0892cfa0fe343666f9c8cb6594d453139afb7363
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 static_key_disable(&sched_feat_keys[i]);
183 }
184
185 static void sched_feat_enable(int i)
186 {
187 static_key_enable(&sched_feat_keys[i]);
188 }
189 #else
190 static void sched_feat_disable(int i) { };
191 static void sched_feat_enable(int i) { };
192 #endif /* HAVE_JUMP_LABEL */
193
194 static int sched_feat_set(char *cmp)
195 {
196 int i;
197 int neg = 0;
198
199 if (strncmp(cmp, "NO_", 3) == 0) {
200 neg = 1;
201 cmp += 3;
202 }
203
204 for (i = 0; i < __SCHED_FEAT_NR; i++) {
205 if (strcmp(cmp, sched_feat_names[i]) == 0) {
206 if (neg) {
207 sysctl_sched_features &= ~(1UL << i);
208 sched_feat_disable(i);
209 } else {
210 sysctl_sched_features |= (1UL << i);
211 sched_feat_enable(i);
212 }
213 break;
214 }
215 }
216
217 return i;
218 }
219
220 static ssize_t
221 sched_feat_write(struct file *filp, const char __user *ubuf,
222 size_t cnt, loff_t *ppos)
223 {
224 char buf[64];
225 char *cmp;
226 int i;
227
228 if (cnt > 63)
229 cnt = 63;
230
231 if (copy_from_user(&buf, ubuf, cnt))
232 return -EFAULT;
233
234 buf[cnt] = 0;
235 cmp = strstrip(buf);
236
237 i = sched_feat_set(cmp);
238 if (i == __SCHED_FEAT_NR)
239 return -EINVAL;
240
241 *ppos += cnt;
242
243 return cnt;
244 }
245
246 static int sched_feat_open(struct inode *inode, struct file *filp)
247 {
248 return single_open(filp, sched_feat_show, NULL);
249 }
250
251 static const struct file_operations sched_feat_fops = {
252 .open = sched_feat_open,
253 .write = sched_feat_write,
254 .read = seq_read,
255 .llseek = seq_lseek,
256 .release = single_release,
257 };
258
259 static __init int sched_init_debug(void)
260 {
261 debugfs_create_file("sched_features", 0644, NULL, NULL,
262 &sched_feat_fops);
263
264 return 0;
265 }
266 late_initcall(sched_init_debug);
267 #endif /* CONFIG_SCHED_DEBUG */
268
269 /*
270 * Number of tasks to iterate in a single balance run.
271 * Limited because this is done with IRQs disabled.
272 */
273 const_debug unsigned int sysctl_sched_nr_migrate = 32;
274
275 /*
276 * period over which we average the RT time consumption, measured
277 * in ms.
278 *
279 * default: 1s
280 */
281 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
282
283 /*
284 * period over which we measure -rt task cpu usage in us.
285 * default: 1s
286 */
287 unsigned int sysctl_sched_rt_period = 1000000;
288
289 __read_mostly int scheduler_running;
290
291 /*
292 * part of the period that we allow rt tasks to run in us.
293 * default: 0.95s
294 */
295 int sysctl_sched_rt_runtime = 950000;
296
297
298
299 /*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302 static inline struct rq *__task_rq_lock(struct task_struct *p)
303 __acquires(rq->lock)
304 {
305 struct rq *rq;
306
307 lockdep_assert_held(&p->pi_lock);
308
309 for (;;) {
310 rq = task_rq(p);
311 raw_spin_lock(&rq->lock);
312 if (likely(rq == task_rq(p)))
313 return rq;
314 raw_spin_unlock(&rq->lock);
315 }
316 }
317
318 /*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322 __acquires(p->pi_lock)
323 __acquires(rq->lock)
324 {
325 struct rq *rq;
326
327 for (;;) {
328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
329 rq = task_rq(p);
330 raw_spin_lock(&rq->lock);
331 if (likely(rq == task_rq(p)))
332 return rq;
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335 }
336 }
337
338 static void __task_rq_unlock(struct rq *rq)
339 __releases(rq->lock)
340 {
341 raw_spin_unlock(&rq->lock);
342 }
343
344 static inline void
345 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346 __releases(rq->lock)
347 __releases(p->pi_lock)
348 {
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351 }
352
353 /*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356 static struct rq *this_rq_lock(void)
357 __acquires(rq->lock)
358 {
359 struct rq *rq;
360
361 local_irq_disable();
362 rq = this_rq();
363 raw_spin_lock(&rq->lock);
364
365 return rq;
366 }
367
368 #ifdef CONFIG_SCHED_HRTICK
369 /*
370 * Use HR-timers to deliver accurate preemption points.
371 *
372 * Its all a bit involved since we cannot program an hrt while holding the
373 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
374 * reschedule event.
375 *
376 * When we get rescheduled we reprogram the hrtick_timer outside of the
377 * rq->lock.
378 */
379
380 static void hrtick_clear(struct rq *rq)
381 {
382 if (hrtimer_active(&rq->hrtick_timer))
383 hrtimer_cancel(&rq->hrtick_timer);
384 }
385
386 /*
387 * High-resolution timer tick.
388 * Runs from hardirq context with interrupts disabled.
389 */
390 static enum hrtimer_restart hrtick(struct hrtimer *timer)
391 {
392 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
393
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395
396 raw_spin_lock(&rq->lock);
397 update_rq_clock(rq);
398 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
399 raw_spin_unlock(&rq->lock);
400
401 return HRTIMER_NORESTART;
402 }
403
404 #ifdef CONFIG_SMP
405 /*
406 * called from hardirq (IPI) context
407 */
408 static void __hrtick_start(void *arg)
409 {
410 struct rq *rq = arg;
411
412 raw_spin_lock(&rq->lock);
413 hrtimer_restart(&rq->hrtick_timer);
414 rq->hrtick_csd_pending = 0;
415 raw_spin_unlock(&rq->lock);
416 }
417
418 /*
419 * Called to set the hrtick timer state.
420 *
421 * called with rq->lock held and irqs disabled
422 */
423 void hrtick_start(struct rq *rq, u64 delay)
424 {
425 struct hrtimer *timer = &rq->hrtick_timer;
426 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
427
428 hrtimer_set_expires(timer, time);
429
430 if (rq == this_rq()) {
431 hrtimer_restart(timer);
432 } else if (!rq->hrtick_csd_pending) {
433 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
434 rq->hrtick_csd_pending = 1;
435 }
436 }
437
438 static int
439 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
440 {
441 int cpu = (int)(long)hcpu;
442
443 switch (action) {
444 case CPU_UP_CANCELED:
445 case CPU_UP_CANCELED_FROZEN:
446 case CPU_DOWN_PREPARE:
447 case CPU_DOWN_PREPARE_FROZEN:
448 case CPU_DEAD:
449 case CPU_DEAD_FROZEN:
450 hrtick_clear(cpu_rq(cpu));
451 return NOTIFY_OK;
452 }
453
454 return NOTIFY_DONE;
455 }
456
457 static __init void init_hrtick(void)
458 {
459 hotcpu_notifier(hotplug_hrtick, 0);
460 }
461 #else
462 /*
463 * Called to set the hrtick timer state.
464 *
465 * called with rq->lock held and irqs disabled
466 */
467 void hrtick_start(struct rq *rq, u64 delay)
468 {
469 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
470 HRTIMER_MODE_REL_PINNED, 0);
471 }
472
473 static inline void init_hrtick(void)
474 {
475 }
476 #endif /* CONFIG_SMP */
477
478 static void init_rq_hrtick(struct rq *rq)
479 {
480 #ifdef CONFIG_SMP
481 rq->hrtick_csd_pending = 0;
482
483 rq->hrtick_csd.flags = 0;
484 rq->hrtick_csd.func = __hrtick_start;
485 rq->hrtick_csd.info = rq;
486 #endif
487
488 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
489 rq->hrtick_timer.function = hrtick;
490 }
491 #else /* CONFIG_SCHED_HRTICK */
492 static inline void hrtick_clear(struct rq *rq)
493 {
494 }
495
496 static inline void init_rq_hrtick(struct rq *rq)
497 {
498 }
499
500 static inline void init_hrtick(void)
501 {
502 }
503 #endif /* CONFIG_SCHED_HRTICK */
504
505 /*
506 * resched_task - mark a task 'to be rescheduled now'.
507 *
508 * On UP this means the setting of the need_resched flag, on SMP it
509 * might also involve a cross-CPU call to trigger the scheduler on
510 * the target CPU.
511 */
512 #ifdef CONFIG_SMP
513 void resched_task(struct task_struct *p)
514 {
515 int cpu;
516
517 assert_raw_spin_locked(&task_rq(p)->lock);
518
519 if (test_tsk_need_resched(p))
520 return;
521
522 set_tsk_need_resched(p);
523
524 cpu = task_cpu(p);
525 if (cpu == smp_processor_id())
526 return;
527
528 /* NEED_RESCHED must be visible before we test polling */
529 smp_mb();
530 if (!tsk_is_polling(p))
531 smp_send_reschedule(cpu);
532 }
533
534 void resched_cpu(int cpu)
535 {
536 struct rq *rq = cpu_rq(cpu);
537 unsigned long flags;
538
539 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
540 return;
541 resched_task(cpu_curr(cpu));
542 raw_spin_unlock_irqrestore(&rq->lock, flags);
543 }
544
545 #ifdef CONFIG_NO_HZ_COMMON
546 /*
547 * In the semi idle case, use the nearest busy cpu for migrating timers
548 * from an idle cpu. This is good for power-savings.
549 *
550 * We don't do similar optimization for completely idle system, as
551 * selecting an idle cpu will add more delays to the timers than intended
552 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
553 */
554 int get_nohz_timer_target(void)
555 {
556 int cpu = smp_processor_id();
557 int i;
558 struct sched_domain *sd;
559
560 rcu_read_lock();
561 for_each_domain(cpu, sd) {
562 for_each_cpu(i, sched_domain_span(sd)) {
563 if (!idle_cpu(i)) {
564 cpu = i;
565 goto unlock;
566 }
567 }
568 }
569 unlock:
570 rcu_read_unlock();
571 return cpu;
572 }
573 /*
574 * When add_timer_on() enqueues a timer into the timer wheel of an
575 * idle CPU then this timer might expire before the next timer event
576 * which is scheduled to wake up that CPU. In case of a completely
577 * idle system the next event might even be infinite time into the
578 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
579 * leaves the inner idle loop so the newly added timer is taken into
580 * account when the CPU goes back to idle and evaluates the timer
581 * wheel for the next timer event.
582 */
583 static void wake_up_idle_cpu(int cpu)
584 {
585 struct rq *rq = cpu_rq(cpu);
586
587 if (cpu == smp_processor_id())
588 return;
589
590 /*
591 * This is safe, as this function is called with the timer
592 * wheel base lock of (cpu) held. When the CPU is on the way
593 * to idle and has not yet set rq->curr to idle then it will
594 * be serialized on the timer wheel base lock and take the new
595 * timer into account automatically.
596 */
597 if (rq->curr != rq->idle)
598 return;
599
600 /*
601 * We can set TIF_RESCHED on the idle task of the other CPU
602 * lockless. The worst case is that the other CPU runs the
603 * idle task through an additional NOOP schedule()
604 */
605 set_tsk_need_resched(rq->idle);
606
607 /* NEED_RESCHED must be visible before we test polling */
608 smp_mb();
609 if (!tsk_is_polling(rq->idle))
610 smp_send_reschedule(cpu);
611 }
612
613 static bool wake_up_full_nohz_cpu(int cpu)
614 {
615 if (tick_nohz_full_cpu(cpu)) {
616 if (cpu != smp_processor_id() ||
617 tick_nohz_tick_stopped())
618 smp_send_reschedule(cpu);
619 return true;
620 }
621
622 return false;
623 }
624
625 void wake_up_nohz_cpu(int cpu)
626 {
627 if (!wake_up_full_nohz_cpu(cpu))
628 wake_up_idle_cpu(cpu);
629 }
630
631 static inline bool got_nohz_idle_kick(void)
632 {
633 int cpu = smp_processor_id();
634
635 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
636 return false;
637
638 if (idle_cpu(cpu) && !need_resched())
639 return true;
640
641 /*
642 * We can't run Idle Load Balance on this CPU for this time so we
643 * cancel it and clear NOHZ_BALANCE_KICK
644 */
645 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
646 return false;
647 }
648
649 #else /* CONFIG_NO_HZ_COMMON */
650
651 static inline bool got_nohz_idle_kick(void)
652 {
653 return false;
654 }
655
656 #endif /* CONFIG_NO_HZ_COMMON */
657
658 #ifdef CONFIG_NO_HZ_FULL
659 bool sched_can_stop_tick(void)
660 {
661 struct rq *rq;
662
663 rq = this_rq();
664
665 /* Make sure rq->nr_running update is visible after the IPI */
666 smp_rmb();
667
668 /* More than one running task need preemption */
669 if (rq->nr_running > 1)
670 return false;
671
672 return true;
673 }
674 #endif /* CONFIG_NO_HZ_FULL */
675
676 void sched_avg_update(struct rq *rq)
677 {
678 s64 period = sched_avg_period();
679
680 while ((s64)(rq->clock - rq->age_stamp) > period) {
681 /*
682 * Inline assembly required to prevent the compiler
683 * optimising this loop into a divmod call.
684 * See __iter_div_u64_rem() for another example of this.
685 */
686 asm("" : "+rm" (rq->age_stamp));
687 rq->age_stamp += period;
688 rq->rt_avg /= 2;
689 }
690 }
691
692 #else /* !CONFIG_SMP */
693 void resched_task(struct task_struct *p)
694 {
695 assert_raw_spin_locked(&task_rq(p)->lock);
696 set_tsk_need_resched(p);
697 }
698 #endif /* CONFIG_SMP */
699
700 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702 /*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708 int walk_tg_tree_from(struct task_group *from,
709 tg_visitor down, tg_visitor up, void *data)
710 {
711 struct task_group *parent, *child;
712 int ret;
713
714 parent = from;
715
716 down:
717 ret = (*down)(parent, data);
718 if (ret)
719 goto out;
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724 up:
725 continue;
726 }
727 ret = (*up)(parent, data);
728 if (ret || parent == from)
729 goto out;
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
735 out:
736 return ret;
737 }
738
739 int tg_nop(struct task_group *tg, void *data)
740 {
741 return 0;
742 }
743 #endif
744
745 static void set_load_weight(struct task_struct *p)
746 {
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
754 load->weight = scale_load(WEIGHT_IDLEPRIO);
755 load->inv_weight = WMULT_IDLEPRIO;
756 return;
757 }
758
759 load->weight = scale_load(prio_to_weight[prio]);
760 load->inv_weight = prio_to_wmult[prio];
761 }
762
763 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 update_rq_clock(rq);
766 sched_info_queued(p);
767 p->sched_class->enqueue_task(rq, p, flags);
768 }
769
770 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771 {
772 update_rq_clock(rq);
773 sched_info_dequeued(p);
774 p->sched_class->dequeue_task(rq, p, flags);
775 }
776
777 void activate_task(struct rq *rq, struct task_struct *p, int flags)
778 {
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
782 enqueue_task(rq, p, flags);
783 }
784
785 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
790 dequeue_task(rq, p, flags);
791 }
792
793 static void update_rq_clock_task(struct rq *rq, s64 delta)
794 {
795 /*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801 #endif
802 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
825 #endif
826 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827 if (static_key_false((&paravirt_steal_rq_enabled))) {
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843 #endif
844
845 rq->clock_task += delta;
846
847 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850 #endif
851 }
852
853 void sched_set_stop_task(int cpu, struct task_struct *stop)
854 {
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881 }
882
883 /*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886 static inline int __normal_prio(struct task_struct *p)
887 {
888 return p->static_prio;
889 }
890
891 /*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898 static inline int normal_prio(struct task_struct *p)
899 {
900 int prio;
901
902 if (task_has_rt_policy(p))
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907 }
908
909 /*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916 static int effective_prio(struct task_struct *p)
917 {
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927 }
928
929 /**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 */
933 inline int task_curr(const struct task_struct *p)
934 {
935 return cpu_curr(task_cpu(p)) == p;
936 }
937
938 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 const struct sched_class *prev_class,
940 int oldprio)
941 {
942 if (prev_class != p->sched_class) {
943 if (prev_class->switched_from)
944 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio)
947 p->sched_class->prio_changed(rq, p, oldprio);
948 }
949
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_task(rq->curr);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972 rq->skip_clock_update = 1;
973 }
974
975 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
976
977 void register_task_migration_notifier(struct notifier_block *n)
978 {
979 atomic_notifier_chain_register(&task_migration_notifier, n);
980 }
981
982 #ifdef CONFIG_SMP
983 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
984 {
985 #ifdef CONFIG_SCHED_DEBUG
986 /*
987 * We should never call set_task_cpu() on a blocked task,
988 * ttwu() will sort out the placement.
989 */
990 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
991 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
992
993 #ifdef CONFIG_LOCKDEP
994 /*
995 * The caller should hold either p->pi_lock or rq->lock, when changing
996 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
997 *
998 * sched_move_task() holds both and thus holding either pins the cgroup,
999 * see task_group().
1000 *
1001 * Furthermore, all task_rq users should acquire both locks, see
1002 * task_rq_lock().
1003 */
1004 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1005 lockdep_is_held(&task_rq(p)->lock)));
1006 #endif
1007 #endif
1008
1009 trace_sched_migrate_task(p, new_cpu);
1010
1011 if (task_cpu(p) != new_cpu) {
1012 struct task_migration_notifier tmn;
1013
1014 if (p->sched_class->migrate_task_rq)
1015 p->sched_class->migrate_task_rq(p, new_cpu);
1016 p->se.nr_migrations++;
1017 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1018
1019 tmn.task = p;
1020 tmn.from_cpu = task_cpu(p);
1021 tmn.to_cpu = new_cpu;
1022
1023 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1024 }
1025
1026 __set_task_cpu(p, new_cpu);
1027 }
1028
1029 struct migration_arg {
1030 struct task_struct *task;
1031 int dest_cpu;
1032 };
1033
1034 static int migration_cpu_stop(void *data);
1035
1036 /*
1037 * wait_task_inactive - wait for a thread to unschedule.
1038 *
1039 * If @match_state is nonzero, it's the @p->state value just checked and
1040 * not expected to change. If it changes, i.e. @p might have woken up,
1041 * then return zero. When we succeed in waiting for @p to be off its CPU,
1042 * we return a positive number (its total switch count). If a second call
1043 * a short while later returns the same number, the caller can be sure that
1044 * @p has remained unscheduled the whole time.
1045 *
1046 * The caller must ensure that the task *will* unschedule sometime soon,
1047 * else this function might spin for a *long* time. This function can't
1048 * be called with interrupts off, or it may introduce deadlock with
1049 * smp_call_function() if an IPI is sent by the same process we are
1050 * waiting to become inactive.
1051 */
1052 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1053 {
1054 unsigned long flags;
1055 int running, on_rq;
1056 unsigned long ncsw;
1057 struct rq *rq;
1058
1059 for (;;) {
1060 /*
1061 * We do the initial early heuristics without holding
1062 * any task-queue locks at all. We'll only try to get
1063 * the runqueue lock when things look like they will
1064 * work out!
1065 */
1066 rq = task_rq(p);
1067
1068 /*
1069 * If the task is actively running on another CPU
1070 * still, just relax and busy-wait without holding
1071 * any locks.
1072 *
1073 * NOTE! Since we don't hold any locks, it's not
1074 * even sure that "rq" stays as the right runqueue!
1075 * But we don't care, since "task_running()" will
1076 * return false if the runqueue has changed and p
1077 * is actually now running somewhere else!
1078 */
1079 while (task_running(rq, p)) {
1080 if (match_state && unlikely(p->state != match_state))
1081 return 0;
1082 cpu_relax();
1083 }
1084
1085 /*
1086 * Ok, time to look more closely! We need the rq
1087 * lock now, to be *sure*. If we're wrong, we'll
1088 * just go back and repeat.
1089 */
1090 rq = task_rq_lock(p, &flags);
1091 trace_sched_wait_task(p);
1092 running = task_running(rq, p);
1093 on_rq = p->on_rq;
1094 ncsw = 0;
1095 if (!match_state || p->state == match_state)
1096 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1097 task_rq_unlock(rq, p, &flags);
1098
1099 /*
1100 * If it changed from the expected state, bail out now.
1101 */
1102 if (unlikely(!ncsw))
1103 break;
1104
1105 /*
1106 * Was it really running after all now that we
1107 * checked with the proper locks actually held?
1108 *
1109 * Oops. Go back and try again..
1110 */
1111 if (unlikely(running)) {
1112 cpu_relax();
1113 continue;
1114 }
1115
1116 /*
1117 * It's not enough that it's not actively running,
1118 * it must be off the runqueue _entirely_, and not
1119 * preempted!
1120 *
1121 * So if it was still runnable (but just not actively
1122 * running right now), it's preempted, and we should
1123 * yield - it could be a while.
1124 */
1125 if (unlikely(on_rq)) {
1126 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1127
1128 set_current_state(TASK_UNINTERRUPTIBLE);
1129 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1130 continue;
1131 }
1132
1133 /*
1134 * Ahh, all good. It wasn't running, and it wasn't
1135 * runnable, which means that it will never become
1136 * running in the future either. We're all done!
1137 */
1138 break;
1139 }
1140
1141 return ncsw;
1142 }
1143
1144 /***
1145 * kick_process - kick a running thread to enter/exit the kernel
1146 * @p: the to-be-kicked thread
1147 *
1148 * Cause a process which is running on another CPU to enter
1149 * kernel-mode, without any delay. (to get signals handled.)
1150 *
1151 * NOTE: this function doesn't have to take the runqueue lock,
1152 * because all it wants to ensure is that the remote task enters
1153 * the kernel. If the IPI races and the task has been migrated
1154 * to another CPU then no harm is done and the purpose has been
1155 * achieved as well.
1156 */
1157 void kick_process(struct task_struct *p)
1158 {
1159 int cpu;
1160
1161 preempt_disable();
1162 cpu = task_cpu(p);
1163 if ((cpu != smp_processor_id()) && task_curr(p))
1164 smp_send_reschedule(cpu);
1165 preempt_enable();
1166 }
1167 EXPORT_SYMBOL_GPL(kick_process);
1168 #endif /* CONFIG_SMP */
1169
1170 #ifdef CONFIG_SMP
1171 /*
1172 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1173 */
1174 static int select_fallback_rq(int cpu, struct task_struct *p)
1175 {
1176 int nid = cpu_to_node(cpu);
1177 const struct cpumask *nodemask = NULL;
1178 enum { cpuset, possible, fail } state = cpuset;
1179 int dest_cpu;
1180
1181 /*
1182 * If the node that the cpu is on has been offlined, cpu_to_node()
1183 * will return -1. There is no cpu on the node, and we should
1184 * select the cpu on the other node.
1185 */
1186 if (nid != -1) {
1187 nodemask = cpumask_of_node(nid);
1188
1189 /* Look for allowed, online CPU in same node. */
1190 for_each_cpu(dest_cpu, nodemask) {
1191 if (!cpu_online(dest_cpu))
1192 continue;
1193 if (!cpu_active(dest_cpu))
1194 continue;
1195 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1196 return dest_cpu;
1197 }
1198 }
1199
1200 for (;;) {
1201 /* Any allowed, online CPU? */
1202 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1203 if (!cpu_online(dest_cpu))
1204 continue;
1205 if (!cpu_active(dest_cpu))
1206 continue;
1207 goto out;
1208 }
1209
1210 switch (state) {
1211 case cpuset:
1212 /* No more Mr. Nice Guy. */
1213 cpuset_cpus_allowed_fallback(p);
1214 state = possible;
1215 break;
1216
1217 case possible:
1218 do_set_cpus_allowed(p, cpu_possible_mask);
1219 state = fail;
1220 break;
1221
1222 case fail:
1223 BUG();
1224 break;
1225 }
1226 }
1227
1228 out:
1229 if (state != cpuset) {
1230 /*
1231 * Don't tell them about moving exiting tasks or
1232 * kernel threads (both mm NULL), since they never
1233 * leave kernel.
1234 */
1235 if (p->mm && printk_ratelimit()) {
1236 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1237 task_pid_nr(p), p->comm, cpu);
1238 }
1239 }
1240
1241 return dest_cpu;
1242 }
1243
1244 /*
1245 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1246 */
1247 static inline
1248 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1249 {
1250 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1251
1252 /*
1253 * In order not to call set_task_cpu() on a blocking task we need
1254 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1255 * cpu.
1256 *
1257 * Since this is common to all placement strategies, this lives here.
1258 *
1259 * [ this allows ->select_task() to simply return task_cpu(p) and
1260 * not worry about this generic constraint ]
1261 */
1262 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1263 !cpu_online(cpu)))
1264 cpu = select_fallback_rq(task_cpu(p), p);
1265
1266 return cpu;
1267 }
1268
1269 static void update_avg(u64 *avg, u64 sample)
1270 {
1271 s64 diff = sample - *avg;
1272 *avg += diff >> 3;
1273 }
1274 #endif
1275
1276 static void
1277 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1278 {
1279 #ifdef CONFIG_SCHEDSTATS
1280 struct rq *rq = this_rq();
1281
1282 #ifdef CONFIG_SMP
1283 int this_cpu = smp_processor_id();
1284
1285 if (cpu == this_cpu) {
1286 schedstat_inc(rq, ttwu_local);
1287 schedstat_inc(p, se.statistics.nr_wakeups_local);
1288 } else {
1289 struct sched_domain *sd;
1290
1291 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1292 rcu_read_lock();
1293 for_each_domain(this_cpu, sd) {
1294 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1295 schedstat_inc(sd, ttwu_wake_remote);
1296 break;
1297 }
1298 }
1299 rcu_read_unlock();
1300 }
1301
1302 if (wake_flags & WF_MIGRATED)
1303 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1304
1305 #endif /* CONFIG_SMP */
1306
1307 schedstat_inc(rq, ttwu_count);
1308 schedstat_inc(p, se.statistics.nr_wakeups);
1309
1310 if (wake_flags & WF_SYNC)
1311 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1312
1313 #endif /* CONFIG_SCHEDSTATS */
1314 }
1315
1316 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1317 {
1318 activate_task(rq, p, en_flags);
1319 p->on_rq = 1;
1320
1321 /* if a worker is waking up, notify workqueue */
1322 if (p->flags & PF_WQ_WORKER)
1323 wq_worker_waking_up(p, cpu_of(rq));
1324 }
1325
1326 /*
1327 * Mark the task runnable and perform wakeup-preemption.
1328 */
1329 static void
1330 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1331 {
1332 check_preempt_curr(rq, p, wake_flags);
1333 trace_sched_wakeup(p, true);
1334
1335 p->state = TASK_RUNNING;
1336 #ifdef CONFIG_SMP
1337 if (p->sched_class->task_woken)
1338 p->sched_class->task_woken(rq, p);
1339
1340 if (rq->idle_stamp) {
1341 u64 delta = rq->clock - rq->idle_stamp;
1342 u64 max = 2*sysctl_sched_migration_cost;
1343
1344 if (delta > max)
1345 rq->avg_idle = max;
1346 else
1347 update_avg(&rq->avg_idle, delta);
1348 rq->idle_stamp = 0;
1349 }
1350 #endif
1351 }
1352
1353 static void
1354 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1355 {
1356 #ifdef CONFIG_SMP
1357 if (p->sched_contributes_to_load)
1358 rq->nr_uninterruptible--;
1359 #endif
1360
1361 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1362 ttwu_do_wakeup(rq, p, wake_flags);
1363 }
1364
1365 /*
1366 * Called in case the task @p isn't fully descheduled from its runqueue,
1367 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1368 * since all we need to do is flip p->state to TASK_RUNNING, since
1369 * the task is still ->on_rq.
