trace: annotate bitfields in struct ring_buffer_event
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 #ifdef CONFIG_SMP
124
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
127 /*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 {
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 }
135
136 /*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 {
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 }
145 #endif
146
147 static inline int rt_policy(int policy)
148 {
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
152 }
153
154 static inline int task_has_rt_policy(struct task_struct *p)
155 {
156 return rt_policy(p->policy);
157 }
158
159 /*
160 * This is the priority-queue data structure of the RT scheduling class:
161 */
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165 };
166
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
173 };
174
175 static struct rt_bandwidth def_rt_bandwidth;
176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 {
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 }
199
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 {
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 }
212
213 static inline int rt_bandwidth_enabled(void)
214 {
215 return sysctl_sched_rt_runtime >= 0;
216 }
217
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219 {
220 ktime_t now;
221
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
232
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS, 0);
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246 }
247
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250 {
251 hrtimer_cancel(&rt_b->rt_period_timer);
252 }
253 #endif
254
255 /*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259 static DEFINE_MUTEX(sched_domains_mutex);
260
261 #ifdef CONFIG_GROUP_SCHED
262
263 #include <linux/cgroup.h>
264
265 struct cfs_rq;
266
267 static LIST_HEAD(task_groups);
268
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
274
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
286
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
291 struct rt_bandwidth rt_bandwidth;
292 #endif
293
294 struct rcu_head rcu;
295 struct list_head list;
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
300 };
301
302 #ifdef CONFIG_USER_SCHED
303
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
306 {
307 user->tg->uid = user->uid;
308 }
309
310 /*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315 struct task_group root_task_group;
316
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
323
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
331
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
334 */
335 static DEFINE_SPINLOCK(task_group_lock);
336
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
339 {
340 return list_empty(&root_task_group.children);
341 }
342 #endif
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
350
351 /*
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
361
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
364
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
367 */
368 struct task_group init_task_group;
369
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
372 {
373 struct task_group *tg;
374
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
386 }
387
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
390 {
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
395
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
400 }
401
402 #else
403
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
406 {
407 return 1;
408 }
409 #endif
410
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
413 {
414 return NULL;
415 }
416
417 #endif /* CONFIG_GROUP_SCHED */
418
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
424 u64 exec_clock;
425 u64 min_vruntime;
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
437 struct sched_entity *curr, *next, *last;
438
439 unsigned int nr_spread_over;
440
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
454
455 #ifdef CONFIG_SMP
456 /*
457 * the part of load.weight contributed by tasks
458 */
459 unsigned long task_weight;
460
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
468
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
478 #endif
479 #endif
480 };
481
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 int overloaded;
497 struct plist_head pushable_tasks;
498 #endif
499 int rt_throttled;
500 u64 rt_time;
501 u64 rt_runtime;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock;
504
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted;
507
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512 #endif
513 };
514
515 #ifdef CONFIG_SMP
516
517 /*
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
524 */
525 struct root_domain {
526 atomic_t refcount;
527 cpumask_var_t span;
528 cpumask_var_t online;
529
530 /*
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
534 cpumask_var_t rto_mask;
535 atomic_t rto_count;
536 #ifdef CONFIG_SMP
537 struct cpupri cpupri;
538 #endif
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546 #endif
547 };
548
549 /*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
553 static struct root_domain def_root_domain;
554
555 #endif
556
557 /*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
564 struct rq {
565 /* runqueue lock: */
566 spinlock_t lock;
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575 #ifdef CONFIG_NO_HZ
576 unsigned long last_tick_seen;
577 unsigned char in_nohz_recently;
578 #endif
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583 u64 nr_migrations_in;
584
585 struct cfs_rq cfs;
586 struct rt_rq rt;
587
588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
591 #endif
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list;
594 #endif
595
596 /*
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
601 */
602 unsigned long nr_uninterruptible;
603
604 struct task_struct *curr, *idle;
605 unsigned long next_balance;
606 struct mm_struct *prev_mm;
607
608 u64 clock;
609
610 atomic_t nr_iowait;
611
612 #ifdef CONFIG_SMP
613 struct root_domain *rd;
614 struct sched_domain *sd;
615
616 unsigned char idle_at_tick;
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
620 /* cpu of this runqueue: */
621 int cpu;
622 int online;
623
624 unsigned long avg_load_per_task;
625
626 struct task_struct *migration_thread;
627 struct list_head migration_queue;
628 #endif
629
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
633
634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638 #endif
639 struct hrtimer hrtick_timer;
640 #endif
641
642 #ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647
648 /* sys_sched_yield() stats */
649 unsigned int yld_count;
650
651 /* schedule() stats */
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
655
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
659
660 /* BKL stats */
661 unsigned int bkl_count;
662 #endif
663 };
664
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 {
669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
670 }
671
672 static inline int cpu_of(struct rq *rq)
673 {
674 #ifdef CONFIG_SMP
675 return rq->cpu;
676 #else
677 return 0;
678 #endif
679 }
680
681 /*
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
684 *
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
687 */
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695
696 inline void update_rq_clock(struct rq *rq)
697 {
698 rq->clock = sched_clock_cpu(cpu_of(rq));
699 }
700
701 /*
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 */
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
706 #else
707 # define const_debug static const
708 #endif
709
710 /**
711 * runqueue_is_locked
712 *
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
716 */
717 int runqueue_is_locked(void)
718 {
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
722
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
726 }
727
728 /*
729 * Debugging: various feature bits
730 */
731
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
735 enum {
736 #include "sched_features.h"
737 };
738
739 #undef SCHED_FEAT
740
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
743
744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h"
746 0;
747
748 #undef SCHED_FEAT
749
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
752 #name ,
753
754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h"
756 NULL
757 };
758
759 #undef SCHED_FEAT
760
761 static int sched_feat_show(struct seq_file *m, void *v)
762 {
763 int i;
764
765 for (i = 0; sched_feat_names[i]; i++) {
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
769 }
770 seq_puts(m, "\n");
771
772 return 0;
773 }
774
775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
778 {
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
783
784 if (cnt > 63)
785 cnt = 63;
786
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
789
790 buf[cnt] = 0;
791
792 if (strncmp(buf, "NO_", 3) == 0) {
793 neg = 1;
794 cmp += 3;
795 }
796
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
799
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
806 }
807 }
808
809 if (!sched_feat_names[i])
810 return -EINVAL;
811
812 filp->f_pos += cnt;
813
814 return cnt;
815 }
816
817 static int sched_feat_open(struct inode *inode, struct file *filp)
818 {
819 return single_open(filp, sched_feat_show, NULL);
820 }
821
822 static struct file_operations sched_feat_fops = {
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
828 };
829
830 static __init int sched_init_debug(void)
831 {
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
834
835 return 0;
836 }
837 late_initcall(sched_init_debug);
838
839 #endif
840
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
842
843 /*
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
846 */
847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
848
849 /*
850 * ratelimit for updating the group shares.
851 * default: 0.25ms
852 */
853 unsigned int sysctl_sched_shares_ratelimit = 250000;
854
855 /*
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
859 */
860 unsigned int sysctl_sched_shares_thresh = 4;
861
862 /*
863 * period over which we measure -rt task cpu usage in us.
864 * default: 1s
865 */
866 unsigned int sysctl_sched_rt_period = 1000000;
867
868 static __read_mostly int scheduler_running;
869
870 /*
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
873 */
874 int sysctl_sched_rt_runtime = 950000;
875
876 static inline u64 global_rt_period(void)
877 {
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879 }
880
881 static inline u64 global_rt_runtime(void)
882 {
883 if (sysctl_sched_rt_runtime < 0)
884 return RUNTIME_INF;
885
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887 }
888
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
891 #endif
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
894 #endif
895
896 static inline int task_current(struct rq *rq, struct task_struct *p)
897 {
898 return rq->curr == p;
899 }
900
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904 return task_current(rq, p);
905 }
906
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 {
909 }
910
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 {
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916 #endif
917 /*
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
921 */
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923
924 spin_unlock_irq(&rq->lock);
925 }
926
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p)
929 {
930 #ifdef CONFIG_SMP
931 return p->oncpu;
932 #else
933 return task_current(rq, p);
934 #endif
935 }
936
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 {
939 #ifdef CONFIG_SMP
940 /*
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
944 */
945 next->oncpu = 1;
946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949 #else
950 spin_unlock(&rq->lock);
951 #endif
952 }
953
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 {
956 #ifdef CONFIG_SMP
957 /*
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
961 */
962 smp_wmb();
963 prev->oncpu = 0;
964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
967 #endif
968 }
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
970
971 /*
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
974 */
975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976 __acquires(rq->lock)
977 {
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
983 spin_unlock(&rq->lock);
984 }
985 }
986
987 /*
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
991 */
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993 __acquires(rq->lock)
994 {
995 struct rq *rq;
996
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1003 spin_unlock_irqrestore(&rq->lock, *flags);
1004 }
1005 }
1006
1007 void task_rq_unlock_wait(struct task_struct *p)
1008 {
1009 struct rq *rq = task_rq(p);
1010
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1013 }
1014
1015 static void __task_rq_unlock(struct rq *rq)
1016 __releases(rq->lock)
1017 {
1018 spin_unlock(&rq->lock);
1019 }
1020
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022 __releases(rq->lock)
1023 {
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1025 }
1026
1027 /*
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1029 */
1030 static struct rq *this_rq_lock(void)
1031 __acquires(rq->lock)
1032 {
1033 struct rq *rq;
1034
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1038
1039 return rq;
1040 }
1041
1042 #ifdef CONFIG_SCHED_HRTICK
1043 /*
1044 * Use HR-timers to deliver accurate preemption points.
1045 *
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1049 *
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1052 */
1053
1054 /*
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1058 */
1059 static inline int hrtick_enabled(struct rq *rq)
1060 {
1061 if (!sched_feat(HRTICK))
1062 return 0;
1063 if (!cpu_active(cpu_of(rq)))
1064 return 0;
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1066 }
1067
1068 static void hrtick_clear(struct rq *rq)
1069 {
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1072 }
1073
1074 /*
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1077 */
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 {
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock(&rq->lock);
1085 update_rq_clock(rq);
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1088
1089 return HRTIMER_NORESTART;
1090 }
1091
1092 #ifdef CONFIG_SMP
1093 /*
1094 * called from hardirq (IPI) context
1095 */
1096 static void __hrtick_start(void *arg)
1097 {
1098 struct rq *rq = arg;
1099
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
1104 }
1105
1106 /*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111 static void hrtick_start(struct rq *rq, u64 delay)
1112 {
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115
1116 hrtimer_set_expires(timer, time);
1117
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 rq->hrtick_csd_pending = 1;
1123 }
1124 }
1125
1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 {
1129 int cpu = (int)(long)hcpu;
1130
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
1138 hrtick_clear(cpu_rq(cpu));
1139 return NOTIFY_OK;
1140 }
1141
1142 return NOTIFY_DONE;
1143 }
1144
1145 static __init void init_hrtick(void)
1146 {
1147 hotcpu_notifier(hotplug_hrtick, 0);
1148 }
1149 #else
1150 /*
1151 * Called to set the hrtick timer state.
1152 *
1153 * called with rq->lock held and irqs disabled
1154 */
1155 static void hrtick_start(struct rq *rq, u64 delay)
1156 {
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL, 0);
1159 }
1160
1161 static inline void init_hrtick(void)
1162 {
1163 }
1164 #endif /* CONFIG_SMP */
1165
1166 static void init_rq_hrtick(struct rq *rq)
1167 {
1168 #ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
1170
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174 #endif
1175
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
1178 }
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq)
1181 {
1182 }
1183
1184 static inline void init_rq_hrtick(struct rq *rq)
1185 {
1186 }
1187
1188 static inline void init_hrtick(void)
1189 {
1190 }
1191 #endif /* CONFIG_SCHED_HRTICK */
1192
1193 /*
1194 * resched_task - mark a task 'to be rescheduled now'.
1195 *
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1199 */
1200 #ifdef CONFIG_SMP
1201
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif
1205
1206 static void resched_task(struct task_struct *p)
1207 {
1208 int cpu;
1209
1210 assert_spin_locked(&task_rq(p)->lock);
1211
1212 if (test_tsk_need_resched(p))
1213 return;
1214
1215 set_tsk_need_resched(p);
1216
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1225 }
1226
1227 static void resched_cpu(int cpu)
1228 {
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1231
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1236 }
1237
1238 #ifdef CONFIG_NO_HZ
1239 /*
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1248 */
1249 void wake_up_idle_cpu(int cpu)
1250 {
1251 struct rq *rq = cpu_rq(cpu);
1252
1253 if (cpu == smp_processor_id())
1254 return;
1255
1256 /*
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1262 */
1263 if (rq->curr != rq->idle)
1264 return;
1265
1266 /*
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1270 */
1271 set_tsk_need_resched(rq->idle);
1272
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1277 }
1278 #endif /* CONFIG_NO_HZ */
1279
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p)
1282 {
1283 assert_spin_locked(&task_rq(p)->lock);
1284 set_tsk_need_resched(p);
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 /*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1354
1355 /*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1366 */
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1376 };
1377
1378 /*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 };
1395
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398 /*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407 };
1408
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1421
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428 };
1429
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1439
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442 update_load_add(&rq->load, load);
1443 }
1444
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 {
1447 update_load_sub(&rq->load, load);
1448 }
1449
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1452
1453 /*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 {
1459 struct task_group *parent, *child;
1460 int ret;
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472 up:
1473 continue;
1474 }
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1485
1486 return ret;
1487 }
1488
1489 static int tg_nop(struct task_group *tg, void *data)
1490 {
1491 return 0;
1492 }
1493 #endif
1494
1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499
1500 static unsigned long cpu_avg_load_per_task(int cpu)
1501 {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1504
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 else
1508 rq->avg_load_per_task = 0;
1509
1510 return rq->avg_load_per_task;
1511 }
1512
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1514
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516
1517 /*
1518 * Calculate and set the cpu's group shares.
1519 */
1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
1523 {
1524 unsigned long shares;
1525 unsigned long rq_weight;
1526
1527 if (!tg->se[cpu])
1528 return;
1529
1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531
1532 /*
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1536 *
1537 */
1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
1545
1546 spin_lock_irqsave(&rq->lock, flags);
1547 tg->cfs_rq[cpu]->shares = shares;
1548
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1551 }
1552 }
1553
1554 /*
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1558 */
1559 static int tg_shares_up(struct task_group *tg, void *data)
1560 {
1561 unsigned long weight, rq_weight = 0;
1562 unsigned long shares = 0;
1563 struct sched_domain *sd = data;
1564 int i;
1565
1566 for_each_cpu(i, sched_domain_span(sd)) {
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1575
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
1578 shares += tg->cfs_rq[i]->shares;
1579 }
1580
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
1586
1587 for_each_cpu(i, sched_domain_span(sd))
1588 update_group_shares_cpu(tg, i, shares, rq_weight);
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1597 */
1598 static int tg_load_down(struct task_group *tg, void *data)
1599 {
1600 unsigned long load;
1601 long cpu = (long)data;
1602
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609 }
1610
1611 tg->cfs_rq[cpu]->h_load = load;
1612
1613 return 0;
1614 }
1615
1616 static void update_shares(struct sched_domain *sd)
1617 {
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1620
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
1624 }
1625 }
1626
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 {
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1632 }
1633
1634 static void update_h_load(long cpu)
1635 {
1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 }
1638
1639 #else
1640
1641 static inline void update_shares(struct sched_domain *sd)
1642 {
1643 }
1644
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646 {
1647 }
1648
1649 #endif
1650
1651 #ifdef CONFIG_PREEMPT
1652
1653 /*
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1660 */
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665 {
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1668
1669 return 1;
1670 }
1671
1672 #else
1673 /*
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1679 */
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1684 {
1685 int ret = 0;
1686
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 }
1696 return ret;
1697 }
1698
1699 #endif /* CONFIG_PREEMPT */
1700
1701 /*
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 */
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 {
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1710 }
1711
1712 return _double_lock_balance(this_rq, busiest);
1713 }
1714
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1717 {
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720 }
1721 #endif
1722
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725 {
1726 #ifdef CONFIG_SMP
1727 cfs_rq->shares = shares;
1728 #endif
1729 }
1730 #endif
1731
1732 static void calc_load_account_active(struct rq *this_rq);
1733
1734 #include "sched_stats.h"
1735 #include "sched_idletask.c"
1736 #include "sched_fair.c"
1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c"
1740 #endif
1741
1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
1745
1746 static void inc_nr_running(struct rq *rq)
1747 {
1748 rq->nr_running++;
1749 }
1750
1751 static void dec_nr_running(struct rq *rq)
1752 {
1753 rq->nr_running--;
1754 }
1755
1756 static void set_load_weight(struct task_struct *p)
1757 {
1758 if (task_has_rt_policy(p)) {
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1762 }
1763
1764 /*
1765 * SCHED_IDLE tasks get minimal weight:
1766 */
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1771 }
1772
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 }
1776
1777 static void update_avg(u64 *avg, u64 sample)
1778 {
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1781 }
1782
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784 {
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1787
1788 sched_info_queued(p);
1789 p->sched_class->enqueue_task(rq, p, wakeup);
1790 p->se.on_rq = 1;
1791 }
1792
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794 {
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1803 }
1804 }
1805
1806 sched_info_dequeued(p);
1807 p->sched_class->dequeue_task(rq, p, sleep);
1808 p->se.on_rq = 0;
1809 }
1810
1811 /*
1812 * __normal_prio - return the priority that is based on the static prio
1813 */
1814 static inline int __normal_prio(struct task_struct *p)
1815 {
1816 return p->static_prio;
1817 }
1818
1819 /*
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1825 */
1826 static inline int normal_prio(struct task_struct *p)
1827 {
1828 int prio;
1829
1830 if (task_has_rt_policy(p))
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1835 }
1836
1837 /*
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1843 */
1844 static int effective_prio(struct task_struct *p)
1845 {
1846 p->normal_prio = normal_prio(p);
1847 /*
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1851 */
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1855 }
1856
1857 /*
1858 * activate_task - move a task to the runqueue.
1859 */
1860 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1861 {
1862 if (task_contributes_to_load(p))
1863 rq->nr_uninterruptible--;
1864
1865 enqueue_task(rq, p, wakeup);
1866 inc_nr_running(rq);
1867 }
1868
1869 /*
1870 * deactivate_task - remove a task from the runqueue.
1871 */
1872 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1873 {
1874 if (task_contributes_to_load(p))
1875 rq->nr_uninterruptible++;
1876
1877 dequeue_task(rq, p, sleep);
1878 dec_nr_running(rq);
1879 }
1880
1881 /**
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1884 */
1885 inline int task_curr(const struct task_struct *p)
1886 {
1887 return cpu_curr(task_cpu(p)) == p;
1888 }
1889
1890 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891 {
1892 set_task_rq(p, cpu);
1893 #ifdef CONFIG_SMP
1894 /*
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1898 */
1899 smp_wmb();
1900 task_thread_info(p)->cpu = cpu;
1901 #endif
1902 }
1903
1904 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1907 {
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1914 }
1915
1916 #ifdef CONFIG_SMP
1917
1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu)
1920 {
1921 return cpu_rq(cpu)->load.weight;
1922 }
1923
1924 /*
1925 * Is this task likely cache-hot:
1926 */
1927 static int
1928 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929 {
1930 s64 delta;
1931
1932 /*
1933 * Buddy candidates are cache hot:
1934 */
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
1938 return 1;
1939
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1942
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1947
1948 delta = now - p->se.exec_start;
1949
1950 return delta < (s64)sysctl_sched_migration_cost;
1951 }
1952
1953
1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1955 {
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960 u64 clock_offset;
1961
1962 clock_offset = old_rq->clock - new_rq->clock;
1963
1964 trace_sched_migrate_task(p, new_cpu);
1965
1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
1973 #endif
1974 if (old_cpu != new_cpu) {
1975 p->se.nr_migrations++;
1976 new_rq->nr_migrations_in++;
1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 #endif
1981 perf_counter_task_migration(p, new_cpu);
1982 }
1983 p->se.vruntime -= old_cfsrq->min_vruntime -
1984 new_cfsrq->min_vruntime;
1985
1986 __set_task_cpu(p, new_cpu);
1987 }
1988
1989 struct migration_req {
1990 struct list_head list;
1991
1992 struct task_struct *task;
1993 int dest_cpu;
1994
1995 struct completion done;
1996 };
1997
1998 /*
1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread.
2001 */
2002 static int
2003 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2004 {
2005 struct rq *rq = task_rq(p);
2006
2007 /*
2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field.
2010 */
2011 if (!p->se.on_rq && !task_running(rq, p)) {
2012 set_task_cpu(p, dest_cpu);
2013 return 0;
2014 }
2015
2016 init_completion(&req->done);
2017 req->task = p;
2018 req->dest_cpu = dest_cpu;
2019 list_add(&req->list, &rq->migration_queue);
2020
2021 return 1;
2022 }
2023
2024 /*
2025 * wait_task_context_switch - wait for a thread to complete at least one
2026 * context switch.
2027 *
2028 * @p must not be current.
2029 */
2030 void wait_task_context_switch(struct task_struct *p)
2031 {
2032 unsigned long nvcsw, nivcsw, flags;
2033 int running;
2034 struct rq *rq;
2035
2036 nvcsw = p->nvcsw;
2037 nivcsw = p->nivcsw;
2038 for (;;) {
2039 /*
2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock.
2042 *
2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every
2045 * iteration.
2046 */
2047 rq = task_rq_lock(p, &flags);
2048 running = task_running(rq, p);
2049 task_rq_unlock(rq, &flags);
2050
2051 if (likely(!running))
2052 break;
2053 /*
2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed.
2057 */
2058 if ((p->nvcsw - nvcsw) > 1)
2059 break;
2060 if ((p->nivcsw - nivcsw) > 1)
2061 break;
2062
2063 cpu_relax();
2064 }
2065 }
2066
2067 /*
2068 * wait_task_inactive - wait for a thread to unschedule.
2069 *
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2076 *
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2082 */
2083 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2084 {
2085 unsigned long flags;
2086 int running, on_rq;
2087 unsigned long ncsw;
2088 struct rq *rq;
2089
2090 for (;;) {
2091 /*
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2095 * work out!
2096 */
2097 rq = task_rq(p);
2098
2099 /*
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2102 * any locks.
2103 *
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2109 */
2110 while (task_running(rq, p)) {
2111 if (match_state && unlikely(p->state != match_state))
2112 return 0;
2113 cpu_relax();
2114 }
2115
2116 /*
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2120 */
2121 rq = task_rq_lock(p, &flags);
2122 trace_sched_wait_task(rq, p);
2123 running = task_running(rq, p);
2124 on_rq = p->se.on_rq;
2125 ncsw = 0;
2126 if (!match_state || p->state == match_state)
2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2128 task_rq_unlock(rq, &flags);
2129
2130 /*
2131 * If it changed from the expected state, bail out now.
2132 */
2133 if (unlikely(!ncsw))
2134 break;
2135
2136 /*
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2139 *
2140 * Oops. Go back and try again..
2141 */
2142 if (unlikely(running)) {
2143 cpu_relax();
2144 continue;
2145 }
2146
2147 /*
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2150 * preempted!
2151 *
2152 * So if it was still runnable (but just not actively
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2155 */
2156 if (unlikely(on_rq)) {
2157 schedule_timeout_uninterruptible(1);
2158 continue;
2159 }
2160
2161 /*
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2165 */
2166 break;
2167 }
2168
2169 return ncsw;
2170 }
2171
2172 /***
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2175 *
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2178 *
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2183 * achieved as well.
2184 */
2185 void kick_process(struct task_struct *p)
2186 {
2187 int cpu;
2188
2189 preempt_disable();
2190 cpu = task_cpu(p);
2191 if ((cpu != smp_processor_id()) && task_curr(p))
2192 smp_send_reschedule(cpu);
2193 preempt_enable();
2194 }
2195
2196 /*
2197 * Return a low guess at the load of a migration-source cpu weighted
2198 * according to the scheduling class and "nice" value.
2199 *
2200 * We want to under-estimate the load of migration sources, to
2201 * balance conservatively.
2202 */
2203 static unsigned long source_load(int cpu, int type)
2204 {
2205 struct rq *rq = cpu_rq(cpu);
2206 unsigned long total = weighted_cpuload(cpu);
2207
2208 if (type == 0 || !sched_feat(LB_BIAS))
2209 return total;
2210
2211 return min(rq->cpu_load[type-1], total);
2212 }
2213
2214 /*
2215 * Return a high guess at the load of a migration-target cpu weighted
2216 * according to the scheduling class and "nice" value.
2217 */
2218 static unsigned long target_load(int cpu, int type)
2219 {
2220 struct rq *rq = cpu_rq(cpu);
2221 unsigned long total = weighted_cpuload(cpu);
2222
2223 if (type == 0 || !sched_feat(LB_BIAS))
2224 return total;
2225
2226 return max(rq->cpu_load[type-1], total);
2227 }
2228
2229 /*
2230 * find_idlest_group finds and returns the least busy CPU group within the
2231 * domain.
2232 */
2233 static struct sched_group *
2234 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2235 {
2236 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2237 unsigned long min_load = ULONG_MAX, this_load = 0;
2238 int load_idx = sd->forkexec_idx;
2239 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2240
2241 do {
2242 unsigned long load, avg_load;
2243 int local_group;
2244 int i;
2245
2246 /* Skip over this group if it has no CPUs allowed */
2247 if (!cpumask_intersects(sched_group_cpus(group),
2248 &p->cpus_allowed))
2249 continue;
2250
2251 local_group = cpumask_test_cpu(this_cpu,
2252 sched_group_cpus(group));
2253
2254 /* Tally up the load of all CPUs in the group */
2255 avg_load = 0;
2256
2257 for_each_cpu(i, sched_group_cpus(group)) {
2258 /* Bias balancing toward cpus of our domain */
2259 if (local_group)
2260 load = source_load(i, load_idx);
2261 else
2262 load = target_load(i, load_idx);
2263
2264 avg_load += load;
2265 }
2266
2267 /* Adjust by relative CPU power of the group */
2268 avg_load = sg_div_cpu_power(group,
2269 avg_load * SCHED_LOAD_SCALE);
2270
2271 if (local_group) {
2272 this_load = avg_load;
2273 this = group;
2274 } else if (avg_load < min_load) {
2275 min_load = avg_load;
2276 idlest = group;
2277 }
2278 } while (group = group->next, group != sd->groups);
2279
2280 if (!idlest || 100*this_load < imbalance*min_load)
2281 return NULL;
2282 return idlest;
2283 }
2284
2285 /*
2286 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2287 */
2288 static int
2289 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2290 {
2291 unsigned long load, min_load = ULONG_MAX;
2292 int idlest = -1;
2293 int i;
2294
2295 /* Traverse only the allowed CPUs */
2296 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2297 load = weighted_cpuload(i);
2298
2299 if (load < min_load || (load == min_load && i == this_cpu)) {
2300 min_load = load;
2301 idlest = i;
2302 }
2303 }
2304
2305 return idlest;
2306 }
2307
2308 /*
2309 * sched_balance_self: balance the current task (running on cpu) in domains
2310 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2311 * SD_BALANCE_EXEC.
2312 *
2313 * Balance, ie. select the least loaded group.
2314 *
2315 * Returns the target CPU number, or the same CPU if no balancing is needed.
2316 *
2317 * preempt must be disabled.
2318 */
2319 static int sched_balance_self(int cpu, int flag)
2320 {
2321 struct task_struct *t = current;
2322 struct sched_domain *tmp, *sd = NULL;
2323
2324 for_each_domain(cpu, tmp) {
2325 /*
2326 * If power savings logic is enabled for a domain, stop there.
2327 */
2328 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2329 break;
2330 if (tmp->flags & flag)
2331 sd = tmp;
2332 }
2333
2334 if (sd)
2335 update_shares(sd);
2336
2337 while (sd) {
2338 struct sched_group *group;
2339 int new_cpu, weight;
2340
2341 if (!(sd->flags & flag)) {
2342 sd = sd->child;
2343 continue;
2344 }
2345
2346 group = find_idlest_group(sd, t, cpu);
2347 if (!group) {
2348 sd = sd->child;
2349 continue;
2350 }
2351
2352 new_cpu = find_idlest_cpu(group, t, cpu);
2353 if (new_cpu == -1 || new_cpu == cpu) {
2354 /* Now try balancing at a lower domain level of cpu */
2355 sd = sd->child;
2356 continue;
2357 }
2358
2359 /* Now try balancing at a lower domain level of new_cpu */
2360 cpu = new_cpu;
2361 weight = cpumask_weight(sched_domain_span(sd));
2362 sd = NULL;
2363 for_each_domain(cpu, tmp) {
2364 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2365 break;
2366 if (tmp->flags & flag)
2367 sd = tmp;
2368 }
2369 /* while loop will break here if sd == NULL */
2370 }
2371
2372 return cpu;
2373 }
2374
2375 #endif /* CONFIG_SMP */
2376
2377 /**
2378 * task_oncpu_function_call - call a function on the cpu on which a task runs
2379 * @p: the task to evaluate
2380 * @func: the function to be called
2381 * @info: the function call argument
2382 *
2383 * Calls the function @func when the task is currently running. This might
2384 * be on the current CPU, which just calls the function directly
2385 */
2386 void task_oncpu_function_call(struct task_struct *p,
2387 void (*func) (void *info), void *info)
2388 {
2389 int cpu;
2390
2391 preempt_disable();
2392 cpu = task_cpu(p);
2393 if (task_curr(p))
2394 smp_call_function_single(cpu, func, info, 1);
2395 preempt_enable();
2396 }
2397
2398 /***
2399 * try_to_wake_up - wake up a thread
2400 * @p: the to-be-woken-up thread
2401 * @state: the mask of task states that can be woken
2402 * @sync: do a synchronous wakeup?
2403 *
2404 * Put it on the run-queue if it's not already there. The "current"
2405 * thread is always on the run-queue (except when the actual
2406 * re-schedule is in progress), and as such you're allowed to do
2407 * the simpler "current->state = TASK_RUNNING" to mark yourself
2408 * runnable without the overhead of this.
2409 *
2410 * returns failure only if the task is already active.
2411 */
2412 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2413 {
2414 int cpu, orig_cpu, this_cpu, success = 0;
2415 unsigned long flags;
2416 long old_state;
2417 struct rq *rq;
2418
2419 if (!sched_feat(SYNC_WAKEUPS))
2420 sync = 0;
2421
2422 #ifdef CONFIG_SMP
2423 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2424 struct sched_domain *sd;
2425
2426 this_cpu = raw_smp_processor_id();
2427 cpu = task_cpu(p);
2428
2429 for_each_domain(this_cpu, sd) {
2430 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2431 update_shares(sd);
2432 break;
2433 }
2434 }
2435 }
2436 #endif
2437
2438 smp_wmb();
2439 rq = task_rq_lock(p, &flags);
2440 update_rq_clock(rq);
2441 old_state = p->state;
2442 if (!(old_state & state))
2443 goto out;
2444
2445 if (p->se.on_rq)
2446 goto out_running;
2447
2448 cpu = task_cpu(p);
2449 orig_cpu = cpu;
2450 this_cpu = smp_processor_id();
2451
2452 #ifdef CONFIG_SMP
2453 if (unlikely(task_running(rq, p)))
2454 goto out_activate;
2455
2456 cpu = p->sched_class->select_task_rq(p, sync);
2457 if (cpu != orig_cpu) {
2458 set_task_cpu(p, cpu);
2459 task_rq_unlock(rq, &flags);
2460 /* might preempt at this point */
2461 rq = task_rq_lock(p, &flags);
2462 old_state = p->state;
2463 if (!(old_state & state))
2464 goto out;
2465 if (p->se.on_rq)
2466 goto out_running;
2467
2468 this_cpu = smp_processor_id();
2469 cpu = task_cpu(p);
2470 }
2471
2472 #ifdef CONFIG_SCHEDSTATS
2473 schedstat_inc(rq, ttwu_count);
2474 if (cpu == this_cpu)
2475 schedstat_inc(rq, ttwu_local);
2476 else {
2477 struct sched_domain *sd;
2478 for_each_domain(this_cpu, sd) {
2479 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2480 schedstat_inc(sd, ttwu_wake_remote);
2481 break;
2482 }
2483 }
2484 }
2485 #endif /* CONFIG_SCHEDSTATS */
2486
2487 out_activate:
2488 #endif /* CONFIG_SMP */
2489 schedstat_inc(p, se.nr_wakeups);
2490 if (sync)
2491 schedstat_inc(p, se.nr_wakeups_sync);
2492 if (orig_cpu != cpu)
2493 schedstat_inc(p, se.nr_wakeups_migrate);
2494 if (cpu == this_cpu)
2495 schedstat_inc(p, se.nr_wakeups_local);
2496 else
2497 schedstat_inc(p, se.nr_wakeups_remote);
2498 activate_task(rq, p, 1);
2499 success = 1;
2500
2501 /*
2502 * Only attribute actual wakeups done by this task.
2503 */
2504 if (!in_interrupt()) {
2505 struct sched_entity *se = &current->se;
2506 u64 sample = se->sum_exec_runtime;
2507
2508 if (se->last_wakeup)
2509 sample -= se->last_wakeup;
2510 else
2511 sample -= se->start_runtime;
2512 update_avg(&se->avg_wakeup, sample);
2513
2514 se->last_wakeup = se->sum_exec_runtime;
2515 }
2516
2517 out_running:
2518 trace_sched_wakeup(rq, p, success);
2519 check_preempt_curr(rq, p, sync);
2520
2521 p->state = TASK_RUNNING;
2522 #ifdef CONFIG_SMP
2523 if (p->sched_class->task_wake_up)
2524 p->sched_class->task_wake_up(rq, p);
2525 #endif
2526 out:
2527 task_rq_unlock(rq, &flags);
2528
2529 return success;
2530 }
2531
2532 /**
2533 * wake_up_process - Wake up a specific process
2534 * @p: The process to be woken up.
