perf: Do the big rename: Performance Counters -> Performance Events
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
314 {
315 return list_empty(&root_task_group.children);
316 }
317 #endif
318
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
325
326 /*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
336
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
339
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343 struct task_group init_task_group;
344
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
347 {
348 struct task_group *tg;
349
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
361 }
362
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365 {
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
370
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
375 }
376
377 #else
378
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
381 {
382 return NULL;
383 }
384
385 #endif /* CONFIG_GROUP_SCHED */
386
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
392 u64 exec_clock;
393 u64 min_vruntime;
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
405 struct sched_entity *curr, *next, *last;
406
407 unsigned int nr_spread_over;
408
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
422
423 #ifdef CONFIG_SMP
424 /*
425 * the part of load.weight contributed by tasks
426 */
427 unsigned long task_weight;
428
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
436
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
446 #endif
447 #endif
448 };
449
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
473
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
476
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
482 };
483
484 #ifdef CONFIG_SMP
485
486 /*
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
493 */
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
498
499 /*
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
508 };
509
510 /*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
514 static struct root_domain def_root_domain;
515
516 #endif
517
518 /*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned long last_tick_seen;
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544 u64 nr_migrations_in;
545
546 struct cfs_rq cfs;
547 struct rt_rq rt;
548
549 #ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
552 #endif
553 #ifdef CONFIG_RT_GROUP_SCHED
554 struct list_head leaf_rt_rq_list;
555 #endif
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
565 struct task_struct *curr, *idle;
566 unsigned long next_balance;
567 struct mm_struct *prev_mm;
568
569 u64 clock;
570
571 atomic_t nr_iowait;
572
573 #ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
576
577 unsigned char idle_at_tick;
578 /* For active balancing */
579 int post_schedule;
580 int active_balance;
581 int push_cpu;
582 /* cpu of this runqueue: */
583 int cpu;
584 int online;
585
586 unsigned long avg_load_per_task;
587
588 struct task_struct *migration_thread;
589 struct list_head migration_queue;
590
591 u64 rt_avg;
592 u64 age_stamp;
593 #endif
594
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
606
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
612
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
615
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
620
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
624
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
628 };
629
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
631
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
634 {
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
636 }
637
638 static inline int cpu_of(struct rq *rq)
639 {
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
645 }
646
647 /*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
656
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
662
663 inline void update_rq_clock(struct rq *rq)
664 {
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666 }
667
668 /*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
676
677 /**
678 * runqueue_is_locked
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
684 int runqueue_is_locked(void)
685 {
686 int cpu = get_cpu();
687 struct rq *rq = cpu_rq(cpu);
688 int ret;
689
690 ret = spin_is_locked(&rq->lock);
691 put_cpu();
692 return ret;
693 }
694
695 /*
696 * Debugging: various feature bits
697 */
698
699 #define SCHED_FEAT(name, enabled) \
700 __SCHED_FEAT_##name ,
701
702 enum {
703 #include "sched_features.h"
704 };
705
706 #undef SCHED_FEAT
707
708 #define SCHED_FEAT(name, enabled) \
709 (1UL << __SCHED_FEAT_##name) * enabled |
710
711 const_debug unsigned int sysctl_sched_features =
712 #include "sched_features.h"
713 0;
714
715 #undef SCHED_FEAT
716
717 #ifdef CONFIG_SCHED_DEBUG
718 #define SCHED_FEAT(name, enabled) \
719 #name ,
720
721 static __read_mostly char *sched_feat_names[] = {
722 #include "sched_features.h"
723 NULL
724 };
725
726 #undef SCHED_FEAT
727
728 static int sched_feat_show(struct seq_file *m, void *v)
729 {
730 int i;
731
732 for (i = 0; sched_feat_names[i]; i++) {
733 if (!(sysctl_sched_features & (1UL << i)))
734 seq_puts(m, "NO_");
735 seq_printf(m, "%s ", sched_feat_names[i]);
736 }
737 seq_puts(m, "\n");
738
739 return 0;
740 }
741
742 static ssize_t
743 sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
745 {
746 char buf[64];
747 char *cmp = buf;
748 int neg = 0;
749 int i;
750
751 if (cnt > 63)
752 cnt = 63;
753
754 if (copy_from_user(&buf, ubuf, cnt))
755 return -EFAULT;
756
757 buf[cnt] = 0;
758
759 if (strncmp(buf, "NO_", 3) == 0) {
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
766
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768 if (neg)
769 sysctl_sched_features &= ~(1UL << i);
770 else
771 sysctl_sched_features |= (1UL << i);
772 break;
773 }
774 }
775
776 if (!sched_feat_names[i])
777 return -EINVAL;
778
779 filp->f_pos += cnt;
780
781 return cnt;
782 }
783
784 static int sched_feat_open(struct inode *inode, struct file *filp)
785 {
786 return single_open(filp, sched_feat_show, NULL);
787 }
788
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .write = sched_feat_write,
792 .read = seq_read,
793 .llseek = seq_lseek,
794 .release = single_release,
795 };
796
797 static __init int sched_init_debug(void)
798 {
799 debugfs_create_file("sched_features", 0644, NULL, NULL,
800 &sched_feat_fops);
801
802 return 0;
803 }
804 late_initcall(sched_init_debug);
805
806 #endif
807
808 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809
810 /*
811 * Number of tasks to iterate in a single balance run.
812 * Limited because this is done with IRQs disabled.
813 */
814 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815
816 /*
817 * ratelimit for updating the group shares.
818 * default: 0.25ms
819 */
820 unsigned int sysctl_sched_shares_ratelimit = 250000;
821
822 /*
823 * Inject some fuzzyness into changing the per-cpu group shares
824 * this avoids remote rq-locks at the expense of fairness.
825 * default: 4
826 */
827 unsigned int sysctl_sched_shares_thresh = 4;
828
829 /*
830 * period over which we average the RT time consumption, measured
831 * in ms.
832 *
833 * default: 1s
834 */
835 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
836
837 /*
838 * period over which we measure -rt task cpu usage in us.
839 * default: 1s
840 */
841 unsigned int sysctl_sched_rt_period = 1000000;
842
843 static __read_mostly int scheduler_running;
844
845 /*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849 int sysctl_sched_rt_runtime = 950000;
850
851 static inline u64 global_rt_period(void)
852 {
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854 }
855
856 static inline u64 global_rt_runtime(void)
857 {
858 if (sysctl_sched_rt_runtime < 0)
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862 }
863
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
866 #endif
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
869 #endif
870
871 static inline int task_current(struct rq *rq, struct task_struct *p)
872 {
873 return rq->curr == p;
874 }
875
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq *rq, struct task_struct *p)
878 {
879 return task_current(rq, p);
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 }
885
886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 {
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891 #endif
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
899 spin_unlock_irq(&rq->lock);
900 }
901
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq *rq, struct task_struct *p)
904 {
905 #ifdef CONFIG_SMP
906 return p->oncpu;
907 #else
908 return task_current(rq, p);
909 #endif
910 }
911
912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 {
914 #ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921 #endif
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924 #else
925 spin_unlock(&rq->lock);
926 #endif
927 }
928
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 {
931 #ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939 #endif
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
942 #endif
943 }
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
945
946 /*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
950 static inline struct rq *__task_rq_lock(struct task_struct *p)
951 __acquires(rq->lock)
952 {
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock(&rq->lock);
959 }
960 }
961
962 /*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
966 */
967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 __acquires(rq->lock)
969 {
970 struct rq *rq;
971
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
978 spin_unlock_irqrestore(&rq->lock, *flags);
979 }
980 }
981
982 void task_rq_unlock_wait(struct task_struct *p)
983 {
984 struct rq *rq = task_rq(p);
985
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
988 }
989
990 static void __task_rq_unlock(struct rq *rq)
991 __releases(rq->lock)
992 {
993 spin_unlock(&rq->lock);
994 }
995
996 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
997 __releases(rq->lock)
998 {
999 spin_unlock_irqrestore(&rq->lock, *flags);
1000 }
1001
1002 /*
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1004 */
1005 static struct rq *this_rq_lock(void)
1006 __acquires(rq->lock)
1007 {
1008 struct rq *rq;
1009
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1013
1014 return rq;
1015 }
1016
1017 #ifdef CONFIG_SCHED_HRTICK
1018 /*
1019 * Use HR-timers to deliver accurate preemption points.
1020 *
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1024 *
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1027 */
1028
1029 /*
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1033 */
1034 static inline int hrtick_enabled(struct rq *rq)
1035 {
1036 if (!sched_feat(HRTICK))
1037 return 0;
1038 if (!cpu_active(cpu_of(rq)))
1039 return 0;
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041 }
1042
1043 static void hrtick_clear(struct rq *rq)
1044 {
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1047 }
1048
1049 /*
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1052 */
1053 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054 {
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058
1059 spin_lock(&rq->lock);
1060 update_rq_clock(rq);
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1063
1064 return HRTIMER_NORESTART;
1065 }
1066
1067 #ifdef CONFIG_SMP
1068 /*
1069 * called from hardirq (IPI) context
1070 */
1071 static void __hrtick_start(void *arg)
1072 {
1073 struct rq *rq = arg;
1074
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
1079 }
1080
1081 /*
1082 * Called to set the hrtick timer state.
1083 *
1084 * called with rq->lock held and irqs disabled
1085 */
1086 static void hrtick_start(struct rq *rq, u64 delay)
1087 {
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090
1091 hrtimer_set_expires(timer, time);
1092
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1097 rq->hrtick_csd_pending = 1;
1098 }
1099 }
1100
1101 static int
1102 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103 {
1104 int cpu = (int)(long)hcpu;
1105
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
1113 hrtick_clear(cpu_rq(cpu));
1114 return NOTIFY_OK;
1115 }
1116
1117 return NOTIFY_DONE;
1118 }
1119
1120 static __init void init_hrtick(void)
1121 {
1122 hotcpu_notifier(hotplug_hrtick, 0);
1123 }
1124 #else
1125 /*
1126 * Called to set the hrtick timer state.
1127 *
1128 * called with rq->lock held and irqs disabled
1129 */
1130 static void hrtick_start(struct rq *rq, u64 delay)
1131 {
1132 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1133 HRTIMER_MODE_REL_PINNED, 0);
1134 }
1135
1136 static inline void init_hrtick(void)
1137 {
1138 }
1139 #endif /* CONFIG_SMP */
1140
1141 static void init_rq_hrtick(struct rq *rq)
1142 {
1143 #ifdef CONFIG_SMP
1144 rq->hrtick_csd_pending = 0;
1145
1146 rq->hrtick_csd.flags = 0;
1147 rq->hrtick_csd.func = __hrtick_start;
1148 rq->hrtick_csd.info = rq;
1149 #endif
1150
1151 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1152 rq->hrtick_timer.function = hrtick;
1153 }
1154 #else /* CONFIG_SCHED_HRTICK */
1155 static inline void hrtick_clear(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_rq_hrtick(struct rq *rq)
1160 {
1161 }
1162
1163 static inline void init_hrtick(void)
1164 {
1165 }
1166 #endif /* CONFIG_SCHED_HRTICK */
1167
1168 /*
1169 * resched_task - mark a task 'to be rescheduled now'.
1170 *
1171 * On UP this means the setting of the need_resched flag, on SMP it
1172 * might also involve a cross-CPU call to trigger the scheduler on
1173 * the target CPU.
1174 */
1175 #ifdef CONFIG_SMP
1176
1177 #ifndef tsk_is_polling
1178 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1179 #endif
1180
1181 static void resched_task(struct task_struct *p)
1182 {
1183 int cpu;
1184
1185 assert_spin_locked(&task_rq(p)->lock);
1186
1187 if (test_tsk_need_resched(p))
1188 return;
1189
1190 set_tsk_need_resched(p);
1191
1192 cpu = task_cpu(p);
1193 if (cpu == smp_processor_id())
1194 return;
1195
1196 /* NEED_RESCHED must be visible before we test polling */
1197 smp_mb();
1198 if (!tsk_is_polling(p))
1199 smp_send_reschedule(cpu);
1200 }
1201
1202 static void resched_cpu(int cpu)
1203 {
1204 struct rq *rq = cpu_rq(cpu);
1205 unsigned long flags;
1206
1207 if (!spin_trylock_irqsave(&rq->lock, flags))
1208 return;
1209 resched_task(cpu_curr(cpu));
1210 spin_unlock_irqrestore(&rq->lock, flags);
1211 }
1212
1213 #ifdef CONFIG_NO_HZ
1214 /*
1215 * When add_timer_on() enqueues a timer into the timer wheel of an
1216 * idle CPU then this timer might expire before the next timer event
1217 * which is scheduled to wake up that CPU. In case of a completely
1218 * idle system the next event might even be infinite time into the
1219 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1220 * leaves the inner idle loop so the newly added timer is taken into
1221 * account when the CPU goes back to idle and evaluates the timer
1222 * wheel for the next timer event.
1223 */
1224 void wake_up_idle_cpu(int cpu)
1225 {
1226 struct rq *rq = cpu_rq(cpu);
1227
1228 if (cpu == smp_processor_id())
1229 return;
1230
1231 /*
1232 * This is safe, as this function is called with the timer
1233 * wheel base lock of (cpu) held. When the CPU is on the way
1234 * to idle and has not yet set rq->curr to idle then it will
1235 * be serialized on the timer wheel base lock and take the new
1236 * timer into account automatically.
1237 */
1238 if (rq->curr != rq->idle)
1239 return;
1240
1241 /*
1242 * We can set TIF_RESCHED on the idle task of the other CPU
1243 * lockless. The worst case is that the other CPU runs the
1244 * idle task through an additional NOOP schedule()
1245 */
1246 set_tsk_need_resched(rq->idle);
1247
1248 /* NEED_RESCHED must be visible before we test polling */
1249 smp_mb();
1250 if (!tsk_is_polling(rq->idle))
1251 smp_send_reschedule(cpu);
1252 }
1253 #endif /* CONFIG_NO_HZ */
1254
1255 static u64 sched_avg_period(void)
1256 {
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258 }
1259
1260 static void sched_avg_update(struct rq *rq)
1261 {
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 rq->age_stamp += period;
1266 rq->rt_avg /= 2;
1267 }
1268 }
1269
1270 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271 {
1272 rq->rt_avg += rt_delta;
1273 sched_avg_update(rq);
1274 }
1275
1276 #else /* !CONFIG_SMP */
1277 static void resched_task(struct task_struct *p)
1278 {
1279 assert_spin_locked(&task_rq(p)->lock);
1280 set_tsk_need_resched(p);
1281 }
1282
1283 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284 {
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 /*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1354
1355 /*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1366 */
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1376 };
1377
1378 /*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 };
1395
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398 /*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407 };
1408
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1421
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428 };
1429
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1439
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442 update_load_add(&rq->load, load);
1443 }
1444
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 {
1447 update_load_sub(&rq->load, load);
1448 }
1449
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1452
1453 /*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 {
1459 struct task_group *parent, *child;
1460 int ret;
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472 up:
1473 continue;
1474 }
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1485
1486 return ret;
1487 }
1488
1489 static int tg_nop(struct task_group *tg, void *data)
1490 {
1491 return 0;
1492 }
1493 #endif
1494
1495 #ifdef CONFIG_SMP
1496 /* Used instead of source_load when we know the type == 0 */
1497 static unsigned long weighted_cpuload(const int cpu)
1498 {
1499 return cpu_rq(cpu)->load.weight;
1500 }
1501
1502 /*
1503 * Return a low guess at the load of a migration-source cpu weighted
1504 * according to the scheduling class and "nice" value.
1505 *
1506 * We want to under-estimate the load of migration sources, to
1507 * balance conservatively.
1508 */
1509 static unsigned long source_load(int cpu, int type)
1510 {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return min(rq->cpu_load[type-1], total);
1518 }
1519
1520 /*
1521 * Return a high guess at the load of a migration-target cpu weighted
1522 * according to the scheduling class and "nice" value.
1523 */
1524 static unsigned long target_load(int cpu, int type)
1525 {
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long total = weighted_cpuload(cpu);
1528
1529 if (type == 0 || !sched_feat(LB_BIAS))
1530 return total;
1531
1532 return max(rq->cpu_load[type-1], total);
1533 }
1534
1535 static struct sched_group *group_of(int cpu)
1536 {
1537 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1538
1539 if (!sd)
1540 return NULL;
1541
1542 return sd->groups;
1543 }
1544
1545 static unsigned long power_of(int cpu)
1546 {
1547 struct sched_group *group = group_of(cpu);
1548
1549 if (!group)
1550 return SCHED_LOAD_SCALE;
1551
1552 return group->cpu_power;
1553 }
1554
1555 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556
1557 static unsigned long cpu_avg_load_per_task(int cpu)
1558 {
1559 struct rq *rq = cpu_rq(cpu);
1560 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1561
1562 if (nr_running)
1563 rq->avg_load_per_task = rq->load.weight / nr_running;
1564 else
1565 rq->avg_load_per_task = 0;
1566
1567 return rq->avg_load_per_task;
1568 }
1569
1570 #ifdef CONFIG_FAIR_GROUP_SCHED
1571
1572 struct update_shares_data {
1573 unsigned long rq_weight[NR_CPUS];
1574 };
1575
1576 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1577
1578 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1579
1580 /*
1581 * Calculate and set the cpu's group shares.
1582 */
1583 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1584 unsigned long sd_shares,
1585 unsigned long sd_rq_weight,
1586 struct update_shares_data *usd)
1587 {
1588 unsigned long shares, rq_weight;
1589 int boost = 0;
1590
1591 rq_weight = usd->rq_weight[cpu];
1592 if (!rq_weight) {
1593 boost = 1;
1594 rq_weight = NICE_0_LOAD;
1595 }
1596
1597 /*
1598 * \Sum_j shares_j * rq_weight_i
1599 * shares_i = -----------------------------
1600 * \Sum_j rq_weight_j
1601 */
1602 shares = (sd_shares * rq_weight) / sd_rq_weight;
1603 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1604
1605 if (abs(shares - tg->se[cpu]->load.weight) >
1606 sysctl_sched_shares_thresh) {
1607 struct rq *rq = cpu_rq(cpu);
1608 unsigned long flags;
1609
1610 spin_lock_irqsave(&rq->lock, flags);
1611 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1612 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1613 __set_se_shares(tg->se[cpu], shares);
1614 spin_unlock_irqrestore(&rq->lock, flags);
1615 }
1616 }
1617
1618 /*
1619 * Re-compute the task group their per cpu shares over the given domain.
1620 * This needs to be done in a bottom-up fashion because the rq weight of a
1621 * parent group depends on the shares of its child groups.
1622 */
1623 static int tg_shares_up(struct task_group *tg, void *data)
1624 {
1625 unsigned long weight, rq_weight = 0, shares = 0;
1626 struct update_shares_data *usd;
1627 struct sched_domain *sd = data;
1628 unsigned long flags;
1629 int i;
1630
1631 if (!tg->se[0])
1632 return 0;
1633
1634 local_irq_save(flags);
1635 usd = &__get_cpu_var(update_shares_data);
1636
1637 for_each_cpu(i, sched_domain_span(sd)) {
1638 weight = tg->cfs_rq[i]->load.weight;
1639 usd->rq_weight[i] = weight;
1640
1641 /*
1642 * If there are currently no tasks on the cpu pretend there
1643 * is one of average load so that when a new task gets to
1644 * run here it will not get delayed by group starvation.
1645 */
1646 if (!weight)
1647 weight = NICE_0_LOAD;
1648
1649 rq_weight += weight;
1650 shares += tg->cfs_rq[i]->shares;
1651 }
1652
1653 if ((!shares && rq_weight) || shares > tg->shares)
1654 shares = tg->shares;
1655
1656 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1657 shares = tg->shares;
1658
1659 for_each_cpu(i, sched_domain_span(sd))
1660 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1661
1662 local_irq_restore(flags);
1663
1664 return 0;
1665 }
1666
1667 /*
1668 * Compute the cpu's hierarchical load factor for each task group.
1669 * This needs to be done in a top-down fashion because the load of a child
1670 * group is a fraction of its parents load.
1671 */
1672 static int tg_load_down(struct task_group *tg, void *data)
1673 {
1674 unsigned long load;
1675 long cpu = (long)data;
1676
1677 if (!tg->parent) {
1678 load = cpu_rq(cpu)->load.weight;
1679 } else {
1680 load = tg->parent->cfs_rq[cpu]->h_load;
1681 load *= tg->cfs_rq[cpu]->shares;
1682 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1683 }
1684
1685 tg->cfs_rq[cpu]->h_load = load;
1686
1687 return 0;
1688 }
1689
1690 static void update_shares(struct sched_domain *sd)
1691 {
1692 s64 elapsed;
1693 u64 now;
1694
1695 if (root_task_group_empty())
1696 return;
1697
1698 now = cpu_clock(raw_smp_processor_id());
1699 elapsed = now - sd->last_update;
1700
1701 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1702 sd->last_update = now;
1703 walk_tg_tree(tg_nop, tg_shares_up, sd);
1704 }
1705 }
1706
1707 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1708 {
1709 if (root_task_group_empty())
1710 return;
1711
1712 spin_unlock(&rq->lock);
1713 update_shares(sd);
1714 spin_lock(&rq->lock);
1715 }
1716
1717 static void update_h_load(long cpu)
1718 {
1719 if (root_task_group_empty())
1720 return;
1721
1722 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1723 }
1724
1725 #else
1726
1727 static inline void update_shares(struct sched_domain *sd)
1728 {
1729 }
1730
1731 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1732 {
1733 }
1734
1735 #endif
1736
1737 #ifdef CONFIG_PREEMPT
1738
1739 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1740
1741 /*
1742 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1743 * way at the expense of forcing extra atomic operations in all
1744 * invocations. This assures that the double_lock is acquired using the
1745 * same underlying policy as the spinlock_t on this architecture, which
1746 * reduces latency compared to the unfair variant below. However, it
1747 * also adds more overhead and therefore may reduce throughput.