1370 */
1371 static int ttwu_remote(struct task_struct *p, int wake_flags)
1372 {
1373 struct rq *rq;
1374 int ret = 0;
1375
1376 rq = __task_rq_lock(p);
1377 if (p->on_rq) {
1378 ttwu_do_wakeup(rq, p, wake_flags);
1379 ret = 1;
1380 }
1381 __task_rq_unlock(rq);
1382
1383 return ret;
1384 }
1385
1386 #ifdef CONFIG_SMP
1387 static void sched_ttwu_pending(void)
1388 {
1389 struct rq *rq = this_rq();
1390 struct llist_node *llist = llist_del_all(&rq->wake_list);
1391 struct task_struct *p;
1392
1393 raw_spin_lock(&rq->lock);
1394
1395 while (llist) {
1396 p = llist_entry(llist, struct task_struct, wake_entry);
1397 llist = llist_next(llist);
1398 ttwu_do_activate(rq, p, 0);
1399 }
1400
1401 raw_spin_unlock(&rq->lock);
1402 }
1403
1404 void scheduler_ipi(void)
1405 {
1406 if (llist_empty(&this_rq()->wake_list)
1407 && !tick_nohz_full_cpu(smp_processor_id())
1408 && !got_nohz_idle_kick())
1409 return;
1410
1411 /*
1412 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1413 * traditionally all their work was done from the interrupt return
1414 * path. Now that we actually do some work, we need to make sure
1415 * we do call them.
1416 *
1417 * Some archs already do call them, luckily irq_enter/exit nest
1418 * properly.
1419 *
1420 * Arguably we should visit all archs and update all handlers,
1421 * however a fair share of IPIs are still resched only so this would
1422 * somewhat pessimize the simple resched case.
1423 */
1424 irq_enter();
1425 tick_nohz_full_check();
1426 sched_ttwu_pending();
1427
1428 /*
1429 * Check if someone kicked us for doing the nohz idle load balance.
1430 */
1431 if (unlikely(got_nohz_idle_kick())) {
1432 this_rq()->idle_balance = 1;
1433 raise_softirq_irqoff(SCHED_SOFTIRQ);
1434 }
1435 irq_exit();
1436 }
1437
1438 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1439 {
1440 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1441 smp_send_reschedule(cpu);
1442 }
1443
1444 bool cpus_share_cache(int this_cpu, int that_cpu)
1445 {
1446 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1447 }
1448 #endif /* CONFIG_SMP */
1449
1450 static void ttwu_queue(struct task_struct *p, int cpu)
1451 {
1452 struct rq *rq = cpu_rq(cpu);
1453
1454 #if defined(CONFIG_SMP)
1455 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1456 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1457 ttwu_queue_remote(p, cpu);
1458 return;
1459 }
1460 #endif
1461
1462 raw_spin_lock(&rq->lock);
1463 ttwu_do_activate(rq, p, 0);
1464 raw_spin_unlock(&rq->lock);
1465 }
1466
1467 /**
1468 * try_to_wake_up - wake up a thread
1469 * @p: the thread to be awakened
1470 * @state: the mask of task states that can be woken
1471 * @wake_flags: wake modifier flags (WF_*)
1472 *
1473 * Put it on the run-queue if it's not already there. The "current"
1474 * thread is always on the run-queue (except when the actual
1475 * re-schedule is in progress), and as such you're allowed to do
1476 * the simpler "current->state = TASK_RUNNING" to mark yourself
1477 * runnable without the overhead of this.
1478 *
1479 * Returns %true if @p was woken up, %false if it was already running
1480 * or @state didn't match @p's state.
1481 */
1482 static int
1483 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1484 {
1485 unsigned long flags;
1486 int cpu, success = 0;
1487
1488 /*
1489 * If we are going to wake up a thread waiting for CONDITION we
1490 * need to ensure that CONDITION=1 done by the caller can not be
1491 * reordered with p->state check below. This pairs with mb() in
1492 * set_current_state() the waiting thread does.
1493 */
1494 smp_mb__before_spinlock();
1495 raw_spin_lock_irqsave(&p->pi_lock, flags);
1496 if (!(p->state & state))
1497 goto out;
1498
1499 success = 1; /* we're going to change ->state */
1500 cpu = task_cpu(p);
1501
1502 /*
1503 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1504 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1505 * in smp_cond_load_acquire() below.
1506 *
1507 * sched_ttwu_pending() try_to_wake_up()
1508 * [S] p->on_rq = 1; [L] P->state
1509 * UNLOCK rq->lock -----.
1510 * \
1511 * +--- RMB
1512 * schedule() /
1513 * LOCK rq->lock -----'
1514 * UNLOCK rq->lock
1515 *
1516 * [task p]
1517 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1518 *
1519 * Pairs with the UNLOCK+LOCK on rq->lock from the
1520 * last wakeup of our task and the schedule that got our task
1521 * current.
1522 */
1523 smp_rmb();
1524 if (p->on_rq && ttwu_remote(p, wake_flags))
1525 goto stat;
1526
1527 #ifdef CONFIG_SMP
1528 /*
1529 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1530 * possible to, falsely, observe p->on_cpu == 0.
1531 *
1532 * One must be running (->on_cpu == 1) in order to remove oneself
1533 * from the runqueue.
1534 *
1535 * [S] ->on_cpu = 1; [L] ->on_rq
1536 * UNLOCK rq->lock
1537 * RMB
1538 * LOCK rq->lock
1539 * [S] ->on_rq = 0; [L] ->on_cpu
1540 *
1541 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1542 * from the consecutive calls to schedule(); the first switching to our
1543 * task, the second putting it to sleep.
1544 */
1545 smp_rmb();
1546
1547 /*
1548 * If the owning (remote) cpu is still in the middle of schedule() with
1549 * this task as prev, wait until its done referencing the task.
1550 */
1551 while (p->on_cpu)
1552 cpu_relax();
1553 /*
1554 * Pairs with the smp_wmb() in finish_lock_switch().
1555 */
1556 smp_rmb();
1557
1558 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1559 p->state = TASK_WAKING;
1560
1561 if (p->sched_class->task_waking)
1562 p->sched_class->task_waking(p);
1563
1564 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1565 if (task_cpu(p) != cpu) {
1566 wake_flags |= WF_MIGRATED;
1567 set_task_cpu(p, cpu);
1568 }
1569 #endif /* CONFIG_SMP */
1570
1571 ttwu_queue(p, cpu);
1572 stat:
1573 ttwu_stat(p, cpu, wake_flags);
1574 out:
1575 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1576
1577 return success;
1578 }
1579
1580 /**
1581 * try_to_wake_up_local - try to wake up a local task with rq lock held
1582 * @p: the thread to be awakened
1583 *
1584 * Put @p on the run-queue if it's not already there. The caller must
1585 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1586 * the current task.
1587 */
1588 static void try_to_wake_up_local(struct task_struct *p)
1589 {
1590 struct rq *rq = task_rq(p);
1591
1592 if (WARN_ON_ONCE(rq != this_rq()) ||
1593 WARN_ON_ONCE(p == current))
1594 return;
1595
1596 lockdep_assert_held(&rq->lock);
1597
1598 if (!raw_spin_trylock(&p->pi_lock)) {
1599 raw_spin_unlock(&rq->lock);
1600 raw_spin_lock(&p->pi_lock);
1601 raw_spin_lock(&rq->lock);
1602 }
1603
1604 if (!(p->state & TASK_NORMAL))
1605 goto out;
1606
1607 if (!p->on_rq)
1608 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1609
1610 ttwu_do_wakeup(rq, p, 0);
1611 ttwu_stat(p, smp_processor_id(), 0);
1612 out:
1613 raw_spin_unlock(&p->pi_lock);
1614 }
1615
1616 /**
1617 * wake_up_process - Wake up a specific process
1618 * @p: The process to be woken up.
1619 *
1620 * Attempt to wake up the nominated process and move it to the set of runnable
1621 * processes. Returns 1 if the process was woken up, 0 if it was already
1622 * running.
1623 *
1624 * It may be assumed that this function implies a write memory barrier before
1625 * changing the task state if and only if any tasks are woken up.
1626 */
1627 int wake_up_process(struct task_struct *p)
1628 {
1629 return try_to_wake_up(p, TASK_NORMAL, 0);
1630 }
1631 EXPORT_SYMBOL(wake_up_process);
1632
1633 int wake_up_state(struct task_struct *p, unsigned int state)
1634 {
1635 return try_to_wake_up(p, state, 0);
1636 }
1637
1638 /*
1639 * Perform scheduler related setup for a newly forked process p.
1640 * p is forked by current.
1641 *
1642 * __sched_fork() is basic setup used by init_idle() too:
1643 */
1644 static void __sched_fork(struct task_struct *p)
1645 {
1646 p->on_rq = 0;
1647
1648 p->se.on_rq = 0;
1649 p->se.exec_start = 0;
1650 p->se.sum_exec_runtime = 0;
1651 p->se.prev_sum_exec_runtime = 0;
1652 p->se.nr_migrations = 0;
1653 p->se.vruntime = 0;
1654 INIT_LIST_HEAD(&p->se.group_node);
1655
1656 /*
1657 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1658 * removed when useful for applications beyond shares distribution (e.g.
1659 * load-balance).
1660 */
1661 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1662 p->se.avg.runnable_avg_period = 0;
1663 p->se.avg.runnable_avg_sum = 0;
1664 #endif
1665 #ifdef CONFIG_SCHEDSTATS
1666 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1667 #endif
1668
1669 INIT_LIST_HEAD(&p->rt.run_list);
1670
1671 #ifdef CONFIG_PREEMPT_NOTIFIERS
1672 INIT_HLIST_HEAD(&p->preempt_notifiers);
1673 #endif
1674
1675 #ifdef CONFIG_NUMA_BALANCING
1676 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1677 p->mm->numa_next_scan = jiffies;
1678 p->mm->numa_next_reset = jiffies;
1679 p->mm->numa_scan_seq = 0;
1680 }
1681
1682 p->node_stamp = 0ULL;
1683 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1684 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1685 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1686 p->numa_work.next = &p->numa_work;
1687 #endif /* CONFIG_NUMA_BALANCING */
1688 }
1689
1690 #ifdef CONFIG_NUMA_BALANCING
1691 #ifdef CONFIG_SCHED_DEBUG
1692 void set_numabalancing_state(bool enabled)
1693 {
1694 if (enabled)
1695 sched_feat_set("NUMA");
1696 else
1697 sched_feat_set("NO_NUMA");
1698 }
1699 #else
1700 __read_mostly bool numabalancing_enabled;
1701
1702 void set_numabalancing_state(bool enabled)
1703 {
1704 numabalancing_enabled = enabled;
1705 }
1706 #endif /* CONFIG_SCHED_DEBUG */
1707 #endif /* CONFIG_NUMA_BALANCING */
1708
1709 /*
1710 * fork()/clone()-time setup:
1711 */
1712 void sched_fork(struct task_struct *p)
1713 {
1714 unsigned long flags;
1715 int cpu = get_cpu();
1716
1717 __sched_fork(p);
1718 /*
1719 * We mark the process as running here. This guarantees that
1720 * nobody will actually run it, and a signal or other external
1721 * event cannot wake it up and insert it on the runqueue either.
1722 */
1723 p->state = TASK_RUNNING;
1724
1725 /*
1726 * Make sure we do not leak PI boosting priority to the child.
1727 */
1728 p->prio = current->normal_prio;
1729
1730 /*
1731 * Revert to default priority/policy on fork if requested.
1732 */
1733 if (unlikely(p->sched_reset_on_fork)) {
1734 if (task_has_rt_policy(p)) {
1735 p->policy = SCHED_NORMAL;
1736 p->static_prio = NICE_TO_PRIO(0);
1737 p->rt_priority = 0;
1738 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1739 p->static_prio = NICE_TO_PRIO(0);
1740
1741 p->prio = p->normal_prio = __normal_prio(p);
1742 set_load_weight(p);
1743
1744 /*
1745 * We don't need the reset flag anymore after the fork. It has
1746 * fulfilled its duty:
1747 */
1748 p->sched_reset_on_fork = 0;
1749 }
1750
1751 if (!rt_prio(p->prio))
1752 p->sched_class = &fair_sched_class;
1753
1754 if (p->sched_class->task_fork)
1755 p->sched_class->task_fork(p);
1756
1757 /*
1758 * The child is not yet in the pid-hash so no cgroup attach races,
1759 * and the cgroup is pinned to this child due to cgroup_fork()
1760 * is ran before sched_fork().
1761 *
1762 * Silence PROVE_RCU.
1763 */
1764 raw_spin_lock_irqsave(&p->pi_lock, flags);
1765 set_task_cpu(p, cpu);
1766 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1767
1768 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1769 if (likely(sched_info_on()))
1770 memset(&p->sched_info, 0, sizeof(p->sched_info));
1771 #endif
1772 #if defined(CONFIG_SMP)
1773 p->on_cpu = 0;
1774 #endif
1775 #ifdef CONFIG_PREEMPT_COUNT
1776 /* Want to start with kernel preemption disabled. */
1777 task_thread_info(p)->preempt_count = 1;
1778 #endif
1779 #ifdef CONFIG_SMP
1780 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1781 #endif
1782
1783 put_cpu();
1784 }
1785
1786 /*
1787 * wake_up_new_task - wake up a newly created task for the first time.
1788 *
1789 * This function will do some initial scheduler statistics housekeeping
1790 * that must be done for every newly created context, then puts the task
1791 * on the runqueue and wakes it.
1792 */
1793 void wake_up_new_task(struct task_struct *p)
1794 {
1795 unsigned long flags;
1796 struct rq *rq;
1797
1798 raw_spin_lock_irqsave(&p->pi_lock, flags);
1799 #ifdef CONFIG_SMP
1800 /*
1801 * Fork balancing, do it here and not earlier because:
1802 * - cpus_allowed can change in the fork path
1803 * - any previously selected cpu might disappear through hotplug
1804 */
1805 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1806 #endif
1807
1808 rq = __task_rq_lock(p);
1809 activate_task(rq, p, 0);
1810 p->on_rq = 1;
1811 trace_sched_wakeup_new(p, true);
1812 check_preempt_curr(rq, p, WF_FORK);
1813 #ifdef CONFIG_SMP
1814 if (p->sched_class->task_woken)
1815 p->sched_class->task_woken(rq, p);
1816 #endif
1817 task_rq_unlock(rq, p, &flags);
1818 }
1819
1820 #ifdef CONFIG_PREEMPT_NOTIFIERS
1821
1822 /**
1823 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1824 * @notifier: notifier struct to register
1825 */
1826 void preempt_notifier_register(struct preempt_notifier *notifier)
1827 {
1828 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1829 }
1830 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1831
1832 /**
1833 * preempt_notifier_unregister - no longer interested in preemption notifications
1834 * @notifier: notifier struct to unregister
1835 *
1836 * This is safe to call from within a preemption notifier.
1837 */
1838 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1839 {
1840 hlist_del(&notifier->link);
1841 }
1842 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1843
1844 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1845 {
1846 struct preempt_notifier *notifier;
1847
1848 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1849 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1850 }
1851
1852 static void
1853 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1854 struct task_struct *next)
1855 {
1856 struct preempt_notifier *notifier;
1857
1858 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1859 notifier->ops->sched_out(notifier, next);
1860 }
1861
1862 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1863
1864 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1865 {
1866 }
1867
1868 static void
1869 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1870 struct task_struct *next)
1871 {
1872 }
1873
1874 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1875
1876 /**
1877 * prepare_task_switch - prepare to switch tasks
1878 * @rq: the runqueue preparing to switch
1879 * @prev: the current task that is being switched out
1880 * @next: the task we are going to switch to.
1881 *
1882 * This is called with the rq lock held and interrupts off. It must
1883 * be paired with a subsequent finish_task_switch after the context
1884 * switch.
1885 *
1886 * prepare_task_switch sets up locking and calls architecture specific
1887 * hooks.
1888 */
1889 static inline void
1890 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1891 struct task_struct *next)
1892 {
1893 trace_sched_switch(prev, next);
1894 sched_info_switch(prev, next);
1895 perf_event_task_sched_out(prev, next);
1896 fire_sched_out_preempt_notifiers(prev, next);
1897 prepare_lock_switch(rq, next);
1898 prepare_arch_switch(next);
1899 }
1900
1901 /**
1902 * finish_task_switch - clean up after a task-switch
1903 * @rq: runqueue associated with task-switch
1904 * @prev: the thread we just switched away from.
1905 *
1906 * finish_task_switch must be called after the context switch, paired
1907 * with a prepare_task_switch call before the context switch.
1908 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1909 * and do any other architecture-specific cleanup actions.
1910 *
1911 * Note that we may have delayed dropping an mm in context_switch(). If
1912 * so, we finish that here outside of the runqueue lock. (Doing it
1913 * with the lock held can cause deadlocks; see schedule() for
1914 * details.)
1915 */
1916 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1917 __releases(rq->lock)
1918 {
1919 struct mm_struct *mm = rq->prev_mm;
1920 long prev_state;
1921
1922 rq->prev_mm = NULL;
1923
1924 /*
1925 * A task struct has one reference for the use as "current".
1926 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1927 * schedule one last time. The schedule call will never return, and
1928 * the scheduled task must drop that reference.
1929 * The test for TASK_DEAD must occur while the runqueue locks are
1930 * still held, otherwise prev could be scheduled on another cpu, die
1931 * there before we look at prev->state, and then the reference would
1932 * be dropped twice.
1933 * Manfred Spraul <manfred@colorfullife.com>
1934 */
1935 prev_state = prev->state;
1936 vtime_task_switch(prev);
1937 finish_arch_switch(prev);
1938 perf_event_task_sched_in(prev, current);
1939 finish_lock_switch(rq, prev);
1940 finish_arch_post_lock_switch();
1941
1942 fire_sched_in_preempt_notifiers(current);
1943 if (mm)
1944 mmdrop(mm);
1945 if (unlikely(prev_state == TASK_DEAD)) {
1946 /*
1947 * Remove function-return probe instances associated with this
1948 * task and put them back on the free list.
1949 */
1950 kprobe_flush_task(prev);
1951 put_task_struct(prev);
1952 }
1953
1954 tick_nohz_task_switch(current);
1955 }
1956
1957 #ifdef CONFIG_SMP
1958
1959 /* assumes rq->lock is held */
1960 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1961 {
1962 if (prev->sched_class->pre_schedule)
1963 prev->sched_class->pre_schedule(rq, prev);
1964 }
1965
1966 /* rq->lock is NOT held, but preemption is disabled */
1967 static inline void post_schedule(struct rq *rq)
1968 {
1969 if (rq->post_schedule) {
1970 unsigned long flags;
1971
1972 raw_spin_lock_irqsave(&rq->lock, flags);
1973 if (rq->curr->sched_class->post_schedule)
1974 rq->curr->sched_class->post_schedule(rq);
1975 raw_spin_unlock_irqrestore(&rq->lock, flags);
1976
1977 rq->post_schedule = 0;
1978 }
1979 }
1980
1981 #else
1982
1983 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1984 {
1985 }
1986
1987 static inline void post_schedule(struct rq *rq)
1988 {
1989 }
1990
1991 #endif
1992
1993 /**
1994 * schedule_tail - first thing a freshly forked thread must call.
1995 * @prev: the thread we just switched away from.
1996 */
1997 asmlinkage void schedule_tail(struct task_struct *prev)
1998 __releases(rq->lock)
1999 {
2000 struct rq *rq = this_rq();
2001
2002 finish_task_switch(rq, prev);
2003
2004 /*
2005 * FIXME: do we need to worry about rq being invalidated by the
2006 * task_switch?
2007 */
2008 post_schedule(rq);
2009
2010 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2011 /* In this case, finish_task_switch does not reenable preemption */
2012 preempt_enable();
2013 #endif
2014 if (current->set_child_tid)
2015 put_user(task_pid_vnr(current), current->set_child_tid);
2016 }
2017
2018 /*
2019 * context_switch - switch to the new MM and the new
2020 * thread's register state.
2021 */
2022 static inline void
2023 context_switch(struct rq *rq, struct task_struct *prev,
2024 struct task_struct *next)
2025 {
2026 struct mm_struct *mm, *oldmm;
2027
2028 prepare_task_switch(rq, prev, next);
2029
2030 mm = next->mm;
2031 oldmm = prev->active_mm;
2032 /*
2033 * For paravirt, this is coupled with an exit in switch_to to
2034 * combine the page table reload and the switch backend into
2035 * one hypercall.
2036 */
2037 arch_start_context_switch(prev);
2038
2039 if (!mm) {
2040 next->active_mm = oldmm;
2041 atomic_inc(&oldmm->mm_count);
2042 enter_lazy_tlb(oldmm, next);
2043 } else
2044 switch_mm(oldmm, mm, next);
2045
2046 if (!prev->mm) {
2047 prev->active_mm = NULL;
2048 rq->prev_mm = oldmm;
2049 }
2050 /*
2051 * Since the runqueue lock will be released by the next
2052 * task (which is an invalid locking op but in the case
2053 * of the scheduler it's an obvious special-case), so we
2054 * do an early lockdep release here:
2055 */
2056 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2057 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2058 #endif
2059
2060 context_tracking_task_switch(prev, next);
2061 /* Here we just switch the register state and the stack. */
2062 switch_to(prev, next, prev);
2063
2064 barrier();
2065 /*
2066 * this_rq must be evaluated again because prev may have moved
2067 * CPUs since it called schedule(), thus the 'rq' on its stack
2068 * frame will be invalid.
2069 */
2070 finish_task_switch(this_rq(), prev);
2071 }
2072
2073 /*
2074 * nr_running and nr_context_switches:
2075 *
2076 * externally visible scheduler statistics: current number of runnable
2077 * threads, total number of context switches performed since bootup.
2078 */
2079 unsigned long nr_running(void)
2080 {
2081 unsigned long i, sum = 0;
2082
2083 for_each_online_cpu(i)
2084 sum += cpu_rq(i)->nr_running;
2085
2086 return sum;
2087 }
2088
2089 unsigned long long nr_context_switches(void)
2090 {
2091 int i;
2092 unsigned long long sum = 0;
2093
2094 for_each_possible_cpu(i)
2095 sum += cpu_rq(i)->nr_switches;
2096
2097 return sum;
2098 }
2099
2100 unsigned long nr_iowait(void)
2101 {
2102 unsigned long i, sum = 0;
2103
2104 for_each_possible_cpu(i)
2105 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2106
2107 return sum;
2108 }
2109
2110 unsigned long nr_iowait_cpu(int cpu)
2111 {
2112 struct rq *this = cpu_rq(cpu);
2113 return atomic_read(&this->nr_iowait);
2114 }
2115
2116 unsigned long this_cpu_load(void)
2117 {
2118 struct rq *this = this_rq();
2119 return this->cpu_load[0];
2120 }
2121
2122
2123 /*
2124 * Global load-average calculations
2125 *
2126 * We take a distributed and async approach to calculating the global load-avg
2127 * in order to minimize overhead.
2128 *
2129 * The global load average is an exponentially decaying average of nr_running +
2130 * nr_uninterruptible.
2131 *
2132 * Once every LOAD_FREQ:
2133 *
2134 * nr_active = 0;
2135 * for_each_possible_cpu(cpu)
2136 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2137 *
2138 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2139 *
2140 * Due to a number of reasons the above turns in the mess below:
2141 *
2142 * - for_each_possible_cpu() is prohibitively expensive on machines with
2143 * serious number of cpus, therefore we need to take a distributed approach
2144 * to calculating nr_active.
2145 *
2146 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2147 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2148 *
2149 * So assuming nr_active := 0 when we start out -- true per definition, we
2150 * can simply take per-cpu deltas and fold those into a global accumulate
2151 * to obtain the same result. See calc_load_fold_active().
2152 *
2153 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2154 * across the machine, we assume 10 ticks is sufficient time for every
2155 * cpu to have completed this task.
2156 *
2157 * This places an upper-bound on the IRQ-off latency of the machine. Then
2158 * again, being late doesn't loose the delta, just wrecks the sample.
2159 *
2160 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2161 * this would add another cross-cpu cacheline miss and atomic operation
2162 * to the wakeup path. Instead we increment on whatever cpu the task ran
2163 * when it went into uninterruptible state and decrement on whatever cpu
2164 * did the wakeup. This means that only the sum of nr_uninterruptible over
2165 * all cpus yields the correct result.
2166 *
2167 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2168 */
2169
2170 /* Variables and functions for calc_load */
2171 static atomic_long_t calc_load_tasks;
2172 static unsigned long calc_load_update;
2173 unsigned long avenrun[3];
2174 EXPORT_SYMBOL(avenrun); /* should be removed */
2175
2176 /**
2177 * get_avenrun - get the load average array
2178 * @loads: pointer to dest load array
2179 * @offset: offset to add
2180 * @shift: shift count to shift the result left
2181 *
2182 * These values are estimates at best, so no need for locking.
2183 */
2184 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2185 {
2186 loads[0] = (avenrun[0] + offset) << shift;
2187 loads[1] = (avenrun[1] + offset) << shift;
2188 loads[2] = (avenrun[2] + offset) << shift;
2189 }
2190
2191 static long calc_load_fold_active(struct rq *this_rq)
2192 {
2193 long nr_active, delta = 0;
2194
2195 nr_active = this_rq->nr_running;
2196 nr_active += (long) this_rq->nr_uninterruptible;
2197
2198 if (nr_active != this_rq->calc_load_active) {
2199 delta = nr_active - this_rq->calc_load_active;
2200 this_rq->calc_load_active = nr_active;
2201 }
2202
2203 return delta;
2204 }
2205
2206 /*
2207 * a1 = a0 * e + a * (1 - e)
2208 */
2209 static unsigned long
2210 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2211 {
2212 load *= exp;
2213 load += active * (FIXED_1 - exp);
2214 load += 1UL << (FSHIFT - 1);
2215 return load >> FSHIFT;
2216 }
2217
2218 #ifdef CONFIG_NO_HZ_COMMON
2219 /*
2220 * Handle NO_HZ for the global load-average.
2221 *
2222 * Since the above described distributed algorithm to compute the global
2223 * load-average relies on per-cpu sampling from the tick, it is affected by
2224 * NO_HZ.
2225 *
2226 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2227 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2228 * when we read the global state.
2229 *
2230 * Obviously reality has to ruin such a delightfully simple scheme:
2231 *
2232 * - When we go NO_HZ idle during the window, we can negate our sample
2233 * contribution, causing under-accounting.
2234 *
2235 * We avoid this by keeping two idle-delta counters and flipping them
2236 * when the window starts, thus separating old and new NO_HZ load.
2237 *
2238 * The only trick is the slight shift in index flip for read vs write.
2239 *
2240 * 0s 5s 10s 15s
2241 * +10 +10 +10 +10
2242 * |-|-----------|-|-----------|-|-----------|-|
2243 * r:0 0 1 1 0 0 1 1 0
2244 * w:0 1 1 0 0 1 1 0 0
2245 *
2246 * This ensures we'll fold the old idle contribution in this window while
2247 * accumlating the new one.
2248 *
2249 * - When we wake up from NO_HZ idle during the window, we push up our
2250 * contribution, since we effectively move our sample point to a known
2251 * busy state.
2252 *
2253 * This is solved by pushing the window forward, and thus skipping the
2254 * sample, for this cpu (effectively using the idle-delta for this cpu which
2255 * was in effect at the time the window opened). This also solves the issue
2256 * of having to deal with a cpu having been in NOHZ idle for multiple
2257 * LOAD_FREQ intervals.
2258 *
2259 * When making the ILB scale, we should try to pull this in as well.
2260 */
2261 static atomic_long_t calc_load_idle[2];
2262 static int calc_load_idx;
2263
2264 static inline int calc_load_write_idx(void)
2265 {
2266 int idx = calc_load_idx;
2267
2268 /*
2269 * See calc_global_nohz(), if we observe the new index, we also
2270 * need to observe the new update time.
2271 */
2272 smp_rmb();
2273
2274 /*
2275 * If the folding window started, make sure we start writing in the
2276 * next idle-delta.
2277 */
2278 if (!time_before(jiffies, calc_load_update))
2279 idx++;
2280
2281 return idx & 1;
2282 }
2283
2284 static inline int calc_load_read_idx(void)
2285 {
2286 return calc_load_idx & 1;
2287 }
2288
2289 void calc_load_enter_idle(void)
2290 {
2291 struct rq *this_rq = this_rq();
2292 long delta;
2293
2294 /*
2295 * We're going into NOHZ mode, if there's any pending delta, fold it
2296 * into the pending idle delta.
