rq->prev_steal_time_rq;
834
835 if (unlikely(steal > delta))
836 steal = delta;
837
838 st = steal_ticks(steal);
839 steal = st * TICK_NSEC;
840
841 rq->prev_steal_time_rq += steal;
842
843 delta -= steal;
844 }
845 #endif
846
847 rq->clock_task += delta;
848
849 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851 sched_rt_avg_update(rq, irq_delta + steal);
852 #endif
853 }
854
855 void sched_set_stop_task(int cpu, struct task_struct *stop)
856 {
857 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 struct task_struct *old_stop = cpu_rq(cpu)->stop;
859
860 if (stop) {
861 /*
862 * Make it appear like a SCHED_FIFO task, its something
863 * userspace knows about and won't get confused about.
864 *
865 * Also, it will make PI more or less work without too
866 * much confusion -- but then, stop work should not
867 * rely on PI working anyway.
868 */
869 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870
871 stop->sched_class = &stop_sched_class;
872 }
873
874 cpu_rq(cpu)->stop = stop;
875
876 if (old_stop) {
877 /*
878 * Reset it back to a normal scheduling class so that
879 * it can die in pieces.
880 */
881 old_stop->sched_class = &rt_sched_class;
882 }
883 }
884
885 /*
886 * __normal_prio - return the priority that is based on the static prio
887 */
888 static inline int __normal_prio(struct task_struct *p)
889 {
890 return p->static_prio;
891 }
892
893 /*
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
899 */
900 static inline int normal_prio(struct task_struct *p)
901 {
902 int prio;
903
904 if (task_has_rt_policy(p))
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
906 else
907 prio = __normal_prio(p);
908 return prio;
909 }
910
911 /*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
918 static int effective_prio(struct task_struct *p)
919 {
920 p->normal_prio = normal_prio(p);
921 /*
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
925 */
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
928 return p->prio;
929 }
930
931 /**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
934 */
935 inline int task_curr(const struct task_struct *p)
936 {
937 return cpu_curr(task_cpu(p)) == p;
938 }
939
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
942 int oldprio)
943 {
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
950 }
951
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 rq->skip_clock_update = 1;
975 }
976
977 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978
979 void register_task_migration_notifier(struct notifier_block *n)
980 {
981 atomic_notifier_chain_register(&task_migration_notifier, n);
982 }
983
984 #ifdef CONFIG_SMP
985 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
986 {
987 #ifdef CONFIG_SCHED_DEBUG
988 /*
989 * We should never call set_task_cpu() on a blocked task,
990 * ttwu() will sort out the placement.
991 */
992 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
994
995 #ifdef CONFIG_LOCKDEP
996 /*
997 * The caller should hold either p->pi_lock or rq->lock, when changing
998 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999 *
1000 * sched_move_task() holds both and thus holding either pins the cgroup,
1001 * see task_group().
1002 *
1003 * Furthermore, all task_rq users should acquire both locks, see
1004 * task_rq_lock().
1005 */
1006 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007 lockdep_is_held(&task_rq(p)->lock)));
1008 #endif
1009 #endif
1010
1011 trace_sched_migrate_task(p, new_cpu);
1012
1013 if (task_cpu(p) != new_cpu) {
1014 struct task_migration_notifier tmn;
1015
1016 if (p->sched_class->migrate_task_rq)
1017 p->sched_class->migrate_task_rq(p, new_cpu);
1018 p->se.nr_migrations++;
1019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1020
1021 tmn.task = p;
1022 tmn.from_cpu = task_cpu(p);
1023 tmn.to_cpu = new_cpu;
1024
1025 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1026 }
1027
1028 __set_task_cpu(p, new_cpu);
1029 }
1030
1031 struct migration_arg {
1032 struct task_struct *task;
1033 int dest_cpu;
1034 };
1035
1036 static int migration_cpu_stop(void *data);
1037
1038 /*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change. If it changes, i.e. @p might have woken up,
1043 * then return zero. When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count). If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1047 *
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
1054 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1055 {
1056 unsigned long flags;
1057 int running, on_rq;
1058 unsigned long ncsw;
1059 struct rq *rq;
1060
1061 for (;;) {
1062 /*
1063 * We do the initial early heuristics without holding
1064 * any task-queue locks at all. We'll only try to get
1065 * the runqueue lock when things look like they will
1066 * work out!
1067 */
1068 rq = task_rq(p);
1069
1070 /*
1071 * If the task is actively running on another CPU
1072 * still, just relax and busy-wait without holding
1073 * any locks.
1074 *
1075 * NOTE! Since we don't hold any locks, it's not
1076 * even sure that "rq" stays as the right runqueue!
1077 * But we don't care, since "task_running()" will
1078 * return false if the runqueue has changed and p
1079 * is actually now running somewhere else!
1080 */
1081 while (task_running(rq, p)) {
1082 if (match_state && unlikely(p->state != match_state))
1083 return 0;
1084 cpu_relax();
1085 }
1086
1087 /*
1088 * Ok, time to look more closely! We need the rq
1089 * lock now, to be *sure*. If we're wrong, we'll
1090 * just go back and repeat.
1091 */
1092 rq = task_rq_lock(p, &flags);
1093 trace_sched_wait_task(p);
1094 running = task_running(rq, p);
1095 on_rq = p->on_rq;
1096 ncsw = 0;
1097 if (!match_state || p->state == match_state)
1098 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099 task_rq_unlock(rq, p, &flags);
1100
1101 /*
1102 * If it changed from the expected state, bail out now.
1103 */
1104 if (unlikely(!ncsw))
1105 break;
1106
1107 /*
1108 * Was it really running after all now that we
1109 * checked with the proper locks actually held?
1110 *
1111 * Oops. Go back and try again..
1112 */
1113 if (unlikely(running)) {
1114 cpu_relax();
1115 continue;
1116 }
1117
1118 /*
1119 * It's not enough that it's not actively running,
1120 * it must be off the runqueue _entirely_, and not
1121 * preempted!
1122 *
1123 * So if it was still runnable (but just not actively
1124 * running right now), it's preempted, and we should
1125 * yield - it could be a while.
1126 */
1127 if (unlikely(on_rq)) {
1128 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129
1130 set_current_state(TASK_UNINTERRUPTIBLE);
1131 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1132 continue;
1133 }
1134
1135 /*
1136 * Ahh, all good. It wasn't running, and it wasn't
1137 * runnable, which means that it will never become
1138 * running in the future either. We're all done!
1139 */
1140 break;
1141 }
1142
1143 return ncsw;
1144 }
1145
1146 /***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesn't have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159 void kick_process(struct task_struct *p)
1160 {
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168 }
1169 EXPORT_SYMBOL_GPL(kick_process);
1170 #endif /* CONFIG_SMP */
1171
1172 #ifdef CONFIG_SMP
1173 /*
1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1175 */
1176 static int select_fallback_rq(int cpu, struct task_struct *p)
1177 {
1178 int nid = cpu_to_node(cpu);
1179 const struct cpumask *nodemask = NULL;
1180 enum { cpuset, possible, fail } state = cpuset;
1181 int dest_cpu;
1182
1183 /*
1184 * If the node that the cpu is on has been offlined, cpu_to_node()
1185 * will return -1. There is no cpu on the node, and we should
1186 * select the cpu on the other node.
1187 */
1188 if (nid != -1) {
1189 nodemask = cpumask_of_node(nid);
1190
1191 /* Look for allowed, online CPU in same node. */
1192 for_each_cpu(dest_cpu, nodemask) {
1193 if (!cpu_online(dest_cpu))
1194 continue;
1195 if (!cpu_active(dest_cpu))
1196 continue;
1197 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198 return dest_cpu;
1199 }
1200 }
1201
1202 for (;;) {
1203 /* Any allowed, online CPU? */
1204 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205 if (!cpu_online(dest_cpu))
1206 continue;
1207 if (!cpu_active(dest_cpu))
1208 continue;
1209 goto out;
1210 }
1211
1212 switch (state) {
1213 case cpuset:
1214 /* No more Mr. Nice Guy. */
1215 cpuset_cpus_allowed_fallback(p);
1216 state = possible;
1217 break;
1218
1219 case possible:
1220 do_set_cpus_allowed(p, cpu_possible_mask);
1221 state = fail;
1222 break;
1223
1224 case fail:
1225 BUG();
1226 break;
1227 }
1228 }
1229
1230 out:
1231 if (state != cpuset) {
1232 /*
1233 * Don't tell them about moving exiting tasks or
1234 * kernel threads (both mm NULL), since they never
1235 * leave kernel.
1236 */
1237 if (p->mm && printk_ratelimit()) {
1238 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1239 task_pid_nr(p), p->comm, cpu);
1240 }
1241 }
1242
1243 return dest_cpu;
1244 }
1245
1246 /*
1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1248 */
1249 static inline
1250 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1251 {
1252 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1253
1254 /*
1255 * In order not to call set_task_cpu() on a blocking task we need
1256 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257 * cpu.
1258 *
1259 * Since this is common to all placement strategies, this lives here.
1260 *
1261 * [ this allows ->select_task() to simply return task_cpu(p) and
1262 * not worry about this generic constraint ]
1263 */
1264 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1265 !cpu_online(cpu)))
1266 cpu = select_fallback_rq(task_cpu(p), p);
1267
1268 return cpu;
1269 }
1270
1271 static void update_avg(u64 *avg, u64 sample)
1272 {
1273 s64 diff = sample - *avg;
1274 *avg += diff >> 3;
1275 }
1276 #endif
1277
1278 static void
1279 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1280 {
1281 #ifdef CONFIG_SCHEDSTATS
1282 struct rq *rq = this_rq();
1283
1284 #ifdef CONFIG_SMP
1285 int this_cpu = smp_processor_id();
1286
1287 if (cpu == this_cpu) {
1288 schedstat_inc(rq, ttwu_local);
1289 schedstat_inc(p, se.statistics.nr_wakeups_local);
1290 } else {
1291 struct sched_domain *sd;
1292
1293 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1294 rcu_read_lock();
1295 for_each_domain(this_cpu, sd) {
1296 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297 schedstat_inc(sd, ttwu_wake_remote);
1298 break;
1299 }
1300 }
1301 rcu_read_unlock();
1302 }
1303
1304 if (wake_flags & WF_MIGRATED)
1305 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306
1307 #endif /* CONFIG_SMP */
1308
1309 schedstat_inc(rq, ttwu_count);
1310 schedstat_inc(p, se.statistics.nr_wakeups);
1311
1312 if (wake_flags & WF_SYNC)
1313 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1314
1315 #endif /* CONFIG_SCHEDSTATS */
1316 }
1317
1318 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319 {
1320 activate_task(rq, p, en_flags);
1321 p->on_rq = 1;
1322
1323 /* if a worker is waking up, notify workqueue */
1324 if (p->flags & PF_WQ_WORKER)
1325 wq_worker_waking_up(p, cpu_of(rq));
1326 }
1327
1328 /*
1329 * Mark the task runnable and perform wakeup-preemption.
1330 */
1331 static void
1332 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1333 {
1334 check_preempt_curr(rq, p, wake_flags);
1335 trace_sched_wakeup(p, true);
1336
1337 p->state = TASK_RUNNING;
1338 #ifdef CONFIG_SMP
1339 if (p->sched_class->task_woken)
1340 p->sched_class->task_woken(rq, p);
1341
1342 if (rq->idle_stamp) {
1343 u64 delta = rq->clock - rq->idle_stamp;
1344 u64 max = 2*sysctl_sched_migration_cost;
1345
1346 if (delta > max)
1347 rq->avg_idle = max;
1348 else
1349 update_avg(&rq->avg_idle, delta);
1350 rq->idle_stamp = 0;
1351 }
1352 #endif
1353 }
1354
1355 static void
1356 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357 {
1358 #ifdef CONFIG_SMP
1359 if (p->sched_contributes_to_load)
1360 rq->nr_uninterruptible--;
1361 #endif
1362
1363 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364 ttwu_do_wakeup(rq, p, wake_flags);
1365 }
1366
1367 /*
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1372 */
1373 static int ttwu_remote(struct task_struct *p, int wake_flags)
1374 {
1375 struct rq *rq;
1376 int ret = 0;
1377
1378 rq = __task_rq_lock(p);
1379 if (p->on_rq) {
1380 ttwu_do_wakeup(rq, p, wake_flags);
1381 ret = 1;
1382 }
1383 __task_rq_unlock(rq);
1384
1385 return ret;
1386 }
1387
1388 #ifdef CONFIG_SMP
1389 static void sched_ttwu_pending(void)
1390 {
1391 struct rq *rq = this_rq();
1392 struct llist_node *llist = llist_del_all(&rq->wake_list);
1393 struct task_struct *p;
1394
1395 raw_spin_lock(&rq->lock);
1396
1397 while (llist) {
1398 p = llist_entry(llist, struct task_struct, wake_entry);
1399 llist = llist_next(llist);
1400 ttwu_do_activate(rq, p, 0);
1401 }
1402
1403 raw_spin_unlock(&rq->lock);
1404 }
1405
1406 void scheduler_ipi(void)
1407 {
1408 if (llist_empty(&this_rq()->wake_list)
1409 && !tick_nohz_full_cpu(smp_processor_id())
1410 && !got_nohz_idle_kick())
1411 return;
1412
1413 /*
1414 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1415 * traditionally all their work was done from the interrupt return
1416 * path. Now that we actually do some work, we need to make sure
1417 * we do call them.
1418 *
1419 * Some archs already do call them, luckily irq_enter/exit nest
1420 * properly.
1421 *
1422 * Arguably we should visit all archs and update all handlers,
1423 * however a fair share of IPIs are still resched only so this would
1424 * somewhat pessimize the simple resched case.
1425 */
1426 irq_enter();
1427 tick_nohz_full_check();
1428 sched_ttwu_pending();
1429
1430 /*
1431 * Check if someone kicked us for doing the nohz idle load balance.
1432 */
1433 if (unlikely(got_nohz_idle_kick())) {
1434 this_rq()->idle_balance = 1;
1435 raise_softirq_irqoff(SCHED_SOFTIRQ);
1436 }
1437 irq_exit();
1438 }
1439
1440 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1441 {
1442 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1443 smp_send_reschedule(cpu);
1444 }
1445
1446 bool cpus_share_cache(int this_cpu, int that_cpu)
1447 {
1448 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1449 }
1450 #endif /* CONFIG_SMP */
1451
1452 static void ttwu_queue(struct task_struct *p, int cpu)
1453 {
1454 struct rq *rq = cpu_rq(cpu);
1455
1456 #if defined(CONFIG_SMP)
1457 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1458 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1459 ttwu_queue_remote(p, cpu);
1460 return;
1461 }
1462 #endif
1463
1464 raw_spin_lock(&rq->lock);
1465 ttwu_do_activate(rq, p, 0);
1466 raw_spin_unlock(&rq->lock);
1467 }
1468
1469 /**
1470 * try_to_wake_up - wake up a thread
1471 * @p: the thread to be awakened
1472 * @state: the mask of task states that can be woken
1473 * @wake_flags: wake modifier flags (WF_*)
1474 *
1475 * Put it on the run-queue if it's not already there. The "current"
1476 * thread is always on the run-queue (except when the actual
1477 * re-schedule is in progress), and as such you're allowed to do
1478 * the simpler "current->state = TASK_RUNNING" to mark yourself
1479 * runnable without the overhead of this.
1480 *
1481 * Returns %true if @p was woken up, %false if it was already running
1482 * or @state didn't match @p's state.
1483 */
1484 static int
1485 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1486 {
1487 unsigned long flags;
1488 int cpu, success = 0;
1489
1490 /*
1491 * If we are going to wake up a thread waiting for CONDITION we
1492 * need to ensure that CONDITION=1 done by the caller can not be
1493 * reordered with p->state check below. This pairs with mb() in
1494 * set_current_state() the waiting thread does.
1495 */
1496 smp_mb__before_spinlock();
1497 raw_spin_lock_irqsave(&p->pi_lock, flags);
1498 if (!(p->state & state))
1499 goto out;
1500
1501 success = 1; /* we're going to change ->state */
1502 cpu = task_cpu(p);
1503
1504 /*
1505 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1506 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1507 * in smp_cond_load_acquire() below.
1508 *
1509 * sched_ttwu_pending() try_to_wake_up()
1510 * [S] p->on_rq = 1; [L] P->state
1511 * UNLOCK rq->lock -----.
1512 * \
1513 * +--- RMB
1514 * schedule() /
1515 * LOCK rq->lock -----'
1516 * UNLOCK rq->lock
1517 *
1518 * [task p]
1519 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1520 *
1521 * Pairs with the UNLOCK+LOCK on rq->lock from the
1522 * last wakeup of our task and the schedule that got our task
1523 * current.
1524 */
1525 smp_rmb();
1526 if (p->on_rq && ttwu_remote(p, wake_flags))
1527 goto stat;
1528
1529 #ifdef CONFIG_SMP
1530 /*
1531 * If the owning (remote) cpu is still in the middle of schedule() with
1532 * this task as prev, wait until its done referencing the task.
1533 */
1534 while (p->on_cpu)
1535 cpu_relax();
1536 /*
1537 * Pairs with the smp_wmb() in finish_lock_switch().
1538 */
1539 smp_rmb();
1540
1541 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1542 p->state = TASK_WAKING;
1543
1544 if (p->sched_class->task_waking)
1545 p->sched_class->task_waking(p);
1546
1547 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1548 if (task_cpu(p) != cpu) {
1549 wake_flags |= WF_MIGRATED;
1550 set_task_cpu(p, cpu);
1551 }
1552 #endif /* CONFIG_SMP */
1553
1554 ttwu_queue(p, cpu);
1555 stat:
1556 ttwu_stat(p, cpu, wake_flags);
1557 out:
1558 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1559
1560 return success;
1561 }
1562
1563 /**
1564 * try_to_wake_up_local - try to wake up a local task with rq lock held
1565 * @p: the thread to be awakened
1566 *
1567 * Put @p on the run-queue if it's not already there. The caller must
1568 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1569 * the current task.
1570 */
1571 static void try_to_wake_up_local(struct task_struct *p)
1572 {
1573 struct rq *rq = task_rq(p);
1574
1575 if (WARN_ON_ONCE(rq != this_rq()) ||
1576 WARN_ON_ONCE(p == current))
1577 return;
1578
1579 lockdep_assert_held(&rq->lock);
1580
1581 if (!raw_spin_trylock(&p->pi_lock)) {
1582 raw_spin_unlock(&rq->lock);
1583 raw_spin_lock(&p->pi_lock);
1584 raw_spin_lock(&rq->lock);
1585 }
1586
1587 if (!(p->state & TASK_NORMAL))
1588 goto out;
1589
1590 if (!p->on_rq)
1591 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1592
1593 ttwu_do_wakeup(rq, p, 0);
1594 ttwu_stat(p, smp_processor_id(), 0);
1595 out:
1596 raw_spin_unlock(&p->pi_lock);
1597 }
1598
1599 /**
1600 * wake_up_process - Wake up a specific process
1601 * @p: The process to be woken up.
1602 *
1603 * Attempt to wake up the nominated process and move it to the set of runnable
1604 * processes. Returns 1 if the process was woken up, 0 if it was already
1605 * running.
1606 *
1607 * It may be assumed that this function implies a write memory barrier before
1608 * changing the task state if and only if any tasks are woken up.
1609 */
1610 int wake_up_process(struct task_struct *p)
1611 {
1612 return try_to_wake_up(p, TASK_NORMAL, 0);
1613 }
1614 EXPORT_SYMBOL(wake_up_process);
1615
1616 int wake_up_state(struct task_struct *p, unsigned int state)
1617 {
1618 return try_to_wake_up(p, state, 0);
1619 }
1620
1621 /*
1622 * Perform scheduler related setup for a newly forked process p.
1623 * p is forked by current.
1624 *
1625 * __sched_fork() is basic setup used by init_idle() too:
1626 */
1627 static void __sched_fork(struct task_struct *p)
1628 {
1629 p->on_rq = 0;
1630
1631 p->se.on_rq = 0;
1632 p->se.exec_start = 0;
1633 p->se.sum_exec_runtime = 0;
1634 p->se.prev_sum_exec_runtime = 0;
1635 p->se.nr_migrations = 0;
1636 p->se.vruntime = 0;
1637 INIT_LIST_HEAD(&p->se.group_node);
1638
1639 /*
1640 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1641 * removed when useful for applications beyond shares distribution (e.g.
1642 * load-balance).
1643 */
1644 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1645 p->se.avg.runnable_avg_period = 0;
1646 p->se.avg.runnable_avg_sum = 0;
1647 #endif
1648 #ifdef CONFIG_SCHEDSTATS
1649 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1650 #endif
1651
1652 INIT_LIST_HEAD(&p->rt.run_list);
1653
1654 #ifdef CONFIG_PREEMPT_NOTIFIERS
1655 INIT_HLIST_HEAD(&p->preempt_notifiers);
1656 #endif
1657
1658 #ifdef CONFIG_NUMA_BALANCING
1659 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1660 p->mm->numa_next_scan = jiffies;
1661 p->mm->numa_next_reset = jiffies;
1662 p->mm->numa_scan_seq = 0;
1663 }
1664
1665 p->node_stamp = 0ULL;
1666 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1667 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1668 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1669 p->numa_work.next = &p->numa_work;
1670 #endif /* CONFIG_NUMA_BALANCING */
1671 }
1672
1673 #ifdef CONFIG_NUMA_BALANCING
1674 #ifdef CONFIG_SCHED_DEBUG
1675 void set_numabalancing_state(bool enabled)
1676 {
1677 if (enabled)
1678 sched_feat_set("NUMA");
1679 else
1680 sched_feat_set("NO_NUMA");
1681 }
1682 #else
1683 __read_mostly bool numabalancing_enabled;
1684
1685 void set_numabalancing_state(bool enabled)
1686 {
1687 numabalancing_enabled = enabled;
1688 }
1689 #endif /* CONFIG_SCHED_DEBUG */
1690 #endif /* CONFIG_NUMA_BALANCING */
1691
1692 /*
1693 * fork()/clone()-time setup:
1694 */
1695 void sched_fork(struct task_struct *p)
1696 {
1697 unsigned long flags;
1698 int cpu = get_cpu();
1699
1700 __sched_fork(p);
1701 /*
1702 * We mark the process as running here. This guarantees that
1703 * nobody will actually run it, and a signal or other external
1704 * event cannot wake it up and insert it on the runqueue either.
1705 */
1706 p->state = TASK_RUNNING;
1707
1708 /*
1709 * Make sure we do not leak PI boosting priority to the child.
1710 */
1711 p->prio = current->normal_prio;
1712
1713 /*
1714 * Revert to default priority/policy on fork if requested.
1715 */
1716 if (unlikely(p->sched_reset_on_fork)) {
1717 if (task_has_rt_policy(p)) {
1718 p->policy = SCHED_NORMAL;
1719 p->static_prio = NICE_TO_PRIO(0);
1720 p->rt_priority = 0;
1721 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1722 p->static_prio = NICE_TO_PRIO(0);
1723
1724 p->prio = p->normal_prio = __normal_prio(p);
1725 set_load_weight(p);
1726
1727 /*
1728 * We don't need the reset flag anymore after the fork. It has
1729 * fulfilled its duty:
1730 */
1731 p->sched_reset_on_fork = 0;
1732 }
1733
1734 if (!rt_prio(p->prio))
1735 p->sched_class = &fair_sched_class;
1736
1737 if (p->sched_class->task_fork)
1738 p->sched_class->task_fork(p);
1739
1740 /*
1741 * The child is not yet in the pid-hash so no cgroup attach races,
1742 * and the cgroup is pinned to this child due to cgroup_fork()
1743 * is ran before sched_fork().
1744 *
1745 * Silence PROVE_RCU.
1746 */
1747 raw_spin_lock_irqsave(&p->pi_lock, flags);
1748 set_task_cpu(p, cpu);
1749 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1750
1751 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1752 if (likely(sched_info_on()))
1753 memset(&p->sched_info, 0, sizeof(p->sched_info));
1754 #endif
1755 #if defined(CONFIG_SMP)
1756 p->on_cpu = 0;
1757 #endif
1758 #ifdef CONFIG_PREEMPT_COUNT
1759 /* Want to start with kernel preemption disabled. */
1760 task_thread_info(p)->preempt_count = 1;
1761 #endif
1762 #ifdef CONFIG_SMP
1763 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1764 #endif
1765
1766 put_cpu();
1767 }
1768
1769 /*
1770 * wake_up_new_task - wake up a newly created task for the first time.
1771 *
1772 * This function will do some initial scheduler statistics housekeeping
1773 * that must be done for every newly created context, then puts the task
1774 * on the runqueue and wakes it.
1775 */
1776 void wake_up_new_task(struct task_struct *p)
1777 {
1778 unsigned long flags;
1779 struct rq *rq;
1780
1781 raw_spin_lock_irqsave(&p->pi_lock, flags);
1782 #ifdef CONFIG_SMP
1783 /*
1784 * Fork balancing, do it here and not earlier because:
1785 * - cpus_allowed can change in the fork path
1786 * - any previously selected cpu might disappear through hotplug
1787 */
1788 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1789 #endif
1790
1791 rq = __task_rq_lock(p);
1792 activate_task(rq, p, 0);
1793 p->on_rq = 1;
1794 trace_sched_wakeup_new(p, true);
1795 check_preempt_curr(rq, p, WF_FORK);
1796 #ifdef CONFIG_SMP
1797 if (p->sched_class->task_woken)
1798 p->sched_class->task_woken(rq, p);
1799 #endif
1800 task_rq_unlock(rq, p, &flags);
1801 }
1802
1803 #ifdef CONFIG_PREEMPT_NOTIFIERS
1804
1805 /**
1806 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1807 * @notifier: notifier struct to register
1808 */
1809 void preempt_notifier_register(struct preempt_notifier *notifier)
1810 {
1811 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1812 }
1813 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1814
1815 /**
1816 * preempt_notifier_unregister - no longer interested in preemption notifications
1817 * @notifier: notifier struct to unregister
1818 *
1819 * This is safe to call from within a preemption notifier.