2535 *
2536 * Attempt to wake up the nominated process and move it to the set of runnable
2537 * processes. Returns 1 if the process was woken up, 0 if it was already
2538 * running.
2539 *
2540 * It may be assumed that this function implies a write memory barrier before
2541 * changing the task state if and only if any tasks are woken up.
2542 */
2543 int wake_up_process(struct task_struct *p)
2544 {
2545 return try_to_wake_up(p, TASK_ALL, 0);
2546 }
2547 EXPORT_SYMBOL(wake_up_process);
2548
2549 int wake_up_state(struct task_struct *p, unsigned int state)
2550 {
2551 return try_to_wake_up(p, state, 0);
2552 }
2553
2554 /*
2555 * Perform scheduler related setup for a newly forked process p.
2556 * p is forked by current.
2557 *
2558 * __sched_fork() is basic setup used by init_idle() too:
2559 */
2560 static void __sched_fork(struct task_struct *p)
2561 {
2562 p->se.exec_start = 0;
2563 p->se.sum_exec_runtime = 0;
2564 p->se.prev_sum_exec_runtime = 0;
2565 p->se.nr_migrations = 0;
2566 p->se.last_wakeup = 0;
2567 p->se.avg_overlap = 0;
2568 p->se.start_runtime = 0;
2569 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2570
2571 #ifdef CONFIG_SCHEDSTATS
2572 p->se.wait_start = 0;
2573 p->se.sum_sleep_runtime = 0;
2574 p->se.sleep_start = 0;
2575 p->se.block_start = 0;
2576 p->se.sleep_max = 0;
2577 p->se.block_max = 0;
2578 p->se.exec_max = 0;
2579 p->se.slice_max = 0;
2580 p->se.wait_max = 0;
2581 #endif
2582
2583 INIT_LIST_HEAD(&p->rt.run_list);
2584 p->se.on_rq = 0;
2585 INIT_LIST_HEAD(&p->se.group_node);
2586
2587 #ifdef CONFIG_PREEMPT_NOTIFIERS
2588 INIT_HLIST_HEAD(&p->preempt_notifiers);
2589 #endif
2590
2591 /*
2592 * We mark the process as running here, but have not actually
2593 * inserted it onto the runqueue yet. This guarantees that
2594 * nobody will actually run it, and a signal or other external
2595 * event cannot wake it up and insert it on the runqueue either.
2596 */
2597 p->state = TASK_RUNNING;
2598 }
2599
2600 /*
2601 * fork()/clone()-time setup:
2602 */
2603 void sched_fork(struct task_struct *p, int clone_flags)
2604 {
2605 int cpu = get_cpu();
2606
2607 __sched_fork(p);
2608
2609 #ifdef CONFIG_SMP
2610 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2611 #endif
2612 set_task_cpu(p, cpu);
2613
2614 /*
2615 * Make sure we do not leak PI boosting priority to the child:
2616 */
2617 p->prio = current->normal_prio;
2618 if (!rt_prio(p->prio))
2619 p->sched_class = &fair_sched_class;
2620
2621 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2622 if (likely(sched_info_on()))
2623 memset(&p->sched_info, 0, sizeof(p->sched_info));
2624 #endif
2625 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2626 p->oncpu = 0;
2627 #endif
2628 #ifdef CONFIG_PREEMPT
2629 /* Want to start with kernel preemption disabled. */
2630 task_thread_info(p)->preempt_count = 1;
2631 #endif
2632 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2633
2634 put_cpu();
2635 }
2636
2637 /*
2638 * wake_up_new_task - wake up a newly created task for the first time.
2639 *
2640 * This function will do some initial scheduler statistics housekeeping
2641 * that must be done for every newly created context, then puts the task
2642 * on the runqueue and wakes it.
2643 */
2644 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2645 {
2646 unsigned long flags;
2647 struct rq *rq;
2648
2649 rq = task_rq_lock(p, &flags);
2650 BUG_ON(p->state != TASK_RUNNING);
2651 update_rq_clock(rq);
2652
2653 p->prio = effective_prio(p);
2654
2655 if (!p->sched_class->task_new || !current->se.on_rq) {
2656 activate_task(rq, p, 0);
2657 } else {
2658 /*
2659 * Let the scheduling class do new task startup
2660 * management (if any):
2661 */
2662 p->sched_class->task_new(rq, p);
2663 inc_nr_running(rq);
2664 }
2665 trace_sched_wakeup_new(rq, p, 1);
2666 check_preempt_curr(rq, p, 0);
2667 #ifdef CONFIG_SMP
2668 if (p->sched_class->task_wake_up)
2669 p->sched_class->task_wake_up(rq, p);
2670 #endif
2671 task_rq_unlock(rq, &flags);
2672 }
2673
2674 #ifdef CONFIG_PREEMPT_NOTIFIERS
2675
2676 /**
2677 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2678 * @notifier: notifier struct to register
2679 */
2680 void preempt_notifier_register(struct preempt_notifier *notifier)
2681 {
2682 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2683 }
2684 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2685
2686 /**
2687 * preempt_notifier_unregister - no longer interested in preemption notifications
2688 * @notifier: notifier struct to unregister
2689 *
2690 * This is safe to call from within a preemption notifier.
2691 */
2692 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2693 {
2694 hlist_del(&notifier->link);
2695 }
2696 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2697
2698 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2699 {
2700 struct preempt_notifier *notifier;
2701 struct hlist_node *node;
2702
2703 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2704 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2705 }
2706
2707 static void
2708 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2709 struct task_struct *next)
2710 {
2711 struct preempt_notifier *notifier;
2712 struct hlist_node *node;
2713
2714 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2715 notifier->ops->sched_out(notifier, next);
2716 }
2717
2718 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2719
2720 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2721 {
2722 }
2723
2724 static void
2725 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2726 struct task_struct *next)
2727 {
2728 }
2729
2730 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2731
2732 /**
2733 * prepare_task_switch - prepare to switch tasks
2734 * @rq: the runqueue preparing to switch
2735 * @prev: the current task that is being switched out
2736 * @next: the task we are going to switch to.
2737 *
2738 * This is called with the rq lock held and interrupts off. It must
2739 * be paired with a subsequent finish_task_switch after the context
2740 * switch.
2741 *
2742 * prepare_task_switch sets up locking and calls architecture specific
2743 * hooks.
2744 */
2745 static inline void
2746 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2747 struct task_struct *next)
2748 {
2749 fire_sched_out_preempt_notifiers(prev, next);
2750 prepare_lock_switch(rq, next);
2751 prepare_arch_switch(next);
2752 }
2753
2754 /**
2755 * finish_task_switch - clean up after a task-switch
2756 * @rq: runqueue associated with task-switch
2757 * @prev: the thread we just switched away from.
2758 *
2759 * finish_task_switch must be called after the context switch, paired
2760 * with a prepare_task_switch call before the context switch.
2761 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2762 * and do any other architecture-specific cleanup actions.
2763 *
2764 * Note that we may have delayed dropping an mm in context_switch(). If
2765 * so, we finish that here outside of the runqueue lock. (Doing it
2766 * with the lock held can cause deadlocks; see schedule() for
2767 * details.)
2768 */
2769 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2770 __releases(rq->lock)
2771 {
2772 struct mm_struct *mm = rq->prev_mm;
2773 long prev_state;
2774 #ifdef CONFIG_SMP
2775 int post_schedule = 0;
2776
2777 if (current->sched_class->needs_post_schedule)
2778 post_schedule = current->sched_class->needs_post_schedule(rq);
2779 #endif
2780
2781 rq->prev_mm = NULL;
2782
2783 /*
2784 * A task struct has one reference for the use as "current".
2785 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2786 * schedule one last time. The schedule call will never return, and
2787 * the scheduled task must drop that reference.
2788 * The test for TASK_DEAD must occur while the runqueue locks are
2789 * still held, otherwise prev could be scheduled on another cpu, die
2790 * there before we look at prev->state, and then the reference would
2791 * be dropped twice.
2792 * Manfred Spraul <manfred@colorfullife.com>
2793 */
2794 prev_state = prev->state;
2795 finish_arch_switch(prev);
2796 perf_counter_task_sched_in(current, cpu_of(rq));
2797 finish_lock_switch(rq, prev);
2798 #ifdef CONFIG_SMP
2799 if (post_schedule)
2800 current->sched_class->post_schedule(rq);
2801 #endif
2802
2803 fire_sched_in_preempt_notifiers(current);
2804 if (mm)
2805 mmdrop(mm);
2806 if (unlikely(prev_state == TASK_DEAD)) {
2807 /*
2808 * Remove function-return probe instances associated with this
2809 * task and put them back on the free list.
2810 */
2811 kprobe_flush_task(prev);
2812 put_task_struct(prev);
2813 }
2814 }
2815
2816 /**
2817 * schedule_tail - first thing a freshly forked thread must call.
2818 * @prev: the thread we just switched away from.
2819 */
2820 asmlinkage void schedule_tail(struct task_struct *prev)
2821 __releases(rq->lock)
2822 {
2823 struct rq *rq = this_rq();
2824
2825 finish_task_switch(rq, prev);
2826 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2827 /* In this case, finish_task_switch does not reenable preemption */
2828 preempt_enable();
2829 #endif
2830 if (current->set_child_tid)
2831 put_user(task_pid_vnr(current), current->set_child_tid);
2832 }
2833
2834 /*
2835 * context_switch - switch to the new MM and the new
2836 * thread's register state.
2837 */
2838 static inline void
2839 context_switch(struct rq *rq, struct task_struct *prev,
2840 struct task_struct *next)
2841 {
2842 struct mm_struct *mm, *oldmm;
2843
2844 prepare_task_switch(rq, prev, next);
2845 trace_sched_switch(rq, prev, next);
2846 mm = next->mm;
2847 oldmm = prev->active_mm;
2848 /*
2849 * For paravirt, this is coupled with an exit in switch_to to
2850 * combine the page table reload and the switch backend into
2851 * one hypercall.
2852 */
2853 arch_start_context_switch(prev);
2854
2855 if (unlikely(!mm)) {
2856 next->active_mm = oldmm;
2857 atomic_inc(&oldmm->mm_count);
2858 enter_lazy_tlb(oldmm, next);
2859 } else
2860 switch_mm(oldmm, mm, next);
2861
2862 if (unlikely(!prev->mm)) {
2863 prev->active_mm = NULL;
2864 rq->prev_mm = oldmm;
2865 }
2866 /*
2867 * Since the runqueue lock will be released by the next
2868 * task (which is an invalid locking op but in the case
2869 * of the scheduler it's an obvious special-case), so we
2870 * do an early lockdep release here:
2871 */
2872 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2873 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2874 #endif
2875
2876 /* Here we just switch the register state and the stack. */
2877 switch_to(prev, next, prev);
2878
2879 barrier();
2880 /*
2881 * this_rq must be evaluated again because prev may have moved
2882 * CPUs since it called schedule(), thus the 'rq' on its stack
2883 * frame will be invalid.
2884 */
2885 finish_task_switch(this_rq(), prev);
2886 }
2887
2888 /*
2889 * nr_running, nr_uninterruptible and nr_context_switches:
2890 *
2891 * externally visible scheduler statistics: current number of runnable
2892 * threads, current number of uninterruptible-sleeping threads, total
2893 * number of context switches performed since bootup.
2894 */
2895 unsigned long nr_running(void)
2896 {
2897 unsigned long i, sum = 0;
2898
2899 for_each_online_cpu(i)
2900 sum += cpu_rq(i)->nr_running;
2901
2902 return sum;
2903 }
2904
2905 unsigned long nr_uninterruptible(void)
2906 {
2907 unsigned long i, sum = 0;
2908
2909 for_each_possible_cpu(i)
2910 sum += cpu_rq(i)->nr_uninterruptible;
2911
2912 /*
2913 * Since we read the counters lockless, it might be slightly
2914 * inaccurate. Do not allow it to go below zero though:
2915 */
2916 if (unlikely((long)sum < 0))
2917 sum = 0;
2918
2919 return sum;
2920 }
2921
2922 unsigned long long nr_context_switches(void)
2923 {
2924 int i;
2925 unsigned long long sum = 0;
2926
2927 for_each_possible_cpu(i)
2928 sum += cpu_rq(i)->nr_switches;
2929
2930 return sum;
2931 }
2932
2933 unsigned long nr_iowait(void)
2934 {
2935 unsigned long i, sum = 0;
2936
2937 for_each_possible_cpu(i)
2938 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2939
2940 return sum;
2941 }
2942
2943 /* Variables and functions for calc_load */
2944 static atomic_long_t calc_load_tasks;
2945 static unsigned long calc_load_update;
2946 unsigned long avenrun[3];
2947 EXPORT_SYMBOL(avenrun);
2948
2949 /**
2950 * get_avenrun - get the load average array
2951 * @loads: pointer to dest load array
2952 * @offset: offset to add
2953 * @shift: shift count to shift the result left
2954 *
2955 * These values are estimates at best, so no need for locking.
2956 */
2957 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2958 {
2959 loads[0] = (avenrun[0] + offset) << shift;
2960 loads[1] = (avenrun[1] + offset) << shift;
2961 loads[2] = (avenrun[2] + offset) << shift;
2962 }
2963
2964 static unsigned long
2965 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2966 {
2967 load *= exp;
2968 load += active * (FIXED_1 - exp);
2969 return load >> FSHIFT;
2970 }
2971
2972 /*
2973 * calc_load - update the avenrun load estimates 10 ticks after the
2974 * CPUs have updated calc_load_tasks.
2975 */
2976 void calc_global_load(void)
2977 {
2978 unsigned long upd = calc_load_update + 10;
2979 long active;
2980
2981 if (time_before(jiffies, upd))
2982 return;
2983
2984 active = atomic_long_read(&calc_load_tasks);
2985 active = active > 0 ? active * FIXED_1 : 0;
2986
2987 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2988 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2989 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2990
2991 calc_load_update += LOAD_FREQ;
2992 }
2993
2994 /*
2995 * Either called from update_cpu_load() or from a cpu going idle
2996 */
2997 static void calc_load_account_active(struct rq *this_rq)
2998 {
2999 long nr_active, delta;
3000
3001 nr_active = this_rq->nr_running;
3002 nr_active += (long) this_rq->nr_uninterruptible;
3003
3004 if (nr_active != this_rq->calc_load_active) {
3005 delta = nr_active - this_rq->calc_load_active;
3006 this_rq->calc_load_active = nr_active;
3007 atomic_long_add(delta, &calc_load_tasks);
3008 }
3009 }
3010
3011 /*
3012 * Externally visible per-cpu scheduler statistics:
3013 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3014 */
3015 u64 cpu_nr_migrations(int cpu)
3016 {
3017 return cpu_rq(cpu)->nr_migrations_in;
3018 }
3019
3020 /*
3021 * Update rq->cpu_load[] statistics. This function is usually called every
3022 * scheduler tick (TICK_NSEC).
3023 */
3024 static void update_cpu_load(struct rq *this_rq)
3025 {
3026 unsigned long this_load = this_rq->load.weight;
3027 int i, scale;
3028
3029 this_rq->nr_load_updates++;
3030
3031 /* Update our load: */
3032 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3033 unsigned long old_load, new_load;
3034
3035 /* scale is effectively 1 << i now, and >> i divides by scale */
3036
3037 old_load = this_rq->cpu_load[i];
3038 new_load = this_load;
3039 /*
3040 * Round up the averaging division if load is increasing. This
3041 * prevents us from getting stuck on 9 if the load is 10, for
3042 * example.
3043 */
3044 if (new_load > old_load)
3045 new_load += scale-1;
3046 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3047 }
3048
3049 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3050 this_rq->calc_load_update += LOAD_FREQ;
3051 calc_load_account_active(this_rq);
3052 }
3053 }
3054
3055 #ifdef CONFIG_SMP
3056
3057 /*
3058 * double_rq_lock - safely lock two runqueues
3059 *
3060 * Note this does not disable interrupts like task_rq_lock,
3061 * you need to do so manually before calling.
3062 */
3063 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3064 __acquires(rq1->lock)
3065 __acquires(rq2->lock)
3066 {
3067 BUG_ON(!irqs_disabled());
3068 if (rq1 == rq2) {
3069 spin_lock(&rq1->lock);
3070 __acquire(rq2->lock); /* Fake it out ;) */
3071 } else {
3072 if (rq1 < rq2) {
3073 spin_lock(&rq1->lock);
3074 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3075 } else {
3076 spin_lock(&rq2->lock);
3077 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3078 }
3079 }
3080 update_rq_clock(rq1);
3081 update_rq_clock(rq2);
3082 }
3083
3084 /*
3085 * double_rq_unlock - safely unlock two runqueues
3086 *
3087 * Note this does not restore interrupts like task_rq_unlock,
3088 * you need to do so manually after calling.
3089 */
3090 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3091 __releases(rq1->lock)
3092 __releases(rq2->lock)
3093 {
3094 spin_unlock(&rq1->lock);
3095 if (rq1 != rq2)
3096 spin_unlock(&rq2->lock);
3097 else
3098 __release(rq2->lock);
3099 }
3100
3101 /*
3102 * If dest_cpu is allowed for this process, migrate the task to it.
3103 * This is accomplished by forcing the cpu_allowed mask to only
3104 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3105 * the cpu_allowed mask is restored.
3106 */
3107 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3108 {
3109 struct migration_req req;
3110 unsigned long flags;
3111 struct rq *rq;
3112
3113 rq = task_rq_lock(p, &flags);
3114 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3115 || unlikely(!cpu_active(dest_cpu)))
3116 goto out;
3117
3118 /* force the process onto the specified CPU */
3119 if (migrate_task(p, dest_cpu, &req)) {
3120 /* Need to wait for migration thread (might exit: take ref). */
3121 struct task_struct *mt = rq->migration_thread;
3122
3123 get_task_struct(mt);
3124 task_rq_unlock(rq, &flags);
3125 wake_up_process(mt);
3126 put_task_struct(mt);
3127 wait_for_completion(&req.done);
3128
3129 return;
3130 }
3131 out:
3132 task_rq_unlock(rq, &flags);
3133 }
3134
3135 /*
3136 * sched_exec - execve() is a valuable balancing opportunity, because at
3137 * this point the task has the smallest effective memory and cache footprint.
3138 */
3139 void sched_exec(void)
3140 {
3141 int new_cpu, this_cpu = get_cpu();
3142 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3143 put_cpu();
3144 if (new_cpu != this_cpu)
3145 sched_migrate_task(current, new_cpu);
3146 }
3147
3148 /*
3149 * pull_task - move a task from a remote runqueue to the local runqueue.
3150 * Both runqueues must be locked.
3151 */
3152 static void pull_task(struct rq *src_rq, struct task_struct *p,
3153 struct rq *this_rq, int this_cpu)
3154 {
3155 deactivate_task(src_rq, p, 0);
3156 set_task_cpu(p, this_cpu);
3157 activate_task(this_rq, p, 0);
3158 /*
3159 * Note that idle threads have a prio of MAX_PRIO, for this test
3160 * to be always true for them.
3161 */
3162 check_preempt_curr(this_rq, p, 0);
3163 }
3164
3165 /*
3166 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3167 */
3168 static
3169 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3170 struct sched_domain *sd, enum cpu_idle_type idle,
3171 int *all_pinned)
3172 {
3173 int tsk_cache_hot = 0;
3174 /*
3175 * We do not migrate tasks that are:
3176 * 1) running (obviously), or
3177 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3178 * 3) are cache-hot on their current CPU.
3179 */
3180 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3181 schedstat_inc(p, se.nr_failed_migrations_affine);
3182 return 0;
3183 }
3184 *all_pinned = 0;
3185
3186 if (task_running(rq, p)) {
3187 schedstat_inc(p, se.nr_failed_migrations_running);
3188 return 0;
3189 }
3190
3191 /*
3192 * Aggressive migration if:
3193 * 1) task is cache cold, or
3194 * 2) too many balance attempts have failed.
3195 */
3196
3197 tsk_cache_hot = task_hot(p, rq->clock, sd);
3198 if (!tsk_cache_hot ||
3199 sd->nr_balance_failed > sd->cache_nice_tries) {
3200 #ifdef CONFIG_SCHEDSTATS
3201 if (tsk_cache_hot) {
3202 schedstat_inc(sd, lb_hot_gained[idle]);
3203 schedstat_inc(p, se.nr_forced_migrations);
3204 }
3205 #endif
3206 return 1;
3207 }
3208
3209 if (tsk_cache_hot) {
3210 schedstat_inc(p, se.nr_failed_migrations_hot);
3211 return 0;
3212 }
3213 return 1;
3214 }
3215
3216 static unsigned long
3217 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3218 unsigned long max_load_move, struct sched_domain *sd,
3219 enum cpu_idle_type idle, int *all_pinned,
3220 int *this_best_prio, struct rq_iterator *iterator)
3221 {
3222 int loops = 0, pulled = 0, pinned = 0;
3223 struct task_struct *p;
3224 long rem_load_move = max_load_move;
3225
3226 if (max_load_move == 0)
3227 goto out;
3228
3229 pinned = 1;
3230
3231 /*
3232 * Start the load-balancing iterator:
3233 */
3234 p = iterator->start(iterator->arg);
3235 next:
3236 if (!p || loops++ > sysctl_sched_nr_migrate)
3237 goto out;
3238
3239 if ((p->se.load.weight >> 1) > rem_load_move ||
3240 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3241 p = iterator->next(iterator->arg);
3242 goto next;
3243 }
3244
3245 pull_task(busiest, p, this_rq, this_cpu);
3246 pulled++;
3247 rem_load_move -= p->se.load.weight;
3248
3249 #ifdef CONFIG_PREEMPT
3250 /*
3251 * NEWIDLE balancing is a source of latency, so preemptible kernels
3252 * will stop after the first task is pulled to minimize the critical
3253 * section.
3254 */
3255 if (idle == CPU_NEWLY_IDLE)
3256 goto out;
3257 #endif
3258
3259 /*
3260 * We only want to steal up to the prescribed amount of weighted load.
3261 */
3262 if (rem_load_move > 0) {
3263 if (p->prio < *this_best_prio)
3264 *this_best_prio = p->prio;
3265 p = iterator->next(iterator->arg);
3266 goto next;
3267 }
3268 out:
3269 /*
3270 * Right now, this is one of only two places pull_task() is called,
3271 * so we can safely collect pull_task() stats here rather than
3272 * inside pull_task().
3273 */
3274 schedstat_add(sd, lb_gained[idle], pulled);
3275
3276 if (all_pinned)
3277 *all_pinned = pinned;
3278
3279 return max_load_move - rem_load_move;
3280 }
3281
3282 /*
3283 * move_tasks tries to move up to max_load_move weighted load from busiest to
3284 * this_rq, as part of a balancing operation within domain "sd".
3285 * Returns 1 if successful and 0 otherwise.
3286 *
3287 * Called with both runqueues locked.
3288 */
3289 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3290 unsigned long max_load_move,
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 int *all_pinned)
3293 {
3294 const struct sched_class *class = sched_class_highest;
3295 unsigned long total_load_moved = 0;
3296 int this_best_prio = this_rq->curr->prio;
3297
3298 do {
3299 total_load_moved +=
3300 class->load_balance(this_rq, this_cpu, busiest,
3301 max_load_move - total_load_moved,
3302 sd, idle, all_pinned, &this_best_prio);
3303 class = class->next;
3304
3305 #ifdef CONFIG_PREEMPT
3306 /*
3307 * NEWIDLE balancing is a source of latency, so preemptible
3308 * kernels will stop after the first task is pulled to minimize
3309 * the critical section.
3310 */
3311 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3312 break;
3313 #endif
3314 } while (class && max_load_move > total_load_moved);
3315
3316 return total_load_moved > 0;
3317 }
3318
3319 static int
3320 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3321 struct sched_domain *sd, enum cpu_idle_type idle,
3322 struct rq_iterator *iterator)
3323 {
3324 struct task_struct *p = iterator->start(iterator->arg);
3325 int pinned = 0;
3326
3327 while (p) {
3328 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3329 pull_task(busiest, p, this_rq, this_cpu);
3330 /*
3331 * Right now, this is only the second place pull_task()
3332 * is called, so we can safely collect pull_task()
3333 * stats here rather than inside pull_task().
3334 */
3335 schedstat_inc(sd, lb_gained[idle]);
3336
3337 return 1;
3338 }
3339 p = iterator->next(iterator->arg);
3340 }
3341
3342 return 0;
3343 }
3344
3345 /*
3346 * move_one_task tries to move exactly one task from busiest to this_rq, as
3347 * part of active balancing operations within "domain".
3348 * Returns 1 if successful and 0 otherwise.
3349 *
3350 * Called with both runqueues locked.
3351 */
3352 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3353 struct sched_domain *sd, enum cpu_idle_type idle)
3354 {
3355 const struct sched_class *class;
3356
3357 for (class = sched_class_highest; class; class = class->next)
3358 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3359 return 1;
3360
3361 return 0;
3362 }
3363 /********** Helpers for find_busiest_group ************************/
3364 /*
3365 * sd_lb_stats - Structure to store the statistics of a sched_domain
3366 * during load balancing.
3367 */
3368 struct sd_lb_stats {
3369 struct sched_group *busiest; /* Busiest group in this sd */
3370 struct sched_group *this; /* Local group in this sd */
3371 unsigned long total_load; /* Total load of all groups in sd */
3372 unsigned long total_pwr; /* Total power of all groups in sd */
3373 unsigned long avg_load; /* Average load across all groups in sd */
3374
3375 /** Statistics of this group */
3376 unsigned long this_load;
3377 unsigned long this_load_per_task;
3378 unsigned long this_nr_running;
3379
3380 /* Statistics of the busiest group */
3381 unsigned long max_load;
3382 unsigned long busiest_load_per_task;
3383 unsigned long busiest_nr_running;
3384
3385 int group_imb; /* Is there imbalance in this sd */
3386 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3387 int power_savings_balance; /* Is powersave balance needed for this sd */
3388 struct sched_group *group_min; /* Least loaded group in sd */
3389 struct sched_group *group_leader; /* Group which relieves group_min */
3390 unsigned long min_load_per_task; /* load_per_task in group_min */
3391 unsigned long leader_nr_running; /* Nr running of group_leader */
3392 unsigned long min_nr_running; /* Nr running of group_min */
3393 #endif
3394 };
3395
3396 /*
3397 * sg_lb_stats - stats of a sched_group required for load_balancing
3398 */
3399 struct sg_lb_stats {
3400 unsigned long avg_load; /*Avg load across the CPUs of the group */
3401 unsigned long group_load; /* Total load over the CPUs of the group */
3402 unsigned long sum_nr_running; /* Nr tasks running in the group */
3403 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3404 unsigned long group_capacity;
3405 int group_imb; /* Is there an imbalance in the group ? */
3406 };
3407
3408 /**
3409 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3410 * @group: The group whose first cpu is to be returned.
3411 */
3412 static inline unsigned int group_first_cpu(struct sched_group *group)
3413 {
3414 return cpumask_first(sched_group_cpus(group));
3415 }
3416
3417 /**
3418 * get_sd_load_idx - Obtain the load index for a given sched domain.
3419 * @sd: The sched_domain whose load_idx is to be obtained.
3420 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3421 */
3422 static inline int get_sd_load_idx(struct sched_domain *sd,
3423 enum cpu_idle_type idle)
3424 {
3425 int load_idx;
3426
3427 switch (idle) {
3428 case CPU_NOT_IDLE:
3429 load_idx = sd->busy_idx;
3430 break;
3431
3432 case CPU_NEWLY_IDLE:
3433 load_idx = sd->newidle_idx;
3434 break;
3435 default:
3436 load_idx = sd->idle_idx;
3437 break;
3438 }
3439
3440 return load_idx;
3441 }
3442
3443
3444 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3445 /**
3446 * init_sd_power_savings_stats - Initialize power savings statistics for
3447 * the given sched_domain, during load balancing.
3448 *
3449 * @sd: Sched domain whose power-savings statistics are to be initialized.
3450 * @sds: Variable containing the statistics for sd.
3451 * @idle: Idle status of the CPU at which we're performing load-balancing.
3452 */
3453 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3454 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3455 {
3456 /*
3457 * Busy processors will not participate in power savings
3458 * balance.
3459 */
3460 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3461 sds->power_savings_balance = 0;
3462 else {
3463 sds->power_savings_balance = 1;
3464 sds->min_nr_running = ULONG_MAX;
3465 sds->leader_nr_running = 0;
3466 }
3467 }
3468
3469 /**
3470 * update_sd_power_savings_stats - Update the power saving stats for a
3471 * sched_domain while performing load balancing.
3472 *
3473 * @group: sched_group belonging to the sched_domain under consideration.
3474 * @sds: Variable containing the statistics of the sched_domain
3475 * @local_group: Does group contain the CPU for which we're performing
3476 * load balancing ?
3477 * @sgs: Variable containing the statistics of the group.
3478 */
3479 static inline void update_sd_power_savings_stats(struct sched_group *group,
3480 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3481 {
3482
3483 if (!sds->power_savings_balance)
3484 return;
3485
3486 /*
3487 * If the local group is idle or completely loaded
3488 * no need to do power savings balance at this domain
3489 */
3490 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3491 !sds->this_nr_running))
3492 sds->power_savings_balance = 0;
3493
3494 /*
3495 * If a group is already running at full capacity or idle,
3496 * don't include that group in power savings calculations
3497 */
3498 if (!sds->power_savings_balance ||
3499 sgs->sum_nr_running >= sgs->group_capacity ||
3500 !sgs->sum_nr_running)
3501 return;
3502
3503 /*
3504 * Calculate the group which has the least non-idle load.
3505 * This is the group from where we need to pick up the load
3506 * for saving power
3507 */
3508 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3509 (sgs->sum_nr_running == sds->min_nr_running &&
3510 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3511 sds->group_min = group;
3512 sds->min_nr_running = sgs->sum_nr_running;
3513 sds->min_load_per_task = sgs->sum_weighted_load /
3514 sgs->sum_nr_running;
3515 }
3516
3517 /*
3518 * Calculate the group which is almost near its
3519 * capacity but still has some space to pick up some load
3520 * from other group and save more power
3521 */
3522 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3523 return;
3524
3525 if (sgs->sum_nr_running > sds->leader_nr_running ||
3526 (sgs->sum_nr_running == sds->leader_nr_running &&
3527 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3528 sds->group_leader = group;
3529 sds->leader_nr_running = sgs->sum_nr_running;
3530 }
3531 }
3532
3533 /**
3534 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3535 * @sds: Variable containing the statistics of the sched_domain
3536 * under consideration.
3537 * @this_cpu: Cpu at which we're currently performing load-balancing.
3538 * @imbalance: Variable to store the imbalance.
3539 *
3540 * Description:
3541 * Check if we have potential to perform some power-savings balance.
3542 * If yes, set the busiest group to be the least loaded group in the
3543 * sched_domain, so that it's CPUs can be put to idle.
3544 *
3545 * Returns 1 if there is potential to perform power-savings balance.
3546 * Else returns 0.
3547 */
3548 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3549 int this_cpu, unsigned long *imbalance)
3550 {
3551 if (!sds->power_savings_balance)
3552 return 0;
3553
3554 if (sds->this != sds->group_leader ||
3555 sds->group_leader == sds->group_min)
3556 return 0;
3557
3558 *imbalance = sds->min_load_per_task;
3559 sds->busiest = sds->group_min;
3560
3561 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3562 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3563 group_first_cpu(sds->group_leader);
3564 }
3565
3566 return 1;
3567
3568 }
3569 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3570 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3571 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3572 {
3573 return;
3574 }
3575
3576 static inline void update_sd_power_savings_stats(struct sched_group *group,
3577 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3578 {
3579 return;
3580 }
3581
3582 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3583 int this_cpu, unsigned long *imbalance)
3584 {
3585 return 0;
3586 }
3587 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3588
3589
3590 /**
3591 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3592 * @group: sched_group whose statistics are to be updated.
3593 * @this_cpu: Cpu for which load balance is currently performed.
3594 * @idle: Idle status of this_cpu
3595 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3596 * @sd_idle: Idle status of the sched_domain containing group.
3597 * @local_group: Does group contain this_cpu.
3598 * @cpus: Set of cpus considered for load balancing.
3599 * @balance: Should we balance.
3600 * @sgs: variable to hold the statistics for this group.
3601 */
3602 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3603 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3604 int local_group, const struct cpumask *cpus,
3605 int *balance, struct sg_lb_stats *sgs)
3606 {
3607 unsigned long load, max_cpu_load, min_cpu_load;
3608 int i;
3609 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3610 unsigned long sum_avg_load_per_task;
3611 unsigned long avg_load_per_task;
3612
3613 if (local_group)
3614 balance_cpu = group_first_cpu(group);
3615
3616 /* Tally up the load of all CPUs in the group */
3617 sum_avg_load_per_task = avg_load_per_task = 0;
3618 max_cpu_load = 0;
3619 min_cpu_load = ~0UL;
3620
3621 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3622 struct rq *rq = cpu_rq(i);
3623
3624 if (*sd_idle && rq->nr_running)
3625 *sd_idle = 0;
3626
3627 /* Bias balancing toward cpus of our domain */
3628 if (local_group) {
3629 if (idle_cpu(i) && !first_idle_cpu) {
3630 first_idle_cpu = 1;
3631 balance_cpu = i;
3632 }
3633
3634 load = target_load(i, load_idx);
3635 } else {
3636 load = source_load(i, load_idx);
3637 if (load > max_cpu_load)
3638 max_cpu_load = load;
3639 if (min_cpu_load > load)
3640 min_cpu_load = load;
3641 }
3642
3643 sgs->group_load += load;
3644 sgs->sum_nr_running += rq->nr_running;
3645 sgs->sum_weighted_load += weighted_cpuload(i);
3646
3647 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3648 }
3649
3650 /*
3651 * First idle cpu or the first cpu(busiest) in this sched group
3652 * is eligible for doing load balancing at this and above
3653 * domains. In the newly idle case, we will allow all the cpu's
3654 * to do the newly idle load balance.