2297 */
2298 delta = calc_load_fold_active(this_rq);
2299 if (delta) {
2300 int idx = calc_load_write_idx();
2301 atomic_long_add(delta, &calc_load_idle[idx]);
2302 }
2303 }
2304
2305 void calc_load_exit_idle(void)
2306 {
2307 struct rq *this_rq = this_rq();
2308
2309 /*
2310 * If we're still before the sample window, we're done.
2311 */
2312 if (time_before(jiffies, this_rq->calc_load_update))
2313 return;
2314
2315 /*
2316 * We woke inside or after the sample window, this means we're already
2317 * accounted through the nohz accounting, so skip the entire deal and
2318 * sync up for the next window.
2319 */
2320 this_rq->calc_load_update = calc_load_update;
2321 if (time_before(jiffies, this_rq->calc_load_update + 10))
2322 this_rq->calc_load_update += LOAD_FREQ;
2323 }
2324
2325 static long calc_load_fold_idle(void)
2326 {
2327 int idx = calc_load_read_idx();
2328 long delta = 0;
2329
2330 if (atomic_long_read(&calc_load_idle[idx]))
2331 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2332
2333 return delta;
2334 }
2335
2336 /**
2337 * fixed_power_int - compute: x^n, in O(log n) time
2338 *
2339 * @x: base of the power
2340 * @frac_bits: fractional bits of @x
2341 * @n: power to raise @x to.
2342 *
2343 * By exploiting the relation between the definition of the natural power
2344 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2345 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2346 * (where: n_i \elem {0, 1}, the binary vector representing n),
2347 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2348 * of course trivially computable in O(log_2 n), the length of our binary
2349 * vector.
2350 */
2351 static unsigned long
2352 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2353 {
2354 unsigned long result = 1UL << frac_bits;
2355
2356 if (n) for (;;) {
2357 if (n & 1) {
2358 result *= x;
2359 result += 1UL << (frac_bits - 1);
2360 result >>= frac_bits;
2361 }
2362 n >>= 1;
2363 if (!n)
2364 break;
2365 x *= x;
2366 x += 1UL << (frac_bits - 1);
2367 x >>= frac_bits;
2368 }
2369
2370 return result;
2371 }
2372
2373 /*
2374 * a1 = a0 * e + a * (1 - e)
2375 *
2376 * a2 = a1 * e + a * (1 - e)
2377 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2378 * = a0 * e^2 + a * (1 - e) * (1 + e)
2379 *
2380 * a3 = a2 * e + a * (1 - e)
2381 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2382 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2383 *
2384 * ...
2385 *
2386 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2387 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2388 * = a0 * e^n + a * (1 - e^n)
2389 *
2390 * [1] application of the geometric series:
2391 *
2392 * n 1 - x^(n+1)
2393 * S_n := \Sum x^i = -------------
2394 * i=0 1 - x
2395 */
2396 static unsigned long
2397 calc_load_n(unsigned long load, unsigned long exp,
2398 unsigned long active, unsigned int n)
2399 {
2400
2401 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2402 }
2403
2404 /*
2405 * NO_HZ can leave us missing all per-cpu ticks calling
2406 * calc_load_account_active(), but since an idle CPU folds its delta into
2407 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2408 * in the pending idle delta if our idle period crossed a load cycle boundary.
2409 *
2410 * Once we've updated the global active value, we need to apply the exponential
2411 * weights adjusted to the number of cycles missed.
2412 */
2413 static void calc_global_nohz(void)
2414 {
2415 long delta, active, n;
2416
2417 if (!time_before(jiffies, calc_load_update + 10)) {
2418 /*
2419 * Catch-up, fold however many we are behind still
2420 */
2421 delta = jiffies - calc_load_update - 10;
2422 n = 1 + (delta / LOAD_FREQ);
2423
2424 active = atomic_long_read(&calc_load_tasks);
2425 active = active > 0 ? active * FIXED_1 : 0;
2426
2427 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2428 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2429 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2430
2431 calc_load_update += n * LOAD_FREQ;
2432 }
2433
2434 /*
2435 * Flip the idle index...
2436 *
2437 * Make sure we first write the new time then flip the index, so that
2438 * calc_load_write_idx() will see the new time when it reads the new
2439 * index, this avoids a double flip messing things up.
2440 */
2441 smp_wmb();
2442 calc_load_idx++;
2443 }
2444 #else /* !CONFIG_NO_HZ_COMMON */
2445
2446 static inline long calc_load_fold_idle(void) { return 0; }
2447 static inline void calc_global_nohz(void) { }
2448
2449 #endif /* CONFIG_NO_HZ_COMMON */
2450
2451 /*
2452 * calc_load - update the avenrun load estimates 10 ticks after the
2453 * CPUs have updated calc_load_tasks.
2454 */
2455 void calc_global_load(unsigned long ticks)
2456 {
2457 long active, delta;
2458
2459 if (time_before(jiffies, calc_load_update + 10))
2460 return;
2461
2462 /*
2463 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2464 */
2465 delta = calc_load_fold_idle();
2466 if (delta)
2467 atomic_long_add(delta, &calc_load_tasks);
2468
2469 active = atomic_long_read(&calc_load_tasks);
2470 active = active > 0 ? active * FIXED_1 : 0;
2471
2472 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2473 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2474 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2475
2476 calc_load_update += LOAD_FREQ;
2477
2478 /*
2479 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2480 */
2481 calc_global_nohz();
2482 }
2483
2484 /*
2485 * Called from update_cpu_load() to periodically update this CPU's
2486 * active count.
2487 */
2488 static void calc_load_account_active(struct rq *this_rq)
2489 {
2490 long delta;
2491
2492 if (time_before(jiffies, this_rq->calc_load_update))
2493 return;
2494
2495 delta = calc_load_fold_active(this_rq);
2496 if (delta)
2497 atomic_long_add(delta, &calc_load_tasks);
2498
2499 this_rq->calc_load_update += LOAD_FREQ;
2500 }
2501
2502 /*
2503 * End of global load-average stuff
2504 */
2505
2506 /*
2507 * The exact cpuload at various idx values, calculated at every tick would be
2508 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2509 *
2510 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2511 * on nth tick when cpu may be busy, then we have:
2512 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2513 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2514 *
2515 * decay_load_missed() below does efficient calculation of
2516 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2517 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2518 *
2519 * The calculation is approximated on a 128 point scale.
2520 * degrade_zero_ticks is the number of ticks after which load at any
2521 * particular idx is approximated to be zero.
2522 * degrade_factor is a precomputed table, a row for each load idx.
2523 * Each column corresponds to degradation factor for a power of two ticks,
2524 * based on 128 point scale.
2525 * Example:
2526 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2527 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2528 *
2529 * With this power of 2 load factors, we can degrade the load n times
2530 * by looking at 1 bits in n and doing as many mult/shift instead of
2531 * n mult/shifts needed by the exact degradation.
2532 */
2533 #define DEGRADE_SHIFT 7
2534 static const unsigned char
2535 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2536 static const unsigned char
2537 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2538 {0, 0, 0, 0, 0, 0, 0, 0},
2539 {64, 32, 8, 0, 0, 0, 0, 0},
2540 {96, 72, 40, 12, 1, 0, 0},
2541 {112, 98, 75, 43, 15, 1, 0},
2542 {120, 112, 98, 76, 45, 16, 2} };
2543
2544 /*
2545 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2546 * would be when CPU is idle and so we just decay the old load without
2547 * adding any new load.
2548 */
2549 static unsigned long
2550 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2551 {
2552 int j = 0;
2553
2554 if (!missed_updates)
2555 return load;
2556
2557 if (missed_updates >= degrade_zero_ticks[idx])
2558 return 0;
2559
2560 if (idx == 1)
2561 return load >> missed_updates;
2562
2563 while (missed_updates) {
2564 if (missed_updates % 2)
2565 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2566
2567 missed_updates >>= 1;
2568 j++;
2569 }
2570 return load;
2571 }
2572
2573 /*
2574 * Update rq->cpu_load[] statistics. This function is usually called every
2575 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2576 * every tick. We fix it up based on jiffies.
2577 */
2578 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2579 unsigned long pending_updates)
2580 {
2581 int i, scale;
2582
2583 this_rq->nr_load_updates++;
2584
2585 /* Update our load: */
2586 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2587 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2588 unsigned long old_load, new_load;
2589
2590 /* scale is effectively 1 << i now, and >> i divides by scale */
2591
2592 old_load = this_rq->cpu_load[i];
2593 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2594 new_load = this_load;
2595 /*
2596 * Round up the averaging division if load is increasing. This
2597 * prevents us from getting stuck on 9 if the load is 10, for
2598 * example.
2599 */
2600 if (new_load > old_load)
2601 new_load += scale - 1;
2602
2603 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2604 }
2605
2606 sched_avg_update(this_rq);
2607 }
2608
2609 #ifdef CONFIG_NO_HZ_COMMON
2610 /*
2611 * There is no sane way to deal with nohz on smp when using jiffies because the
2612 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2613 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2614 *
2615 * Therefore we cannot use the delta approach from the regular tick since that
2616 * would seriously skew the load calculation. However we'll make do for those
2617 * updates happening while idle (nohz_idle_balance) or coming out of idle
2618 * (tick_nohz_idle_exit).
2619 *
2620 * This means we might still be one tick off for nohz periods.
2621 */
2622
2623 /*
2624 * Called from nohz_idle_balance() to update the load ratings before doing the
2625 * idle balance.
2626 */
2627 void update_idle_cpu_load(struct rq *this_rq)
2628 {
2629 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2630 unsigned long load = this_rq->load.weight;
2631 unsigned long pending_updates;
2632
2633 /*
2634 * bail if there's load or we're actually up-to-date.
2635 */
2636 if (load || curr_jiffies == this_rq->last_load_update_tick)
2637 return;
2638
2639 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2640 this_rq->last_load_update_tick = curr_jiffies;
2641
2642 __update_cpu_load(this_rq, load, pending_updates);
2643 }
2644
2645 /*
2646 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2647 */
2648 void update_cpu_load_nohz(void)
2649 {
2650 struct rq *this_rq = this_rq();
2651 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2652 unsigned long pending_updates;
2653
2654 if (curr_jiffies == this_rq->last_load_update_tick)
2655 return;
2656
2657 raw_spin_lock(&this_rq->lock);
2658 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2659 if (pending_updates) {
2660 this_rq->last_load_update_tick = curr_jiffies;
2661 /*
2662 * We were idle, this means load 0, the current load might be
2663 * !0 due to remote wakeups and the sort.
2664 */
2665 __update_cpu_load(this_rq, 0, pending_updates);
2666 }
2667 raw_spin_unlock(&this_rq->lock);
2668 }
2669 #endif /* CONFIG_NO_HZ_COMMON */
2670
2671 /*
2672 * Called from scheduler_tick()
2673 */
2674 static void update_cpu_load_active(struct rq *this_rq)
2675 {
2676 /*
2677 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2678 */
2679 this_rq->last_load_update_tick = jiffies;
2680 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2681
2682 calc_load_account_active(this_rq);
2683 }
2684
2685 #ifdef CONFIG_SMP
2686
2687 /*
2688 * sched_exec - execve() is a valuable balancing opportunity, because at
2689 * this point the task has the smallest effective memory and cache footprint.
2690 */
2691 void sched_exec(void)
2692 {
2693 struct task_struct *p = current;
2694 unsigned long flags;
2695 int dest_cpu;
2696
2697 raw_spin_lock_irqsave(&p->pi_lock, flags);
2698 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2699 if (dest_cpu == smp_processor_id())
2700 goto unlock;
2701
2702 if (likely(cpu_active(dest_cpu))) {
2703 struct migration_arg arg = { p, dest_cpu };
2704
2705 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2706 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2707 return;
2708 }
2709 unlock:
2710 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2711 }
2712
2713 #endif
2714
2715 DEFINE_PER_CPU(struct kernel_stat, kstat);
2716 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2717
2718 EXPORT_PER_CPU_SYMBOL(kstat);
2719 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2720
2721 /*
2722 * Return any ns on the sched_clock that have not yet been accounted in
2723 * @p in case that task is currently running.
2724 *
2725 * Called with task_rq_lock() held on @rq.
2726 */
2727 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2728 {
2729 u64 ns = 0;
2730
2731 if (task_current(rq, p)) {
2732 update_rq_clock(rq);
2733 ns = rq->clock_task - p->se.exec_start;
2734 if ((s64)ns < 0)
2735 ns = 0;
2736 }
2737
2738 return ns;
2739 }
2740
2741 unsigned long long task_delta_exec(struct task_struct *p)
2742 {
2743 unsigned long flags;
2744 struct rq *rq;
2745 u64 ns = 0;
2746
2747 rq = task_rq_lock(p, &flags);
2748 ns = do_task_delta_exec(p, rq);
2749 task_rq_unlock(rq, p, &flags);
2750
2751 return ns;
2752 }
2753
2754 /*
2755 * Return accounted runtime for the task.
2756 * In case the task is currently running, return the runtime plus current's
2757 * pending runtime that have not been accounted yet.
2758 */
2759 unsigned long long task_sched_runtime(struct task_struct *p)
2760 {
2761 unsigned long flags;
2762 struct rq *rq;
2763 u64 ns = 0;
2764
2765 rq = task_rq_lock(p, &flags);
2766 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2767 task_rq_unlock(rq, p, &flags);
2768
2769 return ns;
2770 }
2771
2772 /*
2773 * This function gets called by the timer code, with HZ frequency.
2774 * We call it with interrupts disabled.
2775 */
2776 void scheduler_tick(void)
2777 {
2778 int cpu = smp_processor_id();
2779 struct rq *rq = cpu_rq(cpu);
2780 struct task_struct *curr = rq->curr;
2781
2782 sched_clock_tick();
2783
2784 raw_spin_lock(&rq->lock);
2785 update_rq_clock(rq);
2786 update_cpu_load_active(rq);
2787 curr->sched_class->task_tick(rq, curr, 0);
2788 raw_spin_unlock(&rq->lock);
2789
2790 perf_event_task_tick();
2791
2792 #ifdef CONFIG_SMP
2793 rq->idle_balance = idle_cpu(cpu);
2794 trigger_load_balance(rq, cpu);
2795 #endif
2796 rq_last_tick_reset(rq);
2797 }
2798
2799 #ifdef CONFIG_NO_HZ_FULL
2800 /**
2801 * scheduler_tick_max_deferment
2802 *
2803 * Keep at least one tick per second when a single
2804 * active task is running because the scheduler doesn't
2805 * yet completely support full dynticks environment.
2806 *
2807 * This makes sure that uptime, CFS vruntime, load
2808 * balancing, etc... continue to move forward, even
2809 * with a very low granularity.
2810 */
2811 u64 scheduler_tick_max_deferment(void)
2812 {
2813 struct rq *rq = this_rq();
2814 unsigned long next, now = ACCESS_ONCE(jiffies);
2815
2816 next = rq->last_sched_tick + HZ;
2817
2818 if (time_before_eq(next, now))
2819 return 0;
2820
2821 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2822 }
2823 #endif
2824
2825 notrace unsigned long get_parent_ip(unsigned long addr)
2826 {
2827 if (in_lock_functions(addr)) {
2828 addr = CALLER_ADDR2;
2829 if (in_lock_functions(addr))
2830 addr = CALLER_ADDR3;
2831 }
2832 return addr;
2833 }
2834
2835 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2836 defined(CONFIG_PREEMPT_TRACER))
2837
2838 void __kprobes add_preempt_count(int val)
2839 {
2840 #ifdef CONFIG_DEBUG_PREEMPT
2841 /*
2842 * Underflow?
2843 */
2844 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2845 return;
2846 #endif
2847 preempt_count() += val;
2848 #ifdef CONFIG_DEBUG_PREEMPT
2849 /*
2850 * Spinlock count overflowing soon?
2851 */
2852 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2853 PREEMPT_MASK - 10);
2854 #endif
2855 if (preempt_count() == val)
2856 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2857 }
2858 EXPORT_SYMBOL(add_preempt_count);
2859
2860 void __kprobes sub_preempt_count(int val)
2861 {
2862 #ifdef CONFIG_DEBUG_PREEMPT
2863 /*
2864 * Underflow?
2865 */
2866 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2867 return;
2868 /*
2869 * Is the spinlock portion underflowing?
2870 */
2871 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2872 !(preempt_count() & PREEMPT_MASK)))
2873 return;
2874 #endif
2875
2876 if (preempt_count() == val)
2877 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2878 preempt_count() -= val;
2879 }
2880 EXPORT_SYMBOL(sub_preempt_count);
2881
2882 #endif
2883
2884 /*
2885 * Print scheduling while atomic bug:
2886 */
2887 static noinline void __schedule_bug(struct task_struct *prev)
2888 {
2889 if (oops_in_progress)
2890 return;
2891
2892 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2893 prev->comm, prev->pid, preempt_count());
2894
2895 debug_show_held_locks(prev);
2896 print_modules();
2897 if (irqs_disabled())
2898 print_irqtrace_events(prev);
2899 dump_stack();
2900 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2901 }
2902
2903 /*
2904 * Various schedule()-time debugging checks and statistics:
2905 */
2906 static inline void schedule_debug(struct task_struct *prev)
2907 {
2908 /*
2909 * Test if we are atomic. Since do_exit() needs to call into
2910 * schedule() atomically, we ignore that path for now.
2911 * Otherwise, whine if we are scheduling when we should not be.
2912 */
2913 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2914 __schedule_bug(prev);
2915 rcu_sleep_check();
2916
2917 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2918
2919 schedstat_inc(this_rq(), sched_count);
2920 }
2921
2922 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2923 {
2924 if (prev->on_rq || rq->skip_clock_update < 0)
2925 update_rq_clock(rq);
2926 prev->sched_class->put_prev_task(rq, prev);
2927 }
2928
2929 /*
2930 * Pick up the highest-prio task:
2931 */
2932 static inline struct task_struct *
2933 pick_next_task(struct rq *rq)
2934 {
2935 const struct sched_class *class;
2936 struct task_struct *p;
2937
2938 /*
2939 * Optimization: we know that if all tasks are in
2940 * the fair class we can call that function directly:
2941 */
2942 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2943 p = fair_sched_class.pick_next_task(rq);
2944 if (likely(p))
2945 return p;
2946 }
2947
2948 for_each_class(class) {
2949 p = class->pick_next_task(rq);
2950 if (p)
2951 return p;
2952 }
2953
2954 BUG(); /* the idle class will always have a runnable task */
2955 }
2956
2957 /*
2958 * __schedule() is the main scheduler function.
2959 *
2960 * The main means of driving the scheduler and thus entering this function are:
2961 *
2962 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2963 *
2964 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2965 * paths. For example, see arch/x86/entry_64.S.
2966 *
2967 * To drive preemption between tasks, the scheduler sets the flag in timer
2968 * interrupt handler scheduler_tick().
2969 *
2970 * 3. Wakeups don't really cause entry into schedule(). They add a
2971 * task to the run-queue and that's it.
2972 *
2973 * Now, if the new task added to the run-queue preempts the current
2974 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2975 * called on the nearest possible occasion:
2976 *
2977 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2978 *
2979 * - in syscall or exception context, at the next outmost
2980 * preempt_enable(). (this might be as soon as the wake_up()'s
2981 * spin_unlock()!)
2982 *
2983 * - in IRQ context, return from interrupt-handler to
2984 * preemptible context
2985 *
2986 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2987 * then at the next:
2988 *
2989 * - cond_resched() call
2990 * - explicit schedule() call
2991 * - return from syscall or exception to user-space
2992 * - return from interrupt-handler to user-space
2993 */
2994 static void __sched __schedule(void)
2995 {
2996 struct task_struct *prev, *next;
2997 unsigned long *switch_count;
2998 struct rq *rq;
2999 int cpu;
3000
3001 need_resched:
3002 preempt_disable();
3003 cpu = smp_processor_id();
3004 rq = cpu_rq(cpu);
3005 rcu_note_context_switch(cpu);
3006 prev = rq->curr;
3007
3008 schedule_debug(prev);
3009
3010 if (sched_feat(HRTICK))
3011 hrtick_clear(rq);
3012
3013 /*
3014 * Make sure that signal_pending_state()->signal_pending() below
3015 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3016 * done by the caller to avoid the race with signal_wake_up().
3017 */
3018 smp_mb__before_spinlock();
3019 raw_spin_lock_irq(&rq->lock);
3020
3021 switch_count = &prev->nivcsw;
3022 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3023 if (unlikely(signal_pending_state(prev->state, prev))) {
3024 prev->state = TASK_RUNNING;
3025 } else {
3026 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3027 prev->on_rq = 0;
3028
3029 /*
3030 * If a worker went to sleep, notify and ask workqueue
3031 * whether it wants to wake up a task to maintain
3032 * concurrency.
3033 */
3034 if (prev->flags & PF_WQ_WORKER) {
3035 struct task_struct *to_wakeup;
3036
3037 to_wakeup = wq_worker_sleeping(prev, cpu);
3038 if (to_wakeup)
3039 try_to_wake_up_local(to_wakeup);
3040 }
3041 }
3042 switch_count = &prev->nvcsw;
3043 }
3044
3045 pre_schedule(rq, prev);
3046
3047 if (unlikely(!rq->nr_running))
3048 idle_balance(cpu, rq);
3049
3050 put_prev_task(rq, prev);
3051 next = pick_next_task(rq);
3052 clear_tsk_need_resched(prev);
3053 rq->skip_clock_update = 0;
3054
3055 if (likely(prev != next)) {
3056 rq->nr_switches++;
3057 rq->curr = next;
3058 ++*switch_count;
3059
3060 context_switch(rq, prev, next); /* unlocks the rq */
3061 /*
3062 * The context switch have flipped the stack from under us
3063 * and restored the local variables which were saved when
3064 * this task called schedule() in the past. prev == current
3065 * is still correct, but it can be moved to another cpu/rq.
3066 */
3067 cpu = smp_processor_id();
3068 rq = cpu_rq(cpu);
3069 } else
3070 raw_spin_unlock_irq(&rq->lock);
3071
3072 post_schedule(rq);
3073
3074 sched_preempt_enable_no_resched();
3075 if (need_resched())
3076 goto need_resched;
3077 }
3078
3079 static inline void sched_submit_work(struct task_struct *tsk)
3080 {
3081 if (!tsk->state || tsk_is_pi_blocked(tsk))
3082 return;
3083 /*
3084 * If we are going to sleep and we have plugged IO queued,
3085 * make sure to submit it to avoid deadlocks.
3086 */
3087 if (blk_needs_flush_plug(tsk))
3088 blk_schedule_flush_plug(tsk);
3089 }
3090
3091 asmlinkage void __sched schedule(void)
3092 {
3093 struct task_struct *tsk = current;
3094
3095 sched_submit_work(tsk);
3096 __schedule();
3097 }
3098 EXPORT_SYMBOL(schedule);
3099
3100 #ifdef CONFIG_CONTEXT_TRACKING
3101 asmlinkage void __sched schedule_user(void)
3102 {
3103 /*
3104 * If we come here after a random call to set_need_resched(),
3105 * or we have been woken up remotely but the IPI has not yet arrived,
3106 * we haven't yet exited the RCU idle mode. Do it here manually until
3107 * we find a better solution.
3108 */
3109 user_exit();
3110 schedule();
3111 user_enter();
3112 }
3113 #endif
3114
3115 /**
3116 * schedule_preempt_disabled - called with preemption disabled
3117 *
3118 * Returns with preemption disabled. Note: preempt_count must be 1
3119 */
3120 void __sched schedule_preempt_disabled(void)
3121 {
3122 sched_preempt_enable_no_resched();
3123 schedule();
3124 preempt_disable();
3125 }
3126
3127 #ifdef CONFIG_PREEMPT
3128 /*
3129 * this is the entry point to schedule() from in-kernel preemption
3130 * off of preempt_enable. Kernel preemptions off return from interrupt
3131 * occur there and call schedule directly.
3132 */
3133 asmlinkage void __sched notrace preempt_schedule(void)
3134 {
3135 struct thread_info *ti = current_thread_info();
3136
3137 /*
3138 * If there is a non-zero preempt_count or interrupts are disabled,
3139 * we do not want to preempt the current task. Just return..
3140 */
3141 if (likely(ti->preempt_count || irqs_disabled()))
3142 return;
3143
3144 do {
3145 add_preempt_count_notrace(PREEMPT_ACTIVE);
3146 __schedule();
3147 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3148
3149 /*
3150 * Check again in case we missed a preemption opportunity
3151 * between schedule and now.
3152 */
3153 barrier();
3154 } while (need_resched());
3155 }
3156 EXPORT_SYMBOL(preempt_schedule);
3157
3158 /*
3159 * this is the entry point to schedule() from kernel preemption
3160 * off of irq context.
3161 * Note, that this is called and return with irqs disabled. This will
3162 * protect us against recursive calling from irq.
3163 */
3164 asmlinkage void __sched preempt_schedule_irq(void)
3165 {
3166 struct thread_info *ti = current_thread_info();
3167 enum ctx_state prev_state;
3168
3169 /* Catch callers which need to be fixed */
3170 BUG_ON(ti->preempt_count || !irqs_disabled());
3171
3172 prev_state = exception_enter();
3173
3174 do {
3175 add_preempt_count(PREEMPT_ACTIVE);
3176 local_irq_enable();
3177 __schedule();
3178 local_irq_disable();
3179 sub_preempt_count(PREEMPT_ACTIVE);
3180
3181 /*
3182 * Check again in case we missed a preemption opportunity
3183 * between schedule and now.
3184 */
3185 barrier();
3186 } while (need_resched());
3187
3188 exception_exit(prev_state);
3189 }
3190
3191 #endif /* CONFIG_PREEMPT */
3192
3193 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3194 void *key)
3195 {
3196 return try_to_wake_up(curr->private, mode, wake_flags);
3197 }
3198 EXPORT_SYMBOL(default_wake_function);
3199
3200 /*
3201 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3202 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3203 * number) then we wake all the non-exclusive tasks and one exclusive task.
3204 *
3205 * There are circumstances in which we can try to wake a task which has already
3206 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3207 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3208 */
3209 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3210 int nr_exclusive, int wake_flags, void *key)
3211 {
3212 wait_queue_t *curr, *next;
3213
3214 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3215 unsigned flags = curr->flags;
3216
3217 if (curr->func(curr, mode, wake_flags, key) &&
3218 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3219 break;
3220 }
3221 }
3222
3223 /**
3224 * __wake_up - wake up threads blocked on a waitqueue.
3225 * @q: the waitqueue
3226 * @mode: which threads
3227 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3228 * @key: is directly passed to the wakeup function
3229 *
3230 * It may be assumed that this function implies a write memory barrier before
3231 * changing the task state if and only if any tasks are woken up.
3232 */
3233 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3234 int nr_exclusive, void *key)
3235 {
3236 unsigned long flags;
3237
3238 spin_lock_irqsave(&q->lock, flags);
3239 __wake_up_common(q, mode, nr_exclusive, 0, key);
3240 spin_unlock_irqrestore(&q->lock, flags);
3241 }
3242 EXPORT_SYMBOL(__wake_up);
3243
3244 /*
3245 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3246 */
3247 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3248 {
3249 __wake_up_common(q, mode, nr, 0, NULL);
3250 }
3251 EXPORT_SYMBOL_GPL(__wake_up_locked);
3252
3253 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3254 {
3255 __wake_up_common(q, mode, 1, 0, key);
3256 }
3257 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3258
3259 /**
3260 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3261 * @q: the waitqueue
3262 * @mode: which threads
3263 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3264 * @key: opaque value to be passed to wakeup targets
3265 *
3266 * The sync wakeup differs that the waker knows that it will schedule
3267 * away soon, so while the target thread will be woken up, it will not
3268 * be migrated to another CPU - ie. the two threads are 'synchronized'
3269 * with each other. This can prevent needless bouncing between CPUs.
3270 *
3271 * On UP it can prevent extra preemption.
3272 *
3273 * It may be assumed that this function implies a write memory barrier before
3274 * changing the task state if and only if any tasks are woken up.