1748 */
1749 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1750 __releases(this_rq->lock)
1751 __acquires(busiest->lock)
1752 __acquires(this_rq->lock)
1753 {
1754 spin_unlock(&this_rq->lock);
1755 double_rq_lock(this_rq, busiest);
1756
1757 return 1;
1758 }
1759
1760 #else
1761 /*
1762 * Unfair double_lock_balance: Optimizes throughput at the expense of
1763 * latency by eliminating extra atomic operations when the locks are
1764 * already in proper order on entry. This favors lower cpu-ids and will
1765 * grant the double lock to lower cpus over higher ids under contention,
1766 * regardless of entry order into the function.
1767 */
1768 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1769 __releases(this_rq->lock)
1770 __acquires(busiest->lock)
1771 __acquires(this_rq->lock)
1772 {
1773 int ret = 0;
1774
1775 if (unlikely(!spin_trylock(&busiest->lock))) {
1776 if (busiest < this_rq) {
1777 spin_unlock(&this_rq->lock);
1778 spin_lock(&busiest->lock);
1779 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1783 }
1784 return ret;
1785 }
1786
1787 #endif /* CONFIG_PREEMPT */
1788
1789 /*
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 */
1792 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793 {
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
1796 spin_unlock(&this_rq->lock);
1797 BUG_ON(1);
1798 }
1799
1800 return _double_lock_balance(this_rq, busiest);
1801 }
1802
1803 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1805 {
1806 spin_unlock(&busiest->lock);
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808 }
1809 #endif
1810
1811 #ifdef CONFIG_FAIR_GROUP_SCHED
1812 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1813 {
1814 #ifdef CONFIG_SMP
1815 cfs_rq->shares = shares;
1816 #endif
1817 }
1818 #endif
1819
1820 static void calc_load_account_active(struct rq *this_rq);
1821
1822 #include "sched_stats.h"
1823 #include "sched_idletask.c"
1824 #include "sched_fair.c"
1825 #include "sched_rt.c"
1826 #ifdef CONFIG_SCHED_DEBUG
1827 # include "sched_debug.c"
1828 #endif
1829
1830 #define sched_class_highest (&rt_sched_class)
1831 #define for_each_class(class) \
1832 for (class = sched_class_highest; class; class = class->next)
1833
1834 static void inc_nr_running(struct rq *rq)
1835 {
1836 rq->nr_running++;
1837 }
1838
1839 static void dec_nr_running(struct rq *rq)
1840 {
1841 rq->nr_running--;
1842 }
1843
1844 static void set_load_weight(struct task_struct *p)
1845 {
1846 if (task_has_rt_policy(p)) {
1847 p->se.load.weight = prio_to_weight[0] * 2;
1848 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1849 return;
1850 }
1851
1852 /*
1853 * SCHED_IDLE tasks get minimal weight:
1854 */
1855 if (p->policy == SCHED_IDLE) {
1856 p->se.load.weight = WEIGHT_IDLEPRIO;
1857 p->se.load.inv_weight = WMULT_IDLEPRIO;
1858 return;
1859 }
1860
1861 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1862 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1863 }
1864
1865 static void update_avg(u64 *avg, u64 sample)
1866 {
1867 s64 diff = sample - *avg;
1868 *avg += diff >> 3;
1869 }
1870
1871 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1872 {
1873 if (wakeup)
1874 p->se.start_runtime = p->se.sum_exec_runtime;
1875
1876 sched_info_queued(p);
1877 p->sched_class->enqueue_task(rq, p, wakeup);
1878 p->se.on_rq = 1;
1879 }
1880
1881 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1882 {
1883 if (sleep) {
1884 if (p->se.last_wakeup) {
1885 update_avg(&p->se.avg_overlap,
1886 p->se.sum_exec_runtime - p->se.last_wakeup);
1887 p->se.last_wakeup = 0;
1888 } else {
1889 update_avg(&p->se.avg_wakeup,
1890 sysctl_sched_wakeup_granularity);
1891 }
1892 }
1893
1894 sched_info_dequeued(p);
1895 p->sched_class->dequeue_task(rq, p, sleep);
1896 p->se.on_rq = 0;
1897 }
1898
1899 /*
1900 * __normal_prio - return the priority that is based on the static prio
1901 */
1902 static inline int __normal_prio(struct task_struct *p)
1903 {
1904 return p->static_prio;
1905 }
1906
1907 /*
1908 * Calculate the expected normal priority: i.e. priority
1909 * without taking RT-inheritance into account. Might be
1910 * boosted by interactivity modifiers. Changes upon fork,
1911 * setprio syscalls, and whenever the interactivity
1912 * estimator recalculates.
1913 */
1914 static inline int normal_prio(struct task_struct *p)
1915 {
1916 int prio;
1917
1918 if (task_has_rt_policy(p))
1919 prio = MAX_RT_PRIO-1 - p->rt_priority;
1920 else
1921 prio = __normal_prio(p);
1922 return prio;
1923 }
1924
1925 /*
1926 * Calculate the current priority, i.e. the priority
1927 * taken into account by the scheduler. This value might
1928 * be boosted by RT tasks, or might be boosted by
1929 * interactivity modifiers. Will be RT if the task got
1930 * RT-boosted. If not then it returns p->normal_prio.
1931 */
1932 static int effective_prio(struct task_struct *p)
1933 {
1934 p->normal_prio = normal_prio(p);
1935 /*
1936 * If we are RT tasks or we were boosted to RT priority,
1937 * keep the priority unchanged. Otherwise, update priority
1938 * to the normal priority:
1939 */
1940 if (!rt_prio(p->prio))
1941 return p->normal_prio;
1942 return p->prio;
1943 }
1944
1945 /*
1946 * activate_task - move a task to the runqueue.
1947 */
1948 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1949 {
1950 if (task_contributes_to_load(p))
1951 rq->nr_uninterruptible--;
1952
1953 enqueue_task(rq, p, wakeup);
1954 inc_nr_running(rq);
1955 }
1956
1957 /*
1958 * deactivate_task - remove a task from the runqueue.
1959 */
1960 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1961 {
1962 if (task_contributes_to_load(p))
1963 rq->nr_uninterruptible++;
1964
1965 dequeue_task(rq, p, sleep);
1966 dec_nr_running(rq);
1967 }
1968
1969 /**
1970 * task_curr - is this task currently executing on a CPU?
1971 * @p: the task in question.
1972 */
1973 inline int task_curr(const struct task_struct *p)
1974 {
1975 return cpu_curr(task_cpu(p)) == p;
1976 }
1977
1978 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1979 {
1980 set_task_rq(p, cpu);
1981 #ifdef CONFIG_SMP
1982 /*
1983 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1984 * successfuly executed on another CPU. We must ensure that updates of
1985 * per-task data have been completed by this moment.
1986 */
1987 smp_wmb();
1988 task_thread_info(p)->cpu = cpu;
1989 #endif
1990 }
1991
1992 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1993 const struct sched_class *prev_class,
1994 int oldprio, int running)
1995 {
1996 if (prev_class != p->sched_class) {
1997 if (prev_class->switched_from)
1998 prev_class->switched_from(rq, p, running);
1999 p->sched_class->switched_to(rq, p, running);
2000 } else
2001 p->sched_class->prio_changed(rq, p, oldprio, running);
2002 }
2003
2004 #ifdef CONFIG_SMP
2005 /*
2006 * Is this task likely cache-hot:
2007 */
2008 static int
2009 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2010 {
2011 s64 delta;
2012
2013 /*
2014 * Buddy candidates are cache hot:
2015 */
2016 if (sched_feat(CACHE_HOT_BUDDY) &&
2017 (&p->se == cfs_rq_of(&p->se)->next ||
2018 &p->se == cfs_rq_of(&p->se)->last))
2019 return 1;
2020
2021 if (p->sched_class != &fair_sched_class)
2022 return 0;
2023
2024 if (sysctl_sched_migration_cost == -1)
2025 return 1;
2026 if (sysctl_sched_migration_cost == 0)
2027 return 0;
2028
2029 delta = now - p->se.exec_start;
2030
2031 return delta < (s64)sysctl_sched_migration_cost;
2032 }
2033
2034
2035 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2036 {
2037 int old_cpu = task_cpu(p);
2038 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2039 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2040 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2041 u64 clock_offset;
2042
2043 clock_offset = old_rq->clock - new_rq->clock;
2044
2045 trace_sched_migrate_task(p, new_cpu);
2046
2047 #ifdef CONFIG_SCHEDSTATS
2048 if (p->se.wait_start)
2049 p->se.wait_start -= clock_offset;
2050 if (p->se.sleep_start)
2051 p->se.sleep_start -= clock_offset;
2052 if (p->se.block_start)
2053 p->se.block_start -= clock_offset;
2054 #endif
2055 if (old_cpu != new_cpu) {
2056 p->se.nr_migrations++;
2057 new_rq->nr_migrations_in++;
2058 #ifdef CONFIG_SCHEDSTATS
2059 if (task_hot(p, old_rq->clock, NULL))
2060 schedstat_inc(p, se.nr_forced2_migrations);
2061 #endif
2062 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2063 1, 1, NULL, 0);
2064 }
2065 p->se.vruntime -= old_cfsrq->min_vruntime -
2066 new_cfsrq->min_vruntime;
2067
2068 __set_task_cpu(p, new_cpu);
2069 }
2070
2071 struct migration_req {
2072 struct list_head list;
2073
2074 struct task_struct *task;
2075 int dest_cpu;
2076
2077 struct completion done;
2078 };
2079
2080 /*
2081 * The task's runqueue lock must be held.
2082 * Returns true if you have to wait for migration thread.
2083 */
2084 static int
2085 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2086 {
2087 struct rq *rq = task_rq(p);
2088
2089 /*
2090 * If the task is not on a runqueue (and not running), then
2091 * it is sufficient to simply update the task's cpu field.
2092 */
2093 if (!p->se.on_rq && !task_running(rq, p)) {
2094 set_task_cpu(p, dest_cpu);
2095 return 0;
2096 }
2097
2098 init_completion(&req->done);
2099 req->task = p;
2100 req->dest_cpu = dest_cpu;
2101 list_add(&req->list, &rq->migration_queue);
2102
2103 return 1;
2104 }
2105
2106 /*
2107 * wait_task_context_switch - wait for a thread to complete at least one
2108 * context switch.
2109 *
2110 * @p must not be current.
2111 */
2112 void wait_task_context_switch(struct task_struct *p)
2113 {
2114 unsigned long nvcsw, nivcsw, flags;
2115 int running;
2116 struct rq *rq;
2117
2118 nvcsw = p->nvcsw;
2119 nivcsw = p->nivcsw;
2120 for (;;) {
2121 /*
2122 * The runqueue is assigned before the actual context
2123 * switch. We need to take the runqueue lock.
2124 *
2125 * We could check initially without the lock but it is
2126 * very likely that we need to take the lock in every
2127 * iteration.
2128 */
2129 rq = task_rq_lock(p, &flags);
2130 running = task_running(rq, p);
2131 task_rq_unlock(rq, &flags);
2132
2133 if (likely(!running))
2134 break;
2135 /*
2136 * The switch count is incremented before the actual
2137 * context switch. We thus wait for two switches to be
2138 * sure at least one completed.
2139 */
2140 if ((p->nvcsw - nvcsw) > 1)
2141 break;
2142 if ((p->nivcsw - nivcsw) > 1)
2143 break;
2144
2145 cpu_relax();
2146 }
2147 }
2148
2149 /*
2150 * wait_task_inactive - wait for a thread to unschedule.
2151 *
2152 * If @match_state is nonzero, it's the @p->state value just checked and
2153 * not expected to change. If it changes, i.e. @p might have woken up,
2154 * then return zero. When we succeed in waiting for @p to be off its CPU,
2155 * we return a positive number (its total switch count). If a second call
2156 * a short while later returns the same number, the caller can be sure that
2157 * @p has remained unscheduled the whole time.
2158 *
2159 * The caller must ensure that the task *will* unschedule sometime soon,
2160 * else this function might spin for a *long* time. This function can't
2161 * be called with interrupts off, or it may introduce deadlock with
2162 * smp_call_function() if an IPI is sent by the same process we are
2163 * waiting to become inactive.
2164 */
2165 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2166 {
2167 unsigned long flags;
2168 int running, on_rq;
2169 unsigned long ncsw;
2170 struct rq *rq;
2171
2172 for (;;) {
2173 /*
2174 * We do the initial early heuristics without holding
2175 * any task-queue locks at all. We'll only try to get
2176 * the runqueue lock when things look like they will
2177 * work out!
2178 */
2179 rq = task_rq(p);
2180
2181 /*
2182 * If the task is actively running on another CPU
2183 * still, just relax and busy-wait without holding
2184 * any locks.
2185 *
2186 * NOTE! Since we don't hold any locks, it's not
2187 * even sure that "rq" stays as the right runqueue!
2188 * But we don't care, since "task_running()" will
2189 * return false if the runqueue has changed and p
2190 * is actually now running somewhere else!
2191 */
2192 while (task_running(rq, p)) {
2193 if (match_state && unlikely(p->state != match_state))
2194 return 0;
2195 cpu_relax();
2196 }
2197
2198 /*
2199 * Ok, time to look more closely! We need the rq
2200 * lock now, to be *sure*. If we're wrong, we'll
2201 * just go back and repeat.
2202 */
2203 rq = task_rq_lock(p, &flags);
2204 trace_sched_wait_task(rq, p);
2205 running = task_running(rq, p);
2206 on_rq = p->se.on_rq;
2207 ncsw = 0;
2208 if (!match_state || p->state == match_state)
2209 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2210 task_rq_unlock(rq, &flags);
2211
2212 /*
2213 * If it changed from the expected state, bail out now.
2214 */
2215 if (unlikely(!ncsw))
2216 break;
2217
2218 /*
2219 * Was it really running after all now that we
2220 * checked with the proper locks actually held?
2221 *
2222 * Oops. Go back and try again..
2223 */
2224 if (unlikely(running)) {
2225 cpu_relax();
2226 continue;
2227 }
2228
2229 /*
2230 * It's not enough that it's not actively running,
2231 * it must be off the runqueue _entirely_, and not
2232 * preempted!
2233 *
2234 * So if it was still runnable (but just not actively
2235 * running right now), it's preempted, and we should
2236 * yield - it could be a while.
2237 */
2238 if (unlikely(on_rq)) {
2239 schedule_timeout_uninterruptible(1);
2240 continue;
2241 }
2242
2243 /*
2244 * Ahh, all good. It wasn't running, and it wasn't
2245 * runnable, which means that it will never become
2246 * running in the future either. We're all done!
2247 */
2248 break;
2249 }
2250
2251 return ncsw;
2252 }
2253
2254 /***
2255 * kick_process - kick a running thread to enter/exit the kernel
2256 * @p: the to-be-kicked thread
2257 *
2258 * Cause a process which is running on another CPU to enter
2259 * kernel-mode, without any delay. (to get signals handled.)
2260 *
2261 * NOTE: this function doesnt have to take the runqueue lock,
2262 * because all it wants to ensure is that the remote task enters
2263 * the kernel. If the IPI races and the task has been migrated
2264 * to another CPU then no harm is done and the purpose has been
2265 * achieved as well.
2266 */
2267 void kick_process(struct task_struct *p)
2268 {
2269 int cpu;
2270
2271 preempt_disable();
2272 cpu = task_cpu(p);
2273 if ((cpu != smp_processor_id()) && task_curr(p))
2274 smp_send_reschedule(cpu);
2275 preempt_enable();
2276 }
2277 EXPORT_SYMBOL_GPL(kick_process);
2278 #endif /* CONFIG_SMP */
2279
2280 /**
2281 * task_oncpu_function_call - call a function on the cpu on which a task runs
2282 * @p: the task to evaluate
2283 * @func: the function to be called
2284 * @info: the function call argument
2285 *
2286 * Calls the function @func when the task is currently running. This might
2287 * be on the current CPU, which just calls the function directly
2288 */
2289 void task_oncpu_function_call(struct task_struct *p,
2290 void (*func) (void *info), void *info)
2291 {
2292 int cpu;
2293
2294 preempt_disable();
2295 cpu = task_cpu(p);
2296 if (task_curr(p))
2297 smp_call_function_single(cpu, func, info, 1);
2298 preempt_enable();
2299 }
2300
2301 /***
2302 * try_to_wake_up - wake up a thread
2303 * @p: the to-be-woken-up thread
2304 * @state: the mask of task states that can be woken
2305 * @sync: do a synchronous wakeup?
2306 *
2307 * Put it on the run-queue if it's not already there. The "current"
2308 * thread is always on the run-queue (except when the actual
2309 * re-schedule is in progress), and as such you're allowed to do
2310 * the simpler "current->state = TASK_RUNNING" to mark yourself
2311 * runnable without the overhead of this.
2312 *
2313 * returns failure only if the task is already active.
2314 */
2315 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2316 int wake_flags)
2317 {
2318 int cpu, orig_cpu, this_cpu, success = 0;
2319 unsigned long flags;
2320 struct rq *rq;
2321
2322 if (!sched_feat(SYNC_WAKEUPS))
2323 wake_flags &= ~WF_SYNC;
2324
2325 this_cpu = get_cpu();
2326
2327 smp_wmb();
2328 rq = task_rq_lock(p, &flags);
2329 update_rq_clock(rq);
2330 if (!(p->state & state))
2331 goto out;
2332
2333 if (p->se.on_rq)
2334 goto out_running;
2335
2336 cpu = task_cpu(p);
2337 orig_cpu = cpu;
2338
2339 #ifdef CONFIG_SMP
2340 if (unlikely(task_running(rq, p)))
2341 goto out_activate;
2342
2343 /*
2344 * In order to handle concurrent wakeups and release the rq->lock
2345 * we put the task in TASK_WAKING state.
2346 *
2347 * First fix up the nr_uninterruptible count:
2348 */
2349 if (task_contributes_to_load(p))
2350 rq->nr_uninterruptible--;
2351 p->state = TASK_WAKING;
2352 task_rq_unlock(rq, &flags);
2353
2354 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2355 if (cpu != orig_cpu)
2356 set_task_cpu(p, cpu);
2357
2358 rq = task_rq_lock(p, &flags);
2359 WARN_ON(p->state != TASK_WAKING);
2360 cpu = task_cpu(p);
2361
2362 #ifdef CONFIG_SCHEDSTATS
2363 schedstat_inc(rq, ttwu_count);
2364 if (cpu == this_cpu)
2365 schedstat_inc(rq, ttwu_local);
2366 else {
2367 struct sched_domain *sd;
2368 for_each_domain(this_cpu, sd) {
2369 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2370 schedstat_inc(sd, ttwu_wake_remote);
2371 break;
2372 }
2373 }
2374 }
2375 #endif /* CONFIG_SCHEDSTATS */
2376
2377 out_activate:
2378 #endif /* CONFIG_SMP */
2379 schedstat_inc(p, se.nr_wakeups);
2380 if (wake_flags & WF_SYNC)
2381 schedstat_inc(p, se.nr_wakeups_sync);
2382 if (orig_cpu != cpu)
2383 schedstat_inc(p, se.nr_wakeups_migrate);
2384 if (cpu == this_cpu)
2385 schedstat_inc(p, se.nr_wakeups_local);
2386 else
2387 schedstat_inc(p, se.nr_wakeups_remote);
2388 activate_task(rq, p, 1);
2389 success = 1;
2390
2391 /*
2392 * Only attribute actual wakeups done by this task.
2393 */
2394 if (!in_interrupt()) {
2395 struct sched_entity *se = &current->se;
2396 u64 sample = se->sum_exec_runtime;
2397
2398 if (se->last_wakeup)
2399 sample -= se->last_wakeup;
2400 else
2401 sample -= se->start_runtime;
2402 update_avg(&se->avg_wakeup, sample);
2403
2404 se->last_wakeup = se->sum_exec_runtime;
2405 }
2406
2407 out_running:
2408 trace_sched_wakeup(rq, p, success);
2409 check_preempt_curr(rq, p, wake_flags);
2410
2411 p->state = TASK_RUNNING;
2412 #ifdef CONFIG_SMP
2413 if (p->sched_class->task_wake_up)
2414 p->sched_class->task_wake_up(rq, p);
2415 #endif
2416 out:
2417 task_rq_unlock(rq, &flags);
2418 put_cpu();
2419
2420 return success;
2421 }
2422
2423 /**
2424 * wake_up_process - Wake up a specific process
2425 * @p: The process to be woken up.
2426 *
2427 * Attempt to wake up the nominated process and move it to the set of runnable
2428 * processes. Returns 1 if the process was woken up, 0 if it was already
2429 * running.
2430 *
2431 * It may be assumed that this function implies a write memory barrier before
2432 * changing the task state if and only if any tasks are woken up.
2433 */
2434 int wake_up_process(struct task_struct *p)
2435 {
2436 return try_to_wake_up(p, TASK_ALL, 0);
2437 }
2438 EXPORT_SYMBOL(wake_up_process);
2439
2440 int wake_up_state(struct task_struct *p, unsigned int state)
2441 {
2442 return try_to_wake_up(p, state, 0);
2443 }
2444
2445 /*
2446 * Perform scheduler related setup for a newly forked process p.
2447 * p is forked by current.