1820 */
1821 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1822 {
1823 hlist_del(&notifier->link);
1824 }
1825 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1826
1827 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1828 {
1829 struct preempt_notifier *notifier;
1830
1831 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1832 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1833 }
1834
1835 static void
1836 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1837 struct task_struct *next)
1838 {
1839 struct preempt_notifier *notifier;
1840
1841 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1842 notifier->ops->sched_out(notifier, next);
1843 }
1844
1845 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1846
1847 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1848 {
1849 }
1850
1851 static void
1852 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1853 struct task_struct *next)
1854 {
1855 }
1856
1857 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1858
1859 /**
1860 * prepare_task_switch - prepare to switch tasks
1861 * @rq: the runqueue preparing to switch
1862 * @prev: the current task that is being switched out
1863 * @next: the task we are going to switch to.
1864 *
1865 * This is called with the rq lock held and interrupts off. It must
1866 * be paired with a subsequent finish_task_switch after the context
1867 * switch.
1868 *
1869 * prepare_task_switch sets up locking and calls architecture specific
1870 * hooks.
1871 */
1872 static inline void
1873 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1874 struct task_struct *next)
1875 {
1876 trace_sched_switch(prev, next);
1877 sched_info_switch(prev, next);
1878 perf_event_task_sched_out(prev, next);
1879 fire_sched_out_preempt_notifiers(prev, next);
1880 prepare_lock_switch(rq, next);
1881 prepare_arch_switch(next);
1882 }
1883
1884 /**
1885 * finish_task_switch - clean up after a task-switch
1886 * @rq: runqueue associated with task-switch
1887 * @prev: the thread we just switched away from.
1888 *
1889 * finish_task_switch must be called after the context switch, paired
1890 * with a prepare_task_switch call before the context switch.
1891 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1892 * and do any other architecture-specific cleanup actions.
1893 *
1894 * Note that we may have delayed dropping an mm in context_switch(). If
1895 * so, we finish that here outside of the runqueue lock. (Doing it
1896 * with the lock held can cause deadlocks; see schedule() for
1897 * details.)
1898 */
1899 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1900 __releases(rq->lock)
1901 {
1902 struct mm_struct *mm = rq->prev_mm;
1903 long prev_state;
1904
1905 rq->prev_mm = NULL;
1906
1907 /*
1908 * A task struct has one reference for the use as "current".
1909 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1910 * schedule one last time. The schedule call will never return, and
1911 * the scheduled task must drop that reference.
1912 * The test for TASK_DEAD must occur while the runqueue locks are
1913 * still held, otherwise prev could be scheduled on another cpu, die
1914 * there before we look at prev->state, and then the reference would
1915 * be dropped twice.
1916 * Manfred Spraul <manfred@colorfullife.com>
1917 */
1918 prev_state = prev->state;
1919 vtime_task_switch(prev);
1920 finish_arch_switch(prev);
1921 perf_event_task_sched_in(prev, current);
1922 finish_lock_switch(rq, prev);
1923 finish_arch_post_lock_switch();
1924
1925 fire_sched_in_preempt_notifiers(current);
1926 if (mm)
1927 mmdrop(mm);
1928 if (unlikely(prev_state == TASK_DEAD)) {
1929 /*
1930 * Remove function-return probe instances associated with this
1931 * task and put them back on the free list.
1932 */
1933 kprobe_flush_task(prev);
1934 put_task_struct(prev);
1935 }
1936
1937 tick_nohz_task_switch(current);
1938 }
1939
1940 #ifdef CONFIG_SMP
1941
1942 /* assumes rq->lock is held */
1943 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1944 {
1945 if (prev->sched_class->pre_schedule)
1946 prev->sched_class->pre_schedule(rq, prev);
1947 }
1948
1949 /* rq->lock is NOT held, but preemption is disabled */
1950 static inline void post_schedule(struct rq *rq)
1951 {
1952 if (rq->post_schedule) {
1953 unsigned long flags;
1954
1955 raw_spin_lock_irqsave(&rq->lock, flags);
1956 if (rq->curr->sched_class->post_schedule)
1957 rq->curr->sched_class->post_schedule(rq);
1958 raw_spin_unlock_irqrestore(&rq->lock, flags);
1959
1960 rq->post_schedule = 0;
1961 }
1962 }
1963
1964 #else
1965
1966 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1967 {
1968 }
1969
1970 static inline void post_schedule(struct rq *rq)
1971 {
1972 }
1973
1974 #endif
1975
1976 /**
1977 * schedule_tail - first thing a freshly forked thread must call.
1978 * @prev: the thread we just switched away from.
1979 */
1980 asmlinkage void schedule_tail(struct task_struct *prev)
1981 __releases(rq->lock)
1982 {
1983 struct rq *rq = this_rq();
1984
1985 finish_task_switch(rq, prev);
1986
1987 /*
1988 * FIXME: do we need to worry about rq being invalidated by the
1989 * task_switch?
1990 */
1991 post_schedule(rq);
1992
1993 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1994 /* In this case, finish_task_switch does not reenable preemption */
1995 preempt_enable();
1996 #endif
1997 if (current->set_child_tid)
1998 put_user(task_pid_vnr(current), current->set_child_tid);
1999 }
2000
2001 /*
2002 * context_switch - switch to the new MM and the new
2003 * thread's register state.
2004 */
2005 static inline void
2006 context_switch(struct rq *rq, struct task_struct *prev,
2007 struct task_struct *next)
2008 {
2009 struct mm_struct *mm, *oldmm;
2010
2011 prepare_task_switch(rq, prev, next);
2012
2013 mm = next->mm;
2014 oldmm = prev->active_mm;
2015 /*
2016 * For paravirt, this is coupled with an exit in switch_to to
2017 * combine the page table reload and the switch backend into
2018 * one hypercall.
2019 */
2020 arch_start_context_switch(prev);
2021
2022 if (!mm) {
2023 next->active_mm = oldmm;
2024 atomic_inc(&oldmm->mm_count);
2025 enter_lazy_tlb(oldmm, next);
2026 } else
2027 switch_mm(oldmm, mm, next);
2028
2029 if (!prev->mm) {
2030 prev->active_mm = NULL;
2031 rq->prev_mm = oldmm;
2032 }
2033 /*
2034 * Since the runqueue lock will be released by the next
2035 * task (which is an invalid locking op but in the case
2036 * of the scheduler it's an obvious special-case), so we
2037 * do an early lockdep release here:
2038 */
2039 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2040 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2041 #endif
2042
2043 context_tracking_task_switch(prev, next);
2044 /* Here we just switch the register state and the stack. */
2045 switch_to(prev, next, prev);
2046
2047 barrier();
2048 /*
2049 * this_rq must be evaluated again because prev may have moved
2050 * CPUs since it called schedule(), thus the 'rq' on its stack
2051 * frame will be invalid.
2052 */
2053 finish_task_switch(this_rq(), prev);
2054 }
2055
2056 /*
2057 * nr_running and nr_context_switches:
2058 *
2059 * externally visible scheduler statistics: current number of runnable
2060 * threads, total number of context switches performed since bootup.
2061 */
2062 unsigned long nr_running(void)
2063 {
2064 unsigned long i, sum = 0;
2065
2066 for_each_online_cpu(i)
2067 sum += cpu_rq(i)->nr_running;
2068
2069 return sum;
2070 }
2071
2072 unsigned long long nr_context_switches(void)
2073 {
2074 int i;
2075 unsigned long long sum = 0;
2076
2077 for_each_possible_cpu(i)
2078 sum += cpu_rq(i)->nr_switches;
2079
2080 return sum;
2081 }
2082
2083 unsigned long nr_iowait(void)
2084 {
2085 unsigned long i, sum = 0;
2086
2087 for_each_possible_cpu(i)
2088 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2089
2090 return sum;
2091 }
2092
2093 unsigned long nr_iowait_cpu(int cpu)
2094 {
2095 struct rq *this = cpu_rq(cpu);
2096 return atomic_read(&this->nr_iowait);
2097 }
2098
2099 unsigned long this_cpu_load(void)
2100 {
2101 struct rq *this = this_rq();
2102 return this->cpu_load[0];
2103 }
2104
2105
2106 /*
2107 * Global load-average calculations
2108 *
2109 * We take a distributed and async approach to calculating the global load-avg
2110 * in order to minimize overhead.
2111 *
2112 * The global load average is an exponentially decaying average of nr_running +
2113 * nr_uninterruptible.
2114 *
2115 * Once every LOAD_FREQ:
2116 *
2117 * nr_active = 0;
2118 * for_each_possible_cpu(cpu)
2119 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2120 *
2121 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2122 *
2123 * Due to a number of reasons the above turns in the mess below:
2124 *
2125 * - for_each_possible_cpu() is prohibitively expensive on machines with
2126 * serious number of cpus, therefore we need to take a distributed approach
2127 * to calculating nr_active.
2128 *
2129 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2130 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2131 *
2132 * So assuming nr_active := 0 when we start out -- true per definition, we
2133 * can simply take per-cpu deltas and fold those into a global accumulate
2134 * to obtain the same result. See calc_load_fold_active().
2135 *
2136 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2137 * across the machine, we assume 10 ticks is sufficient time for every
2138 * cpu to have completed this task.
2139 *
2140 * This places an upper-bound on the IRQ-off latency of the machine. Then
2141 * again, being late doesn't loose the delta, just wrecks the sample.
2142 *
2143 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2144 * this would add another cross-cpu cacheline miss and atomic operation
2145 * to the wakeup path. Instead we increment on whatever cpu the task ran
2146 * when it went into uninterruptible state and decrement on whatever cpu
2147 * did the wakeup. This means that only the sum of nr_uninterruptible over
2148 * all cpus yields the correct result.
2149 *
2150 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2151 */
2152
2153 /* Variables and functions for calc_load */
2154 static atomic_long_t calc_load_tasks;
2155 static unsigned long calc_load_update;
2156 unsigned long avenrun[3];
2157 EXPORT_SYMBOL(avenrun); /* should be removed */
2158
2159 /**
2160 * get_avenrun - get the load average array
2161 * @loads: pointer to dest load array
2162 * @offset: offset to add
2163 * @shift: shift count to shift the result left
2164 *
2165 * These values are estimates at best, so no need for locking.
2166 */
2167 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2168 {
2169 loads[0] = (avenrun[0] + offset) << shift;
2170 loads[1] = (avenrun[1] + offset) << shift;
2171 loads[2] = (avenrun[2] + offset) << shift;
2172 }
2173
2174 static long calc_load_fold_active(struct rq *this_rq)
2175 {
2176 long nr_active, delta = 0;
2177
2178 nr_active = this_rq->nr_running;
2179 nr_active += (long) this_rq->nr_uninterruptible;
2180
2181 if (nr_active != this_rq->calc_load_active) {
2182 delta = nr_active - this_rq->calc_load_active;
2183 this_rq->calc_load_active = nr_active;
2184 }
2185
2186 return delta;
2187 }
2188
2189 /*
2190 * a1 = a0 * e + a * (1 - e)
2191 */
2192 static unsigned long
2193 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2194 {
2195 load *= exp;
2196 load += active * (FIXED_1 - exp);
2197 load += 1UL << (FSHIFT - 1);
2198 return load >> FSHIFT;
2199 }
2200
2201 #ifdef CONFIG_NO_HZ_COMMON
2202 /*
2203 * Handle NO_HZ for the global load-average.
2204 *
2205 * Since the above described distributed algorithm to compute the global
2206 * load-average relies on per-cpu sampling from the tick, it is affected by
2207 * NO_HZ.
2208 *
2209 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2210 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2211 * when we read the global state.
2212 *
2213 * Obviously reality has to ruin such a delightfully simple scheme:
2214 *
2215 * - When we go NO_HZ idle during the window, we can negate our sample
2216 * contribution, causing under-accounting.
2217 *
2218 * We avoid this by keeping two idle-delta counters and flipping them
2219 * when the window starts, thus separating old and new NO_HZ load.
2220 *
2221 * The only trick is the slight shift in index flip for read vs write.
2222 *
2223 * 0s 5s 10s 15s
2224 * +10 +10 +10 +10
2225 * |-|-----------|-|-----------|-|-----------|-|
2226 * r:0 0 1 1 0 0 1 1 0
2227 * w:0 1 1 0 0 1 1 0 0
2228 *
2229 * This ensures we'll fold the old idle contribution in this window while
2230 * accumlating the new one.
2231 *
2232 * - When we wake up from NO_HZ idle during the window, we push up our
2233 * contribution, since we effectively move our sample point to a known
2234 * busy state.
2235 *
2236 * This is solved by pushing the window forward, and thus skipping the
2237 * sample, for this cpu (effectively using the idle-delta for this cpu which
2238 * was in effect at the time the window opened). This also solves the issue
2239 * of having to deal with a cpu having been in NOHZ idle for multiple
2240 * LOAD_FREQ intervals.
2241 *
2242 * When making the ILB scale, we should try to pull this in as well.
2243 */
2244 static atomic_long_t calc_load_idle[2];
2245 static int calc_load_idx;
2246
2247 static inline int calc_load_write_idx(void)
2248 {
2249 int idx = calc_load_idx;
2250
2251 /*
2252 * See calc_global_nohz(), if we observe the new index, we also
2253 * need to observe the new update time.
2254 */
2255 smp_rmb();
2256
2257 /*
2258 * If the folding window started, make sure we start writing in the
2259 * next idle-delta.
2260 */
2261 if (!time_before(jiffies, calc_load_update))
2262 idx++;
2263
2264 return idx & 1;
2265 }
2266
2267 static inline int calc_load_read_idx(void)
2268 {
2269 return calc_load_idx & 1;
2270 }
2271
2272 void calc_load_enter_idle(void)
2273 {
2274 struct rq *this_rq = this_rq();
2275 long delta;
2276
2277 /*
2278 * We're going into NOHZ mode, if there's any pending delta, fold it
2279 * into the pending idle delta.
2280 */
2281 delta = calc_load_fold_active(this_rq);
2282 if (delta) {
2283 int idx = calc_load_write_idx();
2284 atomic_long_add(delta, &calc_load_idle[idx]);
2285 }
2286 }
2287
2288 void calc_load_exit_idle(void)
2289 {
2290 struct rq *this_rq = this_rq();
2291
2292 /*
2293 * If we're still before the sample window, we're done.
2294 */
2295 if (time_before(jiffies, this_rq->calc_load_update))
2296 return;
2297
2298 /*
2299 * We woke inside or after the sample window, this means we're already
2300 * accounted through the nohz accounting, so skip the entire deal and
2301 * sync up for the next window.
2302 */
2303 this_rq->calc_load_update = calc_load_update;
2304 if (time_before(jiffies, this_rq->calc_load_update + 10))
2305 this_rq->calc_load_update += LOAD_FREQ;
2306 }
2307
2308 static long calc_load_fold_idle(void)
2309 {
2310 int idx = calc_load_read_idx();
2311 long delta = 0;
2312
2313 if (atomic_long_read(&calc_load_idle[idx]))
2314 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2315
2316 return delta;
2317 }
2318
2319 /**
2320 * fixed_power_int - compute: x^n, in O(log n) time
2321 *
2322 * @x: base of the power
2323 * @frac_bits: fractional bits of @x
2324 * @n: power to raise @x to.
2325 *
2326 * By exploiting the relation between the definition of the natural power
2327 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2328 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2329 * (where: n_i \elem {0, 1}, the binary vector representing n),
2330 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2331 * of course trivially computable in O(log_2 n), the length of our binary
2332 * vector.
2333 */
2334 static unsigned long
2335 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2336 {
2337 unsigned long result = 1UL << frac_bits;
2338
2339 if (n) for (;;) {
2340 if (n & 1) {
2341 result *= x;
2342 result += 1UL << (frac_bits - 1);
2343 result >>= frac_bits;
2344 }
2345 n >>= 1;
2346 if (!n)
2347 break;
2348 x *= x;
2349 x += 1UL << (frac_bits - 1);
2350 x >>= frac_bits;
2351 }
2352
2353 return result;
2354 }
2355
2356 /*
2357 * a1 = a0 * e + a * (1 - e)
2358 *
2359 * a2 = a1 * e + a * (1 - e)
2360 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2361 * = a0 * e^2 + a * (1 - e) * (1 + e)
2362 *
2363 * a3 = a2 * e + a * (1 - e)
2364 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2365 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2366 *
2367 * ...
2368 *
2369 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2370 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2371 * = a0 * e^n + a * (1 - e^n)
2372 *
2373 * [1] application of the geometric series:
2374 *
2375 * n 1 - x^(n+1)
2376 * S_n := \Sum x^i = -------------
2377 * i=0 1 - x
2378 */
2379 static unsigned long
2380 calc_load_n(unsigned long load, unsigned long exp,
2381 unsigned long active, unsigned int n)
2382 {
2383
2384 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2385 }
2386
2387 /*
2388 * NO_HZ can leave us missing all per-cpu ticks calling
2389 * calc_load_account_active(), but since an idle CPU folds its delta into
2390 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2391 * in the pending idle delta if our idle period crossed a load cycle boundary.
2392 *
2393 * Once we've updated the global active value, we need to apply the exponential
2394 * weights adjusted to the number of cycles missed.
2395 */
2396 static void calc_global_nohz(void)
2397 {
2398 long delta, active, n;
2399
2400 if (!time_before(jiffies, calc_load_update + 10)) {
2401 /*
2402 * Catch-up, fold however many we are behind still
2403 */
2404 delta = jiffies - calc_load_update - 10;
2405 n = 1 + (delta / LOAD_FREQ);
2406
2407 active = atomic_long_read(&calc_load_tasks);
2408 active = active > 0 ? active * FIXED_1 : 0;
2409
2410 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2411 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2412 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2413
2414 calc_load_update += n * LOAD_FREQ;
2415 }
2416
2417 /*
2418 * Flip the idle index...
2419 *
2420 * Make sure we first write the new time then flip the index, so that
2421 * calc_load_write_idx() will see the new time when it reads the new
2422 * index, this avoids a double flip messing things up.
2423 */
2424 smp_wmb();
2425 calc_load_idx++;
2426 }
2427 #else /* !CONFIG_NO_HZ_COMMON */
2428
2429 static inline long calc_load_fold_idle(void) { return 0; }
2430 static inline void calc_global_nohz(void) { }
2431
2432 #endif /* CONFIG_NO_HZ_COMMON */
2433
2434 /*
2435 * calc_load - update the avenrun load estimates 10 ticks after the
2436 * CPUs have updated calc_load_tasks.
2437 */
2438 void calc_global_load(unsigned long ticks)
2439 {
2440 long active, delta;
2441
2442 if (time_before(jiffies, calc_load_update + 10))
2443 return;
2444
2445 /*
2446 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2447 */
2448 delta = calc_load_fold_idle();
2449 if (delta)
2450 atomic_long_add(delta, &calc_load_tasks);
2451
2452 active = atomic_long_read(&calc_load_tasks);
2453 active = active > 0 ? active * FIXED_1 : 0;
2454
2455 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2456 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2457 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2458
2459 calc_load_update += LOAD_FREQ;
2460
2461 /*
2462 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2463 */
2464 calc_global_nohz();
2465 }
2466
2467 /*
2468 * Called from update_cpu_load() to periodically update this CPU's
2469 * active count.
2470 */
2471 static void calc_load_account_active(struct rq *this_rq)
2472 {
2473 long delta;
2474
2475 if (time_before(jiffies, this_rq->calc_load_update))
2476 return;
2477
2478 delta = calc_load_fold_active(this_rq);
2479 if (delta)
2480 atomic_long_add(delta, &calc_load_tasks);
2481
2482 this_rq->calc_load_update += LOAD_FREQ;
2483 }
2484
2485 /*
2486 * End of global load-average stuff
2487 */
2488
2489 /*
2490 * The exact cpuload at various idx values, calculated at every tick would be
2491 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2492 *
2493 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2494 * on nth tick when cpu may be busy, then we have:
2495 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2496 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2497 *
2498 * decay_load_missed() below does efficient calculation of
2499 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2500 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2501 *
2502 * The calculation is approximated on a 128 point scale.
2503 * degrade_zero_ticks is the number of ticks after which load at any
2504 * particular idx is approximated to be zero.
2505 * degrade_factor is a precomputed table, a row for each load idx.
2506 * Each column corresponds to degradation factor for a power of two ticks,
2507 * based on 128 point scale.
2508 * Example:
2509 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2510 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2511 *
2512 * With this power of 2 load factors, we can degrade the load n times
2513 * by looking at 1 bits in n and doing as many mult/shift instead of
2514 * n mult/shifts needed by the exact degradation.
2515 */
2516 #define DEGRADE_SHIFT 7
2517 static const unsigned char
2518 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2519 static const unsigned char
2520 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2521 {0, 0, 0, 0, 0, 0, 0, 0},
2522 {64, 32, 8, 0, 0, 0, 0, 0},
2523 {96, 72, 40, 12, 1, 0, 0},
2524 {112, 98, 75, 43, 15, 1, 0},
2525 {120, 112, 98, 76, 45, 16, 2} };
2526
2527 /*
2528 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2529 * would be when CPU is idle and so we just decay the old load without
2530 * adding any new load.
2531 */
2532 static unsigned long
2533 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2534 {
2535 int j = 0;
2536
2537 if (!missed_updates)
2538 return load;
2539
2540 if (missed_updates >= degrade_zero_ticks[idx])
2541 return 0;
2542
2543 if (idx == 1)
2544 return load >> missed_updates;
2545
2546 while (missed_updates) {
2547 if (missed_updates % 2)
2548 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2549
2550 missed_updates >>= 1;
2551 j++;
2552 }
2553 return load;
2554 }
2555
2556 /*
2557 * Update rq->cpu_load[] statistics. This function is usually called every
2558 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2559 * every tick. We fix it up based on jiffies.
2560 */
2561 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2562 unsigned long pending_updates)
2563 {
2564 int i, scale;
2565
2566 this_rq->nr_load_updates++;
2567
2568 /* Update our load: */
2569 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2570 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2571 unsigned long old_load, new_load;
2572
2573 /* scale is effectively 1 << i now, and >> i divides by scale */
2574
2575 old_load = this_rq->cpu_load[i];
2576 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2577 new_load = this_load;
2578 /*
2579 * Round up the averaging division if load is increasing. This
2580 * prevents us from getting stuck on 9 if the load is 10, for
2581 * example.
2582 */
2583 if (new_load > old_load)
2584 new_load += scale - 1;
2585
2586 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2587 }
2588
2589 sched_avg_update(this_rq);
2590 }
2591
2592 #ifdef CONFIG_NO_HZ_COMMON
2593 /*
2594 * There is no sane way to deal with nohz on smp when using jiffies because the
2595 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2596 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2597 *
2598 * Therefore we cannot use the delta approach from the regular tick since that
2599 * would seriously skew the load calculation. However we'll make do for those
2600 * updates happening while idle (nohz_idle_balance) or coming out of idle
2601 * (tick_nohz_idle_exit).
2602 *
2603 * This means we might still be one tick off for nohz periods.
2604 */
2605
2606 /*
2607 * Called from nohz_idle_balance() to update the load ratings before doing the
2608 * idle balance.
2609 */
2610 void update_idle_cpu_load(struct rq *this_rq)
2611 {
2612 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2613 unsigned long load = this_rq->load.weight;
2614 unsigned long pending_updates;
2615
2616 /*
2617 * bail if there's load or we're actually up-to-date.
2618 */
2619 if (load || curr_jiffies == this_rq->last_load_update_tick)
2620 return;
2621
2622 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2623 this_rq->last_load_update_tick = curr_jiffies;
2624
2625 __update_cpu_load(this_rq, load, pending_updates);
2626 }
2627
2628 /*
2629 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2630 */
2631 void update_cpu_load_nohz(void)
2632 {
2633 struct rq *this_rq = this_rq();
2634 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2635 unsigned long pending_updates;
2636
2637 if (curr_jiffies == this_rq->last_load_update_tick)
2638 return;
2639
2640 raw_spin_lock(&this_rq->lock);
2641 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2642 if (pending_updates) {
2643 this_rq->last_load_update_tick = curr_jiffies;
2644 /*
2645 * We were idle, this means load 0, the current load might be
2646 * !0 due to remote wakeups and the sort.
2647 */
2648 __update_cpu_load(this_rq, 0, pending_updates);
2649 }
2650 raw_spin_unlock(&this_rq->lock);
2651 }
2652 #endif /* CONFIG_NO_HZ_COMMON */
2653
2654 /*
2655 * Called from scheduler_tick()
2656 */
2657 static void update_cpu_load_active(struct rq *this_rq)
2658 {
2659 /*
2660 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2661 */
2662 this_rq->last_load_update_tick = jiffies;
2663 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2664
2665 calc_load_account_active(this_rq);
2666 }
2667
2668 #ifdef CONFIG_SMP
2669
2670 /*
2671 * sched_exec - execve() is a valuable balancing opportunity, because at
2672 * this point the task has the smallest effective memory and cache footprint.
2673 */
2674 void sched_exec(void)
2675 {
2676 struct task_struct *p = current;
2677 unsigned long flags;
2678 int dest_cpu;
2679
2680 raw_spin_lock_irqsave(&p->pi_lock, flags);
2681 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2682 if (dest_cpu == smp_processor_id())
2683 goto unlock;
2684
2685 if (likely(cpu_active(dest_cpu))) {
2686 struct migration_arg arg = { p, dest_cpu };
2687
2688 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2689 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2690 return;
2691 }
2692 unlock:
2693 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2694 }
2695
2696 #endif
2697
2698 DEFINE_PER_CPU(struct kernel_stat, kstat);
2699 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2700
2701 EXPORT_PER_CPU_SYMBOL(kstat);
2702 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2703
2704 /*
2705 * Return any ns on the sched_clock that have not yet been accounted in
2706 * @p in case that task is currently running.
2707 *
2708 * Called with task_rq_lock() held on @rq.
2709 */
2710 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2711 {
2712 u64 ns = 0;
2713
2714 if (task_current(rq, p)) {
2715 update_rq_clock(rq);
2716 ns = rq->clock_task - p->se.exec_start;
2717 if ((s64)ns < 0)
2718 ns = 0;
2719 }
2720
2721 return ns;
2722 }
2723
2724 unsigned long long task_delta_exec(struct task_struct *p)
2725 {
2726 unsigned long flags;
2727 struct rq *rq;
2728 u64 ns = 0;
2729
2730 rq = task_rq_lock(p, &flags);
2731 ns = do_task_delta_exec(p, rq);
2732 task_rq_unlock(rq, p, &flags);
2733
2734 return ns;
2735 }
2736
2737 /*
2738 * Return accounted runtime for the task.