3275 */
3276 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3277 int nr_exclusive, void *key)
3278 {
3279 unsigned long flags;
3280 int wake_flags = WF_SYNC;
3281
3282 if (unlikely(!q))
3283 return;
3284
3285 if (unlikely(!nr_exclusive))
3286 wake_flags = 0;
3287
3288 spin_lock_irqsave(&q->lock, flags);
3289 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3290 spin_unlock_irqrestore(&q->lock, flags);
3291 }
3292 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3293
3294 /*
3295 * __wake_up_sync - see __wake_up_sync_key()
3296 */
3297 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3298 {
3299 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3300 }
3301 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3302
3303 /**
3304 * complete: - signals a single thread waiting on this completion
3305 * @x: holds the state of this particular completion
3306 *
3307 * This will wake up a single thread waiting on this completion. Threads will be
3308 * awakened in the same order in which they were queued.
3309 *
3310 * See also complete_all(), wait_for_completion() and related routines.
3311 *
3312 * It may be assumed that this function implies a write memory barrier before
3313 * changing the task state if and only if any tasks are woken up.
3314 */
3315 void complete(struct completion *x)
3316 {
3317 unsigned long flags;
3318
3319 spin_lock_irqsave(&x->wait.lock, flags);
3320 x->done++;
3321 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3322 spin_unlock_irqrestore(&x->wait.lock, flags);
3323 }
3324 EXPORT_SYMBOL(complete);
3325
3326 /**
3327 * complete_all: - signals all threads waiting on this completion
3328 * @x: holds the state of this particular completion
3329 *
3330 * This will wake up all threads waiting on this particular completion event.
3331 *
3332 * It may be assumed that this function implies a write memory barrier before
3333 * changing the task state if and only if any tasks are woken up.
3334 */
3335 void complete_all(struct completion *x)
3336 {
3337 unsigned long flags;
3338
3339 spin_lock_irqsave(&x->wait.lock, flags);
3340 x->done += UINT_MAX/2;
3341 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3342 spin_unlock_irqrestore(&x->wait.lock, flags);
3343 }
3344 EXPORT_SYMBOL(complete_all);
3345
3346 static inline long __sched
3347 do_wait_for_common(struct completion *x,
3348 long (*action)(long), long timeout, int state)
3349 {
3350 if (!x->done) {
3351 DECLARE_WAITQUEUE(wait, current);
3352
3353 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3354 do {
3355 if (signal_pending_state(state, current)) {
3356 timeout = -ERESTARTSYS;
3357 break;
3358 }
3359 __set_current_state(state);
3360 spin_unlock_irq(&x->wait.lock);
3361 timeout = action(timeout);
3362 spin_lock_irq(&x->wait.lock);
3363 } while (!x->done && timeout);
3364 __remove_wait_queue(&x->wait, &wait);
3365 if (!x->done)
3366 return timeout;
3367 }
3368 x->done--;
3369 return timeout ?: 1;
3370 }
3371
3372 static inline long __sched
3373 __wait_for_common(struct completion *x,
3374 long (*action)(long), long timeout, int state)
3375 {
3376 might_sleep();
3377
3378 spin_lock_irq(&x->wait.lock);
3379 timeout = do_wait_for_common(x, action, timeout, state);
3380 spin_unlock_irq(&x->wait.lock);
3381 return timeout;
3382 }
3383
3384 static long __sched
3385 wait_for_common(struct completion *x, long timeout, int state)
3386 {
3387 return __wait_for_common(x, schedule_timeout, timeout, state);
3388 }
3389
3390 static long __sched
3391 wait_for_common_io(struct completion *x, long timeout, int state)
3392 {
3393 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3394 }
3395
3396 /**
3397 * wait_for_completion: - waits for completion of a task
3398 * @x: holds the state of this particular completion
3399 *
3400 * This waits to be signaled for completion of a specific task. It is NOT
3401 * interruptible and there is no timeout.
3402 *
3403 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3404 * and interrupt capability. Also see complete().
3405 */
3406 void __sched wait_for_completion(struct completion *x)
3407 {
3408 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3409 }
3410 EXPORT_SYMBOL(wait_for_completion);
3411
3412 /**
3413 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3414 * @x: holds the state of this particular completion
3415 * @timeout: timeout value in jiffies
3416 *
3417 * This waits for either a completion of a specific task to be signaled or for a
3418 * specified timeout to expire. The timeout is in jiffies. It is not
3419 * interruptible.
3420 *
3421 * The return value is 0 if timed out, and positive (at least 1, or number of
3422 * jiffies left till timeout) if completed.
3423 */
3424 unsigned long __sched
3425 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3426 {
3427 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3428 }
3429 EXPORT_SYMBOL(wait_for_completion_timeout);
3430
3431 /**
3432 * wait_for_completion_io: - waits for completion of a task
3433 * @x: holds the state of this particular completion
3434 *
3435 * This waits to be signaled for completion of a specific task. It is NOT
3436 * interruptible and there is no timeout. The caller is accounted as waiting
3437 * for IO.
3438 */
3439 void __sched wait_for_completion_io(struct completion *x)
3440 {
3441 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3442 }
3443 EXPORT_SYMBOL(wait_for_completion_io);
3444
3445 /**
3446 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3447 * @x: holds the state of this particular completion
3448 * @timeout: timeout value in jiffies
3449 *
3450 * This waits for either a completion of a specific task to be signaled or for a
3451 * specified timeout to expire. The timeout is in jiffies. It is not
3452 * interruptible. The caller is accounted as waiting for IO.
3453 *
3454 * The return value is 0 if timed out, and positive (at least 1, or number of
3455 * jiffies left till timeout) if completed.
3456 */
3457 unsigned long __sched
3458 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3459 {
3460 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3461 }
3462 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3463
3464 /**
3465 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3466 * @x: holds the state of this particular completion
3467 *
3468 * This waits for completion of a specific task to be signaled. It is
3469 * interruptible.
3470 *
3471 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3472 */
3473 int __sched wait_for_completion_interruptible(struct completion *x)
3474 {
3475 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3476 if (t == -ERESTARTSYS)
3477 return t;
3478 return 0;
3479 }
3480 EXPORT_SYMBOL(wait_for_completion_interruptible);
3481
3482 /**
3483 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3484 * @x: holds the state of this particular completion
3485 * @timeout: timeout value in jiffies
3486 *
3487 * This waits for either a completion of a specific task to be signaled or for a
3488 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3489 *
3490 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3491 * positive (at least 1, or number of jiffies left till timeout) if completed.
3492 */
3493 long __sched
3494 wait_for_completion_interruptible_timeout(struct completion *x,
3495 unsigned long timeout)
3496 {
3497 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3498 }
3499 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3500
3501 /**
3502 * wait_for_completion_killable: - waits for completion of a task (killable)
3503 * @x: holds the state of this particular completion
3504 *
3505 * This waits to be signaled for completion of a specific task. It can be
3506 * interrupted by a kill signal.
3507 *
3508 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3509 */
3510 int __sched wait_for_completion_killable(struct completion *x)
3511 {
3512 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3513 if (t == -ERESTARTSYS)
3514 return t;
3515 return 0;
3516 }
3517 EXPORT_SYMBOL(wait_for_completion_killable);
3518
3519 /**
3520 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3521 * @x: holds the state of this particular completion
3522 * @timeout: timeout value in jiffies
3523 *
3524 * This waits for either a completion of a specific task to be
3525 * signaled or for a specified timeout to expire. It can be
3526 * interrupted by a kill signal. The timeout is in jiffies.
3527 *
3528 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3529 * positive (at least 1, or number of jiffies left till timeout) if completed.
3530 */
3531 long __sched
3532 wait_for_completion_killable_timeout(struct completion *x,
3533 unsigned long timeout)
3534 {
3535 return wait_for_common(x, timeout, TASK_KILLABLE);
3536 }
3537 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3538
3539 /**
3540 * try_wait_for_completion - try to decrement a completion without blocking
3541 * @x: completion structure
3542 *
3543 * Returns: 0 if a decrement cannot be done without blocking
3544 * 1 if a decrement succeeded.
3545 *
3546 * If a completion is being used as a counting completion,
3547 * attempt to decrement the counter without blocking. This
3548 * enables us to avoid waiting if the resource the completion
3549 * is protecting is not available.
3550 */
3551 bool try_wait_for_completion(struct completion *x)
3552 {
3553 unsigned long flags;
3554 int ret = 1;
3555
3556 spin_lock_irqsave(&x->wait.lock, flags);
3557 if (!x->done)
3558 ret = 0;
3559 else
3560 x->done--;
3561 spin_unlock_irqrestore(&x->wait.lock, flags);
3562 return ret;
3563 }
3564 EXPORT_SYMBOL(try_wait_for_completion);
3565
3566 /**
3567 * completion_done - Test to see if a completion has any waiters
3568 * @x: completion structure
3569 *
3570 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3571 * 1 if there are no waiters.
3572 *
3573 */
3574 bool completion_done(struct completion *x)
3575 {
3576 unsigned long flags;
3577 int ret = 1;
3578
3579 spin_lock_irqsave(&x->wait.lock, flags);
3580 if (!x->done)
3581 ret = 0;
3582 spin_unlock_irqrestore(&x->wait.lock, flags);
3583 return ret;
3584 }
3585 EXPORT_SYMBOL(completion_done);
3586
3587 static long __sched
3588 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3589 {
3590 unsigned long flags;
3591 wait_queue_t wait;
3592
3593 init_waitqueue_entry(&wait, current);
3594
3595 __set_current_state(state);
3596
3597 spin_lock_irqsave(&q->lock, flags);
3598 __add_wait_queue(q, &wait);
3599 spin_unlock(&q->lock);
3600 timeout = schedule_timeout(timeout);
3601 spin_lock_irq(&q->lock);
3602 __remove_wait_queue(q, &wait);
3603 spin_unlock_irqrestore(&q->lock, flags);
3604
3605 return timeout;
3606 }
3607
3608 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3609 {
3610 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3611 }
3612 EXPORT_SYMBOL(interruptible_sleep_on);
3613
3614 long __sched
3615 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3616 {
3617 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3618 }
3619 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3620
3621 void __sched sleep_on(wait_queue_head_t *q)
3622 {
3623 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3624 }
3625 EXPORT_SYMBOL(sleep_on);
3626
3627 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3628 {
3629 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3630 }
3631 EXPORT_SYMBOL(sleep_on_timeout);
3632
3633 #ifdef CONFIG_RT_MUTEXES
3634
3635 /*
3636 * rt_mutex_setprio - set the current priority of a task
3637 * @p: task
3638 * @prio: prio value (kernel-internal form)
3639 *
3640 * This function changes the 'effective' priority of a task. It does
3641 * not touch ->normal_prio like __setscheduler().
3642 *
3643 * Used by the rt_mutex code to implement priority inheritance logic.
3644 */
3645 void rt_mutex_setprio(struct task_struct *p, int prio)
3646 {
3647 int oldprio, on_rq, running;
3648 struct rq *rq;
3649 const struct sched_class *prev_class;
3650
3651 BUG_ON(prio < 0 || prio > MAX_PRIO);
3652
3653 rq = __task_rq_lock(p);
3654
3655 /*
3656 * Idle task boosting is a nono in general. There is one
3657 * exception, when PREEMPT_RT and NOHZ is active:
3658 *
3659 * The idle task calls get_next_timer_interrupt() and holds
3660 * the timer wheel base->lock on the CPU and another CPU wants
3661 * to access the timer (probably to cancel it). We can safely
3662 * ignore the boosting request, as the idle CPU runs this code
3663 * with interrupts disabled and will complete the lock
3664 * protected section without being interrupted. So there is no
3665 * real need to boost.
3666 */
3667 if (unlikely(p == rq->idle)) {
3668 WARN_ON(p != rq->curr);
3669 WARN_ON(p->pi_blocked_on);
3670 goto out_unlock;
3671 }
3672
3673 trace_sched_pi_setprio(p, prio);
3674 oldprio = p->prio;
3675 prev_class = p->sched_class;
3676 on_rq = p->on_rq;
3677 running = task_current(rq, p);
3678 if (on_rq)
3679 dequeue_task(rq, p, 0);
3680 if (running)
3681 p->sched_class->put_prev_task(rq, p);
3682
3683 if (rt_prio(prio))
3684 p->sched_class = &rt_sched_class;
3685 else
3686 p->sched_class = &fair_sched_class;
3687
3688 p->prio = prio;
3689
3690 if (running)
3691 p->sched_class->set_curr_task(rq);
3692 if (on_rq)
3693 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3694
3695 check_class_changed(rq, p, prev_class, oldprio);
3696 out_unlock:
3697 __task_rq_unlock(rq);
3698 }
3699 #endif
3700 void set_user_nice(struct task_struct *p, long nice)
3701 {
3702 int old_prio, delta, on_rq;
3703 unsigned long flags;
3704 struct rq *rq;
3705
3706 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3707 return;
3708 /*
3709 * We have to be careful, if called from sys_setpriority(),
3710 * the task might be in the middle of scheduling on another CPU.
3711 */
3712 rq = task_rq_lock(p, &flags);
3713 /*
3714 * The RT priorities are set via sched_setscheduler(), but we still
3715 * allow the 'normal' nice value to be set - but as expected
3716 * it wont have any effect on scheduling until the task is
3717 * SCHED_FIFO/SCHED_RR:
3718 */
3719 if (task_has_rt_policy(p)) {
3720 p->static_prio = NICE_TO_PRIO(nice);
3721 goto out_unlock;
3722 }
3723 on_rq = p->on_rq;
3724 if (on_rq)
3725 dequeue_task(rq, p, 0);
3726
3727 p->static_prio = NICE_TO_PRIO(nice);
3728 set_load_weight(p);
3729 old_prio = p->prio;
3730 p->prio = effective_prio(p);
3731 delta = p->prio - old_prio;
3732
3733 if (on_rq) {
3734 enqueue_task(rq, p, 0);
3735 /*
3736 * If the task increased its priority or is running and
3737 * lowered its priority, then reschedule its CPU:
3738 */
3739 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3740 resched_task(rq->curr);
3741 }
3742 out_unlock:
3743 task_rq_unlock(rq, p, &flags);
3744 }
3745 EXPORT_SYMBOL(set_user_nice);
3746
3747 /*
3748 * can_nice - check if a task can reduce its nice value
3749 * @p: task
3750 * @nice: nice value
3751 */
3752 int can_nice(const struct task_struct *p, const int nice)
3753 {
3754 /* convert nice value [19,-20] to rlimit style value [1,40] */
3755 int nice_rlim = 20 - nice;
3756
3757 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3758 capable(CAP_SYS_NICE));
3759 }
3760
3761 #ifdef __ARCH_WANT_SYS_NICE
3762
3763 /*
3764 * sys_nice - change the priority of the current process.
3765 * @increment: priority increment
3766 *
3767 * sys_setpriority is a more generic, but much slower function that
3768 * does similar things.
3769 */
3770 SYSCALL_DEFINE1(nice, int, increment)
3771 {
3772 long nice, retval;
3773
3774 /*
3775 * Setpriority might change our priority at the same moment.
3776 * We don't have to worry. Conceptually one call occurs first
3777 * and we have a single winner.
3778 */
3779 if (increment < -40)
3780 increment = -40;
3781 if (increment > 40)
3782 increment = 40;
3783
3784 nice = TASK_NICE(current) + increment;
3785 if (nice < -20)
3786 nice = -20;
3787 if (nice > 19)
3788 nice = 19;
3789
3790 if (increment < 0 && !can_nice(current, nice))
3791 return -EPERM;
3792
3793 retval = security_task_setnice(current, nice);
3794 if (retval)
3795 return retval;
3796
3797 set_user_nice(current, nice);
3798 return 0;
3799 }
3800
3801 #endif
3802
3803 /**
3804 * task_prio - return the priority value of a given task.
3805 * @p: the task in question.
3806 *
3807 * This is the priority value as seen by users in /proc.
3808 * RT tasks are offset by -200. Normal tasks are centered
3809 * around 0, value goes from -16 to +15.
3810 */
3811 int task_prio(const struct task_struct *p)
3812 {
3813 return p->prio - MAX_RT_PRIO;
3814 }
3815
3816 /**
3817 * task_nice - return the nice value of a given task.
3818 * @p: the task in question.
3819 */
3820 int task_nice(const struct task_struct *p)
3821 {
3822 return TASK_NICE(p);
3823 }
3824 EXPORT_SYMBOL(task_nice);
3825
3826 /**
3827 * idle_cpu - is a given cpu idle currently?
3828 * @cpu: the processor in question.
3829 */
3830 int idle_cpu(int cpu)
3831 {
3832 struct rq *rq = cpu_rq(cpu);
3833
3834 if (rq->curr != rq->idle)
3835 return 0;
3836
3837 if (rq->nr_running)
3838 return 0;
3839
3840 #ifdef CONFIG_SMP
3841 if (!llist_empty(&rq->wake_list))
3842 return 0;
3843 #endif
3844
3845 return 1;
3846 }
3847
3848 /**
3849 * idle_task - return the idle task for a given cpu.
3850 * @cpu: the processor in question.
3851 */
3852 struct task_struct *idle_task(int cpu)
3853 {
3854 return cpu_rq(cpu)->idle;
3855 }
3856
3857 /**
3858 * find_process_by_pid - find a process with a matching PID value.
3859 * @pid: the pid in question.
3860 */
3861 static struct task_struct *find_process_by_pid(pid_t pid)
3862 {
3863 return pid ? find_task_by_vpid(pid) : current;
3864 }
3865
3866 /* Actually do priority change: must hold rq lock. */
3867 static void
3868 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3869 {
3870 p->policy = policy;
3871 p->rt_priority = prio;
3872 p->normal_prio = normal_prio(p);
3873 /* we are holding p->pi_lock already */
3874 p->prio = rt_mutex_getprio(p);
3875 if (rt_prio(p->prio))
3876 p->sched_class = &rt_sched_class;
3877 else
3878 p->sched_class = &fair_sched_class;
3879 set_load_weight(p);
3880 }
3881
3882 /*
3883 * check the target process has a UID that matches the current process's
3884 */
3885 static bool check_same_owner(struct task_struct *p)
3886 {
3887 const struct cred *cred = current_cred(), *pcred;
3888 bool match;
3889
3890 rcu_read_lock();
3891 pcred = __task_cred(p);
3892 match = (uid_eq(cred->euid, pcred->euid) ||
3893 uid_eq(cred->euid, pcred->uid));
3894 rcu_read_unlock();
3895 return match;
3896 }
3897
3898 static int __sched_setscheduler(struct task_struct *p, int policy,
3899 const struct sched_param *param, bool user)
3900 {
3901 int retval, oldprio, oldpolicy = -1, on_rq, running;
3902 unsigned long flags;
3903 const struct sched_class *prev_class;
3904 struct rq *rq;
3905 int reset_on_fork;
3906
3907 /* may grab non-irq protected spin_locks */
3908 BUG_ON(in_interrupt());
3909 recheck:
3910 /* double check policy once rq lock held */
3911 if (policy < 0) {
3912 reset_on_fork = p->sched_reset_on_fork;
3913 policy = oldpolicy = p->policy;
3914 } else {
3915 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3916 policy &= ~SCHED_RESET_ON_FORK;
3917
3918 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3919 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3920 policy != SCHED_IDLE)
3921 return -EINVAL;
3922 }
3923
3924 /*
3925 * Valid priorities for SCHED_FIFO and SCHED_RR are
3926 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3927 * SCHED_BATCH and SCHED_IDLE is 0.
3928 */
3929 if (param->sched_priority < 0 ||
3930 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3931 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3932 return -EINVAL;
3933 if (rt_policy(policy) != (param->sched_priority != 0))
3934 return -EINVAL;
3935
3936 /*
3937 * Allow unprivileged RT tasks to decrease priority:
3938 */
3939 if (user && !capable(CAP_SYS_NICE)) {
3940 if (rt_policy(policy)) {
3941 unsigned long rlim_rtprio =
3942 task_rlimit(p, RLIMIT_RTPRIO);
3943
3944 /* can't set/change the rt policy */
3945 if (policy != p->policy && !rlim_rtprio)
3946 return -EPERM;
3947
3948 /* can't increase priority */
3949 if (param->sched_priority > p->rt_priority &&
3950 param->sched_priority > rlim_rtprio)
3951 return -EPERM;
3952 }
3953
3954 /*
3955 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3956 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3957 */
3958 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3959 if (!can_nice(p, TASK_NICE(p)))
3960 return -EPERM;
3961 }
3962
3963 /* can't change other user's priorities */
3964 if (!check_same_owner(p))
3965 return -EPERM;
3966
3967 /* Normal users shall not reset the sched_reset_on_fork flag */
3968 if (p->sched_reset_on_fork && !reset_on_fork)
3969 return -EPERM;
3970 }
3971
3972 if (user) {
3973 retval = security_task_setscheduler(p);
3974 if (retval)
3975 return retval;
3976 }
3977
3978 /*
3979 * make sure no PI-waiters arrive (or leave) while we are
3980 * changing the priority of the task:
3981 *
3982 * To be able to change p->policy safely, the appropriate
3983 * runqueue lock must be held.
3984 */
3985 rq = task_rq_lock(p, &flags);
3986
3987 /*
3988 * Changing the policy of the stop threads its a very bad idea
3989 */
3990 if (p == rq->stop) {
3991 task_rq_unlock(rq, p, &flags);
3992 return -EINVAL;
3993 }
3994
3995 /*
3996 * If not changing anything there's no need to proceed further:
3997 */
3998 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3999 param->sched_priority == p->rt_priority))) {
4000 task_rq_unlock(rq, p, &flags);
4001 return 0;
4002 }
4003
4004 #ifdef CONFIG_RT_GROUP_SCHED
4005 if (user) {
4006 /*
4007 * Do not allow realtime tasks into groups that have no runtime
4008 * assigned.
4009 */
4010 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4011 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4012 !task_group_is_autogroup(task_group(p))) {
4013 task_rq_unlock(rq, p, &flags);
4014 return -EPERM;
4015 }
4016 }
4017 #endif
4018
4019 /* recheck policy now with rq lock held */
4020 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4021 policy = oldpolicy = -1;
4022 task_rq_unlock(rq, p, &flags);
4023 goto recheck;
4024 }
4025 on_rq = p->on_rq;
4026 running = task_current(rq, p);
4027 if (on_rq)
4028 dequeue_task(rq, p, 0);
4029 if (running)
4030 p->sched_class->put_prev_task(rq, p);
4031
4032 p->sched_reset_on_fork = reset_on_fork;
4033
4034 oldprio = p->prio;
4035 prev_class = p->sched_class;
4036 __setscheduler(rq, p, policy, param->sched_priority);
4037
4038 if (running)
4039 p->sched_class->set_curr_task(rq);
4040 if (on_rq)
4041 enqueue_task(rq, p, 0);
4042
4043 check_class_changed(rq, p, prev_class, oldprio);
4044 task_rq_unlock(rq, p, &flags);
4045
4046 rt_mutex_adjust_pi(p);
4047
4048 return 0;
4049 }
4050
4051 /**
4052 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4053 * @p: the task in question.
4054 * @policy: new policy.
4055 * @param: structure containing the new RT priority.
4056 *
4057 * NOTE that the task may be already dead.
4058 */
4059 int sched_setscheduler(struct task_struct *p, int policy,
4060 const struct sched_param *param)
4061 {
4062 return __sched_setscheduler(p, policy, param, true);
4063 }
4064 EXPORT_SYMBOL_GPL(sched_setscheduler);
4065
4066 /**
4067 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4068 * @p: the task in question.
4069 * @policy: new policy.
4070 * @param: structure containing the new RT priority.
4071 *
4072 * Just like sched_setscheduler, only don't bother checking if the
4073 * current context has permission. For example, this is needed in
4074 * stop_machine(): we create temporary high priority worker threads,
4075 * but our caller might not have that capability.
4076 */
4077 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4078 const struct sched_param *param)
4079 {
4080 return __sched_setscheduler(p, policy, param, false);
4081 }
4082
4083 static int
4084 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4085 {
4086 struct sched_param lparam;
4087 struct task_struct *p;
4088 int retval;
4089
4090 if (!param || pid < 0)
4091 return -EINVAL;
4092 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4093 return -EFAULT;
4094
4095 rcu_read_lock();
4096 retval = -ESRCH;
4097 p = find_process_by_pid(pid);
4098 if (p != NULL)
4099 retval = sched_setscheduler(p, policy, &lparam);
4100 rcu_read_unlock();
4101
4102 return retval;
4103 }
4104
4105 /**
4106 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4107 * @pid: the pid in question.
4108 * @policy: new policy.
4109 * @param: structure containing the new RT priority.
4110 */
4111 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4112 struct sched_param __user *, param)
4113 {
4114 /* negative values for policy are not valid */
4115 if (policy < 0)
4116 return -EINVAL;
4117
4118 return do_sched_setscheduler(pid, policy, param);
4119 }
4120
4121 /**
4122 * sys_sched_setparam - set/change the RT priority of a thread
4123 * @pid: the pid in question.
4124 * @param: structure containing the new RT priority.
4125 */
4126 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4127 {
4128 return do_sched_setscheduler(pid, -1, param);
4129 }
4130
4131 /**
4132 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4133 * @pid: the pid in question.
4134 */
4135 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4136 {
4137 struct task_struct *p;
4138 int retval;
4139
4140 if (pid < 0)
4141 return -EINVAL;
4142
4143 retval = -ESRCH;
4144 rcu_read_lock();
4145 p = find_process_by_pid(pid);
4146 if (p) {
4147 retval = security_task_getscheduler(p);
4148 if (!retval)
4149 retval = p->policy
4150 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4151 }
4152 rcu_read_unlock();
4153 return retval;
4154 }
4155
4156 /**
4157 * sys_sched_getparam - get the RT priority of a thread
4158 * @pid: the pid in question.
4159 * @param: structure containing the RT priority.
4160 */
4161 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4162 {
4163 struct sched_param lp;
4164 struct task_struct *p;
4165 int retval;
4166
4167 if (!param || pid < 0)
4168 return -EINVAL;
4169
4170 rcu_read_lock();
4171 p = find_process_by_pid(pid);
4172 retval = -ESRCH;
4173 if (!p)
4174 goto out_unlock;
4175
4176 retval = security_task_getscheduler(p);
4177 if (retval)
4178 goto out_unlock;
4179
4180 lp.sched_priority = p->rt_priority;
4181 rcu_read_unlock();
4182
4183 /*
4184 * This one might sleep, we cannot do it with a spinlock held ...