2448 *
2449 * __sched_fork() is basic setup used by init_idle() too:
2450 */
2451 static void __sched_fork(struct task_struct *p)
2452 {
2453 p->se.exec_start = 0;
2454 p->se.sum_exec_runtime = 0;
2455 p->se.prev_sum_exec_runtime = 0;
2456 p->se.nr_migrations = 0;
2457 p->se.last_wakeup = 0;
2458 p->se.avg_overlap = 0;
2459 p->se.start_runtime = 0;
2460 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2461 p->se.avg_running = 0;
2462
2463 #ifdef CONFIG_SCHEDSTATS
2464 p->se.wait_start = 0;
2465 p->se.wait_max = 0;
2466 p->se.wait_count = 0;
2467 p->se.wait_sum = 0;
2468
2469 p->se.sleep_start = 0;
2470 p->se.sleep_max = 0;
2471 p->se.sum_sleep_runtime = 0;
2472
2473 p->se.block_start = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
2476 p->se.slice_max = 0;
2477
2478 p->se.nr_migrations_cold = 0;
2479 p->se.nr_failed_migrations_affine = 0;
2480 p->se.nr_failed_migrations_running = 0;
2481 p->se.nr_failed_migrations_hot = 0;
2482 p->se.nr_forced_migrations = 0;
2483 p->se.nr_forced2_migrations = 0;
2484
2485 p->se.nr_wakeups = 0;
2486 p->se.nr_wakeups_sync = 0;
2487 p->se.nr_wakeups_migrate = 0;
2488 p->se.nr_wakeups_local = 0;
2489 p->se.nr_wakeups_remote = 0;
2490 p->se.nr_wakeups_affine = 0;
2491 p->se.nr_wakeups_affine_attempts = 0;
2492 p->se.nr_wakeups_passive = 0;
2493 p->se.nr_wakeups_idle = 0;
2494
2495 #endif
2496
2497 INIT_LIST_HEAD(&p->rt.run_list);
2498 p->se.on_rq = 0;
2499 INIT_LIST_HEAD(&p->se.group_node);
2500
2501 #ifdef CONFIG_PREEMPT_NOTIFIERS
2502 INIT_HLIST_HEAD(&p->preempt_notifiers);
2503 #endif
2504
2505 /*
2506 * We mark the process as running here, but have not actually
2507 * inserted it onto the runqueue yet. This guarantees that
2508 * nobody will actually run it, and a signal or other external
2509 * event cannot wake it up and insert it on the runqueue either.
2510 */
2511 p->state = TASK_RUNNING;
2512 }
2513
2514 /*
2515 * fork()/clone()-time setup:
2516 */
2517 void sched_fork(struct task_struct *p, int clone_flags)
2518 {
2519 int cpu = get_cpu();
2520
2521 __sched_fork(p);
2522
2523 /*
2524 * Make sure we do not leak PI boosting priority to the child.
2525 */
2526 p->prio = current->normal_prio;
2527
2528 /*
2529 * Revert to default priority/policy on fork if requested.
2530 */
2531 if (unlikely(p->sched_reset_on_fork)) {
2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2533 p->policy = SCHED_NORMAL;
2534
2535 if (p->normal_prio < DEFAULT_PRIO)
2536 p->prio = DEFAULT_PRIO;
2537
2538 if (PRIO_TO_NICE(p->static_prio) < 0) {
2539 p->static_prio = NICE_TO_PRIO(0);
2540 set_load_weight(p);
2541 }
2542
2543 /*
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2546 */
2547 p->sched_reset_on_fork = 0;
2548 }
2549
2550 if (!rt_prio(p->prio))
2551 p->sched_class = &fair_sched_class;
2552
2553 #ifdef CONFIG_SMP
2554 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2555 #endif
2556 set_task_cpu(p, cpu);
2557
2558 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2559 if (likely(sched_info_on()))
2560 memset(&p->sched_info, 0, sizeof(p->sched_info));
2561 #endif
2562 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2563 p->oncpu = 0;
2564 #endif
2565 #ifdef CONFIG_PREEMPT
2566 /* Want to start with kernel preemption disabled. */
2567 task_thread_info(p)->preempt_count = 1;
2568 #endif
2569 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2570
2571 put_cpu();
2572 }
2573
2574 /*
2575 * wake_up_new_task - wake up a newly created task for the first time.
2576 *
2577 * This function will do some initial scheduler statistics housekeeping
2578 * that must be done for every newly created context, then puts the task
2579 * on the runqueue and wakes it.
2580 */
2581 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2582 {
2583 unsigned long flags;
2584 struct rq *rq;
2585
2586 rq = task_rq_lock(p, &flags);
2587 BUG_ON(p->state != TASK_RUNNING);
2588 update_rq_clock(rq);
2589
2590 p->prio = effective_prio(p);
2591
2592 if (!p->sched_class->task_new || !current->se.on_rq) {
2593 activate_task(rq, p, 0);
2594 } else {
2595 /*
2596 * Let the scheduling class do new task startup
2597 * management (if any):
2598 */
2599 p->sched_class->task_new(rq, p);
2600 inc_nr_running(rq);
2601 }
2602 trace_sched_wakeup_new(rq, p, 1);
2603 check_preempt_curr(rq, p, WF_FORK);
2604 #ifdef CONFIG_SMP
2605 if (p->sched_class->task_wake_up)
2606 p->sched_class->task_wake_up(rq, p);
2607 #endif
2608 task_rq_unlock(rq, &flags);
2609 }
2610
2611 #ifdef CONFIG_PREEMPT_NOTIFIERS
2612
2613 /**
2614 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2615 * @notifier: notifier struct to register
2616 */
2617 void preempt_notifier_register(struct preempt_notifier *notifier)
2618 {
2619 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2620 }
2621 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2622
2623 /**
2624 * preempt_notifier_unregister - no longer interested in preemption notifications
2625 * @notifier: notifier struct to unregister
2626 *
2627 * This is safe to call from within a preemption notifier.
2628 */
2629 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2630 {
2631 hlist_del(&notifier->link);
2632 }
2633 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2634
2635 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2636 {
2637 struct preempt_notifier *notifier;
2638 struct hlist_node *node;
2639
2640 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2641 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2642 }
2643
2644 static void
2645 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2646 struct task_struct *next)
2647 {
2648 struct preempt_notifier *notifier;
2649 struct hlist_node *node;
2650
2651 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2652 notifier->ops->sched_out(notifier, next);
2653 }
2654
2655 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2656
2657 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2658 {
2659 }
2660
2661 static void
2662 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2664 {
2665 }
2666
2667 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2668
2669 /**
2670 * prepare_task_switch - prepare to switch tasks
2671 * @rq: the runqueue preparing to switch
2672 * @prev: the current task that is being switched out
2673 * @next: the task we are going to switch to.
2674 *
2675 * This is called with the rq lock held and interrupts off. It must
2676 * be paired with a subsequent finish_task_switch after the context
2677 * switch.
2678 *
2679 * prepare_task_switch sets up locking and calls architecture specific
2680 * hooks.
2681 */
2682 static inline void
2683 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2684 struct task_struct *next)
2685 {
2686 fire_sched_out_preempt_notifiers(prev, next);
2687 prepare_lock_switch(rq, next);
2688 prepare_arch_switch(next);
2689 }
2690
2691 /**
2692 * finish_task_switch - clean up after a task-switch
2693 * @rq: runqueue associated with task-switch
2694 * @prev: the thread we just switched away from.
2695 *
2696 * finish_task_switch must be called after the context switch, paired
2697 * with a prepare_task_switch call before the context switch.
2698 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2699 * and do any other architecture-specific cleanup actions.
2700 *
2701 * Note that we may have delayed dropping an mm in context_switch(). If
2702 * so, we finish that here outside of the runqueue lock. (Doing it
2703 * with the lock held can cause deadlocks; see schedule() for
2704 * details.)
2705 */
2706 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2707 __releases(rq->lock)
2708 {
2709 struct mm_struct *mm = rq->prev_mm;
2710 long prev_state;
2711
2712 rq->prev_mm = NULL;
2713
2714 /*
2715 * A task struct has one reference for the use as "current".
2716 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2717 * schedule one last time. The schedule call will never return, and
2718 * the scheduled task must drop that reference.
2719 * The test for TASK_DEAD must occur while the runqueue locks are
2720 * still held, otherwise prev could be scheduled on another cpu, die
2721 * there before we look at prev->state, and then the reference would
2722 * be dropped twice.
2723 * Manfred Spraul <manfred@colorfullife.com>
2724 */
2725 prev_state = prev->state;
2726 finish_arch_switch(prev);
2727 perf_event_task_sched_in(current, cpu_of(rq));
2728 finish_lock_switch(rq, prev);
2729
2730 fire_sched_in_preempt_notifiers(current);
2731 if (mm)
2732 mmdrop(mm);
2733 if (unlikely(prev_state == TASK_DEAD)) {
2734 /*
2735 * Remove function-return probe instances associated with this
2736 * task and put them back on the free list.
2737 */
2738 kprobe_flush_task(prev);
2739 put_task_struct(prev);
2740 }
2741 }
2742
2743 #ifdef CONFIG_SMP
2744
2745 /* assumes rq->lock is held */
2746 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2747 {
2748 if (prev->sched_class->pre_schedule)
2749 prev->sched_class->pre_schedule(rq, prev);
2750 }
2751
2752 /* rq->lock is NOT held, but preemption is disabled */
2753 static inline void post_schedule(struct rq *rq)
2754 {
2755 if (rq->post_schedule) {
2756 unsigned long flags;
2757
2758 spin_lock_irqsave(&rq->lock, flags);
2759 if (rq->curr->sched_class->post_schedule)
2760 rq->curr->sched_class->post_schedule(rq);
2761 spin_unlock_irqrestore(&rq->lock, flags);
2762
2763 rq->post_schedule = 0;
2764 }
2765 }
2766
2767 #else
2768
2769 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2770 {
2771 }
2772
2773 static inline void post_schedule(struct rq *rq)
2774 {
2775 }
2776
2777 #endif
2778
2779 /**
2780 * schedule_tail - first thing a freshly forked thread must call.
2781 * @prev: the thread we just switched away from.
2782 */
2783 asmlinkage void schedule_tail(struct task_struct *prev)
2784 __releases(rq->lock)
2785 {
2786 struct rq *rq = this_rq();
2787
2788 finish_task_switch(rq, prev);
2789
2790 /*
2791 * FIXME: do we need to worry about rq being invalidated by the
2792 * task_switch?
2793 */
2794 post_schedule(rq);
2795
2796 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2797 /* In this case, finish_task_switch does not reenable preemption */
2798 preempt_enable();
2799 #endif
2800 if (current->set_child_tid)
2801 put_user(task_pid_vnr(current), current->set_child_tid);
2802 }
2803
2804 /*
2805 * context_switch - switch to the new MM and the new
2806 * thread's register state.
2807 */
2808 static inline void
2809 context_switch(struct rq *rq, struct task_struct *prev,
2810 struct task_struct *next)
2811 {
2812 struct mm_struct *mm, *oldmm;
2813
2814 prepare_task_switch(rq, prev, next);
2815 trace_sched_switch(rq, prev, next);
2816 mm = next->mm;
2817 oldmm = prev->active_mm;
2818 /*
2819 * For paravirt, this is coupled with an exit in switch_to to
2820 * combine the page table reload and the switch backend into
2821 * one hypercall.
2822 */
2823 arch_start_context_switch(prev);
2824
2825 if (unlikely(!mm)) {
2826 next->active_mm = oldmm;
2827 atomic_inc(&oldmm->mm_count);
2828 enter_lazy_tlb(oldmm, next);
2829 } else
2830 switch_mm(oldmm, mm, next);
2831
2832 if (unlikely(!prev->mm)) {
2833 prev->active_mm = NULL;
2834 rq->prev_mm = oldmm;
2835 }
2836 /*
2837 * Since the runqueue lock will be released by the next
2838 * task (which is an invalid locking op but in the case
2839 * of the scheduler it's an obvious special-case), so we
2840 * do an early lockdep release here:
2841 */
2842 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2843 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2844 #endif
2845
2846 /* Here we just switch the register state and the stack. */
2847 switch_to(prev, next, prev);
2848
2849 barrier();
2850 /*
2851 * this_rq must be evaluated again because prev may have moved
2852 * CPUs since it called schedule(), thus the 'rq' on its stack
2853 * frame will be invalid.
2854 */
2855 finish_task_switch(this_rq(), prev);
2856 }
2857
2858 /*
2859 * nr_running, nr_uninterruptible and nr_context_switches:
2860 *
2861 * externally visible scheduler statistics: current number of runnable
2862 * threads, current number of uninterruptible-sleeping threads, total
2863 * number of context switches performed since bootup.
2864 */
2865 unsigned long nr_running(void)
2866 {
2867 unsigned long i, sum = 0;
2868
2869 for_each_online_cpu(i)
2870 sum += cpu_rq(i)->nr_running;
2871
2872 return sum;
2873 }
2874
2875 unsigned long nr_uninterruptible(void)
2876 {
2877 unsigned long i, sum = 0;
2878
2879 for_each_possible_cpu(i)
2880 sum += cpu_rq(i)->nr_uninterruptible;
2881
2882 /*
2883 * Since we read the counters lockless, it might be slightly
2884 * inaccurate. Do not allow it to go below zero though:
2885 */
2886 if (unlikely((long)sum < 0))
2887 sum = 0;
2888
2889 return sum;
2890 }
2891
2892 unsigned long long nr_context_switches(void)
2893 {
2894 int i;
2895 unsigned long long sum = 0;
2896
2897 for_each_possible_cpu(i)
2898 sum += cpu_rq(i)->nr_switches;
2899
2900 return sum;
2901 }
2902
2903 unsigned long nr_iowait(void)
2904 {
2905 unsigned long i, sum = 0;
2906
2907 for_each_possible_cpu(i)
2908 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2909
2910 return sum;
2911 }
2912
2913 /* Variables and functions for calc_load */
2914 static atomic_long_t calc_load_tasks;
2915 static unsigned long calc_load_update;
2916 unsigned long avenrun[3];
2917 EXPORT_SYMBOL(avenrun);
2918
2919 /**
2920 * get_avenrun - get the load average array
2921 * @loads: pointer to dest load array
2922 * @offset: offset to add
2923 * @shift: shift count to shift the result left
2924 *
2925 * These values are estimates at best, so no need for locking.
2926 */
2927 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2928 {
2929 loads[0] = (avenrun[0] + offset) << shift;
2930 loads[1] = (avenrun[1] + offset) << shift;
2931 loads[2] = (avenrun[2] + offset) << shift;
2932 }
2933
2934 static unsigned long
2935 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2936 {
2937 load *= exp;
2938 load += active * (FIXED_1 - exp);
2939 return load >> FSHIFT;
2940 }
2941
2942 /*
2943 * calc_load - update the avenrun load estimates 10 ticks after the
2944 * CPUs have updated calc_load_tasks.
2945 */
2946 void calc_global_load(void)
2947 {
2948 unsigned long upd = calc_load_update + 10;
2949 long active;
2950
2951 if (time_before(jiffies, upd))
2952 return;
2953
2954 active = atomic_long_read(&calc_load_tasks);
2955 active = active > 0 ? active * FIXED_1 : 0;
2956
2957 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2958 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2959 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2960
2961 calc_load_update += LOAD_FREQ;
2962 }
2963
2964 /*
2965 * Either called from update_cpu_load() or from a cpu going idle
2966 */
2967 static void calc_load_account_active(struct rq *this_rq)
2968 {
2969 long nr_active, delta;
2970
2971 nr_active = this_rq->nr_running;
2972 nr_active += (long) this_rq->nr_uninterruptible;
2973
2974 if (nr_active != this_rq->calc_load_active) {
2975 delta = nr_active - this_rq->calc_load_active;
2976 this_rq->calc_load_active = nr_active;
2977 atomic_long_add(delta, &calc_load_tasks);
2978 }
2979 }
2980
2981 /*
2982 * Externally visible per-cpu scheduler statistics:
2983 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2984 */
2985 u64 cpu_nr_migrations(int cpu)
2986 {
2987 return cpu_rq(cpu)->nr_migrations_in;
2988 }
2989
2990 /*
2991 * Update rq->cpu_load[] statistics. This function is usually called every
2992 * scheduler tick (TICK_NSEC).
2993 */
2994 static void update_cpu_load(struct rq *this_rq)
2995 {
2996 unsigned long this_load = this_rq->load.weight;
2997 int i, scale;
2998
2999 this_rq->nr_load_updates++;
3000
3001 /* Update our load: */
3002 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3003 unsigned long old_load, new_load;
3004
3005 /* scale is effectively 1 << i now, and >> i divides by scale */
3006
3007 old_load = this_rq->cpu_load[i];
3008 new_load = this_load;
3009 /*
3010 * Round up the averaging division if load is increasing. This
3011 * prevents us from getting stuck on 9 if the load is 10, for
3012 * example.
3013 */
3014 if (new_load > old_load)
3015 new_load += scale-1;
3016 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3017 }
3018
3019 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3020 this_rq->calc_load_update += LOAD_FREQ;
3021 calc_load_account_active(this_rq);
3022 }
3023 }
3024
3025 #ifdef CONFIG_SMP
3026
3027 /*
3028 * double_rq_lock - safely lock two runqueues
3029 *
3030 * Note this does not disable interrupts like task_rq_lock,
3031 * you need to do so manually before calling.
3032 */
3033 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3034 __acquires(rq1->lock)
3035 __acquires(rq2->lock)
3036 {
3037 BUG_ON(!irqs_disabled());
3038 if (rq1 == rq2) {
3039 spin_lock(&rq1->lock);
3040 __acquire(rq2->lock); /* Fake it out ;) */
3041 } else {
3042 if (rq1 < rq2) {
3043 spin_lock(&rq1->lock);
3044 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3045 } else {
3046 spin_lock(&rq2->lock);
3047 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3048 }
3049 }
3050 update_rq_clock(rq1);
3051 update_rq_clock(rq2);
3052 }
3053
3054 /*
3055 * double_rq_unlock - safely unlock two runqueues
3056 *
3057 * Note this does not restore interrupts like task_rq_unlock,
3058 * you need to do so manually after calling.
3059 */
3060 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3061 __releases(rq1->lock)
3062 __releases(rq2->lock)
3063 {
3064 spin_unlock(&rq1->lock);
3065 if (rq1 != rq2)
3066 spin_unlock(&rq2->lock);
3067 else
3068 __release(rq2->lock);
3069 }
3070
3071 /*
3072 * If dest_cpu is allowed for this process, migrate the task to it.
3073 * This is accomplished by forcing the cpu_allowed mask to only
3074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3075 * the cpu_allowed mask is restored.
3076 */
3077 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3078 {
3079 struct migration_req req;
3080 unsigned long flags;
3081 struct rq *rq;
3082
3083 rq = task_rq_lock(p, &flags);
3084 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3085 || unlikely(!cpu_active(dest_cpu)))
3086 goto out;
3087
3088 /* force the process onto the specified CPU */
3089 if (migrate_task(p, dest_cpu, &req)) {
3090 /* Need to wait for migration thread (might exit: take ref). */
3091 struct task_struct *mt = rq->migration_thread;
3092
3093 get_task_struct(mt);
3094 task_rq_unlock(rq, &flags);
3095 wake_up_process(mt);
3096 put_task_struct(mt);
3097 wait_for_completion(&req.done);
3098
3099 return;
3100 }
3101 out:
3102 task_rq_unlock(rq, &flags);
3103 }
3104
3105 /*
3106 * sched_exec - execve() is a valuable balancing opportunity, because at
3107 * this point the task has the smallest effective memory and cache footprint.
3108 */
3109 void sched_exec(void)
3110 {
3111 int new_cpu, this_cpu = get_cpu();
3112 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3113 put_cpu();
3114 if (new_cpu != this_cpu)
3115 sched_migrate_task(current, new_cpu);
3116 }
3117
3118 /*
3119 * pull_task - move a task from a remote runqueue to the local runqueue.
3120 * Both runqueues must be locked.
3121 */
3122 static void pull_task(struct rq *src_rq, struct task_struct *p,
3123 struct rq *this_rq, int this_cpu)
3124 {
3125 deactivate_task(src_rq, p, 0);
3126 set_task_cpu(p, this_cpu);
3127 activate_task(this_rq, p, 0);
3128 /*
3129 * Note that idle threads have a prio of MAX_PRIO, for this test
3130 * to be always true for them.
3131 */
3132 check_preempt_curr(this_rq, p, 0);
3133 }
3134
3135 /*
3136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3137 */
3138 static
3139 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3140 struct sched_domain *sd, enum cpu_idle_type idle,
3141 int *all_pinned)
3142 {
3143 int tsk_cache_hot = 0;
3144 /*
3145 * We do not migrate tasks that are:
3146 * 1) running (obviously), or
3147 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3148 * 3) are cache-hot on their current CPU.
3149 */
3150 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3151 schedstat_inc(p, se.nr_failed_migrations_affine);
3152 return 0;
3153 }
3154 *all_pinned = 0;
3155
3156 if (task_running(rq, p)) {
3157 schedstat_inc(p, se.nr_failed_migrations_running);
3158 return 0;
3159 }
3160
3161 /*
3162 * Aggressive migration if:
3163 * 1) task is cache cold, or
3164 * 2) too many balance attempts have failed.
3165 */
3166
3167 tsk_cache_hot = task_hot(p, rq->clock, sd);
3168 if (!tsk_cache_hot ||
3169 sd->nr_balance_failed > sd->cache_nice_tries) {
3170 #ifdef CONFIG_SCHEDSTATS
3171 if (tsk_cache_hot) {
3172 schedstat_inc(sd, lb_hot_gained[idle]);
3173 schedstat_inc(p, se.nr_forced_migrations);
3174 }
3175 #endif
3176 return 1;
3177 }
3178
3179 if (tsk_cache_hot) {
3180 schedstat_inc(p, se.nr_failed_migrations_hot);
3181 return 0;
3182 }
3183 return 1;
3184 }
3185
3186 static unsigned long
3187 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3188 unsigned long max_load_move, struct sched_domain *sd,
3189 enum cpu_idle_type idle, int *all_pinned,
3190 int *this_best_prio, struct rq_iterator *iterator)
3191 {
3192 int loops = 0, pulled = 0, pinned = 0;
3193 struct task_struct *p;
3194 long rem_load_move = max_load_move;
3195
3196 if (max_load_move == 0)
3197 goto out;
3198
3199 pinned = 1;
3200
3201 /*
3202 * Start the load-balancing iterator:
3203 */
3204 p = iterator->start(iterator->arg);
3205 next:
3206 if (!p || loops++ > sysctl_sched_nr_migrate)
3207 goto out;
3208
3209 if ((p->se.load.weight >> 1) > rem_load_move ||
3210 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3211 p = iterator->next(iterator->arg);
3212 goto next;
3213 }
3214
3215 pull_task(busiest, p, this_rq, this_cpu);
3216 pulled++;
3217 rem_load_move -= p->se.load.weight;
3218
3219 #ifdef CONFIG_PREEMPT
3220 /*
3221 * NEWIDLE balancing is a source of latency, so preemptible kernels
3222 * will stop after the first task is pulled to minimize the critical
3223 * section.