2739 * In case the task is currently running, return the runtime plus current's
2740 * pending runtime that have not been accounted yet.
2741 */
2742 unsigned long long task_sched_runtime(struct task_struct *p)
2743 {
2744 unsigned long flags;
2745 struct rq *rq;
2746 u64 ns = 0;
2747
2748 rq = task_rq_lock(p, &flags);
2749 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2750 task_rq_unlock(rq, p, &flags);
2751
2752 return ns;
2753 }
2754
2755 /*
2756 * This function gets called by the timer code, with HZ frequency.
2757 * We call it with interrupts disabled.
2758 */
2759 void scheduler_tick(void)
2760 {
2761 int cpu = smp_processor_id();
2762 struct rq *rq = cpu_rq(cpu);
2763 struct task_struct *curr = rq->curr;
2764
2765 sched_clock_tick();
2766
2767 raw_spin_lock(&rq->lock);
2768 update_rq_clock(rq);
2769 update_cpu_load_active(rq);
2770 curr->sched_class->task_tick(rq, curr, 0);
2771 raw_spin_unlock(&rq->lock);
2772
2773 perf_event_task_tick();
2774
2775 #ifdef CONFIG_SMP
2776 rq->idle_balance = idle_cpu(cpu);
2777 trigger_load_balance(rq, cpu);
2778 #endif
2779 rq_last_tick_reset(rq);
2780 }
2781
2782 #ifdef CONFIG_NO_HZ_FULL
2783 /**
2784 * scheduler_tick_max_deferment
2785 *
2786 * Keep at least one tick per second when a single
2787 * active task is running because the scheduler doesn't
2788 * yet completely support full dynticks environment.
2789 *
2790 * This makes sure that uptime, CFS vruntime, load
2791 * balancing, etc... continue to move forward, even
2792 * with a very low granularity.
2793 */
2794 u64 scheduler_tick_max_deferment(void)
2795 {
2796 struct rq *rq = this_rq();
2797 unsigned long next, now = ACCESS_ONCE(jiffies);
2798
2799 next = rq->last_sched_tick + HZ;
2800
2801 if (time_before_eq(next, now))
2802 return 0;
2803
2804 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2805 }
2806 #endif
2807
2808 notrace unsigned long get_parent_ip(unsigned long addr)
2809 {
2810 if (in_lock_functions(addr)) {
2811 addr = CALLER_ADDR2;
2812 if (in_lock_functions(addr))
2813 addr = CALLER_ADDR3;
2814 }
2815 return addr;
2816 }
2817
2818 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2819 defined(CONFIG_PREEMPT_TRACER))
2820
2821 void __kprobes add_preempt_count(int val)
2822 {
2823 #ifdef CONFIG_DEBUG_PREEMPT
2824 /*
2825 * Underflow?
2826 */
2827 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2828 return;
2829 #endif
2830 preempt_count() += val;
2831 #ifdef CONFIG_DEBUG_PREEMPT
2832 /*
2833 * Spinlock count overflowing soon?
2834 */
2835 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2836 PREEMPT_MASK - 10);
2837 #endif
2838 if (preempt_count() == val)
2839 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2840 }
2841 EXPORT_SYMBOL(add_preempt_count);
2842
2843 void __kprobes sub_preempt_count(int val)
2844 {
2845 #ifdef CONFIG_DEBUG_PREEMPT
2846 /*
2847 * Underflow?
2848 */
2849 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2850 return;
2851 /*
2852 * Is the spinlock portion underflowing?
2853 */
2854 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2855 !(preempt_count() & PREEMPT_MASK)))
2856 return;
2857 #endif
2858
2859 if (preempt_count() == val)
2860 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2861 preempt_count() -= val;
2862 }
2863 EXPORT_SYMBOL(sub_preempt_count);
2864
2865 #endif
2866
2867 /*
2868 * Print scheduling while atomic bug:
2869 */
2870 static noinline void __schedule_bug(struct task_struct *prev)
2871 {
2872 if (oops_in_progress)
2873 return;
2874
2875 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2876 prev->comm, prev->pid, preempt_count());
2877
2878 debug_show_held_locks(prev);
2879 print_modules();
2880 if (irqs_disabled())
2881 print_irqtrace_events(prev);
2882 dump_stack();
2883 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2884 }
2885
2886 /*
2887 * Various schedule()-time debugging checks and statistics:
2888 */
2889 static inline void schedule_debug(struct task_struct *prev)
2890 {
2891 /*
2892 * Test if we are atomic. Since do_exit() needs to call into
2893 * schedule() atomically, we ignore that path for now.
2894 * Otherwise, whine if we are scheduling when we should not be.
2895 */
2896 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2897 __schedule_bug(prev);
2898 rcu_sleep_check();
2899
2900 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2901
2902 schedstat_inc(this_rq(), sched_count);
2903 }
2904
2905 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2906 {
2907 if (prev->on_rq || rq->skip_clock_update < 0)
2908 update_rq_clock(rq);
2909 prev->sched_class->put_prev_task(rq, prev);
2910 }
2911
2912 /*
2913 * Pick up the highest-prio task:
2914 */
2915 static inline struct task_struct *
2916 pick_next_task(struct rq *rq)
2917 {
2918 const struct sched_class *class;
2919 struct task_struct *p;
2920
2921 /*
2922 * Optimization: we know that if all tasks are in
2923 * the fair class we can call that function directly:
2924 */
2925 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2926 p = fair_sched_class.pick_next_task(rq);
2927 if (likely(p))
2928 return p;
2929 }
2930
2931 for_each_class(class) {
2932 p = class->pick_next_task(rq);
2933 if (p)
2934 return p;
2935 }
2936
2937 BUG(); /* the idle class will always have a runnable task */
2938 }
2939
2940 /*
2941 * __schedule() is the main scheduler function.
2942 *
2943 * The main means of driving the scheduler and thus entering this function are:
2944 *
2945 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2946 *
2947 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2948 * paths. For example, see arch/x86/entry_64.S.
2949 *
2950 * To drive preemption between tasks, the scheduler sets the flag in timer
2951 * interrupt handler scheduler_tick().
2952 *
2953 * 3. Wakeups don't really cause entry into schedule(). They add a
2954 * task to the run-queue and that's it.
2955 *
2956 * Now, if the new task added to the run-queue preempts the current
2957 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2958 * called on the nearest possible occasion:
2959 *
2960 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2961 *
2962 * - in syscall or exception context, at the next outmost
2963 * preempt_enable(). (this might be as soon as the wake_up()'s
2964 * spin_unlock()!)
2965 *
2966 * - in IRQ context, return from interrupt-handler to
2967 * preemptible context
2968 *
2969 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2970 * then at the next:
2971 *
2972 * - cond_resched() call
2973 * - explicit schedule() call
2974 * - return from syscall or exception to user-space
2975 * - return from interrupt-handler to user-space
2976 */
2977 static void __sched __schedule(void)
2978 {
2979 struct task_struct *prev, *next;
2980 unsigned long *switch_count;
2981 struct rq *rq;
2982 int cpu;
2983
2984 need_resched:
2985 preempt_disable();
2986 cpu = smp_processor_id();
2987 rq = cpu_rq(cpu);
2988 rcu_note_context_switch(cpu);
2989 prev = rq->curr;
2990
2991 schedule_debug(prev);
2992
2993 if (sched_feat(HRTICK))
2994 hrtick_clear(rq);
2995
2996 /*
2997 * Make sure that signal_pending_state()->signal_pending() below
2998 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2999 * done by the caller to avoid the race with signal_wake_up().
3000 */
3001 smp_mb__before_spinlock();
3002 raw_spin_lock_irq(&rq->lock);
3003
3004 switch_count = &prev->nivcsw;
3005 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3006 if (unlikely(signal_pending_state(prev->state, prev))) {
3007 prev->state = TASK_RUNNING;
3008 } else {
3009 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3010 prev->on_rq = 0;
3011
3012 /*
3013 * If a worker went to sleep, notify and ask workqueue
3014 * whether it wants to wake up a task to maintain
3015 * concurrency.
3016 */
3017 if (prev->flags & PF_WQ_WORKER) {
3018 struct task_struct *to_wakeup;
3019
3020 to_wakeup = wq_worker_sleeping(prev, cpu);
3021 if (to_wakeup)
3022 try_to_wake_up_local(to_wakeup);
3023 }
3024 }
3025 switch_count = &prev->nvcsw;
3026 }
3027
3028 pre_schedule(rq, prev);
3029
3030 if (unlikely(!rq->nr_running))
3031 idle_balance(cpu, rq);
3032
3033 put_prev_task(rq, prev);
3034 next = pick_next_task(rq);
3035 clear_tsk_need_resched(prev);
3036 rq->skip_clock_update = 0;
3037
3038 if (likely(prev != next)) {
3039 rq->nr_switches++;
3040 rq->curr = next;
3041 ++*switch_count;
3042
3043 context_switch(rq, prev, next); /* unlocks the rq */
3044 /*
3045 * The context switch have flipped the stack from under us
3046 * and restored the local variables which were saved when
3047 * this task called schedule() in the past. prev == current
3048 * is still correct, but it can be moved to another cpu/rq.
3049 */
3050 cpu = smp_processor_id();
3051 rq = cpu_rq(cpu);
3052 } else
3053 raw_spin_unlock_irq(&rq->lock);
3054
3055 post_schedule(rq);
3056
3057 sched_preempt_enable_no_resched();
3058 if (need_resched())
3059 goto need_resched;
3060 }
3061
3062 static inline void sched_submit_work(struct task_struct *tsk)
3063 {
3064 if (!tsk->state || tsk_is_pi_blocked(tsk))
3065 return;
3066 /*
3067 * If we are going to sleep and we have plugged IO queued,
3068 * make sure to submit it to avoid deadlocks.
3069 */
3070 if (blk_needs_flush_plug(tsk))
3071 blk_schedule_flush_plug(tsk);
3072 }
3073
3074 asmlinkage void __sched schedule(void)
3075 {
3076 struct task_struct *tsk = current;
3077
3078 sched_submit_work(tsk);
3079 __schedule();
3080 }
3081 EXPORT_SYMBOL(schedule);
3082
3083 #ifdef CONFIG_CONTEXT_TRACKING
3084 asmlinkage void __sched schedule_user(void)
3085 {
3086 /*
3087 * If we come here after a random call to set_need_resched(),
3088 * or we have been woken up remotely but the IPI has not yet arrived,
3089 * we haven't yet exited the RCU idle mode. Do it here manually until
3090 * we find a better solution.
3091 */
3092 user_exit();
3093 schedule();
3094 user_enter();
3095 }
3096 #endif
3097
3098 /**
3099 * schedule_preempt_disabled - called with preemption disabled
3100 *
3101 * Returns with preemption disabled. Note: preempt_count must be 1
3102 */
3103 void __sched schedule_preempt_disabled(void)
3104 {
3105 sched_preempt_enable_no_resched();
3106 schedule();
3107 preempt_disable();
3108 }
3109
3110 #ifdef CONFIG_PREEMPT
3111 /*
3112 * this is the entry point to schedule() from in-kernel preemption
3113 * off of preempt_enable. Kernel preemptions off return from interrupt
3114 * occur there and call schedule directly.
3115 */
3116 asmlinkage void __sched notrace preempt_schedule(void)
3117 {
3118 struct thread_info *ti = current_thread_info();
3119
3120 /*
3121 * If there is a non-zero preempt_count or interrupts are disabled,
3122 * we do not want to preempt the current task. Just return..
3123 */
3124 if (likely(ti->preempt_count || irqs_disabled()))
3125 return;
3126
3127 do {
3128 add_preempt_count_notrace(PREEMPT_ACTIVE);
3129 __schedule();
3130 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3131
3132 /*
3133 * Check again in case we missed a preemption opportunity
3134 * between schedule and now.
3135 */
3136 barrier();
3137 } while (need_resched());
3138 }
3139 EXPORT_SYMBOL(preempt_schedule);
3140
3141 /*
3142 * this is the entry point to schedule() from kernel preemption
3143 * off of irq context.
3144 * Note, that this is called and return with irqs disabled. This will
3145 * protect us against recursive calling from irq.
3146 */
3147 asmlinkage void __sched preempt_schedule_irq(void)
3148 {
3149 struct thread_info *ti = current_thread_info();
3150 enum ctx_state prev_state;
3151
3152 /* Catch callers which need to be fixed */
3153 BUG_ON(ti->preempt_count || !irqs_disabled());
3154
3155 prev_state = exception_enter();
3156
3157 do {
3158 add_preempt_count(PREEMPT_ACTIVE);
3159 local_irq_enable();
3160 __schedule();
3161 local_irq_disable();
3162 sub_preempt_count(PREEMPT_ACTIVE);
3163
3164 /*
3165 * Check again in case we missed a preemption opportunity
3166 * between schedule and now.
3167 */
3168 barrier();
3169 } while (need_resched());
3170
3171 exception_exit(prev_state);
3172 }
3173
3174 #endif /* CONFIG_PREEMPT */
3175
3176 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3177 void *key)
3178 {
3179 return try_to_wake_up(curr->private, mode, wake_flags);
3180 }
3181 EXPORT_SYMBOL(default_wake_function);
3182
3183 /*
3184 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3185 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3186 * number) then we wake all the non-exclusive tasks and one exclusive task.
3187 *
3188 * There are circumstances in which we can try to wake a task which has already
3189 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3190 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3191 */
3192 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3193 int nr_exclusive, int wake_flags, void *key)
3194 {
3195 wait_queue_t *curr, *next;
3196
3197 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3198 unsigned flags = curr->flags;
3199
3200 if (curr->func(curr, mode, wake_flags, key) &&
3201 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3202 break;
3203 }
3204 }
3205
3206 /**
3207 * __wake_up - wake up threads blocked on a waitqueue.
3208 * @q: the waitqueue
3209 * @mode: which threads
3210 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3211 * @key: is directly passed to the wakeup function
3212 *
3213 * It may be assumed that this function implies a write memory barrier before
3214 * changing the task state if and only if any tasks are woken up.
3215 */
3216 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3217 int nr_exclusive, void *key)
3218 {
3219 unsigned long flags;
3220
3221 spin_lock_irqsave(&q->lock, flags);
3222 __wake_up_common(q, mode, nr_exclusive, 0, key);
3223 spin_unlock_irqrestore(&q->lock, flags);
3224 }
3225 EXPORT_SYMBOL(__wake_up);
3226
3227 /*
3228 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3229 */
3230 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3231 {
3232 __wake_up_common(q, mode, nr, 0, NULL);
3233 }
3234 EXPORT_SYMBOL_GPL(__wake_up_locked);
3235
3236 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3237 {
3238 __wake_up_common(q, mode, 1, 0, key);
3239 }
3240 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3241
3242 /**
3243 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3244 * @q: the waitqueue
3245 * @mode: which threads
3246 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3247 * @key: opaque value to be passed to wakeup targets
3248 *
3249 * The sync wakeup differs that the waker knows that it will schedule
3250 * away soon, so while the target thread will be woken up, it will not
3251 * be migrated to another CPU - ie. the two threads are 'synchronized'
3252 * with each other. This can prevent needless bouncing between CPUs.
3253 *
3254 * On UP it can prevent extra preemption.
3255 *
3256 * It may be assumed that this function implies a write memory barrier before
3257 * changing the task state if and only if any tasks are woken up.
3258 */
3259 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3260 int nr_exclusive, void *key)
3261 {
3262 unsigned long flags;
3263 int wake_flags = WF_SYNC;
3264
3265 if (unlikely(!q))
3266 return;
3267
3268 if (unlikely(!nr_exclusive))
3269 wake_flags = 0;
3270
3271 spin_lock_irqsave(&q->lock, flags);
3272 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3273 spin_unlock_irqrestore(&q->lock, flags);
3274 }
3275 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3276
3277 /*
3278 * __wake_up_sync - see __wake_up_sync_key()
3279 */
3280 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3281 {
3282 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3283 }
3284 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3285
3286 /**
3287 * complete: - signals a single thread waiting on this completion
3288 * @x: holds the state of this particular completion
3289 *
3290 * This will wake up a single thread waiting on this completion. Threads will be
3291 * awakened in the same order in which they were queued.
3292 *
3293 * See also complete_all(), wait_for_completion() and related routines.
3294 *
3295 * It may be assumed that this function implies a write memory barrier before
3296 * changing the task state if and only if any tasks are woken up.
3297 */
3298 void complete(struct completion *x)
3299 {
3300 unsigned long flags;
3301
3302 spin_lock_irqsave(&x->wait.lock, flags);
3303 x->done++;
3304 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3305 spin_unlock_irqrestore(&x->wait.lock, flags);
3306 }
3307 EXPORT_SYMBOL(complete);
3308
3309 /**
3310 * complete_all: - signals all threads waiting on this completion
3311 * @x: holds the state of this particular completion
3312 *
3313 * This will wake up all threads waiting on this particular completion event.
3314 *
3315 * It may be assumed that this function implies a write memory barrier before
3316 * changing the task state if and only if any tasks are woken up.
3317 */
3318 void complete_all(struct completion *x)
3319 {
3320 unsigned long flags;
3321
3322 spin_lock_irqsave(&x->wait.lock, flags);
3323 x->done += UINT_MAX/2;
3324 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3325 spin_unlock_irqrestore(&x->wait.lock, flags);
3326 }
3327 EXPORT_SYMBOL(complete_all);
3328
3329 static inline long __sched
3330 do_wait_for_common(struct completion *x,
3331 long (*action)(long), long timeout, int state)
3332 {
3333 if (!x->done) {
3334 DECLARE_WAITQUEUE(wait, current);
3335
3336 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3337 do {
3338 if (signal_pending_state(state, current)) {
3339 timeout = -ERESTARTSYS;
3340 break;
3341 }
3342 __set_current_state(state);
3343 spin_unlock_irq(&x->wait.lock);
3344 timeout = action(timeout);
3345 spin_lock_irq(&x->wait.lock);
3346 } while (!x->done && timeout);
3347 __remove_wait_queue(&x->wait, &wait);
3348 if (!x->done)
3349 return timeout;
3350 }
3351 x->done--;
3352 return timeout ?: 1;
3353 }
3354
3355 static inline long __sched
3356 __wait_for_common(struct completion *x,
3357 long (*action)(long), long timeout, int state)
3358 {
3359 might_sleep();
3360
3361 spin_lock_irq(&x->wait.lock);
3362 timeout = do_wait_for_common(x, action, timeout, state);
3363 spin_unlock_irq(&x->wait.lock);
3364 return timeout;
3365 }
3366
3367 static long __sched
3368 wait_for_common(struct completion *x, long timeout, int state)
3369 {
3370 return __wait_for_common(x, schedule_timeout, timeout, state);
3371 }
3372
3373 static long __sched
3374 wait_for_common_io(struct completion *x, long timeout, int state)
3375 {
3376 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3377 }
3378
3379 /**
3380 * wait_for_completion: - waits for completion of a task
3381 * @x: holds the state of this particular completion
3382 *
3383 * This waits to be signaled for completion of a specific task. It is NOT
3384 * interruptible and there is no timeout.
3385 *
3386 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3387 * and interrupt capability. Also see complete().
3388 */
3389 void __sched wait_for_completion(struct completion *x)
3390 {
3391 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3392 }
3393 EXPORT_SYMBOL(wait_for_completion);
3394
3395 /**
3396 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3397 * @x: holds the state of this particular completion
3398 * @timeout: timeout value in jiffies
3399 *
3400 * This waits for either a completion of a specific task to be signaled or for a
3401 * specified timeout to expire. The timeout is in jiffies. It is not
3402 * interruptible.
3403 *
3404 * The return value is 0 if timed out, and positive (at least 1, or number of
3405 * jiffies left till timeout) if completed.
3406 */
3407 unsigned long __sched
3408 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3409 {
3410 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3411 }
3412 EXPORT_SYMBOL(wait_for_completion_timeout);
3413
3414 /**
3415 * wait_for_completion_io: - waits for completion of a task
3416 * @x: holds the state of this particular completion
3417 *
3418 * This waits to be signaled for completion of a specific task. It is NOT
3419 * interruptible and there is no timeout. The caller is accounted as waiting
3420 * for IO.
3421 */
3422 void __sched wait_for_completion_io(struct completion *x)
3423 {
3424 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3425 }
3426 EXPORT_SYMBOL(wait_for_completion_io);
3427
3428 /**
3429 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3430 * @x: holds the state of this particular completion
3431 * @timeout: timeout value in jiffies
3432 *
3433 * This waits for either a completion of a specific task to be signaled or for a
3434 * specified timeout to expire. The timeout is in jiffies. It is not
3435 * interruptible. The caller is accounted as waiting for IO.
3436 *
3437 * The return value is 0 if timed out, and positive (at least 1, or number of
3438 * jiffies left till timeout) if completed.
3439 */
3440 unsigned long __sched
3441 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3442 {
3443 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3444 }
3445 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3446
3447 /**
3448 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3449 * @x: holds the state of this particular completion
3450 *
3451 * This waits for completion of a specific task to be signaled. It is
3452 * interruptible.
3453 *
3454 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3455 */
3456 int __sched wait_for_completion_interruptible(struct completion *x)
3457 {
3458 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3459 if (t == -ERESTARTSYS)
3460 return t;
3461 return 0;
3462 }
3463 EXPORT_SYMBOL(wait_for_completion_interruptible);
3464
3465 /**
3466 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3467 * @x: holds the state of this particular completion
3468 * @timeout: timeout value in jiffies
3469 *
3470 * This waits for either a completion of a specific task to be signaled or for a
3471 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3472 *
3473 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3474 * positive (at least 1, or number of jiffies left till timeout) if completed.
3475 */
3476 long __sched
3477 wait_for_completion_interruptible_timeout(struct completion *x,
3478 unsigned long timeout)
3479 {
3480 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3481 }
3482 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3483
3484 /**
3485 * wait_for_completion_killable: - waits for completion of a task (killable)
3486 * @x: holds the state of this particular completion
3487 *
3488 * This waits to be signaled for completion of a specific task. It can be
3489 * interrupted by a kill signal.
3490 *
3491 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3492 */
3493 int __sched wait_for_completion_killable(struct completion *x)
3494 {
3495 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3496 if (t == -ERESTARTSYS)
3497 return t;
3498 return 0;
3499 }
3500 EXPORT_SYMBOL(wait_for_completion_killable);
3501
3502 /**
3503 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3504 * @x: holds the state of this particular completion
3505 * @timeout: timeout value in jiffies
3506 *
3507 * This waits for either a completion of a specific task to be
3508 * signaled or for a specified timeout to expire. It can be
3509 * interrupted by a kill signal. The timeout is in jiffies.
3510 *
3511 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3512 * positive (at least 1, or number of jiffies left till timeout) if completed.
3513 */
3514 long __sched
3515 wait_for_completion_killable_timeout(struct completion *x,
3516 unsigned long timeout)
3517 {
3518 return wait_for_common(x, timeout, TASK_KILLABLE);
3519 }
3520 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3521
3522 /**
3523 * try_wait_for_completion - try to decrement a completion without blocking
3524 * @x: completion structure
3525 *
3526 * Returns: 0 if a decrement cannot be done without blocking
3527 * 1 if a decrement succeeded.
3528 *
3529 * If a completion is being used as a counting completion,
3530 * attempt to decrement the counter without blocking. This
3531 * enables us to avoid waiting if the resource the completion
3532 * is protecting is not available.
3533 */
3534 bool try_wait_for_completion(struct completion *x)
3535 {
3536 unsigned long flags;
3537 int ret = 1;
3538
3539 spin_lock_irqsave(&x->wait.lock, flags);
3540 if (!x->done)
3541 ret = 0;
3542 else
3543 x->done--;
3544 spin_unlock_irqrestore(&x->wait.lock, flags);
3545 return ret;
3546 }
3547 EXPORT_SYMBOL(try_wait_for_completion);
3548
3549 /**
3550 * completion_done - Test to see if a completion has any waiters
3551 * @x: completion structure
3552 *
3553 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3554 * 1 if there are no waiters.
3555 *
3556 */
3557 bool completion_done(struct completion *x)
3558 {
3559 unsigned long flags;
3560 int ret = 1;
3561
3562 spin_lock_irqsave(&x->wait.lock, flags);
3563 if (!x->done)
3564 ret = 0;
3565 spin_unlock_irqrestore(&x->wait.lock, flags);
3566 return ret;
3567 }
3568 EXPORT_SYMBOL(completion_done);
3569
3570 static long __sched
3571 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3572 {
3573 unsigned long flags;
3574 wait_queue_t wait;
3575
3576 init_waitqueue_entry(&wait, current);
3577
3578 __set_current_state(state);
3579
3580 spin_lock_irqsave(&q->lock, flags);
3581 __add_wait_queue(q, &wait);
3582 spin_unlock(&q->lock);
3583 timeout = schedule_timeout(timeout);
3584 spin_lock_irq(&q->lock);
3585 __remove_wait_queue(q, &wait);
3586 spin_unlock_irqrestore(&q->lock, flags);
3587
3588 return timeout;
3589 }
3590
3591 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3592 {
3593 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3594 }
3595 EXPORT_SYMBOL(interruptible_sleep_on);
3596
3597 long __sched
3598 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3599 {
3600 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3601 }
3602 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3603
3604 void __sched sleep_on(wait_queue_head_t *q)
3605 {
3606 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3607 }
3608 EXPORT_SYMBOL(sleep_on);
3609
3610 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3611 {
3612 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3613 }
3614 EXPORT_SYMBOL(sleep_on_timeout);
3615
3616 #ifdef CONFIG_RT_MUTEXES
3617
3618 /*
3619 * rt_mutex_setprio - set the current priority of a task
3620 * @p: task
3621 * @prio: prio value (kernel-internal form)
3622 *
3623 * This function changes the 'effective' priority of a task. It does
3624 * not touch ->normal_prio like __setscheduler().
3625 *
3626 * Used by the rt_mutex code to implement priority inheritance logic.