4185 */
4186 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4187
4188 return retval;
4189
4190 out_unlock:
4191 rcu_read_unlock();
4192 return retval;
4193 }
4194
4195 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4196 {
4197 cpumask_var_t cpus_allowed, new_mask;
4198 struct task_struct *p;
4199 int retval;
4200
4201 get_online_cpus();
4202 rcu_read_lock();
4203
4204 p = find_process_by_pid(pid);
4205 if (!p) {
4206 rcu_read_unlock();
4207 put_online_cpus();
4208 return -ESRCH;
4209 }
4210
4211 /* Prevent p going away */
4212 get_task_struct(p);
4213 rcu_read_unlock();
4214
4215 if (p->flags & PF_NO_SETAFFINITY) {
4216 retval = -EINVAL;
4217 goto out_put_task;
4218 }
4219 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4220 retval = -ENOMEM;
4221 goto out_put_task;
4222 }
4223 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4224 retval = -ENOMEM;
4225 goto out_free_cpus_allowed;
4226 }
4227 retval = -EPERM;
4228 if (!check_same_owner(p)) {
4229 rcu_read_lock();
4230 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4231 rcu_read_unlock();
4232 goto out_unlock;
4233 }
4234 rcu_read_unlock();
4235 }
4236
4237 retval = security_task_setscheduler(p);
4238 if (retval)
4239 goto out_unlock;
4240
4241 cpuset_cpus_allowed(p, cpus_allowed);
4242 cpumask_and(new_mask, in_mask, cpus_allowed);
4243 again:
4244 retval = set_cpus_allowed_ptr(p, new_mask);
4245
4246 if (!retval) {
4247 cpuset_cpus_allowed(p, cpus_allowed);
4248 if (!cpumask_subset(new_mask, cpus_allowed)) {
4249 /*
4250 * We must have raced with a concurrent cpuset
4251 * update. Just reset the cpus_allowed to the
4252 * cpuset's cpus_allowed
4253 */
4254 cpumask_copy(new_mask, cpus_allowed);
4255 goto again;
4256 }
4257 }
4258 out_unlock:
4259 free_cpumask_var(new_mask);
4260 out_free_cpus_allowed:
4261 free_cpumask_var(cpus_allowed);
4262 out_put_task:
4263 put_task_struct(p);
4264 put_online_cpus();
4265 return retval;
4266 }
4267
4268 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4269 struct cpumask *new_mask)
4270 {
4271 if (len < cpumask_size())
4272 cpumask_clear(new_mask);
4273 else if (len > cpumask_size())
4274 len = cpumask_size();
4275
4276 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4277 }
4278
4279 /**
4280 * sys_sched_setaffinity - set the cpu affinity of a process
4281 * @pid: pid of the process
4282 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4283 * @user_mask_ptr: user-space pointer to the new cpu mask
4284 */
4285 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4286 unsigned long __user *, user_mask_ptr)
4287 {
4288 cpumask_var_t new_mask;
4289 int retval;
4290
4291 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4292 return -ENOMEM;
4293
4294 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4295 if (retval == 0)
4296 retval = sched_setaffinity(pid, new_mask);
4297 free_cpumask_var(new_mask);
4298 return retval;
4299 }
4300
4301 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4302 {
4303 struct task_struct *p;
4304 unsigned long flags;
4305 int retval;
4306
4307 get_online_cpus();
4308 rcu_read_lock();
4309
4310 retval = -ESRCH;
4311 p = find_process_by_pid(pid);
4312 if (!p)
4313 goto out_unlock;
4314
4315 retval = security_task_getscheduler(p);
4316 if (retval)
4317 goto out_unlock;
4318
4319 raw_spin_lock_irqsave(&p->pi_lock, flags);
4320 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4321 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4322
4323 out_unlock:
4324 rcu_read_unlock();
4325 put_online_cpus();
4326
4327 return retval;
4328 }
4329
4330 /**
4331 * sys_sched_getaffinity - get the cpu affinity of a process
4332 * @pid: pid of the process
4333 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4334 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4335 */
4336 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4337 unsigned long __user *, user_mask_ptr)
4338 {
4339 int ret;
4340 cpumask_var_t mask;
4341
4342 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4343 return -EINVAL;
4344 if (len & (sizeof(unsigned long)-1))
4345 return -EINVAL;
4346
4347 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4348 return -ENOMEM;
4349
4350 ret = sched_getaffinity(pid, mask);
4351 if (ret == 0) {
4352 size_t retlen = min_t(size_t, len, cpumask_size());
4353
4354 if (copy_to_user(user_mask_ptr, mask, retlen))
4355 ret = -EFAULT;
4356 else
4357 ret = retlen;
4358 }
4359 free_cpumask_var(mask);
4360
4361 return ret;
4362 }
4363
4364 /**
4365 * sys_sched_yield - yield the current processor to other threads.
4366 *
4367 * This function yields the current CPU to other tasks. If there are no
4368 * other threads running on this CPU then this function will return.
4369 */
4370 SYSCALL_DEFINE0(sched_yield)
4371 {
4372 struct rq *rq = this_rq_lock();
4373
4374 schedstat_inc(rq, yld_count);
4375 current->sched_class->yield_task(rq);
4376
4377 /*
4378 * Since we are going to call schedule() anyway, there's
4379 * no need to preempt or enable interrupts:
4380 */
4381 __release(rq->lock);
4382 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4383 do_raw_spin_unlock(&rq->lock);
4384 sched_preempt_enable_no_resched();
4385
4386 schedule();
4387
4388 return 0;
4389 }
4390
4391 static inline int should_resched(void)
4392 {
4393 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4394 }
4395
4396 static void __cond_resched(void)
4397 {
4398 add_preempt_count(PREEMPT_ACTIVE);
4399 __schedule();
4400 sub_preempt_count(PREEMPT_ACTIVE);
4401 }
4402
4403 int __sched _cond_resched(void)
4404 {
4405 if (should_resched()) {
4406 __cond_resched();
4407 return 1;
4408 }
4409 return 0;
4410 }
4411 EXPORT_SYMBOL(_cond_resched);
4412
4413 /*
4414 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4415 * call schedule, and on return reacquire the lock.
4416 *
4417 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4418 * operations here to prevent schedule() from being called twice (once via
4419 * spin_unlock(), once by hand).
4420 */
4421 int __cond_resched_lock(spinlock_t *lock)
4422 {
4423 int resched = should_resched();
4424 int ret = 0;
4425
4426 lockdep_assert_held(lock);
4427
4428 if (spin_needbreak(lock) || resched) {
4429 spin_unlock(lock);
4430 if (resched)
4431 __cond_resched();
4432 else
4433 cpu_relax();
4434 ret = 1;
4435 spin_lock(lock);
4436 }
4437 return ret;
4438 }
4439 EXPORT_SYMBOL(__cond_resched_lock);
4440
4441 int __sched __cond_resched_softirq(void)
4442 {
4443 BUG_ON(!in_softirq());
4444
4445 if (should_resched()) {
4446 local_bh_enable();
4447 __cond_resched();
4448 local_bh_disable();
4449 return 1;
4450 }
4451 return 0;
4452 }
4453 EXPORT_SYMBOL(__cond_resched_softirq);
4454
4455 /**
4456 * yield - yield the current processor to other threads.
4457 *
4458 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4459 *
4460 * The scheduler is at all times free to pick the calling task as the most
4461 * eligible task to run, if removing the yield() call from your code breaks
4462 * it, its already broken.
4463 *
4464 * Typical broken usage is:
4465 *
4466 * while (!event)
4467 * yield();
4468 *
4469 * where one assumes that yield() will let 'the other' process run that will
4470 * make event true. If the current task is a SCHED_FIFO task that will never
4471 * happen. Never use yield() as a progress guarantee!!
4472 *
4473 * If you want to use yield() to wait for something, use wait_event().
4474 * If you want to use yield() to be 'nice' for others, use cond_resched().
4475 * If you still want to use yield(), do not!
4476 */
4477 void __sched yield(void)
4478 {
4479 set_current_state(TASK_RUNNING);
4480 sys_sched_yield();
4481 }
4482 EXPORT_SYMBOL(yield);
4483
4484 /**
4485 * yield_to - yield the current processor to another thread in
4486 * your thread group, or accelerate that thread toward the
4487 * processor it's on.
4488 * @p: target task
4489 * @preempt: whether task preemption is allowed or not
4490 *
4491 * It's the caller's job to ensure that the target task struct
4492 * can't go away on us before we can do any checks.
4493 *
4494 * Returns:
4495 * true (>0) if we indeed boosted the target task.
4496 * false (0) if we failed to boost the target.
4497 * -ESRCH if there's no task to yield to.
4498 */
4499 bool __sched yield_to(struct task_struct *p, bool preempt)
4500 {
4501 struct task_struct *curr = current;
4502 struct rq *rq, *p_rq;
4503 unsigned long flags;
4504 int yielded = 0;
4505
4506 local_irq_save(flags);
4507 rq = this_rq();
4508
4509 again:
4510 p_rq = task_rq(p);
4511 /*
4512 * If we're the only runnable task on the rq and target rq also
4513 * has only one task, there's absolutely no point in yielding.
4514 */
4515 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4516 yielded = -ESRCH;
4517 goto out_irq;
4518 }
4519
4520 double_rq_lock(rq, p_rq);
4521 while (task_rq(p) != p_rq) {
4522 double_rq_unlock(rq, p_rq);
4523 goto again;
4524 }
4525
4526 if (!curr->sched_class->yield_to_task)
4527 goto out_unlock;
4528
4529 if (curr->sched_class != p->sched_class)
4530 goto out_unlock;
4531
4532 if (task_running(p_rq, p) || p->state)
4533 goto out_unlock;
4534
4535 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4536 if (yielded) {
4537 schedstat_inc(rq, yld_count);
4538 /*
4539 * Make p's CPU reschedule; pick_next_entity takes care of
4540 * fairness.
4541 */
4542 if (preempt && rq != p_rq)
4543 resched_task(p_rq->curr);
4544 }
4545
4546 out_unlock:
4547 double_rq_unlock(rq, p_rq);
4548 out_irq:
4549 local_irq_restore(flags);
4550
4551 if (yielded > 0)
4552 schedule();
4553
4554 return yielded;
4555 }
4556 EXPORT_SYMBOL_GPL(yield_to);
4557
4558 /*
4559 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4560 * that process accounting knows that this is a task in IO wait state.
4561 */
4562 void __sched io_schedule(void)
4563 {
4564 struct rq *rq = raw_rq();
4565
4566 delayacct_blkio_start();
4567 atomic_inc(&rq->nr_iowait);
4568 blk_flush_plug(current);
4569 current->in_iowait = 1;
4570 schedule();
4571 current->in_iowait = 0;
4572 atomic_dec(&rq->nr_iowait);
4573 delayacct_blkio_end();
4574 }
4575 EXPORT_SYMBOL(io_schedule);
4576
4577 long __sched io_schedule_timeout(long timeout)
4578 {
4579 struct rq *rq = raw_rq();
4580 long ret;
4581
4582 delayacct_blkio_start();
4583 atomic_inc(&rq->nr_iowait);
4584 blk_flush_plug(current);
4585 current->in_iowait = 1;
4586 ret = schedule_timeout(timeout);
4587 current->in_iowait = 0;
4588 atomic_dec(&rq->nr_iowait);
4589 delayacct_blkio_end();
4590 return ret;
4591 }
4592
4593 /**
4594 * sys_sched_get_priority_max - return maximum RT priority.
4595 * @policy: scheduling class.
4596 *
4597 * this syscall returns the maximum rt_priority that can be used
4598 * by a given scheduling class.
4599 */
4600 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4601 {
4602 int ret = -EINVAL;
4603
4604 switch (policy) {
4605 case SCHED_FIFO:
4606 case SCHED_RR:
4607 ret = MAX_USER_RT_PRIO-1;
4608 break;
4609 case SCHED_NORMAL:
4610 case SCHED_BATCH:
4611 case SCHED_IDLE:
4612 ret = 0;
4613 break;
4614 }
4615 return ret;
4616 }
4617
4618 /**
4619 * sys_sched_get_priority_min - return minimum RT priority.
4620 * @policy: scheduling class.
4621 *
4622 * this syscall returns the minimum rt_priority that can be used
4623 * by a given scheduling class.
4624 */
4625 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4626 {
4627 int ret = -EINVAL;
4628
4629 switch (policy) {
4630 case SCHED_FIFO:
4631 case SCHED_RR:
4632 ret = 1;
4633 break;
4634 case SCHED_NORMAL:
4635 case SCHED_BATCH:
4636 case SCHED_IDLE:
4637 ret = 0;
4638 }
4639 return ret;
4640 }
4641
4642 /**
4643 * sys_sched_rr_get_interval - return the default timeslice of a process.
4644 * @pid: pid of the process.
4645 * @interval: userspace pointer to the timeslice value.
4646 *
4647 * this syscall writes the default timeslice value of a given process
4648 * into the user-space timespec buffer. A value of '0' means infinity.
4649 */
4650 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4651 struct timespec __user *, interval)
4652 {
4653 struct task_struct *p;
4654 unsigned int time_slice;
4655 unsigned long flags;
4656 struct rq *rq;
4657 int retval;
4658 struct timespec t;
4659
4660 if (pid < 0)
4661 return -EINVAL;
4662
4663 retval = -ESRCH;
4664 rcu_read_lock();
4665 p = find_process_by_pid(pid);
4666 if (!p)
4667 goto out_unlock;
4668
4669 retval = security_task_getscheduler(p);
4670 if (retval)
4671 goto out_unlock;
4672
4673 rq = task_rq_lock(p, &flags);
4674 time_slice = p->sched_class->get_rr_interval(rq, p);
4675 task_rq_unlock(rq, p, &flags);
4676
4677 rcu_read_unlock();
4678 jiffies_to_timespec(time_slice, &t);
4679 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4680 return retval;
4681
4682 out_unlock:
4683 rcu_read_unlock();
4684 return retval;
4685 }
4686
4687 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4688
4689 void sched_show_task(struct task_struct *p)
4690 {
4691 unsigned long free = 0;
4692 int ppid;
4693 unsigned state;
4694
4695 state = p->state ? __ffs(p->state) + 1 : 0;
4696 printk(KERN_INFO "%-15.15s %c", p->comm,
4697 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4698 #if BITS_PER_LONG == 32
4699 if (state == TASK_RUNNING)
4700 printk(KERN_CONT " running ");
4701 else
4702 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4703 #else
4704 if (state == TASK_RUNNING)
4705 printk(KERN_CONT " running task ");
4706 else
4707 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4708 #endif
4709 #ifdef CONFIG_DEBUG_STACK_USAGE
4710 free = stack_not_used(p);
4711 #endif
4712 rcu_read_lock();
4713 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4714 rcu_read_unlock();
4715 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4716 task_pid_nr(p), ppid,
4717 (unsigned long)task_thread_info(p)->flags);
4718
4719 print_worker_info(KERN_INFO, p);
4720 show_stack(p, NULL);
4721 }
4722
4723 void show_state_filter(unsigned long state_filter)
4724 {
4725 struct task_struct *g, *p;
4726
4727 #if BITS_PER_LONG == 32
4728 printk(KERN_INFO
4729 " task PC stack pid father\n");
4730 #else
4731 printk(KERN_INFO
4732 " task PC stack pid father\n");
4733 #endif
4734 rcu_read_lock();
4735 do_each_thread(g, p) {
4736 /*
4737 * reset the NMI-timeout, listing all files on a slow
4738 * console might take a lot of time:
4739 */
4740 touch_nmi_watchdog();
4741 if (!state_filter || (p->state & state_filter))
4742 sched_show_task(p);
4743 } while_each_thread(g, p);
4744
4745 touch_all_softlockup_watchdogs();
4746
4747 #ifdef CONFIG_SCHED_DEBUG
4748 if (!state_filter)
4749 sysrq_sched_debug_show();
4750 #endif
4751 rcu_read_unlock();
4752 /*
4753 * Only show locks if all tasks are dumped:
4754 */
4755 if (!state_filter)
4756 debug_show_all_locks();
4757 }
4758
4759 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4760 {
4761 idle->sched_class = &idle_sched_class;
4762 }
4763
4764 /**
4765 * init_idle - set up an idle thread for a given CPU
4766 * @idle: task in question
4767 * @cpu: cpu the idle task belongs to
4768 *
4769 * NOTE: this function does not set the idle thread's NEED_RESCHED
4770 * flag, to make booting more robust.
4771 */
4772 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4773 {
4774 struct rq *rq = cpu_rq(cpu);
4775 unsigned long flags;
4776
4777 raw_spin_lock_irqsave(&rq->lock, flags);
4778
4779 __sched_fork(idle);
4780 idle->state = TASK_RUNNING;
4781 idle->se.exec_start = sched_clock();
4782
4783 do_set_cpus_allowed(idle, cpumask_of(cpu));
4784 /*
4785 * We're having a chicken and egg problem, even though we are
4786 * holding rq->lock, the cpu isn't yet set to this cpu so the
4787 * lockdep check in task_group() will fail.
4788 *
4789 * Similar case to sched_fork(). / Alternatively we could
4790 * use task_rq_lock() here and obtain the other rq->lock.
4791 *
4792 * Silence PROVE_RCU
4793 */
4794 rcu_read_lock();
4795 __set_task_cpu(idle, cpu);
4796 rcu_read_unlock();
4797
4798 rq->curr = rq->idle = idle;
4799 #if defined(CONFIG_SMP)
4800 idle->on_cpu = 1;
4801 #endif
4802 raw_spin_unlock_irqrestore(&rq->lock, flags);
4803
4804 /* Set the preempt count _outside_ the spinlocks! */
4805 task_thread_info(idle)->preempt_count = 0;
4806
4807 /*
4808 * The idle tasks have their own, simple scheduling class:
4809 */
4810 idle->sched_class = &idle_sched_class;
4811 ftrace_graph_init_idle_task(idle, cpu);
4812 vtime_init_idle(idle, cpu);
4813 #if defined(CONFIG_SMP)
4814 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4815 #endif
4816 }
4817
4818 #ifdef CONFIG_SMP
4819 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4820 {
4821 if (p->sched_class && p->sched_class->set_cpus_allowed)
4822 p->sched_class->set_cpus_allowed(p, new_mask);
4823
4824 cpumask_copy(&p->cpus_allowed, new_mask);
4825 p->nr_cpus_allowed = cpumask_weight(new_mask);
4826 }
4827
4828 /*
4829 * This is how migration works:
4830 *
4831 * 1) we invoke migration_cpu_stop() on the target CPU using
4832 * stop_one_cpu().
4833 * 2) stopper starts to run (implicitly forcing the migrated thread
4834 * off the CPU)
4835 * 3) it checks whether the migrated task is still in the wrong runqueue.
4836 * 4) if it's in the wrong runqueue then the migration thread removes
4837 * it and puts it into the right queue.
4838 * 5) stopper completes and stop_one_cpu() returns and the migration
4839 * is done.
4840 */
4841
4842 /*
4843 * Change a given task's CPU affinity. Migrate the thread to a
4844 * proper CPU and schedule it away if the CPU it's executing on
4845 * is removed from the allowed bitmask.
4846 *
4847 * NOTE: the caller must have a valid reference to the task, the
4848 * task must not exit() & deallocate itself prematurely. The
4849 * call is not atomic; no spinlocks may be held.
4850 */
4851 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4852 {
4853 unsigned long flags;
4854 struct rq *rq;
4855 unsigned int dest_cpu;
4856 int ret = 0;
4857
4858 rq = task_rq_lock(p, &flags);
4859
4860 if (cpumask_equal(&p->cpus_allowed, new_mask))
4861 goto out;
4862
4863 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4864 ret = -EINVAL;
4865 goto out;
4866 }
4867
4868 do_set_cpus_allowed(p, new_mask);
4869
4870 /* Can the task run on the task's current CPU? If so, we're done */
4871 if (cpumask_test_cpu(task_cpu(p), new_mask))
4872 goto out;
4873
4874 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4875 if (p->on_rq) {
4876 struct migration_arg arg = { p, dest_cpu };
4877 /* Need help from migration thread: drop lock and wait. */
4878 task_rq_unlock(rq, p, &flags);
4879 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4880 tlb_migrate_finish(p->mm);
4881 return 0;
4882 }
4883 out:
4884 task_rq_unlock(rq, p, &flags);
4885
4886 return ret;
4887 }
4888 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4889
4890 /*
4891 * Move (not current) task off this cpu, onto dest cpu. We're doing
4892 * this because either it can't run here any more (set_cpus_allowed()
4893 * away from this CPU, or CPU going down), or because we're
4894 * attempting to rebalance this task on exec (sched_exec).
4895 *
4896 * So we race with normal scheduler movements, but that's OK, as long
4897 * as the task is no longer on this CPU.
4898 *
4899 * Returns non-zero if task was successfully migrated.
4900 */
4901 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4902 {
4903 struct rq *rq_dest, *rq_src;
4904 int ret = 0;
4905
4906 if (unlikely(!cpu_active(dest_cpu)))
4907 return ret;
4908
4909 rq_src = cpu_rq(src_cpu);
4910 rq_dest = cpu_rq(dest_cpu);
4911
4912 raw_spin_lock(&p->pi_lock);
4913 double_rq_lock(rq_src, rq_dest);
4914 /* Already moved. */
4915 if (task_cpu(p) != src_cpu)
4916 goto done;
4917 /* Affinity changed (again). */
4918 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4919 goto fail;
4920
4921 /*
4922 * If we're not on a rq, the next wake-up will ensure we're
4923 * placed properly.
4924 */
4925 if (p->on_rq) {
4926 dequeue_task(rq_src, p, 0);
4927 set_task_cpu(p, dest_cpu);
4928 enqueue_task(rq_dest, p, 0);
4929 check_preempt_curr(rq_dest, p, 0);
4930 }
4931 done:
4932 ret = 1;
4933 fail:
4934 double_rq_unlock(rq_src, rq_dest);
4935 raw_spin_unlock(&p->pi_lock);
4936 return ret;
4937 }
4938
4939 /*
4940 * migration_cpu_stop - this will be executed by a highprio stopper thread
4941 * and performs thread migration by bumping thread off CPU then
4942 * 'pushing' onto another runqueue.
4943 */
4944 static int migration_cpu_stop(void *data)
4945 {
4946 struct migration_arg *arg = data;
4947
4948 /*
4949 * The original target cpu might have gone down and we might
4950 * be on another cpu but it doesn't matter.
4951 */
4952 local_irq_disable();
4953 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4954 local_irq_enable();
4955 return 0;
4956 }
4957
4958 #ifdef CONFIG_HOTPLUG_CPU
4959
4960 /*
4961 * Ensures that the idle task is using init_mm right before its cpu goes
4962 * offline.
4963 */
4964 void idle_task_exit(void)
4965 {
4966 struct mm_struct *mm = current->active_mm;
4967
4968 BUG_ON(cpu_online(smp_processor_id()));
4969
4970 if (mm != &init_mm)
4971 switch_mm(mm, &init_mm, current);
4972 mmdrop(mm);
4973 }
4974
4975 /*
4976 * Since this CPU is going 'away' for a while, fold any nr_active delta
4977 * we might have. Assumes we're called after migrate_tasks() so that the
4978 * nr_active count is stable.
4979 *
4980 * Also see the comment "Global load-average calculations".
4981 */
4982 static void calc_load_migrate(struct rq *rq)
4983 {
4984 long delta = calc_load_fold_active(rq);
4985 if (delta)
4986 atomic_long_add(delta, &calc_load_tasks);
4987 }
4988
4989 /*
4990 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4991 * try_to_wake_up()->select_task_rq().
4992 *
4993 * Called with rq->lock held even though we'er in stop_machine() and
4994 * there's no concurrency possible, we hold the required locks anyway
4995 * because of lock validation efforts.
4996 */
4997 static void migrate_tasks(unsigned int dead_cpu)
4998 {
4999 struct rq *rq = cpu_rq(dead_cpu);
5000 struct task_struct *next, *stop = rq->stop;
5001 int dest_cpu;
5002
5003 /*
5004 * Fudge the rq selection such that the below task selection loop
5005 * doesn't get stuck on the currently eligible stop task.
5006 *
5007 * We're currently inside stop_machine() and the rq is either stuck
5008 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5009 * either way we should never end up calling schedule() until we're
5010 * done here.
5011 */
5012 rq->stop = NULL;
5013
5014 for ( ; ; ) {
5015 /*
5016 * There's this thread running, bail when that's the only
5017 * remaining thread.
5018 */
5019 if (rq->nr_running == 1)
5020 break;
5021
5022 next = pick_next_task(rq);
5023 BUG_ON(!next);
5024 next->sched_class->put_prev_task(rq, next);
5025
5026 /* Find suitable destination for @next, with force if needed. */
5027 dest_cpu = select_fallback_rq(dead_cpu, next);
5028 raw_spin_unlock(&rq->lock);
5029
5030 __migrate_task(next, dead_cpu, dest_cpu);
5031
5032 raw_spin_lock(&rq->lock);
5033 }
5034
5035 rq->stop = stop;
5036 }
5037
5038 #endif /* CONFIG_HOTPLUG_CPU */
5039
5040 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5041
5042 static struct ctl_table sd_ctl_dir[] = {
5043 {
5044 .procname = "sched_domain",
5045 .mode = 0555,
5046 },
5047 {}
5048 };
5049
5050 static struct ctl_table sd_ctl_root[] = {
5051 {
5052 .procname = "kernel",
5053 .mode = 0555,
5054 .child = sd_ctl_dir,
5055 },
5056 {}
5057 };
5058
5059 static struct ctl_table *sd_alloc_ctl_entry(int n)
5060 {
5061 struct ctl_table *entry =
5062 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5063
5064 return entry;
5065 }
5066
5067 static void sd_free_ctl_entry(struct ctl_table **tablep)
5068 {
5069 struct ctl_table *entry;
5070
5071 /*
5072 * In the intermediate directories, both the child directory and
5073 * procname are dynamically allocated and could fail but the mode
5074 * will always be set. In the lowest directory the names are
5075 * static strings and all have proc handlers.
5076 */
5077 for (entry = *tablep; entry->mode; entry++) {
5078 if (entry->child)
5079 sd_free_ctl_entry(&entry->child);
5080 if (entry->proc_handler == NULL)
5081 kfree(entry->procname);
5082 }
5083
5084 kfree(*tablep);
5085 *tablep = NULL;
5086 }
5087
5088 static int min_load_idx = 0;
5089 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5090
5091 static void
5092 set_table_entry(struct ctl_table *entry,
5093 const char *procname, void *data, int maxlen,
5094 umode_t mode, proc_handler *proc_handler,
5095 bool load_idx)
5096 {
5097 entry->procname = procname;
5098 entry->data = data;
5099 entry->maxlen = maxlen;
5100 entry->mode = mode;
5101 entry->proc_handler = proc_handler;
5102
5103 if (load_idx) {
5104 entry->extra1 = &min_load_idx;
5105 entry->extra2 = &max_load_idx;
5106 }
5107 }
5108
5109 static struct ctl_table *
5110 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5111 {
5112 struct ctl_table *table = sd_alloc_ctl_entry(13);
5113
5114 if (table == NULL)
5115 return NULL;
5116
5117 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5118 sizeof(long), 0644, proc_doulongvec_minmax, false);
5119 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5120 sizeof(long), 0644, proc_doulongvec_minmax, false);
5121 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5122 sizeof(int), 0644, proc_dointvec_minmax, true);
5123 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5124 sizeof(int), 0644, proc_dointvec_minmax, true);
5125 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5126 sizeof(int), 0644, proc_dointvec_minmax, true);
5127 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5128 sizeof(int), 0644, proc_dointvec_minmax, true);
5129 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5130 sizeof(int), 0644, proc_dointvec_minmax, true);
5131 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5132 sizeof(int), 0644, proc_dointvec_minmax, false);
5133 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5134 sizeof(int), 0644, proc_dointvec_minmax, false);
5135 set_table_entry(&table[9], "cache_nice_tries",
5136 &sd->cache_nice_tries,
5137 sizeof(int), 0644, proc_dointvec_minmax, false);
5138 set_table_entry(&table[10], "flags", &sd->flags,
5139 sizeof(int), 0644, proc_dointvec_minmax, false);
5140 set_table_entry(&table[11], "name", sd->name,
5141 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5142 /* &table[12] is terminator */
5143
5144 return table;
5145 }
5146
5147 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5148 {
5149 struct ctl_table *entry, *table;
5150 struct sched_domain *sd;
5151 int domain_num = 0, i;
5152 char buf[32];
5153
5154 for_each_domain(cpu, sd)
5155 domain_num++;
5156 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5157 if (table == NULL)
5158 return NULL;
5159
5160 i = 0;
5161 for_each_domain(cpu, sd) {
5162 snprintf(buf, 32, "domain%d", i);
5163 entry->procname = kstrdup(buf, GFP_KERNEL);
5164 entry->mode = 0555;
5165 entry->child = sd_alloc_ctl_domain_table(sd);
5166 entry++;
5167 i++;
5168 }
5169 return table;
5170 }
5171
5172 static struct ctl_table_header *sd_sysctl_header;
5173 static void register_sched_domain_sysctl(void)
5174 {
5175 int i, cpu_num = num_possible_cpus();
5176 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5177 char buf[32];
5178
5179 WARN_ON(sd_ctl_dir[0].child);
5180 sd_ctl_dir[0].child = entry;
5181
5182 if (entry == NULL)
5183 return;
5184
5185 for_each_possible_cpu(i) {
5186 snprintf(buf, 32, "cpu%d", i);
5187 entry->procname = kstrdup(buf, GFP_KERNEL);
5188 entry->mode = 0555;
5189 entry->child = sd_alloc_ctl_cpu_table(i);
5190 entry++;
5191 }
5192
5193 WARN_ON(sd_sysctl_header);
5194 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5195 }
5196
5197 /* may be called multiple times per register */
5198 static void unregister_sched_domain_sysctl(void)
5199 {
5200 if (sd_sysctl_header)
5201 unregister_sysctl_table(sd_sysctl_header);
5202 sd_sysctl_header = NULL;
5203 if (sd_ctl_dir[0].child)
5204 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5205 }
5206 #else
5207 static void register_sched_domain_sysctl(void)
5208 {
5209 }
5210 static void unregister_sched_domain_sysctl(void)
5211 {
5212 }
5213 #endif
5214
5215 static void set_rq_online(struct rq *rq)
5216 {
5217 if (!rq->online) {
5218 const struct sched_class *class;
5219
5220 cpumask_set_cpu(rq->cpu, rq->rd->online);
5221 rq->online = 1;
5222
5223 for_each_class(class) {
5224 if (class->rq_online)
5225 class->rq_online(rq);
5226 }
5227 }
5228 }
5229
5230 static void set_rq_offline(struct rq *rq)
5231 {
5232 if (rq->online) {
5233 const struct sched_class *class;
5234
5235 for_each_class(class) {
5236 if (class->rq_offline)
5237 class->rq_offline(rq);
5238 }
5239
5240 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5241 rq->online = 0;
5242 }
5243 }
5244
5245 /*
5246 * migration_call - callback that gets triggered when a CPU is added.