3224 */
3225 if (idle == CPU_NEWLY_IDLE)
3226 goto out;
3227 #endif
3228
3229 /*
3230 * We only want to steal up to the prescribed amount of weighted load.
3231 */
3232 if (rem_load_move > 0) {
3233 if (p->prio < *this_best_prio)
3234 *this_best_prio = p->prio;
3235 p = iterator->next(iterator->arg);
3236 goto next;
3237 }
3238 out:
3239 /*
3240 * Right now, this is one of only two places pull_task() is called,
3241 * so we can safely collect pull_task() stats here rather than
3242 * inside pull_task().
3243 */
3244 schedstat_add(sd, lb_gained[idle], pulled);
3245
3246 if (all_pinned)
3247 *all_pinned = pinned;
3248
3249 return max_load_move - rem_load_move;
3250 }
3251
3252 /*
3253 * move_tasks tries to move up to max_load_move weighted load from busiest to
3254 * this_rq, as part of a balancing operation within domain "sd".
3255 * Returns 1 if successful and 0 otherwise.
3256 *
3257 * Called with both runqueues locked.
3258 */
3259 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3260 unsigned long max_load_move,
3261 struct sched_domain *sd, enum cpu_idle_type idle,
3262 int *all_pinned)
3263 {
3264 const struct sched_class *class = sched_class_highest;
3265 unsigned long total_load_moved = 0;
3266 int this_best_prio = this_rq->curr->prio;
3267
3268 do {
3269 total_load_moved +=
3270 class->load_balance(this_rq, this_cpu, busiest,
3271 max_load_move - total_load_moved,
3272 sd, idle, all_pinned, &this_best_prio);
3273 class = class->next;
3274
3275 #ifdef CONFIG_PREEMPT
3276 /*
3277 * NEWIDLE balancing is a source of latency, so preemptible
3278 * kernels will stop after the first task is pulled to minimize
3279 * the critical section.
3280 */
3281 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3282 break;
3283 #endif
3284 } while (class && max_load_move > total_load_moved);
3285
3286 return total_load_moved > 0;
3287 }
3288
3289 static int
3290 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 struct rq_iterator *iterator)
3293 {
3294 struct task_struct *p = iterator->start(iterator->arg);
3295 int pinned = 0;
3296
3297 while (p) {
3298 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3299 pull_task(busiest, p, this_rq, this_cpu);
3300 /*
3301 * Right now, this is only the second place pull_task()
3302 * is called, so we can safely collect pull_task()
3303 * stats here rather than inside pull_task().
3304 */
3305 schedstat_inc(sd, lb_gained[idle]);
3306
3307 return 1;
3308 }
3309 p = iterator->next(iterator->arg);
3310 }
3311
3312 return 0;
3313 }
3314
3315 /*
3316 * move_one_task tries to move exactly one task from busiest to this_rq, as
3317 * part of active balancing operations within "domain".
3318 * Returns 1 if successful and 0 otherwise.
3319 *
3320 * Called with both runqueues locked.
3321 */
3322 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 struct sched_domain *sd, enum cpu_idle_type idle)
3324 {
3325 const struct sched_class *class;
3326
3327 for_each_class(class) {
3328 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3329 return 1;
3330 }
3331
3332 return 0;
3333 }
3334 /********** Helpers for find_busiest_group ************************/
3335 /*
3336 * sd_lb_stats - Structure to store the statistics of a sched_domain
3337 * during load balancing.
3338 */
3339 struct sd_lb_stats {
3340 struct sched_group *busiest; /* Busiest group in this sd */
3341 struct sched_group *this; /* Local group in this sd */
3342 unsigned long total_load; /* Total load of all groups in sd */
3343 unsigned long total_pwr; /* Total power of all groups in sd */
3344 unsigned long avg_load; /* Average load across all groups in sd */
3345
3346 /** Statistics of this group */
3347 unsigned long this_load;
3348 unsigned long this_load_per_task;
3349 unsigned long this_nr_running;
3350
3351 /* Statistics of the busiest group */
3352 unsigned long max_load;
3353 unsigned long busiest_load_per_task;
3354 unsigned long busiest_nr_running;
3355
3356 int group_imb; /* Is there imbalance in this sd */
3357 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3358 int power_savings_balance; /* Is powersave balance needed for this sd */
3359 struct sched_group *group_min; /* Least loaded group in sd */
3360 struct sched_group *group_leader; /* Group which relieves group_min */
3361 unsigned long min_load_per_task; /* load_per_task in group_min */
3362 unsigned long leader_nr_running; /* Nr running of group_leader */
3363 unsigned long min_nr_running; /* Nr running of group_min */
3364 #endif
3365 };
3366
3367 /*
3368 * sg_lb_stats - stats of a sched_group required for load_balancing
3369 */
3370 struct sg_lb_stats {
3371 unsigned long avg_load; /*Avg load across the CPUs of the group */
3372 unsigned long group_load; /* Total load over the CPUs of the group */
3373 unsigned long sum_nr_running; /* Nr tasks running in the group */
3374 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3375 unsigned long group_capacity;
3376 int group_imb; /* Is there an imbalance in the group ? */
3377 };
3378
3379 /**
3380 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3381 * @group: The group whose first cpu is to be returned.
3382 */
3383 static inline unsigned int group_first_cpu(struct sched_group *group)
3384 {
3385 return cpumask_first(sched_group_cpus(group));
3386 }
3387
3388 /**
3389 * get_sd_load_idx - Obtain the load index for a given sched domain.
3390 * @sd: The sched_domain whose load_idx is to be obtained.
3391 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3392 */
3393 static inline int get_sd_load_idx(struct sched_domain *sd,
3394 enum cpu_idle_type idle)
3395 {
3396 int load_idx;
3397
3398 switch (idle) {
3399 case CPU_NOT_IDLE:
3400 load_idx = sd->busy_idx;
3401 break;
3402
3403 case CPU_NEWLY_IDLE:
3404 load_idx = sd->newidle_idx;
3405 break;
3406 default:
3407 load_idx = sd->idle_idx;
3408 break;
3409 }
3410
3411 return load_idx;
3412 }
3413
3414
3415 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3416 /**
3417 * init_sd_power_savings_stats - Initialize power savings statistics for
3418 * the given sched_domain, during load balancing.
3419 *
3420 * @sd: Sched domain whose power-savings statistics are to be initialized.
3421 * @sds: Variable containing the statistics for sd.
3422 * @idle: Idle status of the CPU at which we're performing load-balancing.
3423 */
3424 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3425 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3426 {
3427 /*
3428 * Busy processors will not participate in power savings
3429 * balance.
3430 */
3431 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3432 sds->power_savings_balance = 0;
3433 else {
3434 sds->power_savings_balance = 1;
3435 sds->min_nr_running = ULONG_MAX;
3436 sds->leader_nr_running = 0;
3437 }
3438 }
3439
3440 /**
3441 * update_sd_power_savings_stats - Update the power saving stats for a
3442 * sched_domain while performing load balancing.
3443 *
3444 * @group: sched_group belonging to the sched_domain under consideration.
3445 * @sds: Variable containing the statistics of the sched_domain
3446 * @local_group: Does group contain the CPU for which we're performing
3447 * load balancing ?
3448 * @sgs: Variable containing the statistics of the group.
3449 */
3450 static inline void update_sd_power_savings_stats(struct sched_group *group,
3451 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3452 {
3453
3454 if (!sds->power_savings_balance)
3455 return;
3456
3457 /*
3458 * If the local group is idle or completely loaded
3459 * no need to do power savings balance at this domain
3460 */
3461 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3462 !sds->this_nr_running))
3463 sds->power_savings_balance = 0;
3464
3465 /*
3466 * If a group is already running at full capacity or idle,
3467 * don't include that group in power savings calculations
3468 */
3469 if (!sds->power_savings_balance ||
3470 sgs->sum_nr_running >= sgs->group_capacity ||
3471 !sgs->sum_nr_running)
3472 return;
3473
3474 /*
3475 * Calculate the group which has the least non-idle load.
3476 * This is the group from where we need to pick up the load
3477 * for saving power
3478 */
3479 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3480 (sgs->sum_nr_running == sds->min_nr_running &&
3481 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3482 sds->group_min = group;
3483 sds->min_nr_running = sgs->sum_nr_running;
3484 sds->min_load_per_task = sgs->sum_weighted_load /
3485 sgs->sum_nr_running;
3486 }
3487
3488 /*
3489 * Calculate the group which is almost near its
3490 * capacity but still has some space to pick up some load
3491 * from other group and save more power
3492 */
3493 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3494 return;
3495
3496 if (sgs->sum_nr_running > sds->leader_nr_running ||
3497 (sgs->sum_nr_running == sds->leader_nr_running &&
3498 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3499 sds->group_leader = group;
3500 sds->leader_nr_running = sgs->sum_nr_running;
3501 }
3502 }
3503
3504 /**
3505 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3506 * @sds: Variable containing the statistics of the sched_domain
3507 * under consideration.
3508 * @this_cpu: Cpu at which we're currently performing load-balancing.
3509 * @imbalance: Variable to store the imbalance.
3510 *
3511 * Description:
3512 * Check if we have potential to perform some power-savings balance.
3513 * If yes, set the busiest group to be the least loaded group in the
3514 * sched_domain, so that it's CPUs can be put to idle.
3515 *
3516 * Returns 1 if there is potential to perform power-savings balance.
3517 * Else returns 0.
3518 */
3519 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3520 int this_cpu, unsigned long *imbalance)
3521 {
3522 if (!sds->power_savings_balance)
3523 return 0;
3524
3525 if (sds->this != sds->group_leader ||
3526 sds->group_leader == sds->group_min)
3527 return 0;
3528
3529 *imbalance = sds->min_load_per_task;
3530 sds->busiest = sds->group_min;
3531
3532 return 1;
3533
3534 }
3535 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3536 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3537 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3538 {
3539 return;
3540 }
3541
3542 static inline void update_sd_power_savings_stats(struct sched_group *group,
3543 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3544 {
3545 return;
3546 }
3547
3548 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3549 int this_cpu, unsigned long *imbalance)
3550 {
3551 return 0;
3552 }
3553 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3554
3555
3556 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3557 {
3558 return SCHED_LOAD_SCALE;
3559 }
3560
3561 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3562 {
3563 return default_scale_freq_power(sd, cpu);
3564 }
3565
3566 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3567 {
3568 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3569 unsigned long smt_gain = sd->smt_gain;
3570
3571 smt_gain /= weight;
3572
3573 return smt_gain;
3574 }
3575
3576 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3577 {
3578 return default_scale_smt_power(sd, cpu);
3579 }
3580
3581 unsigned long scale_rt_power(int cpu)
3582 {
3583 struct rq *rq = cpu_rq(cpu);
3584 u64 total, available;
3585
3586 sched_avg_update(rq);
3587
3588 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3589 available = total - rq->rt_avg;
3590
3591 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3592 total = SCHED_LOAD_SCALE;
3593
3594 total >>= SCHED_LOAD_SHIFT;
3595
3596 return div_u64(available, total);
3597 }
3598
3599 static void update_cpu_power(struct sched_domain *sd, int cpu)
3600 {
3601 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3602 unsigned long power = SCHED_LOAD_SCALE;
3603 struct sched_group *sdg = sd->groups;
3604
3605 if (sched_feat(ARCH_POWER))
3606 power *= arch_scale_freq_power(sd, cpu);
3607 else
3608 power *= default_scale_freq_power(sd, cpu);
3609
3610 power >>= SCHED_LOAD_SHIFT;
3611
3612 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3613 if (sched_feat(ARCH_POWER))
3614 power *= arch_scale_smt_power(sd, cpu);
3615 else
3616 power *= default_scale_smt_power(sd, cpu);
3617
3618 power >>= SCHED_LOAD_SHIFT;
3619 }
3620
3621 power *= scale_rt_power(cpu);
3622 power >>= SCHED_LOAD_SHIFT;
3623
3624 if (!power)
3625 power = 1;
3626
3627 sdg->cpu_power = power;
3628 }
3629
3630 static void update_group_power(struct sched_domain *sd, int cpu)
3631 {
3632 struct sched_domain *child = sd->child;
3633 struct sched_group *group, *sdg = sd->groups;
3634 unsigned long power;
3635
3636 if (!child) {
3637 update_cpu_power(sd, cpu);
3638 return;
3639 }
3640
3641 power = 0;
3642
3643 group = child->groups;
3644 do {
3645 power += group->cpu_power;
3646 group = group->next;
3647 } while (group != child->groups);
3648
3649 sdg->cpu_power = power;
3650 }
3651
3652 /**
3653 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3654 * @group: sched_group whose statistics are to be updated.
3655 * @this_cpu: Cpu for which load balance is currently performed.
3656 * @idle: Idle status of this_cpu
3657 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3658 * @sd_idle: Idle status of the sched_domain containing group.
3659 * @local_group: Does group contain this_cpu.
3660 * @cpus: Set of cpus considered for load balancing.
3661 * @balance: Should we balance.
3662 * @sgs: variable to hold the statistics for this group.
3663 */
3664 static inline void update_sg_lb_stats(struct sched_domain *sd,
3665 struct sched_group *group, int this_cpu,
3666 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3667 int local_group, const struct cpumask *cpus,
3668 int *balance, struct sg_lb_stats *sgs)
3669 {
3670 unsigned long load, max_cpu_load, min_cpu_load;
3671 int i;
3672 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3673 unsigned long sum_avg_load_per_task;
3674 unsigned long avg_load_per_task;
3675
3676 if (local_group) {
3677 balance_cpu = group_first_cpu(group);
3678 if (balance_cpu == this_cpu)
3679 update_group_power(sd, this_cpu);
3680 }
3681
3682 /* Tally up the load of all CPUs in the group */
3683 sum_avg_load_per_task = avg_load_per_task = 0;
3684 max_cpu_load = 0;
3685 min_cpu_load = ~0UL;
3686
3687 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3688 struct rq *rq = cpu_rq(i);
3689
3690 if (*sd_idle && rq->nr_running)
3691 *sd_idle = 0;
3692
3693 /* Bias balancing toward cpus of our domain */
3694 if (local_group) {
3695 if (idle_cpu(i) && !first_idle_cpu) {
3696 first_idle_cpu = 1;
3697 balance_cpu = i;
3698 }
3699
3700 load = target_load(i, load_idx);
3701 } else {
3702 load = source_load(i, load_idx);
3703 if (load > max_cpu_load)
3704 max_cpu_load = load;
3705 if (min_cpu_load > load)
3706 min_cpu_load = load;
3707 }
3708
3709 sgs->group_load += load;
3710 sgs->sum_nr_running += rq->nr_running;
3711 sgs->sum_weighted_load += weighted_cpuload(i);
3712
3713 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3714 }
3715
3716 /*
3717 * First idle cpu or the first cpu(busiest) in this sched group
3718 * is eligible for doing load balancing at this and above
3719 * domains. In the newly idle case, we will allow all the cpu's
3720 * to do the newly idle load balance.
3721 */
3722 if (idle != CPU_NEWLY_IDLE && local_group &&
3723 balance_cpu != this_cpu && balance) {
3724 *balance = 0;
3725 return;
3726 }
3727
3728 /* Adjust by relative CPU power of the group */
3729 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3730
3731
3732 /*
3733 * Consider the group unbalanced when the imbalance is larger
3734 * than the average weight of two tasks.
3735 *
3736 * APZ: with cgroup the avg task weight can vary wildly and
3737 * might not be a suitable number - should we keep a
3738 * normalized nr_running number somewhere that negates
3739 * the hierarchy?
3740 */
3741 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3742 group->cpu_power;
3743
3744 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3745 sgs->group_imb = 1;
3746
3747 sgs->group_capacity =
3748 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3749 }
3750
3751 /**
3752 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3753 * @sd: sched_domain whose statistics are to be updated.
3754 * @this_cpu: Cpu for which load balance is currently performed.
3755 * @idle: Idle status of this_cpu
3756 * @sd_idle: Idle status of the sched_domain containing group.
3757 * @cpus: Set of cpus considered for load balancing.
3758 * @balance: Should we balance.
3759 * @sds: variable to hold the statistics for this sched_domain.
3760 */
3761 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3762 enum cpu_idle_type idle, int *sd_idle,
3763 const struct cpumask *cpus, int *balance,
3764 struct sd_lb_stats *sds)
3765 {
3766 struct sched_domain *child = sd->child;
3767 struct sched_group *group = sd->groups;
3768 struct sg_lb_stats sgs;
3769 int load_idx, prefer_sibling = 0;
3770
3771 if (child && child->flags & SD_PREFER_SIBLING)
3772 prefer_sibling = 1;
3773
3774 init_sd_power_savings_stats(sd, sds, idle);
3775 load_idx = get_sd_load_idx(sd, idle);
3776
3777 do {
3778 int local_group;
3779
3780 local_group = cpumask_test_cpu(this_cpu,
3781 sched_group_cpus(group));
3782 memset(&sgs, 0, sizeof(sgs));
3783 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3784 local_group, cpus, balance, &sgs);
3785
3786 if (local_group && balance && !(*balance))
3787 return;
3788
3789 sds->total_load += sgs.group_load;
3790 sds->total_pwr += group->cpu_power;
3791
3792 /*
3793 * In case the child domain prefers tasks go to siblings
3794 * first, lower the group capacity to one so that we'll try
3795 * and move all the excess tasks away.
3796 */
3797 if (prefer_sibling)
3798 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3799
3800 if (local_group) {
3801 sds->this_load = sgs.avg_load;
3802 sds->this = group;
3803 sds->this_nr_running = sgs.sum_nr_running;
3804 sds->this_load_per_task = sgs.sum_weighted_load;
3805 } else if (sgs.avg_load > sds->max_load &&
3806 (sgs.sum_nr_running > sgs.group_capacity ||
3807 sgs.group_imb)) {
3808 sds->max_load = sgs.avg_load;
3809 sds->busiest = group;
3810 sds->busiest_nr_running = sgs.sum_nr_running;
3811 sds->busiest_load_per_task = sgs.sum_weighted_load;
3812 sds->group_imb = sgs.group_imb;
3813 }
3814
3815 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3816 group = group->next;
3817 } while (group != sd->groups);
3818 }
3819
3820 /**
3821 * fix_small_imbalance - Calculate the minor imbalance that exists
3822 * amongst the groups of a sched_domain, during
3823 * load balancing.
3824 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3825 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3826 * @imbalance: Variable to store the imbalance.
3827 */
3828 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3829 int this_cpu, unsigned long *imbalance)
3830 {
3831 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3832 unsigned int imbn = 2;
3833
3834 if (sds->this_nr_running) {
3835 sds->this_load_per_task /= sds->this_nr_running;
3836 if (sds->busiest_load_per_task >
3837 sds->this_load_per_task)
3838 imbn = 1;
3839 } else
3840 sds->this_load_per_task =
3841 cpu_avg_load_per_task(this_cpu);
3842
3843 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3844 sds->busiest_load_per_task * imbn) {
3845 *imbalance = sds->busiest_load_per_task;
3846 return;
3847 }
3848
3849 /*
3850 * OK, we don't have enough imbalance to justify moving tasks,
3851 * however we may be able to increase total CPU power used by
3852 * moving them.
3853 */
3854
3855 pwr_now += sds->busiest->cpu_power *
3856 min(sds->busiest_load_per_task, sds->max_load);
3857 pwr_now += sds->this->cpu_power *
3858 min(sds->this_load_per_task, sds->this_load);
3859 pwr_now /= SCHED_LOAD_SCALE;
3860
3861 /* Amount of load we'd subtract */
3862 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3863 sds->busiest->cpu_power;
3864 if (sds->max_load > tmp)
3865 pwr_move += sds->busiest->cpu_power *
3866 min(sds->busiest_load_per_task, sds->max_load - tmp);
3867
3868 /* Amount of load we'd add */
3869 if (sds->max_load * sds->busiest->cpu_power <
3870 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3871 tmp = (sds->max_load * sds->busiest->cpu_power) /
3872 sds->this->cpu_power;
3873 else
3874 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3875 sds->this->cpu_power;
3876 pwr_move += sds->this->cpu_power *
3877 min(sds->this_load_per_task, sds->this_load + tmp);
3878 pwr_move /= SCHED_LOAD_SCALE;
3879
3880 /* Move if we gain throughput */
3881 if (pwr_move > pwr_now)
3882 *imbalance = sds->busiest_load_per_task;
3883 }
3884
3885 /**
3886 * calculate_imbalance - Calculate the amount of imbalance present within the
3887 * groups of a given sched_domain during load balance.
3888 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3889 * @this_cpu: Cpu for which currently load balance is being performed.
3890 * @imbalance: The variable to store the imbalance.
3891 */
3892 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3893 unsigned long *imbalance)
3894 {
3895 unsigned long max_pull;
3896 /*
3897 * In the presence of smp nice balancing, certain scenarios can have
3898 * max load less than avg load(as we skip the groups at or below
3899 * its cpu_power, while calculating max_load..)
3900 */
3901 if (sds->max_load < sds->avg_load) {
3902 *imbalance = 0;
3903 return fix_small_imbalance(sds, this_cpu, imbalance);
3904 }
3905
3906 /* Don't want to pull so many tasks that a group would go idle */
3907 max_pull = min(sds->max_load - sds->avg_load,
3908 sds->max_load - sds->busiest_load_per_task);
3909
3910 /* How much load to actually move to equalise the imbalance */
3911 *imbalance = min(max_pull * sds->busiest->cpu_power,
3912 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3913 / SCHED_LOAD_SCALE;
3914
3915 /*
3916 * if *imbalance is less than the average load per runnable task
3917 * there is no gaurantee that any tasks will be moved so we'll have
3918 * a think about bumping its value to force at least one task to be
3919 * moved
3920 */
3921 if (*imbalance < sds->busiest_load_per_task)
3922 return fix_small_imbalance(sds, this_cpu, imbalance);
3923
3924 }
3925 /******* find_busiest_group() helpers end here *********************/
3926
3927 /**
3928 * find_busiest_group - Returns the busiest group within the sched_domain
3929 * if there is an imbalance. If there isn't an imbalance, and
3930 * the user has opted for power-savings, it returns a group whose
3931 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3932 * such a group exists.