3627 */
3628 void rt_mutex_setprio(struct task_struct *p, int prio)
3629 {
3630 int oldprio, on_rq, running;
3631 struct rq *rq;
3632 const struct sched_class *prev_class;
3633
3634 BUG_ON(prio < 0 || prio > MAX_PRIO);
3635
3636 rq = __task_rq_lock(p);
3637
3638 /*
3639 * Idle task boosting is a nono in general. There is one
3640 * exception, when PREEMPT_RT and NOHZ is active:
3641 *
3642 * The idle task calls get_next_timer_interrupt() and holds
3643 * the timer wheel base->lock on the CPU and another CPU wants
3644 * to access the timer (probably to cancel it). We can safely
3645 * ignore the boosting request, as the idle CPU runs this code
3646 * with interrupts disabled and will complete the lock
3647 * protected section without being interrupted. So there is no
3648 * real need to boost.
3649 */
3650 if (unlikely(p == rq->idle)) {
3651 WARN_ON(p != rq->curr);
3652 WARN_ON(p->pi_blocked_on);
3653 goto out_unlock;
3654 }
3655
3656 trace_sched_pi_setprio(p, prio);
3657 oldprio = p->prio;
3658 prev_class = p->sched_class;
3659 on_rq = p->on_rq;
3660 running = task_current(rq, p);
3661 if (on_rq)
3662 dequeue_task(rq, p, 0);
3663 if (running)
3664 p->sched_class->put_prev_task(rq, p);
3665
3666 if (rt_prio(prio))
3667 p->sched_class = &rt_sched_class;
3668 else
3669 p->sched_class = &fair_sched_class;
3670
3671 p->prio = prio;
3672
3673 if (running)
3674 p->sched_class->set_curr_task(rq);
3675 if (on_rq)
3676 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3677
3678 check_class_changed(rq, p, prev_class, oldprio);
3679 out_unlock:
3680 __task_rq_unlock(rq);
3681 }
3682 #endif
3683 void set_user_nice(struct task_struct *p, long nice)
3684 {
3685 int old_prio, delta, on_rq;
3686 unsigned long flags;
3687 struct rq *rq;
3688
3689 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3690 return;
3691 /*
3692 * We have to be careful, if called from sys_setpriority(),
3693 * the task might be in the middle of scheduling on another CPU.
3694 */
3695 rq = task_rq_lock(p, &flags);
3696 /*
3697 * The RT priorities are set via sched_setscheduler(), but we still
3698 * allow the 'normal' nice value to be set - but as expected
3699 * it wont have any effect on scheduling until the task is
3700 * SCHED_FIFO/SCHED_RR:
3701 */
3702 if (task_has_rt_policy(p)) {
3703 p->static_prio = NICE_TO_PRIO(nice);
3704 goto out_unlock;
3705 }
3706 on_rq = p->on_rq;
3707 if (on_rq)
3708 dequeue_task(rq, p, 0);
3709
3710 p->static_prio = NICE_TO_PRIO(nice);
3711 set_load_weight(p);
3712 old_prio = p->prio;
3713 p->prio = effective_prio(p);
3714 delta = p->prio - old_prio;
3715
3716 if (on_rq) {
3717 enqueue_task(rq, p, 0);
3718 /*
3719 * If the task increased its priority or is running and
3720 * lowered its priority, then reschedule its CPU:
3721 */
3722 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3723 resched_task(rq->curr);
3724 }
3725 out_unlock:
3726 task_rq_unlock(rq, p, &flags);
3727 }
3728 EXPORT_SYMBOL(set_user_nice);
3729
3730 /*
3731 * can_nice - check if a task can reduce its nice value
3732 * @p: task
3733 * @nice: nice value
3734 */
3735 int can_nice(const struct task_struct *p, const int nice)
3736 {
3737 /* convert nice value [19,-20] to rlimit style value [1,40] */
3738 int nice_rlim = 20 - nice;
3739
3740 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3741 capable(CAP_SYS_NICE));
3742 }
3743
3744 #ifdef __ARCH_WANT_SYS_NICE
3745
3746 /*
3747 * sys_nice - change the priority of the current process.
3748 * @increment: priority increment
3749 *
3750 * sys_setpriority is a more generic, but much slower function that
3751 * does similar things.
3752 */
3753 SYSCALL_DEFINE1(nice, int, increment)
3754 {
3755 long nice, retval;
3756
3757 /*
3758 * Setpriority might change our priority at the same moment.
3759 * We don't have to worry. Conceptually one call occurs first
3760 * and we have a single winner.
3761 */
3762 if (increment < -40)
3763 increment = -40;
3764 if (increment > 40)
3765 increment = 40;
3766
3767 nice = TASK_NICE(current) + increment;
3768 if (nice < -20)
3769 nice = -20;
3770 if (nice > 19)
3771 nice = 19;
3772
3773 if (increment < 0 && !can_nice(current, nice))
3774 return -EPERM;
3775
3776 retval = security_task_setnice(current, nice);
3777 if (retval)
3778 return retval;
3779
3780 set_user_nice(current, nice);
3781 return 0;
3782 }
3783
3784 #endif
3785
3786 /**
3787 * task_prio - return the priority value of a given task.
3788 * @p: the task in question.
3789 *
3790 * This is the priority value as seen by users in /proc.
3791 * RT tasks are offset by -200. Normal tasks are centered
3792 * around 0, value goes from -16 to +15.
3793 */
3794 int task_prio(const struct task_struct *p)
3795 {
3796 return p->prio - MAX_RT_PRIO;
3797 }
3798
3799 /**
3800 * task_nice - return the nice value of a given task.
3801 * @p: the task in question.
3802 */
3803 int task_nice(const struct task_struct *p)
3804 {
3805 return TASK_NICE(p);
3806 }
3807 EXPORT_SYMBOL(task_nice);
3808
3809 /**
3810 * idle_cpu - is a given cpu idle currently?
3811 * @cpu: the processor in question.
3812 */
3813 int idle_cpu(int cpu)
3814 {
3815 struct rq *rq = cpu_rq(cpu);
3816
3817 if (rq->curr != rq->idle)
3818 return 0;
3819
3820 if (rq->nr_running)
3821 return 0;
3822
3823 #ifdef CONFIG_SMP
3824 if (!llist_empty(&rq->wake_list))
3825 return 0;
3826 #endif
3827
3828 return 1;
3829 }
3830
3831 /**
3832 * idle_task - return the idle task for a given cpu.
3833 * @cpu: the processor in question.
3834 */
3835 struct task_struct *idle_task(int cpu)
3836 {
3837 return cpu_rq(cpu)->idle;
3838 }
3839
3840 /**
3841 * find_process_by_pid - find a process with a matching PID value.
3842 * @pid: the pid in question.
3843 */
3844 static struct task_struct *find_process_by_pid(pid_t pid)
3845 {
3846 return pid ? find_task_by_vpid(pid) : current;
3847 }
3848
3849 /* Actually do priority change: must hold rq lock. */
3850 static void
3851 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3852 {
3853 p->policy = policy;
3854 p->rt_priority = prio;
3855 p->normal_prio = normal_prio(p);
3856 /* we are holding p->pi_lock already */
3857 p->prio = rt_mutex_getprio(p);
3858 if (rt_prio(p->prio))
3859 p->sched_class = &rt_sched_class;
3860 else
3861 p->sched_class = &fair_sched_class;
3862 set_load_weight(p);
3863 }
3864
3865 /*
3866 * check the target process has a UID that matches the current process's
3867 */
3868 static bool check_same_owner(struct task_struct *p)
3869 {
3870 const struct cred *cred = current_cred(), *pcred;
3871 bool match;
3872
3873 rcu_read_lock();
3874 pcred = __task_cred(p);
3875 match = (uid_eq(cred->euid, pcred->euid) ||
3876 uid_eq(cred->euid, pcred->uid));
3877 rcu_read_unlock();
3878 return match;
3879 }
3880
3881 static int __sched_setscheduler(struct task_struct *p, int policy,
3882 const struct sched_param *param, bool user)
3883 {
3884 int retval, oldprio, oldpolicy = -1, on_rq, running;
3885 unsigned long flags;
3886 const struct sched_class *prev_class;
3887 struct rq *rq;
3888 int reset_on_fork;
3889
3890 /* may grab non-irq protected spin_locks */
3891 BUG_ON(in_interrupt());
3892 recheck:
3893 /* double check policy once rq lock held */
3894 if (policy < 0) {
3895 reset_on_fork = p->sched_reset_on_fork;
3896 policy = oldpolicy = p->policy;
3897 } else {
3898 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3899 policy &= ~SCHED_RESET_ON_FORK;
3900
3901 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3902 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3903 policy != SCHED_IDLE)
3904 return -EINVAL;
3905 }
3906
3907 /*
3908 * Valid priorities for SCHED_FIFO and SCHED_RR are
3909 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3910 * SCHED_BATCH and SCHED_IDLE is 0.
3911 */
3912 if (param->sched_priority < 0 ||
3913 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3914 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3915 return -EINVAL;
3916 if (rt_policy(policy) != (param->sched_priority != 0))
3917 return -EINVAL;
3918
3919 /*
3920 * Allow unprivileged RT tasks to decrease priority:
3921 */
3922 if (user && !capable(CAP_SYS_NICE)) {
3923 if (rt_policy(policy)) {
3924 unsigned long rlim_rtprio =
3925 task_rlimit(p, RLIMIT_RTPRIO);
3926
3927 /* can't set/change the rt policy */
3928 if (policy != p->policy && !rlim_rtprio)
3929 return -EPERM;
3930
3931 /* can't increase priority */
3932 if (param->sched_priority > p->rt_priority &&
3933 param->sched_priority > rlim_rtprio)
3934 return -EPERM;
3935 }
3936
3937 /*
3938 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3939 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3940 */
3941 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3942 if (!can_nice(p, TASK_NICE(p)))
3943 return -EPERM;
3944 }
3945
3946 /* can't change other user's priorities */
3947 if (!check_same_owner(p))
3948 return -EPERM;
3949
3950 /* Normal users shall not reset the sched_reset_on_fork flag */
3951 if (p->sched_reset_on_fork && !reset_on_fork)
3952 return -EPERM;
3953 }
3954
3955 if (user) {
3956 retval = security_task_setscheduler(p);
3957 if (retval)
3958 return retval;
3959 }
3960
3961 /*
3962 * make sure no PI-waiters arrive (or leave) while we are
3963 * changing the priority of the task:
3964 *
3965 * To be able to change p->policy safely, the appropriate
3966 * runqueue lock must be held.
3967 */
3968 rq = task_rq_lock(p, &flags);
3969
3970 /*
3971 * Changing the policy of the stop threads its a very bad idea
3972 */
3973 if (p == rq->stop) {
3974 task_rq_unlock(rq, p, &flags);
3975 return -EINVAL;
3976 }
3977
3978 /*
3979 * If not changing anything there's no need to proceed further:
3980 */
3981 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3982 param->sched_priority == p->rt_priority))) {
3983 task_rq_unlock(rq, p, &flags);
3984 return 0;
3985 }
3986
3987 #ifdef CONFIG_RT_GROUP_SCHED
3988 if (user) {
3989 /*
3990 * Do not allow realtime tasks into groups that have no runtime
3991 * assigned.
3992 */
3993 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3994 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3995 !task_group_is_autogroup(task_group(p))) {
3996 task_rq_unlock(rq, p, &flags);
3997 return -EPERM;
3998 }
3999 }
4000 #endif
4001
4002 /* recheck policy now with rq lock held */
4003 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4004 policy = oldpolicy = -1;
4005 task_rq_unlock(rq, p, &flags);
4006 goto recheck;
4007 }
4008 on_rq = p->on_rq;
4009 running = task_current(rq, p);
4010 if (on_rq)
4011 dequeue_task(rq, p, 0);
4012 if (running)
4013 p->sched_class->put_prev_task(rq, p);
4014
4015 p->sched_reset_on_fork = reset_on_fork;
4016
4017 oldprio = p->prio;
4018 prev_class = p->sched_class;
4019 __setscheduler(rq, p, policy, param->sched_priority);
4020
4021 if (running)
4022 p->sched_class->set_curr_task(rq);
4023 if (on_rq)
4024 enqueue_task(rq, p, 0);
4025
4026 check_class_changed(rq, p, prev_class, oldprio);
4027 task_rq_unlock(rq, p, &flags);
4028
4029 rt_mutex_adjust_pi(p);
4030
4031 return 0;
4032 }
4033
4034 /**
4035 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4036 * @p: the task in question.
4037 * @policy: new policy.
4038 * @param: structure containing the new RT priority.
4039 *
4040 * NOTE that the task may be already dead.
4041 */
4042 int sched_setscheduler(struct task_struct *p, int policy,
4043 const struct sched_param *param)
4044 {
4045 return __sched_setscheduler(p, policy, param, true);
4046 }
4047 EXPORT_SYMBOL_GPL(sched_setscheduler);
4048
4049 /**
4050 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4051 * @p: the task in question.
4052 * @policy: new policy.
4053 * @param: structure containing the new RT priority.
4054 *
4055 * Just like sched_setscheduler, only don't bother checking if the
4056 * current context has permission. For example, this is needed in
4057 * stop_machine(): we create temporary high priority worker threads,
4058 * but our caller might not have that capability.
4059 */
4060 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4061 const struct sched_param *param)
4062 {
4063 return __sched_setscheduler(p, policy, param, false);
4064 }
4065
4066 static int
4067 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4068 {
4069 struct sched_param lparam;
4070 struct task_struct *p;
4071 int retval;
4072
4073 if (!param || pid < 0)
4074 return -EINVAL;
4075 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4076 return -EFAULT;
4077
4078 rcu_read_lock();
4079 retval = -ESRCH;
4080 p = find_process_by_pid(pid);
4081 if (p != NULL)
4082 retval = sched_setscheduler(p, policy, &lparam);
4083 rcu_read_unlock();
4084
4085 return retval;
4086 }
4087
4088 /**
4089 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4090 * @pid: the pid in question.
4091 * @policy: new policy.
4092 * @param: structure containing the new RT priority.
4093 */
4094 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4095 struct sched_param __user *, param)
4096 {
4097 /* negative values for policy are not valid */
4098 if (policy < 0)
4099 return -EINVAL;
4100
4101 return do_sched_setscheduler(pid, policy, param);
4102 }
4103
4104 /**
4105 * sys_sched_setparam - set/change the RT priority of a thread
4106 * @pid: the pid in question.
4107 * @param: structure containing the new RT priority.
4108 */
4109 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4110 {
4111 return do_sched_setscheduler(pid, -1, param);
4112 }
4113
4114 /**
4115 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4116 * @pid: the pid in question.
4117 */
4118 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4119 {
4120 struct task_struct *p;
4121 int retval;
4122
4123 if (pid < 0)
4124 return -EINVAL;
4125
4126 retval = -ESRCH;
4127 rcu_read_lock();
4128 p = find_process_by_pid(pid);
4129 if (p) {
4130 retval = security_task_getscheduler(p);
4131 if (!retval)
4132 retval = p->policy
4133 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4134 }
4135 rcu_read_unlock();
4136 return retval;
4137 }
4138
4139 /**
4140 * sys_sched_getparam - get the RT priority of a thread
4141 * @pid: the pid in question.
4142 * @param: structure containing the RT priority.
4143 */
4144 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4145 {
4146 struct sched_param lp;
4147 struct task_struct *p;
4148 int retval;
4149
4150 if (!param || pid < 0)
4151 return -EINVAL;
4152
4153 rcu_read_lock();
4154 p = find_process_by_pid(pid);
4155 retval = -ESRCH;
4156 if (!p)
4157 goto out_unlock;
4158
4159 retval = security_task_getscheduler(p);
4160 if (retval)
4161 goto out_unlock;
4162
4163 lp.sched_priority = p->rt_priority;
4164 rcu_read_unlock();
4165
4166 /*
4167 * This one might sleep, we cannot do it with a spinlock held ...
4168 */
4169 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4170
4171 return retval;
4172
4173 out_unlock:
4174 rcu_read_unlock();
4175 return retval;
4176 }
4177
4178 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4179 {
4180 cpumask_var_t cpus_allowed, new_mask;
4181 struct task_struct *p;
4182 int retval;
4183
4184 get_online_cpus();
4185 rcu_read_lock();
4186
4187 p = find_process_by_pid(pid);
4188 if (!p) {
4189 rcu_read_unlock();
4190 put_online_cpus();
4191 return -ESRCH;
4192 }
4193
4194 /* Prevent p going away */
4195 get_task_struct(p);
4196 rcu_read_unlock();
4197
4198 if (p->flags & PF_NO_SETAFFINITY) {
4199 retval = -EINVAL;
4200 goto out_put_task;
4201 }
4202 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4203 retval = -ENOMEM;
4204 goto out_put_task;
4205 }
4206 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4207 retval = -ENOMEM;
4208 goto out_free_cpus_allowed;
4209 }
4210 retval = -EPERM;
4211 if (!check_same_owner(p)) {
4212 rcu_read_lock();
4213 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4214 rcu_read_unlock();
4215 goto out_unlock;
4216 }
4217 rcu_read_unlock();
4218 }
4219
4220 retval = security_task_setscheduler(p);
4221 if (retval)
4222 goto out_unlock;
4223
4224 cpuset_cpus_allowed(p, cpus_allowed);
4225 cpumask_and(new_mask, in_mask, cpus_allowed);
4226 again:
4227 retval = set_cpus_allowed_ptr(p, new_mask);
4228
4229 if (!retval) {
4230 cpuset_cpus_allowed(p, cpus_allowed);
4231 if (!cpumask_subset(new_mask, cpus_allowed)) {
4232 /*
4233 * We must have raced with a concurrent cpuset
4234 * update. Just reset the cpus_allowed to the
4235 * cpuset's cpus_allowed
4236 */
4237 cpumask_copy(new_mask, cpus_allowed);
4238 goto again;
4239 }
4240 }
4241 out_unlock:
4242 free_cpumask_var(new_mask);
4243 out_free_cpus_allowed:
4244 free_cpumask_var(cpus_allowed);
4245 out_put_task:
4246 put_task_struct(p);
4247 put_online_cpus();
4248 return retval;
4249 }
4250
4251 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4252 struct cpumask *new_mask)
4253 {
4254 if (len < cpumask_size())
4255 cpumask_clear(new_mask);
4256 else if (len > cpumask_size())
4257 len = cpumask_size();
4258
4259 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4260 }
4261
4262 /**
4263 * sys_sched_setaffinity - set the cpu affinity of a process
4264 * @pid: pid of the process
4265 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4266 * @user_mask_ptr: user-space pointer to the new cpu mask
4267 */
4268 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4269 unsigned long __user *, user_mask_ptr)
4270 {
4271 cpumask_var_t new_mask;
4272 int retval;
4273
4274 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4275 return -ENOMEM;
4276
4277 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4278 if (retval == 0)
4279 retval = sched_setaffinity(pid, new_mask);
4280 free_cpumask_var(new_mask);
4281 return retval;
4282 }
4283
4284 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4285 {
4286 struct task_struct *p;
4287 unsigned long flags;
4288 int retval;
4289
4290 get_online_cpus();
4291 rcu_read_lock();
4292
4293 retval = -ESRCH;
4294 p = find_process_by_pid(pid);
4295 if (!p)
4296 goto out_unlock;
4297
4298 retval = security_task_getscheduler(p);
4299 if (retval)
4300 goto out_unlock;
4301
4302 raw_spin_lock_irqsave(&p->pi_lock, flags);
4303 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4304 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4305
4306 out_unlock:
4307 rcu_read_unlock();
4308 put_online_cpus();
4309
4310 return retval;
4311 }
4312
4313 /**
4314 * sys_sched_getaffinity - get the cpu affinity of a process
4315 * @pid: pid of the process
4316 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4317 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4318 */
4319 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4320 unsigned long __user *, user_mask_ptr)
4321 {
4322 int ret;
4323 cpumask_var_t mask;
4324
4325 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4326 return -EINVAL;
4327 if (len & (sizeof(unsigned long)-1))
4328 return -EINVAL;
4329
4330 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4331 return -ENOMEM;
4332
4333 ret = sched_getaffinity(pid, mask);
4334 if (ret == 0) {
4335 size_t retlen = min_t(size_t, len, cpumask_size());
4336
4337 if (copy_to_user(user_mask_ptr, mask, retlen))
4338 ret = -EFAULT;
4339 else
4340 ret = retlen;
4341 }
4342 free_cpumask_var(mask);
4343
4344 return ret;
4345 }
4346
4347 /**
4348 * sys_sched_yield - yield the current processor to other threads.
4349 *
4350 * This function yields the current CPU to other tasks. If there are no
4351 * other threads running on this CPU then this function will return.
4352 */
4353 SYSCALL_DEFINE0(sched_yield)
4354 {
4355 struct rq *rq = this_rq_lock();
4356
4357 schedstat_inc(rq, yld_count);
4358 current->sched_class->yield_task(rq);
4359
4360 /*
4361 * Since we are going to call schedule() anyway, there's
4362 * no need to preempt or enable interrupts:
4363 */
4364 __release(rq->lock);
4365 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4366 do_raw_spin_unlock(&rq->lock);
4367 sched_preempt_enable_no_resched();
4368
4369 schedule();
4370
4371 return 0;
4372 }
4373
4374 static inline int should_resched(void)
4375 {
4376 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4377 }
4378
4379 static void __cond_resched(void)
4380 {
4381 add_preempt_count(PREEMPT_ACTIVE);
4382 __schedule();
4383 sub_preempt_count(PREEMPT_ACTIVE);
4384 }
4385
4386 int __sched _cond_resched(void)
4387 {
4388 if (should_resched()) {
4389 __cond_resched();
4390 return 1;
4391 }
4392 return 0;
4393 }
4394 EXPORT_SYMBOL(_cond_resched);
4395
4396 /*
4397 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4398 * call schedule, and on return reacquire the lock.
4399 *
4400 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4401 * operations here to prevent schedule() from being called twice (once via
4402 * spin_unlock(), once by hand).
4403 */
4404 int __cond_resched_lock(spinlock_t *lock)
4405 {
4406 int resched = should_resched();
4407 int ret = 0;
4408
4409 lockdep_assert_held(lock);
4410
4411 if (spin_needbreak(lock) || resched) {
4412 spin_unlock(lock);
4413 if (resched)
4414 __cond_resched();
4415 else
4416 cpu_relax();
4417 ret = 1;
4418 spin_lock(lock);
4419 }
4420 return ret;
4421 }
4422 EXPORT_SYMBOL(__cond_resched_lock);
4423
4424 int __sched __cond_resched_softirq(void)
4425 {
4426 BUG_ON(!in_softirq());
4427
4428 if (should_resched()) {
4429 local_bh_enable();
4430 __cond_resched();
4431 local_bh_disable();
4432 return 1;
4433 }
4434 return 0;
4435 }
4436 EXPORT_SYMBOL(__cond_resched_softirq);
4437
4438 /**
4439 * yield - yield the current processor to other threads.
4440 *
4441 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4442 *
4443 * The scheduler is at all times free to pick the calling task as the most
4444 * eligible task to run, if removing the yield() call from your code breaks
4445 * it, its already broken.
4446 *
4447 * Typical broken usage is:
4448 *
4449 * while (!event)
4450 * yield();
4451 *
4452 * where one assumes that yield() will let 'the other' process run that will
4453 * make event true. If the current task is a SCHED_FIFO task that will never
4454 * happen. Never use yield() as a progress guarantee!!
4455 *
4456 * If you want to use yield() to wait for something, use wait_event().
4457 * If you want to use yield() to be 'nice' for others, use cond_resched().
4458 * If you still want to use yield(), do not!
4459 */
4460 void __sched yield(void)
4461 {
4462 set_current_state(TASK_RUNNING);
4463 sys_sched_yield();
4464 }
4465 EXPORT_SYMBOL(yield);
4466
4467 /**
4468 * yield_to - yield the current processor to another thread in
4469 * your thread group, or accelerate that thread toward the
4470 * processor it's on.
4471 * @p: target task
4472 * @preempt: whether task preemption is allowed or not
4473 *
4474 * It's the caller's job to ensure that the target task struct
4475 * can't go away on us before we can do any checks.
4476 *
4477 * Returns:
4478 * true (>0) if we indeed boosted the target task.
4479 * false (0) if we failed to boost the target.
4480 * -ESRCH if there's no task to yield to.
4481 */
4482 bool __sched yield_to(struct task_struct *p, bool preempt)
4483 {
4484 struct task_struct *curr = current;
4485 struct rq *rq, *p_rq;
4486 unsigned long flags;
4487 int yielded = 0;
4488
4489 local_irq_save(flags);
4490 rq = this_rq();
4491
4492 again:
4493 p_rq = task_rq(p);
4494 /*
4495 * If we're the only runnable task on the rq and target rq also
4496 * has only one task, there's absolutely no point in yielding.
4497 */
4498 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4499 yielded = -ESRCH;
4500 goto out_irq;
4501 }
4502
4503 double_rq_lock(rq, p_rq);
4504 while (task_rq(p) != p_rq) {
4505 double_rq_unlock(rq, p_rq);
4506 goto again;
4507 }
4508
4509 if (!curr->sched_class->yield_to_task)
4510 goto out_unlock;
4511
4512 if (curr->sched_class != p->sched_class)
4513 goto out_unlock;
4514
4515 if (task_running(p_rq, p) || p->state)
4516 goto out_unlock;
4517
4518 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4519 if (yielded) {
4520 schedstat_inc(rq, yld_count);
4521 /*
4522 * Make p's CPU reschedule; pick_next_entity takes care of
4523 * fairness.
4524 */
4525 if (preempt && rq != p_rq)
4526 resched_task(p_rq->curr);
4527 }
4528
4529 out_unlock:
4530 double_rq_unlock(rq, p_rq);
4531 out_irq:
4532 local_irq_restore(flags);
4533
4534 if (yielded > 0)
4535 schedule();
4536
4537 return yielded;
4538 }
4539 EXPORT_SYMBOL_GPL(yield_to);
4540
4541 /*
4542 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4543 * that process accounting knows that this is a task in IO wait state.