5247 * Here we can start up the necessary migration thread for the new CPU.
5248 */
5249 static int __cpuinit
5250 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5251 {
5252 int cpu = (long)hcpu;
5253 unsigned long flags;
5254 struct rq *rq = cpu_rq(cpu);
5255
5256 switch (action & ~CPU_TASKS_FROZEN) {
5257
5258 case CPU_UP_PREPARE:
5259 rq->calc_load_update = calc_load_update;
5260 account_reset_rq(rq);
5261 break;
5262
5263 case CPU_ONLINE:
5264 /* Update our root-domain */
5265 raw_spin_lock_irqsave(&rq->lock, flags);
5266 if (rq->rd) {
5267 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5268
5269 set_rq_online(rq);
5270 }
5271 raw_spin_unlock_irqrestore(&rq->lock, flags);
5272 break;
5273
5274 #ifdef CONFIG_HOTPLUG_CPU
5275 case CPU_DYING:
5276 sched_ttwu_pending();
5277 /* Update our root-domain */
5278 raw_spin_lock_irqsave(&rq->lock, flags);
5279 if (rq->rd) {
5280 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5281 set_rq_offline(rq);
5282 }
5283 migrate_tasks(cpu);
5284 BUG_ON(rq->nr_running != 1); /* the migration thread */
5285 raw_spin_unlock_irqrestore(&rq->lock, flags);
5286 break;
5287
5288 case CPU_DEAD:
5289 calc_load_migrate(rq);
5290 break;
5291 #endif
5292 }
5293
5294 update_max_interval();
5295
5296 return NOTIFY_OK;
5297 }
5298
5299 /*
5300 * Register at high priority so that task migration (migrate_all_tasks)
5301 * happens before everything else. This has to be lower priority than
5302 * the notifier in the perf_event subsystem, though.
5303 */
5304 static struct notifier_block __cpuinitdata migration_notifier = {
5305 .notifier_call = migration_call,
5306 .priority = CPU_PRI_MIGRATION,
5307 };
5308
5309 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5310 unsigned long action, void *hcpu)
5311 {
5312 switch (action & ~CPU_TASKS_FROZEN) {
5313 case CPU_DOWN_FAILED:
5314 set_cpu_active((long)hcpu, true);
5315 return NOTIFY_OK;
5316 default:
5317 return NOTIFY_DONE;
5318 }
5319 }
5320
5321 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5322 unsigned long action, void *hcpu)
5323 {
5324 switch (action & ~CPU_TASKS_FROZEN) {
5325 case CPU_DOWN_PREPARE:
5326 set_cpu_active((long)hcpu, false);
5327 return NOTIFY_OK;
5328 default:
5329 return NOTIFY_DONE;
5330 }
5331 }
5332
5333 static int __init migration_init(void)
5334 {
5335 void *cpu = (void *)(long)smp_processor_id();
5336 int err;
5337
5338 /* Initialize migration for the boot CPU */
5339 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5340 BUG_ON(err == NOTIFY_BAD);
5341 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5342 register_cpu_notifier(&migration_notifier);
5343
5344 /* Register cpu active notifiers */
5345 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5346 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5347
5348 return 0;
5349 }
5350 early_initcall(migration_init);
5351 #endif
5352
5353 #ifdef CONFIG_SMP
5354
5355 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5356
5357 #ifdef CONFIG_SCHED_DEBUG
5358
5359 static __read_mostly int sched_debug_enabled;
5360
5361 static int __init sched_debug_setup(char *str)
5362 {
5363 sched_debug_enabled = 1;
5364
5365 return 0;
5366 }
5367 early_param("sched_debug", sched_debug_setup);
5368
5369 static inline bool sched_debug(void)
5370 {
5371 return sched_debug_enabled;
5372 }
5373
5374 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5375 struct cpumask *groupmask)
5376 {
5377 struct sched_group *group = sd->groups;
5378 char str[256];
5379
5380 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5381 cpumask_clear(groupmask);
5382
5383 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5384
5385 if (!(sd->flags & SD_LOAD_BALANCE)) {
5386 printk("does not load-balance\n");
5387 if (sd->parent)
5388 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5389 " has parent");
5390 return -1;
5391 }
5392
5393 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5394
5395 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5396 printk(KERN_ERR "ERROR: domain->span does not contain "
5397 "CPU%d\n", cpu);
5398 }
5399 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5400 printk(KERN_ERR "ERROR: domain->groups does not contain"
5401 " CPU%d\n", cpu);
5402 }
5403
5404 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5405 do {
5406 if (!group) {
5407 printk("\n");
5408 printk(KERN_ERR "ERROR: group is NULL\n");
5409 break;
5410 }
5411
5412 /*
5413 * Even though we initialize ->power to something semi-sane,
5414 * we leave power_orig unset. This allows us to detect if
5415 * domain iteration is still funny without causing /0 traps.
5416 */
5417 if (!group->sgp->power_orig) {
5418 printk(KERN_CONT "\n");
5419 printk(KERN_ERR "ERROR: domain->cpu_power not "
5420 "set\n");
5421 break;
5422 }
5423
5424 if (!cpumask_weight(sched_group_cpus(group))) {
5425 printk(KERN_CONT "\n");
5426 printk(KERN_ERR "ERROR: empty group\n");
5427 break;
5428 }
5429
5430 if (!(sd->flags & SD_OVERLAP) &&
5431 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5432 printk(KERN_CONT "\n");
5433 printk(KERN_ERR "ERROR: repeated CPUs\n");
5434 break;
5435 }
5436
5437 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5438
5439 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5440
5441 printk(KERN_CONT " %s", str);
5442 if (group->sgp->power != SCHED_POWER_SCALE) {
5443 printk(KERN_CONT " (cpu_power = %d)",
5444 group->sgp->power);
5445 }
5446
5447 group = group->next;
5448 } while (group != sd->groups);
5449 printk(KERN_CONT "\n");
5450
5451 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5452 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5453
5454 if (sd->parent &&
5455 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5456 printk(KERN_ERR "ERROR: parent span is not a superset "
5457 "of domain->span\n");
5458 return 0;
5459 }
5460
5461 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5462 {
5463 int level = 0;
5464
5465 if (!sched_debug_enabled)
5466 return;
5467
5468 if (!sd) {
5469 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5470 return;
5471 }
5472
5473 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5474
5475 for (;;) {
5476 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5477 break;
5478 level++;
5479 sd = sd->parent;
5480 if (!sd)
5481 break;
5482 }
5483 }
5484 #else /* !CONFIG_SCHED_DEBUG */
5485 # define sched_domain_debug(sd, cpu) do { } while (0)
5486 static inline bool sched_debug(void)
5487 {
5488 return false;
5489 }
5490 #endif /* CONFIG_SCHED_DEBUG */
5491
5492 static int sd_degenerate(struct sched_domain *sd)
5493 {
5494 if (cpumask_weight(sched_domain_span(sd)) == 1)
5495 return 1;
5496
5497 /* Following flags need at least 2 groups */
5498 if (sd->flags & (SD_LOAD_BALANCE |
5499 SD_BALANCE_NEWIDLE |
5500 SD_BALANCE_FORK |
5501 SD_BALANCE_EXEC |
5502 SD_SHARE_CPUPOWER |
5503 SD_SHARE_PKG_RESOURCES)) {
5504 if (sd->groups != sd->groups->next)
5505 return 0;
5506 }
5507
5508 /* Following flags don't use groups */
5509 if (sd->flags & (SD_WAKE_AFFINE))
5510 return 0;
5511
5512 return 1;
5513 }
5514
5515 static int
5516 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5517 {
5518 unsigned long cflags = sd->flags, pflags = parent->flags;
5519
5520 if (sd_degenerate(parent))
5521 return 1;
5522
5523 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5524 return 0;
5525
5526 /* Flags needing groups don't count if only 1 group in parent */
5527 if (parent->groups == parent->groups->next) {
5528 pflags &= ~(SD_LOAD_BALANCE |
5529 SD_BALANCE_NEWIDLE |
5530 SD_BALANCE_FORK |
5531 SD_BALANCE_EXEC |
5532 SD_SHARE_CPUPOWER |
5533 SD_SHARE_PKG_RESOURCES);
5534 if (nr_node_ids == 1)
5535 pflags &= ~SD_SERIALIZE;
5536 }
5537 if (~cflags & pflags)
5538 return 0;
5539
5540 return 1;
5541 }
5542
5543 static void free_rootdomain(struct rcu_head *rcu)
5544 {
5545 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5546
5547 cpupri_cleanup(&rd->cpupri);
5548 free_cpumask_var(rd->rto_mask);
5549 free_cpumask_var(rd->online);
5550 free_cpumask_var(rd->span);
5551 kfree(rd);
5552 }
5553
5554 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5555 {
5556 struct root_domain *old_rd = NULL;
5557 unsigned long flags;
5558
5559 raw_spin_lock_irqsave(&rq->lock, flags);
5560
5561 if (rq->rd) {
5562 old_rd = rq->rd;
5563
5564 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5565 set_rq_offline(rq);
5566
5567 cpumask_clear_cpu(rq->cpu, old_rd->span);
5568
5569 /*
5570 * If we dont want to free the old_rt yet then
5571 * set old_rd to NULL to skip the freeing later
5572 * in this function:
5573 */
5574 if (!atomic_dec_and_test(&old_rd->refcount))
5575 old_rd = NULL;
5576 }
5577
5578 atomic_inc(&rd->refcount);
5579 rq->rd = rd;
5580
5581 cpumask_set_cpu(rq->cpu, rd->span);
5582 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5583 set_rq_online(rq);
5584
5585 raw_spin_unlock_irqrestore(&rq->lock, flags);
5586
5587 if (old_rd)
5588 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5589 }
5590
5591 static int init_rootdomain(struct root_domain *rd)
5592 {
5593 memset(rd, 0, sizeof(*rd));
5594
5595 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5596 goto out;
5597 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5598 goto free_span;
5599 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5600 goto free_online;
5601
5602 if (cpupri_init(&rd->cpupri) != 0)
5603 goto free_rto_mask;
5604 return 0;
5605
5606 free_rto_mask:
5607 free_cpumask_var(rd->rto_mask);
5608 free_online:
5609 free_cpumask_var(rd->online);
5610 free_span:
5611 free_cpumask_var(rd->span);
5612 out:
5613 return -ENOMEM;
5614 }
5615
5616 /*
5617 * By default the system creates a single root-domain with all cpus as
5618 * members (mimicking the global state we have today).
5619 */
5620 struct root_domain def_root_domain;
5621
5622 static void init_defrootdomain(void)
5623 {
5624 init_rootdomain(&def_root_domain);
5625
5626 atomic_set(&def_root_domain.refcount, 1);
5627 }
5628
5629 static struct root_domain *alloc_rootdomain(void)
5630 {
5631 struct root_domain *rd;
5632
5633 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5634 if (!rd)
5635 return NULL;
5636
5637 if (init_rootdomain(rd) != 0) {
5638 kfree(rd);
5639 return NULL;
5640 }
5641
5642 return rd;
5643 }
5644
5645 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5646 {
5647 struct sched_group *tmp, *first;
5648
5649 if (!sg)
5650 return;
5651
5652 first = sg;
5653 do {
5654 tmp = sg->next;
5655
5656 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5657 kfree(sg->sgp);
5658
5659 kfree(sg);
5660 sg = tmp;
5661 } while (sg != first);
5662 }
5663
5664 static void free_sched_domain(struct rcu_head *rcu)
5665 {
5666 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5667
5668 /*
5669 * If its an overlapping domain it has private groups, iterate and
5670 * nuke them all.
5671 */
5672 if (sd->flags & SD_OVERLAP) {
5673 free_sched_groups(sd->groups, 1);
5674 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5675 kfree(sd->groups->sgp);
5676 kfree(sd->groups);
5677 }
5678 kfree(sd);
5679 }
5680
5681 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5682 {
5683 call_rcu(&sd->rcu, free_sched_domain);
5684 }
5685
5686 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5687 {
5688 for (; sd; sd = sd->parent)
5689 destroy_sched_domain(sd, cpu);
5690 }
5691
5692 /*
5693 * Keep a special pointer to the highest sched_domain that has
5694 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5695 * allows us to avoid some pointer chasing select_idle_sibling().
5696 *
5697 * Also keep a unique ID per domain (we use the first cpu number in
5698 * the cpumask of the domain), this allows us to quickly tell if
5699 * two cpus are in the same cache domain, see cpus_share_cache().
5700 */
5701 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5702 DEFINE_PER_CPU(int, sd_llc_id);
5703
5704 static void update_top_cache_domain(int cpu)
5705 {
5706 struct sched_domain *sd;
5707 int id = cpu;
5708
5709 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5710 if (sd)
5711 id = cpumask_first(sched_domain_span(sd));
5712
5713 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5714 per_cpu(sd_llc_id, cpu) = id;
5715 }
5716
5717 /*
5718 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5719 * hold the hotplug lock.
5720 */
5721 static void
5722 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5723 {
5724 struct rq *rq = cpu_rq(cpu);
5725 struct sched_domain *tmp;
5726
5727 /* Remove the sched domains which do not contribute to scheduling. */
5728 for (tmp = sd; tmp; ) {
5729 struct sched_domain *parent = tmp->parent;
5730 if (!parent)
5731 break;
5732
5733 if (sd_parent_degenerate(tmp, parent)) {
5734 tmp->parent = parent->parent;
5735 if (parent->parent)
5736 parent->parent->child = tmp;
5737 destroy_sched_domain(parent, cpu);
5738 } else
5739 tmp = tmp->parent;
5740 }
5741
5742 if (sd && sd_degenerate(sd)) {
5743 tmp = sd;
5744 sd = sd->parent;
5745 destroy_sched_domain(tmp, cpu);
5746 if (sd)
5747 sd->child = NULL;
5748 }
5749
5750 sched_domain_debug(sd, cpu);
5751
5752 rq_attach_root(rq, rd);
5753 tmp = rq->sd;
5754 rcu_assign_pointer(rq->sd, sd);
5755 destroy_sched_domains(tmp, cpu);
5756
5757 update_top_cache_domain(cpu);
5758 }
5759
5760 /* cpus with isolated domains */
5761 static cpumask_var_t cpu_isolated_map;
5762
5763 /* Setup the mask of cpus configured for isolated domains */
5764 static int __init isolated_cpu_setup(char *str)
5765 {
5766 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5767 cpulist_parse(str, cpu_isolated_map);
5768 return 1;
5769 }
5770
5771 __setup("isolcpus=", isolated_cpu_setup);
5772
5773 static const struct cpumask *cpu_cpu_mask(int cpu)
5774 {
5775 return cpumask_of_node(cpu_to_node(cpu));
5776 }
5777
5778 struct sd_data {
5779 struct sched_domain **__percpu sd;
5780 struct sched_group **__percpu sg;
5781 struct sched_group_power **__percpu sgp;
5782 };
5783
5784 struct s_data {
5785 struct sched_domain ** __percpu sd;
5786 struct root_domain *rd;
5787 };
5788
5789 enum s_alloc {
5790 sa_rootdomain,
5791 sa_sd,
5792 sa_sd_storage,
5793 sa_none,
5794 };
5795
5796 struct sched_domain_topology_level;
5797
5798 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5799 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5800
5801 #define SDTL_OVERLAP 0x01
5802
5803 struct sched_domain_topology_level {
5804 sched_domain_init_f init;
5805 sched_domain_mask_f mask;
5806 int flags;
5807 int numa_level;
5808 struct sd_data data;
5809 };
5810
5811 /*
5812 * Build an iteration mask that can exclude certain CPUs from the upwards
5813 * domain traversal.
5814 *
5815 * Asymmetric node setups can result in situations where the domain tree is of
5816 * unequal depth, make sure to skip domains that already cover the entire
5817 * range.
5818 *
5819 * In that case build_sched_domains() will have terminated the iteration early
5820 * and our sibling sd spans will be empty. Domains should always include the
5821 * cpu they're built on, so check that.
5822 *
5823 */
5824 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5825 {
5826 const struct cpumask *span = sched_domain_span(sd);
5827 struct sd_data *sdd = sd->private;
5828 struct sched_domain *sibling;
5829 int i;
5830
5831 for_each_cpu(i, span) {
5832 sibling = *per_cpu_ptr(sdd->sd, i);
5833 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5834 continue;
5835
5836 cpumask_set_cpu(i, sched_group_mask(sg));
5837 }
5838 }
5839
5840 /*
5841 * Return the canonical balance cpu for this group, this is the first cpu
5842 * of this group that's also in the iteration mask.
5843 */
5844 int group_balance_cpu(struct sched_group *sg)
5845 {
5846 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5847 }
5848
5849 static int
5850 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5851 {
5852 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5853 const struct cpumask *span = sched_domain_span(sd);
5854 struct cpumask *covered = sched_domains_tmpmask;
5855 struct sd_data *sdd = sd->private;
5856 struct sched_domain *child;
5857 int i;
5858
5859 cpumask_clear(covered);
5860
5861 for_each_cpu(i, span) {
5862 struct cpumask *sg_span;
5863
5864 if (cpumask_test_cpu(i, covered))
5865 continue;
5866
5867 child = *per_cpu_ptr(sdd->sd, i);
5868
5869 /* See the comment near build_group_mask(). */
5870 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5871 continue;
5872
5873 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5874 GFP_KERNEL, cpu_to_node(cpu));
5875
5876 if (!sg)
5877 goto fail;
5878
5879 sg_span = sched_group_cpus(sg);
5880 if (child->child) {
5881 child = child->child;
5882 cpumask_copy(sg_span, sched_domain_span(child));
5883 } else
5884 cpumask_set_cpu(i, sg_span);
5885
5886 cpumask_or(covered, covered, sg_span);
5887
5888 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5889 if (atomic_inc_return(&sg->sgp->ref) == 1)
5890 build_group_mask(sd, sg);
5891
5892 /*
5893 * Initialize sgp->power such that even if we mess up the
5894 * domains and no possible iteration will get us here, we won't
5895 * die on a /0 trap.
5896 */
5897 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5898
5899 /*
5900 * Make sure the first group of this domain contains the
5901 * canonical balance cpu. Otherwise the sched_domain iteration
5902 * breaks. See update_sg_lb_stats().
5903 */
5904 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5905 group_balance_cpu(sg) == cpu)
5906 groups = sg;
5907
5908 if (!first)
5909 first = sg;
5910 if (last)
5911 last->next = sg;
5912 last = sg;
5913 last->next = first;
5914 }
5915 sd->groups = groups;
5916
5917 return 0;
5918
5919 fail:
5920 free_sched_groups(first, 0);
5921
5922 return -ENOMEM;
5923 }
5924
5925 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5926 {
5927 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5928 struct sched_domain *child = sd->child;
5929
5930 if (child)
5931 cpu = cpumask_first(sched_domain_span(child));
5932
5933 if (sg) {
5934 *sg = *per_cpu_ptr(sdd->sg, cpu);
5935 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5936 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5937 }
5938
5939 return cpu;
5940 }
5941
5942 /*
5943 * build_sched_groups will build a circular linked list of the groups
5944 * covered by the given span, and will set each group's ->cpumask correctly,
5945 * and ->cpu_power to 0.
5946 *
5947 * Assumes the sched_domain tree is fully constructed
5948 */
5949 static int
5950 build_sched_groups(struct sched_domain *sd, int cpu)
5951 {
5952 struct sched_group *first = NULL, *last = NULL;
5953 struct sd_data *sdd = sd->private;
5954 const struct cpumask *span = sched_domain_span(sd);
5955 struct cpumask *covered;
5956 int i;
5957
5958 get_group(cpu, sdd, &sd->groups);
5959 atomic_inc(&sd->groups->ref);
5960
5961 if (cpu != cpumask_first(sched_domain_span(sd)))
5962 return 0;
5963
5964 lockdep_assert_held(&sched_domains_mutex);
5965 covered = sched_domains_tmpmask;
5966
5967 cpumask_clear(covered);
5968
5969 for_each_cpu(i, span) {
5970 struct sched_group *sg;
5971 int group = get_group(i, sdd, &sg);
5972 int j;
5973
5974 if (cpumask_test_cpu(i, covered))
5975 continue;
5976
5977 cpumask_clear(sched_group_cpus(sg));
5978 sg->sgp->power = 0;
5979 cpumask_setall(sched_group_mask(sg));
5980
5981 for_each_cpu(j, span) {
5982 if (get_group(j, sdd, NULL) != group)
5983 continue;
5984
5985 cpumask_set_cpu(j, covered);
5986 cpumask_set_cpu(j, sched_group_cpus(sg));
5987 }
5988
5989 if (!first)
5990 first = sg;
5991 if (last)
5992 last->next = sg;
5993 last = sg;
5994 }
5995 last->next = first;
5996
5997 return 0;
5998 }
5999
6000 /*
6001 * Initialize sched groups cpu_power.
6002 *
6003 * cpu_power indicates the capacity of sched group, which is used while
6004 * distributing the load between different sched groups in a sched domain.
6005 * Typically cpu_power for all the groups in a sched domain will be same unless
6006 * there are asymmetries in the topology. If there are asymmetries, group
6007 * having more cpu_power will pickup more load compared to the group having
6008 * less cpu_power.
6009 */
6010 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6011 {
6012 struct sched_group *sg = sd->groups;
6013
6014 WARN_ON(!sd || !sg);
6015
6016 do {
6017 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6018 sg = sg->next;
6019 } while (sg != sd->groups);
6020
6021 if (cpu != group_balance_cpu(sg))
6022 return;
6023
6024 update_group_power(sd, cpu);
6025 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6026 }
6027
6028 int __weak arch_sd_sibling_asym_packing(void)
6029 {
6030 return 0*SD_ASYM_PACKING;
6031 }
6032
6033 /*
6034 * Initializers for schedule domains
6035 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6036 */
6037
6038 #ifdef CONFIG_SCHED_DEBUG
6039 # define SD_INIT_NAME(sd, type) sd->name = #type
6040 #else
6041 # define SD_INIT_NAME(sd, type) do { } while (0)
6042 #endif
6043
6044 #define SD_INIT_FUNC(type) \
6045 static noinline struct sched_domain * \
6046 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6047 { \
6048 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6049 *sd = SD_##type##_INIT; \
6050 SD_INIT_NAME(sd, type); \
6051 sd->private = &tl->data; \
6052 return sd; \
6053 }
6054
6055 SD_INIT_FUNC(CPU)
6056 #ifdef CONFIG_SCHED_SMT
6057 SD_INIT_FUNC(SIBLING)
6058 #endif
6059 #ifdef CONFIG_SCHED_MC
6060 SD_INIT_FUNC(MC)
6061 #endif
6062 #ifdef CONFIG_SCHED_BOOK
6063 SD_INIT_FUNC(BOOK)
6064 #endif
6065
6066 static int default_relax_domain_level = -1;
6067 int sched_domain_level_max;
6068
6069 static int __init setup_relax_domain_level(char *str)
6070 {
6071 if (kstrtoint(str, 0, &default_relax_domain_level))
6072 pr_warn("Unable to set relax_domain_level\n");
6073
6074 return 1;
6075 }
6076 __setup("relax_domain_level=", setup_relax_domain_level);
6077
6078 static void set_domain_attribute(struct sched_domain *sd,
6079 struct sched_domain_attr *attr)
6080 {
6081 int request;
6082
6083 if (!attr || attr->relax_domain_level < 0) {
6084 if (default_relax_domain_level < 0)
6085 return;
6086 else
6087 request = default_relax_domain_level;
6088 } else
6089 request = attr->relax_domain_level;
6090 if (request < sd->level) {
6091 /* turn off idle balance on this domain */
6092 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6093 } else {
6094 /* turn on idle balance on this domain */
6095 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6096 }
6097 }
6098
6099 static void __sdt_free(const struct cpumask *cpu_map);
6100 static int __sdt_alloc(const struct cpumask *cpu_map);
6101
6102 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6103 const struct cpumask *cpu_map)
6104 {
6105 switch (what) {
6106 case sa_rootdomain:
6107 if (!atomic_read(&d->rd->refcount))
6108 free_rootdomain(&d->rd->rcu); /* fall through */
6109 case sa_sd:
6110 free_percpu(d->sd); /* fall through */
6111 case sa_sd_storage:
6112 __sdt_free(cpu_map); /* fall through */
6113 case sa_none:
6114 break;
6115 }
6116 }
6117
6118 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6119 const struct cpumask *cpu_map)
6120 {
6121 memset(d, 0, sizeof(*d));
6122
6123 if (__sdt_alloc(cpu_map))
6124 return sa_sd_storage;
6125 d->sd = alloc_percpu(struct sched_domain *);
6126 if (!d->sd)
6127 return sa_sd_storage;
6128 d->rd = alloc_rootdomain();
6129 if (!d->rd)
6130 return sa_sd;
6131 return sa_rootdomain;
6132 }
6133
6134 /*
6135 * NULL the sd_data elements we've used to build the sched_domain and
6136 * sched_group structure so that the subsequent __free_domain_allocs()
6137 * will not free the data we're using.
6138 */
6139 static void claim_allocations(int cpu, struct sched_domain *sd)
6140 {
6141 struct sd_data *sdd = sd->private;
6142
6143 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6144 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6145
6146 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6147 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6148
6149 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6150 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6151 }
6152
6153 #ifdef CONFIG_SCHED_SMT
6154 static const struct cpumask *cpu_smt_mask(int cpu)
6155 {
6156 return topology_thread_cpumask(cpu);
6157 }
6158 #endif
6159
6160 /*
6161 * Topology list, bottom-up.
6162 */
6163 static struct sched_domain_topology_level default_topology[] = {
6164 #ifdef CONFIG_SCHED_SMT
6165 { sd_init_SIBLING, cpu_smt_mask, },
6166 #endif
6167 #ifdef CONFIG_SCHED_MC
6168 { sd_init_MC, cpu_coregroup_mask, },
6169 #endif
6170 #ifdef CONFIG_SCHED_BOOK
6171 { sd_init_BOOK, cpu_book_mask, },
6172 #endif
6173 { sd_init_CPU, cpu_cpu_mask, },
6174 { NULL, },
6175 };
6176
6177 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6178
6179 #ifdef CONFIG_NUMA
6180
6181 static int sched_domains_numa_levels;
6182 static int *sched_domains_numa_distance;
6183 static struct cpumask ***sched_domains_numa_masks;
6184 static int sched_domains_curr_level;
6185
6186 static inline int sd_local_flags(int level)
6187 {
6188 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6189 return 0;
6190
6191 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6192 }
6193
6194 static struct sched_domain *
6195 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6196 {
6197 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6198 int level = tl->numa_level;
6199 int sd_weight = cpumask_weight(
6200 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6201
6202 *sd = (struct sched_domain){
6203 .min_interval = sd_weight,
6204 .max_interval = 2*sd_weight,
6205 .busy_factor = 32,
6206 .imbalance_pct = 125,
6207 .cache_nice_tries = 2,
6208 .busy_idx = 3,
6209 .idle_idx = 2,
6210 .newidle_idx = 0,
6211 .wake_idx = 0,
6212 .forkexec_idx = 0,
6213
6214 .flags = 1*SD_LOAD_BALANCE
6215 | 1*SD_BALANCE_NEWIDLE
6216 | 0*SD_BALANCE_EXEC
6217 | 0*SD_BALANCE_FORK
6218 | 0*SD_BALANCE_WAKE
6219 | 0*SD_WAKE_AFFINE
6220 | 0*SD_SHARE_CPUPOWER
6221 | 0*SD_SHARE_PKG_RESOURCES
6222 | 1*SD_SERIALIZE
6223 | 0*SD_PREFER_SIBLING
6224 | sd_local_flags(level)
6225 ,
6226 .last_balance = jiffies,
6227 .balance_interval = sd_weight,
6228 };
6229 SD_INIT_NAME(sd, NUMA);
6230 sd->private = &tl->data;
6231
6232 /*
6233 * Ugly hack to pass state to sd_numa_mask()...