3655 */
3656 if (idle != CPU_NEWLY_IDLE && local_group &&
3657 balance_cpu != this_cpu && balance) {
3658 *balance = 0;
3659 return;
3660 }
3661
3662 /* Adjust by relative CPU power of the group */
3663 sgs->avg_load = sg_div_cpu_power(group,
3664 sgs->group_load * SCHED_LOAD_SCALE);
3665
3666
3667 /*
3668 * Consider the group unbalanced when the imbalance is larger
3669 * than the average weight of two tasks.
3670 *
3671 * APZ: with cgroup the avg task weight can vary wildly and
3672 * might not be a suitable number - should we keep a
3673 * normalized nr_running number somewhere that negates
3674 * the hierarchy?
3675 */
3676 avg_load_per_task = sg_div_cpu_power(group,
3677 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3678
3679 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3680 sgs->group_imb = 1;
3681
3682 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3683
3684 }
3685
3686 /**
3687 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3688 * @sd: sched_domain whose statistics are to be updated.
3689 * @this_cpu: Cpu for which load balance is currently performed.
3690 * @idle: Idle status of this_cpu
3691 * @sd_idle: Idle status of the sched_domain containing group.
3692 * @cpus: Set of cpus considered for load balancing.
3693 * @balance: Should we balance.
3694 * @sds: variable to hold the statistics for this sched_domain.
3695 */
3696 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3697 enum cpu_idle_type idle, int *sd_idle,
3698 const struct cpumask *cpus, int *balance,
3699 struct sd_lb_stats *sds)
3700 {
3701 struct sched_group *group = sd->groups;
3702 struct sg_lb_stats sgs;
3703 int load_idx;
3704
3705 init_sd_power_savings_stats(sd, sds, idle);
3706 load_idx = get_sd_load_idx(sd, idle);
3707
3708 do {
3709 int local_group;
3710
3711 local_group = cpumask_test_cpu(this_cpu,
3712 sched_group_cpus(group));
3713 memset(&sgs, 0, sizeof(sgs));
3714 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3715 local_group, cpus, balance, &sgs);
3716
3717 if (local_group && balance && !(*balance))
3718 return;
3719
3720 sds->total_load += sgs.group_load;
3721 sds->total_pwr += group->__cpu_power;
3722
3723 if (local_group) {
3724 sds->this_load = sgs.avg_load;
3725 sds->this = group;
3726 sds->this_nr_running = sgs.sum_nr_running;
3727 sds->this_load_per_task = sgs.sum_weighted_load;
3728 } else if (sgs.avg_load > sds->max_load &&
3729 (sgs.sum_nr_running > sgs.group_capacity ||
3730 sgs.group_imb)) {
3731 sds->max_load = sgs.avg_load;
3732 sds->busiest = group;
3733 sds->busiest_nr_running = sgs.sum_nr_running;
3734 sds->busiest_load_per_task = sgs.sum_weighted_load;
3735 sds->group_imb = sgs.group_imb;
3736 }
3737
3738 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3739 group = group->next;
3740 } while (group != sd->groups);
3741
3742 }
3743
3744 /**
3745 * fix_small_imbalance - Calculate the minor imbalance that exists
3746 * amongst the groups of a sched_domain, during
3747 * load balancing.
3748 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3749 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3750 * @imbalance: Variable to store the imbalance.
3751 */
3752 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3753 int this_cpu, unsigned long *imbalance)
3754 {
3755 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3756 unsigned int imbn = 2;
3757
3758 if (sds->this_nr_running) {
3759 sds->this_load_per_task /= sds->this_nr_running;
3760 if (sds->busiest_load_per_task >
3761 sds->this_load_per_task)
3762 imbn = 1;
3763 } else
3764 sds->this_load_per_task =
3765 cpu_avg_load_per_task(this_cpu);
3766
3767 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3768 sds->busiest_load_per_task * imbn) {
3769 *imbalance = sds->busiest_load_per_task;
3770 return;
3771 }
3772
3773 /*
3774 * OK, we don't have enough imbalance to justify moving tasks,
3775 * however we may be able to increase total CPU power used by
3776 * moving them.
3777 */
3778
3779 pwr_now += sds->busiest->__cpu_power *
3780 min(sds->busiest_load_per_task, sds->max_load);
3781 pwr_now += sds->this->__cpu_power *
3782 min(sds->this_load_per_task, sds->this_load);
3783 pwr_now /= SCHED_LOAD_SCALE;
3784
3785 /* Amount of load we'd subtract */
3786 tmp = sg_div_cpu_power(sds->busiest,
3787 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3788 if (sds->max_load > tmp)
3789 pwr_move += sds->busiest->__cpu_power *
3790 min(sds->busiest_load_per_task, sds->max_load - tmp);
3791
3792 /* Amount of load we'd add */
3793 if (sds->max_load * sds->busiest->__cpu_power <
3794 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3795 tmp = sg_div_cpu_power(sds->this,
3796 sds->max_load * sds->busiest->__cpu_power);
3797 else
3798 tmp = sg_div_cpu_power(sds->this,
3799 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3800 pwr_move += sds->this->__cpu_power *
3801 min(sds->this_load_per_task, sds->this_load + tmp);
3802 pwr_move /= SCHED_LOAD_SCALE;
3803
3804 /* Move if we gain throughput */
3805 if (pwr_move > pwr_now)
3806 *imbalance = sds->busiest_load_per_task;
3807 }
3808
3809 /**
3810 * calculate_imbalance - Calculate the amount of imbalance present within the
3811 * groups of a given sched_domain during load balance.
3812 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3813 * @this_cpu: Cpu for which currently load balance is being performed.
3814 * @imbalance: The variable to store the imbalance.
3815 */
3816 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3817 unsigned long *imbalance)
3818 {
3819 unsigned long max_pull;
3820 /*
3821 * In the presence of smp nice balancing, certain scenarios can have
3822 * max load less than avg load(as we skip the groups at or below
3823 * its cpu_power, while calculating max_load..)
3824 */
3825 if (sds->max_load < sds->avg_load) {
3826 *imbalance = 0;
3827 return fix_small_imbalance(sds, this_cpu, imbalance);
3828 }
3829
3830 /* Don't want to pull so many tasks that a group would go idle */
3831 max_pull = min(sds->max_load - sds->avg_load,
3832 sds->max_load - sds->busiest_load_per_task);
3833
3834 /* How much load to actually move to equalise the imbalance */
3835 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3836 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3837 / SCHED_LOAD_SCALE;
3838
3839 /*
3840 * if *imbalance is less than the average load per runnable task
3841 * there is no gaurantee that any tasks will be moved so we'll have
3842 * a think about bumping its value to force at least one task to be
3843 * moved
3844 */
3845 if (*imbalance < sds->busiest_load_per_task)
3846 return fix_small_imbalance(sds, this_cpu, imbalance);
3847
3848 }
3849 /******* find_busiest_group() helpers end here *********************/
3850
3851 /**
3852 * find_busiest_group - Returns the busiest group within the sched_domain
3853 * if there is an imbalance. If there isn't an imbalance, and
3854 * the user has opted for power-savings, it returns a group whose
3855 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3856 * such a group exists.
3857 *
3858 * Also calculates the amount of weighted load which should be moved
3859 * to restore balance.
3860 *
3861 * @sd: The sched_domain whose busiest group is to be returned.
3862 * @this_cpu: The cpu for which load balancing is currently being performed.
3863 * @imbalance: Variable which stores amount of weighted load which should
3864 * be moved to restore balance/put a group to idle.
3865 * @idle: The idle status of this_cpu.
3866 * @sd_idle: The idleness of sd
3867 * @cpus: The set of CPUs under consideration for load-balancing.
3868 * @balance: Pointer to a variable indicating if this_cpu
3869 * is the appropriate cpu to perform load balancing at this_level.
3870 *
3871 * Returns: - the busiest group if imbalance exists.
3872 * - If no imbalance and user has opted for power-savings balance,
3873 * return the least loaded group whose CPUs can be
3874 * put to idle by rebalancing its tasks onto our group.
3875 */
3876 static struct sched_group *
3877 find_busiest_group(struct sched_domain *sd, int this_cpu,
3878 unsigned long *imbalance, enum cpu_idle_type idle,
3879 int *sd_idle, const struct cpumask *cpus, int *balance)
3880 {
3881 struct sd_lb_stats sds;
3882
3883 memset(&sds, 0, sizeof(sds));
3884
3885 /*
3886 * Compute the various statistics relavent for load balancing at
3887 * this level.
3888 */
3889 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3890 balance, &sds);
3891
3892 /* Cases where imbalance does not exist from POV of this_cpu */
3893 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3894 * at this level.
3895 * 2) There is no busy sibling group to pull from.
3896 * 3) This group is the busiest group.
3897 * 4) This group is more busy than the avg busieness at this
3898 * sched_domain.
3899 * 5) The imbalance is within the specified limit.
3900 * 6) Any rebalance would lead to ping-pong
3901 */
3902 if (balance && !(*balance))
3903 goto ret;
3904
3905 if (!sds.busiest || sds.busiest_nr_running == 0)
3906 goto out_balanced;
3907
3908 if (sds.this_load >= sds.max_load)
3909 goto out_balanced;
3910
3911 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3912
3913 if (sds.this_load >= sds.avg_load)
3914 goto out_balanced;
3915
3916 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3917 goto out_balanced;
3918
3919 sds.busiest_load_per_task /= sds.busiest_nr_running;
3920 if (sds.group_imb)
3921 sds.busiest_load_per_task =
3922 min(sds.busiest_load_per_task, sds.avg_load);
3923
3924 /*
3925 * We're trying to get all the cpus to the average_load, so we don't
3926 * want to push ourselves above the average load, nor do we wish to
3927 * reduce the max loaded cpu below the average load, as either of these
3928 * actions would just result in more rebalancing later, and ping-pong
3929 * tasks around. Thus we look for the minimum possible imbalance.
3930 * Negative imbalances (*we* are more loaded than anyone else) will
3931 * be counted as no imbalance for these purposes -- we can't fix that
3932 * by pulling tasks to us. Be careful of negative numbers as they'll
3933 * appear as very large values with unsigned longs.
3934 */
3935 if (sds.max_load <= sds.busiest_load_per_task)
3936 goto out_balanced;
3937
3938 /* Looks like there is an imbalance. Compute it */
3939 calculate_imbalance(&sds, this_cpu, imbalance);
3940 return sds.busiest;
3941
3942 out_balanced:
3943 /*
3944 * There is no obvious imbalance. But check if we can do some balancing
3945 * to save power.
3946 */
3947 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3948 return sds.busiest;
3949 ret:
3950 *imbalance = 0;
3951 return NULL;
3952 }
3953
3954 /*
3955 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3956 */
3957 static struct rq *
3958 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3959 unsigned long imbalance, const struct cpumask *cpus)
3960 {
3961 struct rq *busiest = NULL, *rq;
3962 unsigned long max_load = 0;
3963 int i;
3964
3965 for_each_cpu(i, sched_group_cpus(group)) {
3966 unsigned long wl;
3967
3968 if (!cpumask_test_cpu(i, cpus))
3969 continue;
3970
3971 rq = cpu_rq(i);
3972 wl = weighted_cpuload(i);
3973
3974 if (rq->nr_running == 1 && wl > imbalance)
3975 continue;
3976
3977 if (wl > max_load) {
3978 max_load = wl;
3979 busiest = rq;
3980 }
3981 }
3982
3983 return busiest;
3984 }
3985
3986 /*
3987 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3988 * so long as it is large enough.
3989 */
3990 #define MAX_PINNED_INTERVAL 512
3991
3992 /* Working cpumask for load_balance and load_balance_newidle. */
3993 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3994
3995 /*
3996 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3997 * tasks if there is an imbalance.
3998 */
3999 static int load_balance(int this_cpu, struct rq *this_rq,
4000 struct sched_domain *sd, enum cpu_idle_type idle,
4001 int *balance)
4002 {
4003 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4004 struct sched_group *group;
4005 unsigned long imbalance;
4006 struct rq *busiest;
4007 unsigned long flags;
4008 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4009
4010 cpumask_setall(cpus);
4011
4012 /*
4013 * When power savings policy is enabled for the parent domain, idle
4014 * sibling can pick up load irrespective of busy siblings. In this case,
4015 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4016 * portraying it as CPU_NOT_IDLE.
4017 */
4018 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4019 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4020 sd_idle = 1;
4021
4022 schedstat_inc(sd, lb_count[idle]);
4023
4024 redo:
4025 update_shares(sd);
4026 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4027 cpus, balance);
4028
4029 if (*balance == 0)
4030 goto out_balanced;
4031
4032 if (!group) {
4033 schedstat_inc(sd, lb_nobusyg[idle]);
4034 goto out_balanced;
4035 }
4036
4037 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4038 if (!busiest) {
4039 schedstat_inc(sd, lb_nobusyq[idle]);
4040 goto out_balanced;
4041 }
4042
4043 BUG_ON(busiest == this_rq);
4044
4045 schedstat_add(sd, lb_imbalance[idle], imbalance);
4046
4047 ld_moved = 0;
4048 if (busiest->nr_running > 1) {
4049 /*
4050 * Attempt to move tasks. If find_busiest_group has found
4051 * an imbalance but busiest->nr_running <= 1, the group is
4052 * still unbalanced. ld_moved simply stays zero, so it is
4053 * correctly treated as an imbalance.
4054 */
4055 local_irq_save(flags);
4056 double_rq_lock(this_rq, busiest);
4057 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4058 imbalance, sd, idle, &all_pinned);
4059 double_rq_unlock(this_rq, busiest);
4060 local_irq_restore(flags);
4061
4062 /*
4063 * some other cpu did the load balance for us.
4064 */
4065 if (ld_moved && this_cpu != smp_processor_id())
4066 resched_cpu(this_cpu);
4067
4068 /* All tasks on this runqueue were pinned by CPU affinity */
4069 if (unlikely(all_pinned)) {
4070 cpumask_clear_cpu(cpu_of(busiest), cpus);
4071 if (!cpumask_empty(cpus))
4072 goto redo;
4073 goto out_balanced;
4074 }
4075 }
4076
4077 if (!ld_moved) {
4078 schedstat_inc(sd, lb_failed[idle]);
4079 sd->nr_balance_failed++;
4080
4081 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4082
4083 spin_lock_irqsave(&busiest->lock, flags);
4084
4085 /* don't kick the migration_thread, if the curr
4086 * task on busiest cpu can't be moved to this_cpu
4087 */
4088 if (!cpumask_test_cpu(this_cpu,
4089 &busiest->curr->cpus_allowed)) {
4090 spin_unlock_irqrestore(&busiest->lock, flags);
4091 all_pinned = 1;
4092 goto out_one_pinned;
4093 }
4094
4095 if (!busiest->active_balance) {
4096 busiest->active_balance = 1;
4097 busiest->push_cpu = this_cpu;
4098 active_balance = 1;
4099 }
4100 spin_unlock_irqrestore(&busiest->lock, flags);
4101 if (active_balance)
4102 wake_up_process(busiest->migration_thread);
4103
4104 /*
4105 * We've kicked active balancing, reset the failure
4106 * counter.
4107 */
4108 sd->nr_balance_failed = sd->cache_nice_tries+1;
4109 }
4110 } else
4111 sd->nr_balance_failed = 0;
4112
4113 if (likely(!active_balance)) {
4114 /* We were unbalanced, so reset the balancing interval */
4115 sd->balance_interval = sd->min_interval;
4116 } else {
4117 /*
4118 * If we've begun active balancing, start to back off. This
4119 * case may not be covered by the all_pinned logic if there
4120 * is only 1 task on the busy runqueue (because we don't call
4121 * move_tasks).
4122 */
4123 if (sd->balance_interval < sd->max_interval)
4124 sd->balance_interval *= 2;
4125 }
4126
4127 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4128 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4129 ld_moved = -1;
4130
4131 goto out;
4132
4133 out_balanced:
4134 schedstat_inc(sd, lb_balanced[idle]);
4135
4136 sd->nr_balance_failed = 0;
4137
4138 out_one_pinned:
4139 /* tune up the balancing interval */
4140 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4141 (sd->balance_interval < sd->max_interval))
4142 sd->balance_interval *= 2;
4143
4144 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4145 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4146 ld_moved = -1;
4147 else
4148 ld_moved = 0;
4149 out:
4150 if (ld_moved)
4151 update_shares(sd);
4152 return ld_moved;
4153 }
4154
4155 /*
4156 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4157 * tasks if there is an imbalance.
4158 *
4159 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4160 * this_rq is locked.
4161 */
4162 static int
4163 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4164 {
4165 struct sched_group *group;
4166 struct rq *busiest = NULL;
4167 unsigned long imbalance;
4168 int ld_moved = 0;
4169 int sd_idle = 0;
4170 int all_pinned = 0;
4171 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4172
4173 cpumask_setall(cpus);
4174
4175 /*
4176 * When power savings policy is enabled for the parent domain, idle
4177 * sibling can pick up load irrespective of busy siblings. In this case,
4178 * let the state of idle sibling percolate up as IDLE, instead of
4179 * portraying it as CPU_NOT_IDLE.
4180 */
4181 if (sd->flags & SD_SHARE_CPUPOWER &&
4182 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4183 sd_idle = 1;
4184
4185 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4186 redo:
4187 update_shares_locked(this_rq, sd);
4188 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4189 &sd_idle, cpus, NULL);
4190 if (!group) {
4191 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4192 goto out_balanced;
4193 }
4194
4195 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4196 if (!busiest) {
4197 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4198 goto out_balanced;
4199 }
4200
4201 BUG_ON(busiest == this_rq);
4202
4203 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4204
4205 ld_moved = 0;
4206 if (busiest->nr_running > 1) {
4207 /* Attempt to move tasks */
4208 double_lock_balance(this_rq, busiest);
4209 /* this_rq->clock is already updated */
4210 update_rq_clock(busiest);
4211 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4212 imbalance, sd, CPU_NEWLY_IDLE,
4213 &all_pinned);
4214 double_unlock_balance(this_rq, busiest);
4215
4216 if (unlikely(all_pinned)) {
4217 cpumask_clear_cpu(cpu_of(busiest), cpus);
4218 if (!cpumask_empty(cpus))
4219 goto redo;
4220 }
4221 }
4222
4223 if (!ld_moved) {
4224 int active_balance = 0;
4225
4226 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4227 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4228 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4229 return -1;
4230
4231 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4232 return -1;
4233
4234 if (sd->nr_balance_failed++ < 2)
4235 return -1;
4236
4237 /*
4238 * The only task running in a non-idle cpu can be moved to this
4239 * cpu in an attempt to completely freeup the other CPU
4240 * package. The same method used to move task in load_balance()
4241 * have been extended for load_balance_newidle() to speedup
4242 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4243 *
4244 * The package power saving logic comes from
4245 * find_busiest_group(). If there are no imbalance, then
4246 * f_b_g() will return NULL. However when sched_mc={1,2} then
4247 * f_b_g() will select a group from which a running task may be
4248 * pulled to this cpu in order to make the other package idle.
4249 * If there is no opportunity to make a package idle and if
4250 * there are no imbalance, then f_b_g() will return NULL and no
4251 * action will be taken in load_balance_newidle().
4252 *
4253 * Under normal task pull operation due to imbalance, there
4254 * will be more than one task in the source run queue and
4255 * move_tasks() will succeed. ld_moved will be true and this
4256 * active balance code will not be triggered.
4257 */
4258
4259 /* Lock busiest in correct order while this_rq is held */
4260 double_lock_balance(this_rq, busiest);
4261
4262 /*
4263 * don't kick the migration_thread, if the curr
4264 * task on busiest cpu can't be moved to this_cpu
4265 */
4266 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4267 double_unlock_balance(this_rq, busiest);
4268 all_pinned = 1;
4269 return ld_moved;
4270 }
4271
4272 if (!busiest->active_balance) {
4273 busiest->active_balance = 1;
4274 busiest->push_cpu = this_cpu;
4275 active_balance = 1;
4276 }
4277
4278 double_unlock_balance(this_rq, busiest);
4279 /*
4280 * Should not call ttwu while holding a rq->lock
4281 */
4282 spin_unlock(&this_rq->lock);
4283 if (active_balance)
4284 wake_up_process(busiest->migration_thread);
4285 spin_lock(&this_rq->lock);
4286
4287 } else
4288 sd->nr_balance_failed = 0;
4289
4290 update_shares_locked(this_rq, sd);
4291 return ld_moved;
4292
4293 out_balanced:
4294 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4295 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4296 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4297 return -1;
4298 sd->nr_balance_failed = 0;
4299
4300 return 0;
4301 }
4302
4303 /*
4304 * idle_balance is called by schedule() if this_cpu is about to become
4305 * idle. Attempts to pull tasks from other CPUs.
4306 */
4307 static void idle_balance(int this_cpu, struct rq *this_rq)
4308 {
4309 struct sched_domain *sd;
4310 int pulled_task = 0;
4311 unsigned long next_balance = jiffies + HZ;
4312
4313 for_each_domain(this_cpu, sd) {
4314 unsigned long interval;
4315
4316 if (!(sd->flags & SD_LOAD_BALANCE))
4317 continue;
4318
4319 if (sd->flags & SD_BALANCE_NEWIDLE)
4320 /* If we've pulled tasks over stop searching: */
4321 pulled_task = load_balance_newidle(this_cpu, this_rq,
4322 sd);
4323
4324 interval = msecs_to_jiffies(sd->balance_interval);
4325 if (time_after(next_balance, sd->last_balance + interval))
4326 next_balance = sd->last_balance + interval;
4327 if (pulled_task)
4328 break;
4329 }
4330 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4331 /*
4332 * We are going idle. next_balance may be set based on
4333 * a busy processor. So reset next_balance.
4334 */
4335 this_rq->next_balance = next_balance;
4336 }
4337 }
4338
4339 /*
4340 * active_load_balance is run by migration threads. It pushes running tasks
4341 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4342 * running on each physical CPU where possible, and avoids physical /
4343 * logical imbalances.
4344 *
4345 * Called with busiest_rq locked.
4346 */
4347 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4348 {
4349 int target_cpu = busiest_rq->push_cpu;
4350 struct sched_domain *sd;
4351 struct rq *target_rq;
4352
4353 /* Is there any task to move? */
4354 if (busiest_rq->nr_running <= 1)
4355 return;
4356
4357 target_rq = cpu_rq(target_cpu);
4358
4359 /*
4360 * This condition is "impossible", if it occurs
4361 * we need to fix it. Originally reported by
4362 * Bjorn Helgaas on a 128-cpu setup.
4363 */
4364 BUG_ON(busiest_rq == target_rq);
4365
4366 /* move a task from busiest_rq to target_rq */
4367 double_lock_balance(busiest_rq, target_rq);
4368 update_rq_clock(busiest_rq);
4369 update_rq_clock(target_rq);
4370
4371 /* Search for an sd spanning us and the target CPU. */
4372 for_each_domain(target_cpu, sd) {
4373 if ((sd->flags & SD_LOAD_BALANCE) &&
4374 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4375 break;
4376 }
4377
4378 if (likely(sd)) {
4379 schedstat_inc(sd, alb_count);
4380
4381 if (move_one_task(target_rq, target_cpu, busiest_rq,
4382 sd, CPU_IDLE))
4383 schedstat_inc(sd, alb_pushed);
4384 else
4385 schedstat_inc(sd, alb_failed);
4386 }
4387 double_unlock_balance(busiest_rq, target_rq);
4388 }
4389
4390 #ifdef CONFIG_NO_HZ
4391 static struct {
4392 atomic_t load_balancer;
4393 cpumask_var_t cpu_mask;
4394 cpumask_var_t ilb_grp_nohz_mask;
4395 } nohz ____cacheline_aligned = {
4396 .load_balancer = ATOMIC_INIT(-1),
4397 };
4398
4399 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4400 /**
4401 * lowest_flag_domain - Return lowest sched_domain containing flag.
4402 * @cpu: The cpu whose lowest level of sched domain is to
4403 * be returned.
4404 * @flag: The flag to check for the lowest sched_domain
4405 * for the given cpu.
4406 *
4407 * Returns the lowest sched_domain of a cpu which contains the given flag.
4408 */
4409 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4410 {
4411 struct sched_domain *sd;
4412
4413 for_each_domain(cpu, sd)
4414 if (sd && (sd->flags & flag))
4415 break;
4416
4417 return sd;
4418 }
4419
4420 /**
4421 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4422 * @cpu: The cpu whose domains we're iterating over.
4423 * @sd: variable holding the value of the power_savings_sd
4424 * for cpu.
4425 * @flag: The flag to filter the sched_domains to be iterated.
4426 *
4427 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4428 * set, starting from the lowest sched_domain to the highest.
4429 */
4430 #define for_each_flag_domain(cpu, sd, flag) \
4431 for (sd = lowest_flag_domain(cpu, flag); \
4432 (sd && (sd->flags & flag)); sd = sd->parent)
4433
4434 /**
4435 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4436 * @ilb_group: group to be checked for semi-idleness
4437 *
4438 * Returns: 1 if the group is semi-idle. 0 otherwise.
4439 *
4440 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4441 * and atleast one non-idle CPU. This helper function checks if the given
4442 * sched_group is semi-idle or not.
4443 */
4444 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4445 {
4446 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4447 sched_group_cpus(ilb_group));
4448
4449 /*
4450 * A sched_group is semi-idle when it has atleast one busy cpu
4451 * and atleast one idle cpu.
4452 */
4453 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4454 return 0;
4455
4456 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4457 return 0;
4458
4459 return 1;
4460 }
4461 /**
4462 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4463 * @cpu: The cpu which is nominating a new idle_load_balancer.
4464 *
4465 * Returns: Returns the id of the idle load balancer if it exists,
4466 * Else, returns >= nr_cpu_ids.
4467 *
4468 * This algorithm picks the idle load balancer such that it belongs to a
4469 * semi-idle powersavings sched_domain. The idea is to try and avoid
4470 * completely idle packages/cores just for the purpose of idle load balancing
4471 * when there are other idle cpu's which are better suited for that job.
4472 */
4473 static int find_new_ilb(int cpu)
4474 {
4475 struct sched_domain *sd;
4476 struct sched_group *ilb_group;
4477
4478 /*
4479 * Have idle load balancer selection from semi-idle packages only
4480 * when power-aware load balancing is enabled
4481 */
4482 if (!(sched_smt_power_savings || sched_mc_power_savings))
4483 goto out_done;
4484
4485 /*
4486 * Optimize for the case when we have no idle CPUs or only one
4487 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4488 */
4489 if (cpumask_weight(nohz.cpu_mask) < 2)
4490 goto out_done;
4491
4492 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4493 ilb_group = sd->groups;
4494
4495 do {
4496 if (is_semi_idle_group(ilb_group))
4497 return cpumask_first(nohz.ilb_grp_nohz_mask);
4498
4499 ilb_group = ilb_group->next;
4500
4501 } while (ilb_group != sd->groups);
4502 }
4503
4504 out_done:
4505 return cpumask_first(nohz.cpu_mask);
4506 }
4507 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4508 static inline int find_new_ilb(int call_cpu)
4509 {
4510 return cpumask_first(nohz.cpu_mask);
4511 }
4512 #endif
4513
4514 /*
4515 * This routine will try to nominate the ilb (idle load balancing)
4516 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4517 * load balancing on behalf of all those cpus. If all the cpus in the system
4518 * go into this tickless mode, then there will be no ilb owner (as there is
4519 * no need for one) and all the cpus will sleep till the next wakeup event
4520 * arrives...
4521 *
4522 * For the ilb owner, tick is not stopped. And this tick will be used
4523 * for idle load balancing. ilb owner will still be part of
4524 * nohz.cpu_mask..
4525 *
4526 * While stopping the tick, this cpu will become the ilb owner if there
4527 * is no other owner. And will be the owner till that cpu becomes busy
4528 * or if all cpus in the system stop their ticks at which point
4529 * there is no need for ilb owner.
4530 *
4531 * When the ilb owner becomes busy, it nominates another owner, during the
4532 * next busy scheduler_tick()
4533 */
4534 int select_nohz_load_balancer(int stop_tick)
4535 {
4536 int cpu = smp_processor_id();
4537
4538 if (stop_tick) {
4539 cpu_rq(cpu)->in_nohz_recently = 1;
4540
4541 if (!cpu_active(cpu)) {
4542 if (atomic_read(&nohz.load_balancer) != cpu)
4543 return 0;
4544
4545 /*
4546 * If we are going offline and still the leader,
4547 * give up!
4548 */
4549 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4550 BUG();
4551
4552 return 0;
4553 }
4554
4555 cpumask_set_cpu(cpu, nohz.cpu_mask);
4556
4557 /* time for ilb owner also to sleep */
4558 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4559 if (atomic_read(&nohz.load_balancer) == cpu)
4560 atomic_set(&nohz.load_balancer, -1);
4561 return 0;
4562 }
4563
4564 if (atomic_read(&nohz.load_balancer) == -1) {
4565 /* make me the ilb owner */
4566 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4567 return 1;
4568 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4569 int new_ilb;
4570
4571 if (!(sched_smt_power_savings ||
4572 sched_mc_power_savings))
4573 return 1;
4574 /*
4575 * Check to see if there is a more power-efficient
4576 * ilb.
4577 */
4578 new_ilb = find_new_ilb(cpu);
4579 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4580 atomic_set(&nohz.load_balancer, -1);
4581 resched_cpu(new_ilb);
4582 return 0;
4583 }
4584 return 1;
4585 }
4586 } else {
4587 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4588 return 0;
4589
4590 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4591
4592 if (atomic_read(&nohz.load_balancer) == cpu)
4593 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4594 BUG();
4595 }
4596 return 0;
4597 }
4598 #endif
4599
4600 static DEFINE_SPINLOCK(balancing);
4601
4602 /*
4603 * It checks each scheduling domain to see if it is due to be balanced,
4604 * and initiates a balancing operation if so.
4605 *
4606 * Balancing parameters are set up in arch_init_sched_domains.
4607 */
4608 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4609 {
4610 int balance = 1;
4611 struct rq *rq = cpu_rq(cpu);
4612 unsigned long interval;
4613 struct sched_domain *sd;
4614 /* Earliest time when we have to do rebalance again */
4615 unsigned long next_balance = jiffies + 60*HZ;
4616 int update_next_balance = 0;
4617 int need_serialize;
4618
4619 for_each_domain(cpu, sd) {
4620 if (!(sd->flags & SD_LOAD_BALANCE))
4621 continue;
4622
4623 interval = sd->balance_interval;
4624 if (idle != CPU_IDLE)
4625 interval *= sd->busy_factor;
4626
4627 /* scale ms to jiffies */
4628 interval = msecs_to_jiffies(interval);
4629 if (unlikely(!interval))
4630 interval = 1;
4631 if (interval > HZ*NR_CPUS/10)
4632 interval = HZ*NR_CPUS/10;
4633
4634 need_serialize = sd->flags & SD_SERIALIZE;
4635
4636 if (need_serialize) {
4637 if (!spin_trylock(&balancing))
4638 goto out;
4639 }
4640
4641 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4642 if (load_balance(cpu, rq, sd, idle, &balance)) {
4643 /*
4644 * We've pulled tasks over so either we're no
4645 * longer idle, or one of our SMT siblings is
4646 * not idle.
4647 */
4648 idle = CPU_NOT_IDLE;
4649 }
4650 sd->last_balance = jiffies;
4651 }
4652 if (need_serialize)
4653 spin_unlock(&balancing);
4654 out:
4655 if (time_after(next_balance, sd->last_balance + interval)) {
4656 next_balance = sd->last_balance + interval;
4657 update_next_balance = 1;
4658 }
4659
4660 /*
4661 * Stop the load balance at this level. There is another
4662 * CPU in our sched group which is doing load balancing more
4663 * actively.
4664 */
4665 if (!balance)
4666 break;
4667 }
4668
4669 /*
4670 * next_balance will be updated only when there is a need.
4671 * When the cpu is attached to null domain for ex, it will not be
4672 * updated.
4673 */
4674 if (likely(update_next_balance))
4675 rq->next_balance = next_balance;
4676 }
4677
4678 /*
4679 * run_rebalance_domains is triggered when needed from the scheduler tick.
4680 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4681 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4682 */
4683 static void run_rebalance_domains(struct softirq_action *h)
4684 {
4685 int this_cpu = smp_processor_id();
4686 struct rq *this_rq = cpu_rq(this_cpu);
4687 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4688 CPU_IDLE : CPU_NOT_IDLE;
4689
4690 rebalance_domains(this_cpu, idle);
4691
4692 #ifdef CONFIG_NO_HZ
4693 /*
4694 * If this cpu is the owner for idle load balancing, then do the
4695 * balancing on behalf of the other idle cpus whose ticks are
4696 * stopped.
4697 */
4698 if (this_rq->idle_at_tick &&
4699 atomic_read(&nohz.load_balancer) == this_cpu) {
4700 struct rq *rq;
4701 int balance_cpu;
4702
4703 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4704 if (balance_cpu == this_cpu)
4705 continue;
4706
4707 /*
4708 * If this cpu gets work to do, stop the load balancing
4709 * work being done for other cpus. Next load
4710 * balancing owner will pick it up.
4711 */
4712 if (need_resched())
4713 break;
4714
4715 rebalance_domains(balance_cpu, CPU_IDLE);
4716
4717 rq = cpu_rq(balance_cpu);
4718 if (time_after(this_rq->next_balance, rq->next_balance))
4719 this_rq->next_balance = rq->next_balance;
4720 }
4721 }
4722 #endif
4723 }
4724
4725 static inline int on_null_domain(int cpu)
4726 {
4727 return !rcu_dereference(cpu_rq(cpu)->sd);
4728 }
4729
4730 /*
4731 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4732 *
4733 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4734 * idle load balancing owner or decide to stop the periodic load balancing,
4735 * if the whole system is idle.
4736 */
4737 static inline void trigger_load_balance(struct rq *rq, int cpu)
4738 {
4739 #ifdef CONFIG_NO_HZ
4740 /*
4741 * If we were in the nohz mode recently and busy at the current
4742 * scheduler tick, then check if we need to nominate new idle
4743 * load balancer.