4544 */
4545 void __sched io_schedule(void)
4546 {
4547 struct rq *rq = raw_rq();
4548
4549 delayacct_blkio_start();
4550 atomic_inc(&rq->nr_iowait);
4551 blk_flush_plug(current);
4552 current->in_iowait = 1;
4553 schedule();
4554 current->in_iowait = 0;
4555 atomic_dec(&rq->nr_iowait);
4556 delayacct_blkio_end();
4557 }
4558 EXPORT_SYMBOL(io_schedule);
4559
4560 long __sched io_schedule_timeout(long timeout)
4561 {
4562 struct rq *rq = raw_rq();
4563 long ret;
4564
4565 delayacct_blkio_start();
4566 atomic_inc(&rq->nr_iowait);
4567 blk_flush_plug(current);
4568 current->in_iowait = 1;
4569 ret = schedule_timeout(timeout);
4570 current->in_iowait = 0;
4571 atomic_dec(&rq->nr_iowait);
4572 delayacct_blkio_end();
4573 return ret;
4574 }
4575
4576 /**
4577 * sys_sched_get_priority_max - return maximum RT priority.
4578 * @policy: scheduling class.
4579 *
4580 * this syscall returns the maximum rt_priority that can be used
4581 * by a given scheduling class.
4582 */
4583 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4584 {
4585 int ret = -EINVAL;
4586
4587 switch (policy) {
4588 case SCHED_FIFO:
4589 case SCHED_RR:
4590 ret = MAX_USER_RT_PRIO-1;
4591 break;
4592 case SCHED_NORMAL:
4593 case SCHED_BATCH:
4594 case SCHED_IDLE:
4595 ret = 0;
4596 break;
4597 }
4598 return ret;
4599 }
4600
4601 /**
4602 * sys_sched_get_priority_min - return minimum RT priority.
4603 * @policy: scheduling class.
4604 *
4605 * this syscall returns the minimum rt_priority that can be used
4606 * by a given scheduling class.
4607 */
4608 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4609 {
4610 int ret = -EINVAL;
4611
4612 switch (policy) {
4613 case SCHED_FIFO:
4614 case SCHED_RR:
4615 ret = 1;
4616 break;
4617 case SCHED_NORMAL:
4618 case SCHED_BATCH:
4619 case SCHED_IDLE:
4620 ret = 0;
4621 }
4622 return ret;
4623 }
4624
4625 /**
4626 * sys_sched_rr_get_interval - return the default timeslice of a process.
4627 * @pid: pid of the process.
4628 * @interval: userspace pointer to the timeslice value.
4629 *
4630 * this syscall writes the default timeslice value of a given process
4631 * into the user-space timespec buffer. A value of '0' means infinity.
4632 */
4633 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4634 struct timespec __user *, interval)
4635 {
4636 struct task_struct *p;
4637 unsigned int time_slice;
4638 unsigned long flags;
4639 struct rq *rq;
4640 int retval;
4641 struct timespec t;
4642
4643 if (pid < 0)
4644 return -EINVAL;
4645
4646 retval = -ESRCH;
4647 rcu_read_lock();
4648 p = find_process_by_pid(pid);
4649 if (!p)
4650 goto out_unlock;
4651
4652 retval = security_task_getscheduler(p);
4653 if (retval)
4654 goto out_unlock;
4655
4656 rq = task_rq_lock(p, &flags);
4657 time_slice = p->sched_class->get_rr_interval(rq, p);
4658 task_rq_unlock(rq, p, &flags);
4659
4660 rcu_read_unlock();
4661 jiffies_to_timespec(time_slice, &t);
4662 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4663 return retval;
4664
4665 out_unlock:
4666 rcu_read_unlock();
4667 return retval;
4668 }
4669
4670 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4671
4672 void sched_show_task(struct task_struct *p)
4673 {
4674 unsigned long free = 0;
4675 int ppid;
4676 unsigned state;
4677
4678 state = p->state ? __ffs(p->state) + 1 : 0;
4679 printk(KERN_INFO "%-15.15s %c", p->comm,
4680 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4681 #if BITS_PER_LONG == 32
4682 if (state == TASK_RUNNING)
4683 printk(KERN_CONT " running ");
4684 else
4685 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4686 #else
4687 if (state == TASK_RUNNING)
4688 printk(KERN_CONT " running task ");
4689 else
4690 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4691 #endif
4692 #ifdef CONFIG_DEBUG_STACK_USAGE
4693 free = stack_not_used(p);
4694 #endif
4695 rcu_read_lock();
4696 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4697 rcu_read_unlock();
4698 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4699 task_pid_nr(p), ppid,
4700 (unsigned long)task_thread_info(p)->flags);
4701
4702 print_worker_info(KERN_INFO, p);
4703 show_stack(p, NULL);
4704 }
4705
4706 void show_state_filter(unsigned long state_filter)
4707 {
4708 struct task_struct *g, *p;
4709
4710 #if BITS_PER_LONG == 32
4711 printk(KERN_INFO
4712 " task PC stack pid father\n");
4713 #else
4714 printk(KERN_INFO
4715 " task PC stack pid father\n");
4716 #endif
4717 rcu_read_lock();
4718 do_each_thread(g, p) {
4719 /*
4720 * reset the NMI-timeout, listing all files on a slow
4721 * console might take a lot of time:
4722 */
4723 touch_nmi_watchdog();
4724 if (!state_filter || (p->state & state_filter))
4725 sched_show_task(p);
4726 } while_each_thread(g, p);
4727
4728 touch_all_softlockup_watchdogs();
4729
4730 #ifdef CONFIG_SCHED_DEBUG
4731 sysrq_sched_debug_show();
4732 #endif
4733 rcu_read_unlock();
4734 /*
4735 * Only show locks if all tasks are dumped:
4736 */
4737 if (!state_filter)
4738 debug_show_all_locks();
4739 }
4740
4741 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4742 {
4743 idle->sched_class = &idle_sched_class;
4744 }
4745
4746 /**
4747 * init_idle - set up an idle thread for a given CPU
4748 * @idle: task in question
4749 * @cpu: cpu the idle task belongs to
4750 *
4751 * NOTE: this function does not set the idle thread's NEED_RESCHED
4752 * flag, to make booting more robust.
4753 */
4754 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4755 {
4756 struct rq *rq = cpu_rq(cpu);
4757 unsigned long flags;
4758
4759 raw_spin_lock_irqsave(&rq->lock, flags);
4760
4761 __sched_fork(idle);
4762 idle->state = TASK_RUNNING;
4763 idle->se.exec_start = sched_clock();
4764
4765 do_set_cpus_allowed(idle, cpumask_of(cpu));
4766 /*
4767 * We're having a chicken and egg problem, even though we are
4768 * holding rq->lock, the cpu isn't yet set to this cpu so the
4769 * lockdep check in task_group() will fail.
4770 *
4771 * Similar case to sched_fork(). / Alternatively we could
4772 * use task_rq_lock() here and obtain the other rq->lock.
4773 *
4774 * Silence PROVE_RCU
4775 */
4776 rcu_read_lock();
4777 __set_task_cpu(idle, cpu);
4778 rcu_read_unlock();
4779
4780 rq->curr = rq->idle = idle;
4781 #if defined(CONFIG_SMP)
4782 idle->on_cpu = 1;
4783 #endif
4784 raw_spin_unlock_irqrestore(&rq->lock, flags);
4785
4786 /* Set the preempt count _outside_ the spinlocks! */
4787 task_thread_info(idle)->preempt_count = 0;
4788
4789 /*
4790 * The idle tasks have their own, simple scheduling class:
4791 */
4792 idle->sched_class = &idle_sched_class;
4793 ftrace_graph_init_idle_task(idle, cpu);
4794 vtime_init_idle(idle, cpu);
4795 #if defined(CONFIG_SMP)
4796 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4797 #endif
4798 }
4799
4800 #ifdef CONFIG_SMP
4801 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4802 {
4803 if (p->sched_class && p->sched_class->set_cpus_allowed)
4804 p->sched_class->set_cpus_allowed(p, new_mask);
4805
4806 cpumask_copy(&p->cpus_allowed, new_mask);
4807 p->nr_cpus_allowed = cpumask_weight(new_mask);
4808 }
4809
4810 /*
4811 * This is how migration works:
4812 *
4813 * 1) we invoke migration_cpu_stop() on the target CPU using
4814 * stop_one_cpu().
4815 * 2) stopper starts to run (implicitly forcing the migrated thread
4816 * off the CPU)
4817 * 3) it checks whether the migrated task is still in the wrong runqueue.
4818 * 4) if it's in the wrong runqueue then the migration thread removes
4819 * it and puts it into the right queue.
4820 * 5) stopper completes and stop_one_cpu() returns and the migration
4821 * is done.
4822 */
4823
4824 /*
4825 * Change a given task's CPU affinity. Migrate the thread to a
4826 * proper CPU and schedule it away if the CPU it's executing on
4827 * is removed from the allowed bitmask.
4828 *
4829 * NOTE: the caller must have a valid reference to the task, the
4830 * task must not exit() & deallocate itself prematurely. The
4831 * call is not atomic; no spinlocks may be held.
4832 */
4833 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4834 {
4835 unsigned long flags;
4836 struct rq *rq;
4837 unsigned int dest_cpu;
4838 int ret = 0;
4839
4840 rq = task_rq_lock(p, &flags);
4841
4842 if (cpumask_equal(&p->cpus_allowed, new_mask))
4843 goto out;
4844
4845 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4846 ret = -EINVAL;
4847 goto out;
4848 }
4849
4850 do_set_cpus_allowed(p, new_mask);
4851
4852 /* Can the task run on the task's current CPU? If so, we're done */
4853 if (cpumask_test_cpu(task_cpu(p), new_mask))
4854 goto out;
4855
4856 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4857 if (p->on_rq) {
4858 struct migration_arg arg = { p, dest_cpu };
4859 /* Need help from migration thread: drop lock and wait. */
4860 task_rq_unlock(rq, p, &flags);
4861 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4862 tlb_migrate_finish(p->mm);
4863 return 0;
4864 }
4865 out:
4866 task_rq_unlock(rq, p, &flags);
4867
4868 return ret;
4869 }
4870 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4871
4872 /*
4873 * Move (not current) task off this cpu, onto dest cpu. We're doing
4874 * this because either it can't run here any more (set_cpus_allowed()
4875 * away from this CPU, or CPU going down), or because we're
4876 * attempting to rebalance this task on exec (sched_exec).
4877 *
4878 * So we race with normal scheduler movements, but that's OK, as long
4879 * as the task is no longer on this CPU.
4880 *
4881 * Returns non-zero if task was successfully migrated.
4882 */
4883 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4884 {
4885 struct rq *rq_dest, *rq_src;
4886 int ret = 0;
4887
4888 if (unlikely(!cpu_active(dest_cpu)))
4889 return ret;
4890
4891 rq_src = cpu_rq(src_cpu);
4892 rq_dest = cpu_rq(dest_cpu);
4893
4894 raw_spin_lock(&p->pi_lock);
4895 double_rq_lock(rq_src, rq_dest);
4896 /* Already moved. */
4897 if (task_cpu(p) != src_cpu)
4898 goto done;
4899 /* Affinity changed (again). */
4900 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4901 goto fail;
4902
4903 /*
4904 * If we're not on a rq, the next wake-up will ensure we're
4905 * placed properly.
4906 */
4907 if (p->on_rq) {
4908 dequeue_task(rq_src, p, 0);
4909 set_task_cpu(p, dest_cpu);
4910 enqueue_task(rq_dest, p, 0);
4911 check_preempt_curr(rq_dest, p, 0);
4912 }
4913 done:
4914 ret = 1;
4915 fail:
4916 double_rq_unlock(rq_src, rq_dest);
4917 raw_spin_unlock(&p->pi_lock);
4918 return ret;
4919 }
4920
4921 /*
4922 * migration_cpu_stop - this will be executed by a highprio stopper thread
4923 * and performs thread migration by bumping thread off CPU then
4924 * 'pushing' onto another runqueue.
4925 */
4926 static int migration_cpu_stop(void *data)
4927 {
4928 struct migration_arg *arg = data;
4929
4930 /*
4931 * The original target cpu might have gone down and we might
4932 * be on another cpu but it doesn't matter.
4933 */
4934 local_irq_disable();
4935 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4936 local_irq_enable();
4937 return 0;
4938 }
4939
4940 #ifdef CONFIG_HOTPLUG_CPU
4941
4942 /*
4943 * Ensures that the idle task is using init_mm right before its cpu goes
4944 * offline.
4945 */
4946 void idle_task_exit(void)
4947 {
4948 struct mm_struct *mm = current->active_mm;
4949
4950 BUG_ON(cpu_online(smp_processor_id()));
4951
4952 if (mm != &init_mm)
4953 switch_mm(mm, &init_mm, current);
4954 mmdrop(mm);
4955 }
4956
4957 /*
4958 * Since this CPU is going 'away' for a while, fold any nr_active delta
4959 * we might have. Assumes we're called after migrate_tasks() so that the
4960 * nr_active count is stable.
4961 *
4962 * Also see the comment "Global load-average calculations".
4963 */
4964 static void calc_load_migrate(struct rq *rq)
4965 {
4966 long delta = calc_load_fold_active(rq);
4967 if (delta)
4968 atomic_long_add(delta, &calc_load_tasks);
4969 }
4970
4971 /*
4972 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4973 * try_to_wake_up()->select_task_rq().
4974 *
4975 * Called with rq->lock held even though we'er in stop_machine() and
4976 * there's no concurrency possible, we hold the required locks anyway
4977 * because of lock validation efforts.
4978 */
4979 static void migrate_tasks(unsigned int dead_cpu)
4980 {
4981 struct rq *rq = cpu_rq(dead_cpu);
4982 struct task_struct *next, *stop = rq->stop;
4983 int dest_cpu;
4984
4985 /*
4986 * Fudge the rq selection such that the below task selection loop
4987 * doesn't get stuck on the currently eligible stop task.
4988 *
4989 * We're currently inside stop_machine() and the rq is either stuck
4990 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4991 * either way we should never end up calling schedule() until we're
4992 * done here.
4993 */
4994 rq->stop = NULL;
4995
4996 for ( ; ; ) {
4997 /*
4998 * There's this thread running, bail when that's the only
4999 * remaining thread.
5000 */
5001 if (rq->nr_running == 1)
5002 break;
5003
5004 next = pick_next_task(rq);
5005 BUG_ON(!next);
5006 next->sched_class->put_prev_task(rq, next);
5007
5008 /* Find suitable destination for @next, with force if needed. */
5009 dest_cpu = select_fallback_rq(dead_cpu, next);
5010 raw_spin_unlock(&rq->lock);
5011
5012 __migrate_task(next, dead_cpu, dest_cpu);
5013
5014 raw_spin_lock(&rq->lock);
5015 }
5016
5017 rq->stop = stop;
5018 }
5019
5020 #endif /* CONFIG_HOTPLUG_CPU */
5021
5022 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5023
5024 static struct ctl_table sd_ctl_dir[] = {
5025 {
5026 .procname = "sched_domain",
5027 .mode = 0555,
5028 },
5029 {}
5030 };
5031
5032 static struct ctl_table sd_ctl_root[] = {
5033 {
5034 .procname = "kernel",
5035 .mode = 0555,
5036 .child = sd_ctl_dir,
5037 },
5038 {}
5039 };
5040
5041 static struct ctl_table *sd_alloc_ctl_entry(int n)
5042 {
5043 struct ctl_table *entry =
5044 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5045
5046 return entry;
5047 }
5048
5049 static void sd_free_ctl_entry(struct ctl_table **tablep)
5050 {
5051 struct ctl_table *entry;
5052
5053 /*
5054 * In the intermediate directories, both the child directory and
5055 * procname are dynamically allocated and could fail but the mode
5056 * will always be set. In the lowest directory the names are
5057 * static strings and all have proc handlers.
5058 */
5059 for (entry = *tablep; entry->mode; entry++) {
5060 if (entry->child)
5061 sd_free_ctl_entry(&entry->child);
5062 if (entry->proc_handler == NULL)
5063 kfree(entry->procname);
5064 }
5065
5066 kfree(*tablep);
5067 *tablep = NULL;
5068 }
5069
5070 static int min_load_idx = 0;
5071 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5072
5073 static void
5074 set_table_entry(struct ctl_table *entry,
5075 const char *procname, void *data, int maxlen,
5076 umode_t mode, proc_handler *proc_handler,
5077 bool load_idx)
5078 {
5079 entry->procname = procname;
5080 entry->data = data;
5081 entry->maxlen = maxlen;
5082 entry->mode = mode;
5083 entry->proc_handler = proc_handler;
5084
5085 if (load_idx) {
5086 entry->extra1 = &min_load_idx;
5087 entry->extra2 = &max_load_idx;
5088 }
5089 }
5090
5091 static struct ctl_table *
5092 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5093 {
5094 struct ctl_table *table = sd_alloc_ctl_entry(13);
5095
5096 if (table == NULL)
5097 return NULL;
5098
5099 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5100 sizeof(long), 0644, proc_doulongvec_minmax, false);
5101 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5102 sizeof(long), 0644, proc_doulongvec_minmax, false);
5103 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5104 sizeof(int), 0644, proc_dointvec_minmax, true);
5105 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5106 sizeof(int), 0644, proc_dointvec_minmax, true);
5107 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5108 sizeof(int), 0644, proc_dointvec_minmax, true);
5109 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5110 sizeof(int), 0644, proc_dointvec_minmax, true);
5111 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5112 sizeof(int), 0644, proc_dointvec_minmax, true);
5113 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5114 sizeof(int), 0644, proc_dointvec_minmax, false);
5115 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5116 sizeof(int), 0644, proc_dointvec_minmax, false);
5117 set_table_entry(&table[9], "cache_nice_tries",
5118 &sd->cache_nice_tries,
5119 sizeof(int), 0644, proc_dointvec_minmax, false);
5120 set_table_entry(&table[10], "flags", &sd->flags,
5121 sizeof(int), 0644, proc_dointvec_minmax, false);
5122 set_table_entry(&table[11], "name", sd->name,
5123 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5124 /* &table[12] is terminator */
5125
5126 return table;
5127 }
5128
5129 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5130 {
5131 struct ctl_table *entry, *table;
5132 struct sched_domain *sd;
5133 int domain_num = 0, i;
5134 char buf[32];
5135
5136 for_each_domain(cpu, sd)
5137 domain_num++;
5138 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5139 if (table == NULL)
5140 return NULL;
5141
5142 i = 0;
5143 for_each_domain(cpu, sd) {
5144 snprintf(buf, 32, "domain%d", i);
5145 entry->procname = kstrdup(buf, GFP_KERNEL);
5146 entry->mode = 0555;
5147 entry->child = sd_alloc_ctl_domain_table(sd);
5148 entry++;
5149 i++;
5150 }
5151 return table;
5152 }
5153
5154 static struct ctl_table_header *sd_sysctl_header;
5155 static void register_sched_domain_sysctl(void)
5156 {
5157 int i, cpu_num = num_possible_cpus();
5158 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5159 char buf[32];
5160
5161 WARN_ON(sd_ctl_dir[0].child);
5162 sd_ctl_dir[0].child = entry;
5163
5164 if (entry == NULL)
5165 return;
5166
5167 for_each_possible_cpu(i) {
5168 snprintf(buf, 32, "cpu%d", i);
5169 entry->procname = kstrdup(buf, GFP_KERNEL);
5170 entry->mode = 0555;
5171 entry->child = sd_alloc_ctl_cpu_table(i);
5172 entry++;
5173 }
5174
5175 WARN_ON(sd_sysctl_header);
5176 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5177 }
5178
5179 /* may be called multiple times per register */
5180 static void unregister_sched_domain_sysctl(void)
5181 {
5182 if (sd_sysctl_header)
5183 unregister_sysctl_table(sd_sysctl_header);
5184 sd_sysctl_header = NULL;
5185 if (sd_ctl_dir[0].child)
5186 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5187 }
5188 #else
5189 static void register_sched_domain_sysctl(void)
5190 {
5191 }
5192 static void unregister_sched_domain_sysctl(void)
5193 {
5194 }
5195 #endif
5196
5197 static void set_rq_online(struct rq *rq)
5198 {
5199 if (!rq->online) {
5200 const struct sched_class *class;
5201
5202 cpumask_set_cpu(rq->cpu, rq->rd->online);
5203 rq->online = 1;
5204
5205 for_each_class(class) {
5206 if (class->rq_online)
5207 class->rq_online(rq);
5208 }
5209 }
5210 }
5211
5212 static void set_rq_offline(struct rq *rq)
5213 {
5214 if (rq->online) {
5215 const struct sched_class *class;
5216
5217 for_each_class(class) {
5218 if (class->rq_offline)
5219 class->rq_offline(rq);
5220 }
5221
5222 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5223 rq->online = 0;
5224 }
5225 }
5226
5227 /*
5228 * migration_call - callback that gets triggered when a CPU is added.
5229 * Here we can start up the necessary migration thread for the new CPU.
5230 */
5231 static int __cpuinit
5232 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5233 {
5234 int cpu = (long)hcpu;
5235 unsigned long flags;
5236 struct rq *rq = cpu_rq(cpu);
5237
5238 switch (action & ~CPU_TASKS_FROZEN) {
5239
5240 case CPU_UP_PREPARE:
5241 rq->calc_load_update = calc_load_update;
5242 account_reset_rq(rq);
5243 break;
5244
5245 case CPU_ONLINE:
5246 /* Update our root-domain */
5247 raw_spin_lock_irqsave(&rq->lock, flags);
5248 if (rq->rd) {
5249 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5250
5251 set_rq_online(rq);
5252 }
5253 raw_spin_unlock_irqrestore(&rq->lock, flags);
5254 break;
5255
5256 #ifdef CONFIG_HOTPLUG_CPU
5257 case CPU_DYING:
5258 sched_ttwu_pending();
5259 /* Update our root-domain */
5260 raw_spin_lock_irqsave(&rq->lock, flags);
5261 if (rq->rd) {
5262 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5263 set_rq_offline(rq);
5264 }
5265 migrate_tasks(cpu);
5266 BUG_ON(rq->nr_running != 1); /* the migration thread */
5267 raw_spin_unlock_irqrestore(&rq->lock, flags);
5268 break;
5269
5270 case CPU_DEAD:
5271 calc_load_migrate(rq);
5272 break;
5273 #endif
5274 }
5275
5276 update_max_interval();
5277
5278 return NOTIFY_OK;
5279 }
5280
5281 /*
5282 * Register at high priority so that task migration (migrate_all_tasks)
5283 * happens before everything else. This has to be lower priority than
5284 * the notifier in the perf_event subsystem, though.
5285 */
5286 static struct notifier_block __cpuinitdata migration_notifier = {
5287 .notifier_call = migration_call,
5288 .priority = CPU_PRI_MIGRATION,
5289 };
5290
5291 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5292 unsigned long action, void *hcpu)
5293 {
5294 switch (action & ~CPU_TASKS_FROZEN) {
5295 case CPU_DOWN_FAILED:
5296 set_cpu_active((long)hcpu, true);
5297 return NOTIFY_OK;
5298 default:
5299 return NOTIFY_DONE;
5300 }
5301 }
5302
5303 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5304 unsigned long action, void *hcpu)
5305 {
5306 switch (action & ~CPU_TASKS_FROZEN) {
5307 case CPU_DOWN_PREPARE:
5308 set_cpu_active((long)hcpu, false);
5309 return NOTIFY_OK;
5310 default:
5311 return NOTIFY_DONE;
5312 }
5313 }
5314
5315 static int __init migration_init(void)
5316 {
5317 void *cpu = (void *)(long)smp_processor_id();
5318 int err;
5319
5320 /* Initialize migration for the boot CPU */
5321 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5322 BUG_ON(err == NOTIFY_BAD);
5323 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5324 register_cpu_notifier(&migration_notifier);
5325
5326 /* Register cpu active notifiers */
5327 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5328 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5329
5330 return 0;
5331 }
5332 early_initcall(migration_init);
5333 #endif
5334
5335 #ifdef CONFIG_SMP
5336
5337 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5338
5339 #ifdef CONFIG_SCHED_DEBUG
5340
5341 static __read_mostly int sched_debug_enabled;
5342
5343 static int __init sched_debug_setup(char *str)
5344 {
5345 sched_debug_enabled = 1;
5346
5347 return 0;
5348 }
5349 early_param("sched_debug", sched_debug_setup);
5350
5351 static inline bool sched_debug(void)
5352 {
5353 return sched_debug_enabled;
5354 }
5355
5356 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5357 struct cpumask *groupmask)
5358 {
5359 struct sched_group *group = sd->groups;
5360 char str[256];
5361
5362 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5363 cpumask_clear(groupmask);
5364
5365 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5366
5367 if (!(sd->flags & SD_LOAD_BALANCE)) {
5368 printk("does not load-balance\n");
5369 if (sd->parent)
5370 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5371 " has parent");
5372 return -1;
5373 }
5374
5375 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5376
5377 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5378 printk(KERN_ERR "ERROR: domain->span does not contain "
5379 "CPU%d\n", cpu);
5380 }
5381 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5382 printk(KERN_ERR "ERROR: domain->groups does not contain"
5383 " CPU%d\n", cpu);
5384 }
5385
5386 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5387 do {
5388 if (!group) {
5389 printk("\n");
5390 printk(KERN_ERR "ERROR: group is NULL\n");
5391 break;
5392 }
5393
5394 /*
5395 * Even though we initialize ->power to something semi-sane,
5396 * we leave power_orig unset. This allows us to detect if
5397 * domain iteration is still funny without causing /0 traps.