6234 */
6235 sched_domains_curr_level = tl->numa_level;
6236
6237 return sd;
6238 }
6239
6240 static const struct cpumask *sd_numa_mask(int cpu)
6241 {
6242 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6243 }
6244
6245 static void sched_numa_warn(const char *str)
6246 {
6247 static int done = false;
6248 int i,j;
6249
6250 if (done)
6251 return;
6252
6253 done = true;
6254
6255 printk(KERN_WARNING "ERROR: %s\n\n", str);
6256
6257 for (i = 0; i < nr_node_ids; i++) {
6258 printk(KERN_WARNING " ");
6259 for (j = 0; j < nr_node_ids; j++)
6260 printk(KERN_CONT "%02d ", node_distance(i,j));
6261 printk(KERN_CONT "\n");
6262 }
6263 printk(KERN_WARNING "\n");
6264 }
6265
6266 static bool find_numa_distance(int distance)
6267 {
6268 int i;
6269
6270 if (distance == node_distance(0, 0))
6271 return true;
6272
6273 for (i = 0; i < sched_domains_numa_levels; i++) {
6274 if (sched_domains_numa_distance[i] == distance)
6275 return true;
6276 }
6277
6278 return false;
6279 }
6280
6281 static void sched_init_numa(void)
6282 {
6283 int next_distance, curr_distance = node_distance(0, 0);
6284 struct sched_domain_topology_level *tl;
6285 int level = 0;
6286 int i, j, k;
6287
6288 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6289 if (!sched_domains_numa_distance)
6290 return;
6291
6292 /*
6293 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6294 * unique distances in the node_distance() table.
6295 *
6296 * Assumes node_distance(0,j) includes all distances in
6297 * node_distance(i,j) in order to avoid cubic time.
6298 */
6299 next_distance = curr_distance;
6300 for (i = 0; i < nr_node_ids; i++) {
6301 for (j = 0; j < nr_node_ids; j++) {
6302 for (k = 0; k < nr_node_ids; k++) {
6303 int distance = node_distance(i, k);
6304
6305 if (distance > curr_distance &&
6306 (distance < next_distance ||
6307 next_distance == curr_distance))
6308 next_distance = distance;
6309
6310 /*
6311 * While not a strong assumption it would be nice to know
6312 * about cases where if node A is connected to B, B is not
6313 * equally connected to A.
6314 */
6315 if (sched_debug() && node_distance(k, i) != distance)
6316 sched_numa_warn("Node-distance not symmetric");
6317
6318 if (sched_debug() && i && !find_numa_distance(distance))
6319 sched_numa_warn("Node-0 not representative");
6320 }
6321 if (next_distance != curr_distance) {
6322 sched_domains_numa_distance[level++] = next_distance;
6323 sched_domains_numa_levels = level;
6324 curr_distance = next_distance;
6325 } else break;
6326 }
6327
6328 /*
6329 * In case of sched_debug() we verify the above assumption.
6330 */
6331 if (!sched_debug())
6332 break;
6333 }
6334 /*
6335 * 'level' contains the number of unique distances, excluding the
6336 * identity distance node_distance(i,i).
6337 *
6338 * The sched_domains_numa_distance[] array includes the actual distance
6339 * numbers.
6340 */
6341
6342 /*
6343 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6344 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6345 * the array will contain less then 'level' members. This could be
6346 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6347 * in other functions.
6348 *
6349 * We reset it to 'level' at the end of this function.
6350 */
6351 sched_domains_numa_levels = 0;
6352
6353 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6354 if (!sched_domains_numa_masks)
6355 return;
6356
6357 /*
6358 * Now for each level, construct a mask per node which contains all
6359 * cpus of nodes that are that many hops away from us.
6360 */
6361 for (i = 0; i < level; i++) {
6362 sched_domains_numa_masks[i] =
6363 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6364 if (!sched_domains_numa_masks[i])
6365 return;
6366
6367 for (j = 0; j < nr_node_ids; j++) {
6368 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6369 if (!mask)
6370 return;
6371
6372 sched_domains_numa_masks[i][j] = mask;
6373
6374 for (k = 0; k < nr_node_ids; k++) {
6375 if (node_distance(j, k) > sched_domains_numa_distance[i])
6376 continue;
6377
6378 cpumask_or(mask, mask, cpumask_of_node(k));
6379 }
6380 }
6381 }
6382
6383 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6384 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6385 if (!tl)
6386 return;
6387
6388 /*
6389 * Copy the default topology bits..
6390 */
6391 for (i = 0; default_topology[i].init; i++)
6392 tl[i] = default_topology[i];
6393
6394 /*
6395 * .. and append 'j' levels of NUMA goodness.
6396 */
6397 for (j = 0; j < level; i++, j++) {
6398 tl[i] = (struct sched_domain_topology_level){
6399 .init = sd_numa_init,
6400 .mask = sd_numa_mask,
6401 .flags = SDTL_OVERLAP,
6402 .numa_level = j,
6403 };
6404 }
6405
6406 sched_domain_topology = tl;
6407
6408 sched_domains_numa_levels = level;
6409 }
6410
6411 static void sched_domains_numa_masks_set(int cpu)
6412 {
6413 int i, j;
6414 int node = cpu_to_node(cpu);
6415
6416 for (i = 0; i < sched_domains_numa_levels; i++) {
6417 for (j = 0; j < nr_node_ids; j++) {
6418 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6419 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6420 }
6421 }
6422 }
6423
6424 static void sched_domains_numa_masks_clear(int cpu)
6425 {
6426 int i, j;
6427 for (i = 0; i < sched_domains_numa_levels; i++) {
6428 for (j = 0; j < nr_node_ids; j++)
6429 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6430 }
6431 }
6432
6433 /*
6434 * Update sched_domains_numa_masks[level][node] array when new cpus
6435 * are onlined.
6436 */
6437 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6438 unsigned long action,
6439 void *hcpu)
6440 {
6441 int cpu = (long)hcpu;
6442
6443 switch (action & ~CPU_TASKS_FROZEN) {
6444 case CPU_ONLINE:
6445 sched_domains_numa_masks_set(cpu);
6446 break;
6447
6448 case CPU_DEAD:
6449 sched_domains_numa_masks_clear(cpu);
6450 break;
6451
6452 default:
6453 return NOTIFY_DONE;
6454 }
6455
6456 return NOTIFY_OK;
6457 }
6458 #else
6459 static inline void sched_init_numa(void)
6460 {
6461 }
6462
6463 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6464 unsigned long action,
6465 void *hcpu)
6466 {
6467 return 0;
6468 }
6469 #endif /* CONFIG_NUMA */
6470
6471 static int __sdt_alloc(const struct cpumask *cpu_map)
6472 {
6473 struct sched_domain_topology_level *tl;
6474 int j;
6475
6476 for (tl = sched_domain_topology; tl->init; tl++) {
6477 struct sd_data *sdd = &tl->data;
6478
6479 sdd->sd = alloc_percpu(struct sched_domain *);
6480 if (!sdd->sd)
6481 return -ENOMEM;
6482
6483 sdd->sg = alloc_percpu(struct sched_group *);
6484 if (!sdd->sg)
6485 return -ENOMEM;
6486
6487 sdd->sgp = alloc_percpu(struct sched_group_power *);
6488 if (!sdd->sgp)
6489 return -ENOMEM;
6490
6491 for_each_cpu(j, cpu_map) {
6492 struct sched_domain *sd;
6493 struct sched_group *sg;
6494 struct sched_group_power *sgp;
6495
6496 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6497 GFP_KERNEL, cpu_to_node(j));
6498 if (!sd)
6499 return -ENOMEM;
6500
6501 *per_cpu_ptr(sdd->sd, j) = sd;
6502
6503 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6504 GFP_KERNEL, cpu_to_node(j));
6505 if (!sg)
6506 return -ENOMEM;
6507
6508 sg->next = sg;
6509
6510 *per_cpu_ptr(sdd->sg, j) = sg;
6511
6512 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6513 GFP_KERNEL, cpu_to_node(j));
6514 if (!sgp)
6515 return -ENOMEM;
6516
6517 *per_cpu_ptr(sdd->sgp, j) = sgp;
6518 }
6519 }
6520
6521 return 0;
6522 }
6523
6524 static void __sdt_free(const struct cpumask *cpu_map)
6525 {
6526 struct sched_domain_topology_level *tl;
6527 int j;
6528
6529 for (tl = sched_domain_topology; tl->init; tl++) {
6530 struct sd_data *sdd = &tl->data;
6531
6532 for_each_cpu(j, cpu_map) {
6533 struct sched_domain *sd;
6534
6535 if (sdd->sd) {
6536 sd = *per_cpu_ptr(sdd->sd, j);
6537 if (sd && (sd->flags & SD_OVERLAP))
6538 free_sched_groups(sd->groups, 0);
6539 kfree(*per_cpu_ptr(sdd->sd, j));
6540 }
6541
6542 if (sdd->sg)
6543 kfree(*per_cpu_ptr(sdd->sg, j));
6544 if (sdd->sgp)
6545 kfree(*per_cpu_ptr(sdd->sgp, j));
6546 }
6547 free_percpu(sdd->sd);
6548 sdd->sd = NULL;
6549 free_percpu(sdd->sg);
6550 sdd->sg = NULL;
6551 free_percpu(sdd->sgp);
6552 sdd->sgp = NULL;
6553 }
6554 }
6555
6556 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6557 struct s_data *d, const struct cpumask *cpu_map,
6558 struct sched_domain_attr *attr, struct sched_domain *child,
6559 int cpu)
6560 {
6561 struct sched_domain *sd = tl->init(tl, cpu);
6562 if (!sd)
6563 return child;
6564
6565 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6566 if (child) {
6567 sd->level = child->level + 1;
6568 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6569 child->parent = sd;
6570 }
6571 sd->child = child;
6572 set_domain_attribute(sd, attr);
6573
6574 return sd;
6575 }
6576
6577 /*
6578 * Build sched domains for a given set of cpus and attach the sched domains
6579 * to the individual cpus
6580 */
6581 static int build_sched_domains(const struct cpumask *cpu_map,
6582 struct sched_domain_attr *attr)
6583 {
6584 enum s_alloc alloc_state = sa_none;
6585 struct sched_domain *sd;
6586 struct s_data d;
6587 int i, ret = -ENOMEM;
6588
6589 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6590 if (alloc_state != sa_rootdomain)
6591 goto error;
6592
6593 /* Set up domains for cpus specified by the cpu_map. */
6594 for_each_cpu(i, cpu_map) {
6595 struct sched_domain_topology_level *tl;
6596
6597 sd = NULL;
6598 for (tl = sched_domain_topology; tl->init; tl++) {
6599 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6600 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6601 sd->flags |= SD_OVERLAP;
6602 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6603 break;
6604 }
6605
6606 while (sd->child)
6607 sd = sd->child;
6608
6609 *per_cpu_ptr(d.sd, i) = sd;
6610 }
6611
6612 /* Build the groups for the domains */
6613 for_each_cpu(i, cpu_map) {
6614 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6615 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6616 if (sd->flags & SD_OVERLAP) {
6617 if (build_overlap_sched_groups(sd, i))
6618 goto error;
6619 } else {
6620 if (build_sched_groups(sd, i))
6621 goto error;
6622 }
6623 }
6624 }
6625
6626 /* Calculate CPU power for physical packages and nodes */
6627 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6628 if (!cpumask_test_cpu(i, cpu_map))
6629 continue;
6630
6631 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6632 claim_allocations(i, sd);
6633 init_sched_groups_power(i, sd);
6634 }
6635 }
6636
6637 /* Attach the domains */
6638 rcu_read_lock();
6639 for_each_cpu(i, cpu_map) {
6640 sd = *per_cpu_ptr(d.sd, i);
6641 cpu_attach_domain(sd, d.rd, i);
6642 }
6643 rcu_read_unlock();
6644
6645 ret = 0;
6646 error:
6647 __free_domain_allocs(&d, alloc_state, cpu_map);
6648 return ret;
6649 }
6650
6651 static cpumask_var_t *doms_cur; /* current sched domains */
6652 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6653 static struct sched_domain_attr *dattr_cur;
6654 /* attribues of custom domains in 'doms_cur' */
6655
6656 /*
6657 * Special case: If a kmalloc of a doms_cur partition (array of
6658 * cpumask) fails, then fallback to a single sched domain,
6659 * as determined by the single cpumask fallback_doms.
6660 */
6661 static cpumask_var_t fallback_doms;
6662
6663 /*
6664 * arch_update_cpu_topology lets virtualized architectures update the
6665 * cpu core maps. It is supposed to return 1 if the topology changed
6666 * or 0 if it stayed the same.
6667 */
6668 int __attribute__((weak)) arch_update_cpu_topology(void)
6669 {
6670 return 0;
6671 }
6672
6673 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6674 {
6675 int i;
6676 cpumask_var_t *doms;
6677
6678 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6679 if (!doms)
6680 return NULL;
6681 for (i = 0; i < ndoms; i++) {
6682 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6683 free_sched_domains(doms, i);
6684 return NULL;
6685 }
6686 }
6687 return doms;
6688 }
6689
6690 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6691 {
6692 unsigned int i;
6693 for (i = 0; i < ndoms; i++)
6694 free_cpumask_var(doms[i]);
6695 kfree(doms);
6696 }
6697
6698 /*
6699 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6700 * For now this just excludes isolated cpus, but could be used to
6701 * exclude other special cases in the future.
6702 */
6703 static int init_sched_domains(const struct cpumask *cpu_map)
6704 {
6705 int err;
6706
6707 arch_update_cpu_topology();
6708 ndoms_cur = 1;
6709 doms_cur = alloc_sched_domains(ndoms_cur);
6710 if (!doms_cur)
6711 doms_cur = &fallback_doms;
6712 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6713 err = build_sched_domains(doms_cur[0], NULL);
6714 register_sched_domain_sysctl();
6715
6716 return err;
6717 }
6718
6719 /*
6720 * Detach sched domains from a group of cpus specified in cpu_map
6721 * These cpus will now be attached to the NULL domain
6722 */
6723 static void detach_destroy_domains(const struct cpumask *cpu_map)
6724 {
6725 int i;
6726
6727 rcu_read_lock();
6728 for_each_cpu(i, cpu_map)
6729 cpu_attach_domain(NULL, &def_root_domain, i);
6730 rcu_read_unlock();
6731 }
6732
6733 /* handle null as "default" */
6734 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6735 struct sched_domain_attr *new, int idx_new)
6736 {
6737 struct sched_domain_attr tmp;
6738
6739 /* fast path */
6740 if (!new && !cur)
6741 return 1;
6742
6743 tmp = SD_ATTR_INIT;
6744 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6745 new ? (new + idx_new) : &tmp,
6746 sizeof(struct sched_domain_attr));
6747 }
6748
6749 /*
6750 * Partition sched domains as specified by the 'ndoms_new'
6751 * cpumasks in the array doms_new[] of cpumasks. This compares
6752 * doms_new[] to the current sched domain partitioning, doms_cur[].
6753 * It destroys each deleted domain and builds each new domain.
6754 *
6755 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6756 * The masks don't intersect (don't overlap.) We should setup one
6757 * sched domain for each mask. CPUs not in any of the cpumasks will
6758 * not be load balanced. If the same cpumask appears both in the
6759 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6760 * it as it is.
6761 *
6762 * The passed in 'doms_new' should be allocated using
6763 * alloc_sched_domains. This routine takes ownership of it and will
6764 * free_sched_domains it when done with it. If the caller failed the
6765 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6766 * and partition_sched_domains() will fallback to the single partition
6767 * 'fallback_doms', it also forces the domains to be rebuilt.
6768 *
6769 * If doms_new == NULL it will be replaced with cpu_online_mask.
6770 * ndoms_new == 0 is a special case for destroying existing domains,
6771 * and it will not create the default domain.
6772 *
6773 * Call with hotplug lock held
6774 */
6775 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6776 struct sched_domain_attr *dattr_new)
6777 {
6778 int i, j, n;
6779 int new_topology;
6780
6781 mutex_lock(&sched_domains_mutex);
6782
6783 /* always unregister in case we don't destroy any domains */
6784 unregister_sched_domain_sysctl();
6785
6786 /* Let architecture update cpu core mappings. */
6787 new_topology = arch_update_cpu_topology();
6788
6789 n = doms_new ? ndoms_new : 0;
6790
6791 /* Destroy deleted domains */
6792 for (i = 0; i < ndoms_cur; i++) {
6793 for (j = 0; j < n && !new_topology; j++) {
6794 if (cpumask_equal(doms_cur[i], doms_new[j])
6795 && dattrs_equal(dattr_cur, i, dattr_new, j))
6796 goto match1;
6797 }
6798 /* no match - a current sched domain not in new doms_new[] */
6799 detach_destroy_domains(doms_cur[i]);
6800 match1:
6801 ;
6802 }
6803
6804 if (doms_new == NULL) {
6805 ndoms_cur = 0;
6806 doms_new = &fallback_doms;
6807 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6808 WARN_ON_ONCE(dattr_new);
6809 }
6810
6811 /* Build new domains */
6812 for (i = 0; i < ndoms_new; i++) {
6813 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6814 if (cpumask_equal(doms_new[i], doms_cur[j])
6815 && dattrs_equal(dattr_new, i, dattr_cur, j))
6816 goto match2;
6817 }
6818 /* no match - add a new doms_new */
6819 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6820 match2:
6821 ;
6822 }
6823
6824 /* Remember the new sched domains */
6825 if (doms_cur != &fallback_doms)
6826 free_sched_domains(doms_cur, ndoms_cur);
6827 kfree(dattr_cur); /* kfree(NULL) is safe */
6828 doms_cur = doms_new;
6829 dattr_cur = dattr_new;
6830 ndoms_cur = ndoms_new;
6831
6832 register_sched_domain_sysctl();
6833
6834 mutex_unlock(&sched_domains_mutex);
6835 }
6836
6837 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6838
6839 /*
6840 * Update cpusets according to cpu_active mask. If cpusets are
6841 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6842 * around partition_sched_domains().
6843 *
6844 * If we come here as part of a suspend/resume, don't touch cpusets because we
6845 * want to restore it back to its original state upon resume anyway.
6846 */
6847 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6848 void *hcpu)
6849 {
6850 switch (action) {
6851 case CPU_ONLINE_FROZEN:
6852 case CPU_DOWN_FAILED_FROZEN:
6853
6854 /*
6855 * num_cpus_frozen tracks how many CPUs are involved in suspend
6856 * resume sequence. As long as this is not the last online
6857 * operation in the resume sequence, just build a single sched
6858 * domain, ignoring cpusets.
6859 */
6860 num_cpus_frozen--;
6861 if (likely(num_cpus_frozen)) {
6862 partition_sched_domains(1, NULL, NULL);
6863 break;
6864 }
6865
6866 /*
6867 * This is the last CPU online operation. So fall through and
6868 * restore the original sched domains by considering the
6869 * cpuset configurations.
6870 */
6871
6872 case CPU_ONLINE:
6873 case CPU_DOWN_FAILED:
6874 cpuset_update_active_cpus(true);
6875 break;
6876 default:
6877 return NOTIFY_DONE;
6878 }
6879 return NOTIFY_OK;
6880 }
6881
6882 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6883 void *hcpu)
6884 {
6885 switch (action) {
6886 case CPU_DOWN_PREPARE:
6887 cpuset_update_active_cpus(false);
6888 break;
6889 case CPU_DOWN_PREPARE_FROZEN:
6890 num_cpus_frozen++;
6891 partition_sched_domains(1, NULL, NULL);
6892 break;
6893 default:
6894 return NOTIFY_DONE;
6895 }
6896 return NOTIFY_OK;
6897 }
6898
6899 void __init sched_init_smp(void)
6900 {
6901 cpumask_var_t non_isolated_cpus;
6902
6903 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6904 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6905
6906 sched_init_numa();
6907
6908 get_online_cpus();
6909 mutex_lock(&sched_domains_mutex);
6910 init_sched_domains(cpu_active_mask);
6911 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6912 if (cpumask_empty(non_isolated_cpus))
6913 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6914 mutex_unlock(&sched_domains_mutex);
6915 put_online_cpus();
6916
6917 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6918 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6919 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6920
6921 /* RT runtime code needs to handle some hotplug events */
6922 hotcpu_notifier(update_runtime, 0);
6923
6924 init_hrtick();
6925
6926 /* Move init over to a non-isolated CPU */
6927 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6928 BUG();
6929 sched_init_granularity();
6930 free_cpumask_var(non_isolated_cpus);
6931
6932 init_sched_rt_class();
6933 }
6934 #else
6935 void __init sched_init_smp(void)
6936 {
6937 sched_init_granularity();
6938 }
6939 #endif /* CONFIG_SMP */
6940
6941 const_debug unsigned int sysctl_timer_migration = 1;
6942
6943 int in_sched_functions(unsigned long addr)
6944 {
6945 return in_lock_functions(addr) ||
6946 (addr >= (unsigned long)__sched_text_start
6947 && addr < (unsigned long)__sched_text_end);
6948 }
6949
6950 #ifdef CONFIG_CGROUP_SCHED
6951 /*
6952 * Default task group.
6953 * Every task in system belongs to this group at bootup.
6954 */
6955 struct task_group root_task_group;
6956 LIST_HEAD(task_groups);
6957 #endif
6958
6959 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6960
6961 void __init sched_init(void)
6962 {
6963 int i, j;
6964 unsigned long alloc_size = 0, ptr;
6965
6966 #ifdef CONFIG_FAIR_GROUP_SCHED
6967 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6968 #endif
6969 #ifdef CONFIG_RT_GROUP_SCHED
6970 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6971 #endif
6972 #ifdef CONFIG_CPUMASK_OFFSTACK
6973 alloc_size += num_possible_cpus() * cpumask_size();
6974 #endif
6975 if (alloc_size) {
6976 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6977
6978 #ifdef CONFIG_FAIR_GROUP_SCHED
6979 root_task_group.se = (struct sched_entity **)ptr;
6980 ptr += nr_cpu_ids * sizeof(void **);
6981
6982 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6983 ptr += nr_cpu_ids * sizeof(void **);
6984
6985 #endif /* CONFIG_FAIR_GROUP_SCHED */
6986 #ifdef CONFIG_RT_GROUP_SCHED
6987 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6988 ptr += nr_cpu_ids * sizeof(void **);
6989
6990 root_task_group.rt_rq = (struct rt_rq **)ptr;
6991 ptr += nr_cpu_ids * sizeof(void **);
6992
6993 #endif /* CONFIG_RT_GROUP_SCHED */
6994 #ifdef CONFIG_CPUMASK_OFFSTACK
6995 for_each_possible_cpu(i) {
6996 per_cpu(load_balance_mask, i) = (void *)ptr;
6997 ptr += cpumask_size();
6998 }
6999 #endif /* CONFIG_CPUMASK_OFFSTACK */
7000 }
7001
7002 #ifdef CONFIG_SMP
7003 init_defrootdomain();
7004 #endif
7005
7006 init_rt_bandwidth(&def_rt_bandwidth,
7007 global_rt_period(), global_rt_runtime());
7008
7009 #ifdef CONFIG_RT_GROUP_SCHED
7010 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7011 global_rt_period(), global_rt_runtime());
7012 #endif /* CONFIG_RT_GROUP_SCHED */
7013
7014 #ifdef CONFIG_CGROUP_SCHED
7015 list_add(&root_task_group.list, &task_groups);
7016 INIT_LIST_HEAD(&root_task_group.children);
7017 INIT_LIST_HEAD(&root_task_group.siblings);
7018 autogroup_init(&init_task);
7019
7020 #endif /* CONFIG_CGROUP_SCHED */
7021
7022 for_each_possible_cpu(i) {
7023 struct rq *rq;
7024
7025 rq = cpu_rq(i);
7026 raw_spin_lock_init(&rq->lock);
7027 rq->nr_running = 0;
7028 rq->calc_load_active = 0;
7029 rq->calc_load_update = jiffies + LOAD_FREQ;
7030 init_cfs_rq(&rq->cfs);
7031 init_rt_rq(&rq->rt, rq);
7032 #ifdef CONFIG_FAIR_GROUP_SCHED
7033 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7034 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7035 /*
7036 * How much cpu bandwidth does root_task_group get?
7037 *
7038 * In case of task-groups formed thr' the cgroup filesystem, it
7039 * gets 100% of the cpu resources in the system. This overall
7040 * system cpu resource is divided among the tasks of
7041 * root_task_group and its child task-groups in a fair manner,
7042 * based on each entity's (task or task-group's) weight
7043 * (se->load.weight).
7044 *
7045 * In other words, if root_task_group has 10 tasks of weight
7046 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7047 * then A0's share of the cpu resource is:
7048 *
7049 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7050 *
7051 * We achieve this by letting root_task_group's tasks sit
7052 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7053 */
7054 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7055 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7056 #endif /* CONFIG_FAIR_GROUP_SCHED */
7057
7058 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7059 #ifdef CONFIG_RT_GROUP_SCHED
7060 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7061 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7062 #endif
7063
7064 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7065 rq->cpu_load[j] = 0;
7066
7067 rq->last_load_update_tick = jiffies;
7068
7069 #ifdef CONFIG_SMP
7070 rq->sd = NULL;
7071 rq->rd = NULL;
7072 rq->cpu_power = SCHED_POWER_SCALE;
7073 rq->post_schedule = 0;
7074 rq->active_balance = 0;
7075 rq->next_balance = jiffies;
7076 rq->push_cpu = 0;
7077 rq->cpu = i;
7078 rq->online = 0;
7079 rq->idle_stamp = 0;
7080 rq->avg_idle = 2*sysctl_sched_migration_cost;
7081
7082 INIT_LIST_HEAD(&rq->cfs_tasks);
7083
7084 rq_attach_root(rq, &def_root_domain);
7085 #ifdef CONFIG_NO_HZ_COMMON
7086 rq->nohz_flags = 0;
7087 #endif
7088 #ifdef CONFIG_NO_HZ_FULL
7089 rq->last_sched_tick = 0;
7090 #endif
7091 #endif
7092 init_rq_hrtick(rq);
7093 atomic_set(&rq->nr_iowait, 0);
7094 }
7095
7096 set_load_weight(&init_task);
7097
7098 #ifdef CONFIG_PREEMPT_NOTIFIERS
7099 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7100 #endif
7101
7102 #ifdef CONFIG_RT_MUTEXES
7103 plist_head_init(&init_task.pi_waiters);
7104 #endif
7105
7106 /*
7107 * The boot idle thread does lazy MMU switching as well:
7108 */
7109 atomic_inc(&init_mm.mm_count);
7110 enter_lazy_tlb(&init_mm, current);
7111
7112 /*
7113 * Make us the idle thread. Technically, schedule() should not be
7114 * called from this thread, however somewhere below it might be,
7115 * but because we are the idle thread, we just pick up running again
7116 * when this runqueue becomes "idle".