3933 *
3934 * Also calculates the amount of weighted load which should be moved
3935 * to restore balance.
3936 *
3937 * @sd: The sched_domain whose busiest group is to be returned.
3938 * @this_cpu: The cpu for which load balancing is currently being performed.
3939 * @imbalance: Variable which stores amount of weighted load which should
3940 * be moved to restore balance/put a group to idle.
3941 * @idle: The idle status of this_cpu.
3942 * @sd_idle: The idleness of sd
3943 * @cpus: The set of CPUs under consideration for load-balancing.
3944 * @balance: Pointer to a variable indicating if this_cpu
3945 * is the appropriate cpu to perform load balancing at this_level.
3946 *
3947 * Returns: - the busiest group if imbalance exists.
3948 * - If no imbalance and user has opted for power-savings balance,
3949 * return the least loaded group whose CPUs can be
3950 * put to idle by rebalancing its tasks onto our group.
3951 */
3952 static struct sched_group *
3953 find_busiest_group(struct sched_domain *sd, int this_cpu,
3954 unsigned long *imbalance, enum cpu_idle_type idle,
3955 int *sd_idle, const struct cpumask *cpus, int *balance)
3956 {
3957 struct sd_lb_stats sds;
3958
3959 memset(&sds, 0, sizeof(sds));
3960
3961 /*
3962 * Compute the various statistics relavent for load balancing at
3963 * this level.
3964 */
3965 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3966 balance, &sds);
3967
3968 /* Cases where imbalance does not exist from POV of this_cpu */
3969 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3970 * at this level.
3971 * 2) There is no busy sibling group to pull from.
3972 * 3) This group is the busiest group.
3973 * 4) This group is more busy than the avg busieness at this
3974 * sched_domain.
3975 * 5) The imbalance is within the specified limit.
3976 * 6) Any rebalance would lead to ping-pong
3977 */
3978 if (balance && !(*balance))
3979 goto ret;
3980
3981 if (!sds.busiest || sds.busiest_nr_running == 0)
3982 goto out_balanced;
3983
3984 if (sds.this_load >= sds.max_load)
3985 goto out_balanced;
3986
3987 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3988
3989 if (sds.this_load >= sds.avg_load)
3990 goto out_balanced;
3991
3992 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3993 goto out_balanced;
3994
3995 sds.busiest_load_per_task /= sds.busiest_nr_running;
3996 if (sds.group_imb)
3997 sds.busiest_load_per_task =
3998 min(sds.busiest_load_per_task, sds.avg_load);
3999
4000 /*
4001 * We're trying to get all the cpus to the average_load, so we don't
4002 * want to push ourselves above the average load, nor do we wish to
4003 * reduce the max loaded cpu below the average load, as either of these
4004 * actions would just result in more rebalancing later, and ping-pong
4005 * tasks around. Thus we look for the minimum possible imbalance.
4006 * Negative imbalances (*we* are more loaded than anyone else) will
4007 * be counted as no imbalance for these purposes -- we can't fix that
4008 * by pulling tasks to us. Be careful of negative numbers as they'll
4009 * appear as very large values with unsigned longs.
4010 */
4011 if (sds.max_load <= sds.busiest_load_per_task)
4012 goto out_balanced;
4013
4014 /* Looks like there is an imbalance. Compute it */
4015 calculate_imbalance(&sds, this_cpu, imbalance);
4016 return sds.busiest;
4017
4018 out_balanced:
4019 /*
4020 * There is no obvious imbalance. But check if we can do some balancing
4021 * to save power.
4022 */
4023 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4024 return sds.busiest;
4025 ret:
4026 *imbalance = 0;
4027 return NULL;
4028 }
4029
4030 /*
4031 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4032 */
4033 static struct rq *
4034 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4035 unsigned long imbalance, const struct cpumask *cpus)
4036 {
4037 struct rq *busiest = NULL, *rq;
4038 unsigned long max_load = 0;
4039 int i;
4040
4041 for_each_cpu(i, sched_group_cpus(group)) {
4042 unsigned long power = power_of(i);
4043 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4044 unsigned long wl;
4045
4046 if (!cpumask_test_cpu(i, cpus))
4047 continue;
4048
4049 rq = cpu_rq(i);
4050 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4051 wl /= power;
4052
4053 if (capacity && rq->nr_running == 1 && wl > imbalance)
4054 continue;
4055
4056 if (wl > max_load) {
4057 max_load = wl;
4058 busiest = rq;
4059 }
4060 }
4061
4062 return busiest;
4063 }
4064
4065 /*
4066 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4067 * so long as it is large enough.
4068 */
4069 #define MAX_PINNED_INTERVAL 512
4070
4071 /* Working cpumask for load_balance and load_balance_newidle. */
4072 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4073
4074 /*
4075 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4076 * tasks if there is an imbalance.
4077 */
4078 static int load_balance(int this_cpu, struct rq *this_rq,
4079 struct sched_domain *sd, enum cpu_idle_type idle,
4080 int *balance)
4081 {
4082 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4083 struct sched_group *group;
4084 unsigned long imbalance;
4085 struct rq *busiest;
4086 unsigned long flags;
4087 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4088
4089 cpumask_setall(cpus);
4090
4091 /*
4092 * When power savings policy is enabled for the parent domain, idle
4093 * sibling can pick up load irrespective of busy siblings. In this case,
4094 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4095 * portraying it as CPU_NOT_IDLE.
4096 */
4097 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4098 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4099 sd_idle = 1;
4100
4101 schedstat_inc(sd, lb_count[idle]);
4102
4103 redo:
4104 update_shares(sd);
4105 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4106 cpus, balance);
4107
4108 if (*balance == 0)
4109 goto out_balanced;
4110
4111 if (!group) {
4112 schedstat_inc(sd, lb_nobusyg[idle]);
4113 goto out_balanced;
4114 }
4115
4116 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4117 if (!busiest) {
4118 schedstat_inc(sd, lb_nobusyq[idle]);
4119 goto out_balanced;
4120 }
4121
4122 BUG_ON(busiest == this_rq);
4123
4124 schedstat_add(sd, lb_imbalance[idle], imbalance);
4125
4126 ld_moved = 0;
4127 if (busiest->nr_running > 1) {
4128 /*
4129 * Attempt to move tasks. If find_busiest_group has found
4130 * an imbalance but busiest->nr_running <= 1, the group is
4131 * still unbalanced. ld_moved simply stays zero, so it is
4132 * correctly treated as an imbalance.
4133 */
4134 local_irq_save(flags);
4135 double_rq_lock(this_rq, busiest);
4136 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4137 imbalance, sd, idle, &all_pinned);
4138 double_rq_unlock(this_rq, busiest);
4139 local_irq_restore(flags);
4140
4141 /*
4142 * some other cpu did the load balance for us.
4143 */
4144 if (ld_moved && this_cpu != smp_processor_id())
4145 resched_cpu(this_cpu);
4146
4147 /* All tasks on this runqueue were pinned by CPU affinity */
4148 if (unlikely(all_pinned)) {
4149 cpumask_clear_cpu(cpu_of(busiest), cpus);
4150 if (!cpumask_empty(cpus))
4151 goto redo;
4152 goto out_balanced;
4153 }
4154 }
4155
4156 if (!ld_moved) {
4157 schedstat_inc(sd, lb_failed[idle]);
4158 sd->nr_balance_failed++;
4159
4160 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4161
4162 spin_lock_irqsave(&busiest->lock, flags);
4163
4164 /* don't kick the migration_thread, if the curr
4165 * task on busiest cpu can't be moved to this_cpu
4166 */
4167 if (!cpumask_test_cpu(this_cpu,
4168 &busiest->curr->cpus_allowed)) {
4169 spin_unlock_irqrestore(&busiest->lock, flags);
4170 all_pinned = 1;
4171 goto out_one_pinned;
4172 }
4173
4174 if (!busiest->active_balance) {
4175 busiest->active_balance = 1;
4176 busiest->push_cpu = this_cpu;
4177 active_balance = 1;
4178 }
4179 spin_unlock_irqrestore(&busiest->lock, flags);
4180 if (active_balance)
4181 wake_up_process(busiest->migration_thread);
4182
4183 /*
4184 * We've kicked active balancing, reset the failure
4185 * counter.
4186 */
4187 sd->nr_balance_failed = sd->cache_nice_tries+1;
4188 }
4189 } else
4190 sd->nr_balance_failed = 0;
4191
4192 if (likely(!active_balance)) {
4193 /* We were unbalanced, so reset the balancing interval */
4194 sd->balance_interval = sd->min_interval;
4195 } else {
4196 /*
4197 * If we've begun active balancing, start to back off. This
4198 * case may not be covered by the all_pinned logic if there
4199 * is only 1 task on the busy runqueue (because we don't call
4200 * move_tasks).
4201 */
4202 if (sd->balance_interval < sd->max_interval)
4203 sd->balance_interval *= 2;
4204 }
4205
4206 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4207 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4208 ld_moved = -1;
4209
4210 goto out;
4211
4212 out_balanced:
4213 schedstat_inc(sd, lb_balanced[idle]);
4214
4215 sd->nr_balance_failed = 0;
4216
4217 out_one_pinned:
4218 /* tune up the balancing interval */
4219 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4220 (sd->balance_interval < sd->max_interval))
4221 sd->balance_interval *= 2;
4222
4223 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4224 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4225 ld_moved = -1;
4226 else
4227 ld_moved = 0;
4228 out:
4229 if (ld_moved)
4230 update_shares(sd);
4231 return ld_moved;
4232 }
4233
4234 /*
4235 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4236 * tasks if there is an imbalance.
4237 *
4238 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4239 * this_rq is locked.
4240 */
4241 static int
4242 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4243 {
4244 struct sched_group *group;
4245 struct rq *busiest = NULL;
4246 unsigned long imbalance;
4247 int ld_moved = 0;
4248 int sd_idle = 0;
4249 int all_pinned = 0;
4250 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4251
4252 cpumask_setall(cpus);
4253
4254 /*
4255 * When power savings policy is enabled for the parent domain, idle
4256 * sibling can pick up load irrespective of busy siblings. In this case,
4257 * let the state of idle sibling percolate up as IDLE, instead of
4258 * portraying it as CPU_NOT_IDLE.
4259 */
4260 if (sd->flags & SD_SHARE_CPUPOWER &&
4261 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4262 sd_idle = 1;
4263
4264 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4265 redo:
4266 update_shares_locked(this_rq, sd);
4267 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4268 &sd_idle, cpus, NULL);
4269 if (!group) {
4270 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4271 goto out_balanced;
4272 }
4273
4274 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4275 if (!busiest) {
4276 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4277 goto out_balanced;
4278 }
4279
4280 BUG_ON(busiest == this_rq);
4281
4282 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4283
4284 ld_moved = 0;
4285 if (busiest->nr_running > 1) {
4286 /* Attempt to move tasks */
4287 double_lock_balance(this_rq, busiest);
4288 /* this_rq->clock is already updated */
4289 update_rq_clock(busiest);
4290 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4291 imbalance, sd, CPU_NEWLY_IDLE,
4292 &all_pinned);
4293 double_unlock_balance(this_rq, busiest);
4294
4295 if (unlikely(all_pinned)) {
4296 cpumask_clear_cpu(cpu_of(busiest), cpus);
4297 if (!cpumask_empty(cpus))
4298 goto redo;
4299 }
4300 }
4301
4302 if (!ld_moved) {
4303 int active_balance = 0;
4304
4305 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4306 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4307 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4308 return -1;
4309
4310 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4311 return -1;
4312
4313 if (sd->nr_balance_failed++ < 2)
4314 return -1;
4315
4316 /*
4317 * The only task running in a non-idle cpu can be moved to this
4318 * cpu in an attempt to completely freeup the other CPU
4319 * package. The same method used to move task in load_balance()
4320 * have been extended for load_balance_newidle() to speedup
4321 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4322 *
4323 * The package power saving logic comes from
4324 * find_busiest_group(). If there are no imbalance, then
4325 * f_b_g() will return NULL. However when sched_mc={1,2} then
4326 * f_b_g() will select a group from which a running task may be
4327 * pulled to this cpu in order to make the other package idle.
4328 * If there is no opportunity to make a package idle and if
4329 * there are no imbalance, then f_b_g() will return NULL and no
4330 * action will be taken in load_balance_newidle().
4331 *
4332 * Under normal task pull operation due to imbalance, there
4333 * will be more than one task in the source run queue and
4334 * move_tasks() will succeed. ld_moved will be true and this
4335 * active balance code will not be triggered.
4336 */
4337
4338 /* Lock busiest in correct order while this_rq is held */
4339 double_lock_balance(this_rq, busiest);
4340
4341 /*
4342 * don't kick the migration_thread, if the curr
4343 * task on busiest cpu can't be moved to this_cpu
4344 */
4345 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4346 double_unlock_balance(this_rq, busiest);
4347 all_pinned = 1;
4348 return ld_moved;
4349 }
4350
4351 if (!busiest->active_balance) {
4352 busiest->active_balance = 1;
4353 busiest->push_cpu = this_cpu;
4354 active_balance = 1;
4355 }
4356
4357 double_unlock_balance(this_rq, busiest);
4358 /*
4359 * Should not call ttwu while holding a rq->lock
4360 */
4361 spin_unlock(&this_rq->lock);
4362 if (active_balance)
4363 wake_up_process(busiest->migration_thread);
4364 spin_lock(&this_rq->lock);
4365
4366 } else
4367 sd->nr_balance_failed = 0;
4368
4369 update_shares_locked(this_rq, sd);
4370 return ld_moved;
4371
4372 out_balanced:
4373 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4374 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4375 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4376 return -1;
4377 sd->nr_balance_failed = 0;
4378
4379 return 0;
4380 }
4381
4382 /*
4383 * idle_balance is called by schedule() if this_cpu is about to become
4384 * idle. Attempts to pull tasks from other CPUs.
4385 */
4386 static void idle_balance(int this_cpu, struct rq *this_rq)
4387 {
4388 struct sched_domain *sd;
4389 int pulled_task = 0;
4390 unsigned long next_balance = jiffies + HZ;
4391
4392 for_each_domain(this_cpu, sd) {
4393 unsigned long interval;
4394
4395 if (!(sd->flags & SD_LOAD_BALANCE))
4396 continue;
4397
4398 if (sd->flags & SD_BALANCE_NEWIDLE)
4399 /* If we've pulled tasks over stop searching: */
4400 pulled_task = load_balance_newidle(this_cpu, this_rq,
4401 sd);
4402
4403 interval = msecs_to_jiffies(sd->balance_interval);
4404 if (time_after(next_balance, sd->last_balance + interval))
4405 next_balance = sd->last_balance + interval;
4406 if (pulled_task)
4407 break;
4408 }
4409 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4410 /*
4411 * We are going idle. next_balance may be set based on
4412 * a busy processor. So reset next_balance.
4413 */
4414 this_rq->next_balance = next_balance;
4415 }
4416 }
4417
4418 /*
4419 * active_load_balance is run by migration threads. It pushes running tasks
4420 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4421 * running on each physical CPU where possible, and avoids physical /
4422 * logical imbalances.
4423 *
4424 * Called with busiest_rq locked.
4425 */
4426 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4427 {
4428 int target_cpu = busiest_rq->push_cpu;
4429 struct sched_domain *sd;
4430 struct rq *target_rq;
4431
4432 /* Is there any task to move? */
4433 if (busiest_rq->nr_running <= 1)
4434 return;
4435
4436 target_rq = cpu_rq(target_cpu);
4437
4438 /*
4439 * This condition is "impossible", if it occurs
4440 * we need to fix it. Originally reported by
4441 * Bjorn Helgaas on a 128-cpu setup.
4442 */
4443 BUG_ON(busiest_rq == target_rq);
4444
4445 /* move a task from busiest_rq to target_rq */
4446 double_lock_balance(busiest_rq, target_rq);
4447 update_rq_clock(busiest_rq);
4448 update_rq_clock(target_rq);
4449
4450 /* Search for an sd spanning us and the target CPU. */
4451 for_each_domain(target_cpu, sd) {
4452 if ((sd->flags & SD_LOAD_BALANCE) &&
4453 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4454 break;
4455 }
4456
4457 if (likely(sd)) {
4458 schedstat_inc(sd, alb_count);
4459
4460 if (move_one_task(target_rq, target_cpu, busiest_rq,
4461 sd, CPU_IDLE))
4462 schedstat_inc(sd, alb_pushed);
4463 else
4464 schedstat_inc(sd, alb_failed);
4465 }
4466 double_unlock_balance(busiest_rq, target_rq);
4467 }
4468
4469 #ifdef CONFIG_NO_HZ
4470 static struct {
4471 atomic_t load_balancer;
4472 cpumask_var_t cpu_mask;
4473 cpumask_var_t ilb_grp_nohz_mask;
4474 } nohz ____cacheline_aligned = {
4475 .load_balancer = ATOMIC_INIT(-1),
4476 };
4477
4478 int get_nohz_load_balancer(void)
4479 {
4480 return atomic_read(&nohz.load_balancer);
4481 }
4482
4483 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4484 /**
4485 * lowest_flag_domain - Return lowest sched_domain containing flag.
4486 * @cpu: The cpu whose lowest level of sched domain is to
4487 * be returned.
4488 * @flag: The flag to check for the lowest sched_domain
4489 * for the given cpu.
4490 *
4491 * Returns the lowest sched_domain of a cpu which contains the given flag.
4492 */
4493 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4494 {
4495 struct sched_domain *sd;
4496
4497 for_each_domain(cpu, sd)
4498 if (sd && (sd->flags & flag))
4499 break;
4500
4501 return sd;
4502 }
4503
4504 /**
4505 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4506 * @cpu: The cpu whose domains we're iterating over.
4507 * @sd: variable holding the value of the power_savings_sd
4508 * for cpu.
4509 * @flag: The flag to filter the sched_domains to be iterated.
4510 *
4511 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4512 * set, starting from the lowest sched_domain to the highest.
4513 */
4514 #define for_each_flag_domain(cpu, sd, flag) \
4515 for (sd = lowest_flag_domain(cpu, flag); \
4516 (sd && (sd->flags & flag)); sd = sd->parent)
4517
4518 /**
4519 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4520 * @ilb_group: group to be checked for semi-idleness
4521 *
4522 * Returns: 1 if the group is semi-idle. 0 otherwise.
4523 *
4524 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4525 * and atleast one non-idle CPU. This helper function checks if the given
4526 * sched_group is semi-idle or not.
4527 */
4528 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4529 {
4530 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4531 sched_group_cpus(ilb_group));
4532
4533 /*
4534 * A sched_group is semi-idle when it has atleast one busy cpu
4535 * and atleast one idle cpu.
4536 */
4537 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4538 return 0;
4539
4540 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4541 return 0;
4542
4543 return 1;
4544 }
4545 /**
4546 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4547 * @cpu: The cpu which is nominating a new idle_load_balancer.
4548 *
4549 * Returns: Returns the id of the idle load balancer if it exists,
4550 * Else, returns >= nr_cpu_ids.
4551 *
4552 * This algorithm picks the idle load balancer such that it belongs to a
4553 * semi-idle powersavings sched_domain. The idea is to try and avoid
4554 * completely idle packages/cores just for the purpose of idle load balancing
4555 * when there are other idle cpu's which are better suited for that job.
4556 */
4557 static int find_new_ilb(int cpu)
4558 {
4559 struct sched_domain *sd;
4560 struct sched_group *ilb_group;
4561
4562 /*
4563 * Have idle load balancer selection from semi-idle packages only
4564 * when power-aware load balancing is enabled
4565 */
4566 if (!(sched_smt_power_savings || sched_mc_power_savings))
4567 goto out_done;
4568
4569 /*
4570 * Optimize for the case when we have no idle CPUs or only one
4571 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4572 */
4573 if (cpumask_weight(nohz.cpu_mask) < 2)
4574 goto out_done;
4575
4576 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4577 ilb_group = sd->groups;
4578
4579 do {
4580 if (is_semi_idle_group(ilb_group))
4581 return cpumask_first(nohz.ilb_grp_nohz_mask);
4582
4583 ilb_group = ilb_group->next;
4584
4585 } while (ilb_group != sd->groups);
4586 }
4587
4588 out_done:
4589 return cpumask_first(nohz.cpu_mask);
4590 }
4591 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4592 static inline int find_new_ilb(int call_cpu)
4593 {
4594 return cpumask_first(nohz.cpu_mask);
4595 }
4596 #endif
4597
4598 /*
4599 * This routine will try to nominate the ilb (idle load balancing)
4600 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4601 * load balancing on behalf of all those cpus. If all the cpus in the system
4602 * go into this tickless mode, then there will be no ilb owner (as there is
4603 * no need for one) and all the cpus will sleep till the next wakeup event
4604 * arrives...
4605 *
4606 * For the ilb owner, tick is not stopped. And this tick will be used
4607 * for idle load balancing. ilb owner will still be part of
4608 * nohz.cpu_mask..
4609 *
4610 * While stopping the tick, this cpu will become the ilb owner if there
4611 * is no other owner. And will be the owner till that cpu becomes busy
4612 * or if all cpus in the system stop their ticks at which point
4613 * there is no need for ilb owner.
4614 *
4615 * When the ilb owner becomes busy, it nominates another owner, during the
4616 * next busy scheduler_tick()
4617 */
4618 int select_nohz_load_balancer(int stop_tick)
4619 {
4620 int cpu = smp_processor_id();
4621
4622 if (stop_tick) {
4623 cpu_rq(cpu)->in_nohz_recently = 1;
4624
4625 if (!cpu_active(cpu)) {
4626 if (atomic_read(&nohz.load_balancer) != cpu)
4627 return 0;
4628
4629 /*
4630 * If we are going offline and still the leader,
4631 * give up!