4744 */
4745 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4746 rq->in_nohz_recently = 0;
4747
4748 if (atomic_read(&nohz.load_balancer) == cpu) {
4749 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4750 atomic_set(&nohz.load_balancer, -1);
4751 }
4752
4753 if (atomic_read(&nohz.load_balancer) == -1) {
4754 int ilb = find_new_ilb(cpu);
4755
4756 if (ilb < nr_cpu_ids)
4757 resched_cpu(ilb);
4758 }
4759 }
4760
4761 /*
4762 * If this cpu is idle and doing idle load balancing for all the
4763 * cpus with ticks stopped, is it time for that to stop?
4764 */
4765 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4766 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4767 resched_cpu(cpu);
4768 return;
4769 }
4770
4771 /*
4772 * If this cpu is idle and the idle load balancing is done by
4773 * someone else, then no need raise the SCHED_SOFTIRQ
4774 */
4775 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4776 cpumask_test_cpu(cpu, nohz.cpu_mask))
4777 return;
4778 #endif
4779 /* Don't need to rebalance while attached to NULL domain */
4780 if (time_after_eq(jiffies, rq->next_balance) &&
4781 likely(!on_null_domain(cpu)))
4782 raise_softirq(SCHED_SOFTIRQ);
4783 }
4784
4785 #else /* CONFIG_SMP */
4786
4787 /*
4788 * on UP we do not need to balance between CPUs:
4789 */
4790 static inline void idle_balance(int cpu, struct rq *rq)
4791 {
4792 }
4793
4794 #endif
4795
4796 DEFINE_PER_CPU(struct kernel_stat, kstat);
4797
4798 EXPORT_PER_CPU_SYMBOL(kstat);
4799
4800 /*
4801 * Return any ns on the sched_clock that have not yet been accounted in
4802 * @p in case that task is currently running.
4803 *
4804 * Called with task_rq_lock() held on @rq.
4805 */
4806 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4807 {
4808 u64 ns = 0;
4809
4810 if (task_current(rq, p)) {
4811 update_rq_clock(rq);
4812 ns = rq->clock - p->se.exec_start;
4813 if ((s64)ns < 0)
4814 ns = 0;
4815 }
4816
4817 return ns;
4818 }
4819
4820 unsigned long long task_delta_exec(struct task_struct *p)
4821 {
4822 unsigned long flags;
4823 struct rq *rq;
4824 u64 ns = 0;
4825
4826 rq = task_rq_lock(p, &flags);
4827 ns = do_task_delta_exec(p, rq);
4828 task_rq_unlock(rq, &flags);
4829
4830 return ns;
4831 }
4832
4833 /*
4834 * Return accounted runtime for the task.
4835 * In case the task is currently running, return the runtime plus current's
4836 * pending runtime that have not been accounted yet.
4837 */
4838 unsigned long long task_sched_runtime(struct task_struct *p)
4839 {
4840 unsigned long flags;
4841 struct rq *rq;
4842 u64 ns = 0;
4843
4844 rq = task_rq_lock(p, &flags);
4845 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4846 task_rq_unlock(rq, &flags);
4847
4848 return ns;
4849 }
4850
4851 /*
4852 * Return sum_exec_runtime for the thread group.
4853 * In case the task is currently running, return the sum plus current's
4854 * pending runtime that have not been accounted yet.
4855 *
4856 * Note that the thread group might have other running tasks as well,
4857 * so the return value not includes other pending runtime that other
4858 * running tasks might have.
4859 */
4860 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4861 {
4862 struct task_cputime totals;
4863 unsigned long flags;
4864 struct rq *rq;
4865 u64 ns;
4866
4867 rq = task_rq_lock(p, &flags);
4868 thread_group_cputime(p, &totals);
4869 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4870 task_rq_unlock(rq, &flags);
4871
4872 return ns;
4873 }
4874
4875 /*
4876 * Account user cpu time to a process.
4877 * @p: the process that the cpu time gets accounted to
4878 * @cputime: the cpu time spent in user space since the last update
4879 * @cputime_scaled: cputime scaled by cpu frequency
4880 */
4881 void account_user_time(struct task_struct *p, cputime_t cputime,
4882 cputime_t cputime_scaled)
4883 {
4884 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4885 cputime64_t tmp;
4886
4887 /* Add user time to process. */
4888 p->utime = cputime_add(p->utime, cputime);
4889 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4890 account_group_user_time(p, cputime);
4891
4892 /* Add user time to cpustat. */
4893 tmp = cputime_to_cputime64(cputime);
4894 if (TASK_NICE(p) > 0)
4895 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4896 else
4897 cpustat->user = cputime64_add(cpustat->user, tmp);
4898
4899 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4900 /* Account for user time used */
4901 acct_update_integrals(p);
4902 }
4903
4904 /*
4905 * Account guest cpu time to a process.
4906 * @p: the process that the cpu time gets accounted to
4907 * @cputime: the cpu time spent in virtual machine since the last update
4908 * @cputime_scaled: cputime scaled by cpu frequency
4909 */
4910 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4911 cputime_t cputime_scaled)
4912 {
4913 cputime64_t tmp;
4914 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4915
4916 tmp = cputime_to_cputime64(cputime);
4917
4918 /* Add guest time to process. */
4919 p->utime = cputime_add(p->utime, cputime);
4920 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4921 account_group_user_time(p, cputime);
4922 p->gtime = cputime_add(p->gtime, cputime);
4923
4924 /* Add guest time to cpustat. */
4925 cpustat->user = cputime64_add(cpustat->user, tmp);
4926 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4927 }
4928
4929 /*
4930 * Account system cpu time to a process.
4931 * @p: the process that the cpu time gets accounted to
4932 * @hardirq_offset: the offset to subtract from hardirq_count()
4933 * @cputime: the cpu time spent in kernel space since the last update
4934 * @cputime_scaled: cputime scaled by cpu frequency
4935 */
4936 void account_system_time(struct task_struct *p, int hardirq_offset,
4937 cputime_t cputime, cputime_t cputime_scaled)
4938 {
4939 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4940 cputime64_t tmp;
4941
4942 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4943 account_guest_time(p, cputime, cputime_scaled);
4944 return;
4945 }
4946
4947 /* Add system time to process. */
4948 p->stime = cputime_add(p->stime, cputime);
4949 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4950 account_group_system_time(p, cputime);
4951
4952 /* Add system time to cpustat. */
4953 tmp = cputime_to_cputime64(cputime);
4954 if (hardirq_count() - hardirq_offset)
4955 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4956 else if (softirq_count())
4957 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4958 else
4959 cpustat->system = cputime64_add(cpustat->system, tmp);
4960
4961 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4962
4963 /* Account for system time used */
4964 acct_update_integrals(p);
4965 }
4966
4967 /*
4968 * Account for involuntary wait time.
4969 * @steal: the cpu time spent in involuntary wait
4970 */
4971 void account_steal_time(cputime_t cputime)
4972 {
4973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4974 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4975
4976 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4977 }
4978
4979 /*
4980 * Account for idle time.
4981 * @cputime: the cpu time spent in idle wait
4982 */
4983 void account_idle_time(cputime_t cputime)
4984 {
4985 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4986 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4987 struct rq *rq = this_rq();
4988
4989 if (atomic_read(&rq->nr_iowait) > 0)
4990 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4991 else
4992 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4993 }
4994
4995 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4996
4997 /*
4998 * Account a single tick of cpu time.
4999 * @p: the process that the cpu time gets accounted to
5000 * @user_tick: indicates if the tick is a user or a system tick
5001 */
5002 void account_process_tick(struct task_struct *p, int user_tick)
5003 {
5004 cputime_t one_jiffy = jiffies_to_cputime(1);
5005 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5006 struct rq *rq = this_rq();
5007
5008 if (user_tick)
5009 account_user_time(p, one_jiffy, one_jiffy_scaled);
5010 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5011 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5012 one_jiffy_scaled);
5013 else
5014 account_idle_time(one_jiffy);
5015 }
5016
5017 /*
5018 * Account multiple ticks of steal time.
5019 * @p: the process from which the cpu time has been stolen
5020 * @ticks: number of stolen ticks
5021 */
5022 void account_steal_ticks(unsigned long ticks)
5023 {
5024 account_steal_time(jiffies_to_cputime(ticks));
5025 }
5026
5027 /*
5028 * Account multiple ticks of idle time.
5029 * @ticks: number of stolen ticks
5030 */
5031 void account_idle_ticks(unsigned long ticks)
5032 {
5033 account_idle_time(jiffies_to_cputime(ticks));
5034 }
5035
5036 #endif
5037
5038 /*
5039 * Use precise platform statistics if available:
5040 */
5041 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5042 cputime_t task_utime(struct task_struct *p)
5043 {
5044 return p->utime;
5045 }
5046
5047 cputime_t task_stime(struct task_struct *p)
5048 {
5049 return p->stime;
5050 }
5051 #else
5052 cputime_t task_utime(struct task_struct *p)
5053 {
5054 clock_t utime = cputime_to_clock_t(p->utime),
5055 total = utime + cputime_to_clock_t(p->stime);
5056 u64 temp;
5057
5058 /*
5059 * Use CFS's precise accounting:
5060 */
5061 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5062
5063 if (total) {
5064 temp *= utime;
5065 do_div(temp, total);
5066 }
5067 utime = (clock_t)temp;
5068
5069 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5070 return p->prev_utime;
5071 }
5072
5073 cputime_t task_stime(struct task_struct *p)
5074 {
5075 clock_t stime;
5076
5077 /*
5078 * Use CFS's precise accounting. (we subtract utime from
5079 * the total, to make sure the total observed by userspace
5080 * grows monotonically - apps rely on that):
5081 */
5082 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5083 cputime_to_clock_t(task_utime(p));
5084
5085 if (stime >= 0)
5086 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5087
5088 return p->prev_stime;
5089 }
5090 #endif
5091
5092 inline cputime_t task_gtime(struct task_struct *p)
5093 {
5094 return p->gtime;
5095 }
5096
5097 /*
5098 * This function gets called by the timer code, with HZ frequency.
5099 * We call it with interrupts disabled.
5100 *
5101 * It also gets called by the fork code, when changing the parent's
5102 * timeslices.
5103 */
5104 void scheduler_tick(void)
5105 {
5106 int cpu = smp_processor_id();
5107 struct rq *rq = cpu_rq(cpu);
5108 struct task_struct *curr = rq->curr;
5109
5110 sched_clock_tick();
5111
5112 spin_lock(&rq->lock);
5113 update_rq_clock(rq);
5114 update_cpu_load(rq);
5115 curr->sched_class->task_tick(rq, curr, 0);
5116 spin_unlock(&rq->lock);
5117
5118 perf_counter_task_tick(curr, cpu);
5119
5120 #ifdef CONFIG_SMP
5121 rq->idle_at_tick = idle_cpu(cpu);
5122 trigger_load_balance(rq, cpu);
5123 #endif
5124 }
5125
5126 notrace unsigned long get_parent_ip(unsigned long addr)
5127 {
5128 if (in_lock_functions(addr)) {
5129 addr = CALLER_ADDR2;
5130 if (in_lock_functions(addr))
5131 addr = CALLER_ADDR3;
5132 }
5133 return addr;
5134 }
5135
5136 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5137 defined(CONFIG_PREEMPT_TRACER))
5138
5139 void __kprobes add_preempt_count(int val)
5140 {
5141 #ifdef CONFIG_DEBUG_PREEMPT
5142 /*
5143 * Underflow?
5144 */
5145 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5146 return;
5147 #endif
5148 preempt_count() += val;
5149 #ifdef CONFIG_DEBUG_PREEMPT
5150 /*
5151 * Spinlock count overflowing soon?
5152 */
5153 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5154 PREEMPT_MASK - 10);
5155 #endif
5156 if (preempt_count() == val)
5157 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5158 }
5159 EXPORT_SYMBOL(add_preempt_count);
5160
5161 void __kprobes sub_preempt_count(int val)
5162 {
5163 #ifdef CONFIG_DEBUG_PREEMPT
5164 /*
5165 * Underflow?
5166 */
5167 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5168 return;
5169 /*
5170 * Is the spinlock portion underflowing?
5171 */
5172 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5173 !(preempt_count() & PREEMPT_MASK)))
5174 return;
5175 #endif
5176
5177 if (preempt_count() == val)
5178 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5179 preempt_count() -= val;
5180 }
5181 EXPORT_SYMBOL(sub_preempt_count);
5182
5183 #endif
5184
5185 /*
5186 * Print scheduling while atomic bug:
5187 */
5188 static noinline void __schedule_bug(struct task_struct *prev)
5189 {
5190 struct pt_regs *regs = get_irq_regs();
5191
5192 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5193 prev->comm, prev->pid, preempt_count());
5194
5195 debug_show_held_locks(prev);
5196 print_modules();
5197 if (irqs_disabled())
5198 print_irqtrace_events(prev);
5199
5200 if (regs)
5201 show_regs(regs);
5202 else
5203 dump_stack();
5204 }
5205
5206 /*
5207 * Various schedule()-time debugging checks and statistics:
5208 */
5209 static inline void schedule_debug(struct task_struct *prev)
5210 {
5211 /*
5212 * Test if we are atomic. Since do_exit() needs to call into
5213 * schedule() atomically, we ignore that path for now.
5214 * Otherwise, whine if we are scheduling when we should not be.
5215 */
5216 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5217 __schedule_bug(prev);
5218
5219 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5220
5221 schedstat_inc(this_rq(), sched_count);
5222 #ifdef CONFIG_SCHEDSTATS
5223 if (unlikely(prev->lock_depth >= 0)) {
5224 schedstat_inc(this_rq(), bkl_count);
5225 schedstat_inc(prev, sched_info.bkl_count);
5226 }
5227 #endif
5228 }
5229
5230 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5231 {
5232 if (prev->state == TASK_RUNNING) {
5233 u64 runtime = prev->se.sum_exec_runtime;
5234
5235 runtime -= prev->se.prev_sum_exec_runtime;
5236 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5237
5238 /*
5239 * In order to avoid avg_overlap growing stale when we are
5240 * indeed overlapping and hence not getting put to sleep, grow
5241 * the avg_overlap on preemption.
5242 *
5243 * We use the average preemption runtime because that
5244 * correlates to the amount of cache footprint a task can
5245 * build up.
5246 */
5247 update_avg(&prev->se.avg_overlap, runtime);
5248 }
5249 prev->sched_class->put_prev_task(rq, prev);
5250 }
5251
5252 /*
5253 * Pick up the highest-prio task:
5254 */
5255 static inline struct task_struct *
5256 pick_next_task(struct rq *rq)
5257 {
5258 const struct sched_class *class;
5259 struct task_struct *p;
5260
5261 /*
5262 * Optimization: we know that if all tasks are in
5263 * the fair class we can call that function directly:
5264 */
5265 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5266 p = fair_sched_class.pick_next_task(rq);
5267 if (likely(p))
5268 return p;
5269 }
5270
5271 class = sched_class_highest;
5272 for ( ; ; ) {
5273 p = class->pick_next_task(rq);
5274 if (p)
5275 return p;
5276 /*
5277 * Will never be NULL as the idle class always
5278 * returns a non-NULL p:
5279 */
5280 class = class->next;
5281 }
5282 }
5283
5284 /*
5285 * schedule() is the main scheduler function.
5286 */
5287 asmlinkage void __sched schedule(void)
5288 {
5289 struct task_struct *prev, *next;
5290 unsigned long *switch_count;
5291 struct rq *rq;
5292 int cpu;
5293
5294 need_resched:
5295 preempt_disable();
5296 cpu = smp_processor_id();
5297 rq = cpu_rq(cpu);
5298 rcu_qsctr_inc(cpu);
5299 prev = rq->curr;
5300 switch_count = &prev->nivcsw;
5301
5302 release_kernel_lock(prev);
5303 need_resched_nonpreemptible:
5304
5305 schedule_debug(prev);
5306
5307 if (sched_feat(HRTICK))
5308 hrtick_clear(rq);
5309
5310 spin_lock_irq(&rq->lock);
5311 update_rq_clock(rq);
5312 clear_tsk_need_resched(prev);
5313
5314 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5315 if (unlikely(signal_pending_state(prev->state, prev)))
5316 prev->state = TASK_RUNNING;
5317 else
5318 deactivate_task(rq, prev, 1);
5319 switch_count = &prev->nvcsw;
5320 }
5321
5322 #ifdef CONFIG_SMP
5323 if (prev->sched_class->pre_schedule)
5324 prev->sched_class->pre_schedule(rq, prev);
5325 #endif
5326
5327 if (unlikely(!rq->nr_running))
5328 idle_balance(cpu, rq);
5329
5330 put_prev_task(rq, prev);
5331 next = pick_next_task(rq);
5332
5333 if (likely(prev != next)) {
5334 sched_info_switch(prev, next);
5335 perf_counter_task_sched_out(prev, next, cpu);
5336
5337 rq->nr_switches++;
5338 rq->curr = next;
5339 ++*switch_count;
5340
5341 context_switch(rq, prev, next); /* unlocks the rq */
5342 /*
5343 * the context switch might have flipped the stack from under
5344 * us, hence refresh the local variables.
5345 */
5346 cpu = smp_processor_id();
5347 rq = cpu_rq(cpu);
5348 } else
5349 spin_unlock_irq(&rq->lock);
5350
5351 if (unlikely(reacquire_kernel_lock(current) < 0))
5352 goto need_resched_nonpreemptible;
5353
5354 preempt_enable_no_resched();
5355 if (need_resched())
5356 goto need_resched;
5357 }
5358 EXPORT_SYMBOL(schedule);
5359
5360 #ifdef CONFIG_SMP
5361 /*
5362 * Look out! "owner" is an entirely speculative pointer
5363 * access and not reliable.
5364 */
5365 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5366 {
5367 unsigned int cpu;
5368 struct rq *rq;
5369
5370 if (!sched_feat(OWNER_SPIN))
5371 return 0;
5372
5373 #ifdef CONFIG_DEBUG_PAGEALLOC
5374 /*
5375 * Need to access the cpu field knowing that
5376 * DEBUG_PAGEALLOC could have unmapped it if
5377 * the mutex owner just released it and exited.
5378 */
5379 if (probe_kernel_address(&owner->cpu, cpu))
5380 goto out;
5381 #else
5382 cpu = owner->cpu;
5383 #endif
5384
5385 /*
5386 * Even if the access succeeded (likely case),
5387 * the cpu field may no longer be valid.
5388 */
5389 if (cpu >= nr_cpumask_bits)
5390 goto out;
5391
5392 /*
5393 * We need to validate that we can do a
5394 * get_cpu() and that we have the percpu area.
5395 */
5396 if (!cpu_online(cpu))
5397 goto out;
5398
5399 rq = cpu_rq(cpu);
5400
5401 for (;;) {
5402 /*
5403 * Owner changed, break to re-assess state.
5404 */
5405 if (lock->owner != owner)
5406 break;
5407
5408 /*
5409 * Is that owner really running on that cpu?
5410 */
5411 if (task_thread_info(rq->curr) != owner || need_resched())
5412 return 0;
5413
5414 cpu_relax();
5415 }
5416 out:
5417 return 1;
5418 }
5419 #endif
5420
5421 #ifdef CONFIG_PREEMPT
5422 /*
5423 * this is the entry point to schedule() from in-kernel preemption
5424 * off of preempt_enable. Kernel preemptions off return from interrupt
5425 * occur there and call schedule directly.
5426 */
5427 asmlinkage void __sched preempt_schedule(void)
5428 {
5429 struct thread_info *ti = current_thread_info();
5430
5431 /*
5432 * If there is a non-zero preempt_count or interrupts are disabled,
5433 * we do not want to preempt the current task. Just return..
5434 */
5435 if (likely(ti->preempt_count || irqs_disabled()))
5436 return;
5437
5438 do {
5439 add_preempt_count(PREEMPT_ACTIVE);
5440 schedule();
5441 sub_preempt_count(PREEMPT_ACTIVE);
5442
5443 /*
5444 * Check again in case we missed a preemption opportunity
5445 * between schedule and now.
5446 */
5447 barrier();
5448 } while (need_resched());
5449 }
5450 EXPORT_SYMBOL(preempt_schedule);
5451
5452 /*
5453 * this is the entry point to schedule() from kernel preemption
5454 * off of irq context.
5455 * Note, that this is called and return with irqs disabled. This will
5456 * protect us against recursive calling from irq.
5457 */
5458 asmlinkage void __sched preempt_schedule_irq(void)
5459 {
5460 struct thread_info *ti = current_thread_info();
5461
5462 /* Catch callers which need to be fixed */
5463 BUG_ON(ti->preempt_count || !irqs_disabled());
5464
5465 do {
5466 add_preempt_count(PREEMPT_ACTIVE);
5467 local_irq_enable();
5468 schedule();
5469 local_irq_disable();
5470 sub_preempt_count(PREEMPT_ACTIVE);
5471
5472 /*
5473 * Check again in case we missed a preemption opportunity
5474 * between schedule and now.
5475 */
5476 barrier();
5477 } while (need_resched());
5478 }
5479
5480 #endif /* CONFIG_PREEMPT */
5481
5482 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5483 void *key)
5484 {
5485 return try_to_wake_up(curr->private, mode, sync);
5486 }
5487 EXPORT_SYMBOL(default_wake_function);
5488
5489 /*
5490 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5491 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5492 * number) then we wake all the non-exclusive tasks and one exclusive task.
5493 *
5494 * There are circumstances in which we can try to wake a task which has already
5495 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5496 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5497 */
5498 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5499 int nr_exclusive, int sync, void *key)
5500 {
5501 wait_queue_t *curr, *next;
5502
5503 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5504 unsigned flags = curr->flags;
5505
5506 if (curr->func(curr, mode, sync, key) &&
5507 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5508 break;
5509 }
5510 }
5511
5512 /**
5513 * __wake_up - wake up threads blocked on a waitqueue.
5514 * @q: the waitqueue
5515 * @mode: which threads
5516 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5517 * @key: is directly passed to the wakeup function
5518 *
5519 * It may be assumed that this function implies a write memory barrier before
5520 * changing the task state if and only if any tasks are woken up.
5521 */
5522 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5523 int nr_exclusive, void *key)
5524 {
5525 unsigned long flags;
5526
5527 spin_lock_irqsave(&q->lock, flags);
5528 __wake_up_common(q, mode, nr_exclusive, 0, key);
5529 spin_unlock_irqrestore(&q->lock, flags);
5530 }
5531 EXPORT_SYMBOL(__wake_up);
5532
5533 /*
5534 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5535 */
5536 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5537 {
5538 __wake_up_common(q, mode, 1, 0, NULL);
5539 }
5540
5541 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5542 {
5543 __wake_up_common(q, mode, 1, 0, key);
5544 }
5545
5546 /**
5547 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5548 * @q: the waitqueue
5549 * @mode: which threads
5550 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5551 * @key: opaque value to be passed to wakeup targets
5552 *
5553 * The sync wakeup differs that the waker knows that it will schedule
5554 * away soon, so while the target thread will be woken up, it will not
5555 * be migrated to another CPU - ie. the two threads are 'synchronized'
5556 * with each other. This can prevent needless bouncing between CPUs.
5557 *
5558 * On UP it can prevent extra preemption.
5559 *
5560 * It may be assumed that this function implies a write memory barrier before
5561 * changing the task state if and only if any tasks are woken up.
5562 */
5563 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5564 int nr_exclusive, void *key)
5565 {
5566 unsigned long flags;
5567 int sync = 1;
5568
5569 if (unlikely(!q))
5570 return;
5571
5572 if (unlikely(!nr_exclusive))
5573 sync = 0;
5574
5575 spin_lock_irqsave(&q->lock, flags);
5576 __wake_up_common(q, mode, nr_exclusive, sync, key);
5577 spin_unlock_irqrestore(&q->lock, flags);
5578 }
5579 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5580
5581 /*
5582 * __wake_up_sync - see __wake_up_sync_key()
5583 */
5584 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5585 {
5586 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5587 }
5588 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5589
5590 /**
5591 * complete: - signals a single thread waiting on this completion
5592 * @x: holds the state of this particular completion
5593 *
5594 * This will wake up a single thread waiting on this completion. Threads will be
5595 * awakened in the same order in which they were queued.
5596 *
5597 * See also complete_all(), wait_for_completion() and related routines.
5598 *
5599 * It may be assumed that this function implies a write memory barrier before
5600 * changing the task state if and only if any tasks are woken up.
5601 */
5602 void complete(struct completion *x)
5603 {
5604 unsigned long flags;
5605
5606 spin_lock_irqsave(&x->wait.lock, flags);
5607 x->done++;
5608 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5609 spin_unlock_irqrestore(&x->wait.lock, flags);
5610 }
5611 EXPORT_SYMBOL(complete);
5612
5613 /**
5614 * complete_all: - signals all threads waiting on this completion
5615 * @x: holds the state of this particular completion
5616 *
5617 * This will wake up all threads waiting on this particular completion event.
5618 *
5619 * It may be assumed that this function implies a write memory barrier before
5620 * changing the task state if and only if any tasks are woken up.
5621 */
5622 void complete_all(struct completion *x)
5623 {
5624 unsigned long flags;
5625
5626 spin_lock_irqsave(&x->wait.lock, flags);
5627 x->done += UINT_MAX/2;
5628 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5629 spin_unlock_irqrestore(&x->wait.lock, flags);
5630 }
5631 EXPORT_SYMBOL(complete_all);
5632
5633 static inline long __sched
5634 do_wait_for_common(struct completion *x, long timeout, int state)
5635 {
5636 if (!x->done) {
5637 DECLARE_WAITQUEUE(wait, current);
5638
5639 wait.flags |= WQ_FLAG_EXCLUSIVE;
5640 __add_wait_queue_tail(&x->wait, &wait);
5641 do {
5642 if (signal_pending_state(state, current)) {
5643 timeout = -ERESTARTSYS;
5644 break;
5645 }
5646 __set_current_state(state);
5647 spin_unlock_irq(&x->wait.lock);
5648 timeout = schedule_timeout(timeout);
5649 spin_lock_irq(&x->wait.lock);
5650 } while (!x->done && timeout);
5651 __remove_wait_queue(&x->wait, &wait);
5652 if (!x->done)
5653 return timeout;
5654 }
5655 x->done--;
5656 return timeout ?: 1;
5657 }
5658
5659 static long __sched
5660 wait_for_common(struct completion *x, long timeout, int state)
5661 {
5662 might_sleep();
5663
5664 spin_lock_irq(&x->wait.lock);
5665 timeout = do_wait_for_common(x, timeout, state);
5666 spin_unlock_irq(&x->wait.lock);
5667 return timeout;
5668 }
5669
5670 /**
5671 * wait_for_completion: - waits for completion of a task
5672 * @x: holds the state of this particular completion
5673 *
5674 * This waits to be signaled for completion of a specific task. It is NOT
5675 * interruptible and there is no timeout.
5676 *
5677 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5678 * and interrupt capability. Also see complete().
5679 */
5680 void __sched wait_for_completion(struct completion *x)
5681 {
5682 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5683 }
5684 EXPORT_SYMBOL(wait_for_completion);
5685
5686 /**
5687 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5688 * @x: holds the state of this particular completion
5689 * @timeout: timeout value in jiffies
5690 *
5691 * This waits for either a completion of a specific task to be signaled or for a
5692 * specified timeout to expire. The timeout is in jiffies. It is not
5693 * interruptible.
5694 */
5695 unsigned long __sched
5696 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5697 {
5698 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5699 }
5700 EXPORT_SYMBOL(wait_for_completion_timeout);
5701
5702 /**
5703 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5704 * @x: holds the state of this particular completion
5705 *
5706 * This waits for completion of a specific task to be signaled. It is
5707 * interruptible.
5708 */
5709 int __sched wait_for_completion_interruptible(struct completion *x)
5710 {
5711 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5712 if (t == -ERESTARTSYS)
5713 return t;
5714 return 0;
5715 }
5716 EXPORT_SYMBOL(wait_for_completion_interruptible);
5717
5718 /**
5719 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5720 * @x: holds the state of this particular completion
5721 * @timeout: timeout value in jiffies
5722 *
5723 * This waits for either a completion of a specific task to be signaled or for a
5724 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5725 */
5726 unsigned long __sched
5727 wait_for_completion_interruptible_timeout(struct completion *x,
5728 unsigned long timeout)
5729 {
5730 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5731 }
5732 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5733
5734 /**
5735 * wait_for_completion_killable: - waits for completion of a task (killable)
5736 * @x: holds the state of this particular completion
5737 *
5738 * This waits to be signaled for completion of a specific task. It can be
5739 * interrupted by a kill signal.
5740 */
5741 int __sched wait_for_completion_killable(struct completion *x)
5742 {
5743 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5744 if (t == -ERESTARTSYS)
5745 return t;
5746 return 0;
5747 }
5748 EXPORT_SYMBOL(wait_for_completion_killable);
5749
5750 /**
5751 * try_wait_for_completion - try to decrement a completion without blocking
5752 * @x: completion structure
5753 *
5754 * Returns: 0 if a decrement cannot be done without blocking
5755 * 1 if a decrement succeeded.
5756 *
5757 * If a completion is being used as a counting completion,
5758 * attempt to decrement the counter without blocking. This
5759 * enables us to avoid waiting if the resource the completion
5760 * is protecting is not available.
5761 */
5762 bool try_wait_for_completion(struct completion *x)
5763 {
5764 int ret = 1;
5765
5766 spin_lock_irq(&x->wait.lock);
5767 if (!x->done)
5768 ret = 0;
5769 else
5770 x->done--;
5771 spin_unlock_irq(&x->wait.lock);
5772 return ret;
5773 }
5774 EXPORT_SYMBOL(try_wait_for_completion);
5775
5776 /**
5777 * completion_done - Test to see if a completion has any waiters
5778 * @x: completion structure
5779 *
5780 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5781 * 1 if there are no waiters.
5782 *
5783 */
5784 bool completion_done(struct completion *x)
5785 {
5786 int ret = 1;
5787
5788 spin_lock_irq(&x->wait.lock);
5789 if (!x->done)
5790 ret = 0;
5791 spin_unlock_irq(&x->wait.lock);
5792 return ret;
5793 }
5794 EXPORT_SYMBOL(completion_done);
5795
5796 static long __sched
5797 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5798 {
5799 unsigned long flags;
5800 wait_queue_t wait;
5801
5802 init_waitqueue_entry(&wait, current);
5803
5804 __set_current_state(state);
5805
5806 spin_lock_irqsave(&q->lock, flags);
5807 __add_wait_queue(q, &wait);
5808 spin_unlock(&q->lock);
5809 timeout = schedule_timeout(timeout);
5810 spin_lock_irq(&q->lock);
5811 __remove_wait_queue(q, &wait);
5812 spin_unlock_irqrestore(&q->lock, flags);
5813
5814 return timeout;
5815 }
5816
5817 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5818 {
5819 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5820 }
5821 EXPORT_SYMBOL(interruptible_sleep_on);
5822
5823 long __sched
5824 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5825 {
5826 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5827 }
5828 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5829
5830 void __sched sleep_on(wait_queue_head_t *q)
5831 {
5832 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5833 }
5834 EXPORT_SYMBOL(sleep_on);
5835
5836 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5837 {
5838 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5839 }
5840 EXPORT_SYMBOL(sleep_on_timeout);
5841
5842 #ifdef CONFIG_RT_MUTEXES
5843
5844 /*
5845 * rt_mutex_setprio - set the current priority of a task
5846 * @p: task
5847 * @prio: prio value (kernel-internal form)
5848 *
5849 * This function changes the 'effective' priority of a task. It does
5850 * not touch ->normal_prio like __setscheduler().
5851 *
5852 * Used by the rt_mutex code to implement priority inheritance logic.
5853 */
5854 void rt_mutex_setprio(struct task_struct *p, int prio)
5855 {
5856 unsigned long flags;
5857 int oldprio, on_rq, running;
5858 struct rq *rq;
5859 const struct sched_class *prev_class = p->sched_class;
5860
5861 BUG_ON(prio < 0 || prio > MAX_PRIO);
5862
5863 rq = task_rq_lock(p, &flags);
5864 update_rq_clock(rq);
5865
5866 oldprio = p->prio;
5867 on_rq = p->se.on_rq;
5868 running = task_current(rq, p);
5869 if (on_rq)
5870 dequeue_task(rq, p, 0);
5871 if (running)
5872 p->sched_class->put_prev_task(rq, p);
5873
5874 if (rt_prio(prio))
5875 p->sched_class = &rt_sched_class;
5876 else
5877 p->sched_class = &fair_sched_class;
5878
5879 p->prio = prio;
5880
5881 if (running)
5882 p->sched_class->set_curr_task(rq);
5883 if (on_rq) {
5884 enqueue_task(rq, p, 0);
5885
5886 check_class_changed(rq, p, prev_class, oldprio, running);
5887 }
5888 task_rq_unlock(rq, &flags);
5889 }
5890
5891 #endif
5892
5893 void set_user_nice(struct task_struct *p, long nice)
5894 {
5895 int old_prio, delta, on_rq;
5896 unsigned long flags;
5897 struct rq *rq;
5898
5899 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5900 return;
5901 /*
5902 * We have to be careful, if called from sys_setpriority(),
5903 * the task might be in the middle of scheduling on another CPU.