5398 */
5399 if (!group->sgp->power_orig) {
5400 printk(KERN_CONT "\n");
5401 printk(KERN_ERR "ERROR: domain->cpu_power not "
5402 "set\n");
5403 break;
5404 }
5405
5406 if (!cpumask_weight(sched_group_cpus(group))) {
5407 printk(KERN_CONT "\n");
5408 printk(KERN_ERR "ERROR: empty group\n");
5409 break;
5410 }
5411
5412 if (!(sd->flags & SD_OVERLAP) &&
5413 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5414 printk(KERN_CONT "\n");
5415 printk(KERN_ERR "ERROR: repeated CPUs\n");
5416 break;
5417 }
5418
5419 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5420
5421 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5422
5423 printk(KERN_CONT " %s", str);
5424 if (group->sgp->power != SCHED_POWER_SCALE) {
5425 printk(KERN_CONT " (cpu_power = %d)",
5426 group->sgp->power);
5427 }
5428
5429 group = group->next;
5430 } while (group != sd->groups);
5431 printk(KERN_CONT "\n");
5432
5433 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5434 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5435
5436 if (sd->parent &&
5437 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5438 printk(KERN_ERR "ERROR: parent span is not a superset "
5439 "of domain->span\n");
5440 return 0;
5441 }
5442
5443 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5444 {
5445 int level = 0;
5446
5447 if (!sched_debug_enabled)
5448 return;
5449
5450 if (!sd) {
5451 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5452 return;
5453 }
5454
5455 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5456
5457 for (;;) {
5458 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5459 break;
5460 level++;
5461 sd = sd->parent;
5462 if (!sd)
5463 break;
5464 }
5465 }
5466 #else /* !CONFIG_SCHED_DEBUG */
5467 # define sched_domain_debug(sd, cpu) do { } while (0)
5468 static inline bool sched_debug(void)
5469 {
5470 return false;
5471 }
5472 #endif /* CONFIG_SCHED_DEBUG */
5473
5474 static int sd_degenerate(struct sched_domain *sd)
5475 {
5476 if (cpumask_weight(sched_domain_span(sd)) == 1)
5477 return 1;
5478
5479 /* Following flags need at least 2 groups */
5480 if (sd->flags & (SD_LOAD_BALANCE |
5481 SD_BALANCE_NEWIDLE |
5482 SD_BALANCE_FORK |
5483 SD_BALANCE_EXEC |
5484 SD_SHARE_CPUPOWER |
5485 SD_SHARE_PKG_RESOURCES)) {
5486 if (sd->groups != sd->groups->next)
5487 return 0;
5488 }
5489
5490 /* Following flags don't use groups */
5491 if (sd->flags & (SD_WAKE_AFFINE))
5492 return 0;
5493
5494 return 1;
5495 }
5496
5497 static int
5498 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5499 {
5500 unsigned long cflags = sd->flags, pflags = parent->flags;
5501
5502 if (sd_degenerate(parent))
5503 return 1;
5504
5505 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5506 return 0;
5507
5508 /* Flags needing groups don't count if only 1 group in parent */
5509 if (parent->groups == parent->groups->next) {
5510 pflags &= ~(SD_LOAD_BALANCE |
5511 SD_BALANCE_NEWIDLE |
5512 SD_BALANCE_FORK |
5513 SD_BALANCE_EXEC |
5514 SD_SHARE_CPUPOWER |
5515 SD_SHARE_PKG_RESOURCES);
5516 if (nr_node_ids == 1)
5517 pflags &= ~SD_SERIALIZE;
5518 }
5519 if (~cflags & pflags)
5520 return 0;
5521
5522 return 1;
5523 }
5524
5525 static void free_rootdomain(struct rcu_head *rcu)
5526 {
5527 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5528
5529 cpupri_cleanup(&rd->cpupri);
5530 free_cpumask_var(rd->rto_mask);
5531 free_cpumask_var(rd->online);
5532 free_cpumask_var(rd->span);
5533 kfree(rd);
5534 }
5535
5536 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5537 {
5538 struct root_domain *old_rd = NULL;
5539 unsigned long flags;
5540
5541 raw_spin_lock_irqsave(&rq->lock, flags);
5542
5543 if (rq->rd) {
5544 old_rd = rq->rd;
5545
5546 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5547 set_rq_offline(rq);
5548
5549 cpumask_clear_cpu(rq->cpu, old_rd->span);
5550
5551 /*
5552 * If we dont want to free the old_rt yet then
5553 * set old_rd to NULL to skip the freeing later
5554 * in this function:
5555 */
5556 if (!atomic_dec_and_test(&old_rd->refcount))
5557 old_rd = NULL;
5558 }
5559
5560 atomic_inc(&rd->refcount);
5561 rq->rd = rd;
5562
5563 cpumask_set_cpu(rq->cpu, rd->span);
5564 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5565 set_rq_online(rq);
5566
5567 raw_spin_unlock_irqrestore(&rq->lock, flags);
5568
5569 if (old_rd)
5570 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5571 }
5572
5573 static int init_rootdomain(struct root_domain *rd)
5574 {
5575 memset(rd, 0, sizeof(*rd));
5576
5577 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5578 goto out;
5579 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5580 goto free_span;
5581 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5582 goto free_online;
5583
5584 if (cpupri_init(&rd->cpupri) != 0)
5585 goto free_rto_mask;
5586 return 0;
5587
5588 free_rto_mask:
5589 free_cpumask_var(rd->rto_mask);
5590 free_online:
5591 free_cpumask_var(rd->online);
5592 free_span:
5593 free_cpumask_var(rd->span);
5594 out:
5595 return -ENOMEM;
5596 }
5597
5598 /*
5599 * By default the system creates a single root-domain with all cpus as
5600 * members (mimicking the global state we have today).
5601 */
5602 struct root_domain def_root_domain;
5603
5604 static void init_defrootdomain(void)
5605 {
5606 init_rootdomain(&def_root_domain);
5607
5608 atomic_set(&def_root_domain.refcount, 1);
5609 }
5610
5611 static struct root_domain *alloc_rootdomain(void)
5612 {
5613 struct root_domain *rd;
5614
5615 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5616 if (!rd)
5617 return NULL;
5618
5619 if (init_rootdomain(rd) != 0) {
5620 kfree(rd);
5621 return NULL;
5622 }
5623
5624 return rd;
5625 }
5626
5627 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5628 {
5629 struct sched_group *tmp, *first;
5630
5631 if (!sg)
5632 return;
5633
5634 first = sg;
5635 do {
5636 tmp = sg->next;
5637
5638 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5639 kfree(sg->sgp);
5640
5641 kfree(sg);
5642 sg = tmp;
5643 } while (sg != first);
5644 }
5645
5646 static void free_sched_domain(struct rcu_head *rcu)
5647 {
5648 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5649
5650 /*
5651 * If its an overlapping domain it has private groups, iterate and
5652 * nuke them all.
5653 */
5654 if (sd->flags & SD_OVERLAP) {
5655 free_sched_groups(sd->groups, 1);
5656 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5657 kfree(sd->groups->sgp);
5658 kfree(sd->groups);
5659 }
5660 kfree(sd);
5661 }
5662
5663 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5664 {
5665 call_rcu(&sd->rcu, free_sched_domain);
5666 }
5667
5668 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5669 {
5670 for (; sd; sd = sd->parent)
5671 destroy_sched_domain(sd, cpu);
5672 }
5673
5674 /*
5675 * Keep a special pointer to the highest sched_domain that has
5676 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5677 * allows us to avoid some pointer chasing select_idle_sibling().
5678 *
5679 * Also keep a unique ID per domain (we use the first cpu number in
5680 * the cpumask of the domain), this allows us to quickly tell if
5681 * two cpus are in the same cache domain, see cpus_share_cache().
5682 */
5683 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5684 DEFINE_PER_CPU(int, sd_llc_id);
5685
5686 static void update_top_cache_domain(int cpu)
5687 {
5688 struct sched_domain *sd;
5689 int id = cpu;
5690
5691 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5692 if (sd)
5693 id = cpumask_first(sched_domain_span(sd));
5694
5695 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5696 per_cpu(sd_llc_id, cpu) = id;
5697 }
5698
5699 /*
5700 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5701 * hold the hotplug lock.
5702 */
5703 static void
5704 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5705 {
5706 struct rq *rq = cpu_rq(cpu);
5707 struct sched_domain *tmp;
5708
5709 /* Remove the sched domains which do not contribute to scheduling. */
5710 for (tmp = sd; tmp; ) {
5711 struct sched_domain *parent = tmp->parent;
5712 if (!parent)
5713 break;
5714
5715 if (sd_parent_degenerate(tmp, parent)) {
5716 tmp->parent = parent->parent;
5717 if (parent->parent)
5718 parent->parent->child = tmp;
5719 destroy_sched_domain(parent, cpu);
5720 } else
5721 tmp = tmp->parent;
5722 }
5723
5724 if (sd && sd_degenerate(sd)) {
5725 tmp = sd;
5726 sd = sd->parent;
5727 destroy_sched_domain(tmp, cpu);
5728 if (sd)
5729 sd->child = NULL;
5730 }
5731
5732 sched_domain_debug(sd, cpu);
5733
5734 rq_attach_root(rq, rd);
5735 tmp = rq->sd;
5736 rcu_assign_pointer(rq->sd, sd);
5737 destroy_sched_domains(tmp, cpu);
5738
5739 update_top_cache_domain(cpu);
5740 }
5741
5742 /* cpus with isolated domains */
5743 static cpumask_var_t cpu_isolated_map;
5744
5745 /* Setup the mask of cpus configured for isolated domains */
5746 static int __init isolated_cpu_setup(char *str)
5747 {
5748 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5749 cpulist_parse(str, cpu_isolated_map);
5750 return 1;
5751 }
5752
5753 __setup("isolcpus=", isolated_cpu_setup);
5754
5755 static const struct cpumask *cpu_cpu_mask(int cpu)
5756 {
5757 return cpumask_of_node(cpu_to_node(cpu));
5758 }
5759
5760 struct sd_data {
5761 struct sched_domain **__percpu sd;
5762 struct sched_group **__percpu sg;
5763 struct sched_group_power **__percpu sgp;
5764 };
5765
5766 struct s_data {
5767 struct sched_domain ** __percpu sd;
5768 struct root_domain *rd;
5769 };
5770
5771 enum s_alloc {
5772 sa_rootdomain,
5773 sa_sd,
5774 sa_sd_storage,
5775 sa_none,
5776 };
5777
5778 struct sched_domain_topology_level;
5779
5780 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5781 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5782
5783 #define SDTL_OVERLAP 0x01
5784
5785 struct sched_domain_topology_level {
5786 sched_domain_init_f init;
5787 sched_domain_mask_f mask;
5788 int flags;
5789 int numa_level;
5790 struct sd_data data;
5791 };
5792
5793 /*
5794 * Build an iteration mask that can exclude certain CPUs from the upwards
5795 * domain traversal.
5796 *
5797 * Asymmetric node setups can result in situations where the domain tree is of
5798 * unequal depth, make sure to skip domains that already cover the entire
5799 * range.
5800 *
5801 * In that case build_sched_domains() will have terminated the iteration early
5802 * and our sibling sd spans will be empty. Domains should always include the
5803 * cpu they're built on, so check that.
5804 *
5805 */
5806 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5807 {
5808 const struct cpumask *span = sched_domain_span(sd);
5809 struct sd_data *sdd = sd->private;
5810 struct sched_domain *sibling;
5811 int i;
5812
5813 for_each_cpu(i, span) {
5814 sibling = *per_cpu_ptr(sdd->sd, i);
5815 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5816 continue;
5817
5818 cpumask_set_cpu(i, sched_group_mask(sg));
5819 }
5820 }
5821
5822 /*
5823 * Return the canonical balance cpu for this group, this is the first cpu
5824 * of this group that's also in the iteration mask.
5825 */
5826 int group_balance_cpu(struct sched_group *sg)
5827 {
5828 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5829 }
5830
5831 static int
5832 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5833 {
5834 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5835 const struct cpumask *span = sched_domain_span(sd);
5836 struct cpumask *covered = sched_domains_tmpmask;
5837 struct sd_data *sdd = sd->private;
5838 struct sched_domain *child;
5839 int i;
5840
5841 cpumask_clear(covered);
5842
5843 for_each_cpu(i, span) {
5844 struct cpumask *sg_span;
5845
5846 if (cpumask_test_cpu(i, covered))
5847 continue;
5848
5849 child = *per_cpu_ptr(sdd->sd, i);
5850
5851 /* See the comment near build_group_mask(). */
5852 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5853 continue;
5854
5855 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5856 GFP_KERNEL, cpu_to_node(cpu));
5857
5858 if (!sg)
5859 goto fail;
5860
5861 sg_span = sched_group_cpus(sg);
5862 if (child->child) {
5863 child = child->child;
5864 cpumask_copy(sg_span, sched_domain_span(child));
5865 } else
5866 cpumask_set_cpu(i, sg_span);
5867
5868 cpumask_or(covered, covered, sg_span);
5869
5870 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5871 if (atomic_inc_return(&sg->sgp->ref) == 1)
5872 build_group_mask(sd, sg);
5873
5874 /*
5875 * Initialize sgp->power such that even if we mess up the
5876 * domains and no possible iteration will get us here, we won't
5877 * die on a /0 trap.
5878 */
5879 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5880
5881 /*
5882 * Make sure the first group of this domain contains the
5883 * canonical balance cpu. Otherwise the sched_domain iteration
5884 * breaks. See update_sg_lb_stats().
5885 */
5886 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5887 group_balance_cpu(sg) == cpu)
5888 groups = sg;
5889
5890 if (!first)
5891 first = sg;
5892 if (last)
5893 last->next = sg;
5894 last = sg;
5895 last->next = first;
5896 }
5897 sd->groups = groups;
5898
5899 return 0;
5900
5901 fail:
5902 free_sched_groups(first, 0);
5903
5904 return -ENOMEM;
5905 }
5906
5907 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5908 {
5909 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5910 struct sched_domain *child = sd->child;
5911
5912 if (child)
5913 cpu = cpumask_first(sched_domain_span(child));
5914
5915 if (sg) {
5916 *sg = *per_cpu_ptr(sdd->sg, cpu);
5917 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5918 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5919 }
5920
5921 return cpu;
5922 }
5923
5924 /*
5925 * build_sched_groups will build a circular linked list of the groups
5926 * covered by the given span, and will set each group's ->cpumask correctly,
5927 * and ->cpu_power to 0.
5928 *
5929 * Assumes the sched_domain tree is fully constructed
5930 */
5931 static int
5932 build_sched_groups(struct sched_domain *sd, int cpu)
5933 {
5934 struct sched_group *first = NULL, *last = NULL;
5935 struct sd_data *sdd = sd->private;
5936 const struct cpumask *span = sched_domain_span(sd);
5937 struct cpumask *covered;
5938 int i;
5939
5940 get_group(cpu, sdd, &sd->groups);
5941 atomic_inc(&sd->groups->ref);
5942
5943 if (cpu != cpumask_first(sched_domain_span(sd)))
5944 return 0;
5945
5946 lockdep_assert_held(&sched_domains_mutex);
5947 covered = sched_domains_tmpmask;
5948
5949 cpumask_clear(covered);
5950
5951 for_each_cpu(i, span) {
5952 struct sched_group *sg;
5953 int group = get_group(i, sdd, &sg);
5954 int j;
5955
5956 if (cpumask_test_cpu(i, covered))
5957 continue;
5958
5959 cpumask_clear(sched_group_cpus(sg));
5960 sg->sgp->power = 0;
5961 cpumask_setall(sched_group_mask(sg));
5962
5963 for_each_cpu(j, span) {
5964 if (get_group(j, sdd, NULL) != group)
5965 continue;
5966
5967 cpumask_set_cpu(j, covered);
5968 cpumask_set_cpu(j, sched_group_cpus(sg));
5969 }
5970
5971 if (!first)
5972 first = sg;
5973 if (last)
5974 last->next = sg;
5975 last = sg;
5976 }
5977 last->next = first;
5978
5979 return 0;
5980 }
5981
5982 /*
5983 * Initialize sched groups cpu_power.
5984 *
5985 * cpu_power indicates the capacity of sched group, which is used while
5986 * distributing the load between different sched groups in a sched domain.
5987 * Typically cpu_power for all the groups in a sched domain will be same unless
5988 * there are asymmetries in the topology. If there are asymmetries, group
5989 * having more cpu_power will pickup more load compared to the group having
5990 * less cpu_power.
5991 */
5992 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5993 {
5994 struct sched_group *sg = sd->groups;
5995
5996 WARN_ON(!sd || !sg);
5997
5998 do {
5999 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6000 sg = sg->next;
6001 } while (sg != sd->groups);
6002
6003 if (cpu != group_balance_cpu(sg))
6004 return;
6005
6006 update_group_power(sd, cpu);
6007 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6008 }
6009
6010 int __weak arch_sd_sibling_asym_packing(void)
6011 {
6012 return 0*SD_ASYM_PACKING;
6013 }
6014
6015 /*
6016 * Initializers for schedule domains
6017 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6018 */
6019
6020 #ifdef CONFIG_SCHED_DEBUG
6021 # define SD_INIT_NAME(sd, type) sd->name = #type
6022 #else
6023 # define SD_INIT_NAME(sd, type) do { } while (0)
6024 #endif
6025
6026 #define SD_INIT_FUNC(type) \
6027 static noinline struct sched_domain * \
6028 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6029 { \
6030 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6031 *sd = SD_##type##_INIT; \
6032 SD_INIT_NAME(sd, type); \
6033 sd->private = &tl->data; \
6034 return sd; \
6035 }
6036
6037 SD_INIT_FUNC(CPU)
6038 #ifdef CONFIG_SCHED_SMT
6039 SD_INIT_FUNC(SIBLING)
6040 #endif
6041 #ifdef CONFIG_SCHED_MC
6042 SD_INIT_FUNC(MC)
6043 #endif
6044 #ifdef CONFIG_SCHED_BOOK
6045 SD_INIT_FUNC(BOOK)
6046 #endif
6047
6048 static int default_relax_domain_level = -1;
6049 int sched_domain_level_max;
6050
6051 static int __init setup_relax_domain_level(char *str)
6052 {
6053 if (kstrtoint(str, 0, &default_relax_domain_level))
6054 pr_warn("Unable to set relax_domain_level\n");
6055
6056 return 1;
6057 }
6058 __setup("relax_domain_level=", setup_relax_domain_level);
6059
6060 static void set_domain_attribute(struct sched_domain *sd,
6061 struct sched_domain_attr *attr)
6062 {
6063 int request;
6064
6065 if (!attr || attr->relax_domain_level < 0) {
6066 if (default_relax_domain_level < 0)
6067 return;
6068 else
6069 request = default_relax_domain_level;
6070 } else
6071 request = attr->relax_domain_level;
6072 if (request < sd->level) {
6073 /* turn off idle balance on this domain */
6074 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6075 } else {
6076 /* turn on idle balance on this domain */
6077 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6078 }
6079 }
6080
6081 static void __sdt_free(const struct cpumask *cpu_map);
6082 static int __sdt_alloc(const struct cpumask *cpu_map);
6083
6084 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6085 const struct cpumask *cpu_map)
6086 {
6087 switch (what) {
6088 case sa_rootdomain:
6089 if (!atomic_read(&d->rd->refcount))
6090 free_rootdomain(&d->rd->rcu); /* fall through */
6091 case sa_sd:
6092 free_percpu(d->sd); /* fall through */
6093 case sa_sd_storage:
6094 __sdt_free(cpu_map); /* fall through */
6095 case sa_none:
6096 break;
6097 }
6098 }
6099
6100 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6101 const struct cpumask *cpu_map)
6102 {
6103 memset(d, 0, sizeof(*d));
6104
6105 if (__sdt_alloc(cpu_map))
6106 return sa_sd_storage;
6107 d->sd = alloc_percpu(struct sched_domain *);
6108 if (!d->sd)
6109 return sa_sd_storage;
6110 d->rd = alloc_rootdomain();
6111 if (!d->rd)
6112 return sa_sd;
6113 return sa_rootdomain;
6114 }
6115
6116 /*
6117 * NULL the sd_data elements we've used to build the sched_domain and
6118 * sched_group structure so that the subsequent __free_domain_allocs()
6119 * will not free the data we're using.
6120 */
6121 static void claim_allocations(int cpu, struct sched_domain *sd)
6122 {
6123 struct sd_data *sdd = sd->private;
6124
6125 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6126 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6127
6128 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6129 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6130
6131 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6132 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6133 }
6134
6135 #ifdef CONFIG_SCHED_SMT
6136 static const struct cpumask *cpu_smt_mask(int cpu)
6137 {
6138 return topology_thread_cpumask(cpu);
6139 }
6140 #endif
6141
6142 /*
6143 * Topology list, bottom-up.
6144 */
6145 static struct sched_domain_topology_level default_topology[] = {
6146 #ifdef CONFIG_SCHED_SMT
6147 { sd_init_SIBLING, cpu_smt_mask, },
6148 #endif
6149 #ifdef CONFIG_SCHED_MC
6150 { sd_init_MC, cpu_coregroup_mask, },
6151 #endif
6152 #ifdef CONFIG_SCHED_BOOK
6153 { sd_init_BOOK, cpu_book_mask, },
6154 #endif
6155 { sd_init_CPU, cpu_cpu_mask, },
6156 { NULL, },
6157 };
6158
6159 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6160
6161 #ifdef CONFIG_NUMA
6162
6163 static int sched_domains_numa_levels;
6164 static int *sched_domains_numa_distance;
6165 static struct cpumask ***sched_domains_numa_masks;
6166 static int sched_domains_curr_level;
6167
6168 static inline int sd_local_flags(int level)
6169 {
6170 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6171 return 0;
6172
6173 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6174 }
6175
6176 static struct sched_domain *
6177 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6178 {
6179 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6180 int level = tl->numa_level;
6181 int sd_weight = cpumask_weight(
6182 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6183
6184 *sd = (struct sched_domain){
6185 .min_interval = sd_weight,
6186 .max_interval = 2*sd_weight,
6187 .busy_factor = 32,
6188 .imbalance_pct = 125,
6189 .cache_nice_tries = 2,
6190 .busy_idx = 3,
6191 .idle_idx = 2,
6192 .newidle_idx = 0,
6193 .wake_idx = 0,
6194 .forkexec_idx = 0,
6195
6196 .flags = 1*SD_LOAD_BALANCE
6197 | 1*SD_BALANCE_NEWIDLE
6198 | 0*SD_BALANCE_EXEC
6199 | 0*SD_BALANCE_FORK
6200 | 0*SD_BALANCE_WAKE
6201 | 0*SD_WAKE_AFFINE
6202 | 0*SD_SHARE_CPUPOWER
6203 | 0*SD_SHARE_PKG_RESOURCES
6204 | 1*SD_SERIALIZE
6205 | 0*SD_PREFER_SIBLING
6206 | sd_local_flags(level)
6207 ,
6208 .last_balance = jiffies,
6209 .balance_interval = sd_weight,
6210 };
6211 SD_INIT_NAME(sd, NUMA);
6212 sd->private = &tl->data;
6213
6214 /*
6215 * Ugly hack to pass state to sd_numa_mask()...
6216 */
6217 sched_domains_curr_level = tl->numa_level;
6218
6219 return sd;
6220 }
6221
6222 static const struct cpumask *sd_numa_mask(int cpu)
6223 {
6224 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6225 }
6226
6227 static void sched_numa_warn(const char *str)
6228 {
6229 static int done = false;
6230 int i,j;
6231
6232 if (done)
6233 return;
6234
6235 done = true;
6236
6237 printk(KERN_WARNING "ERROR: %s\n\n", str);
6238
6239 for (i = 0; i < nr_node_ids; i++) {
6240 printk(KERN_WARNING " ");
6241 for (j = 0; j < nr_node_ids; j++)
6242 printk(KERN_CONT "%02d ", node_distance(i,j));
6243 printk(KERN_CONT "\n");
6244 }
6245 printk(KERN_WARNING "\n");
6246 }
6247
6248 static bool find_numa_distance(int distance)
6249 {
6250 int i;
6251
6252 if (distance == node_distance(0, 0))
6253 return true;
6254
6255 for (i = 0; i < sched_domains_numa_levels; i++) {
6256 if (sched_domains_numa_distance[i] == distance)
6257 return true;
6258 }
6259
6260 return false;
6261 }
6262
6263 static void sched_init_numa(void)
6264 {
6265 int next_distance, curr_distance = node_distance(0, 0);
6266 struct sched_domain_topology_level *tl;
6267 int level = 0;
6268 int i, j, k;
6269
6270 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6271 if (!sched_domains_numa_distance)
6272 return;
6273
6274 /*
6275 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6276 * unique distances in the node_distance() table.
6277 *
6278 * Assumes node_distance(0,j) includes all distances in
6279 * node_distance(i,j) in order to avoid cubic time.
6280 */
6281 next_distance = curr_distance;
6282 for (i = 0; i < nr_node_ids; i++) {
6283 for (j = 0; j < nr_node_ids; j++) {
6284 for (k = 0; k < nr_node_ids; k++) {
6285 int distance = node_distance(i, k);
6286
6287 if (distance > curr_distance &&
6288 (distance < next_distance ||
6289 next_distance == curr_distance))
6290 next_distance = distance;
6291
6292 /*
6293 * While not a strong assumption it would be nice to know
6294 * about cases where if node A is connected to B, B is not
6295 * equally connected to A.
6296 */
6297 if (sched_debug() && node_distance(k, i) != distance)
6298 sched_numa_warn("Node-distance not symmetric");
6299
6300 if (sched_debug() && i && !find_numa_distance(distance))
6301 sched_numa_warn("Node-0 not representative");
6302 }
6303 if (next_distance != curr_distance) {
6304 sched_domains_numa_distance[level++] = next_distance;
6305 sched_domains_numa_levels = level;
6306 curr_distance = next_distance;
6307 } else break;
6308 }
6309
6310 /*
6311 * In case of sched_debug() we verify the above assumption.
6312 */
6313 if (!sched_debug())
6314 break;
6315 }
6316 /*
6317 * 'level' contains the number of unique distances, excluding the
6318 * identity distance node_distance(i,i).
6319 *
6320 * The sched_domains_numa_distance[] array includes the actual distance
6321 * numbers.
6322 */
6323
6324 /*
6325 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6326 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6327 * the array will contain less then 'level' members. This could be
6328 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6329 * in other functions.
6330 *
6331 * We reset it to 'level' at the end of this function.
6332 */
6333 sched_domains_numa_levels = 0;
6334
6335 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6336 if (!sched_domains_numa_masks)
6337 return;
6338
6339 /*
6340 * Now for each level, construct a mask per node which contains all
6341 * cpus of nodes that are that many hops away from us.
