Merge branch 'for-3.10' of git://linux-nfs.org/~bfields/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / clock.c
1 /*
2 * sched_clock for unstable cpu clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5 *
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
13 *
14 * What:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI)
30 * local_clock() -- is cpu_clock() on the current cpu.
31 *
32 * How:
33 *
34 * The implementation either uses sched_clock() when
35 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
36 * sched_clock() is assumed to provide these properties (mostly it means
37 * the architecture provides a globally synchronized highres time source).
38 *
39 * Otherwise it tries to create a semi stable clock from a mixture of other
40 * clocks, including:
41 *
42 * - GTOD (clock monotomic)
43 * - sched_clock()
44 * - explicit idle events
45 *
46 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
47 * deltas are filtered to provide monotonicity and keeping it within an
48 * expected window.
49 *
50 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
51 * that is otherwise invisible (TSC gets stopped).
52 *
53 *
54 * Notes:
55 *
56 * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things
57 * like cpufreq interrupts that can change the base clock (TSC) multiplier
58 * and cause funny jumps in time -- although the filtering provided by
59 * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it
60 * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on
61 * sched_clock().
62 */
63 #include <linux/spinlock.h>
64 #include <linux/hardirq.h>
65 #include <linux/export.h>
66 #include <linux/percpu.h>
67 #include <linux/ktime.h>
68 #include <linux/sched.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
78 * (NSEC_PER_SEC / HZ);
79 }
80 EXPORT_SYMBOL_GPL(sched_clock);
81
82 __read_mostly int sched_clock_running;
83
84 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
85 __read_mostly int sched_clock_stable;
86
87 struct sched_clock_data {
88 u64 tick_raw;
89 u64 tick_gtod;
90 u64 clock;
91 };
92
93 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
94
95 static inline struct sched_clock_data *this_scd(void)
96 {
97 return &__get_cpu_var(sched_clock_data);
98 }
99
100 static inline struct sched_clock_data *cpu_sdc(int cpu)
101 {
102 return &per_cpu(sched_clock_data, cpu);
103 }
104
105 void sched_clock_init(void)
106 {
107 u64 ktime_now = ktime_to_ns(ktime_get());
108 int cpu;
109
110 for_each_possible_cpu(cpu) {
111 struct sched_clock_data *scd = cpu_sdc(cpu);
112
113 scd->tick_raw = 0;
114 scd->tick_gtod = ktime_now;
115 scd->clock = ktime_now;
116 }
117
118 sched_clock_running = 1;
119 }
120
121 /*
122 * min, max except they take wrapping into account
123 */
124
125 static inline u64 wrap_min(u64 x, u64 y)
126 {
127 return (s64)(x - y) < 0 ? x : y;
128 }
129
130 static inline u64 wrap_max(u64 x, u64 y)
131 {
132 return (s64)(x - y) > 0 ? x : y;
133 }
134
135 /*
136 * update the percpu scd from the raw @now value
137 *
138 * - filter out backward motion
139 * - use the GTOD tick value to create a window to filter crazy TSC values
140 */
141 static u64 sched_clock_local(struct sched_clock_data *scd)
142 {
143 u64 now, clock, old_clock, min_clock, max_clock;
144 s64 delta;
145
146 again:
147 now = sched_clock();
148 delta = now - scd->tick_raw;
149 if (unlikely(delta < 0))
150 delta = 0;
151
152 old_clock = scd->clock;
153
154 /*
155 * scd->clock = clamp(scd->tick_gtod + delta,
156 * max(scd->tick_gtod, scd->clock),
157 * scd->tick_gtod + TICK_NSEC);
158 */
159
160 clock = scd->tick_gtod + delta;
161 min_clock = wrap_max(scd->tick_gtod, old_clock);
162 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
163
164 clock = wrap_max(clock, min_clock);
165 clock = wrap_min(clock, max_clock);
166
167 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
168 goto again;
169
170 return clock;
171 }
172
173 static u64 sched_clock_remote(struct sched_clock_data *scd)
174 {
175 struct sched_clock_data *my_scd = this_scd();
176 u64 this_clock, remote_clock;
177 u64 *ptr, old_val, val;
178
179 #if BITS_PER_LONG != 64
180 again:
181 /*
182 * Careful here: The local and the remote clock values need to
183 * be read out atomic as we need to compare the values and
184 * then update either the local or the remote side. So the
185 * cmpxchg64 below only protects one readout.
186 *
187 * We must reread via sched_clock_local() in the retry case on
188 * 32bit as an NMI could use sched_clock_local() via the
189 * tracer and hit between the readout of
190 * the low32bit and the high 32bit portion.