5904 */
5905 rq = task_rq_lock(p, &flags);
5906 update_rq_clock(rq);
5907 /*
5908 * The RT priorities are set via sched_setscheduler(), but we still
5909 * allow the 'normal' nice value to be set - but as expected
5910 * it wont have any effect on scheduling until the task is
5911 * SCHED_FIFO/SCHED_RR:
5912 */
5913 if (task_has_rt_policy(p)) {
5914 p->static_prio = NICE_TO_PRIO(nice);
5915 goto out_unlock;
5916 }
5917 on_rq = p->se.on_rq;
5918 if (on_rq)
5919 dequeue_task(rq, p, 0);
5920
5921 p->static_prio = NICE_TO_PRIO(nice);
5922 set_load_weight(p);
5923 old_prio = p->prio;
5924 p->prio = effective_prio(p);
5925 delta = p->prio - old_prio;
5926
5927 if (on_rq) {
5928 enqueue_task(rq, p, 0);
5929 /*
5930 * If the task increased its priority or is running and
5931 * lowered its priority, then reschedule its CPU:
5932 */
5933 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5934 resched_task(rq->curr);
5935 }
5936 out_unlock:
5937 task_rq_unlock(rq, &flags);
5938 }
5939 EXPORT_SYMBOL(set_user_nice);
5940
5941 /*
5942 * can_nice - check if a task can reduce its nice value
5943 * @p: task
5944 * @nice: nice value
5945 */
5946 int can_nice(const struct task_struct *p, const int nice)
5947 {
5948 /* convert nice value [19,-20] to rlimit style value [1,40] */
5949 int nice_rlim = 20 - nice;
5950
5951 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5952 capable(CAP_SYS_NICE));
5953 }
5954
5955 #ifdef __ARCH_WANT_SYS_NICE
5956
5957 /*
5958 * sys_nice - change the priority of the current process.
5959 * @increment: priority increment
5960 *
5961 * sys_setpriority is a more generic, but much slower function that
5962 * does similar things.
5963 */
5964 SYSCALL_DEFINE1(nice, int, increment)
5965 {
5966 long nice, retval;
5967
5968 /*
5969 * Setpriority might change our priority at the same moment.
5970 * We don't have to worry. Conceptually one call occurs first
5971 * and we have a single winner.
5972 */
5973 if (increment < -40)
5974 increment = -40;
5975 if (increment > 40)
5976 increment = 40;
5977
5978 nice = TASK_NICE(current) + increment;
5979 if (nice < -20)
5980 nice = -20;
5981 if (nice > 19)
5982 nice = 19;
5983
5984 if (increment < 0 && !can_nice(current, nice))
5985 return -EPERM;
5986
5987 retval = security_task_setnice(current, nice);
5988 if (retval)
5989 return retval;
5990
5991 set_user_nice(current, nice);
5992 return 0;
5993 }
5994
5995 #endif
5996
5997 /**
5998 * task_prio - return the priority value of a given task.
5999 * @p: the task in question.
6000 *
6001 * This is the priority value as seen by users in /proc.
6002 * RT tasks are offset by -200. Normal tasks are centered
6003 * around 0, value goes from -16 to +15.
6004 */
6005 int task_prio(const struct task_struct *p)
6006 {
6007 return p->prio - MAX_RT_PRIO;
6008 }
6009
6010 /**
6011 * task_nice - return the nice value of a given task.
6012 * @p: the task in question.
6013 */
6014 int task_nice(const struct task_struct *p)
6015 {
6016 return TASK_NICE(p);
6017 }
6018 EXPORT_SYMBOL(task_nice);
6019
6020 /**
6021 * idle_cpu - is a given cpu idle currently?
6022 * @cpu: the processor in question.
6023 */
6024 int idle_cpu(int cpu)
6025 {
6026 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6027 }
6028
6029 /**
6030 * idle_task - return the idle task for a given cpu.
6031 * @cpu: the processor in question.
6032 */
6033 struct task_struct *idle_task(int cpu)
6034 {
6035 return cpu_rq(cpu)->idle;
6036 }
6037
6038 /**
6039 * find_process_by_pid - find a process with a matching PID value.
6040 * @pid: the pid in question.
6041 */
6042 static struct task_struct *find_process_by_pid(pid_t pid)
6043 {
6044 return pid ? find_task_by_vpid(pid) : current;
6045 }
6046
6047 /* Actually do priority change: must hold rq lock. */
6048 static void
6049 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6050 {
6051 BUG_ON(p->se.on_rq);
6052
6053 p->policy = policy;
6054 switch (p->policy) {
6055 case SCHED_NORMAL:
6056 case SCHED_BATCH:
6057 case SCHED_IDLE:
6058 p->sched_class = &fair_sched_class;
6059 break;
6060 case SCHED_FIFO:
6061 case SCHED_RR:
6062 p->sched_class = &rt_sched_class;
6063 break;
6064 }
6065
6066 p->rt_priority = prio;
6067 p->normal_prio = normal_prio(p);
6068 /* we are holding p->pi_lock already */
6069 p->prio = rt_mutex_getprio(p);
6070 set_load_weight(p);
6071 }
6072
6073 /*
6074 * check the target process has a UID that matches the current process's
6075 */
6076 static bool check_same_owner(struct task_struct *p)
6077 {
6078 const struct cred *cred = current_cred(), *pcred;
6079 bool match;
6080
6081 rcu_read_lock();
6082 pcred = __task_cred(p);
6083 match = (cred->euid == pcred->euid ||
6084 cred->euid == pcred->uid);
6085 rcu_read_unlock();
6086 return match;
6087 }
6088
6089 static int __sched_setscheduler(struct task_struct *p, int policy,
6090 struct sched_param *param, bool user)
6091 {
6092 int retval, oldprio, oldpolicy = -1, on_rq, running;
6093 unsigned long flags;
6094 const struct sched_class *prev_class = p->sched_class;
6095 struct rq *rq;
6096
6097 /* may grab non-irq protected spin_locks */
6098 BUG_ON(in_interrupt());
6099 recheck:
6100 /* double check policy once rq lock held */
6101 if (policy < 0)
6102 policy = oldpolicy = p->policy;
6103 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
6104 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6105 policy != SCHED_IDLE)
6106 return -EINVAL;
6107 /*
6108 * Valid priorities for SCHED_FIFO and SCHED_RR are
6109 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6110 * SCHED_BATCH and SCHED_IDLE is 0.
6111 */
6112 if (param->sched_priority < 0 ||
6113 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6114 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6115 return -EINVAL;
6116 if (rt_policy(policy) != (param->sched_priority != 0))
6117 return -EINVAL;
6118
6119 /*
6120 * Allow unprivileged RT tasks to decrease priority:
6121 */
6122 if (user && !capable(CAP_SYS_NICE)) {
6123 if (rt_policy(policy)) {
6124 unsigned long rlim_rtprio;
6125
6126 if (!lock_task_sighand(p, &flags))
6127 return -ESRCH;
6128 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6129 unlock_task_sighand(p, &flags);
6130
6131 /* can't set/change the rt policy */
6132 if (policy != p->policy && !rlim_rtprio)
6133 return -EPERM;
6134
6135 /* can't increase priority */
6136 if (param->sched_priority > p->rt_priority &&
6137 param->sched_priority > rlim_rtprio)
6138 return -EPERM;
6139 }
6140 /*
6141 * Like positive nice levels, dont allow tasks to
6142 * move out of SCHED_IDLE either:
6143 */
6144 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6145 return -EPERM;
6146
6147 /* can't change other user's priorities */
6148 if (!check_same_owner(p))
6149 return -EPERM;
6150 }
6151
6152 if (user) {
6153 #ifdef CONFIG_RT_GROUP_SCHED
6154 /*
6155 * Do not allow realtime tasks into groups that have no runtime
6156 * assigned.
6157 */
6158 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6159 task_group(p)->rt_bandwidth.rt_runtime == 0)
6160 return -EPERM;
6161 #endif
6162
6163 retval = security_task_setscheduler(p, policy, param);
6164 if (retval)
6165 return retval;
6166 }
6167
6168 /*
6169 * make sure no PI-waiters arrive (or leave) while we are
6170 * changing the priority of the task:
6171 */
6172 spin_lock_irqsave(&p->pi_lock, flags);
6173 /*
6174 * To be able to change p->policy safely, the apropriate
6175 * runqueue lock must be held.
6176 */
6177 rq = __task_rq_lock(p);
6178 /* recheck policy now with rq lock held */
6179 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6180 policy = oldpolicy = -1;
6181 __task_rq_unlock(rq);
6182 spin_unlock_irqrestore(&p->pi_lock, flags);
6183 goto recheck;
6184 }
6185 update_rq_clock(rq);
6186 on_rq = p->se.on_rq;
6187 running = task_current(rq, p);
6188 if (on_rq)
6189 deactivate_task(rq, p, 0);
6190 if (running)
6191 p->sched_class->put_prev_task(rq, p);
6192
6193 oldprio = p->prio;
6194 __setscheduler(rq, p, policy, param->sched_priority);
6195
6196 if (running)
6197 p->sched_class->set_curr_task(rq);
6198 if (on_rq) {
6199 activate_task(rq, p, 0);
6200
6201 check_class_changed(rq, p, prev_class, oldprio, running);
6202 }
6203 __task_rq_unlock(rq);
6204 spin_unlock_irqrestore(&p->pi_lock, flags);
6205
6206 rt_mutex_adjust_pi(p);
6207
6208 return 0;
6209 }
6210
6211 /**
6212 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6213 * @p: the task in question.
6214 * @policy: new policy.
6215 * @param: structure containing the new RT priority.
6216 *
6217 * NOTE that the task may be already dead.
6218 */
6219 int sched_setscheduler(struct task_struct *p, int policy,
6220 struct sched_param *param)
6221 {
6222 return __sched_setscheduler(p, policy, param, true);
6223 }
6224 EXPORT_SYMBOL_GPL(sched_setscheduler);
6225
6226 /**
6227 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6228 * @p: the task in question.
6229 * @policy: new policy.
6230 * @param: structure containing the new RT priority.
6231 *
6232 * Just like sched_setscheduler, only don't bother checking if the
6233 * current context has permission. For example, this is needed in
6234 * stop_machine(): we create temporary high priority worker threads,
6235 * but our caller might not have that capability.
6236 */
6237 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6238 struct sched_param *param)
6239 {
6240 return __sched_setscheduler(p, policy, param, false);
6241 }
6242
6243 static int
6244 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6245 {
6246 struct sched_param lparam;
6247 struct task_struct *p;
6248 int retval;
6249
6250 if (!param || pid < 0)
6251 return -EINVAL;
6252 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6253 return -EFAULT;
6254
6255 rcu_read_lock();
6256 retval = -ESRCH;
6257 p = find_process_by_pid(pid);
6258 if (p != NULL)
6259 retval = sched_setscheduler(p, policy, &lparam);
6260 rcu_read_unlock();
6261
6262 return retval;
6263 }
6264
6265 /**
6266 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6267 * @pid: the pid in question.
6268 * @policy: new policy.
6269 * @param: structure containing the new RT priority.
6270 */
6271 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6272 struct sched_param __user *, param)
6273 {
6274 /* negative values for policy are not valid */
6275 if (policy < 0)
6276 return -EINVAL;
6277
6278 return do_sched_setscheduler(pid, policy, param);
6279 }
6280
6281 /**
6282 * sys_sched_setparam - set/change the RT priority of a thread
6283 * @pid: the pid in question.
6284 * @param: structure containing the new RT priority.
6285 */
6286 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6287 {
6288 return do_sched_setscheduler(pid, -1, param);
6289 }
6290
6291 /**
6292 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6293 * @pid: the pid in question.
6294 */
6295 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6296 {
6297 struct task_struct *p;
6298 int retval;
6299
6300 if (pid < 0)
6301 return -EINVAL;
6302
6303 retval = -ESRCH;
6304 read_lock(&tasklist_lock);
6305 p = find_process_by_pid(pid);
6306 if (p) {
6307 retval = security_task_getscheduler(p);
6308 if (!retval)
6309 retval = p->policy;
6310 }
6311 read_unlock(&tasklist_lock);
6312 return retval;
6313 }
6314
6315 /**
6316 * sys_sched_getscheduler - get the RT priority of a thread
6317 * @pid: the pid in question.
6318 * @param: structure containing the RT priority.
6319 */
6320 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6321 {
6322 struct sched_param lp;
6323 struct task_struct *p;
6324 int retval;
6325
6326 if (!param || pid < 0)
6327 return -EINVAL;
6328
6329 read_lock(&tasklist_lock);
6330 p = find_process_by_pid(pid);
6331 retval = -ESRCH;
6332 if (!p)
6333 goto out_unlock;
6334
6335 retval = security_task_getscheduler(p);
6336 if (retval)
6337 goto out_unlock;
6338
6339 lp.sched_priority = p->rt_priority;
6340 read_unlock(&tasklist_lock);
6341
6342 /*
6343 * This one might sleep, we cannot do it with a spinlock held ...
6344 */
6345 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6346
6347 return retval;
6348
6349 out_unlock:
6350 read_unlock(&tasklist_lock);
6351 return retval;
6352 }
6353
6354 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6355 {
6356 cpumask_var_t cpus_allowed, new_mask;
6357 struct task_struct *p;
6358 int retval;
6359
6360 get_online_cpus();
6361 read_lock(&tasklist_lock);
6362
6363 p = find_process_by_pid(pid);
6364 if (!p) {
6365 read_unlock(&tasklist_lock);
6366 put_online_cpus();
6367 return -ESRCH;
6368 }
6369
6370 /*
6371 * It is not safe to call set_cpus_allowed with the
6372 * tasklist_lock held. We will bump the task_struct's
6373 * usage count and then drop tasklist_lock.
6374 */
6375 get_task_struct(p);
6376 read_unlock(&tasklist_lock);
6377
6378 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6379 retval = -ENOMEM;
6380 goto out_put_task;
6381 }
6382 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6383 retval = -ENOMEM;
6384 goto out_free_cpus_allowed;
6385 }
6386 retval = -EPERM;
6387 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6388 goto out_unlock;
6389
6390 retval = security_task_setscheduler(p, 0, NULL);
6391 if (retval)
6392 goto out_unlock;
6393
6394 cpuset_cpus_allowed(p, cpus_allowed);
6395 cpumask_and(new_mask, in_mask, cpus_allowed);
6396 again:
6397 retval = set_cpus_allowed_ptr(p, new_mask);
6398
6399 if (!retval) {
6400 cpuset_cpus_allowed(p, cpus_allowed);
6401 if (!cpumask_subset(new_mask, cpus_allowed)) {
6402 /*
6403 * We must have raced with a concurrent cpuset
6404 * update. Just reset the cpus_allowed to the
6405 * cpuset's cpus_allowed
6406 */
6407 cpumask_copy(new_mask, cpus_allowed);
6408 goto again;
6409 }
6410 }
6411 out_unlock:
6412 free_cpumask_var(new_mask);
6413 out_free_cpus_allowed:
6414 free_cpumask_var(cpus_allowed);
6415 out_put_task:
6416 put_task_struct(p);
6417 put_online_cpus();
6418 return retval;
6419 }
6420
6421 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6422 struct cpumask *new_mask)
6423 {
6424 if (len < cpumask_size())
6425 cpumask_clear(new_mask);
6426 else if (len > cpumask_size())
6427 len = cpumask_size();
6428
6429 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6430 }
6431
6432 /**
6433 * sys_sched_setaffinity - set the cpu affinity of a process
6434 * @pid: pid of the process
6435 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6436 * @user_mask_ptr: user-space pointer to the new cpu mask
6437 */
6438 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6439 unsigned long __user *, user_mask_ptr)
6440 {
6441 cpumask_var_t new_mask;
6442 int retval;
6443
6444 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6445 return -ENOMEM;
6446
6447 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6448 if (retval == 0)
6449 retval = sched_setaffinity(pid, new_mask);
6450 free_cpumask_var(new_mask);
6451 return retval;
6452 }
6453
6454 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6455 {
6456 struct task_struct *p;
6457 int retval;
6458
6459 get_online_cpus();
6460 read_lock(&tasklist_lock);
6461
6462 retval = -ESRCH;
6463 p = find_process_by_pid(pid);
6464 if (!p)
6465 goto out_unlock;
6466
6467 retval = security_task_getscheduler(p);
6468 if (retval)
6469 goto out_unlock;
6470
6471 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6472
6473 out_unlock:
6474 read_unlock(&tasklist_lock);
6475 put_online_cpus();
6476
6477 return retval;
6478 }
6479
6480 /**
6481 * sys_sched_getaffinity - get the cpu affinity of a process
6482 * @pid: pid of the process
6483 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6484 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6485 */
6486 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6487 unsigned long __user *, user_mask_ptr)
6488 {
6489 int ret;
6490 cpumask_var_t mask;
6491
6492 if (len < cpumask_size())
6493 return -EINVAL;
6494
6495 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6496 return -ENOMEM;
6497
6498 ret = sched_getaffinity(pid, mask);
6499 if (ret == 0) {
6500 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6501 ret = -EFAULT;
6502 else
6503 ret = cpumask_size();
6504 }
6505 free_cpumask_var(mask);
6506
6507 return ret;
6508 }
6509
6510 /**
6511 * sys_sched_yield - yield the current processor to other threads.
6512 *
6513 * This function yields the current CPU to other tasks. If there are no
6514 * other threads running on this CPU then this function will return.
6515 */
6516 SYSCALL_DEFINE0(sched_yield)
6517 {
6518 struct rq *rq = this_rq_lock();
6519
6520 schedstat_inc(rq, yld_count);
6521 current->sched_class->yield_task(rq);
6522
6523 /*
6524 * Since we are going to call schedule() anyway, there's
6525 * no need to preempt or enable interrupts:
6526 */
6527 __release(rq->lock);
6528 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6529 _raw_spin_unlock(&rq->lock);
6530 preempt_enable_no_resched();
6531
6532 schedule();
6533
6534 return 0;
6535 }
6536
6537 static void __cond_resched(void)
6538 {
6539 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6540 __might_sleep(__FILE__, __LINE__);
6541 #endif
6542 /*
6543 * The BKS might be reacquired before we have dropped
6544 * PREEMPT_ACTIVE, which could trigger a second
6545 * cond_resched() call.
6546 */
6547 do {
6548 add_preempt_count(PREEMPT_ACTIVE);
6549 schedule();
6550 sub_preempt_count(PREEMPT_ACTIVE);
6551 } while (need_resched());
6552 }
6553
6554 int __sched _cond_resched(void)
6555 {
6556 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6557 system_state == SYSTEM_RUNNING) {
6558 __cond_resched();
6559 return 1;
6560 }
6561 return 0;
6562 }
6563 EXPORT_SYMBOL(_cond_resched);
6564
6565 /*
6566 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6567 * call schedule, and on return reacquire the lock.
6568 *
6569 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6570 * operations here to prevent schedule() from being called twice (once via
6571 * spin_unlock(), once by hand).
6572 */
6573 int cond_resched_lock(spinlock_t *lock)
6574 {
6575 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6576 int ret = 0;
6577
6578 if (spin_needbreak(lock) || resched) {
6579 spin_unlock(lock);
6580 if (resched && need_resched())
6581 __cond_resched();
6582 else
6583 cpu_relax();
6584 ret = 1;
6585 spin_lock(lock);
6586 }
6587 return ret;
6588 }
6589 EXPORT_SYMBOL(cond_resched_lock);
6590
6591 int __sched cond_resched_softirq(void)
6592 {
6593 BUG_ON(!in_softirq());
6594
6595 if (need_resched() && system_state == SYSTEM_RUNNING) {
6596 local_bh_enable();
6597 __cond_resched();
6598 local_bh_disable();
6599 return 1;
6600 }
6601 return 0;
6602 }
6603 EXPORT_SYMBOL(cond_resched_softirq);
6604
6605 /**
6606 * yield - yield the current processor to other threads.
6607 *
6608 * This is a shortcut for kernel-space yielding - it marks the
6609 * thread runnable and calls sys_sched_yield().
6610 */
6611 void __sched yield(void)
6612 {
6613 set_current_state(TASK_RUNNING);
6614 sys_sched_yield();
6615 }
6616 EXPORT_SYMBOL(yield);
6617
6618 /*
6619 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6620 * that process accounting knows that this is a task in IO wait state.
6621 *
6622 * But don't do that if it is a deliberate, throttling IO wait (this task
6623 * has set its backing_dev_info: the queue against which it should throttle)
6624 */
6625 void __sched io_schedule(void)
6626 {
6627 struct rq *rq = &__raw_get_cpu_var(runqueues);
6628
6629 delayacct_blkio_start();
6630 atomic_inc(&rq->nr_iowait);
6631 schedule();
6632 atomic_dec(&rq->nr_iowait);
6633 delayacct_blkio_end();
6634 }
6635 EXPORT_SYMBOL(io_schedule);
6636
6637 long __sched io_schedule_timeout(long timeout)
6638 {
6639 struct rq *rq = &__raw_get_cpu_var(runqueues);
6640 long ret;
6641
6642 delayacct_blkio_start();
6643 atomic_inc(&rq->nr_iowait);
6644 ret = schedule_timeout(timeout);
6645 atomic_dec(&rq->nr_iowait);
6646 delayacct_blkio_end();
6647 return ret;
6648 }
6649
6650 /**
6651 * sys_sched_get_priority_max - return maximum RT priority.
6652 * @policy: scheduling class.
6653 *
6654 * this syscall returns the maximum rt_priority that can be used
6655 * by a given scheduling class.
6656 */
6657 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6658 {
6659 int ret = -EINVAL;
6660
6661 switch (policy) {
6662 case SCHED_FIFO:
6663 case SCHED_RR:
6664 ret = MAX_USER_RT_PRIO-1;
6665 break;
6666 case SCHED_NORMAL:
6667 case SCHED_BATCH:
6668 case SCHED_IDLE:
6669 ret = 0;
6670 break;
6671 }
6672 return ret;
6673 }
6674
6675 /**
6676 * sys_sched_get_priority_min - return minimum RT priority.
6677 * @policy: scheduling class.
6678 *
6679 * this syscall returns the minimum rt_priority that can be used
6680 * by a given scheduling class.
6681 */
6682 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6683 {
6684 int ret = -EINVAL;
6685
6686 switch (policy) {
6687 case SCHED_FIFO:
6688 case SCHED_RR:
6689 ret = 1;
6690 break;
6691 case SCHED_NORMAL:
6692 case SCHED_BATCH:
6693 case SCHED_IDLE:
6694 ret = 0;
6695 }
6696 return ret;
6697 }
6698
6699 /**
6700 * sys_sched_rr_get_interval - return the default timeslice of a process.
6701 * @pid: pid of the process.
6702 * @interval: userspace pointer to the timeslice value.
6703 *
6704 * this syscall writes the default timeslice value of a given process
6705 * into the user-space timespec buffer. A value of '0' means infinity.
6706 */
6707 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6708 struct timespec __user *, interval)
6709 {
6710 struct task_struct *p;
6711 unsigned int time_slice;
6712 int retval;
6713 struct timespec t;
6714
6715 if (pid < 0)
6716 return -EINVAL;
6717
6718 retval = -ESRCH;
6719 read_lock(&tasklist_lock);
6720 p = find_process_by_pid(pid);
6721 if (!p)
6722 goto out_unlock;
6723
6724 retval = security_task_getscheduler(p);
6725 if (retval)
6726 goto out_unlock;
6727
6728 /*
6729 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6730 * tasks that are on an otherwise idle runqueue:
6731 */
6732 time_slice = 0;
6733 if (p->policy == SCHED_RR) {
6734 time_slice = DEF_TIMESLICE;
6735 } else if (p->policy != SCHED_FIFO) {
6736 struct sched_entity *se = &p->se;
6737 unsigned long flags;
6738 struct rq *rq;
6739
6740 rq = task_rq_lock(p, &flags);
6741 if (rq->cfs.load.weight)
6742 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6743 task_rq_unlock(rq, &flags);
6744 }
6745 read_unlock(&tasklist_lock);
6746 jiffies_to_timespec(time_slice, &t);
6747 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6748 return retval;
6749
6750 out_unlock:
6751 read_unlock(&tasklist_lock);
6752 return retval;
6753 }
6754
6755 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6756
6757 void sched_show_task(struct task_struct *p)
6758 {
6759 unsigned long free = 0;
6760 unsigned state;
6761
6762 state = p->state ? __ffs(p->state) + 1 : 0;
6763 printk(KERN_INFO "%-13.13s %c", p->comm,
6764 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6765 #if BITS_PER_LONG == 32
6766 if (state == TASK_RUNNING)
6767 printk(KERN_CONT " running ");
6768 else
6769 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6770 #else
6771 if (state == TASK_RUNNING)
6772 printk(KERN_CONT " running task ");
6773 else
6774 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6775 #endif
6776 #ifdef CONFIG_DEBUG_STACK_USAGE
6777 free = stack_not_used(p);
6778 #endif
6779 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6780 task_pid_nr(p), task_pid_nr(p->real_parent),
6781 (unsigned long)task_thread_info(p)->flags);
6782
6783 show_stack(p, NULL);
6784 }
6785
6786 void show_state_filter(unsigned long state_filter)
6787 {
6788 struct task_struct *g, *p;
6789
6790 #if BITS_PER_LONG == 32
6791 printk(KERN_INFO
6792 " task PC stack pid father\n");
6793 #else
6794 printk(KERN_INFO
6795 " task PC stack pid father\n");
6796 #endif
6797 read_lock(&tasklist_lock);
6798 do_each_thread(g, p) {
6799 /*
6800 * reset the NMI-timeout, listing all files on a slow
6801 * console might take alot of time:
6802 */
6803 touch_nmi_watchdog();
6804 if (!state_filter || (p->state & state_filter))
6805 sched_show_task(p);
6806 } while_each_thread(g, p);
6807
6808 touch_all_softlockup_watchdogs();
6809
6810 #ifdef CONFIG_SCHED_DEBUG
6811 sysrq_sched_debug_show();
6812 #endif
6813 read_unlock(&tasklist_lock);
6814 /*
6815 * Only show locks if all tasks are dumped:
6816 */
6817 if (state_filter == -1)
6818 debug_show_all_locks();
6819 }
6820
6821 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6822 {
6823 idle->sched_class = &idle_sched_class;
6824 }
6825
6826 /**
6827 * init_idle - set up an idle thread for a given CPU
6828 * @idle: task in question
6829 * @cpu: cpu the idle task belongs to
6830 *
6831 * NOTE: this function does not set the idle thread's NEED_RESCHED
6832 * flag, to make booting more robust.
6833 */
6834 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6835 {
6836 struct rq *rq = cpu_rq(cpu);
6837 unsigned long flags;
6838
6839 spin_lock_irqsave(&rq->lock, flags);
6840
6841 __sched_fork(idle);
6842 idle->se.exec_start = sched_clock();
6843
6844 idle->prio = idle->normal_prio = MAX_PRIO;
6845 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6846 __set_task_cpu(idle, cpu);
6847
6848 rq->curr = rq->idle = idle;
6849 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6850 idle->oncpu = 1;
6851 #endif
6852 spin_unlock_irqrestore(&rq->lock, flags);
6853
6854 /* Set the preempt count _outside_ the spinlocks! */
6855 #if defined(CONFIG_PREEMPT)
6856 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6857 #else
6858 task_thread_info(idle)->preempt_count = 0;
6859 #endif
6860 /*
6861 * The idle tasks have their own, simple scheduling class:
6862 */
6863 idle->sched_class = &idle_sched_class;
6864 ftrace_graph_init_task(idle);
6865 }
6866
6867 /*
6868 * In a system that switches off the HZ timer nohz_cpu_mask
6869 * indicates which cpus entered this state. This is used
6870 * in the rcu update to wait only for active cpus. For system
6871 * which do not switch off the HZ timer nohz_cpu_mask should
6872 * always be CPU_BITS_NONE.
6873 */
6874 cpumask_var_t nohz_cpu_mask;
6875
6876 /*
6877 * Increase the granularity value when there are more CPUs,
6878 * because with more CPUs the 'effective latency' as visible
6879 * to users decreases. But the relationship is not linear,
6880 * so pick a second-best guess by going with the log2 of the
6881 * number of CPUs.
6882 *
6883 * This idea comes from the SD scheduler of Con Kolivas:
6884 */
6885 static inline void sched_init_granularity(void)
6886 {
6887 unsigned int factor = 1 + ilog2(num_online_cpus());
6888 const unsigned long limit = 200000000;
6889
6890 sysctl_sched_min_granularity *= factor;
6891 if (sysctl_sched_min_granularity > limit)
6892 sysctl_sched_min_granularity = limit;
6893
6894 sysctl_sched_latency *= factor;
6895 if (sysctl_sched_latency > limit)
6896 sysctl_sched_latency = limit;
6897
6898 sysctl_sched_wakeup_granularity *= factor;
6899
6900 sysctl_sched_shares_ratelimit *= factor;
6901 }
6902
6903 #ifdef CONFIG_SMP
6904 /*
6905 * This is how migration works:
6906 *
6907 * 1) we queue a struct migration_req structure in the source CPU's
6908 * runqueue and wake up that CPU's migration thread.
6909 * 2) we down() the locked semaphore => thread blocks.
6910 * 3) migration thread wakes up (implicitly it forces the migrated
6911 * thread off the CPU)
6912 * 4) it gets the migration request and checks whether the migrated
6913 * task is still in the wrong runqueue.
6914 * 5) if it's in the wrong runqueue then the migration thread removes
6915 * it and puts it into the right queue.
6916 * 6) migration thread up()s the semaphore.
6917 * 7) we wake up and the migration is done.
6918 */
6919
6920 /*
6921 * Change a given task's CPU affinity. Migrate the thread to a
6922 * proper CPU and schedule it away if the CPU it's executing on
6923 * is removed from the allowed bitmask.
6924 *
6925 * NOTE: the caller must have a valid reference to the task, the
6926 * task must not exit() & deallocate itself prematurely. The
6927 * call is not atomic; no spinlocks may be held.
6928 */
6929 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6930 {
6931 struct migration_req req;
6932 unsigned long flags;
6933 struct rq *rq;
6934 int ret = 0;
6935
6936 rq = task_rq_lock(p, &flags);
6937 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6938 ret = -EINVAL;
6939 goto out;
6940 }
6941
6942 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6943 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6944 ret = -EINVAL;
6945 goto out;
6946 }
6947
6948 if (p->sched_class->set_cpus_allowed)
6949 p->sched_class->set_cpus_allowed(p, new_mask);
6950 else {
6951 cpumask_copy(&p->cpus_allowed, new_mask);
6952 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6953 }
6954
6955 /* Can the task run on the task's current CPU? If so, we're done */
6956 if (cpumask_test_cpu(task_cpu(p), new_mask))
6957 goto out;
6958
6959 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6960 /* Need help from migration thread: drop lock and wait. */
6961 task_rq_unlock(rq, &flags);
6962 wake_up_process(rq->migration_thread);
6963 wait_for_completion(&req.done);
6964 tlb_migrate_finish(p->mm);
6965 return 0;
6966 }
6967 out:
6968 task_rq_unlock(rq, &flags);
6969
6970 return ret;
6971 }
6972 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6973
6974 /*
6975 * Move (not current) task off this cpu, onto dest cpu. We're doing
6976 * this because either it can't run here any more (set_cpus_allowed()
6977 * away from this CPU, or CPU going down), or because we're
6978 * attempting to rebalance this task on exec (sched_exec).
6979 *
6980 * So we race with normal scheduler movements, but that's OK, as long
6981 * as the task is no longer on this CPU.
6982 *
6983 * Returns non-zero if task was successfully migrated.
6984 */
6985 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6986 {
6987 struct rq *rq_dest, *rq_src;
6988 int ret = 0, on_rq;
6989
6990 if (unlikely(!cpu_active(dest_cpu)))
6991 return ret;
6992
6993 rq_src = cpu_rq(src_cpu);
6994 rq_dest = cpu_rq(dest_cpu);
6995
6996 double_rq_lock(rq_src, rq_dest);
6997 /* Already moved. */
6998 if (task_cpu(p) != src_cpu)
6999 goto done;
7000 /* Affinity changed (again). */
7001 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7002 goto fail;
7003
7004 on_rq = p->se.on_rq;
7005 if (on_rq)
7006 deactivate_task(rq_src, p, 0);
7007
7008 set_task_cpu(p, dest_cpu);
7009 if (on_rq) {
7010 activate_task(rq_dest, p, 0);
7011 check_preempt_curr(rq_dest, p, 0);
7012 }
7013 done:
7014 ret = 1;
7015 fail:
7016 double_rq_unlock(rq_src, rq_dest);
7017 return ret;
7018 }
7019
7020 /*
7021 * migration_thread - this is a highprio system thread that performs
7022 * thread migration by bumping thread off CPU then 'pushing' onto
7023 * another runqueue.
7024 */
7025 static int migration_thread(void *data)
7026 {
7027 int cpu = (long)data;
7028 struct rq *rq;
7029
7030 rq = cpu_rq(cpu);
7031 BUG_ON(rq->migration_thread != current);
7032
7033 set_current_state(TASK_INTERRUPTIBLE);
7034 while (!kthread_should_stop()) {
7035 struct migration_req *req;
7036 struct list_head *head;
7037
7038 spin_lock_irq(&rq->lock);
7039
7040 if (cpu_is_offline(cpu)) {
7041 spin_unlock_irq(&rq->lock);
7042 goto wait_to_die;
7043 }
7044
7045 if (rq->active_balance) {
7046 active_load_balance(rq, cpu);
7047 rq->active_balance = 0;
7048 }
7049
7050 head = &rq->migration_queue;
7051
7052 if (list_empty(head)) {
7053 spin_unlock_irq(&rq->lock);
7054 schedule();
7055 set_current_state(TASK_INTERRUPTIBLE);
7056 continue;
7057 }
7058 req = list_entry(head->next, struct migration_req, list);
7059 list_del_init(head->next);
7060
7061 spin_unlock(&rq->lock);
7062 __migrate_task(req->task, cpu, req->dest_cpu);
7063 local_irq_enable();
7064
7065 complete(&req->done);
7066 }
7067 __set_current_state(TASK_RUNNING);
7068 return 0;
7069
7070 wait_to_die:
7071 /* Wait for kthread_stop */
7072 set_current_state(TASK_INTERRUPTIBLE);
7073 while (!kthread_should_stop()) {
7074 schedule();
7075 set_current_state(TASK_INTERRUPTIBLE);
7076 }
7077 __set_current_state(TASK_RUNNING);
7078 return 0;
7079 }
7080
7081 #ifdef CONFIG_HOTPLUG_CPU
7082
7083 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7084 {
7085 int ret;
7086
7087 local_irq_disable();
7088 ret = __migrate_task(p, src_cpu, dest_cpu);
7089 local_irq_enable();
7090 return ret;
7091 }
7092
7093 /*
7094 * Figure out where task on dead CPU should go, use force if necessary.