4632 */
4633 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4634 BUG();
4635
4636 return 0;
4637 }
4638
4639 cpumask_set_cpu(cpu, nohz.cpu_mask);
4640
4641 /* time for ilb owner also to sleep */
4642 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4643 if (atomic_read(&nohz.load_balancer) == cpu)
4644 atomic_set(&nohz.load_balancer, -1);
4645 return 0;
4646 }
4647
4648 if (atomic_read(&nohz.load_balancer) == -1) {
4649 /* make me the ilb owner */
4650 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4651 return 1;
4652 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4653 int new_ilb;
4654
4655 if (!(sched_smt_power_savings ||
4656 sched_mc_power_savings))
4657 return 1;
4658 /*
4659 * Check to see if there is a more power-efficient
4660 * ilb.
4661 */
4662 new_ilb = find_new_ilb(cpu);
4663 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4664 atomic_set(&nohz.load_balancer, -1);
4665 resched_cpu(new_ilb);
4666 return 0;
4667 }
4668 return 1;
4669 }
4670 } else {
4671 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4672 return 0;
4673
4674 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4675
4676 if (atomic_read(&nohz.load_balancer) == cpu)
4677 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4678 BUG();
4679 }
4680 return 0;
4681 }
4682 #endif
4683
4684 static DEFINE_SPINLOCK(balancing);
4685
4686 /*
4687 * It checks each scheduling domain to see if it is due to be balanced,
4688 * and initiates a balancing operation if so.
4689 *
4690 * Balancing parameters are set up in arch_init_sched_domains.
4691 */
4692 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4693 {
4694 int balance = 1;
4695 struct rq *rq = cpu_rq(cpu);
4696 unsigned long interval;
4697 struct sched_domain *sd;
4698 /* Earliest time when we have to do rebalance again */
4699 unsigned long next_balance = jiffies + 60*HZ;
4700 int update_next_balance = 0;
4701 int need_serialize;
4702
4703 for_each_domain(cpu, sd) {
4704 if (!(sd->flags & SD_LOAD_BALANCE))
4705 continue;
4706
4707 interval = sd->balance_interval;
4708 if (idle != CPU_IDLE)
4709 interval *= sd->busy_factor;
4710
4711 /* scale ms to jiffies */
4712 interval = msecs_to_jiffies(interval);
4713 if (unlikely(!interval))
4714 interval = 1;
4715 if (interval > HZ*NR_CPUS/10)
4716 interval = HZ*NR_CPUS/10;
4717
4718 need_serialize = sd->flags & SD_SERIALIZE;
4719
4720 if (need_serialize) {
4721 if (!spin_trylock(&balancing))
4722 goto out;
4723 }
4724
4725 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4726 if (load_balance(cpu, rq, sd, idle, &balance)) {
4727 /*
4728 * We've pulled tasks over so either we're no
4729 * longer idle, or one of our SMT siblings is
4730 * not idle.
4731 */
4732 idle = CPU_NOT_IDLE;
4733 }
4734 sd->last_balance = jiffies;
4735 }
4736 if (need_serialize)
4737 spin_unlock(&balancing);
4738 out:
4739 if (time_after(next_balance, sd->last_balance + interval)) {
4740 next_balance = sd->last_balance + interval;
4741 update_next_balance = 1;
4742 }
4743
4744 /*
4745 * Stop the load balance at this level. There is another
4746 * CPU in our sched group which is doing load balancing more
4747 * actively.
4748 */
4749 if (!balance)
4750 break;
4751 }
4752
4753 /*
4754 * next_balance will be updated only when there is a need.
4755 * When the cpu is attached to null domain for ex, it will not be
4756 * updated.
4757 */
4758 if (likely(update_next_balance))
4759 rq->next_balance = next_balance;
4760 }
4761
4762 /*
4763 * run_rebalance_domains is triggered when needed from the scheduler tick.
4764 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4765 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4766 */
4767 static void run_rebalance_domains(struct softirq_action *h)
4768 {
4769 int this_cpu = smp_processor_id();
4770 struct rq *this_rq = cpu_rq(this_cpu);
4771 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4772 CPU_IDLE : CPU_NOT_IDLE;
4773
4774 rebalance_domains(this_cpu, idle);
4775
4776 #ifdef CONFIG_NO_HZ
4777 /*
4778 * If this cpu is the owner for idle load balancing, then do the
4779 * balancing on behalf of the other idle cpus whose ticks are
4780 * stopped.
4781 */
4782 if (this_rq->idle_at_tick &&
4783 atomic_read(&nohz.load_balancer) == this_cpu) {
4784 struct rq *rq;
4785 int balance_cpu;
4786
4787 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4788 if (balance_cpu == this_cpu)
4789 continue;
4790
4791 /*
4792 * If this cpu gets work to do, stop the load balancing
4793 * work being done for other cpus. Next load
4794 * balancing owner will pick it up.
4795 */
4796 if (need_resched())
4797 break;
4798
4799 rebalance_domains(balance_cpu, CPU_IDLE);
4800
4801 rq = cpu_rq(balance_cpu);
4802 if (time_after(this_rq->next_balance, rq->next_balance))
4803 this_rq->next_balance = rq->next_balance;
4804 }
4805 }
4806 #endif
4807 }
4808
4809 static inline int on_null_domain(int cpu)
4810 {
4811 return !rcu_dereference(cpu_rq(cpu)->sd);
4812 }
4813
4814 /*
4815 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4816 *
4817 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4818 * idle load balancing owner or decide to stop the periodic load balancing,
4819 * if the whole system is idle.
4820 */
4821 static inline void trigger_load_balance(struct rq *rq, int cpu)
4822 {
4823 #ifdef CONFIG_NO_HZ
4824 /*
4825 * If we were in the nohz mode recently and busy at the current
4826 * scheduler tick, then check if we need to nominate new idle
4827 * load balancer.
4828 */
4829 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4830 rq->in_nohz_recently = 0;
4831
4832 if (atomic_read(&nohz.load_balancer) == cpu) {
4833 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4834 atomic_set(&nohz.load_balancer, -1);
4835 }
4836
4837 if (atomic_read(&nohz.load_balancer) == -1) {
4838 int ilb = find_new_ilb(cpu);
4839
4840 if (ilb < nr_cpu_ids)
4841 resched_cpu(ilb);
4842 }
4843 }
4844
4845 /*
4846 * If this cpu is idle and doing idle load balancing for all the
4847 * cpus with ticks stopped, is it time for that to stop?
4848 */
4849 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4850 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4851 resched_cpu(cpu);
4852 return;
4853 }
4854
4855 /*
4856 * If this cpu is idle and the idle load balancing is done by
4857 * someone else, then no need raise the SCHED_SOFTIRQ
4858 */
4859 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4860 cpumask_test_cpu(cpu, nohz.cpu_mask))
4861 return;
4862 #endif
4863 /* Don't need to rebalance while attached to NULL domain */
4864 if (time_after_eq(jiffies, rq->next_balance) &&
4865 likely(!on_null_domain(cpu)))
4866 raise_softirq(SCHED_SOFTIRQ);
4867 }
4868
4869 #else /* CONFIG_SMP */
4870
4871 /*
4872 * on UP we do not need to balance between CPUs:
4873 */
4874 static inline void idle_balance(int cpu, struct rq *rq)
4875 {
4876 }
4877
4878 #endif
4879
4880 DEFINE_PER_CPU(struct kernel_stat, kstat);
4881
4882 EXPORT_PER_CPU_SYMBOL(kstat);
4883
4884 /*
4885 * Return any ns on the sched_clock that have not yet been accounted in
4886 * @p in case that task is currently running.
4887 *
4888 * Called with task_rq_lock() held on @rq.
4889 */
4890 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4891 {
4892 u64 ns = 0;
4893
4894 if (task_current(rq, p)) {
4895 update_rq_clock(rq);
4896 ns = rq->clock - p->se.exec_start;
4897 if ((s64)ns < 0)
4898 ns = 0;
4899 }
4900
4901 return ns;
4902 }
4903
4904 unsigned long long task_delta_exec(struct task_struct *p)
4905 {
4906 unsigned long flags;
4907 struct rq *rq;
4908 u64 ns = 0;
4909
4910 rq = task_rq_lock(p, &flags);
4911 ns = do_task_delta_exec(p, rq);
4912 task_rq_unlock(rq, &flags);
4913
4914 return ns;
4915 }
4916
4917 /*
4918 * Return accounted runtime for the task.
4919 * In case the task is currently running, return the runtime plus current's
4920 * pending runtime that have not been accounted yet.
4921 */
4922 unsigned long long task_sched_runtime(struct task_struct *p)
4923 {
4924 unsigned long flags;
4925 struct rq *rq;
4926 u64 ns = 0;
4927
4928 rq = task_rq_lock(p, &flags);
4929 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4930 task_rq_unlock(rq, &flags);
4931
4932 return ns;
4933 }
4934
4935 /*
4936 * Return sum_exec_runtime for the thread group.
4937 * In case the task is currently running, return the sum plus current's
4938 * pending runtime that have not been accounted yet.
4939 *
4940 * Note that the thread group might have other running tasks as well,
4941 * so the return value not includes other pending runtime that other
4942 * running tasks might have.
4943 */
4944 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4945 {
4946 struct task_cputime totals;
4947 unsigned long flags;
4948 struct rq *rq;
4949 u64 ns;
4950
4951 rq = task_rq_lock(p, &flags);
4952 thread_group_cputime(p, &totals);
4953 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4954 task_rq_unlock(rq, &flags);
4955
4956 return ns;
4957 }
4958
4959 /*
4960 * Account user cpu time to a process.
4961 * @p: the process that the cpu time gets accounted to
4962 * @cputime: the cpu time spent in user space since the last update
4963 * @cputime_scaled: cputime scaled by cpu frequency
4964 */
4965 void account_user_time(struct task_struct *p, cputime_t cputime,
4966 cputime_t cputime_scaled)
4967 {
4968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4969 cputime64_t tmp;
4970
4971 /* Add user time to process. */
4972 p->utime = cputime_add(p->utime, cputime);
4973 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4974 account_group_user_time(p, cputime);
4975
4976 /* Add user time to cpustat. */
4977 tmp = cputime_to_cputime64(cputime);
4978 if (TASK_NICE(p) > 0)
4979 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4980 else
4981 cpustat->user = cputime64_add(cpustat->user, tmp);
4982
4983 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4984 /* Account for user time used */
4985 acct_update_integrals(p);
4986 }
4987
4988 /*
4989 * Account guest cpu time to a process.
4990 * @p: the process that the cpu time gets accounted to
4991 * @cputime: the cpu time spent in virtual machine since the last update
4992 * @cputime_scaled: cputime scaled by cpu frequency
4993 */
4994 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4995 cputime_t cputime_scaled)
4996 {
4997 cputime64_t tmp;
4998 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4999
5000 tmp = cputime_to_cputime64(cputime);
5001
5002 /* Add guest time to process. */
5003 p->utime = cputime_add(p->utime, cputime);
5004 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5005 account_group_user_time(p, cputime);
5006 p->gtime = cputime_add(p->gtime, cputime);
5007
5008 /* Add guest time to cpustat. */
5009 cpustat->user = cputime64_add(cpustat->user, tmp);
5010 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5011 }
5012
5013 /*
5014 * Account system cpu time to a process.
5015 * @p: the process that the cpu time gets accounted to
5016 * @hardirq_offset: the offset to subtract from hardirq_count()
5017 * @cputime: the cpu time spent in kernel space since the last update
5018 * @cputime_scaled: cputime scaled by cpu frequency
5019 */
5020 void account_system_time(struct task_struct *p, int hardirq_offset,
5021 cputime_t cputime, cputime_t cputime_scaled)
5022 {
5023 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5024 cputime64_t tmp;
5025
5026 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5027 account_guest_time(p, cputime, cputime_scaled);
5028 return;
5029 }
5030
5031 /* Add system time to process. */
5032 p->stime = cputime_add(p->stime, cputime);
5033 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5034 account_group_system_time(p, cputime);
5035
5036 /* Add system time to cpustat. */
5037 tmp = cputime_to_cputime64(cputime);
5038 if (hardirq_count() - hardirq_offset)
5039 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5040 else if (softirq_count())
5041 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5042 else
5043 cpustat->system = cputime64_add(cpustat->system, tmp);
5044
5045 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5046
5047 /* Account for system time used */
5048 acct_update_integrals(p);
5049 }
5050
5051 /*
5052 * Account for involuntary wait time.
5053 * @steal: the cpu time spent in involuntary wait
5054 */
5055 void account_steal_time(cputime_t cputime)
5056 {
5057 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5058 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5059
5060 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5061 }
5062
5063 /*
5064 * Account for idle time.
5065 * @cputime: the cpu time spent in idle wait
5066 */
5067 void account_idle_time(cputime_t cputime)
5068 {
5069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5070 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5071 struct rq *rq = this_rq();
5072
5073 if (atomic_read(&rq->nr_iowait) > 0)
5074 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5075 else
5076 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5077 }
5078
5079 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5080
5081 /*
5082 * Account a single tick of cpu time.
5083 * @p: the process that the cpu time gets accounted to
5084 * @user_tick: indicates if the tick is a user or a system tick
5085 */
5086 void account_process_tick(struct task_struct *p, int user_tick)
5087 {
5088 cputime_t one_jiffy = jiffies_to_cputime(1);
5089 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5090 struct rq *rq = this_rq();
5091
5092 if (user_tick)
5093 account_user_time(p, one_jiffy, one_jiffy_scaled);
5094 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5095 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5096 one_jiffy_scaled);
5097 else
5098 account_idle_time(one_jiffy);
5099 }
5100
5101 /*
5102 * Account multiple ticks of steal time.
5103 * @p: the process from which the cpu time has been stolen
5104 * @ticks: number of stolen ticks
5105 */
5106 void account_steal_ticks(unsigned long ticks)
5107 {
5108 account_steal_time(jiffies_to_cputime(ticks));
5109 }
5110
5111 /*
5112 * Account multiple ticks of idle time.
5113 * @ticks: number of stolen ticks
5114 */
5115 void account_idle_ticks(unsigned long ticks)
5116 {
5117 account_idle_time(jiffies_to_cputime(ticks));
5118 }
5119
5120 #endif
5121
5122 /*
5123 * Use precise platform statistics if available:
5124 */
5125 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5126 cputime_t task_utime(struct task_struct *p)
5127 {
5128 return p->utime;
5129 }
5130
5131 cputime_t task_stime(struct task_struct *p)
5132 {
5133 return p->stime;
5134 }
5135 #else
5136 cputime_t task_utime(struct task_struct *p)
5137 {
5138 clock_t utime = cputime_to_clock_t(p->utime),
5139 total = utime + cputime_to_clock_t(p->stime);
5140 u64 temp;
5141
5142 /*
5143 * Use CFS's precise accounting:
5144 */
5145 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5146
5147 if (total) {
5148 temp *= utime;
5149 do_div(temp, total);
5150 }
5151 utime = (clock_t)temp;
5152
5153 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5154 return p->prev_utime;
5155 }
5156
5157 cputime_t task_stime(struct task_struct *p)
5158 {
5159 clock_t stime;
5160
5161 /*
5162 * Use CFS's precise accounting. (we subtract utime from
5163 * the total, to make sure the total observed by userspace
5164 * grows monotonically - apps rely on that):
5165 */
5166 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5167 cputime_to_clock_t(task_utime(p));
5168
5169 if (stime >= 0)
5170 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5171
5172 return p->prev_stime;
5173 }
5174 #endif
5175
5176 inline cputime_t task_gtime(struct task_struct *p)
5177 {
5178 return p->gtime;
5179 }
5180
5181 /*
5182 * This function gets called by the timer code, with HZ frequency.
5183 * We call it with interrupts disabled.
5184 *
5185 * It also gets called by the fork code, when changing the parent's
5186 * timeslices.
5187 */
5188 void scheduler_tick(void)
5189 {
5190 int cpu = smp_processor_id();
5191 struct rq *rq = cpu_rq(cpu);
5192 struct task_struct *curr = rq->curr;
5193
5194 sched_clock_tick();
5195
5196 spin_lock(&rq->lock);
5197 update_rq_clock(rq);
5198 update_cpu_load(rq);
5199 curr->sched_class->task_tick(rq, curr, 0);
5200 spin_unlock(&rq->lock);
5201
5202 perf_event_task_tick(curr, cpu);
5203
5204 #ifdef CONFIG_SMP
5205 rq->idle_at_tick = idle_cpu(cpu);
5206 trigger_load_balance(rq, cpu);
5207 #endif
5208 }
5209
5210 notrace unsigned long get_parent_ip(unsigned long addr)
5211 {
5212 if (in_lock_functions(addr)) {
5213 addr = CALLER_ADDR2;
5214 if (in_lock_functions(addr))
5215 addr = CALLER_ADDR3;
5216 }
5217 return addr;
5218 }
5219
5220 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5221 defined(CONFIG_PREEMPT_TRACER))
5222
5223 void __kprobes add_preempt_count(int val)
5224 {
5225 #ifdef CONFIG_DEBUG_PREEMPT
5226 /*
5227 * Underflow?
5228 */
5229 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5230 return;
5231 #endif
5232 preempt_count() += val;
5233 #ifdef CONFIG_DEBUG_PREEMPT
5234 /*
5235 * Spinlock count overflowing soon?
5236 */
5237 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5238 PREEMPT_MASK - 10);
5239 #endif
5240 if (preempt_count() == val)
5241 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5242 }
5243 EXPORT_SYMBOL(add_preempt_count);
5244
5245 void __kprobes sub_preempt_count(int val)
5246 {
5247 #ifdef CONFIG_DEBUG_PREEMPT
5248 /*
5249 * Underflow?
5250 */
5251 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5252 return;
5253 /*
5254 * Is the spinlock portion underflowing?
5255 */
5256 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5257 !(preempt_count() & PREEMPT_MASK)))
5258 return;
5259 #endif
5260
5261 if (preempt_count() == val)
5262 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5263 preempt_count() -= val;
5264 }
5265 EXPORT_SYMBOL(sub_preempt_count);
5266
5267 #endif
5268
5269 /*
5270 * Print scheduling while atomic bug:
5271 */
5272 static noinline void __schedule_bug(struct task_struct *prev)
5273 {
5274 struct pt_regs *regs = get_irq_regs();
5275
5276 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5277 prev->comm, prev->pid, preempt_count());
5278
5279 debug_show_held_locks(prev);
5280 print_modules();
5281 if (irqs_disabled())
5282 print_irqtrace_events(prev);
5283
5284 if (regs)
5285 show_regs(regs);
5286 else
5287 dump_stack();
5288 }
5289
5290 /*
5291 * Various schedule()-time debugging checks and statistics:
5292 */
5293 static inline void schedule_debug(struct task_struct *prev)
5294 {
5295 /*
5296 * Test if we are atomic. Since do_exit() needs to call into
5297 * schedule() atomically, we ignore that path for now.
5298 * Otherwise, whine if we are scheduling when we should not be.
5299 */
5300 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5301 __schedule_bug(prev);
5302
5303 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5304
5305 schedstat_inc(this_rq(), sched_count);
5306 #ifdef CONFIG_SCHEDSTATS
5307 if (unlikely(prev->lock_depth >= 0)) {
5308 schedstat_inc(this_rq(), bkl_count);
5309 schedstat_inc(prev, sched_info.bkl_count);
5310 }
5311 #endif
5312 }
5313
5314 static void put_prev_task(struct rq *rq, struct task_struct *p)
5315 {
5316 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5317
5318 update_avg(&p->se.avg_running, runtime);
5319
5320 if (p->state == TASK_RUNNING) {
5321 /*
5322 * In order to avoid avg_overlap growing stale when we are
5323 * indeed overlapping and hence not getting put to sleep, grow
5324 * the avg_overlap on preemption.
5325 *
5326 * We use the average preemption runtime because that
5327 * correlates to the amount of cache footprint a task can
5328 * build up.
5329 */
5330 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5331 update_avg(&p->se.avg_overlap, runtime);
5332 } else {
5333 update_avg(&p->se.avg_running, 0);
5334 }
5335 p->sched_class->put_prev_task(rq, p);
5336 }
5337
5338 /*
5339 * Pick up the highest-prio task:
5340 */
5341 static inline struct task_struct *
5342 pick_next_task(struct rq *rq)
5343 {
5344 const struct sched_class *class;
5345 struct task_struct *p;
5346
5347 /*
5348 * Optimization: we know that if all tasks are in
5349 * the fair class we can call that function directly:
5350 */
5351 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5352 p = fair_sched_class.pick_next_task(rq);
5353 if (likely(p))
5354 return p;
5355 }
5356
5357 class = sched_class_highest;
5358 for ( ; ; ) {
5359 p = class->pick_next_task(rq);
5360 if (p)
5361 return p;
5362 /*
5363 * Will never be NULL as the idle class always
5364 * returns a non-NULL p:
5365 */
5366 class = class->next;
5367 }
5368 }
5369
5370 /*
5371 * schedule() is the main scheduler function.
5372 */
5373 asmlinkage void __sched schedule(void)
5374 {
5375 struct task_struct *prev, *next;
5376 unsigned long *switch_count;
5377 struct rq *rq;
5378 int cpu;
5379
5380 need_resched:
5381 preempt_disable();
5382 cpu = smp_processor_id();
5383 rq = cpu_rq(cpu);
5384 rcu_sched_qs(cpu);
5385 prev = rq->curr;
5386 switch_count = &prev->nivcsw;
5387
5388 release_kernel_lock(prev);
5389 need_resched_nonpreemptible:
5390
5391 schedule_debug(prev);
5392
5393 if (sched_feat(HRTICK))
5394 hrtick_clear(rq);
5395
5396 spin_lock_irq(&rq->lock);
5397 update_rq_clock(rq);
5398 clear_tsk_need_resched(prev);
5399
5400 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5401 if (unlikely(signal_pending_state(prev->state, prev)))
5402 prev->state = TASK_RUNNING;
5403 else
5404 deactivate_task(rq, prev, 1);
5405 switch_count = &prev->nvcsw;
5406 }
5407
5408 pre_schedule(rq, prev);
5409
5410 if (unlikely(!rq->nr_running))
5411 idle_balance(cpu, rq);
5412
5413 put_prev_task(rq, prev);
5414 next = pick_next_task(rq);
5415
5416 if (likely(prev != next)) {
5417 sched_info_switch(prev, next);
5418 perf_event_task_sched_out(prev, next, cpu);
5419
5420 rq->nr_switches++;
5421 rq->curr = next;
5422 ++*switch_count;
5423
5424 context_switch(rq, prev, next); /* unlocks the rq */
5425 /*
5426 * the context switch might have flipped the stack from under
5427 * us, hence refresh the local variables.