7117 */
7118 init_idle(current, smp_processor_id());
7119
7120 calc_load_update = jiffies + LOAD_FREQ;
7121
7122 /*
7123 * During early bootup we pretend to be a normal task:
7124 */
7125 current->sched_class = &fair_sched_class;
7126
7127 #ifdef CONFIG_SMP
7128 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7129 /* May be allocated at isolcpus cmdline parse time */
7130 if (cpu_isolated_map == NULL)
7131 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7132 idle_thread_set_boot_cpu();
7133 #endif
7134 init_sched_fair_class();
7135
7136 scheduler_running = 1;
7137 }
7138
7139 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7140 static inline int preempt_count_equals(int preempt_offset)
7141 {
7142 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7143
7144 return (nested == preempt_offset);
7145 }
7146
7147 void __might_sleep(const char *file, int line, int preempt_offset)
7148 {
7149 static unsigned long prev_jiffy; /* ratelimiting */
7150
7151 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7152 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7153 system_state != SYSTEM_RUNNING || oops_in_progress)
7154 return;
7155 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7156 return;
7157 prev_jiffy = jiffies;
7158
7159 printk(KERN_ERR
7160 "BUG: sleeping function called from invalid context at %s:%d\n",
7161 file, line);
7162 printk(KERN_ERR
7163 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7164 in_atomic(), irqs_disabled(),
7165 current->pid, current->comm);
7166
7167 debug_show_held_locks(current);
7168 if (irqs_disabled())
7169 print_irqtrace_events(current);
7170 dump_stack();
7171 }
7172 EXPORT_SYMBOL(__might_sleep);
7173 #endif
7174
7175 #ifdef CONFIG_MAGIC_SYSRQ
7176 static void normalize_task(struct rq *rq, struct task_struct *p)
7177 {
7178 const struct sched_class *prev_class = p->sched_class;
7179 int old_prio = p->prio;
7180 int on_rq;
7181
7182 on_rq = p->on_rq;
7183 if (on_rq)
7184 dequeue_task(rq, p, 0);
7185 __setscheduler(rq, p, SCHED_NORMAL, 0);
7186 if (on_rq) {
7187 enqueue_task(rq, p, 0);
7188 resched_task(rq->curr);
7189 }
7190
7191 check_class_changed(rq, p, prev_class, old_prio);
7192 }
7193
7194 void normalize_rt_tasks(void)
7195 {
7196 struct task_struct *g, *p;
7197 unsigned long flags;
7198 struct rq *rq;
7199
7200 read_lock_irqsave(&tasklist_lock, flags);
7201 do_each_thread(g, p) {
7202 /*
7203 * Only normalize user tasks:
7204 */
7205 if (!p->mm)
7206 continue;
7207
7208 p->se.exec_start = 0;
7209 #ifdef CONFIG_SCHEDSTATS
7210 p->se.statistics.wait_start = 0;
7211 p->se.statistics.sleep_start = 0;
7212 p->se.statistics.block_start = 0;
7213 #endif
7214
7215 if (!rt_task(p)) {
7216 /*
7217 * Renice negative nice level userspace
7218 * tasks back to 0:
7219 */
7220 if (TASK_NICE(p) < 0 && p->mm)
7221 set_user_nice(p, 0);
7222 continue;
7223 }
7224
7225 raw_spin_lock(&p->pi_lock);
7226 rq = __task_rq_lock(p);
7227
7228 normalize_task(rq, p);
7229
7230 __task_rq_unlock(rq);
7231 raw_spin_unlock(&p->pi_lock);
7232 } while_each_thread(g, p);
7233
7234 read_unlock_irqrestore(&tasklist_lock, flags);
7235 }
7236
7237 #endif /* CONFIG_MAGIC_SYSRQ */
7238
7239 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7240 /*
7241 * These functions are only useful for the IA64 MCA handling, or kdb.
7242 *
7243 * They can only be called when the whole system has been
7244 * stopped - every CPU needs to be quiescent, and no scheduling
7245 * activity can take place. Using them for anything else would
7246 * be a serious bug, and as a result, they aren't even visible
7247 * under any other configuration.
7248 */
7249
7250 /**
7251 * curr_task - return the current task for a given cpu.
7252 * @cpu: the processor in question.
7253 *
7254 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7255 */
7256 struct task_struct *curr_task(int cpu)
7257 {
7258 return cpu_curr(cpu);
7259 }
7260
7261 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7262
7263 #ifdef CONFIG_IA64
7264 /**
7265 * set_curr_task - set the current task for a given cpu.
7266 * @cpu: the processor in question.
7267 * @p: the task pointer to set.
7268 *
7269 * Description: This function must only be used when non-maskable interrupts
7270 * are serviced on a separate stack. It allows the architecture to switch the
7271 * notion of the current task on a cpu in a non-blocking manner. This function
7272 * must be called with all CPU's synchronized, and interrupts disabled, the
7273 * and caller must save the original value of the current task (see
7274 * curr_task() above) and restore that value before reenabling interrupts and
7275 * re-starting the system.
7276 *
7277 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7278 */
7279 void set_curr_task(int cpu, struct task_struct *p)
7280 {
7281 cpu_curr(cpu) = p;
7282 }
7283
7284 #endif
7285
7286 #ifdef CONFIG_CGROUP_SCHED
7287 /* task_group_lock serializes the addition/removal of task groups */
7288 static DEFINE_SPINLOCK(task_group_lock);
7289
7290 static void free_sched_group(struct task_group *tg)
7291 {
7292 free_fair_sched_group(tg);
7293 free_rt_sched_group(tg);
7294 autogroup_free(tg);
7295 kfree(tg);
7296 }
7297
7298 /* allocate runqueue etc for a new task group */
7299 struct task_group *sched_create_group(struct task_group *parent)
7300 {
7301 struct task_group *tg;
7302
7303 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7304 if (!tg)
7305 return ERR_PTR(-ENOMEM);
7306
7307 if (!alloc_fair_sched_group(tg, parent))
7308 goto err;
7309
7310 if (!alloc_rt_sched_group(tg, parent))
7311 goto err;
7312
7313 return tg;
7314
7315 err:
7316 free_sched_group(tg);
7317 return ERR_PTR(-ENOMEM);
7318 }
7319
7320 void sched_online_group(struct task_group *tg, struct task_group *parent)
7321 {
7322 unsigned long flags;
7323
7324 spin_lock_irqsave(&task_group_lock, flags);
7325 list_add_rcu(&tg->list, &task_groups);
7326
7327 WARN_ON(!parent); /* root should already exist */
7328
7329 tg->parent = parent;
7330 INIT_LIST_HEAD(&tg->children);
7331 list_add_rcu(&tg->siblings, &parent->children);
7332 spin_unlock_irqrestore(&task_group_lock, flags);
7333 }
7334
7335 /* rcu callback to free various structures associated with a task group */
7336 static void free_sched_group_rcu(struct rcu_head *rhp)
7337 {
7338 /* now it should be safe to free those cfs_rqs */
7339 free_sched_group(container_of(rhp, struct task_group, rcu));
7340 }
7341
7342 /* Destroy runqueue etc associated with a task group */
7343 void sched_destroy_group(struct task_group *tg)
7344 {
7345 /* wait for possible concurrent references to cfs_rqs complete */
7346 call_rcu(&tg->rcu, free_sched_group_rcu);
7347 }
7348
7349 void sched_offline_group(struct task_group *tg)
7350 {
7351 unsigned long flags;
7352 int i;
7353
7354 /* end participation in shares distribution */
7355 for_each_possible_cpu(i)
7356 unregister_fair_sched_group(tg, i);
7357
7358 spin_lock_irqsave(&task_group_lock, flags);
7359 list_del_rcu(&tg->list);
7360 list_del_rcu(&tg->siblings);
7361 spin_unlock_irqrestore(&task_group_lock, flags);
7362 }
7363
7364 /* change task's runqueue when it moves between groups.
7365 * The caller of this function should have put the task in its new group
7366 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7367 * reflect its new group.
7368 */
7369 void sched_move_task(struct task_struct *tsk)
7370 {
7371 struct task_group *tg;
7372 int on_rq, running;
7373 unsigned long flags;
7374 struct rq *rq;
7375
7376 rq = task_rq_lock(tsk, &flags);
7377
7378 running = task_current(rq, tsk);
7379 on_rq = tsk->on_rq;
7380
7381 if (on_rq)
7382 dequeue_task(rq, tsk, 0);
7383 if (unlikely(running))
7384 tsk->sched_class->put_prev_task(rq, tsk);
7385
7386 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7387 lockdep_is_held(&tsk->sighand->siglock)),
7388 struct task_group, css);
7389 tg = autogroup_task_group(tsk, tg);
7390 tsk->sched_task_group = tg;
7391
7392 #ifdef CONFIG_FAIR_GROUP_SCHED
7393 if (tsk->sched_class->task_move_group)
7394 tsk->sched_class->task_move_group(tsk, on_rq);
7395 else
7396 #endif
7397 set_task_rq(tsk, task_cpu(tsk));
7398
7399 if (unlikely(running))
7400 tsk->sched_class->set_curr_task(rq);
7401 if (on_rq)
7402 enqueue_task(rq, tsk, 0);
7403
7404 task_rq_unlock(rq, tsk, &flags);
7405 }
7406 #endif /* CONFIG_CGROUP_SCHED */
7407
7408 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7409 static unsigned long to_ratio(u64 period, u64 runtime)
7410 {
7411 if (runtime == RUNTIME_INF)
7412 return 1ULL << 20;
7413
7414 return div64_u64(runtime << 20, period);
7415 }
7416 #endif
7417
7418 #ifdef CONFIG_RT_GROUP_SCHED
7419 /*
7420 * Ensure that the real time constraints are schedulable.
7421 */
7422 static DEFINE_MUTEX(rt_constraints_mutex);
7423
7424 /* Must be called with tasklist_lock held */
7425 static inline int tg_has_rt_tasks(struct task_group *tg)
7426 {
7427 struct task_struct *g, *p;
7428
7429 do_each_thread(g, p) {
7430 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7431 return 1;
7432 } while_each_thread(g, p);
7433
7434 return 0;
7435 }
7436
7437 struct rt_schedulable_data {
7438 struct task_group *tg;
7439 u64 rt_period;
7440 u64 rt_runtime;
7441 };
7442
7443 static int tg_rt_schedulable(struct task_group *tg, void *data)
7444 {
7445 struct rt_schedulable_data *d = data;
7446 struct task_group *child;
7447 unsigned long total, sum = 0;
7448 u64 period, runtime;
7449
7450 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7451 runtime = tg->rt_bandwidth.rt_runtime;
7452
7453 if (tg == d->tg) {
7454 period = d->rt_period;
7455 runtime = d->rt_runtime;
7456 }
7457
7458 /*
7459 * Cannot have more runtime than the period.
7460 */
7461 if (runtime > period && runtime != RUNTIME_INF)
7462 return -EINVAL;
7463
7464 /*
7465 * Ensure we don't starve existing RT tasks.
7466 */
7467 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7468 return -EBUSY;
7469
7470 total = to_ratio(period, runtime);
7471
7472 /*
7473 * Nobody can have more than the global setting allows.
7474 */
7475 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7476 return -EINVAL;
7477
7478 /*
7479 * The sum of our children's runtime should not exceed our own.
7480 */
7481 list_for_each_entry_rcu(child, &tg->children, siblings) {
7482 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7483 runtime = child->rt_bandwidth.rt_runtime;
7484
7485 if (child == d->tg) {
7486 period = d->rt_period;
7487 runtime = d->rt_runtime;
7488 }
7489
7490 sum += to_ratio(period, runtime);
7491 }
7492
7493 if (sum > total)
7494 return -EINVAL;
7495
7496 return 0;
7497 }
7498
7499 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7500 {
7501 int ret;
7502
7503 struct rt_schedulable_data data = {
7504 .tg = tg,
7505 .rt_period = period,
7506 .rt_runtime = runtime,
7507 };
7508
7509 rcu_read_lock();
7510 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7511 rcu_read_unlock();
7512
7513 return ret;
7514 }
7515
7516 static int tg_set_rt_bandwidth(struct task_group *tg,
7517 u64 rt_period, u64 rt_runtime)
7518 {
7519 int i, err = 0;
7520
7521 mutex_lock(&rt_constraints_mutex);
7522 read_lock(&tasklist_lock);
7523 err = __rt_schedulable(tg, rt_period, rt_runtime);
7524 if (err)
7525 goto unlock;
7526
7527 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7528 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7529 tg->rt_bandwidth.rt_runtime = rt_runtime;
7530
7531 for_each_possible_cpu(i) {
7532 struct rt_rq *rt_rq = tg->rt_rq[i];
7533
7534 raw_spin_lock(&rt_rq->rt_runtime_lock);
7535 rt_rq->rt_runtime = rt_runtime;
7536 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7537 }
7538 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7539 unlock:
7540 read_unlock(&tasklist_lock);
7541 mutex_unlock(&rt_constraints_mutex);
7542
7543 return err;
7544 }
7545
7546 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7547 {
7548 u64 rt_runtime, rt_period;
7549
7550 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7551 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7552 if (rt_runtime_us < 0)
7553 rt_runtime = RUNTIME_INF;
7554
7555 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7556 }
7557
7558 static long sched_group_rt_runtime(struct task_group *tg)
7559 {
7560 u64 rt_runtime_us;
7561
7562 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7563 return -1;
7564
7565 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7566 do_div(rt_runtime_us, NSEC_PER_USEC);
7567 return rt_runtime_us;
7568 }
7569
7570 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7571 {
7572 u64 rt_runtime, rt_period;
7573
7574 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7575 rt_runtime = tg->rt_bandwidth.rt_runtime;
7576
7577 if (rt_period == 0)
7578 return -EINVAL;
7579
7580 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7581 }
7582
7583 static long sched_group_rt_period(struct task_group *tg)
7584 {
7585 u64 rt_period_us;
7586
7587 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7588 do_div(rt_period_us, NSEC_PER_USEC);
7589 return rt_period_us;
7590 }
7591
7592 static int sched_rt_global_constraints(void)
7593 {
7594 u64 runtime, period;
7595 int ret = 0;
7596
7597 if (sysctl_sched_rt_period <= 0)
7598 return -EINVAL;
7599
7600 runtime = global_rt_runtime();
7601 period = global_rt_period();
7602
7603 /*
7604 * Sanity check on the sysctl variables.
7605 */
7606 if (runtime > period && runtime != RUNTIME_INF)
7607 return -EINVAL;
7608
7609 mutex_lock(&rt_constraints_mutex);
7610 read_lock(&tasklist_lock);
7611 ret = __rt_schedulable(NULL, 0, 0);
7612 read_unlock(&tasklist_lock);
7613 mutex_unlock(&rt_constraints_mutex);
7614
7615 return ret;
7616 }
7617
7618 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7619 {
7620 /* Don't accept realtime tasks when there is no way for them to run */
7621 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7622 return 0;
7623
7624 return 1;
7625 }
7626
7627 #else /* !CONFIG_RT_GROUP_SCHED */
7628 static int sched_rt_global_constraints(void)
7629 {
7630 unsigned long flags;
7631 int i;
7632
7633 if (sysctl_sched_rt_period <= 0)
7634 return -EINVAL;
7635
7636 /*
7637 * There's always some RT tasks in the root group
7638 * -- migration, kstopmachine etc..
7639 */
7640 if (sysctl_sched_rt_runtime == 0)
7641 return -EBUSY;
7642
7643 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7644 for_each_possible_cpu(i) {
7645 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7646
7647 raw_spin_lock(&rt_rq->rt_runtime_lock);
7648 rt_rq->rt_runtime = global_rt_runtime();
7649 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7650 }
7651 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7652
7653 return 0;
7654 }
7655 #endif /* CONFIG_RT_GROUP_SCHED */
7656
7657 int sched_rr_handler(struct ctl_table *table, int write,
7658 void __user *buffer, size_t *lenp,
7659 loff_t *ppos)
7660 {
7661 int ret;
7662 static DEFINE_MUTEX(mutex);
7663
7664 mutex_lock(&mutex);
7665 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7666 /* make sure that internally we keep jiffies */
7667 /* also, writing zero resets timeslice to default */
7668 if (!ret && write) {
7669 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7670 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7671 }
7672 mutex_unlock(&mutex);
7673 return ret;
7674 }
7675
7676 int sched_rt_handler(struct ctl_table *table, int write,
7677 void __user *buffer, size_t *lenp,
7678 loff_t *ppos)
7679 {
7680 int ret;
7681 int old_period, old_runtime;
7682 static DEFINE_MUTEX(mutex);
7683
7684 mutex_lock(&mutex);
7685 old_period = sysctl_sched_rt_period;
7686 old_runtime = sysctl_sched_rt_runtime;
7687
7688 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7689
7690 if (!ret && write) {
7691 ret = sched_rt_global_constraints();
7692 if (ret) {
7693 sysctl_sched_rt_period = old_period;
7694 sysctl_sched_rt_runtime = old_runtime;
7695 } else {
7696 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7697 def_rt_bandwidth.rt_period =
7698 ns_to_ktime(global_rt_period());
7699 }
7700 }
7701 mutex_unlock(&mutex);
7702
7703 return ret;
7704 }
7705
7706 #ifdef CONFIG_CGROUP_SCHED
7707
7708 /* return corresponding task_group object of a cgroup */
7709 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7710 {
7711 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7712 struct task_group, css);
7713 }
7714
7715 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7716 {
7717 struct task_group *tg, *parent;
7718
7719 if (!cgrp->parent) {
7720 /* This is early initialization for the top cgroup */
7721 return &root_task_group.css;
7722 }
7723
7724 parent = cgroup_tg(cgrp->parent);
7725 tg = sched_create_group(parent);
7726 if (IS_ERR(tg))
7727 return ERR_PTR(-ENOMEM);
7728
7729 return &tg->css;
7730 }
7731
7732 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7733 {
7734 struct task_group *tg = cgroup_tg(cgrp);
7735 struct task_group *parent;
7736
7737 if (!cgrp->parent)
7738 return 0;
7739
7740 parent = cgroup_tg(cgrp->parent);
7741 sched_online_group(tg, parent);
7742 return 0;
7743 }
7744
7745 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7746 {
7747 struct task_group *tg = cgroup_tg(cgrp);
7748
7749 sched_destroy_group(tg);
7750 }
7751
7752 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7753 {
7754 struct task_group *tg = cgroup_tg(cgrp);
7755
7756 sched_offline_group(tg);
7757 }
7758
7759 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7760 struct cgroup_taskset *tset)
7761 {
7762 struct task_struct *task;
7763
7764 cgroup_taskset_for_each(task, cgrp, tset) {
7765 #ifdef CONFIG_RT_GROUP_SCHED
7766 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7767 return -EINVAL;
7768 #else
7769 /* We don't support RT-tasks being in separate groups */
7770 if (task->sched_class != &fair_sched_class)
7771 return -EINVAL;
7772 #endif
7773 }
7774 return 0;
7775 }
7776
7777 static void cpu_cgroup_attach(struct cgroup *cgrp,
7778 struct cgroup_taskset *tset)
7779 {
7780 struct task_struct *task;
7781
7782 cgroup_taskset_for_each(task, cgrp, tset)
7783 sched_move_task(task);
7784 }
7785
7786 static void
7787 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7788 struct task_struct *task)
7789 {
7790 /*
7791 * cgroup_exit() is called in the copy_process() failure path.
7792 * Ignore this case since the task hasn't ran yet, this avoids
7793 * trying to poke a half freed task state from generic code.
7794 */
7795 if (!(task->flags & PF_EXITING))
7796 return;
7797
7798 sched_move_task(task);
7799 }
7800
7801 #ifdef CONFIG_FAIR_GROUP_SCHED
7802 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7803 u64 shareval)
7804 {
7805 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7806 }
7807
7808 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7809 {
7810 struct task_group *tg = cgroup_tg(cgrp);
7811
7812 return (u64) scale_load_down(tg->shares);
7813 }
7814
7815 #ifdef CONFIG_CFS_BANDWIDTH
7816 static DEFINE_MUTEX(cfs_constraints_mutex);
7817
7818 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7819 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7820
7821 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7822
7823 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7824 {
7825 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7826 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7827
7828 if (tg == &root_task_group)
7829 return -EINVAL;
7830
7831 /*
7832 * Ensure we have at some amount of bandwidth every period. This is
7833 * to prevent reaching a state of large arrears when throttled via
7834 * entity_tick() resulting in prolonged exit starvation.
7835 */
7836 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7837 return -EINVAL;
7838
7839 /*
7840 * Likewise, bound things on the otherside by preventing insane quota
7841 * periods. This also allows us to normalize in computing quota
7842 * feasibility.
7843 */
7844 if (period > max_cfs_quota_period)
7845 return -EINVAL;
7846
7847 mutex_lock(&cfs_constraints_mutex);
7848 ret = __cfs_schedulable(tg, period, quota);
7849 if (ret)
7850 goto out_unlock;
7851
7852 runtime_enabled = quota != RUNTIME_INF;
7853 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7854 /*
7855 * If we need to toggle cfs_bandwidth_used, off->on must occur
7856 * before making related changes, and on->off must occur afterwards
7857 */
7858 if (runtime_enabled && !runtime_was_enabled)
7859 cfs_bandwidth_usage_inc();
7860 raw_spin_lock_irq(&cfs_b->lock);
7861 cfs_b->period = ns_to_ktime(period);
7862 cfs_b->quota = quota;
7863
7864 __refill_cfs_bandwidth_runtime(cfs_b);
7865 /* restart the period timer (if active) to handle new period expiry */
7866 if (runtime_enabled && cfs_b->timer_active) {
7867 /* force a reprogram */
7868 cfs_b->timer_active = 0;
7869 __start_cfs_bandwidth(cfs_b);
7870 }
7871 raw_spin_unlock_irq(&cfs_b->lock);
7872
7873 for_each_possible_cpu(i) {
7874 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7875 struct rq *rq = cfs_rq->rq;
7876
7877 raw_spin_lock_irq(&rq->lock);
7878 cfs_rq->runtime_enabled = runtime_enabled;
7879 cfs_rq->runtime_remaining = 0;
7880
7881 if (cfs_rq->throttled)
7882 unthrottle_cfs_rq(cfs_rq);
7883 raw_spin_unlock_irq(&rq->lock);
7884 }
7885 if (runtime_was_enabled && !runtime_enabled)
7886 cfs_bandwidth_usage_dec();
7887 out_unlock:
7888 mutex_unlock(&cfs_constraints_mutex);
7889
7890 return ret;
7891 }
7892
7893 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7894 {
7895 u64 quota, period;
7896
7897 period = ktime_to_ns(tg->cfs_bandwidth.period);
7898 if (cfs_quota_us < 0)
7899 quota = RUNTIME_INF;
7900 else
7901 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7902
7903 return tg_set_cfs_bandwidth(tg, period, quota);
7904 }
7905
7906 long tg_get_cfs_quota(struct task_group *tg)
7907 {
7908 u64 quota_us;
7909
7910 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7911 return -1;
7912
7913 quota_us = tg->cfs_bandwidth.quota;
7914 do_div(quota_us, NSEC_PER_USEC);
7915
7916 return quota_us;
7917 }
7918
7919 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7920 {
7921 u64 quota, period;
7922
7923 period = (u64)cfs_period_us * NSEC_PER_USEC;
7924 quota = tg->cfs_bandwidth.quota;
7925
7926 return tg_set_cfs_bandwidth(tg, period, quota);
7927 }
7928
7929 long tg_get_cfs_period(struct task_group *tg)
7930 {
7931 u64 cfs_period_us;
7932
7933 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7934 do_div(cfs_period_us, NSEC_PER_USEC);
7935
7936 return cfs_period_us;
7937 }
7938
7939 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7940 {
7941 return tg_get_cfs_quota(cgroup_tg(cgrp));
7942 }
7943
7944 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7945 s64 cfs_quota_us)
7946 {
7947 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7948 }
7949
7950 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7951 {
7952 return tg_get_cfs_period(cgroup_tg(cgrp));
7953 }
7954
7955 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7956 u64 cfs_period_us)
7957 {
7958 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7959 }
7960
7961 struct cfs_schedulable_data {
7962 struct task_group *tg;
7963 u64 period, quota;
7964 };
7965
7966 /*
7967 * normalize group quota/period to be quota/max_period
7968 * note: units are usecs
7969 */
7970 static u64 normalize_cfs_quota(struct task_group *tg,
7971 struct cfs_schedulable_data *d)
7972 {
7973 u64 quota, period;
7974
7975 if (tg == d->tg) {
7976 period = d->period;
7977 quota = d->quota;
7978 } else {
7979 period = tg_get_cfs_period(tg);
7980 quota = tg_get_cfs_quota(tg);
7981 }
7982
7983 /* note: these should typically be equivalent */
7984 if (quota == RUNTIME_INF || quota == -1)
7985 return RUNTIME_INF;
7986
7987 return to_ratio(period, quota);
7988 }
7989
7990 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7991 {
7992 struct cfs_schedulable_data *d = data;
7993 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7994 s64 quota = 0, parent_quota = -1;
7995
7996 if (!tg->parent) {
7997 quota = RUNTIME_INF;
7998 } else {
7999 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8000
8001 quota = normalize_cfs_quota(tg, d);
8002 parent_quota = parent_b->hierarchal_quota;
8003
8004 /*
8005 * ensure max(child_quota) <= parent_quota, inherit when no
8006 * limit is set
8007 */
8008 if (quota == RUNTIME_INF)
8009 quota = parent_quota;
8010 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8011 return -EINVAL;
8012 }
8013 cfs_b->hierarchal_quota = quota;
8014
8015 return 0;
8016 }
8017
8018 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8019 {
8020 int ret;
8021 struct cfs_schedulable_data data = {
8022 .tg = tg,
8023 .period = period,
8024 .quota = quota,
8025 };
8026
8027 if (quota != RUNTIME_INF) {
8028 do_div(data.period, NSEC_PER_USEC);
8029 do_div(data.quota, NSEC_PER_USEC);
8030 }
8031
8032 rcu_read_lock();
8033 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8034 rcu_read_unlock();
8035
8036 return ret;
8037 }
8038
8039 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8040 struct cgroup_map_cb *cb)
8041 {
8042 struct task_group *tg = cgroup_tg(cgrp);
8043 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8044
8045 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8046 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8047 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8048
8049 return 0;
8050 }
8051 #endif /* CONFIG_CFS_BANDWIDTH */
8052 #endif /* CONFIG_FAIR_GROUP_SCHED */
8053
8054 #ifdef CONFIG_RT_GROUP_SCHED
8055 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8056 s64 val)
8057 {
8058 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8059 }
8060
8061 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8062 {
8063 return sched_group_rt_runtime(cgroup_tg(cgrp));
8064 }
8065
8066 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8067 u64 rt_period_us)
8068 {
8069 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8070 }
8071
8072 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8073 {
8074 return sched_group_rt_period(cgroup_tg(cgrp));
8075 }
8076 #endif /* CONFIG_RT_GROUP_SCHED */
8077
8078 static struct cftype cpu_files[] = {
8079 #ifdef CONFIG_FAIR_GROUP_SCHED
8080 {
8081 .name = "shares",
8082 .read_u64 = cpu_shares_read_u64,
8083 .write_u64 = cpu_shares_write_u64,
8084 },
8085 #endif
8086 #ifdef CONFIG_CFS_BANDWIDTH
8087 {
8088 .name = "cfs_quota_us",
8089 .read_s64 = cpu_cfs_quota_read_s64,
8090 .write_s64 = cpu_cfs_quota_write_s64,
8091 },
8092 {
8093 .name = "cfs_period_us",
8094 .read_u64 = cpu_cfs_period_read_u64,
8095 .write_u64 = cpu_cfs_period_write_u64,
8096 },
8097 {
8098 .name = "stat",
8099 .read_map = cpu_stats_show,
8100 },
8101 #endif
8102 #ifdef CONFIG_RT_GROUP_SCHED
8103 {
8104 .name = "rt_runtime_us",
8105 .read_s64 = cpu_rt_runtime_read,
8106 .write_s64 = cpu_rt_runtime_write,
8107 },
8108 {
8109 .name = "rt_period_us",
8110 .read_u64 = cpu_rt_period_read_uint,
8111 .write_u64 = cpu_rt_period_write_uint,
8112 },
8113 #endif
8114 { } /* terminate */
8115 };
8116
8117 struct cgroup_subsys cpu_cgroup_subsys = {
8118 .name = "cpu",
8119 .css_alloc = cpu_cgroup_css_alloc,
8120 .css_free = cpu_cgroup_css_free,
8121 .css_online = cpu_cgroup_css_online,
8122 .css_offline = cpu_cgroup_css_offline,
8123 .can_attach = cpu_cgroup_can_attach,
8124 .attach = cpu_cgroup_attach,
8125 .exit = cpu_cgroup_exit,
8126 .subsys_id = cpu_cgroup_subsys_id,
8127 .base_cftypes = cpu_files,
8128 .early_init = 1,
8129 };
8130
8131 #endif /* CONFIG_CGROUP_SCHED */
8132
8133 void dump_cpu_task(int cpu)
8134 {
8135 pr_info("Task dump for CPU %d:\n", cpu);
8136 sched_show_task(cpu_curr(cpu));
8137 }