191 */
192 this_clock = sched_clock_local(my_scd);
193 /*
194 * We must enforce atomic readout on 32bit, otherwise the
195 * update on the remote cpu can hit inbetween the readout of
196 * the low32bit and the high 32bit portion.
197 */
198 remote_clock = cmpxchg64(&scd->clock, 0, 0);
199 #else
200 /*
201 * On 64bit the read of [my]scd->clock is atomic versus the
202 * update, so we can avoid the above 32bit dance.
203 */
204 sched_clock_local(my_scd);
205 again:
206 this_clock = my_scd->clock;
207 remote_clock = scd->clock;
208 #endif
209
210 /*
211 * Use the opportunity that we have both locks
212 * taken to couple the two clocks: we take the
213 * larger time as the latest time for both
214 * runqueues. (this creates monotonic movement)
215 */
216 if (likely((s64)(remote_clock - this_clock) < 0)) {
217 ptr = &scd->clock;
218 old_val = remote_clock;
219 val = this_clock;
220 } else {
221 /*
222 * Should be rare, but possible:
223 */
224 ptr = &my_scd->clock;
225 old_val = this_clock;
226 val = remote_clock;
227 }
228
229 if (cmpxchg64(ptr, old_val, val) != old_val)
230 goto again;
231
232 return val;
233 }
234
235 /*
236 * Similar to cpu_clock(), but requires local IRQs to be disabled.
237 *
238 * See cpu_clock().
239 */
240 u64 sched_clock_cpu(int cpu)
241 {
242 struct sched_clock_data *scd;
243 u64 clock;
244
245 WARN_ON_ONCE(!irqs_disabled());
246
247 if (sched_clock_stable)
248 return sched_clock();
249
250 if (unlikely(!sched_clock_running))
251 return 0ull;
252
253 scd = cpu_sdc(cpu);
254
255 if (cpu != smp_processor_id())
256 clock = sched_clock_remote(scd);
257 else
258 clock = sched_clock_local(scd);
259
260 return clock;
261 }
262
263 void sched_clock_tick(void)
264 {
265 struct sched_clock_data *scd;
266 u64 now, now_gtod;
267
268 if (sched_clock_stable)
269 return;
270
271 if (unlikely(!sched_clock_running))
272 return;
273
274 WARN_ON_ONCE(!irqs_disabled());
275
276 scd = this_scd();
277 now_gtod = ktime_to_ns(ktime_get());
278 now = sched_clock();
279
280 scd->tick_raw = now;
281 scd->tick_gtod = now_gtod;
282 sched_clock_local(scd);
283 }
284
285 /*
286 * We are going deep-idle (irqs are disabled):
287 */
288 void sched_clock_idle_sleep_event(void)
289 {
290 sched_clock_cpu(smp_processor_id());
291 }
292 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
293
294 /*
295 * We just idled delta nanoseconds (called with irqs disabled):
296 */
297 void sched_clock_idle_wakeup_event(u64 delta_ns)
298 {
299 if (timekeeping_suspended)
300 return;
301
302 sched_clock_tick();
303 touch_softlockup_watchdog();
304 }
305 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
306
307 /*
308 * As outlined at the top, provides a fast, high resolution, nanosecond
309 * time source that is monotonic per cpu argument and has bounded drift
310 * between cpus.
311 *
312 * ######################### BIG FAT WARNING ##########################
313 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
314 * # go backwards !! #
315 * ####################################################################
316 */
317 u64 cpu_clock(int cpu)
318 {
319 u64 clock;
320 unsigned long flags;
321
322 local_irq_save(flags);
323 clock = sched_clock_cpu(cpu);
324 local_irq_restore(flags);
325
326 return clock;
327 }
328
329 /*
330 * Similar to cpu_clock() for the current cpu. Time will only be observed
331 * to be monotonic if care is taken to only compare timestampt taken on the
332 * same CPU.
333 *
334 * See cpu_clock().
335 */
336 u64 local_clock(void)
337 {
338 u64 clock;
339 unsigned long flags;
340
341 local_irq_save(flags);
342 clock = sched_clock_cpu(smp_processor_id());
343 local_irq_restore(flags);
344
345 return clock;
346 }
347
348 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
349
350 void sched_clock_init(void)
351 {
352 sched_clock_running = 1;
353 }
354
355 u64 sched_clock_cpu(int cpu)
356 {
357 if (unlikely(!sched_clock_running))
358 return 0;
359
360 return sched_clock();
361 }
362
363 u64 cpu_clock(int cpu)
364 {
365 return sched_clock_cpu(cpu);
366 }
367
368 u64 local_clock(void)
369 {
370 return sched_clock_cpu(0);
371 }
372
373 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
374
375 EXPORT_SYMBOL_GPL(cpu_clock);
376 EXPORT_SYMBOL_GPL(local_clock);