5428 */
5429 cpu = smp_processor_id();
5430 rq = cpu_rq(cpu);
5431 } else
5432 spin_unlock_irq(&rq->lock);
5433
5434 post_schedule(rq);
5435
5436 if (unlikely(reacquire_kernel_lock(current) < 0))
5437 goto need_resched_nonpreemptible;
5438
5439 preempt_enable_no_resched();
5440 if (need_resched())
5441 goto need_resched;
5442 }
5443 EXPORT_SYMBOL(schedule);
5444
5445 #ifdef CONFIG_SMP
5446 /*
5447 * Look out! "owner" is an entirely speculative pointer
5448 * access and not reliable.
5449 */
5450 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5451 {
5452 unsigned int cpu;
5453 struct rq *rq;
5454
5455 if (!sched_feat(OWNER_SPIN))
5456 return 0;
5457
5458 #ifdef CONFIG_DEBUG_PAGEALLOC
5459 /*
5460 * Need to access the cpu field knowing that
5461 * DEBUG_PAGEALLOC could have unmapped it if
5462 * the mutex owner just released it and exited.
5463 */
5464 if (probe_kernel_address(&owner->cpu, cpu))
5465 goto out;
5466 #else
5467 cpu = owner->cpu;
5468 #endif
5469
5470 /*
5471 * Even if the access succeeded (likely case),
5472 * the cpu field may no longer be valid.
5473 */
5474 if (cpu >= nr_cpumask_bits)
5475 goto out;
5476
5477 /*
5478 * We need to validate that we can do a
5479 * get_cpu() and that we have the percpu area.
5480 */
5481 if (!cpu_online(cpu))
5482 goto out;
5483
5484 rq = cpu_rq(cpu);
5485
5486 for (;;) {
5487 /*
5488 * Owner changed, break to re-assess state.
5489 */
5490 if (lock->owner != owner)
5491 break;
5492
5493 /*
5494 * Is that owner really running on that cpu?
5495 */
5496 if (task_thread_info(rq->curr) != owner || need_resched())
5497 return 0;
5498
5499 cpu_relax();
5500 }
5501 out:
5502 return 1;
5503 }
5504 #endif
5505
5506 #ifdef CONFIG_PREEMPT
5507 /*
5508 * this is the entry point to schedule() from in-kernel preemption
5509 * off of preempt_enable. Kernel preemptions off return from interrupt
5510 * occur there and call schedule directly.
5511 */
5512 asmlinkage void __sched preempt_schedule(void)
5513 {
5514 struct thread_info *ti = current_thread_info();
5515
5516 /*
5517 * If there is a non-zero preempt_count or interrupts are disabled,
5518 * we do not want to preempt the current task. Just return..
5519 */
5520 if (likely(ti->preempt_count || irqs_disabled()))
5521 return;
5522
5523 do {
5524 add_preempt_count(PREEMPT_ACTIVE);
5525 schedule();
5526 sub_preempt_count(PREEMPT_ACTIVE);
5527
5528 /*
5529 * Check again in case we missed a preemption opportunity
5530 * between schedule and now.
5531 */
5532 barrier();
5533 } while (need_resched());
5534 }
5535 EXPORT_SYMBOL(preempt_schedule);
5536
5537 /*
5538 * this is the entry point to schedule() from kernel preemption
5539 * off of irq context.
5540 * Note, that this is called and return with irqs disabled. This will
5541 * protect us against recursive calling from irq.
5542 */
5543 asmlinkage void __sched preempt_schedule_irq(void)
5544 {
5545 struct thread_info *ti = current_thread_info();
5546
5547 /* Catch callers which need to be fixed */
5548 BUG_ON(ti->preempt_count || !irqs_disabled());
5549
5550 do {
5551 add_preempt_count(PREEMPT_ACTIVE);
5552 local_irq_enable();
5553 schedule();
5554 local_irq_disable();
5555 sub_preempt_count(PREEMPT_ACTIVE);
5556
5557 /*
5558 * Check again in case we missed a preemption opportunity
5559 * between schedule and now.
5560 */
5561 barrier();
5562 } while (need_resched());
5563 }
5564
5565 #endif /* CONFIG_PREEMPT */
5566
5567 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5568 void *key)
5569 {
5570 return try_to_wake_up(curr->private, mode, wake_flags);
5571 }
5572 EXPORT_SYMBOL(default_wake_function);
5573
5574 /*
5575 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5576 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5577 * number) then we wake all the non-exclusive tasks and one exclusive task.
5578 *
5579 * There are circumstances in which we can try to wake a task which has already
5580 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5581 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5582 */
5583 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5584 int nr_exclusive, int wake_flags, void *key)
5585 {
5586 wait_queue_t *curr, *next;
5587
5588 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5589 unsigned flags = curr->flags;
5590
5591 if (curr->func(curr, mode, wake_flags, key) &&
5592 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5593 break;
5594 }
5595 }
5596
5597 /**
5598 * __wake_up - wake up threads blocked on a waitqueue.
5599 * @q: the waitqueue
5600 * @mode: which threads
5601 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5602 * @key: is directly passed to the wakeup function
5603 *
5604 * It may be assumed that this function implies a write memory barrier before
5605 * changing the task state if and only if any tasks are woken up.
5606 */
5607 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5608 int nr_exclusive, void *key)
5609 {
5610 unsigned long flags;
5611
5612 spin_lock_irqsave(&q->lock, flags);
5613 __wake_up_common(q, mode, nr_exclusive, 0, key);
5614 spin_unlock_irqrestore(&q->lock, flags);
5615 }
5616 EXPORT_SYMBOL(__wake_up);
5617
5618 /*
5619 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5620 */
5621 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5622 {
5623 __wake_up_common(q, mode, 1, 0, NULL);
5624 }
5625
5626 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5627 {
5628 __wake_up_common(q, mode, 1, 0, key);
5629 }
5630
5631 /**
5632 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5633 * @q: the waitqueue
5634 * @mode: which threads
5635 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5636 * @key: opaque value to be passed to wakeup targets
5637 *
5638 * The sync wakeup differs that the waker knows that it will schedule
5639 * away soon, so while the target thread will be woken up, it will not
5640 * be migrated to another CPU - ie. the two threads are 'synchronized'
5641 * with each other. This can prevent needless bouncing between CPUs.
5642 *
5643 * On UP it can prevent extra preemption.
5644 *
5645 * It may be assumed that this function implies a write memory barrier before
5646 * changing the task state if and only if any tasks are woken up.
5647 */
5648 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5649 int nr_exclusive, void *key)
5650 {
5651 unsigned long flags;
5652 int wake_flags = WF_SYNC;
5653
5654 if (unlikely(!q))
5655 return;
5656
5657 if (unlikely(!nr_exclusive))
5658 wake_flags = 0;
5659
5660 spin_lock_irqsave(&q->lock, flags);
5661 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5662 spin_unlock_irqrestore(&q->lock, flags);
5663 }
5664 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5665
5666 /*
5667 * __wake_up_sync - see __wake_up_sync_key()
5668 */
5669 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5670 {
5671 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5672 }
5673 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5674
5675 /**
5676 * complete: - signals a single thread waiting on this completion
5677 * @x: holds the state of this particular completion
5678 *
5679 * This will wake up a single thread waiting on this completion. Threads will be
5680 * awakened in the same order in which they were queued.
5681 *
5682 * See also complete_all(), wait_for_completion() and related routines.
5683 *
5684 * It may be assumed that this function implies a write memory barrier before
5685 * changing the task state if and only if any tasks are woken up.
5686 */
5687 void complete(struct completion *x)
5688 {
5689 unsigned long flags;
5690
5691 spin_lock_irqsave(&x->wait.lock, flags);
5692 x->done++;
5693 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5694 spin_unlock_irqrestore(&x->wait.lock, flags);
5695 }
5696 EXPORT_SYMBOL(complete);
5697
5698 /**
5699 * complete_all: - signals all threads waiting on this completion
5700 * @x: holds the state of this particular completion
5701 *
5702 * This will wake up all threads waiting on this particular completion event.
5703 *
5704 * It may be assumed that this function implies a write memory barrier before
5705 * changing the task state if and only if any tasks are woken up.
5706 */
5707 void complete_all(struct completion *x)
5708 {
5709 unsigned long flags;
5710
5711 spin_lock_irqsave(&x->wait.lock, flags);
5712 x->done += UINT_MAX/2;
5713 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5714 spin_unlock_irqrestore(&x->wait.lock, flags);
5715 }
5716 EXPORT_SYMBOL(complete_all);
5717
5718 static inline long __sched
5719 do_wait_for_common(struct completion *x, long timeout, int state)
5720 {
5721 if (!x->done) {
5722 DECLARE_WAITQUEUE(wait, current);
5723
5724 wait.flags |= WQ_FLAG_EXCLUSIVE;
5725 __add_wait_queue_tail(&x->wait, &wait);
5726 do {
5727 if (signal_pending_state(state, current)) {
5728 timeout = -ERESTARTSYS;
5729 break;
5730 }
5731 __set_current_state(state);
5732 spin_unlock_irq(&x->wait.lock);
5733 timeout = schedule_timeout(timeout);
5734 spin_lock_irq(&x->wait.lock);
5735 } while (!x->done && timeout);
5736 __remove_wait_queue(&x->wait, &wait);
5737 if (!x->done)
5738 return timeout;
5739 }
5740 x->done--;
5741 return timeout ?: 1;
5742 }
5743
5744 static long __sched
5745 wait_for_common(struct completion *x, long timeout, int state)
5746 {
5747 might_sleep();
5748
5749 spin_lock_irq(&x->wait.lock);
5750 timeout = do_wait_for_common(x, timeout, state);
5751 spin_unlock_irq(&x->wait.lock);
5752 return timeout;
5753 }
5754
5755 /**
5756 * wait_for_completion: - waits for completion of a task
5757 * @x: holds the state of this particular completion
5758 *
5759 * This waits to be signaled for completion of a specific task. It is NOT
5760 * interruptible and there is no timeout.
5761 *
5762 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5763 * and interrupt capability. Also see complete().
5764 */
5765 void __sched wait_for_completion(struct completion *x)
5766 {
5767 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5768 }
5769 EXPORT_SYMBOL(wait_for_completion);
5770
5771 /**
5772 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5773 * @x: holds the state of this particular completion
5774 * @timeout: timeout value in jiffies
5775 *
5776 * This waits for either a completion of a specific task to be signaled or for a
5777 * specified timeout to expire. The timeout is in jiffies. It is not
5778 * interruptible.
5779 */
5780 unsigned long __sched
5781 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5782 {
5783 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5784 }
5785 EXPORT_SYMBOL(wait_for_completion_timeout);
5786
5787 /**
5788 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5789 * @x: holds the state of this particular completion
5790 *
5791 * This waits for completion of a specific task to be signaled. It is
5792 * interruptible.
5793 */
5794 int __sched wait_for_completion_interruptible(struct completion *x)
5795 {
5796 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5797 if (t == -ERESTARTSYS)
5798 return t;
5799 return 0;
5800 }
5801 EXPORT_SYMBOL(wait_for_completion_interruptible);
5802
5803 /**
5804 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5805 * @x: holds the state of this particular completion
5806 * @timeout: timeout value in jiffies
5807 *
5808 * This waits for either a completion of a specific task to be signaled or for a
5809 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5810 */
5811 unsigned long __sched
5812 wait_for_completion_interruptible_timeout(struct completion *x,
5813 unsigned long timeout)
5814 {
5815 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5816 }
5817 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5818
5819 /**
5820 * wait_for_completion_killable: - waits for completion of a task (killable)
5821 * @x: holds the state of this particular completion
5822 *
5823 * This waits to be signaled for completion of a specific task. It can be
5824 * interrupted by a kill signal.
5825 */
5826 int __sched wait_for_completion_killable(struct completion *x)
5827 {
5828 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5829 if (t == -ERESTARTSYS)
5830 return t;
5831 return 0;
5832 }
5833 EXPORT_SYMBOL(wait_for_completion_killable);
5834
5835 /**
5836 * try_wait_for_completion - try to decrement a completion without blocking
5837 * @x: completion structure
5838 *
5839 * Returns: 0 if a decrement cannot be done without blocking
5840 * 1 if a decrement succeeded.
5841 *
5842 * If a completion is being used as a counting completion,
5843 * attempt to decrement the counter without blocking. This
5844 * enables us to avoid waiting if the resource the completion
5845 * is protecting is not available.
5846 */
5847 bool try_wait_for_completion(struct completion *x)
5848 {
5849 int ret = 1;
5850
5851 spin_lock_irq(&x->wait.lock);
5852 if (!x->done)
5853 ret = 0;
5854 else
5855 x->done--;
5856 spin_unlock_irq(&x->wait.lock);
5857 return ret;
5858 }
5859 EXPORT_SYMBOL(try_wait_for_completion);
5860
5861 /**
5862 * completion_done - Test to see if a completion has any waiters
5863 * @x: completion structure
5864 *
5865 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5866 * 1 if there are no waiters.
5867 *
5868 */
5869 bool completion_done(struct completion *x)
5870 {
5871 int ret = 1;
5872
5873 spin_lock_irq(&x->wait.lock);
5874 if (!x->done)
5875 ret = 0;
5876 spin_unlock_irq(&x->wait.lock);
5877 return ret;
5878 }
5879 EXPORT_SYMBOL(completion_done);
5880
5881 static long __sched
5882 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5883 {
5884 unsigned long flags;
5885 wait_queue_t wait;
5886
5887 init_waitqueue_entry(&wait, current);
5888
5889 __set_current_state(state);
5890
5891 spin_lock_irqsave(&q->lock, flags);
5892 __add_wait_queue(q, &wait);
5893 spin_unlock(&q->lock);
5894 timeout = schedule_timeout(timeout);
5895 spin_lock_irq(&q->lock);
5896 __remove_wait_queue(q, &wait);
5897 spin_unlock_irqrestore(&q->lock, flags);
5898
5899 return timeout;
5900 }
5901
5902 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5903 {
5904 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5905 }
5906 EXPORT_SYMBOL(interruptible_sleep_on);
5907
5908 long __sched
5909 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5910 {
5911 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5912 }
5913 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5914
5915 void __sched sleep_on(wait_queue_head_t *q)
5916 {
5917 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5918 }
5919 EXPORT_SYMBOL(sleep_on);
5920
5921 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5922 {
5923 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5924 }
5925 EXPORT_SYMBOL(sleep_on_timeout);
5926
5927 #ifdef CONFIG_RT_MUTEXES
5928
5929 /*
5930 * rt_mutex_setprio - set the current priority of a task
5931 * @p: task
5932 * @prio: prio value (kernel-internal form)
5933 *
5934 * This function changes the 'effective' priority of a task. It does
5935 * not touch ->normal_prio like __setscheduler().
5936 *
5937 * Used by the rt_mutex code to implement priority inheritance logic.
5938 */
5939 void rt_mutex_setprio(struct task_struct *p, int prio)
5940 {
5941 unsigned long flags;
5942 int oldprio, on_rq, running;
5943 struct rq *rq;
5944 const struct sched_class *prev_class = p->sched_class;
5945
5946 BUG_ON(prio < 0 || prio > MAX_PRIO);
5947
5948 rq = task_rq_lock(p, &flags);
5949 update_rq_clock(rq);
5950
5951 oldprio = p->prio;
5952 on_rq = p->se.on_rq;
5953 running = task_current(rq, p);
5954 if (on_rq)
5955 dequeue_task(rq, p, 0);
5956 if (running)
5957 p->sched_class->put_prev_task(rq, p);
5958
5959 if (rt_prio(prio))
5960 p->sched_class = &rt_sched_class;
5961 else
5962 p->sched_class = &fair_sched_class;
5963
5964 p->prio = prio;
5965
5966 if (running)
5967 p->sched_class->set_curr_task(rq);
5968 if (on_rq) {
5969 enqueue_task(rq, p, 0);
5970
5971 check_class_changed(rq, p, prev_class, oldprio, running);
5972 }
5973 task_rq_unlock(rq, &flags);
5974 }
5975
5976 #endif
5977
5978 void set_user_nice(struct task_struct *p, long nice)
5979 {
5980 int old_prio, delta, on_rq;
5981 unsigned long flags;
5982 struct rq *rq;
5983
5984 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5985 return;
5986 /*
5987 * We have to be careful, if called from sys_setpriority(),
5988 * the task might be in the middle of scheduling on another CPU.
5989 */
5990 rq = task_rq_lock(p, &flags);
5991 update_rq_clock(rq);
5992 /*
5993 * The RT priorities are set via sched_setscheduler(), but we still
5994 * allow the 'normal' nice value to be set - but as expected
5995 * it wont have any effect on scheduling until the task is
5996 * SCHED_FIFO/SCHED_RR:
5997 */
5998 if (task_has_rt_policy(p)) {
5999 p->static_prio = NICE_TO_PRIO(nice);
6000 goto out_unlock;
6001 }
6002 on_rq = p->se.on_rq;
6003 if (on_rq)
6004 dequeue_task(rq, p, 0);
6005
6006 p->static_prio = NICE_TO_PRIO(nice);
6007 set_load_weight(p);
6008 old_prio = p->prio;
6009 p->prio = effective_prio(p);
6010 delta = p->prio - old_prio;
6011
6012 if (on_rq) {
6013 enqueue_task(rq, p, 0);
6014 /*
6015 * If the task increased its priority or is running and
6016 * lowered its priority, then reschedule its CPU:
6017 */
6018 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6019 resched_task(rq->curr);
6020 }
6021 out_unlock:
6022 task_rq_unlock(rq, &flags);
6023 }
6024 EXPORT_SYMBOL(set_user_nice);
6025
6026 /*
6027 * can_nice - check if a task can reduce its nice value
6028 * @p: task
6029 * @nice: nice value
6030 */
6031 int can_nice(const struct task_struct *p, const int nice)
6032 {
6033 /* convert nice value [19,-20] to rlimit style value [1,40] */
6034 int nice_rlim = 20 - nice;
6035
6036 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6037 capable(CAP_SYS_NICE));
6038 }
6039
6040 #ifdef __ARCH_WANT_SYS_NICE
6041
6042 /*
6043 * sys_nice - change the priority of the current process.
6044 * @increment: priority increment
6045 *
6046 * sys_setpriority is a more generic, but much slower function that
6047 * does similar things.
6048 */
6049 SYSCALL_DEFINE1(nice, int, increment)
6050 {
6051 long nice, retval;
6052
6053 /*
6054 * Setpriority might change our priority at the same moment.
6055 * We don't have to worry. Conceptually one call occurs first
6056 * and we have a single winner.
6057 */
6058 if (increment < -40)
6059 increment = -40;
6060 if (increment > 40)
6061 increment = 40;
6062
6063 nice = TASK_NICE(current) + increment;
6064 if (nice < -20)
6065 nice = -20;
6066 if (nice > 19)
6067 nice = 19;
6068
6069 if (increment < 0 && !can_nice(current, nice))
6070 return -EPERM;
6071
6072 retval = security_task_setnice(current, nice);
6073 if (retval)
6074 return retval;
6075
6076 set_user_nice(current, nice);
6077 return 0;
6078 }
6079
6080 #endif
6081
6082 /**
6083 * task_prio - return the priority value of a given task.
6084 * @p: the task in question.
6085 *
6086 * This is the priority value as seen by users in /proc.
6087 * RT tasks are offset by -200. Normal tasks are centered
6088 * around 0, value goes from -16 to +15.
6089 */
6090 int task_prio(const struct task_struct *p)
6091 {
6092 return p->prio - MAX_RT_PRIO;
6093 }
6094
6095 /**
6096 * task_nice - return the nice value of a given task.
6097 * @p: the task in question.
6098 */
6099 int task_nice(const struct task_struct *p)
6100 {
6101 return TASK_NICE(p);
6102 }
6103 EXPORT_SYMBOL(task_nice);
6104
6105 /**
6106 * idle_cpu - is a given cpu idle currently?
6107 * @cpu: the processor in question.
6108 */
6109 int idle_cpu(int cpu)
6110 {
6111 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6112 }
6113
6114 /**
6115 * idle_task - return the idle task for a given cpu.
6116 * @cpu: the processor in question.
6117 */
6118 struct task_struct *idle_task(int cpu)
6119 {
6120 return cpu_rq(cpu)->idle;
6121 }
6122
6123 /**
6124 * find_process_by_pid - find a process with a matching PID value.
6125 * @pid: the pid in question.
6126 */
6127 static struct task_struct *find_process_by_pid(pid_t pid)
6128 {
6129 return pid ? find_task_by_vpid(pid) : current;
6130 }
6131
6132 /* Actually do priority change: must hold rq lock. */
6133 static void
6134 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6135 {
6136 BUG_ON(p->se.on_rq);
6137
6138 p->policy = policy;
6139 switch (p->policy) {
6140 case SCHED_NORMAL:
6141 case SCHED_BATCH:
6142 case SCHED_IDLE:
6143 p->sched_class = &fair_sched_class;
6144 break;
6145 case SCHED_FIFO:
6146 case SCHED_RR:
6147 p->sched_class = &rt_sched_class;
6148 break;
6149 }
6150
6151 p->rt_priority = prio;
6152 p->normal_prio = normal_prio(p);
6153 /* we are holding p->pi_lock already */
6154 p->prio = rt_mutex_getprio(p);
6155 set_load_weight(p);
6156 }
6157
6158 /*
6159 * check the target process has a UID that matches the current process's
6160 */
6161 static bool check_same_owner(struct task_struct *p)
6162 {
6163 const struct cred *cred = current_cred(), *pcred;
6164 bool match;
6165
6166 rcu_read_lock();
6167 pcred = __task_cred(p);
6168 match = (cred->euid == pcred->euid ||
6169 cred->euid == pcred->uid);
6170 rcu_read_unlock();
6171 return match;
6172 }
6173
6174 static int __sched_setscheduler(struct task_struct *p, int policy,
6175 struct sched_param *param, bool user)
6176 {
6177 int retval, oldprio, oldpolicy = -1, on_rq, running;
6178 unsigned long flags;
6179 const struct sched_class *prev_class = p->sched_class;
6180 struct rq *rq;
6181 int reset_on_fork;
6182
6183 /* may grab non-irq protected spin_locks */
6184 BUG_ON(in_interrupt());
6185 recheck:
6186 /* double check policy once rq lock held */
6187 if (policy < 0) {
6188 reset_on_fork = p->sched_reset_on_fork;
6189 policy = oldpolicy = p->policy;
6190 } else {
6191 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6192 policy &= ~SCHED_RESET_ON_FORK;
6193
6194 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6195 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6196 policy != SCHED_IDLE)
6197 return -EINVAL;
6198 }
6199
6200 /*
6201 * Valid priorities for SCHED_FIFO and SCHED_RR are
6202 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6203 * SCHED_BATCH and SCHED_IDLE is 0.