7095 */
7096 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7097 {
7098 int dest_cpu;
7099 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7100
7101 again:
7102 /* Look for allowed, online CPU in same node. */
7103 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7104 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7105 goto move;
7106
7107 /* Any allowed, online CPU? */
7108 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7109 if (dest_cpu < nr_cpu_ids)
7110 goto move;
7111
7112 /* No more Mr. Nice Guy. */
7113 if (dest_cpu >= nr_cpu_ids) {
7114 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7115 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7116
7117 /*
7118 * Don't tell them about moving exiting tasks or
7119 * kernel threads (both mm NULL), since they never
7120 * leave kernel.
7121 */
7122 if (p->mm && printk_ratelimit()) {
7123 printk(KERN_INFO "process %d (%s) no "
7124 "longer affine to cpu%d\n",
7125 task_pid_nr(p), p->comm, dead_cpu);
7126 }
7127 }
7128
7129 move:
7130 /* It can have affinity changed while we were choosing. */
7131 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7132 goto again;
7133 }
7134
7135 /*
7136 * While a dead CPU has no uninterruptible tasks queued at this point,
7137 * it might still have a nonzero ->nr_uninterruptible counter, because
7138 * for performance reasons the counter is not stricly tracking tasks to
7139 * their home CPUs. So we just add the counter to another CPU's counter,
7140 * to keep the global sum constant after CPU-down:
7141 */
7142 static void migrate_nr_uninterruptible(struct rq *rq_src)
7143 {
7144 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7145 unsigned long flags;
7146
7147 local_irq_save(flags);
7148 double_rq_lock(rq_src, rq_dest);
7149 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7150 rq_src->nr_uninterruptible = 0;
7151 double_rq_unlock(rq_src, rq_dest);
7152 local_irq_restore(flags);
7153 }
7154
7155 /* Run through task list and migrate tasks from the dead cpu. */
7156 static void migrate_live_tasks(int src_cpu)
7157 {
7158 struct task_struct *p, *t;
7159
7160 read_lock(&tasklist_lock);
7161
7162 do_each_thread(t, p) {
7163 if (p == current)
7164 continue;
7165
7166 if (task_cpu(p) == src_cpu)
7167 move_task_off_dead_cpu(src_cpu, p);
7168 } while_each_thread(t, p);
7169
7170 read_unlock(&tasklist_lock);
7171 }
7172
7173 /*
7174 * Schedules idle task to be the next runnable task on current CPU.
7175 * It does so by boosting its priority to highest possible.
7176 * Used by CPU offline code.
7177 */
7178 void sched_idle_next(void)
7179 {
7180 int this_cpu = smp_processor_id();
7181 struct rq *rq = cpu_rq(this_cpu);
7182 struct task_struct *p = rq->idle;
7183 unsigned long flags;
7184
7185 /* cpu has to be offline */
7186 BUG_ON(cpu_online(this_cpu));
7187
7188 /*
7189 * Strictly not necessary since rest of the CPUs are stopped by now
7190 * and interrupts disabled on the current cpu.
7191 */
7192 spin_lock_irqsave(&rq->lock, flags);
7193
7194 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7195
7196 update_rq_clock(rq);
7197 activate_task(rq, p, 0);
7198
7199 spin_unlock_irqrestore(&rq->lock, flags);
7200 }
7201
7202 /*
7203 * Ensures that the idle task is using init_mm right before its cpu goes
7204 * offline.
7205 */
7206 void idle_task_exit(void)
7207 {
7208 struct mm_struct *mm = current->active_mm;
7209
7210 BUG_ON(cpu_online(smp_processor_id()));
7211
7212 if (mm != &init_mm)
7213 switch_mm(mm, &init_mm, current);
7214 mmdrop(mm);
7215 }
7216
7217 /* called under rq->lock with disabled interrupts */
7218 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7219 {
7220 struct rq *rq = cpu_rq(dead_cpu);
7221
7222 /* Must be exiting, otherwise would be on tasklist. */
7223 BUG_ON(!p->exit_state);
7224
7225 /* Cannot have done final schedule yet: would have vanished. */
7226 BUG_ON(p->state == TASK_DEAD);
7227
7228 get_task_struct(p);
7229
7230 /*
7231 * Drop lock around migration; if someone else moves it,
7232 * that's OK. No task can be added to this CPU, so iteration is
7233 * fine.
7234 */
7235 spin_unlock_irq(&rq->lock);
7236 move_task_off_dead_cpu(dead_cpu, p);
7237 spin_lock_irq(&rq->lock);
7238
7239 put_task_struct(p);
7240 }
7241
7242 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7243 static void migrate_dead_tasks(unsigned int dead_cpu)
7244 {
7245 struct rq *rq = cpu_rq(dead_cpu);
7246 struct task_struct *next;
7247
7248 for ( ; ; ) {
7249 if (!rq->nr_running)
7250 break;
7251 update_rq_clock(rq);
7252 next = pick_next_task(rq);
7253 if (!next)
7254 break;
7255 next->sched_class->put_prev_task(rq, next);
7256 migrate_dead(dead_cpu, next);
7257
7258 }
7259 }
7260
7261 /*
7262 * remove the tasks which were accounted by rq from calc_load_tasks.
7263 */
7264 static void calc_global_load_remove(struct rq *rq)
7265 {
7266 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7267 }
7268 #endif /* CONFIG_HOTPLUG_CPU */
7269
7270 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7271
7272 static struct ctl_table sd_ctl_dir[] = {
7273 {
7274 .procname = "sched_domain",
7275 .mode = 0555,
7276 },
7277 {0, },
7278 };
7279
7280 static struct ctl_table sd_ctl_root[] = {
7281 {
7282 .ctl_name = CTL_KERN,
7283 .procname = "kernel",
7284 .mode = 0555,
7285 .child = sd_ctl_dir,
7286 },
7287 {0, },
7288 };
7289
7290 static struct ctl_table *sd_alloc_ctl_entry(int n)
7291 {
7292 struct ctl_table *entry =
7293 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7294
7295 return entry;
7296 }
7297
7298 static void sd_free_ctl_entry(struct ctl_table **tablep)
7299 {
7300 struct ctl_table *entry;
7301
7302 /*
7303 * In the intermediate directories, both the child directory and
7304 * procname are dynamically allocated and could fail but the mode
7305 * will always be set. In the lowest directory the names are
7306 * static strings and all have proc handlers.
7307 */
7308 for (entry = *tablep; entry->mode; entry++) {
7309 if (entry->child)
7310 sd_free_ctl_entry(&entry->child);
7311 if (entry->proc_handler == NULL)
7312 kfree(entry->procname);
7313 }
7314
7315 kfree(*tablep);
7316 *tablep = NULL;
7317 }
7318
7319 static void
7320 set_table_entry(struct ctl_table *entry,
7321 const char *procname, void *data, int maxlen,
7322 mode_t mode, proc_handler *proc_handler)
7323 {
7324 entry->procname = procname;
7325 entry->data = data;
7326 entry->maxlen = maxlen;
7327 entry->mode = mode;
7328 entry->proc_handler = proc_handler;
7329 }
7330
7331 static struct ctl_table *
7332 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7333 {
7334 struct ctl_table *table = sd_alloc_ctl_entry(13);
7335
7336 if (table == NULL)
7337 return NULL;
7338
7339 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7340 sizeof(long), 0644, proc_doulongvec_minmax);
7341 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7342 sizeof(long), 0644, proc_doulongvec_minmax);
7343 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7344 sizeof(int), 0644, proc_dointvec_minmax);
7345 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7346 sizeof(int), 0644, proc_dointvec_minmax);
7347 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7348 sizeof(int), 0644, proc_dointvec_minmax);
7349 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7350 sizeof(int), 0644, proc_dointvec_minmax);
7351 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7352 sizeof(int), 0644, proc_dointvec_minmax);
7353 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7354 sizeof(int), 0644, proc_dointvec_minmax);
7355 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7356 sizeof(int), 0644, proc_dointvec_minmax);
7357 set_table_entry(&table[9], "cache_nice_tries",
7358 &sd->cache_nice_tries,
7359 sizeof(int), 0644, proc_dointvec_minmax);
7360 set_table_entry(&table[10], "flags", &sd->flags,
7361 sizeof(int), 0644, proc_dointvec_minmax);
7362 set_table_entry(&table[11], "name", sd->name,
7363 CORENAME_MAX_SIZE, 0444, proc_dostring);
7364 /* &table[12] is terminator */
7365
7366 return table;
7367 }
7368
7369 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7370 {
7371 struct ctl_table *entry, *table;
7372 struct sched_domain *sd;
7373 int domain_num = 0, i;
7374 char buf[32];
7375
7376 for_each_domain(cpu, sd)
7377 domain_num++;
7378 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7379 if (table == NULL)
7380 return NULL;
7381
7382 i = 0;
7383 for_each_domain(cpu, sd) {
7384 snprintf(buf, 32, "domain%d", i);
7385 entry->procname = kstrdup(buf, GFP_KERNEL);
7386 entry->mode = 0555;
7387 entry->child = sd_alloc_ctl_domain_table(sd);
7388 entry++;
7389 i++;
7390 }
7391 return table;
7392 }
7393
7394 static struct ctl_table_header *sd_sysctl_header;
7395 static void register_sched_domain_sysctl(void)
7396 {
7397 int i, cpu_num = num_online_cpus();
7398 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7399 char buf[32];
7400
7401 WARN_ON(sd_ctl_dir[0].child);
7402 sd_ctl_dir[0].child = entry;
7403
7404 if (entry == NULL)
7405 return;
7406
7407 for_each_online_cpu(i) {
7408 snprintf(buf, 32, "cpu%d", i);
7409 entry->procname = kstrdup(buf, GFP_KERNEL);
7410 entry->mode = 0555;
7411 entry->child = sd_alloc_ctl_cpu_table(i);
7412 entry++;
7413 }
7414
7415 WARN_ON(sd_sysctl_header);
7416 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7417 }
7418
7419 /* may be called multiple times per register */
7420 static void unregister_sched_domain_sysctl(void)
7421 {
7422 if (sd_sysctl_header)
7423 unregister_sysctl_table(sd_sysctl_header);
7424 sd_sysctl_header = NULL;
7425 if (sd_ctl_dir[0].child)
7426 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7427 }
7428 #else
7429 static void register_sched_domain_sysctl(void)
7430 {
7431 }
7432 static void unregister_sched_domain_sysctl(void)
7433 {
7434 }
7435 #endif
7436
7437 static void set_rq_online(struct rq *rq)
7438 {
7439 if (!rq->online) {
7440 const struct sched_class *class;
7441
7442 cpumask_set_cpu(rq->cpu, rq->rd->online);
7443 rq->online = 1;
7444
7445 for_each_class(class) {
7446 if (class->rq_online)
7447 class->rq_online(rq);
7448 }
7449 }
7450 }
7451
7452 static void set_rq_offline(struct rq *rq)
7453 {
7454 if (rq->online) {
7455 const struct sched_class *class;
7456
7457 for_each_class(class) {
7458 if (class->rq_offline)
7459 class->rq_offline(rq);
7460 }
7461
7462 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7463 rq->online = 0;
7464 }
7465 }
7466
7467 /*
7468 * migration_call - callback that gets triggered when a CPU is added.
7469 * Here we can start up the necessary migration thread for the new CPU.
7470 */
7471 static int __cpuinit
7472 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7473 {
7474 struct task_struct *p;
7475 int cpu = (long)hcpu;
7476 unsigned long flags;
7477 struct rq *rq;
7478
7479 switch (action) {
7480
7481 case CPU_UP_PREPARE:
7482 case CPU_UP_PREPARE_FROZEN:
7483 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7484 if (IS_ERR(p))
7485 return NOTIFY_BAD;
7486 kthread_bind(p, cpu);
7487 /* Must be high prio: stop_machine expects to yield to it. */
7488 rq = task_rq_lock(p, &flags);
7489 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7490 task_rq_unlock(rq, &flags);
7491 cpu_rq(cpu)->migration_thread = p;
7492 break;
7493
7494 case CPU_ONLINE:
7495 case CPU_ONLINE_FROZEN:
7496 /* Strictly unnecessary, as first user will wake it. */
7497 wake_up_process(cpu_rq(cpu)->migration_thread);
7498
7499 /* Update our root-domain */
7500 rq = cpu_rq(cpu);
7501 spin_lock_irqsave(&rq->lock, flags);
7502 rq->calc_load_update = calc_load_update;
7503 rq->calc_load_active = 0;
7504 if (rq->rd) {
7505 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7506
7507 set_rq_online(rq);
7508 }
7509 spin_unlock_irqrestore(&rq->lock, flags);
7510 break;
7511
7512 #ifdef CONFIG_HOTPLUG_CPU
7513 case CPU_UP_CANCELED:
7514 case CPU_UP_CANCELED_FROZEN:
7515 if (!cpu_rq(cpu)->migration_thread)
7516 break;
7517 /* Unbind it from offline cpu so it can run. Fall thru. */
7518 kthread_bind(cpu_rq(cpu)->migration_thread,
7519 cpumask_any(cpu_online_mask));
7520 kthread_stop(cpu_rq(cpu)->migration_thread);
7521 cpu_rq(cpu)->migration_thread = NULL;
7522 break;
7523
7524 case CPU_DEAD:
7525 case CPU_DEAD_FROZEN:
7526 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7527 migrate_live_tasks(cpu);
7528 rq = cpu_rq(cpu);
7529 kthread_stop(rq->migration_thread);
7530 rq->migration_thread = NULL;
7531 /* Idle task back to normal (off runqueue, low prio) */
7532 spin_lock_irq(&rq->lock);
7533 update_rq_clock(rq);
7534 deactivate_task(rq, rq->idle, 0);
7535 rq->idle->static_prio = MAX_PRIO;
7536 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7537 rq->idle->sched_class = &idle_sched_class;
7538 migrate_dead_tasks(cpu);
7539 spin_unlock_irq(&rq->lock);
7540 cpuset_unlock();
7541 migrate_nr_uninterruptible(rq);
7542 BUG_ON(rq->nr_running != 0);
7543 calc_global_load_remove(rq);
7544 /*
7545 * No need to migrate the tasks: it was best-effort if
7546 * they didn't take sched_hotcpu_mutex. Just wake up
7547 * the requestors.
7548 */
7549 spin_lock_irq(&rq->lock);
7550 while (!list_empty(&rq->migration_queue)) {
7551 struct migration_req *req;
7552
7553 req = list_entry(rq->migration_queue.next,
7554 struct migration_req, list);
7555 list_del_init(&req->list);
7556 spin_unlock_irq(&rq->lock);
7557 complete(&req->done);
7558 spin_lock_irq(&rq->lock);
7559 }
7560 spin_unlock_irq(&rq->lock);
7561 break;
7562
7563 case CPU_DYING:
7564 case CPU_DYING_FROZEN:
7565 /* Update our root-domain */
7566 rq = cpu_rq(cpu);
7567 spin_lock_irqsave(&rq->lock, flags);
7568 if (rq->rd) {
7569 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7570 set_rq_offline(rq);
7571 }
7572 spin_unlock_irqrestore(&rq->lock, flags);
7573 break;
7574 #endif
7575 }
7576 return NOTIFY_OK;
7577 }
7578
7579 /*
7580 * Register at high priority so that task migration (migrate_all_tasks)
7581 * happens before everything else. This has to be lower priority than
7582 * the notifier in the perf_counter subsystem, though.
7583 */
7584 static struct notifier_block __cpuinitdata migration_notifier = {
7585 .notifier_call = migration_call,
7586 .priority = 10
7587 };
7588
7589 static int __init migration_init(void)
7590 {
7591 void *cpu = (void *)(long)smp_processor_id();
7592 int err;
7593
7594 /* Start one for the boot CPU: */
7595 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7596 BUG_ON(err == NOTIFY_BAD);
7597 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7598 register_cpu_notifier(&migration_notifier);
7599
7600 return err;
7601 }
7602 early_initcall(migration_init);
7603 #endif
7604
7605 #ifdef CONFIG_SMP
7606
7607 #ifdef CONFIG_SCHED_DEBUG
7608
7609 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7610 struct cpumask *groupmask)
7611 {
7612 struct sched_group *group = sd->groups;
7613 char str[256];
7614
7615 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7616 cpumask_clear(groupmask);
7617
7618 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7619
7620 if (!(sd->flags & SD_LOAD_BALANCE)) {
7621 printk("does not load-balance\n");
7622 if (sd->parent)
7623 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7624 " has parent");
7625 return -1;
7626 }
7627
7628 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7629
7630 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7631 printk(KERN_ERR "ERROR: domain->span does not contain "
7632 "CPU%d\n", cpu);
7633 }
7634 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7635 printk(KERN_ERR "ERROR: domain->groups does not contain"
7636 " CPU%d\n", cpu);
7637 }
7638
7639 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7640 do {
7641 if (!group) {
7642 printk("\n");
7643 printk(KERN_ERR "ERROR: group is NULL\n");
7644 break;
7645 }
7646
7647 if (!group->__cpu_power) {
7648 printk(KERN_CONT "\n");
7649 printk(KERN_ERR "ERROR: domain->cpu_power not "
7650 "set\n");
7651 break;
7652 }
7653
7654 if (!cpumask_weight(sched_group_cpus(group))) {
7655 printk(KERN_CONT "\n");
7656 printk(KERN_ERR "ERROR: empty group\n");
7657 break;
7658 }
7659
7660 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7661 printk(KERN_CONT "\n");
7662 printk(KERN_ERR "ERROR: repeated CPUs\n");
7663 break;
7664 }
7665
7666 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7667
7668 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7669
7670 printk(KERN_CONT " %s", str);
7671 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7672 printk(KERN_CONT " (__cpu_power = %d)",
7673 group->__cpu_power);
7674 }
7675
7676 group = group->next;
7677 } while (group != sd->groups);
7678 printk(KERN_CONT "\n");
7679
7680 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7681 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7682
7683 if (sd->parent &&
7684 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7685 printk(KERN_ERR "ERROR: parent span is not a superset "
7686 "of domain->span\n");
7687 return 0;
7688 }
7689
7690 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7691 {
7692 cpumask_var_t groupmask;
7693 int level = 0;
7694
7695 if (!sd) {
7696 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7697 return;
7698 }
7699
7700 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7701
7702 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7703 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7704 return;
7705 }
7706
7707 for (;;) {
7708 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7709 break;
7710 level++;
7711 sd = sd->parent;
7712 if (!sd)
7713 break;
7714 }
7715 free_cpumask_var(groupmask);
7716 }
7717 #else /* !CONFIG_SCHED_DEBUG */
7718 # define sched_domain_debug(sd, cpu) do { } while (0)
7719 #endif /* CONFIG_SCHED_DEBUG */
7720
7721 static int sd_degenerate(struct sched_domain *sd)
7722 {
7723 if (cpumask_weight(sched_domain_span(sd)) == 1)
7724 return 1;
7725
7726 /* Following flags need at least 2 groups */
7727 if (sd->flags & (SD_LOAD_BALANCE |
7728 SD_BALANCE_NEWIDLE |
7729 SD_BALANCE_FORK |
7730 SD_BALANCE_EXEC |
7731 SD_SHARE_CPUPOWER |
7732 SD_SHARE_PKG_RESOURCES)) {
7733 if (sd->groups != sd->groups->next)
7734 return 0;
7735 }
7736
7737 /* Following flags don't use groups */
7738 if (sd->flags & (SD_WAKE_IDLE |
7739 SD_WAKE_AFFINE |
7740 SD_WAKE_BALANCE))
7741 return 0;
7742
7743 return 1;
7744 }
7745
7746 static int
7747 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7748 {
7749 unsigned long cflags = sd->flags, pflags = parent->flags;
7750
7751 if (sd_degenerate(parent))
7752 return 1;
7753
7754 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7755 return 0;
7756
7757 /* Does parent contain flags not in child? */
7758 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7759 if (cflags & SD_WAKE_AFFINE)
7760 pflags &= ~SD_WAKE_BALANCE;
7761 /* Flags needing groups don't count if only 1 group in parent */
7762 if (parent->groups == parent->groups->next) {
7763 pflags &= ~(SD_LOAD_BALANCE |
7764 SD_BALANCE_NEWIDLE |
7765 SD_BALANCE_FORK |
7766 SD_BALANCE_EXEC |
7767 SD_SHARE_CPUPOWER |
7768 SD_SHARE_PKG_RESOURCES);
7769 if (nr_node_ids == 1)
7770 pflags &= ~SD_SERIALIZE;
7771 }
7772 if (~cflags & pflags)
7773 return 0;
7774
7775 return 1;
7776 }
7777
7778 static void free_rootdomain(struct root_domain *rd)
7779 {
7780 cpupri_cleanup(&rd->cpupri);
7781
7782 free_cpumask_var(rd->rto_mask);
7783 free_cpumask_var(rd->online);
7784 free_cpumask_var(rd->span);
7785 kfree(rd);
7786 }
7787
7788 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7789 {
7790 struct root_domain *old_rd = NULL;
7791 unsigned long flags;
7792
7793 spin_lock_irqsave(&rq->lock, flags);
7794
7795 if (rq->rd) {
7796 old_rd = rq->rd;
7797
7798 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7799 set_rq_offline(rq);
7800
7801 cpumask_clear_cpu(rq->cpu, old_rd->span);
7802
7803 /*
7804 * If we dont want to free the old_rt yet then
7805 * set old_rd to NULL to skip the freeing later
7806 * in this function:
7807 */
7808 if (!atomic_dec_and_test(&old_rd->refcount))
7809 old_rd = NULL;
7810 }
7811
7812 atomic_inc(&rd->refcount);
7813 rq->rd = rd;
7814
7815 cpumask_set_cpu(rq->cpu, rd->span);
7816 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7817 set_rq_online(rq);
7818
7819 spin_unlock_irqrestore(&rq->lock, flags);
7820
7821 if (old_rd)
7822 free_rootdomain(old_rd);
7823 }
7824
7825 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7826 {
7827 gfp_t gfp = GFP_KERNEL;
7828
7829 memset(rd, 0, sizeof(*rd));
7830
7831 if (bootmem)
7832 gfp = GFP_NOWAIT;
7833
7834 if (!alloc_cpumask_var(&rd->span, gfp))
7835 goto out;
7836 if (!alloc_cpumask_var(&rd->online, gfp))
7837 goto free_span;
7838 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7839 goto free_online;
7840
7841 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7842 goto free_rto_mask;
7843 return 0;
7844
7845 free_rto_mask:
7846 free_cpumask_var(rd->rto_mask);
7847 free_online:
7848 free_cpumask_var(rd->online);
7849 free_span:
7850 free_cpumask_var(rd->span);
7851 out:
7852 return -ENOMEM;
7853 }
7854
7855 static void init_defrootdomain(void)
7856 {
7857 init_rootdomain(&def_root_domain, true);
7858
7859 atomic_set(&def_root_domain.refcount, 1);
7860 }
7861
7862 static struct root_domain *alloc_rootdomain(void)
7863 {
7864 struct root_domain *rd;
7865
7866 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7867 if (!rd)
7868 return NULL;
7869
7870 if (init_rootdomain(rd, false) != 0) {
7871 kfree(rd);
7872 return NULL;
7873 }
7874
7875 return rd;
7876 }
7877
7878 /*
7879 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7880 * hold the hotplug lock.
7881 */
7882 static void
7883 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7884 {
7885 struct rq *rq = cpu_rq(cpu);
7886 struct sched_domain *tmp;
7887
7888 /* Remove the sched domains which do not contribute to scheduling. */
7889 for (tmp = sd; tmp; ) {
7890 struct sched_domain *parent = tmp->parent;
7891 if (!parent)
7892 break;
7893
7894 if (sd_parent_degenerate(tmp, parent)) {
7895 tmp->parent = parent->parent;
7896 if (parent->parent)
7897 parent->parent->child = tmp;
7898 } else
7899 tmp = tmp->parent;
7900 }
7901
7902 if (sd && sd_degenerate(sd)) {
7903 sd = sd->parent;
7904 if (sd)
7905 sd->child = NULL;
7906 }
7907
7908 sched_domain_debug(sd, cpu);
7909
7910 rq_attach_root(rq, rd);
7911 rcu_assign_pointer(rq->sd, sd);
7912 }
7913
7914 /* cpus with isolated domains */
7915 static cpumask_var_t cpu_isolated_map;
7916
7917 /* Setup the mask of cpus configured for isolated domains */
7918 static int __init isolated_cpu_setup(char *str)
7919 {
7920 cpulist_parse(str, cpu_isolated_map);
7921 return 1;
7922 }
7923
7924 __setup("isolcpus=", isolated_cpu_setup);
7925
7926 /*
7927 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7928 * to a function which identifies what group(along with sched group) a CPU
7929 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7930 * (due to the fact that we keep track of groups covered with a struct cpumask).
7931 *
7932 * init_sched_build_groups will build a circular linked list of the groups
7933 * covered by the given span, and will set each group's ->cpumask correctly,
7934 * and ->cpu_power to 0.
7935 */
7936 static void
7937 init_sched_build_groups(const struct cpumask *span,
7938 const struct cpumask *cpu_map,
7939 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7940 struct sched_group **sg,
7941 struct cpumask *tmpmask),
7942 struct cpumask *covered, struct cpumask *tmpmask)
7943 {
7944 struct sched_group *first = NULL, *last = NULL;
7945 int i;
7946
7947 cpumask_clear(covered);
7948
7949 for_each_cpu(i, span) {
7950 struct sched_group *sg;
7951 int group = group_fn(i, cpu_map, &sg, tmpmask);
7952 int j;
7953
7954 if (cpumask_test_cpu(i, covered))
7955 continue;
7956
7957 cpumask_clear(sched_group_cpus(sg));
7958 sg->__cpu_power = 0;
7959
7960 for_each_cpu(j, span) {
7961 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7962 continue;
7963
7964 cpumask_set_cpu(j, covered);
7965 cpumask_set_cpu(j, sched_group_cpus(sg));
7966 }
7967 if (!first)
7968 first = sg;
7969 if (last)
7970 last->next = sg;
7971 last = sg;
7972 }
7973 last->next = first;
7974 }
7975
7976 #define SD_NODES_PER_DOMAIN 16
7977
7978 #ifdef CONFIG_NUMA
7979
7980 /**
7981 * find_next_best_node - find the next node to include in a sched_domain
7982 * @node: node whose sched_domain we're building
7983 * @used_nodes: nodes already in the sched_domain
7984 *
7985 * Find the next node to include in a given scheduling domain. Simply
7986 * finds the closest node not already in the @used_nodes map.
7987 *
7988 * Should use nodemask_t.
7989 */
7990 static int find_next_best_node(int node, nodemask_t *used_nodes)
7991 {
7992 int i, n, val, min_val, best_node = 0;
7993
7994 min_val = INT_MAX;
7995
7996 for (i = 0; i < nr_node_ids; i++) {
7997 /* Start at @node */
7998 n = (node + i) % nr_node_ids;
7999
8000 if (!nr_cpus_node(n))
8001 continue;
8002
8003 /* Skip already used nodes */
8004 if (node_isset(n, *used_nodes))
8005 continue;
8006
8007 /* Simple min distance search */
8008 val = node_distance(node, n);
8009
8010 if (val < min_val) {
8011 min_val = val;
8012 best_node = n;
8013 }
8014 }
8015
8016 node_set(best_node, *used_nodes);
8017 return best_node;
8018 }
8019
8020 /**
8021 * sched_domain_node_span - get a cpumask for a node's sched_domain
8022 * @node: node whose cpumask we're constructing
8023 * @span: resulting cpumask
8024 *
8025 * Given a node, construct a good cpumask for its sched_domain to span. It
8026 * should be one that prevents unnecessary balancing, but also spreads tasks
8027 * out optimally.
8028 */
8029 static void sched_domain_node_span(int node, struct cpumask *span)
8030 {
8031 nodemask_t used_nodes;
8032 int i;
8033
8034 cpumask_clear(span);
8035 nodes_clear(used_nodes);
8036
8037 cpumask_or(span, span, cpumask_of_node(node));
8038 node_set(node, used_nodes);
8039
8040 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8041 int next_node = find_next_best_node(node, &used_nodes);
8042
8043 cpumask_or(span, span, cpumask_of_node(next_node));
8044 }
8045 }
8046 #endif /* CONFIG_NUMA */
8047
8048 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8049
8050 /*
8051 * The cpus mask in sched_group and sched_domain hangs off the end.
8052 *
8053 * ( See the the comments in include/linux/sched.h:struct sched_group
8054 * and struct sched_domain. )
8055 */
8056 struct static_sched_group {
8057 struct sched_group sg;
8058 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8059 };
8060
8061 struct static_sched_domain {
8062 struct sched_domain sd;
8063 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8064 };
8065
8066 /*
8067 * SMT sched-domains:
8068 */
8069 #ifdef CONFIG_SCHED_SMT
8070 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8071 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8072
8073 static int
8074 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8075 struct sched_group **sg, struct cpumask *unused)
8076 {
8077 if (sg)
8078 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8079 return cpu;
8080 }
8081 #endif /* CONFIG_SCHED_SMT */
8082
8083 /*
8084 * multi-core sched-domains:
8085 */
8086 #ifdef CONFIG_SCHED_MC
8087 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8088 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8089 #endif /* CONFIG_SCHED_MC */
8090
8091 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8092 static int
8093 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8094 struct sched_group **sg, struct cpumask *mask)
8095 {
8096 int group;
8097
8098 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8099 group = cpumask_first(mask);
8100 if (sg)
8101 *sg = &per_cpu(sched_group_core, group).sg;
8102 return group;
8103 }
8104 #elif defined(CONFIG_SCHED_MC)
8105 static int
8106 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8107 struct sched_group **sg, struct cpumask *unused)
8108 {
8109 if (sg)
8110 *sg = &per_cpu(sched_group_core, cpu).sg;
8111 return cpu;
8112 }
8113 #endif
8114
8115 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8116 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8117
8118 static int
8119 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8120 struct sched_group **sg, struct cpumask *mask)
8121 {
8122 int group;
8123 #ifdef CONFIG_SCHED_MC
8124 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8125 group = cpumask_first(mask);
8126 #elif defined(CONFIG_SCHED_SMT)
8127 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8128 group = cpumask_first(mask);
8129 #else
8130 group = cpu;
8131 #endif
8132 if (sg)
8133 *sg = &per_cpu(sched_group_phys, group).sg;
8134 return group;
8135 }
8136
8137 #ifdef CONFIG_NUMA
8138 /*
8139 * The init_sched_build_groups can't handle what we want to do with node
8140 * groups, so roll our own. Now each node has its own list of groups which
8141 * gets dynamically allocated.
8142 */
8143 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8144 static struct sched_group ***sched_group_nodes_bycpu;
8145
8146 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8147 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8148
8149 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8150 struct sched_group **sg,
8151 struct cpumask *nodemask)
8152 {
8153 int group;
8154
8155 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8156 group = cpumask_first(nodemask);
8157
8158 if (sg)
8159 *sg = &per_cpu(sched_group_allnodes, group).sg;
8160 return group;
8161 }
8162
8163 static void init_numa_sched_groups_power(struct sched_group *group_head)
8164 {
8165 struct sched_group *sg = group_head;
8166 int j;
8167
8168 if (!sg)
8169 return;
8170 do {
8171 for_each_cpu(j, sched_group_cpus(sg)) {
8172 struct sched_domain *sd;
8173
8174 sd = &per_cpu(phys_domains, j).sd;
8175 if (j != group_first_cpu(sd->groups)) {
8176 /*
8177 * Only add "power" once for each
8178 * physical package.
8179 */
8180 continue;
8181 }
8182
8183 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8184 }
8185 sg = sg->next;
8186 } while (sg != group_head);
8187 }
8188 #endif /* CONFIG_NUMA */
8189
8190 #ifdef CONFIG_NUMA
8191 /* Free memory allocated for various sched_group structures */
8192 static void free_sched_groups(const struct cpumask *cpu_map,
8193 struct cpumask *nodemask)
8194 {
8195 int cpu, i;
8196
8197 for_each_cpu(cpu, cpu_map) {
8198 struct sched_group **sched_group_nodes
8199 = sched_group_nodes_bycpu[cpu];
8200
8201 if (!sched_group_nodes)
8202 continue;
8203
8204 for (i = 0; i < nr_node_ids; i++) {
8205 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8206
8207 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8208 if (cpumask_empty(nodemask))
8209 continue;
8210
8211 if (sg == NULL)
8212 continue;
8213 sg = sg->next;
8214 next_sg:
8215 oldsg = sg;
8216 sg = sg->next;
8217 kfree(oldsg);
8218 if (oldsg != sched_group_nodes[i])
8219 goto next_sg;
8220 }
8221 kfree(sched_group_nodes);
8222 sched_group_nodes_bycpu[cpu] = NULL;
8223 }
8224 }
8225 #else /* !CONFIG_NUMA */
8226 static void free_sched_groups(const struct cpumask *cpu_map,
8227 struct cpumask *nodemask)
8228 {
8229 }
8230 #endif /* CONFIG_NUMA */
8231
8232 /*
8233 * Initialize sched groups cpu_power.
8234 *
8235 * cpu_power indicates the capacity of sched group, which is used while
8236 * distributing the load between different sched groups in a sched domain.
8237 * Typically cpu_power for all the groups in a sched domain will be same unless
8238 * there are asymmetries in the topology. If there are asymmetries, group
8239 * having more cpu_power will pickup more load compared to the group having
8240 * less cpu_power.
8241 *
8242 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8243 * the maximum number of tasks a group can handle in the presence of other idle
8244 * or lightly loaded groups in the same sched domain.