6342 */
6343 for (i = 0; i < level; i++) {
6344 sched_domains_numa_masks[i] =
6345 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6346 if (!sched_domains_numa_masks[i])
6347 return;
6348
6349 for (j = 0; j < nr_node_ids; j++) {
6350 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6351 if (!mask)
6352 return;
6353
6354 sched_domains_numa_masks[i][j] = mask;
6355
6356 for (k = 0; k < nr_node_ids; k++) {
6357 if (node_distance(j, k) > sched_domains_numa_distance[i])
6358 continue;
6359
6360 cpumask_or(mask, mask, cpumask_of_node(k));
6361 }
6362 }
6363 }
6364
6365 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6366 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6367 if (!tl)
6368 return;
6369
6370 /*
6371 * Copy the default topology bits..
6372 */
6373 for (i = 0; default_topology[i].init; i++)
6374 tl[i] = default_topology[i];
6375
6376 /*
6377 * .. and append 'j' levels of NUMA goodness.
6378 */
6379 for (j = 0; j < level; i++, j++) {
6380 tl[i] = (struct sched_domain_topology_level){
6381 .init = sd_numa_init,
6382 .mask = sd_numa_mask,
6383 .flags = SDTL_OVERLAP,
6384 .numa_level = j,
6385 };
6386 }
6387
6388 sched_domain_topology = tl;
6389
6390 sched_domains_numa_levels = level;
6391 }
6392
6393 static void sched_domains_numa_masks_set(int cpu)
6394 {
6395 int i, j;
6396 int node = cpu_to_node(cpu);
6397
6398 for (i = 0; i < sched_domains_numa_levels; i++) {
6399 for (j = 0; j < nr_node_ids; j++) {
6400 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6401 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6402 }
6403 }
6404 }
6405
6406 static void sched_domains_numa_masks_clear(int cpu)
6407 {
6408 int i, j;
6409 for (i = 0; i < sched_domains_numa_levels; i++) {
6410 for (j = 0; j < nr_node_ids; j++)
6411 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6412 }
6413 }
6414
6415 /*
6416 * Update sched_domains_numa_masks[level][node] array when new cpus
6417 * are onlined.
6418 */
6419 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6420 unsigned long action,
6421 void *hcpu)
6422 {
6423 int cpu = (long)hcpu;
6424
6425 switch (action & ~CPU_TASKS_FROZEN) {
6426 case CPU_ONLINE:
6427 sched_domains_numa_masks_set(cpu);
6428 break;
6429
6430 case CPU_DEAD:
6431 sched_domains_numa_masks_clear(cpu);
6432 break;
6433
6434 default:
6435 return NOTIFY_DONE;
6436 }
6437
6438 return NOTIFY_OK;
6439 }
6440 #else
6441 static inline void sched_init_numa(void)
6442 {
6443 }
6444
6445 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6446 unsigned long action,
6447 void *hcpu)
6448 {
6449 return 0;
6450 }
6451 #endif /* CONFIG_NUMA */
6452
6453 static int __sdt_alloc(const struct cpumask *cpu_map)
6454 {
6455 struct sched_domain_topology_level *tl;
6456 int j;
6457
6458 for (tl = sched_domain_topology; tl->init; tl++) {
6459 struct sd_data *sdd = &tl->data;
6460
6461 sdd->sd = alloc_percpu(struct sched_domain *);
6462 if (!sdd->sd)
6463 return -ENOMEM;
6464
6465 sdd->sg = alloc_percpu(struct sched_group *);
6466 if (!sdd->sg)
6467 return -ENOMEM;
6468
6469 sdd->sgp = alloc_percpu(struct sched_group_power *);
6470 if (!sdd->sgp)
6471 return -ENOMEM;
6472
6473 for_each_cpu(j, cpu_map) {
6474 struct sched_domain *sd;
6475 struct sched_group *sg;
6476 struct sched_group_power *sgp;
6477
6478 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6479 GFP_KERNEL, cpu_to_node(j));
6480 if (!sd)
6481 return -ENOMEM;
6482
6483 *per_cpu_ptr(sdd->sd, j) = sd;
6484
6485 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6486 GFP_KERNEL, cpu_to_node(j));
6487 if (!sg)
6488 return -ENOMEM;
6489
6490 sg->next = sg;
6491
6492 *per_cpu_ptr(sdd->sg, j) = sg;
6493
6494 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6495 GFP_KERNEL, cpu_to_node(j));
6496 if (!sgp)
6497 return -ENOMEM;
6498
6499 *per_cpu_ptr(sdd->sgp, j) = sgp;
6500 }
6501 }
6502
6503 return 0;
6504 }
6505
6506 static void __sdt_free(const struct cpumask *cpu_map)
6507 {
6508 struct sched_domain_topology_level *tl;
6509 int j;
6510
6511 for (tl = sched_domain_topology; tl->init; tl++) {
6512 struct sd_data *sdd = &tl->data;
6513
6514 for_each_cpu(j, cpu_map) {
6515 struct sched_domain *sd;
6516
6517 if (sdd->sd) {
6518 sd = *per_cpu_ptr(sdd->sd, j);
6519 if (sd && (sd->flags & SD_OVERLAP))
6520 free_sched_groups(sd->groups, 0);
6521 kfree(*per_cpu_ptr(sdd->sd, j));
6522 }
6523
6524 if (sdd->sg)
6525 kfree(*per_cpu_ptr(sdd->sg, j));
6526 if (sdd->sgp)
6527 kfree(*per_cpu_ptr(sdd->sgp, j));
6528 }
6529 free_percpu(sdd->sd);
6530 sdd->sd = NULL;
6531 free_percpu(sdd->sg);
6532 sdd->sg = NULL;
6533 free_percpu(sdd->sgp);
6534 sdd->sgp = NULL;
6535 }
6536 }
6537
6538 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6539 struct s_data *d, const struct cpumask *cpu_map,
6540 struct sched_domain_attr *attr, struct sched_domain *child,
6541 int cpu)
6542 {
6543 struct sched_domain *sd = tl->init(tl, cpu);
6544 if (!sd)
6545 return child;
6546
6547 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6548 if (child) {
6549 sd->level = child->level + 1;
6550 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6551 child->parent = sd;
6552 }
6553 sd->child = child;
6554 set_domain_attribute(sd, attr);
6555
6556 return sd;
6557 }
6558
6559 /*
6560 * Build sched domains for a given set of cpus and attach the sched domains
6561 * to the individual cpus
6562 */
6563 static int build_sched_domains(const struct cpumask *cpu_map,
6564 struct sched_domain_attr *attr)
6565 {
6566 enum s_alloc alloc_state = sa_none;
6567 struct sched_domain *sd;
6568 struct s_data d;
6569 int i, ret = -ENOMEM;
6570
6571 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6572 if (alloc_state != sa_rootdomain)
6573 goto error;
6574
6575 /* Set up domains for cpus specified by the cpu_map. */
6576 for_each_cpu(i, cpu_map) {
6577 struct sched_domain_topology_level *tl;
6578
6579 sd = NULL;
6580 for (tl = sched_domain_topology; tl->init; tl++) {
6581 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6582 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6583 sd->flags |= SD_OVERLAP;
6584 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6585 break;
6586 }
6587
6588 while (sd->child)
6589 sd = sd->child;
6590
6591 *per_cpu_ptr(d.sd, i) = sd;
6592 }
6593
6594 /* Build the groups for the domains */
6595 for_each_cpu(i, cpu_map) {
6596 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6597 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6598 if (sd->flags & SD_OVERLAP) {
6599 if (build_overlap_sched_groups(sd, i))
6600 goto error;
6601 } else {
6602 if (build_sched_groups(sd, i))
6603 goto error;
6604 }
6605 }
6606 }
6607
6608 /* Calculate CPU power for physical packages and nodes */
6609 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6610 if (!cpumask_test_cpu(i, cpu_map))
6611 continue;
6612
6613 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6614 claim_allocations(i, sd);
6615 init_sched_groups_power(i, sd);
6616 }
6617 }
6618
6619 /* Attach the domains */
6620 rcu_read_lock();
6621 for_each_cpu(i, cpu_map) {
6622 sd = *per_cpu_ptr(d.sd, i);
6623 cpu_attach_domain(sd, d.rd, i);
6624 }
6625 rcu_read_unlock();
6626
6627 ret = 0;
6628 error:
6629 __free_domain_allocs(&d, alloc_state, cpu_map);
6630 return ret;
6631 }
6632
6633 static cpumask_var_t *doms_cur; /* current sched domains */
6634 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6635 static struct sched_domain_attr *dattr_cur;
6636 /* attribues of custom domains in 'doms_cur' */
6637
6638 /*
6639 * Special case: If a kmalloc of a doms_cur partition (array of
6640 * cpumask) fails, then fallback to a single sched domain,
6641 * as determined by the single cpumask fallback_doms.
6642 */
6643 static cpumask_var_t fallback_doms;
6644
6645 /*
6646 * arch_update_cpu_topology lets virtualized architectures update the
6647 * cpu core maps. It is supposed to return 1 if the topology changed
6648 * or 0 if it stayed the same.
6649 */
6650 int __attribute__((weak)) arch_update_cpu_topology(void)
6651 {
6652 return 0;
6653 }
6654
6655 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6656 {
6657 int i;
6658 cpumask_var_t *doms;
6659
6660 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6661 if (!doms)
6662 return NULL;
6663 for (i = 0; i < ndoms; i++) {
6664 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6665 free_sched_domains(doms, i);
6666 return NULL;
6667 }
6668 }
6669 return doms;
6670 }
6671
6672 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6673 {
6674 unsigned int i;
6675 for (i = 0; i < ndoms; i++)
6676 free_cpumask_var(doms[i]);
6677 kfree(doms);
6678 }
6679
6680 /*
6681 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6682 * For now this just excludes isolated cpus, but could be used to
6683 * exclude other special cases in the future.
6684 */
6685 static int init_sched_domains(const struct cpumask *cpu_map)
6686 {
6687 int err;
6688
6689 arch_update_cpu_topology();
6690 ndoms_cur = 1;
6691 doms_cur = alloc_sched_domains(ndoms_cur);
6692 if (!doms_cur)
6693 doms_cur = &fallback_doms;
6694 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6695 err = build_sched_domains(doms_cur[0], NULL);
6696 register_sched_domain_sysctl();
6697
6698 return err;
6699 }
6700
6701 /*
6702 * Detach sched domains from a group of cpus specified in cpu_map
6703 * These cpus will now be attached to the NULL domain
6704 */
6705 static void detach_destroy_domains(const struct cpumask *cpu_map)
6706 {
6707 int i;
6708
6709 rcu_read_lock();
6710 for_each_cpu(i, cpu_map)
6711 cpu_attach_domain(NULL, &def_root_domain, i);
6712 rcu_read_unlock();
6713 }
6714
6715 /* handle null as "default" */
6716 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6717 struct sched_domain_attr *new, int idx_new)
6718 {
6719 struct sched_domain_attr tmp;
6720
6721 /* fast path */
6722 if (!new && !cur)
6723 return 1;
6724
6725 tmp = SD_ATTR_INIT;
6726 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6727 new ? (new + idx_new) : &tmp,
6728 sizeof(struct sched_domain_attr));
6729 }
6730
6731 /*
6732 * Partition sched domains as specified by the 'ndoms_new'
6733 * cpumasks in the array doms_new[] of cpumasks. This compares
6734 * doms_new[] to the current sched domain partitioning, doms_cur[].
6735 * It destroys each deleted domain and builds each new domain.
6736 *
6737 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6738 * The masks don't intersect (don't overlap.) We should setup one
6739 * sched domain for each mask. CPUs not in any of the cpumasks will
6740 * not be load balanced. If the same cpumask appears both in the
6741 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6742 * it as it is.
6743 *
6744 * The passed in 'doms_new' should be allocated using
6745 * alloc_sched_domains. This routine takes ownership of it and will
6746 * free_sched_domains it when done with it. If the caller failed the
6747 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6748 * and partition_sched_domains() will fallback to the single partition
6749 * 'fallback_doms', it also forces the domains to be rebuilt.
6750 *
6751 * If doms_new == NULL it will be replaced with cpu_online_mask.
6752 * ndoms_new == 0 is a special case for destroying existing domains,
6753 * and it will not create the default domain.
6754 *
6755 * Call with hotplug lock held
6756 */
6757 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6758 struct sched_domain_attr *dattr_new)
6759 {
6760 int i, j, n;
6761 int new_topology;
6762
6763 mutex_lock(&sched_domains_mutex);
6764
6765 /* always unregister in case we don't destroy any domains */
6766 unregister_sched_domain_sysctl();
6767
6768 /* Let architecture update cpu core mappings. */
6769 new_topology = arch_update_cpu_topology();
6770
6771 n = doms_new ? ndoms_new : 0;
6772
6773 /* Destroy deleted domains */
6774 for (i = 0; i < ndoms_cur; i++) {
6775 for (j = 0; j < n && !new_topology; j++) {
6776 if (cpumask_equal(doms_cur[i], doms_new[j])
6777 && dattrs_equal(dattr_cur, i, dattr_new, j))
6778 goto match1;
6779 }
6780 /* no match - a current sched domain not in new doms_new[] */
6781 detach_destroy_domains(doms_cur[i]);
6782 match1:
6783 ;
6784 }
6785
6786 if (doms_new == NULL) {
6787 ndoms_cur = 0;
6788 doms_new = &fallback_doms;
6789 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6790 WARN_ON_ONCE(dattr_new);
6791 }
6792
6793 /* Build new domains */
6794 for (i = 0; i < ndoms_new; i++) {
6795 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6796 if (cpumask_equal(doms_new[i], doms_cur[j])
6797 && dattrs_equal(dattr_new, i, dattr_cur, j))
6798 goto match2;
6799 }
6800 /* no match - add a new doms_new */
6801 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6802 match2:
6803 ;
6804 }
6805
6806 /* Remember the new sched domains */
6807 if (doms_cur != &fallback_doms)
6808 free_sched_domains(doms_cur, ndoms_cur);
6809 kfree(dattr_cur); /* kfree(NULL) is safe */
6810 doms_cur = doms_new;
6811 dattr_cur = dattr_new;
6812 ndoms_cur = ndoms_new;
6813
6814 register_sched_domain_sysctl();
6815
6816 mutex_unlock(&sched_domains_mutex);
6817 }
6818
6819 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6820
6821 /*
6822 * Update cpusets according to cpu_active mask. If cpusets are
6823 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6824 * around partition_sched_domains().
6825 *
6826 * If we come here as part of a suspend/resume, don't touch cpusets because we
6827 * want to restore it back to its original state upon resume anyway.
6828 */
6829 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6830 void *hcpu)
6831 {
6832 switch (action) {
6833 case CPU_ONLINE_FROZEN:
6834 case CPU_DOWN_FAILED_FROZEN:
6835
6836 /*
6837 * num_cpus_frozen tracks how many CPUs are involved in suspend
6838 * resume sequence. As long as this is not the last online
6839 * operation in the resume sequence, just build a single sched
6840 * domain, ignoring cpusets.
6841 */
6842 num_cpus_frozen--;
6843 if (likely(num_cpus_frozen)) {
6844 partition_sched_domains(1, NULL, NULL);
6845 break;
6846 }
6847
6848 /*
6849 * This is the last CPU online operation. So fall through and
6850 * restore the original sched domains by considering the
6851 * cpuset configurations.
6852 */
6853
6854 case CPU_ONLINE:
6855 case CPU_DOWN_FAILED:
6856 cpuset_update_active_cpus(true);
6857 break;
6858 default:
6859 return NOTIFY_DONE;
6860 }
6861 return NOTIFY_OK;
6862 }
6863
6864 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6865 void *hcpu)
6866 {
6867 switch (action) {
6868 case CPU_DOWN_PREPARE:
6869 cpuset_update_active_cpus(false);
6870 break;
6871 case CPU_DOWN_PREPARE_FROZEN:
6872 num_cpus_frozen++;
6873 partition_sched_domains(1, NULL, NULL);
6874 break;
6875 default:
6876 return NOTIFY_DONE;
6877 }
6878 return NOTIFY_OK;
6879 }
6880
6881 void __init sched_init_smp(void)
6882 {
6883 cpumask_var_t non_isolated_cpus;
6884
6885 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6886 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6887
6888 sched_init_numa();
6889
6890 get_online_cpus();
6891 mutex_lock(&sched_domains_mutex);
6892 init_sched_domains(cpu_active_mask);
6893 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6894 if (cpumask_empty(non_isolated_cpus))
6895 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6896 mutex_unlock(&sched_domains_mutex);
6897 put_online_cpus();
6898
6899 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6900 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6901 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6902
6903 /* RT runtime code needs to handle some hotplug events */
6904 hotcpu_notifier(update_runtime, 0);
6905
6906 init_hrtick();
6907
6908 /* Move init over to a non-isolated CPU */
6909 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6910 BUG();
6911 sched_init_granularity();
6912 free_cpumask_var(non_isolated_cpus);
6913
6914 init_sched_rt_class();
6915 }
6916 #else
6917 void __init sched_init_smp(void)
6918 {
6919 sched_init_granularity();
6920 }
6921 #endif /* CONFIG_SMP */
6922
6923 const_debug unsigned int sysctl_timer_migration = 1;
6924
6925 int in_sched_functions(unsigned long addr)
6926 {
6927 return in_lock_functions(addr) ||
6928 (addr >= (unsigned long)__sched_text_start
6929 && addr < (unsigned long)__sched_text_end);
6930 }
6931
6932 #ifdef CONFIG_CGROUP_SCHED
6933 /*
6934 * Default task group.
6935 * Every task in system belongs to this group at bootup.
6936 */
6937 struct task_group root_task_group;
6938 LIST_HEAD(task_groups);
6939 #endif
6940
6941 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6942
6943 void __init sched_init(void)
6944 {
6945 int i, j;
6946 unsigned long alloc_size = 0, ptr;
6947
6948 #ifdef CONFIG_FAIR_GROUP_SCHED
6949 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6950 #endif
6951 #ifdef CONFIG_RT_GROUP_SCHED
6952 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6953 #endif
6954 #ifdef CONFIG_CPUMASK_OFFSTACK
6955 alloc_size += num_possible_cpus() * cpumask_size();
6956 #endif
6957 if (alloc_size) {
6958 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6959
6960 #ifdef CONFIG_FAIR_GROUP_SCHED
6961 root_task_group.se = (struct sched_entity **)ptr;
6962 ptr += nr_cpu_ids * sizeof(void **);
6963
6964 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6965 ptr += nr_cpu_ids * sizeof(void **);
6966
6967 #endif /* CONFIG_FAIR_GROUP_SCHED */
6968 #ifdef CONFIG_RT_GROUP_SCHED
6969 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6970 ptr += nr_cpu_ids * sizeof(void **);
6971
6972 root_task_group.rt_rq = (struct rt_rq **)ptr;
6973 ptr += nr_cpu_ids * sizeof(void **);
6974
6975 #endif /* CONFIG_RT_GROUP_SCHED */
6976 #ifdef CONFIG_CPUMASK_OFFSTACK
6977 for_each_possible_cpu(i) {
6978 per_cpu(load_balance_mask, i) = (void *)ptr;
6979 ptr += cpumask_size();
6980 }
6981 #endif /* CONFIG_CPUMASK_OFFSTACK */
6982 }
6983
6984 #ifdef CONFIG_SMP
6985 init_defrootdomain();
6986 #endif
6987
6988 init_rt_bandwidth(&def_rt_bandwidth,
6989 global_rt_period(), global_rt_runtime());
6990
6991 #ifdef CONFIG_RT_GROUP_SCHED
6992 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6993 global_rt_period(), global_rt_runtime());
6994 #endif /* CONFIG_RT_GROUP_SCHED */
6995
6996 #ifdef CONFIG_CGROUP_SCHED
6997 list_add(&root_task_group.list, &task_groups);
6998 INIT_LIST_HEAD(&root_task_group.children);
6999 INIT_LIST_HEAD(&root_task_group.siblings);
7000 autogroup_init(&init_task);
7001
7002 #endif /* CONFIG_CGROUP_SCHED */
7003
7004 for_each_possible_cpu(i) {
7005 struct rq *rq;
7006
7007 rq = cpu_rq(i);
7008 raw_spin_lock_init(&rq->lock);
7009 rq->nr_running = 0;
7010 rq->calc_load_active = 0;
7011 rq->calc_load_update = jiffies + LOAD_FREQ;
7012 init_cfs_rq(&rq->cfs);
7013 init_rt_rq(&rq->rt, rq);
7014 #ifdef CONFIG_FAIR_GROUP_SCHED
7015 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7016 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7017 /*
7018 * How much cpu bandwidth does root_task_group get?
7019 *
7020 * In case of task-groups formed thr' the cgroup filesystem, it
7021 * gets 100% of the cpu resources in the system. This overall
7022 * system cpu resource is divided among the tasks of
7023 * root_task_group and its child task-groups in a fair manner,
7024 * based on each entity's (task or task-group's) weight
7025 * (se->load.weight).
7026 *
7027 * In other words, if root_task_group has 10 tasks of weight
7028 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7029 * then A0's share of the cpu resource is:
7030 *
7031 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7032 *
7033 * We achieve this by letting root_task_group's tasks sit
7034 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7035 */
7036 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7037 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7038 #endif /* CONFIG_FAIR_GROUP_SCHED */
7039
7040 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7041 #ifdef CONFIG_RT_GROUP_SCHED
7042 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7043 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7044 #endif
7045
7046 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7047 rq->cpu_load[j] = 0;
7048
7049 rq->last_load_update_tick = jiffies;
7050
7051 #ifdef CONFIG_SMP
7052 rq->sd = NULL;
7053 rq->rd = NULL;
7054 rq->cpu_power = SCHED_POWER_SCALE;
7055 rq->post_schedule = 0;
7056 rq->active_balance = 0;
7057 rq->next_balance = jiffies;
7058 rq->push_cpu = 0;
7059 rq->cpu = i;
7060 rq->online = 0;
7061 rq->idle_stamp = 0;
7062 rq->avg_idle = 2*sysctl_sched_migration_cost;
7063
7064 INIT_LIST_HEAD(&rq->cfs_tasks);
7065
7066 rq_attach_root(rq, &def_root_domain);
7067 #ifdef CONFIG_NO_HZ_COMMON
7068 rq->nohz_flags = 0;
7069 #endif
7070 #ifdef CONFIG_NO_HZ_FULL
7071 rq->last_sched_tick = 0;
7072 #endif
7073 #endif
7074 init_rq_hrtick(rq);
7075 atomic_set(&rq->nr_iowait, 0);
7076 }
7077
7078 set_load_weight(&init_task);
7079
7080 #ifdef CONFIG_PREEMPT_NOTIFIERS
7081 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7082 #endif
7083
7084 #ifdef CONFIG_RT_MUTEXES
7085 plist_head_init(&init_task.pi_waiters);
7086 #endif
7087
7088 /*
7089 * The boot idle thread does lazy MMU switching as well:
7090 */
7091 atomic_inc(&init_mm.mm_count);
7092 enter_lazy_tlb(&init_mm, current);
7093
7094 /*
7095 * Make us the idle thread. Technically, schedule() should not be
7096 * called from this thread, however somewhere below it might be,
7097 * but because we are the idle thread, we just pick up running again
7098 * when this runqueue becomes "idle".
7099 */
7100 init_idle(current, smp_processor_id());
7101
7102 calc_load_update = jiffies + LOAD_FREQ;
7103
7104 /*
7105 * During early bootup we pretend to be a normal task:
7106 */
7107 current->sched_class = &fair_sched_class;
7108
7109 #ifdef CONFIG_SMP
7110 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7111 /* May be allocated at isolcpus cmdline parse time */
7112 if (cpu_isolated_map == NULL)
7113 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7114 idle_thread_set_boot_cpu();
7115 #endif
7116 init_sched_fair_class();
7117
7118 scheduler_running = 1;
7119 }
7120
7121 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7122 static inline int preempt_count_equals(int preempt_offset)
7123 {
7124 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7125
7126 return (nested == preempt_offset);
7127 }
7128
7129 void __might_sleep(const char *file, int line, int preempt_offset)
7130 {
7131 static unsigned long prev_jiffy; /* ratelimiting */
7132
7133 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7134 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7135 system_state != SYSTEM_RUNNING || oops_in_progress)
7136 return;
7137 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7138 return;
7139 prev_jiffy = jiffies;
7140
7141 printk(KERN_ERR
7142 "BUG: sleeping function called from invalid context at %s:%d\n",
7143 file, line);
7144 printk(KERN_ERR
7145 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7146 in_atomic(), irqs_disabled(),
7147 current->pid, current->comm);
7148
7149 debug_show_held_locks(current);
7150 if (irqs_disabled())
7151 print_irqtrace_events(current);
7152 dump_stack();
7153 }
7154 EXPORT_SYMBOL(__might_sleep);
7155 #endif
7156
7157 #ifdef CONFIG_MAGIC_SYSRQ
7158 static void normalize_task(struct rq *rq, struct task_struct *p)
7159 {
7160 const struct sched_class *prev_class = p->sched_class;
7161 int old_prio = p->prio;
7162 int on_rq;
7163
7164 on_rq = p->on_rq;
7165 if (on_rq)
7166 dequeue_task(rq, p, 0);
7167 __setscheduler(rq, p, SCHED_NORMAL, 0);
7168 if (on_rq) {
7169 enqueue_task(rq, p, 0);
7170 resched_task(rq->curr);
7171 }
7172
7173 check_class_changed(rq, p, prev_class, old_prio);
7174 }
7175
7176 void normalize_rt_tasks(void)
7177 {
7178 struct task_struct *g, *p;
7179 unsigned long flags;
7180 struct rq *rq;
7181
7182 read_lock_irqsave(&tasklist_lock, flags);
7183 do_each_thread(g, p) {
7184 /*
7185 * Only normalize user tasks:
7186 */
7187 if (!p->mm)
7188 continue;
7189
7190 p->se.exec_start = 0;
7191 #ifdef CONFIG_SCHEDSTATS
7192 p->se.statistics.wait_start = 0;
7193 p->se.statistics.sleep_start = 0;
7194 p->se.statistics.block_start = 0;
7195 #endif
7196
7197 if (!rt_task(p)) {
7198 /*
7199 * Renice negative nice level userspace
7200 * tasks back to 0:
7201 */
7202 if (TASK_NICE(p) < 0 && p->mm)
7203 set_user_nice(p, 0);
7204 continue;
7205 }
7206
7207 raw_spin_lock(&p->pi_lock);
7208 rq = __task_rq_lock(p);
7209
7210 normalize_task(rq, p);
7211
7212 __task_rq_unlock(rq);
7213 raw_spin_unlock(&p->pi_lock);
7214 } while_each_thread(g, p);
7215
7216 read_unlock_irqrestore(&tasklist_lock, flags);
7217 }
7218
7219 #endif /* CONFIG_MAGIC_SYSRQ */
7220
7221 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7222 /*
7223 * These functions are only useful for the IA64 MCA handling, or kdb.