8245 */
8246 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8247 {
8248 struct sched_domain *child;
8249 struct sched_group *group;
8250
8251 WARN_ON(!sd || !sd->groups);
8252
8253 if (cpu != group_first_cpu(sd->groups))
8254 return;
8255
8256 child = sd->child;
8257
8258 sd->groups->__cpu_power = 0;
8259
8260 /*
8261 * For perf policy, if the groups in child domain share resources
8262 * (for example cores sharing some portions of the cache hierarchy
8263 * or SMT), then set this domain groups cpu_power such that each group
8264 * can handle only one task, when there are other idle groups in the
8265 * same sched domain.
8266 */
8267 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8268 (child->flags &
8269 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8270 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8271 return;
8272 }
8273
8274 /*
8275 * add cpu_power of each child group to this groups cpu_power
8276 */
8277 group = child->groups;
8278 do {
8279 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8280 group = group->next;
8281 } while (group != child->groups);
8282 }
8283
8284 /*
8285 * Initializers for schedule domains
8286 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8287 */
8288
8289 #ifdef CONFIG_SCHED_DEBUG
8290 # define SD_INIT_NAME(sd, type) sd->name = #type
8291 #else
8292 # define SD_INIT_NAME(sd, type) do { } while (0)
8293 #endif
8294
8295 #define SD_INIT(sd, type) sd_init_##type(sd)
8296
8297 #define SD_INIT_FUNC(type) \
8298 static noinline void sd_init_##type(struct sched_domain *sd) \
8299 { \
8300 memset(sd, 0, sizeof(*sd)); \
8301 *sd = SD_##type##_INIT; \
8302 sd->level = SD_LV_##type; \
8303 SD_INIT_NAME(sd, type); \
8304 }
8305
8306 SD_INIT_FUNC(CPU)
8307 #ifdef CONFIG_NUMA
8308 SD_INIT_FUNC(ALLNODES)
8309 SD_INIT_FUNC(NODE)
8310 #endif
8311 #ifdef CONFIG_SCHED_SMT
8312 SD_INIT_FUNC(SIBLING)
8313 #endif
8314 #ifdef CONFIG_SCHED_MC
8315 SD_INIT_FUNC(MC)
8316 #endif
8317
8318 static int default_relax_domain_level = -1;
8319
8320 static int __init setup_relax_domain_level(char *str)
8321 {
8322 unsigned long val;
8323
8324 val = simple_strtoul(str, NULL, 0);
8325 if (val < SD_LV_MAX)
8326 default_relax_domain_level = val;
8327
8328 return 1;
8329 }
8330 __setup("relax_domain_level=", setup_relax_domain_level);
8331
8332 static void set_domain_attribute(struct sched_domain *sd,
8333 struct sched_domain_attr *attr)
8334 {
8335 int request;
8336
8337 if (!attr || attr->relax_domain_level < 0) {
8338 if (default_relax_domain_level < 0)
8339 return;
8340 else
8341 request = default_relax_domain_level;
8342 } else
8343 request = attr->relax_domain_level;
8344 if (request < sd->level) {
8345 /* turn off idle balance on this domain */
8346 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8347 } else {
8348 /* turn on idle balance on this domain */
8349 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8350 }
8351 }
8352
8353 /*
8354 * Build sched domains for a given set of cpus and attach the sched domains
8355 * to the individual cpus
8356 */
8357 static int __build_sched_domains(const struct cpumask *cpu_map,
8358 struct sched_domain_attr *attr)
8359 {
8360 int i, err = -ENOMEM;
8361 struct root_domain *rd;
8362 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8363 tmpmask;
8364 #ifdef CONFIG_NUMA
8365 cpumask_var_t domainspan, covered, notcovered;
8366 struct sched_group **sched_group_nodes = NULL;
8367 int sd_allnodes = 0;
8368
8369 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8370 goto out;
8371 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8372 goto free_domainspan;
8373 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8374 goto free_covered;
8375 #endif
8376
8377 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8378 goto free_notcovered;
8379 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8380 goto free_nodemask;
8381 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8382 goto free_this_sibling_map;
8383 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8384 goto free_this_core_map;
8385 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8386 goto free_send_covered;
8387
8388 #ifdef CONFIG_NUMA
8389 /*
8390 * Allocate the per-node list of sched groups
8391 */
8392 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8393 GFP_KERNEL);
8394 if (!sched_group_nodes) {
8395 printk(KERN_WARNING "Can not alloc sched group node list\n");
8396 goto free_tmpmask;
8397 }
8398 #endif
8399
8400 rd = alloc_rootdomain();
8401 if (!rd) {
8402 printk(KERN_WARNING "Cannot alloc root domain\n");
8403 goto free_sched_groups;
8404 }
8405
8406 #ifdef CONFIG_NUMA
8407 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8408 #endif
8409
8410 /*
8411 * Set up domains for cpus specified by the cpu_map.
8412 */
8413 for_each_cpu(i, cpu_map) {
8414 struct sched_domain *sd = NULL, *p;
8415
8416 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8417
8418 #ifdef CONFIG_NUMA
8419 if (cpumask_weight(cpu_map) >
8420 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8421 sd = &per_cpu(allnodes_domains, i).sd;
8422 SD_INIT(sd, ALLNODES);
8423 set_domain_attribute(sd, attr);
8424 cpumask_copy(sched_domain_span(sd), cpu_map);
8425 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8426 p = sd;
8427 sd_allnodes = 1;
8428 } else
8429 p = NULL;
8430
8431 sd = &per_cpu(node_domains, i).sd;
8432 SD_INIT(sd, NODE);
8433 set_domain_attribute(sd, attr);
8434 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8435 sd->parent = p;
8436 if (p)
8437 p->child = sd;
8438 cpumask_and(sched_domain_span(sd),
8439 sched_domain_span(sd), cpu_map);
8440 #endif
8441
8442 p = sd;
8443 sd = &per_cpu(phys_domains, i).sd;
8444 SD_INIT(sd, CPU);
8445 set_domain_attribute(sd, attr);
8446 cpumask_copy(sched_domain_span(sd), nodemask);
8447 sd->parent = p;
8448 if (p)
8449 p->child = sd;
8450 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8451
8452 #ifdef CONFIG_SCHED_MC
8453 p = sd;
8454 sd = &per_cpu(core_domains, i).sd;
8455 SD_INIT(sd, MC);
8456 set_domain_attribute(sd, attr);
8457 cpumask_and(sched_domain_span(sd), cpu_map,
8458 cpu_coregroup_mask(i));
8459 sd->parent = p;
8460 p->child = sd;
8461 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8462 #endif
8463
8464 #ifdef CONFIG_SCHED_SMT
8465 p = sd;
8466 sd = &per_cpu(cpu_domains, i).sd;
8467 SD_INIT(sd, SIBLING);
8468 set_domain_attribute(sd, attr);
8469 cpumask_and(sched_domain_span(sd),
8470 topology_thread_cpumask(i), cpu_map);
8471 sd->parent = p;
8472 p->child = sd;
8473 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8474 #endif
8475 }
8476
8477 #ifdef CONFIG_SCHED_SMT
8478 /* Set up CPU (sibling) groups */
8479 for_each_cpu(i, cpu_map) {
8480 cpumask_and(this_sibling_map,
8481 topology_thread_cpumask(i), cpu_map);
8482 if (i != cpumask_first(this_sibling_map))
8483 continue;
8484
8485 init_sched_build_groups(this_sibling_map, cpu_map,
8486 &cpu_to_cpu_group,
8487 send_covered, tmpmask);
8488 }
8489 #endif
8490
8491 #ifdef CONFIG_SCHED_MC
8492 /* Set up multi-core groups */
8493 for_each_cpu(i, cpu_map) {
8494 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8495 if (i != cpumask_first(this_core_map))
8496 continue;
8497
8498 init_sched_build_groups(this_core_map, cpu_map,
8499 &cpu_to_core_group,
8500 send_covered, tmpmask);
8501 }
8502 #endif
8503
8504 /* Set up physical groups */
8505 for (i = 0; i < nr_node_ids; i++) {
8506 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8507 if (cpumask_empty(nodemask))
8508 continue;
8509
8510 init_sched_build_groups(nodemask, cpu_map,
8511 &cpu_to_phys_group,
8512 send_covered, tmpmask);
8513 }
8514
8515 #ifdef CONFIG_NUMA
8516 /* Set up node groups */
8517 if (sd_allnodes) {
8518 init_sched_build_groups(cpu_map, cpu_map,
8519 &cpu_to_allnodes_group,
8520 send_covered, tmpmask);
8521 }
8522
8523 for (i = 0; i < nr_node_ids; i++) {
8524 /* Set up node groups */
8525 struct sched_group *sg, *prev;
8526 int j;
8527
8528 cpumask_clear(covered);
8529 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8530 if (cpumask_empty(nodemask)) {
8531 sched_group_nodes[i] = NULL;
8532 continue;
8533 }
8534
8535 sched_domain_node_span(i, domainspan);
8536 cpumask_and(domainspan, domainspan, cpu_map);
8537
8538 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8539 GFP_KERNEL, i);
8540 if (!sg) {
8541 printk(KERN_WARNING "Can not alloc domain group for "
8542 "node %d\n", i);
8543 goto error;
8544 }
8545 sched_group_nodes[i] = sg;
8546 for_each_cpu(j, nodemask) {
8547 struct sched_domain *sd;
8548
8549 sd = &per_cpu(node_domains, j).sd;
8550 sd->groups = sg;
8551 }
8552 sg->__cpu_power = 0;
8553 cpumask_copy(sched_group_cpus(sg), nodemask);
8554 sg->next = sg;
8555 cpumask_or(covered, covered, nodemask);
8556 prev = sg;
8557
8558 for (j = 0; j < nr_node_ids; j++) {
8559 int n = (i + j) % nr_node_ids;
8560
8561 cpumask_complement(notcovered, covered);
8562 cpumask_and(tmpmask, notcovered, cpu_map);
8563 cpumask_and(tmpmask, tmpmask, domainspan);
8564 if (cpumask_empty(tmpmask))
8565 break;
8566
8567 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8568 if (cpumask_empty(tmpmask))
8569 continue;
8570
8571 sg = kmalloc_node(sizeof(struct sched_group) +
8572 cpumask_size(),
8573 GFP_KERNEL, i);
8574 if (!sg) {
8575 printk(KERN_WARNING
8576 "Can not alloc domain group for node %d\n", j);
8577 goto error;
8578 }
8579 sg->__cpu_power = 0;
8580 cpumask_copy(sched_group_cpus(sg), tmpmask);
8581 sg->next = prev->next;
8582 cpumask_or(covered, covered, tmpmask);
8583 prev->next = sg;
8584 prev = sg;
8585 }
8586 }
8587 #endif
8588
8589 /* Calculate CPU power for physical packages and nodes */
8590 #ifdef CONFIG_SCHED_SMT
8591 for_each_cpu(i, cpu_map) {
8592 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8593
8594 init_sched_groups_power(i, sd);
8595 }
8596 #endif
8597 #ifdef CONFIG_SCHED_MC
8598 for_each_cpu(i, cpu_map) {
8599 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8600
8601 init_sched_groups_power(i, sd);
8602 }
8603 #endif
8604
8605 for_each_cpu(i, cpu_map) {
8606 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8607
8608 init_sched_groups_power(i, sd);
8609 }
8610
8611 #ifdef CONFIG_NUMA
8612 for (i = 0; i < nr_node_ids; i++)
8613 init_numa_sched_groups_power(sched_group_nodes[i]);
8614
8615 if (sd_allnodes) {
8616 struct sched_group *sg;
8617
8618 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8619 tmpmask);
8620 init_numa_sched_groups_power(sg);
8621 }
8622 #endif
8623
8624 /* Attach the domains */
8625 for_each_cpu(i, cpu_map) {
8626 struct sched_domain *sd;
8627 #ifdef CONFIG_SCHED_SMT
8628 sd = &per_cpu(cpu_domains, i).sd;
8629 #elif defined(CONFIG_SCHED_MC)
8630 sd = &per_cpu(core_domains, i).sd;
8631 #else
8632 sd = &per_cpu(phys_domains, i).sd;
8633 #endif
8634 cpu_attach_domain(sd, rd, i);
8635 }
8636
8637 err = 0;
8638
8639 free_tmpmask:
8640 free_cpumask_var(tmpmask);
8641 free_send_covered:
8642 free_cpumask_var(send_covered);
8643 free_this_core_map:
8644 free_cpumask_var(this_core_map);
8645 free_this_sibling_map:
8646 free_cpumask_var(this_sibling_map);
8647 free_nodemask:
8648 free_cpumask_var(nodemask);
8649 free_notcovered:
8650 #ifdef CONFIG_NUMA
8651 free_cpumask_var(notcovered);
8652 free_covered:
8653 free_cpumask_var(covered);
8654 free_domainspan:
8655 free_cpumask_var(domainspan);
8656 out:
8657 #endif
8658 return err;
8659
8660 free_sched_groups:
8661 #ifdef CONFIG_NUMA
8662 kfree(sched_group_nodes);
8663 #endif
8664 goto free_tmpmask;
8665
8666 #ifdef CONFIG_NUMA
8667 error:
8668 free_sched_groups(cpu_map, tmpmask);
8669 free_rootdomain(rd);
8670 goto free_tmpmask;
8671 #endif
8672 }
8673
8674 static int build_sched_domains(const struct cpumask *cpu_map)
8675 {
8676 return __build_sched_domains(cpu_map, NULL);
8677 }
8678
8679 static struct cpumask *doms_cur; /* current sched domains */
8680 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8681 static struct sched_domain_attr *dattr_cur;
8682 /* attribues of custom domains in 'doms_cur' */
8683
8684 /*
8685 * Special case: If a kmalloc of a doms_cur partition (array of
8686 * cpumask) fails, then fallback to a single sched domain,
8687 * as determined by the single cpumask fallback_doms.
8688 */
8689 static cpumask_var_t fallback_doms;
8690
8691 /*
8692 * arch_update_cpu_topology lets virtualized architectures update the
8693 * cpu core maps. It is supposed to return 1 if the topology changed
8694 * or 0 if it stayed the same.
8695 */
8696 int __attribute__((weak)) arch_update_cpu_topology(void)
8697 {
8698 return 0;
8699 }
8700
8701 /*
8702 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8703 * For now this just excludes isolated cpus, but could be used to
8704 * exclude other special cases in the future.
8705 */
8706 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8707 {
8708 int err;
8709
8710 arch_update_cpu_topology();
8711 ndoms_cur = 1;
8712 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8713 if (!doms_cur)
8714 doms_cur = fallback_doms;
8715 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8716 dattr_cur = NULL;
8717 err = build_sched_domains(doms_cur);
8718 register_sched_domain_sysctl();
8719
8720 return err;
8721 }
8722
8723 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8724 struct cpumask *tmpmask)
8725 {
8726 free_sched_groups(cpu_map, tmpmask);
8727 }
8728
8729 /*
8730 * Detach sched domains from a group of cpus specified in cpu_map
8731 * These cpus will now be attached to the NULL domain
8732 */
8733 static void detach_destroy_domains(const struct cpumask *cpu_map)
8734 {
8735 /* Save because hotplug lock held. */
8736 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8737 int i;
8738
8739 for_each_cpu(i, cpu_map)
8740 cpu_attach_domain(NULL, &def_root_domain, i);
8741 synchronize_sched();
8742 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8743 }
8744
8745 /* handle null as "default" */
8746 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8747 struct sched_domain_attr *new, int idx_new)
8748 {
8749 struct sched_domain_attr tmp;
8750
8751 /* fast path */
8752 if (!new && !cur)
8753 return 1;
8754
8755 tmp = SD_ATTR_INIT;
8756 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8757 new ? (new + idx_new) : &tmp,
8758 sizeof(struct sched_domain_attr));
8759 }
8760
8761 /*
8762 * Partition sched domains as specified by the 'ndoms_new'
8763 * cpumasks in the array doms_new[] of cpumasks. This compares
8764 * doms_new[] to the current sched domain partitioning, doms_cur[].
8765 * It destroys each deleted domain and builds each new domain.
8766 *
8767 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8768 * The masks don't intersect (don't overlap.) We should setup one
8769 * sched domain for each mask. CPUs not in any of the cpumasks will
8770 * not be load balanced. If the same cpumask appears both in the
8771 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8772 * it as it is.
8773 *
8774 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8775 * ownership of it and will kfree it when done with it. If the caller
8776 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8777 * ndoms_new == 1, and partition_sched_domains() will fallback to
8778 * the single partition 'fallback_doms', it also forces the domains
8779 * to be rebuilt.
8780 *
8781 * If doms_new == NULL it will be replaced with cpu_online_mask.
8782 * ndoms_new == 0 is a special case for destroying existing domains,
8783 * and it will not create the default domain.
8784 *
8785 * Call with hotplug lock held
8786 */
8787 /* FIXME: Change to struct cpumask *doms_new[] */
8788 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8789 struct sched_domain_attr *dattr_new)
8790 {
8791 int i, j, n;
8792 int new_topology;
8793
8794 mutex_lock(&sched_domains_mutex);
8795
8796 /* always unregister in case we don't destroy any domains */
8797 unregister_sched_domain_sysctl();
8798
8799 /* Let architecture update cpu core mappings. */
8800 new_topology = arch_update_cpu_topology();
8801
8802 n = doms_new ? ndoms_new : 0;
8803
8804 /* Destroy deleted domains */
8805 for (i = 0; i < ndoms_cur; i++) {
8806 for (j = 0; j < n && !new_topology; j++) {
8807 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8808 && dattrs_equal(dattr_cur, i, dattr_new, j))
8809 goto match1;
8810 }
8811 /* no match - a current sched domain not in new doms_new[] */
8812 detach_destroy_domains(doms_cur + i);
8813 match1:
8814 ;
8815 }
8816
8817 if (doms_new == NULL) {
8818 ndoms_cur = 0;
8819 doms_new = fallback_doms;
8820 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8821 WARN_ON_ONCE(dattr_new);
8822 }
8823
8824 /* Build new domains */
8825 for (i = 0; i < ndoms_new; i++) {
8826 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8827 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8828 && dattrs_equal(dattr_new, i, dattr_cur, j))
8829 goto match2;
8830 }
8831 /* no match - add a new doms_new */
8832 __build_sched_domains(doms_new + i,
8833 dattr_new ? dattr_new + i : NULL);
8834 match2:
8835 ;
8836 }
8837
8838 /* Remember the new sched domains */
8839 if (doms_cur != fallback_doms)
8840 kfree(doms_cur);
8841 kfree(dattr_cur); /* kfree(NULL) is safe */
8842 doms_cur = doms_new;
8843 dattr_cur = dattr_new;
8844 ndoms_cur = ndoms_new;
8845
8846 register_sched_domain_sysctl();
8847
8848 mutex_unlock(&sched_domains_mutex);
8849 }
8850
8851 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8852 static void arch_reinit_sched_domains(void)
8853 {
8854 get_online_cpus();
8855
8856 /* Destroy domains first to force the rebuild */
8857 partition_sched_domains(0, NULL, NULL);
8858
8859 rebuild_sched_domains();
8860 put_online_cpus();
8861 }
8862
8863 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8864 {
8865 unsigned int level = 0;
8866
8867 if (sscanf(buf, "%u", &level) != 1)
8868 return -EINVAL;
8869
8870 /*
8871 * level is always be positive so don't check for
8872 * level < POWERSAVINGS_BALANCE_NONE which is 0
8873 * What happens on 0 or 1 byte write,
8874 * need to check for count as well?
8875 */
8876
8877 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8878 return -EINVAL;
8879
8880 if (smt)
8881 sched_smt_power_savings = level;
8882 else
8883 sched_mc_power_savings = level;
8884
8885 arch_reinit_sched_domains();
8886
8887 return count;
8888 }
8889
8890 #ifdef CONFIG_SCHED_MC
8891 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8892 char *page)
8893 {
8894 return sprintf(page, "%u\n", sched_mc_power_savings);
8895 }
8896 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8897 const char *buf, size_t count)
8898 {
8899 return sched_power_savings_store(buf, count, 0);
8900 }
8901 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8902 sched_mc_power_savings_show,
8903 sched_mc_power_savings_store);
8904 #endif
8905
8906 #ifdef CONFIG_SCHED_SMT
8907 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8908 char *page)
8909 {
8910 return sprintf(page, "%u\n", sched_smt_power_savings);
8911 }
8912 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8913 const char *buf, size_t count)
8914 {
8915 return sched_power_savings_store(buf, count, 1);
8916 }
8917 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8918 sched_smt_power_savings_show,
8919 sched_smt_power_savings_store);
8920 #endif
8921
8922 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8923 {
8924 int err = 0;
8925
8926 #ifdef CONFIG_SCHED_SMT
8927 if (smt_capable())
8928 err = sysfs_create_file(&cls->kset.kobj,
8929 &attr_sched_smt_power_savings.attr);
8930 #endif
8931 #ifdef CONFIG_SCHED_MC
8932 if (!err && mc_capable())
8933 err = sysfs_create_file(&cls->kset.kobj,
8934 &attr_sched_mc_power_savings.attr);
8935 #endif
8936 return err;
8937 }
8938 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8939
8940 #ifndef CONFIG_CPUSETS
8941 /*
8942 * Add online and remove offline CPUs from the scheduler domains.
8943 * When cpusets are enabled they take over this function.
8944 */
8945 static int update_sched_domains(struct notifier_block *nfb,
8946 unsigned long action, void *hcpu)
8947 {
8948 switch (action) {
8949 case CPU_ONLINE:
8950 case CPU_ONLINE_FROZEN:
8951 case CPU_DEAD:
8952 case CPU_DEAD_FROZEN:
8953 partition_sched_domains(1, NULL, NULL);
8954 return NOTIFY_OK;
8955
8956 default:
8957 return NOTIFY_DONE;
8958 }
8959 }
8960 #endif
8961
8962 static int update_runtime(struct notifier_block *nfb,
8963 unsigned long action, void *hcpu)
8964 {
8965 int cpu = (int)(long)hcpu;
8966
8967 switch (action) {
8968 case CPU_DOWN_PREPARE:
8969 case CPU_DOWN_PREPARE_FROZEN:
8970 disable_runtime(cpu_rq(cpu));
8971 return NOTIFY_OK;
8972
8973 case CPU_DOWN_FAILED:
8974 case CPU_DOWN_FAILED_FROZEN:
8975 case CPU_ONLINE:
8976 case CPU_ONLINE_FROZEN:
8977 enable_runtime(cpu_rq(cpu));
8978 return NOTIFY_OK;
8979
8980 default:
8981 return NOTIFY_DONE;
8982 }
8983 }
8984
8985 void __init sched_init_smp(void)
8986 {
8987 cpumask_var_t non_isolated_cpus;
8988
8989 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8990
8991 #if defined(CONFIG_NUMA)
8992 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8993 GFP_KERNEL);
8994 BUG_ON(sched_group_nodes_bycpu == NULL);
8995 #endif
8996 get_online_cpus();
8997 mutex_lock(&sched_domains_mutex);
8998 arch_init_sched_domains(cpu_online_mask);
8999 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9000 if (cpumask_empty(non_isolated_cpus))
9001 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9002 mutex_unlock(&sched_domains_mutex);
9003 put_online_cpus();
9004
9005 #ifndef CONFIG_CPUSETS
9006 /* XXX: Theoretical race here - CPU may be hotplugged now */
9007 hotcpu_notifier(update_sched_domains, 0);
9008 #endif
9009
9010 /* RT runtime code needs to handle some hotplug events */
9011 hotcpu_notifier(update_runtime, 0);
9012
9013 init_hrtick();
9014
9015 /* Move init over to a non-isolated CPU */
9016 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9017 BUG();
9018 sched_init_granularity();
9019 free_cpumask_var(non_isolated_cpus);
9020
9021 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9022 init_sched_rt_class();
9023 }
9024 #else
9025 void __init sched_init_smp(void)
9026 {
9027 sched_init_granularity();
9028 }
9029 #endif /* CONFIG_SMP */
9030
9031 int in_sched_functions(unsigned long addr)
9032 {
9033 return in_lock_functions(addr) ||
9034 (addr >= (unsigned long)__sched_text_start
9035 && addr < (unsigned long)__sched_text_end);
9036 }
9037
9038 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9039 {
9040 cfs_rq->tasks_timeline = RB_ROOT;
9041 INIT_LIST_HEAD(&cfs_rq->tasks);
9042 #ifdef CONFIG_FAIR_GROUP_SCHED
9043 cfs_rq->rq = rq;
9044 #endif
9045 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9046 }
9047
9048 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9049 {
9050 struct rt_prio_array *array;
9051 int i;
9052
9053 array = &rt_rq->active;
9054 for (i = 0; i < MAX_RT_PRIO; i++) {
9055 INIT_LIST_HEAD(array->queue + i);
9056 __clear_bit(i, array->bitmap);
9057 }
9058 /* delimiter for bitsearch: */
9059 __set_bit(MAX_RT_PRIO, array->bitmap);
9060
9061 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9062 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9063 #ifdef CONFIG_SMP
9064 rt_rq->highest_prio.next = MAX_RT_PRIO;
9065 #endif
9066 #endif
9067 #ifdef CONFIG_SMP
9068 rt_rq->rt_nr_migratory = 0;
9069 rt_rq->overloaded = 0;
9070 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
9071 #endif
9072
9073 rt_rq->rt_time = 0;
9074 rt_rq->rt_throttled = 0;
9075 rt_rq->rt_runtime = 0;
9076 spin_lock_init(&rt_rq->rt_runtime_lock);
9077
9078 #ifdef CONFIG_RT_GROUP_SCHED
9079 rt_rq->rt_nr_boosted = 0;
9080 rt_rq->rq = rq;
9081 #endif
9082 }
9083
9084 #ifdef CONFIG_FAIR_GROUP_SCHED
9085 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9086 struct sched_entity *se, int cpu, int add,
9087 struct sched_entity *parent)
9088 {
9089 struct rq *rq = cpu_rq(cpu);
9090 tg->cfs_rq[cpu] = cfs_rq;
9091 init_cfs_rq(cfs_rq, rq);
9092 cfs_rq->tg = tg;
9093 if (add)
9094 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9095
9096 tg->se[cpu] = se;
9097 /* se could be NULL for init_task_group */
9098 if (!se)
9099 return;
9100
9101 if (!parent)
9102 se->cfs_rq = &rq->cfs;
9103 else
9104 se->cfs_rq = parent->my_q;
9105
9106 se->my_q = cfs_rq;
9107 se->load.weight = tg->shares;
9108 se->load.inv_weight = 0;
9109 se->parent = parent;
9110 }
9111 #endif
9112
9113 #ifdef CONFIG_RT_GROUP_SCHED
9114 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9115 struct sched_rt_entity *rt_se, int cpu, int add,
9116 struct sched_rt_entity *parent)
9117 {
9118 struct rq *rq = cpu_rq(cpu);
9119
9120 tg->rt_rq[cpu] = rt_rq;
9121 init_rt_rq(rt_rq, rq);
9122 rt_rq->tg = tg;
9123 rt_rq->rt_se = rt_se;
9124 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9125 if (add)
9126 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9127
9128 tg->rt_se[cpu] = rt_se;
9129 if (!rt_se)
9130 return;
9131
9132 if (!parent)
9133 rt_se->rt_rq = &rq->rt;
9134 else
9135 rt_se->rt_rq = parent->my_q;
9136
9137 rt_se->my_q = rt_rq;
9138 rt_se->parent = parent;
9139 INIT_LIST_HEAD(&rt_se->run_list);
9140 }
9141 #endif
9142
9143 void __init sched_init(void)
9144 {
9145 int i, j;
9146 unsigned long alloc_size = 0, ptr;
9147
9148 #ifdef CONFIG_FAIR_GROUP_SCHED
9149 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9150 #endif
9151 #ifdef CONFIG_RT_GROUP_SCHED
9152 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9153 #endif
9154 #ifdef CONFIG_USER_SCHED
9155 alloc_size *= 2;
9156 #endif
9157 #ifdef CONFIG_CPUMASK_OFFSTACK
9158 alloc_size += num_possible_cpus() * cpumask_size();
9159 #endif
9160 /*
9161 * As sched_init() is called before page_alloc is setup,
9162 * we use alloc_bootmem().
9163 */
9164 if (alloc_size) {
9165 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9166
9167 #ifdef CONFIG_FAIR_GROUP_SCHED
9168 init_task_group.se = (struct sched_entity **)ptr;
9169 ptr += nr_cpu_ids * sizeof(void **);
9170
9171 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9172 ptr += nr_cpu_ids * sizeof(void **);
9173
9174 #ifdef CONFIG_USER_SCHED
9175 root_task_group.se = (struct sched_entity **)ptr;
9176 ptr += nr_cpu_ids * sizeof(void **);
9177
9178 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9179 ptr += nr_cpu_ids * sizeof(void **);
9180 #endif /* CONFIG_USER_SCHED */
9181 #endif /* CONFIG_FAIR_GROUP_SCHED */
9182 #ifdef CONFIG_RT_GROUP_SCHED
9183 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9184 ptr += nr_cpu_ids * sizeof(void **);
9185
9186 init_task_group.rt_rq = (struct rt_rq **)ptr;
9187 ptr += nr_cpu_ids * sizeof(void **);
9188
9189 #ifdef CONFIG_USER_SCHED
9190 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9191 ptr += nr_cpu_ids * sizeof(void **);
9192
9193 root_task_group.rt_rq = (struct rt_rq **)ptr;
9194 ptr += nr_cpu_ids * sizeof(void **);
9195 #endif /* CONFIG_USER_SCHED */
9196 #endif /* CONFIG_RT_GROUP_SCHED */
9197 #ifdef CONFIG_CPUMASK_OFFSTACK
9198 for_each_possible_cpu(i) {
9199 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9200 ptr += cpumask_size();
9201 }
9202 #endif /* CONFIG_CPUMASK_OFFSTACK */
9203 }
9204
9205 #ifdef CONFIG_SMP
9206 init_defrootdomain();
9207 #endif
9208
9209 init_rt_bandwidth(&def_rt_bandwidth,
9210 global_rt_period(), global_rt_runtime());
9211
9212 #ifdef CONFIG_RT_GROUP_SCHED
9213 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9214 global_rt_period(), global_rt_runtime());
9215 #ifdef CONFIG_USER_SCHED
9216 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9217 global_rt_period(), RUNTIME_INF);
9218 #endif /* CONFIG_USER_SCHED */
9219 #endif /* CONFIG_RT_GROUP_SCHED */
9220
9221 #ifdef CONFIG_GROUP_SCHED
9222 list_add(&init_task_group.list, &task_groups);
9223 INIT_LIST_HEAD(&init_task_group.children);
9224
9225 #ifdef CONFIG_USER_SCHED
9226 INIT_LIST_HEAD(&root_task_group.children);
9227 init_task_group.parent = &root_task_group;
9228 list_add(&init_task_group.siblings, &root_task_group.children);
9229 #endif /* CONFIG_USER_SCHED */
9230 #endif /* CONFIG_GROUP_SCHED */
9231
9232 for_each_possible_cpu(i) {
9233 struct rq *rq;
9234
9235 rq = cpu_rq(i);
9236 spin_lock_init(&rq->lock);
9237 rq->nr_running = 0;
9238 rq->calc_load_active = 0;
9239 rq->calc_load_update = jiffies + LOAD_FREQ;
9240 init_cfs_rq(&rq->cfs, rq);
9241 init_rt_rq(&rq->rt, rq);
9242 #ifdef CONFIG_FAIR_GROUP_SCHED
9243 init_task_group.shares = init_task_group_load;
9244 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9245 #ifdef CONFIG_CGROUP_SCHED
9246 /*
9247 * How much cpu bandwidth does init_task_group get?
9248 *
9249 * In case of task-groups formed thr' the cgroup filesystem, it
9250 * gets 100% of the cpu resources in the system. This overall
9251 * system cpu resource is divided among the tasks of
9252 * init_task_group and its child task-groups in a fair manner,
9253 * based on each entity's (task or task-group's) weight
9254 * (se->load.weight).
9255 *
9256 * In other words, if init_task_group has 10 tasks of weight
9257 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9258 * then A0's share of the cpu resource is:
9259 *
9260 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9261 *
9262 * We achieve this by letting init_task_group's tasks sit
9263 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9264 */
9265 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9266 #elif defined CONFIG_USER_SCHED
9267 root_task_group.shares = NICE_0_LOAD;
9268 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9269 /*
9270 * In case of task-groups formed thr' the user id of tasks,
9271 * init_task_group represents tasks belonging to root user.
9272 * Hence it forms a sibling of all subsequent groups formed.
9273 * In this case, init_task_group gets only a fraction of overall
9274 * system cpu resource, based on the weight assigned to root
9275 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9276 * by letting tasks of init_task_group sit in a separate cfs_rq
9277 * (init_cfs_rq) and having one entity represent this group of
9278 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9279 */
9280 init_tg_cfs_entry(&init_task_group,
9281 &per_cpu(init_cfs_rq, i),
9282 &per_cpu(init_sched_entity, i), i, 1,
9283 root_task_group.se[i]);
9284
9285 #endif
9286 #endif /* CONFIG_FAIR_GROUP_SCHED */
9287
9288 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9289 #ifdef CONFIG_RT_GROUP_SCHED
9290 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9291 #ifdef CONFIG_CGROUP_SCHED
9292 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9293 #elif defined CONFIG_USER_SCHED
9294 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9295 init_tg_rt_entry(&init_task_group,
9296 &per_cpu(init_rt_rq, i),
9297 &per_cpu(init_sched_rt_entity, i), i, 1,
9298 root_task_group.rt_se[i]);
9299 #endif
9300 #endif
9301
9302 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9303 rq->cpu_load[j] = 0;
9304 #ifdef CONFIG_SMP
9305 rq->sd = NULL;
9306 rq->rd = NULL;
9307 rq->active_balance = 0;
9308 rq->next_balance = jiffies;
9309 rq->push_cpu = 0;
9310 rq->cpu = i;
9311 rq->online = 0;
9312 rq->migration_thread = NULL;
9313 INIT_LIST_HEAD(&rq->migration_queue);
9314 rq_attach_root(rq, &def_root_domain);
9315 #endif
9316 init_rq_hrtick(rq);
9317 atomic_set(&rq->nr_iowait, 0);
9318 }
9319
9320 set_load_weight(&init_task);
9321
9322 #ifdef CONFIG_PREEMPT_NOTIFIERS
9323 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9324 #endif
9325
9326 #ifdef CONFIG_SMP
9327 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9328 #endif
9329
9330 #ifdef CONFIG_RT_MUTEXES
9331 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9332 #endif
9333
9334 /*
9335 * The boot idle thread does lazy MMU switching as well:
9336 */
9337 atomic_inc(&init_mm.mm_count);
9338 enter_lazy_tlb(&init_mm, current);
9339
9340 /*
9341 * Make us the idle thread. Technically, schedule() should not be
9342 * called from this thread, however somewhere below it might be,
9343 * but because we are the idle thread, we just pick up running again
9344 * when this runqueue becomes "idle".
9345 */
9346 init_idle(current, smp_processor_id());
9347
9348 calc_load_update = jiffies + LOAD_FREQ;
9349
9350 /*
9351 * During early bootup we pretend to be a normal task:
9352 */
9353 current->sched_class = &fair_sched_class;
9354
9355 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9356 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9357 #ifdef CONFIG_SMP
9358 #ifdef CONFIG_NO_HZ
9359 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9360 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9361 #endif
9362 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9363 #endif /* SMP */
9364
9365 perf_counter_init();
9366
9367 scheduler_running = 1;
9368 }
9369
9370 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9371 void __might_sleep(char *file, int line)
9372 {
9373 #ifdef in_atomic
9374 static unsigned long prev_jiffy; /* ratelimiting */
9375
9376 if ((!in_atomic() && !irqs_disabled()) ||
9377 system_state != SYSTEM_RUNNING || oops_in_progress)
9378 return;
9379 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9380 return;
9381 prev_jiffy = jiffies;
9382
9383 printk(KERN_ERR
9384 "BUG: sleeping function called from invalid context at %s:%d\n",
9385 file, line);
9386 printk(KERN_ERR
9387 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9388 in_atomic(), irqs_disabled(),
9389 current->pid, current->comm);
9390
9391 debug_show_held_locks(current);
9392 if (irqs_disabled())
9393 print_irqtrace_events(current);
9394 dump_stack();
9395 #endif
9396 }
9397 EXPORT_SYMBOL(__might_sleep);
9398 #endif
9399
9400 #ifdef CONFIG_MAGIC_SYSRQ
9401 static void normalize_task(struct rq *rq, struct task_struct *p)
9402 {
9403 int on_rq;
9404
9405 update_rq_clock(rq);
9406 on_rq = p->se.on_rq;
9407 if (on_rq)
9408 deactivate_task(rq, p, 0);
9409 __setscheduler(rq, p, SCHED_NORMAL, 0);
9410 if (on_rq) {
9411 activate_task(rq, p, 0);
9412 resched_task(rq->curr);
9413 }
9414 }
9415
9416 void normalize_rt_tasks(void)
9417 {
9418 struct task_struct *g, *p;
9419 unsigned long flags;
9420 struct rq *rq;
9421
9422 read_lock_irqsave(&tasklist_lock, flags);
9423 do_each_thread(g, p) {
9424 /*
9425 * Only normalize user tasks:
9426 */
9427 if (!p->mm)
9428 continue;
9429
9430 p->se.exec_start = 0;
9431 #ifdef CONFIG_SCHEDSTATS
9432 p->se.wait_start = 0;
9433 p->se.sleep_start = 0;
9434 p->se.block_start = 0;
9435 #endif
9436
9437 if (!rt_task(p)) {
9438 /*
9439 * Renice negative nice level userspace
9440 * tasks back to 0:
9441 */
9442 if (TASK_NICE(p) < 0 && p->mm)
9443 set_user_nice(p, 0);
9444 continue;
9445 }
9446
9447 spin_lock(&p->pi_lock);
9448 rq = __task_rq_lock(p);
9449
9450 normalize_task(rq, p);
9451
9452 __task_rq_unlock(rq);
9453 spin_unlock(&p->pi_lock);
9454 } while_each_thread(g, p);
9455
9456 read_unlock_irqrestore(&tasklist_lock, flags);
9457 }
9458
9459 #endif /* CONFIG_MAGIC_SYSRQ */
9460
9461 #ifdef CONFIG_IA64
9462 /*
9463 * These functions are only useful for the IA64 MCA handling.
9464 *
9465 * They can only be called when the whole system has been
9466 * stopped - every CPU needs to be quiescent, and no scheduling
9467 * activity can take place. Using them for anything else would
9468 * be a serious bug, and as a result, they aren't even visible
9469 * under any other configuration.
9470 */
9471
9472 /**
9473 * curr_task - return the current task for a given cpu.
9474 * @cpu: the processor in question.
9475 *
9476 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9477 */
9478 struct task_struct *curr_task(int cpu)
9479 {
9480 return cpu_curr(cpu);
9481 }
9482
9483 /**
9484 * set_curr_task - set the current task for a given cpu.
9485 * @cpu: the processor in question.
9486 * @p: the task pointer to set.
9487 *
9488 * Description: This function must only be used when non-maskable interrupts
9489 * are serviced on a separate stack. It allows the architecture to switch the
9490 * notion of the current task on a cpu in a non-blocking manner. This function
9491 * must be called with all CPU's synchronized, and interrupts disabled, the
9492 * and caller must save the original value of the current task (see
9493 * curr_task() above) and restore that value before reenabling interrupts and
9494 * re-starting the system.
9495 *
9496 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9497 */
9498 void set_curr_task(int cpu, struct task_struct *p)
9499 {
9500 cpu_curr(cpu) = p;
9501 }
9502
9503 #endif
9504
9505 #ifdef CONFIG_FAIR_GROUP_SCHED
9506 static void free_fair_sched_group(struct task_group *tg)
9507 {
9508 int i;
9509
9510 for_each_possible_cpu(i) {
9511 if (tg->cfs_rq)
9512 kfree(tg->cfs_rq[i]);
9513 if (tg->se)
9514 kfree(tg->se[i]);
9515 }
9516
9517 kfree(tg->cfs_rq);
9518 kfree(tg->se);
9519 }
9520
9521 static
9522 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9523 {
9524 struct cfs_rq *cfs_rq;
9525 struct sched_entity *se;
9526 struct rq *rq;
9527 int i;
9528
9529 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9530 if (!tg->cfs_rq)
9531 goto err;
9532 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9533 if (!tg->se)
9534 goto err;
9535
9536 tg->shares = NICE_0_LOAD;
9537
9538 for_each_possible_cpu(i) {
9539 rq = cpu_rq(i);
9540
9541 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9542 GFP_KERNEL, cpu_to_node(i));
9543 if (!cfs_rq)
9544 goto err;
9545
9546 se = kzalloc_node(sizeof(struct sched_entity),
9547 GFP_KERNEL, cpu_to_node(i));
9548 if (!se)
9549 goto err;
9550
9551 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9552 }
9553
9554 return 1;
9555
9556 err:
9557 return 0;
9558 }
9559
9560 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9561 {
9562 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9563 &cpu_rq(cpu)->leaf_cfs_rq_list);
9564 }
9565
9566 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9567 {
9568 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9569 }
9570 #else /* !CONFG_FAIR_GROUP_SCHED */
9571 static inline void free_fair_sched_group(struct task_group *tg)
9572 {
9573 }
9574
9575 static inline
9576 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9577 {
9578 return 1;
9579 }
9580
9581 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9582 {
9583 }
9584
9585 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9586 {
9587 }
9588 #endif /* CONFIG_FAIR_GROUP_SCHED */
9589
9590 #ifdef CONFIG_RT_GROUP_SCHED
9591 static void free_rt_sched_group(struct task_group *tg)
9592 {
9593 int i;
9594
9595 destroy_rt_bandwidth(&tg->rt_bandwidth);
9596
9597 for_each_possible_cpu(i) {
9598 if (tg->rt_rq)
9599 kfree(tg->rt_rq[i]);
9600 if (tg->rt_se)
9601 kfree(tg->rt_se[i]);
9602 }
9603
9604 kfree(tg->rt_rq);
9605 kfree(tg->rt_se);
9606 }
9607
9608 static
9609 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9610 {
9611 struct rt_rq *rt_rq;
9612 struct sched_rt_entity *rt_se;
9613 struct rq *rq;
9614 int i;
9615
9616 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9617 if (!tg->rt_rq)
9618 goto err;
9619 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9620 if (!tg->rt_se)
9621 goto err;
9622
9623 init_rt_bandwidth(&tg->rt_bandwidth,
9624 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9625
9626 for_each_possible_cpu(i) {
9627 rq = cpu_rq(i);
9628
9629 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9630 GFP_KERNEL, cpu_to_node(i));
9631 if (!rt_rq)
9632 goto err;
9633
9634 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9635 GFP_KERNEL, cpu_to_node(i));
9636 if (!rt_se)
9637 goto err;
9638
9639 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9640 }
9641
9642 return 1;
9643
9644 err:
9645 return 0;
9646 }
9647
9648 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9649 {
9650 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9651 &cpu_rq(cpu)->leaf_rt_rq_list);
9652 }
9653
9654 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9655 {
9656 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9657 }
9658 #else /* !CONFIG_RT_GROUP_SCHED */
9659 static inline void free_rt_sched_group(struct task_group *tg)
9660 {
9661 }
9662
9663 static inline
9664 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9665 {
9666 return 1;
9667 }
9668
9669 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9670 {
9671 }
9672
9673 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9674 {
9675 }
9676 #endif /* CONFIG_RT_GROUP_SCHED */
9677
9678 #ifdef CONFIG_GROUP_SCHED
9679 static void free_sched_group(struct task_group *tg)
9680 {
9681 free_fair_sched_group(tg);
9682 free_rt_sched_group(tg);
9683 kfree(tg);
9684 }
9685
9686 /* allocate runqueue etc for a new task group */
9687 struct task_group *sched_create_group(struct task_group *parent)
9688 {
9689 struct task_group *tg;
9690 unsigned long flags;
9691 int i;
9692
9693 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9694 if (!tg)
9695 return ERR_PTR(-ENOMEM);
9696
9697 if (!alloc_fair_sched_group(tg, parent))
9698 goto err;
9699
9700 if (!alloc_rt_sched_group(tg, parent))
9701 goto err;
9702
9703 spin_lock_irqsave(&task_group_lock, flags);
9704 for_each_possible_cpu(i) {
9705 register_fair_sched_group(tg, i);
9706 register_rt_sched_group(tg, i);
9707 }
9708 list_add_rcu(&tg->list, &task_groups);
9709
9710 WARN_ON(!parent); /* root should already exist */
9711
9712 tg->parent = parent;
9713 INIT_LIST_HEAD(&tg->children);
9714 list_add_rcu(&tg->siblings, &parent->children);
9715 spin_unlock_irqrestore(&task_group_lock, flags);
9716
9717 return tg;
9718
9719 err:
9720 free_sched_group(tg);
9721 return ERR_PTR(-ENOMEM);
9722 }
9723
9724 /* rcu callback to free various structures associated with a task group */
9725 static void free_sched_group_rcu(struct rcu_head *rhp)
9726 {
9727 /* now it should be safe to free those cfs_rqs */
9728 free_sched_group(container_of(rhp, struct task_group, rcu));
9729 }
9730
9731 /* Destroy runqueue etc associated with a task group */
9732 void sched_destroy_group(struct task_group *tg)
9733 {
9734 unsigned long flags;
9735 int i;
9736
9737 spin_lock_irqsave(&task_group_lock, flags);
9738 for_each_possible_cpu(i) {
9739 unregister_fair_sched_group(tg, i);
9740 unregister_rt_sched_group(tg, i);
9741 }
9742 list_del_rcu(&tg->list);
9743 list_del_rcu(&tg->siblings);
9744 spin_unlock_irqrestore(&task_group_lock, flags);
9745
9746 /* wait for possible concurrent references to cfs_rqs complete */
9747 call_rcu(&tg->rcu, free_sched_group_rcu);
9748 }
9749
9750 /* change task's runqueue when it moves between groups.
9751 * The caller of this function should have put the task in its new group
9752 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9753 * reflect its new group.
9754 */
9755 void sched_move_task(struct task_struct *tsk)
9756 {
9757 int on_rq, running;
9758 unsigned long flags;
9759 struct rq *rq;
9760
9761 rq = task_rq_lock(tsk, &flags);
9762
9763 update_rq_clock(rq);
9764
9765 running = task_current(rq, tsk);
9766 on_rq = tsk->se.on_rq;
9767
9768 if (on_rq)
9769 dequeue_task(rq, tsk, 0);
9770 if (unlikely(running))
9771 tsk->sched_class->put_prev_task(rq, tsk);
9772
9773 set_task_rq(tsk, task_cpu(tsk));
9774
9775 #ifdef CONFIG_FAIR_GROUP_SCHED
9776 if (tsk->sched_class->moved_group)
9777 tsk->sched_class->moved_group(tsk);
9778 #endif
9779
9780 if (unlikely(running))
9781 tsk->sched_class->set_curr_task(rq);
9782 if (on_rq)
9783 enqueue_task(rq, tsk, 0);
9784
9785 task_rq_unlock(rq, &flags);
9786 }
9787 #endif /* CONFIG_GROUP_SCHED */
9788
9789 #ifdef CONFIG_FAIR_GROUP_SCHED
9790 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9791 {
9792 struct cfs_rq *cfs_rq = se->cfs_rq;
9793 int on_rq;
9794
9795 on_rq = se->on_rq;
9796 if (on_rq)
9797 dequeue_entity(cfs_rq, se, 0);
9798
9799 se->load.weight = shares;
9800 se->load.inv_weight = 0;
9801
9802 if (on_rq)
9803 enqueue_entity(cfs_rq, se, 0);
9804 }
9805
9806 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9807 {
9808 struct cfs_rq *cfs_rq = se->cfs_rq;
9809 struct rq *rq = cfs_rq->rq;
9810 unsigned long flags;
9811
9812 spin_lock_irqsave(&rq->lock, flags);
9813 __set_se_shares(se, shares);
9814 spin_unlock_irqrestore(&rq->lock, flags);
9815 }
9816
9817 static DEFINE_MUTEX(shares_mutex);
9818
9819 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9820 {
9821 int i;
9822 unsigned long flags;
9823
9824 /*
9825 * We can't change the weight of the root cgroup.
9826 */
9827 if (!tg->se[0])
9828 return -EINVAL;
9829
9830 if (shares < MIN_SHARES)
9831 shares = MIN_SHARES;
9832 else if (shares > MAX_SHARES)
9833 shares = MAX_SHARES;
9834
9835 mutex_lock(&shares_mutex);
9836 if (tg->shares == shares)
9837 goto done;
9838
9839 spin_lock_irqsave(&task_group_lock, flags);
9840 for_each_possible_cpu(i)
9841 unregister_fair_sched_group(tg, i);
9842 list_del_rcu(&tg->siblings);
9843 spin_unlock_irqrestore(&task_group_lock, flags);
9844
9845 /* wait for any ongoing reference to this group to finish */
9846 synchronize_sched();
9847
9848 /*
9849 * Now we are free to modify the group's share on each cpu
9850 * w/o tripping rebalance_share or load_balance_fair.
9851 */
9852 tg->shares = shares;
9853 for_each_possible_cpu(i) {
9854 /*
9855 * force a rebalance
9856 */
9857 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9858 set_se_shares(tg->se[i], shares);
9859 }
9860
9861 /*
9862 * Enable load balance activity on this group, by inserting it back on
9863 * each cpu's rq->leaf_cfs_rq_list.
9864 */
9865 spin_lock_irqsave(&task_group_lock, flags);
9866 for_each_possible_cpu(i)
9867 register_fair_sched_group(tg, i);
9868 list_add_rcu(&tg->siblings, &tg->parent->children);
9869 spin_unlock_irqrestore(&task_group_lock, flags);
9870 done:
9871 mutex_unlock(&shares_mutex);
9872 return 0;
9873 }
9874
9875 unsigned long sched_group_shares(struct task_group *tg)
9876 {
9877 return tg->shares;
9878 }
9879 #endif
9880
9881 #ifdef CONFIG_RT_GROUP_SCHED
9882 /*
9883 * Ensure that the real time constraints are schedulable.
9884 */
9885 static DEFINE_MUTEX(rt_constraints_mutex);
9886
9887 static unsigned long to_ratio(u64 period, u64 runtime)
9888 {
9889 if (runtime == RUNTIME_INF)
9890 return 1ULL << 20;
9891
9892 return div64_u64(runtime << 20, period);
9893 }
9894
9895 /* Must be called with tasklist_lock held */
9896 static inline int tg_has_rt_tasks(struct task_group *tg)
9897 {
9898 struct task_struct *g, *p;
9899
9900 do_each_thread(g, p) {
9901 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9902 return 1;
9903 } while_each_thread(g, p);
9904
9905 return 0;
9906 }
9907
9908 struct rt_schedulable_data {
9909 struct task_group *tg;
9910 u64 rt_period;
9911 u64 rt_runtime;
9912 };
9913
9914 static int tg_schedulable(struct task_group *tg, void *data)
9915 {
9916 struct rt_schedulable_data *d = data;
9917 struct task_group *child;
9918 unsigned long total, sum = 0;
9919 u64 period, runtime;
9920
9921 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9922 runtime = tg->rt_bandwidth.rt_runtime;
9923
9924 if (tg == d->tg) {
9925 period = d->rt_period;
9926 runtime = d->rt_runtime;
9927 }
9928
9929 #ifdef CONFIG_USER_SCHED
9930 if (tg == &root_task_group) {
9931 period = global_rt_period();
9932 runtime = global_rt_runtime();
9933 }
9934 #endif
9935
9936 /*
9937 * Cannot have more runtime than the period.
9938 */
9939 if (runtime > period && runtime != RUNTIME_INF)
9940 return -EINVAL;
9941
9942 /*
9943 * Ensure we don't starve existing RT tasks.
9944 */
9945 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9946 return -EBUSY;
9947
9948 total = to_ratio(period, runtime);
9949
9950 /*
9951 * Nobody can have more than the global setting allows.
9952 */
9953 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9954 return -EINVAL;
9955
9956 /*
9957 * The sum of our children's runtime should not exceed our own.
9958 */
9959 list_for_each_entry_rcu(child, &tg->children, siblings) {
9960 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9961 runtime = child->rt_bandwidth.rt_runtime;
9962
9963 if (child == d->tg) {
9964 period = d->rt_period;
9965 runtime = d->rt_runtime;
9966 }
9967
9968 sum += to_ratio(period, runtime);
9969 }
9970
9971 if (sum > total)
9972 return -EINVAL;
9973
9974 return 0;
9975 }
9976
9977 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9978 {
9979 struct rt_schedulable_data data = {
9980 .tg = tg,
9981 .rt_period = period,
9982 .rt_runtime = runtime,
9983 };
9984
9985 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9986 }
9987
9988 static int tg_set_bandwidth(struct task_group *tg,
9989 u64 rt_period, u64 rt_runtime)
9990 {
9991 int i, err = 0;
9992
9993 mutex_lock(&rt_constraints_mutex);
9994 read_lock(&tasklist_lock);
9995 err = __rt_schedulable(tg, rt_period, rt_runtime);
9996 if (err)
9997 goto unlock;
9998
9999 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10000 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10001 tg->rt_bandwidth.rt_runtime = rt_runtime;
10002
10003 for_each_possible_cpu(i) {
10004 struct rt_rq *rt_rq = tg->rt_rq[i];
10005
10006 spin_lock(&rt_rq->rt_runtime_lock);
10007 rt_rq->rt_runtime = rt_runtime;
10008 spin_unlock(&rt_rq->rt_runtime_lock);
10009 }
10010 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10011 unlock:
10012 read_unlock(&tasklist_lock);
10013 mutex_unlock(&rt_constraints_mutex);
10014
10015 return err;
10016 }
10017
10018 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10019 {
10020 u64 rt_runtime, rt_period;
10021
10022 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10023 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10024 if (rt_runtime_us < 0)
10025 rt_runtime = RUNTIME_INF;
10026
10027 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10028 }
10029
10030 long sched_group_rt_runtime(struct task_group *tg)
10031 {
10032 u64 rt_runtime_us;
10033
10034 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10035 return -1;
10036
10037 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10038 do_div(rt_runtime_us, NSEC_PER_USEC);
10039 return rt_runtime_us;
10040 }
10041
10042 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10043 {
10044 u64 rt_runtime, rt_period;
10045
10046 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10047 rt_runtime = tg->rt_bandwidth.rt_runtime;
10048
10049 if (rt_period == 0)
10050 return -EINVAL;
10051
10052 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10053 }
10054
10055 long sched_group_rt_period(struct task_group *tg)
10056 {
10057 u64 rt_period_us;
10058
10059 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10060 do_div(rt_period_us, NSEC_PER_USEC);
10061 return rt_period_us;
10062 }
10063
10064 static int sched_rt_global_constraints(void)
10065 {
10066 u64 runtime, period;
10067 int ret = 0;
10068
10069 if (sysctl_sched_rt_period <= 0)
10070 return -EINVAL;
10071
10072 runtime = global_rt_runtime();
10073 period = global_rt_period();
10074
10075 /*
10076 * Sanity check on the sysctl variables.
10077 */
10078 if (runtime > period && runtime != RUNTIME_INF)
10079 return -EINVAL;
10080
10081 mutex_lock(&rt_constraints_mutex);
10082 read_lock(&tasklist_lock);
10083 ret = __rt_schedulable(NULL, 0, 0);
10084 read_unlock(&tasklist_lock);
10085 mutex_unlock(&rt_constraints_mutex);
10086
10087 return ret;
10088 }
10089
10090 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10091 {
10092 /* Don't accept realtime tasks when there is no way for them to run */
10093 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10094 return 0;
10095
10096 return 1;
10097 }
10098
10099 #else /* !CONFIG_RT_GROUP_SCHED */
10100 static int sched_rt_global_constraints(void)
10101 {
10102 unsigned long flags;
10103 int i;
10104
10105 if (sysctl_sched_rt_period <= 0)
10106 return -EINVAL;
10107
10108 /*
10109 * There's always some RT tasks in the root group
10110 * -- migration, kstopmachine etc..
10111 */
10112 if (sysctl_sched_rt_runtime == 0)
10113 return -EBUSY;
10114
10115 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10116 for_each_possible_cpu(i) {
10117 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10118
10119 spin_lock(&rt_rq->rt_runtime_lock);
10120 rt_rq->rt_runtime = global_rt_runtime();
10121 spin_unlock(&rt_rq->rt_runtime_lock);
10122 }
10123 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10124
10125 return 0;
10126 }
10127 #endif /* CONFIG_RT_GROUP_SCHED */
10128
10129 int sched_rt_handler(struct ctl_table *table, int write,
10130 struct file *filp, void __user *buffer, size_t *lenp,
10131 loff_t *ppos)
10132 {
10133 int ret;
10134 int old_period, old_runtime;
10135 static DEFINE_MUTEX(mutex);
10136
10137 mutex_lock(&mutex);
10138 old_period = sysctl_sched_rt_period;
10139 old_runtime = sysctl_sched_rt_runtime;
10140
10141 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10142
10143 if (!ret && write) {
10144 ret = sched_rt_global_constraints();
10145 if (ret) {
10146 sysctl_sched_rt_period = old_period;
10147 sysctl_sched_rt_runtime = old_runtime;
10148 } else {
10149 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10150 def_rt_bandwidth.rt_period =
10151 ns_to_ktime(global_rt_period());
10152 }
10153 }
10154 mutex_unlock(&mutex);
10155
10156 return ret;
10157 }
10158
10159 #ifdef CONFIG_CGROUP_SCHED
10160
10161 /* return corresponding task_group object of a cgroup */
10162 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10163 {
10164 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10165 struct task_group, css);
10166 }
10167
10168 static struct cgroup_subsys_state *
10169 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10170 {
10171 struct task_group *tg, *parent;
10172
10173 if (!cgrp->parent) {
10174 /* This is early initialization for the top cgroup */
10175 return &init_task_group.css;
10176 }
10177
10178 parent = cgroup_tg(cgrp->parent);
10179 tg = sched_create_group(parent);
10180 if (IS_ERR(tg))
10181 return ERR_PTR(-ENOMEM);
10182
10183 return &tg->css;
10184 }
10185
10186 static void
10187 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10188 {
10189 struct task_group *tg = cgroup_tg(cgrp);
10190
10191 sched_destroy_group(tg);
10192 }
10193
10194 static int
10195 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10196 struct task_struct *tsk)
10197 {
10198 #ifdef CONFIG_RT_GROUP_SCHED
10199 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10200 return -EINVAL;
10201 #else
10202 /* We don't support RT-tasks being in separate groups */
10203 if (tsk->sched_class != &fair_sched_class)
10204 return -EINVAL;
10205 #endif
10206
10207 return 0;
10208 }
10209
10210 static void
10211 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10212 struct cgroup *old_cont, struct task_struct *tsk)
10213 {
10214 sched_move_task(tsk);
10215 }
10216
10217 #ifdef CONFIG_FAIR_GROUP_SCHED
10218 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10219 u64 shareval)
10220 {
10221 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10222 }
10223
10224 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10225 {
10226 struct task_group *tg = cgroup_tg(cgrp);
10227
10228 return (u64) tg->shares;
10229 }
10230 #endif /* CONFIG_FAIR_GROUP_SCHED */
10231
10232 #ifdef CONFIG_RT_GROUP_SCHED
10233 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10234 s64 val)
10235 {
10236 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10237 }
10238
10239 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10240 {
10241 return sched_group_rt_runtime(cgroup_tg(cgrp));
10242 }
10243
10244 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10245 u64 rt_period_us)
10246 {
10247 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10248 }
10249
10250 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10251 {
10252 return sched_group_rt_period(cgroup_tg(cgrp));
10253 }
10254 #endif /* CONFIG_RT_GROUP_SCHED */
10255
10256 static struct cftype cpu_files[] = {
10257 #ifdef CONFIG_FAIR_GROUP_SCHED
10258 {
10259 .name = "shares",
10260 .read_u64 = cpu_shares_read_u64,
10261 .write_u64 = cpu_shares_write_u64,
10262 },
10263 #endif
10264 #ifdef CONFIG_RT_GROUP_SCHED
10265 {
10266 .name = "rt_runtime_us",
10267 .read_s64 = cpu_rt_runtime_read,
10268 .write_s64 = cpu_rt_runtime_write,
10269 },
10270 {
10271 .name = "rt_period_us",
10272 .read_u64 = cpu_rt_period_read_uint,
10273 .write_u64 = cpu_rt_period_write_uint,
10274 },
10275 #endif
10276 };
10277
10278 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10279 {
10280 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10281 }
10282
10283 struct cgroup_subsys cpu_cgroup_subsys = {
10284 .name = "cpu",
10285 .create = cpu_cgroup_create,
10286 .destroy = cpu_cgroup_destroy,
10287 .can_attach = cpu_cgroup_can_attach,
10288 .attach = cpu_cgroup_attach,
10289 .populate = cpu_cgroup_populate,
10290 .subsys_id = cpu_cgroup_subsys_id,
10291 .early_init = 1,
10292 };
10293
10294 #endif /* CONFIG_CGROUP_SCHED */
10295
10296 #ifdef CONFIG_CGROUP_CPUACCT
10297
10298 /*
10299 * CPU accounting code for task groups.
10300 *
10301 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10302 * (balbir@in.ibm.com).
10303 */
10304
10305 /* track cpu usage of a group of tasks and its child groups */
10306 struct cpuacct {
10307 struct cgroup_subsys_state css;
10308 /* cpuusage holds pointer to a u64-type object on every cpu */
10309 u64 *cpuusage;
10310 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10311 struct cpuacct *parent;
10312 };
10313
10314 struct cgroup_subsys cpuacct_subsys;
10315
10316 /* return cpu accounting group corresponding to this container */
10317 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10318 {
10319 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10320 struct cpuacct, css);
10321 }
10322
10323 /* return cpu accounting group to which this task belongs */
10324 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10325 {
10326 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10327 struct cpuacct, css);
10328 }
10329
10330 /* create a new cpu accounting group */
10331 static struct cgroup_subsys_state *cpuacct_create(
10332 struct cgroup_subsys *ss, struct cgroup *cgrp)
10333 {
10334 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10335 int i;
10336
10337 if (!ca)
10338 goto out;
10339
10340 ca->cpuusage = alloc_percpu(u64);
10341 if (!ca->cpuusage)
10342 goto out_free_ca;
10343
10344 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10345 if (percpu_counter_init(&ca->cpustat[i], 0))
10346 goto out_free_counters;
10347
10348 if (cgrp->parent)
10349 ca->parent = cgroup_ca(cgrp->parent);
10350
10351 return &ca->css;
10352
10353 out_free_counters:
10354 while (--i >= 0)
10355 percpu_counter_destroy(&ca->cpustat[i]);
10356 free_percpu(ca->cpuusage);
10357 out_free_ca:
10358 kfree(ca);
10359 out:
10360 return ERR_PTR(-ENOMEM);
10361 }
10362
10363 /* destroy an existing cpu accounting group */
10364 static void
10365 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10366 {
10367 struct cpuacct *ca = cgroup_ca(cgrp);
10368 int i;
10369
10370 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10371 percpu_counter_destroy(&ca->cpustat[i]);
10372 free_percpu(ca->cpuusage);
10373 kfree(ca);
10374 }
10375
10376 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10377 {
10378 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10379 u64 data;
10380
10381 #ifndef CONFIG_64BIT
10382 /*
10383 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10384 */
10385 spin_lock_irq(&cpu_rq(cpu)->lock);
10386 data = *cpuusage;
10387 spin_unlock_irq(&cpu_rq(cpu)->lock);
10388 #else
10389 data = *cpuusage;
10390 #endif
10391
10392 return data;
10393 }
10394
10395 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10396 {
10397 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10398
10399 #ifndef CONFIG_64BIT
10400 /*
10401 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10402 */
10403 spin_lock_irq(&cpu_rq(cpu)->lock);
10404 *cpuusage = val;
10405 spin_unlock_irq(&cpu_rq(cpu)->lock);
10406 #else
10407 *cpuusage = val;
10408 #endif
10409 }
10410
10411 /* return total cpu usage (in nanoseconds) of a group */
10412 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10413 {
10414 struct cpuacct *ca = cgroup_ca(cgrp);
10415 u64 totalcpuusage = 0;
10416 int i;
10417
10418 for_each_present_cpu(i)
10419 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10420
10421 return totalcpuusage;
10422 }
10423
10424 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10425 u64 reset)
10426 {
10427 struct cpuacct *ca = cgroup_ca(cgrp);
10428 int err = 0;
10429 int i;
10430
10431 if (reset) {
10432 err = -EINVAL;
10433 goto out;
10434 }
10435
10436 for_each_present_cpu(i)
10437 cpuacct_cpuusage_write(ca, i, 0);
10438
10439 out:
10440 return err;
10441 }
10442
10443 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10444 struct seq_file *m)
10445 {
10446 struct cpuacct *ca = cgroup_ca(cgroup);
10447 u64 percpu;
10448 int i;
10449
10450 for_each_present_cpu(i) {
10451 percpu = cpuacct_cpuusage_read(ca, i);
10452 seq_printf(m, "%llu ", (unsigned long long) percpu);
10453 }
10454 seq_printf(m, "\n");
10455 return 0;
10456 }
10457
10458 static const char *cpuacct_stat_desc[] = {
10459 [CPUACCT_STAT_USER] = "user",
10460 [CPUACCT_STAT_SYSTEM] = "system",
10461 };
10462
10463 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10464 struct cgroup_map_cb *cb)
10465 {
10466 struct cpuacct *ca = cgroup_ca(cgrp);
10467 int i;
10468
10469 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10470 s64 val = percpu_counter_read(&ca->cpustat[i]);
10471 val = cputime64_to_clock_t(val);
10472 cb->fill(cb, cpuacct_stat_desc[i], val);
10473 }
10474 return 0;
10475 }
10476
10477 static struct cftype files[] = {
10478 {
10479 .name = "usage",
10480 .read_u64 = cpuusage_read,
10481 .write_u64 = cpuusage_write,
10482 },
10483 {
10484 .name = "usage_percpu",
10485 .read_seq_string = cpuacct_percpu_seq_read,
10486 },
10487 {
10488 .name = "stat",
10489 .read_map = cpuacct_stats_show,
10490 },
10491 };
10492
10493 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10494 {
10495 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10496 }
10497
10498 /*
10499 * charge this task's execution time to its accounting group.
10500 *
10501 * called with rq->lock held.
10502 */
10503 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10504 {
10505 struct cpuacct *ca;
10506 int cpu;
10507
10508 if (unlikely(!cpuacct_subsys.active))
10509 return;
10510
10511 cpu = task_cpu(tsk);
10512
10513 rcu_read_lock();
10514
10515 ca = task_ca(tsk);
10516
10517 for (; ca; ca = ca->parent) {
10518 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10519 *cpuusage += cputime;
10520 }
10521
10522 rcu_read_unlock();
10523 }
10524
10525 /*
10526 * Charge the system/user time to the task's accounting group.
10527 */
10528 static void cpuacct_update_stats(struct task_struct *tsk,
10529 enum cpuacct_stat_index idx, cputime_t val)
10530 {
10531 struct cpuacct *ca;
10532
10533 if (unlikely(!cpuacct_subsys.active))
10534 return;
10535
10536 rcu_read_lock();
10537 ca = task_ca(tsk);
10538
10539 do {
10540 percpu_counter_add(&ca->cpustat[idx], val);
10541 ca = ca->parent;
10542 } while (ca);
10543 rcu_read_unlock();
10544 }
10545
10546 struct cgroup_subsys cpuacct_subsys = {
10547 .name = "cpuacct",
10548 .create = cpuacct_create,
10549 .destroy = cpuacct_destroy,
10550 .populate = cpuacct_populate,
10551 .subsys_id = cpuacct_subsys_id,
10552 };
10553 #endif /* CONFIG_CGROUP_CPUACCT */