7224 *
7225 * They can only be called when the whole system has been
7226 * stopped - every CPU needs to be quiescent, and no scheduling
7227 * activity can take place. Using them for anything else would
7228 * be a serious bug, and as a result, they aren't even visible
7229 * under any other configuration.
7230 */
7231
7232 /**
7233 * curr_task - return the current task for a given cpu.
7234 * @cpu: the processor in question.
7235 *
7236 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7237 */
7238 struct task_struct *curr_task(int cpu)
7239 {
7240 return cpu_curr(cpu);
7241 }
7242
7243 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7244
7245 #ifdef CONFIG_IA64
7246 /**
7247 * set_curr_task - set the current task for a given cpu.
7248 * @cpu: the processor in question.
7249 * @p: the task pointer to set.
7250 *
7251 * Description: This function must only be used when non-maskable interrupts
7252 * are serviced on a separate stack. It allows the architecture to switch the
7253 * notion of the current task on a cpu in a non-blocking manner. This function
7254 * must be called with all CPU's synchronized, and interrupts disabled, the
7255 * and caller must save the original value of the current task (see
7256 * curr_task() above) and restore that value before reenabling interrupts and
7257 * re-starting the system.
7258 *
7259 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7260 */
7261 void set_curr_task(int cpu, struct task_struct *p)
7262 {
7263 cpu_curr(cpu) = p;
7264 }
7265
7266 #endif
7267
7268 #ifdef CONFIG_CGROUP_SCHED
7269 /* task_group_lock serializes the addition/removal of task groups */
7270 static DEFINE_SPINLOCK(task_group_lock);
7271
7272 static void free_sched_group(struct task_group *tg)
7273 {
7274 free_fair_sched_group(tg);
7275 free_rt_sched_group(tg);
7276 autogroup_free(tg);
7277 kfree(tg);
7278 }
7279
7280 /* allocate runqueue etc for a new task group */
7281 struct task_group *sched_create_group(struct task_group *parent)
7282 {
7283 struct task_group *tg;
7284
7285 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7286 if (!tg)
7287 return ERR_PTR(-ENOMEM);
7288
7289 if (!alloc_fair_sched_group(tg, parent))
7290 goto err;
7291
7292 if (!alloc_rt_sched_group(tg, parent))
7293 goto err;
7294
7295 return tg;
7296
7297 err:
7298 free_sched_group(tg);
7299 return ERR_PTR(-ENOMEM);
7300 }
7301
7302 void sched_online_group(struct task_group *tg, struct task_group *parent)
7303 {
7304 unsigned long flags;
7305
7306 spin_lock_irqsave(&task_group_lock, flags);
7307 list_add_rcu(&tg->list, &task_groups);
7308
7309 WARN_ON(!parent); /* root should already exist */
7310
7311 tg->parent = parent;
7312 INIT_LIST_HEAD(&tg->children);
7313 list_add_rcu(&tg->siblings, &parent->children);
7314 spin_unlock_irqrestore(&task_group_lock, flags);
7315 }
7316
7317 /* rcu callback to free various structures associated with a task group */
7318 static void free_sched_group_rcu(struct rcu_head *rhp)
7319 {
7320 /* now it should be safe to free those cfs_rqs */
7321 free_sched_group(container_of(rhp, struct task_group, rcu));
7322 }
7323
7324 /* Destroy runqueue etc associated with a task group */
7325 void sched_destroy_group(struct task_group *tg)
7326 {
7327 /* wait for possible concurrent references to cfs_rqs complete */
7328 call_rcu(&tg->rcu, free_sched_group_rcu);
7329 }
7330
7331 void sched_offline_group(struct task_group *tg)
7332 {
7333 unsigned long flags;
7334 int i;
7335
7336 /* end participation in shares distribution */
7337 for_each_possible_cpu(i)
7338 unregister_fair_sched_group(tg, i);
7339
7340 spin_lock_irqsave(&task_group_lock, flags);
7341 list_del_rcu(&tg->list);
7342 list_del_rcu(&tg->siblings);
7343 spin_unlock_irqrestore(&task_group_lock, flags);
7344 }
7345
7346 /* change task's runqueue when it moves between groups.
7347 * The caller of this function should have put the task in its new group
7348 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7349 * reflect its new group.
7350 */
7351 void sched_move_task(struct task_struct *tsk)
7352 {
7353 struct task_group *tg;
7354 int on_rq, running;
7355 unsigned long flags;
7356 struct rq *rq;
7357
7358 rq = task_rq_lock(tsk, &flags);
7359
7360 running = task_current(rq, tsk);
7361 on_rq = tsk->on_rq;
7362
7363 if (on_rq)
7364 dequeue_task(rq, tsk, 0);
7365 if (unlikely(running))
7366 tsk->sched_class->put_prev_task(rq, tsk);
7367
7368 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7369 lockdep_is_held(&tsk->sighand->siglock)),
7370 struct task_group, css);
7371 tg = autogroup_task_group(tsk, tg);
7372 tsk->sched_task_group = tg;
7373
7374 #ifdef CONFIG_FAIR_GROUP_SCHED
7375 if (tsk->sched_class->task_move_group)
7376 tsk->sched_class->task_move_group(tsk, on_rq);
7377 else
7378 #endif
7379 set_task_rq(tsk, task_cpu(tsk));
7380
7381 if (unlikely(running))
7382 tsk->sched_class->set_curr_task(rq);
7383 if (on_rq)
7384 enqueue_task(rq, tsk, 0);
7385
7386 task_rq_unlock(rq, tsk, &flags);
7387 }
7388 #endif /* CONFIG_CGROUP_SCHED */
7389
7390 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7391 static unsigned long to_ratio(u64 period, u64 runtime)
7392 {
7393 if (runtime == RUNTIME_INF)
7394 return 1ULL << 20;
7395
7396 return div64_u64(runtime << 20, period);
7397 }
7398 #endif
7399
7400 #ifdef CONFIG_RT_GROUP_SCHED
7401 /*
7402 * Ensure that the real time constraints are schedulable.
7403 */
7404 static DEFINE_MUTEX(rt_constraints_mutex);
7405
7406 /* Must be called with tasklist_lock held */
7407 static inline int tg_has_rt_tasks(struct task_group *tg)
7408 {
7409 struct task_struct *g, *p;
7410
7411 do_each_thread(g, p) {
7412 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7413 return 1;
7414 } while_each_thread(g, p);
7415
7416 return 0;
7417 }
7418
7419 struct rt_schedulable_data {
7420 struct task_group *tg;
7421 u64 rt_period;
7422 u64 rt_runtime;
7423 };
7424
7425 static int tg_rt_schedulable(struct task_group *tg, void *data)
7426 {
7427 struct rt_schedulable_data *d = data;
7428 struct task_group *child;
7429 unsigned long total, sum = 0;
7430 u64 period, runtime;
7431
7432 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7433 runtime = tg->rt_bandwidth.rt_runtime;
7434
7435 if (tg == d->tg) {
7436 period = d->rt_period;
7437 runtime = d->rt_runtime;
7438 }
7439
7440 /*
7441 * Cannot have more runtime than the period.
7442 */
7443 if (runtime > period && runtime != RUNTIME_INF)
7444 return -EINVAL;
7445
7446 /*
7447 * Ensure we don't starve existing RT tasks.
7448 */
7449 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7450 return -EBUSY;
7451
7452 total = to_ratio(period, runtime);
7453
7454 /*
7455 * Nobody can have more than the global setting allows.
7456 */
7457 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7458 return -EINVAL;
7459
7460 /*
7461 * The sum of our children's runtime should not exceed our own.
7462 */
7463 list_for_each_entry_rcu(child, &tg->children, siblings) {
7464 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7465 runtime = child->rt_bandwidth.rt_runtime;
7466
7467 if (child == d->tg) {
7468 period = d->rt_period;
7469 runtime = d->rt_runtime;
7470 }
7471
7472 sum += to_ratio(period, runtime);
7473 }
7474
7475 if (sum > total)
7476 return -EINVAL;
7477
7478 return 0;
7479 }
7480
7481 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7482 {
7483 int ret;
7484
7485 struct rt_schedulable_data data = {
7486 .tg = tg,
7487 .rt_period = period,
7488 .rt_runtime = runtime,
7489 };
7490
7491 rcu_read_lock();
7492 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7493 rcu_read_unlock();
7494
7495 return ret;
7496 }
7497
7498 static int tg_set_rt_bandwidth(struct task_group *tg,
7499 u64 rt_period, u64 rt_runtime)
7500 {
7501 int i, err = 0;
7502
7503 mutex_lock(&rt_constraints_mutex);
7504 read_lock(&tasklist_lock);
7505 err = __rt_schedulable(tg, rt_period, rt_runtime);
7506 if (err)
7507 goto unlock;
7508
7509 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7510 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7511 tg->rt_bandwidth.rt_runtime = rt_runtime;
7512
7513 for_each_possible_cpu(i) {
7514 struct rt_rq *rt_rq = tg->rt_rq[i];
7515
7516 raw_spin_lock(&rt_rq->rt_runtime_lock);
7517 rt_rq->rt_runtime = rt_runtime;
7518 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7519 }
7520 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7521 unlock:
7522 read_unlock(&tasklist_lock);
7523 mutex_unlock(&rt_constraints_mutex);
7524
7525 return err;
7526 }
7527
7528 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7529 {
7530 u64 rt_runtime, rt_period;
7531
7532 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7533 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7534 if (rt_runtime_us < 0)
7535 rt_runtime = RUNTIME_INF;
7536
7537 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7538 }
7539
7540 static long sched_group_rt_runtime(struct task_group *tg)
7541 {
7542 u64 rt_runtime_us;
7543
7544 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7545 return -1;
7546
7547 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7548 do_div(rt_runtime_us, NSEC_PER_USEC);
7549 return rt_runtime_us;
7550 }
7551
7552 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7553 {
7554 u64 rt_runtime, rt_period;
7555
7556 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7557 rt_runtime = tg->rt_bandwidth.rt_runtime;
7558
7559 if (rt_period == 0)
7560 return -EINVAL;
7561
7562 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7563 }
7564
7565 static long sched_group_rt_period(struct task_group *tg)
7566 {
7567 u64 rt_period_us;
7568
7569 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7570 do_div(rt_period_us, NSEC_PER_USEC);
7571 return rt_period_us;
7572 }
7573
7574 static int sched_rt_global_constraints(void)
7575 {
7576 u64 runtime, period;
7577 int ret = 0;
7578
7579 if (sysctl_sched_rt_period <= 0)
7580 return -EINVAL;
7581
7582 runtime = global_rt_runtime();
7583 period = global_rt_period();
7584
7585 /*
7586 * Sanity check on the sysctl variables.
7587 */
7588 if (runtime > period && runtime != RUNTIME_INF)
7589 return -EINVAL;
7590
7591 mutex_lock(&rt_constraints_mutex);
7592 read_lock(&tasklist_lock);
7593 ret = __rt_schedulable(NULL, 0, 0);
7594 read_unlock(&tasklist_lock);
7595 mutex_unlock(&rt_constraints_mutex);
7596
7597 return ret;
7598 }
7599
7600 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7601 {
7602 /* Don't accept realtime tasks when there is no way for them to run */
7603 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7604 return 0;
7605
7606 return 1;
7607 }
7608
7609 #else /* !CONFIG_RT_GROUP_SCHED */
7610 static int sched_rt_global_constraints(void)
7611 {
7612 unsigned long flags;
7613 int i;
7614
7615 if (sysctl_sched_rt_period <= 0)
7616 return -EINVAL;
7617
7618 /*
7619 * There's always some RT tasks in the root group
7620 * -- migration, kstopmachine etc..
7621 */
7622 if (sysctl_sched_rt_runtime == 0)
7623 return -EBUSY;
7624
7625 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7626 for_each_possible_cpu(i) {
7627 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7628
7629 raw_spin_lock(&rt_rq->rt_runtime_lock);
7630 rt_rq->rt_runtime = global_rt_runtime();
7631 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7632 }
7633 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7634
7635 return 0;
7636 }
7637 #endif /* CONFIG_RT_GROUP_SCHED */
7638
7639 int sched_rr_handler(struct ctl_table *table, int write,
7640 void __user *buffer, size_t *lenp,
7641 loff_t *ppos)
7642 {
7643 int ret;
7644 static DEFINE_MUTEX(mutex);
7645
7646 mutex_lock(&mutex);
7647 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7648 /* make sure that internally we keep jiffies */
7649 /* also, writing zero resets timeslice to default */
7650 if (!ret && write) {
7651 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7652 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7653 }
7654 mutex_unlock(&mutex);
7655 return ret;
7656 }
7657
7658 int sched_rt_handler(struct ctl_table *table, int write,
7659 void __user *buffer, size_t *lenp,
7660 loff_t *ppos)
7661 {
7662 int ret;
7663 int old_period, old_runtime;
7664 static DEFINE_MUTEX(mutex);
7665
7666 mutex_lock(&mutex);
7667 old_period = sysctl_sched_rt_period;
7668 old_runtime = sysctl_sched_rt_runtime;
7669
7670 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7671
7672 if (!ret && write) {
7673 ret = sched_rt_global_constraints();
7674 if (ret) {
7675 sysctl_sched_rt_period = old_period;
7676 sysctl_sched_rt_runtime = old_runtime;
7677 } else {
7678 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7679 def_rt_bandwidth.rt_period =
7680 ns_to_ktime(global_rt_period());
7681 }
7682 }
7683 mutex_unlock(&mutex);
7684
7685 return ret;
7686 }
7687
7688 #ifdef CONFIG_CGROUP_SCHED
7689
7690 /* return corresponding task_group object of a cgroup */
7691 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7692 {
7693 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7694 struct task_group, css);
7695 }
7696
7697 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7698 {
7699 struct task_group *tg, *parent;
7700
7701 if (!cgrp->parent) {
7702 /* This is early initialization for the top cgroup */
7703 return &root_task_group.css;
7704 }
7705
7706 parent = cgroup_tg(cgrp->parent);
7707 tg = sched_create_group(parent);
7708 if (IS_ERR(tg))
7709 return ERR_PTR(-ENOMEM);
7710
7711 return &tg->css;
7712 }
7713
7714 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7715 {
7716 struct task_group *tg = cgroup_tg(cgrp);
7717 struct task_group *parent;
7718
7719 if (!cgrp->parent)
7720 return 0;
7721
7722 parent = cgroup_tg(cgrp->parent);
7723 sched_online_group(tg, parent);
7724 return 0;
7725 }
7726
7727 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7728 {
7729 struct task_group *tg = cgroup_tg(cgrp);
7730
7731 sched_destroy_group(tg);
7732 }
7733
7734 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7735 {
7736 struct task_group *tg = cgroup_tg(cgrp);
7737
7738 sched_offline_group(tg);
7739 }
7740
7741 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7742 struct cgroup_taskset *tset)
7743 {
7744 struct task_struct *task;
7745
7746 cgroup_taskset_for_each(task, cgrp, tset) {
7747 #ifdef CONFIG_RT_GROUP_SCHED
7748 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7749 return -EINVAL;
7750 #else
7751 /* We don't support RT-tasks being in separate groups */
7752 if (task->sched_class != &fair_sched_class)
7753 return -EINVAL;
7754 #endif
7755 }
7756 return 0;
7757 }
7758
7759 static void cpu_cgroup_attach(struct cgroup *cgrp,
7760 struct cgroup_taskset *tset)
7761 {
7762 struct task_struct *task;
7763
7764 cgroup_taskset_for_each(task, cgrp, tset)
7765 sched_move_task(task);
7766 }
7767
7768 static void
7769 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7770 struct task_struct *task)
7771 {
7772 /*
7773 * cgroup_exit() is called in the copy_process() failure path.
7774 * Ignore this case since the task hasn't ran yet, this avoids
7775 * trying to poke a half freed task state from generic code.
7776 */
7777 if (!(task->flags & PF_EXITING))
7778 return;
7779
7780 sched_move_task(task);
7781 }
7782
7783 #ifdef CONFIG_FAIR_GROUP_SCHED
7784 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7785 u64 shareval)
7786 {
7787 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7788 }
7789
7790 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7791 {
7792 struct task_group *tg = cgroup_tg(cgrp);
7793
7794 return (u64) scale_load_down(tg->shares);
7795 }
7796
7797 #ifdef CONFIG_CFS_BANDWIDTH
7798 static DEFINE_MUTEX(cfs_constraints_mutex);
7799
7800 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7801 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7802
7803 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7804
7805 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7806 {
7807 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7808 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7809
7810 if (tg == &root_task_group)
7811 return -EINVAL;
7812
7813 /*
7814 * Ensure we have at some amount of bandwidth every period. This is
7815 * to prevent reaching a state of large arrears when throttled via
7816 * entity_tick() resulting in prolonged exit starvation.
7817 */
7818 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7819 return -EINVAL;
7820
7821 /*
7822 * Likewise, bound things on the otherside by preventing insane quota
7823 * periods. This also allows us to normalize in computing quota
7824 * feasibility.
7825 */
7826 if (period > max_cfs_quota_period)
7827 return -EINVAL;
7828
7829 mutex_lock(&cfs_constraints_mutex);
7830 ret = __cfs_schedulable(tg, period, quota);
7831 if (ret)
7832 goto out_unlock;
7833
7834 runtime_enabled = quota != RUNTIME_INF;
7835 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7836 /*
7837 * If we need to toggle cfs_bandwidth_used, off->on must occur
7838 * before making related changes, and on->off must occur afterwards
7839 */
7840 if (runtime_enabled && !runtime_was_enabled)
7841 cfs_bandwidth_usage_inc();
7842 raw_spin_lock_irq(&cfs_b->lock);
7843 cfs_b->period = ns_to_ktime(period);
7844 cfs_b->quota = quota;
7845
7846 __refill_cfs_bandwidth_runtime(cfs_b);
7847 /* restart the period timer (if active) to handle new period expiry */
7848 if (runtime_enabled && cfs_b->timer_active) {
7849 /* force a reprogram */
7850 cfs_b->timer_active = 0;
7851 __start_cfs_bandwidth(cfs_b);
7852 }
7853 raw_spin_unlock_irq(&cfs_b->lock);
7854
7855 for_each_possible_cpu(i) {
7856 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7857 struct rq *rq = cfs_rq->rq;
7858
7859 raw_spin_lock_irq(&rq->lock);
7860 cfs_rq->runtime_enabled = runtime_enabled;
7861 cfs_rq->runtime_remaining = 0;
7862
7863 if (cfs_rq->throttled)
7864 unthrottle_cfs_rq(cfs_rq);
7865 raw_spin_unlock_irq(&rq->lock);
7866 }
7867 if (runtime_was_enabled && !runtime_enabled)
7868 cfs_bandwidth_usage_dec();
7869 out_unlock:
7870 mutex_unlock(&cfs_constraints_mutex);
7871
7872 return ret;
7873 }
7874
7875 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7876 {
7877 u64 quota, period;
7878
7879 period = ktime_to_ns(tg->cfs_bandwidth.period);
7880 if (cfs_quota_us < 0)
7881 quota = RUNTIME_INF;
7882 else
7883 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7884
7885 return tg_set_cfs_bandwidth(tg, period, quota);
7886 }
7887
7888 long tg_get_cfs_quota(struct task_group *tg)
7889 {
7890 u64 quota_us;
7891
7892 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7893 return -1;
7894
7895 quota_us = tg->cfs_bandwidth.quota;
7896 do_div(quota_us, NSEC_PER_USEC);
7897
7898 return quota_us;
7899 }
7900
7901 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7902 {
7903 u64 quota, period;
7904
7905 period = (u64)cfs_period_us * NSEC_PER_USEC;
7906 quota = tg->cfs_bandwidth.quota;
7907
7908 return tg_set_cfs_bandwidth(tg, period, quota);
7909 }
7910
7911 long tg_get_cfs_period(struct task_group *tg)
7912 {
7913 u64 cfs_period_us;
7914
7915 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7916 do_div(cfs_period_us, NSEC_PER_USEC);
7917
7918 return cfs_period_us;
7919 }
7920
7921 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7922 {
7923 return tg_get_cfs_quota(cgroup_tg(cgrp));
7924 }
7925
7926 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7927 s64 cfs_quota_us)
7928 {
7929 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7930 }
7931
7932 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7933 {
7934 return tg_get_cfs_period(cgroup_tg(cgrp));
7935 }
7936
7937 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7938 u64 cfs_period_us)
7939 {
7940 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7941 }
7942
7943 struct cfs_schedulable_data {
7944 struct task_group *tg;
7945 u64 period, quota;
7946 };
7947
7948 /*
7949 * normalize group quota/period to be quota/max_period
7950 * note: units are usecs
7951 */
7952 static u64 normalize_cfs_quota(struct task_group *tg,
7953 struct cfs_schedulable_data *d)
7954 {
7955 u64 quota, period;
7956
7957 if (tg == d->tg) {
7958 period = d->period;
7959 quota = d->quota;
7960 } else {
7961 period = tg_get_cfs_period(tg);
7962 quota = tg_get_cfs_quota(tg);
7963 }
7964
7965 /* note: these should typically be equivalent */
7966 if (quota == RUNTIME_INF || quota == -1)
7967 return RUNTIME_INF;
7968
7969 return to_ratio(period, quota);
7970 }
7971
7972 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7973 {
7974 struct cfs_schedulable_data *d = data;
7975 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7976 s64 quota = 0, parent_quota = -1;
7977
7978 if (!tg->parent) {
7979 quota = RUNTIME_INF;
7980 } else {
7981 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7982
7983 quota = normalize_cfs_quota(tg, d);
7984 parent_quota = parent_b->hierarchal_quota;
7985
7986 /*
7987 * ensure max(child_quota) <= parent_quota, inherit when no
7988 * limit is set
7989 */
7990 if (quota == RUNTIME_INF)
7991 quota = parent_quota;
7992 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7993 return -EINVAL;
7994 }
7995 cfs_b->hierarchal_quota = quota;
7996
7997 return 0;
7998 }
7999
8000 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8001 {
8002 int ret;
8003 struct cfs_schedulable_data data = {
8004 .tg = tg,
8005 .period = period,
8006 .quota = quota,
8007 };
8008
8009 if (quota != RUNTIME_INF) {
8010 do_div(data.period, NSEC_PER_USEC);
8011 do_div(data.quota, NSEC_PER_USEC);
8012 }
8013
8014 rcu_read_lock();
8015 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8016 rcu_read_unlock();
8017
8018 return ret;
8019 }
8020
8021 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8022 struct cgroup_map_cb *cb)
8023 {
8024 struct task_group *tg = cgroup_tg(cgrp);
8025 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8026
8027 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8028 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8029 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8030
8031 return 0;
8032 }
8033 #endif /* CONFIG_CFS_BANDWIDTH */
8034 #endif /* CONFIG_FAIR_GROUP_SCHED */
8035
8036 #ifdef CONFIG_RT_GROUP_SCHED
8037 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8038 s64 val)
8039 {
8040 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8041 }
8042
8043 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8044 {
8045 return sched_group_rt_runtime(cgroup_tg(cgrp));
8046 }
8047
8048 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8049 u64 rt_period_us)
8050 {
8051 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8052 }
8053
8054 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8055 {
8056 return sched_group_rt_period(cgroup_tg(cgrp));
8057 }
8058 #endif /* CONFIG_RT_GROUP_SCHED */
8059
8060 static struct cftype cpu_files[] = {
8061 #ifdef CONFIG_FAIR_GROUP_SCHED
8062 {
8063 .name = "shares",
8064 .read_u64 = cpu_shares_read_u64,
8065 .write_u64 = cpu_shares_write_u64,
8066 },
8067 #endif
8068 #ifdef CONFIG_CFS_BANDWIDTH
8069 {
8070 .name = "cfs_quota_us",
8071 .read_s64 = cpu_cfs_quota_read_s64,
8072 .write_s64 = cpu_cfs_quota_write_s64,
8073 },
8074 {
8075 .name = "cfs_period_us",
8076 .read_u64 = cpu_cfs_period_read_u64,
8077 .write_u64 = cpu_cfs_period_write_u64,
8078 },
8079 {
8080 .name = "stat",
8081 .read_map = cpu_stats_show,
8082 },
8083 #endif
8084 #ifdef CONFIG_RT_GROUP_SCHED
8085 {
8086 .name = "rt_runtime_us",
8087 .read_s64 = cpu_rt_runtime_read,
8088 .write_s64 = cpu_rt_runtime_write,
8089 },
8090 {
8091 .name = "rt_period_us",
8092 .read_u64 = cpu_rt_period_read_uint,
8093 .write_u64 = cpu_rt_period_write_uint,
8094 },
8095 #endif
8096 { } /* terminate */
8097 };
8098
8099 struct cgroup_subsys cpu_cgroup_subsys = {
8100 .name = "cpu",
8101 .css_alloc = cpu_cgroup_css_alloc,
8102 .css_free = cpu_cgroup_css_free,
8103 .css_online = cpu_cgroup_css_online,
8104 .css_offline = cpu_cgroup_css_offline,
8105 .can_attach = cpu_cgroup_can_attach,
8106 .attach = cpu_cgroup_attach,
8107 .exit = cpu_cgroup_exit,
8108 .subsys_id = cpu_cgroup_subsys_id,
8109 .base_cftypes = cpu_files,
8110 .early_init = 1,
8111 };
8112
8113 #endif /* CONFIG_CGROUP_SCHED */
8114
8115 void dump_cpu_task(int cpu)
8116 {
8117 pr_info("Task dump for CPU %d:\n", cpu);
8118 sched_show_task(cpu_curr(cpu));
8119 }