6204 */
6205 if (param->sched_priority < 0 ||
6206 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6207 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6208 return -EINVAL;
6209 if (rt_policy(policy) != (param->sched_priority != 0))
6210 return -EINVAL;
6211
6212 /*
6213 * Allow unprivileged RT tasks to decrease priority:
6214 */
6215 if (user && !capable(CAP_SYS_NICE)) {
6216 if (rt_policy(policy)) {
6217 unsigned long rlim_rtprio;
6218
6219 if (!lock_task_sighand(p, &flags))
6220 return -ESRCH;
6221 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6222 unlock_task_sighand(p, &flags);
6223
6224 /* can't set/change the rt policy */
6225 if (policy != p->policy && !rlim_rtprio)
6226 return -EPERM;
6227
6228 /* can't increase priority */
6229 if (param->sched_priority > p->rt_priority &&
6230 param->sched_priority > rlim_rtprio)
6231 return -EPERM;
6232 }
6233 /*
6234 * Like positive nice levels, dont allow tasks to
6235 * move out of SCHED_IDLE either:
6236 */
6237 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6238 return -EPERM;
6239
6240 /* can't change other user's priorities */
6241 if (!check_same_owner(p))
6242 return -EPERM;
6243
6244 /* Normal users shall not reset the sched_reset_on_fork flag */
6245 if (p->sched_reset_on_fork && !reset_on_fork)
6246 return -EPERM;
6247 }
6248
6249 if (user) {
6250 #ifdef CONFIG_RT_GROUP_SCHED
6251 /*
6252 * Do not allow realtime tasks into groups that have no runtime
6253 * assigned.
6254 */
6255 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6256 task_group(p)->rt_bandwidth.rt_runtime == 0)
6257 return -EPERM;
6258 #endif
6259
6260 retval = security_task_setscheduler(p, policy, param);
6261 if (retval)
6262 return retval;
6263 }
6264
6265 /*
6266 * make sure no PI-waiters arrive (or leave) while we are
6267 * changing the priority of the task:
6268 */
6269 spin_lock_irqsave(&p->pi_lock, flags);
6270 /*
6271 * To be able to change p->policy safely, the apropriate
6272 * runqueue lock must be held.
6273 */
6274 rq = __task_rq_lock(p);
6275 /* recheck policy now with rq lock held */
6276 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6277 policy = oldpolicy = -1;
6278 __task_rq_unlock(rq);
6279 spin_unlock_irqrestore(&p->pi_lock, flags);
6280 goto recheck;
6281 }
6282 update_rq_clock(rq);
6283 on_rq = p->se.on_rq;
6284 running = task_current(rq, p);
6285 if (on_rq)
6286 deactivate_task(rq, p, 0);
6287 if (running)
6288 p->sched_class->put_prev_task(rq, p);
6289
6290 p->sched_reset_on_fork = reset_on_fork;
6291
6292 oldprio = p->prio;
6293 __setscheduler(rq, p, policy, param->sched_priority);
6294
6295 if (running)
6296 p->sched_class->set_curr_task(rq);
6297 if (on_rq) {
6298 activate_task(rq, p, 0);
6299
6300 check_class_changed(rq, p, prev_class, oldprio, running);
6301 }
6302 __task_rq_unlock(rq);
6303 spin_unlock_irqrestore(&p->pi_lock, flags);
6304
6305 rt_mutex_adjust_pi(p);
6306
6307 return 0;
6308 }
6309
6310 /**
6311 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6312 * @p: the task in question.
6313 * @policy: new policy.
6314 * @param: structure containing the new RT priority.
6315 *
6316 * NOTE that the task may be already dead.
6317 */
6318 int sched_setscheduler(struct task_struct *p, int policy,
6319 struct sched_param *param)
6320 {
6321 return __sched_setscheduler(p, policy, param, true);
6322 }
6323 EXPORT_SYMBOL_GPL(sched_setscheduler);
6324
6325 /**
6326 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6327 * @p: the task in question.
6328 * @policy: new policy.
6329 * @param: structure containing the new RT priority.
6330 *
6331 * Just like sched_setscheduler, only don't bother checking if the
6332 * current context has permission. For example, this is needed in
6333 * stop_machine(): we create temporary high priority worker threads,
6334 * but our caller might not have that capability.
6335 */
6336 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6337 struct sched_param *param)
6338 {
6339 return __sched_setscheduler(p, policy, param, false);
6340 }
6341
6342 static int
6343 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6344 {
6345 struct sched_param lparam;
6346 struct task_struct *p;
6347 int retval;
6348
6349 if (!param || pid < 0)
6350 return -EINVAL;
6351 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6352 return -EFAULT;
6353
6354 rcu_read_lock();
6355 retval = -ESRCH;
6356 p = find_process_by_pid(pid);
6357 if (p != NULL)
6358 retval = sched_setscheduler(p, policy, &lparam);
6359 rcu_read_unlock();
6360
6361 return retval;
6362 }
6363
6364 /**
6365 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6366 * @pid: the pid in question.
6367 * @policy: new policy.
6368 * @param: structure containing the new RT priority.
6369 */
6370 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6371 struct sched_param __user *, param)
6372 {
6373 /* negative values for policy are not valid */
6374 if (policy < 0)
6375 return -EINVAL;
6376
6377 return do_sched_setscheduler(pid, policy, param);
6378 }
6379
6380 /**
6381 * sys_sched_setparam - set/change the RT priority of a thread
6382 * @pid: the pid in question.
6383 * @param: structure containing the new RT priority.
6384 */
6385 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6386 {
6387 return do_sched_setscheduler(pid, -1, param);
6388 }
6389
6390 /**
6391 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6392 * @pid: the pid in question.
6393 */
6394 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6395 {
6396 struct task_struct *p;
6397 int retval;
6398
6399 if (pid < 0)
6400 return -EINVAL;
6401
6402 retval = -ESRCH;
6403 read_lock(&tasklist_lock);
6404 p = find_process_by_pid(pid);
6405 if (p) {
6406 retval = security_task_getscheduler(p);
6407 if (!retval)
6408 retval = p->policy
6409 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6410 }
6411 read_unlock(&tasklist_lock);
6412 return retval;
6413 }
6414
6415 /**
6416 * sys_sched_getparam - get the RT priority of a thread
6417 * @pid: the pid in question.
6418 * @param: structure containing the RT priority.
6419 */
6420 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6421 {
6422 struct sched_param lp;
6423 struct task_struct *p;
6424 int retval;
6425
6426 if (!param || pid < 0)
6427 return -EINVAL;
6428
6429 read_lock(&tasklist_lock);
6430 p = find_process_by_pid(pid);
6431 retval = -ESRCH;
6432 if (!p)
6433 goto out_unlock;
6434
6435 retval = security_task_getscheduler(p);
6436 if (retval)
6437 goto out_unlock;
6438
6439 lp.sched_priority = p->rt_priority;
6440 read_unlock(&tasklist_lock);
6441
6442 /*
6443 * This one might sleep, we cannot do it with a spinlock held ...
6444 */
6445 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6446
6447 return retval;
6448
6449 out_unlock:
6450 read_unlock(&tasklist_lock);
6451 return retval;
6452 }
6453
6454 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6455 {
6456 cpumask_var_t cpus_allowed, new_mask;
6457 struct task_struct *p;
6458 int retval;
6459
6460 get_online_cpus();
6461 read_lock(&tasklist_lock);
6462
6463 p = find_process_by_pid(pid);
6464 if (!p) {
6465 read_unlock(&tasklist_lock);
6466 put_online_cpus();
6467 return -ESRCH;
6468 }
6469
6470 /*
6471 * It is not safe to call set_cpus_allowed with the
6472 * tasklist_lock held. We will bump the task_struct's
6473 * usage count and then drop tasklist_lock.
6474 */
6475 get_task_struct(p);
6476 read_unlock(&tasklist_lock);
6477
6478 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6479 retval = -ENOMEM;
6480 goto out_put_task;
6481 }
6482 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6483 retval = -ENOMEM;
6484 goto out_free_cpus_allowed;
6485 }
6486 retval = -EPERM;
6487 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6488 goto out_unlock;
6489
6490 retval = security_task_setscheduler(p, 0, NULL);
6491 if (retval)
6492 goto out_unlock;
6493
6494 cpuset_cpus_allowed(p, cpus_allowed);
6495 cpumask_and(new_mask, in_mask, cpus_allowed);
6496 again:
6497 retval = set_cpus_allowed_ptr(p, new_mask);
6498
6499 if (!retval) {
6500 cpuset_cpus_allowed(p, cpus_allowed);
6501 if (!cpumask_subset(new_mask, cpus_allowed)) {
6502 /*
6503 * We must have raced with a concurrent cpuset
6504 * update. Just reset the cpus_allowed to the
6505 * cpuset's cpus_allowed
6506 */
6507 cpumask_copy(new_mask, cpus_allowed);
6508 goto again;
6509 }
6510 }
6511 out_unlock:
6512 free_cpumask_var(new_mask);
6513 out_free_cpus_allowed:
6514 free_cpumask_var(cpus_allowed);
6515 out_put_task:
6516 put_task_struct(p);
6517 put_online_cpus();
6518 return retval;
6519 }
6520
6521 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6522 struct cpumask *new_mask)
6523 {
6524 if (len < cpumask_size())
6525 cpumask_clear(new_mask);
6526 else if (len > cpumask_size())
6527 len = cpumask_size();
6528
6529 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6530 }
6531
6532 /**
6533 * sys_sched_setaffinity - set the cpu affinity of a process
6534 * @pid: pid of the process
6535 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6536 * @user_mask_ptr: user-space pointer to the new cpu mask
6537 */
6538 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6539 unsigned long __user *, user_mask_ptr)
6540 {
6541 cpumask_var_t new_mask;
6542 int retval;
6543
6544 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6545 return -ENOMEM;
6546
6547 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6548 if (retval == 0)
6549 retval = sched_setaffinity(pid, new_mask);
6550 free_cpumask_var(new_mask);
6551 return retval;
6552 }
6553
6554 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6555 {
6556 struct task_struct *p;
6557 int retval;
6558
6559 get_online_cpus();
6560 read_lock(&tasklist_lock);
6561
6562 retval = -ESRCH;
6563 p = find_process_by_pid(pid);
6564 if (!p)
6565 goto out_unlock;
6566
6567 retval = security_task_getscheduler(p);
6568 if (retval)
6569 goto out_unlock;
6570
6571 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6572
6573 out_unlock:
6574 read_unlock(&tasklist_lock);
6575 put_online_cpus();
6576
6577 return retval;
6578 }
6579
6580 /**
6581 * sys_sched_getaffinity - get the cpu affinity of a process
6582 * @pid: pid of the process
6583 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6584 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6585 */
6586 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6587 unsigned long __user *, user_mask_ptr)
6588 {
6589 int ret;
6590 cpumask_var_t mask;
6591
6592 if (len < cpumask_size())
6593 return -EINVAL;
6594
6595 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6596 return -ENOMEM;
6597
6598 ret = sched_getaffinity(pid, mask);
6599 if (ret == 0) {
6600 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6601 ret = -EFAULT;
6602 else
6603 ret = cpumask_size();
6604 }
6605 free_cpumask_var(mask);
6606
6607 return ret;
6608 }
6609
6610 /**
6611 * sys_sched_yield - yield the current processor to other threads.
6612 *
6613 * This function yields the current CPU to other tasks. If there are no
6614 * other threads running on this CPU then this function will return.
6615 */
6616 SYSCALL_DEFINE0(sched_yield)
6617 {
6618 struct rq *rq = this_rq_lock();
6619
6620 schedstat_inc(rq, yld_count);
6621 current->sched_class->yield_task(rq);
6622
6623 /*
6624 * Since we are going to call schedule() anyway, there's
6625 * no need to preempt or enable interrupts:
6626 */
6627 __release(rq->lock);
6628 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6629 _raw_spin_unlock(&rq->lock);
6630 preempt_enable_no_resched();
6631
6632 schedule();
6633
6634 return 0;
6635 }
6636
6637 static inline int should_resched(void)
6638 {
6639 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6640 }
6641
6642 static void __cond_resched(void)
6643 {
6644 add_preempt_count(PREEMPT_ACTIVE);
6645 schedule();
6646 sub_preempt_count(PREEMPT_ACTIVE);
6647 }
6648
6649 int __sched _cond_resched(void)
6650 {
6651 if (should_resched()) {
6652 __cond_resched();
6653 return 1;
6654 }
6655 return 0;
6656 }
6657 EXPORT_SYMBOL(_cond_resched);
6658
6659 /*
6660 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6661 * call schedule, and on return reacquire the lock.
6662 *
6663 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6664 * operations here to prevent schedule() from being called twice (once via
6665 * spin_unlock(), once by hand).
6666 */
6667 int __cond_resched_lock(spinlock_t *lock)
6668 {
6669 int resched = should_resched();
6670 int ret = 0;
6671
6672 lockdep_assert_held(lock);
6673
6674 if (spin_needbreak(lock) || resched) {
6675 spin_unlock(lock);
6676 if (resched)
6677 __cond_resched();
6678 else
6679 cpu_relax();
6680 ret = 1;
6681 spin_lock(lock);
6682 }
6683 return ret;
6684 }
6685 EXPORT_SYMBOL(__cond_resched_lock);
6686
6687 int __sched __cond_resched_softirq(void)
6688 {
6689 BUG_ON(!in_softirq());
6690
6691 if (should_resched()) {
6692 local_bh_enable();
6693 __cond_resched();
6694 local_bh_disable();
6695 return 1;
6696 }
6697 return 0;
6698 }
6699 EXPORT_SYMBOL(__cond_resched_softirq);
6700
6701 /**
6702 * yield - yield the current processor to other threads.
6703 *
6704 * This is a shortcut for kernel-space yielding - it marks the
6705 * thread runnable and calls sys_sched_yield().
6706 */
6707 void __sched yield(void)
6708 {
6709 set_current_state(TASK_RUNNING);
6710 sys_sched_yield();
6711 }
6712 EXPORT_SYMBOL(yield);
6713
6714 /*
6715 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6716 * that process accounting knows that this is a task in IO wait state.
6717 *
6718 * But don't do that if it is a deliberate, throttling IO wait (this task
6719 * has set its backing_dev_info: the queue against which it should throttle)
6720 */
6721 void __sched io_schedule(void)
6722 {
6723 struct rq *rq = raw_rq();
6724
6725 delayacct_blkio_start();
6726 atomic_inc(&rq->nr_iowait);
6727 current->in_iowait = 1;
6728 schedule();
6729 current->in_iowait = 0;
6730 atomic_dec(&rq->nr_iowait);
6731 delayacct_blkio_end();
6732 }
6733 EXPORT_SYMBOL(io_schedule);
6734
6735 long __sched io_schedule_timeout(long timeout)
6736 {
6737 struct rq *rq = raw_rq();
6738 long ret;
6739
6740 delayacct_blkio_start();
6741 atomic_inc(&rq->nr_iowait);
6742 current->in_iowait = 1;
6743 ret = schedule_timeout(timeout);
6744 current->in_iowait = 0;
6745 atomic_dec(&rq->nr_iowait);
6746 delayacct_blkio_end();
6747 return ret;
6748 }
6749
6750 /**
6751 * sys_sched_get_priority_max - return maximum RT priority.
6752 * @policy: scheduling class.
6753 *
6754 * this syscall returns the maximum rt_priority that can be used
6755 * by a given scheduling class.
6756 */
6757 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6758 {
6759 int ret = -EINVAL;
6760
6761 switch (policy) {
6762 case SCHED_FIFO:
6763 case SCHED_RR:
6764 ret = MAX_USER_RT_PRIO-1;
6765 break;
6766 case SCHED_NORMAL:
6767 case SCHED_BATCH:
6768 case SCHED_IDLE:
6769 ret = 0;
6770 break;
6771 }
6772 return ret;
6773 }
6774
6775 /**
6776 * sys_sched_get_priority_min - return minimum RT priority.
6777 * @policy: scheduling class.
6778 *
6779 * this syscall returns the minimum rt_priority that can be used
6780 * by a given scheduling class.
6781 */
6782 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6783 {
6784 int ret = -EINVAL;
6785
6786 switch (policy) {
6787 case SCHED_FIFO:
6788 case SCHED_RR:
6789 ret = 1;
6790 break;
6791 case SCHED_NORMAL:
6792 case SCHED_BATCH:
6793 case SCHED_IDLE:
6794 ret = 0;
6795 }
6796 return ret;
6797 }
6798
6799 /**
6800 * sys_sched_rr_get_interval - return the default timeslice of a process.
6801 * @pid: pid of the process.
6802 * @interval: userspace pointer to the timeslice value.
6803 *
6804 * this syscall writes the default timeslice value of a given process
6805 * into the user-space timespec buffer. A value of '0' means infinity.
6806 */
6807 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6808 struct timespec __user *, interval)
6809 {
6810 struct task_struct *p;
6811 unsigned int time_slice;
6812 int retval;
6813 struct timespec t;
6814
6815 if (pid < 0)
6816 return -EINVAL;
6817
6818 retval = -ESRCH;
6819 read_lock(&tasklist_lock);
6820 p = find_process_by_pid(pid);
6821 if (!p)
6822 goto out_unlock;
6823
6824 retval = security_task_getscheduler(p);
6825 if (retval)
6826 goto out_unlock;
6827
6828 /*
6829 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6830 * tasks that are on an otherwise idle runqueue:
6831 */
6832 time_slice = 0;
6833 if (p->policy == SCHED_RR) {
6834 time_slice = DEF_TIMESLICE;
6835 } else if (p->policy != SCHED_FIFO) {
6836 struct sched_entity *se = &p->se;
6837 unsigned long flags;
6838 struct rq *rq;
6839
6840 rq = task_rq_lock(p, &flags);
6841 if (rq->cfs.load.weight)
6842 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6843 task_rq_unlock(rq, &flags);
6844 }
6845 read_unlock(&tasklist_lock);
6846 jiffies_to_timespec(time_slice, &t);
6847 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6848 return retval;
6849
6850 out_unlock:
6851 read_unlock(&tasklist_lock);
6852 return retval;
6853 }
6854
6855 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6856
6857 void sched_show_task(struct task_struct *p)
6858 {
6859 unsigned long free = 0;
6860 unsigned state;
6861
6862 state = p->state ? __ffs(p->state) + 1 : 0;
6863 printk(KERN_INFO "%-13.13s %c", p->comm,
6864 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6865 #if BITS_PER_LONG == 32
6866 if (state == TASK_RUNNING)
6867 printk(KERN_CONT " running ");
6868 else
6869 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6870 #else
6871 if (state == TASK_RUNNING)
6872 printk(KERN_CONT " running task ");
6873 else
6874 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6875 #endif
6876 #ifdef CONFIG_DEBUG_STACK_USAGE
6877 free = stack_not_used(p);
6878 #endif
6879 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6880 task_pid_nr(p), task_pid_nr(p->real_parent),
6881 (unsigned long)task_thread_info(p)->flags);
6882
6883 show_stack(p, NULL);
6884 }
6885
6886 void show_state_filter(unsigned long state_filter)
6887 {
6888 struct task_struct *g, *p;
6889
6890 #if BITS_PER_LONG == 32
6891 printk(KERN_INFO
6892 " task PC stack pid father\n");
6893 #else
6894 printk(KERN_INFO
6895 " task PC stack pid father\n");
6896 #endif
6897 read_lock(&tasklist_lock);
6898 do_each_thread(g, p) {
6899 /*
6900 * reset the NMI-timeout, listing all files on a slow
6901 * console might take alot of time:
6902 */
6903 touch_nmi_watchdog();
6904 if (!state_filter || (p->state & state_filter))
6905 sched_show_task(p);
6906 } while_each_thread(g, p);
6907
6908 touch_all_softlockup_watchdogs();
6909
6910 #ifdef CONFIG_SCHED_DEBUG
6911 sysrq_sched_debug_show();
6912 #endif
6913 read_unlock(&tasklist_lock);
6914 /*
6915 * Only show locks if all tasks are dumped:
6916 */
6917 if (state_filter == -1)
6918 debug_show_all_locks();
6919 }
6920
6921 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6922 {
6923 idle->sched_class = &idle_sched_class;
6924 }
6925
6926 /**
6927 * init_idle - set up an idle thread for a given CPU
6928 * @idle: task in question
6929 * @cpu: cpu the idle task belongs to
6930 *
6931 * NOTE: this function does not set the idle thread's NEED_RESCHED
6932 * flag, to make booting more robust.
6933 */
6934 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6935 {
6936 struct rq *rq = cpu_rq(cpu);
6937 unsigned long flags;
6938
6939 spin_lock_irqsave(&rq->lock, flags);
6940
6941 __sched_fork(idle);
6942 idle->se.exec_start = sched_clock();
6943
6944 idle->prio = idle->normal_prio = MAX_PRIO;
6945 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6946 __set_task_cpu(idle, cpu);
6947
6948 rq->curr = rq->idle = idle;
6949 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6950 idle->oncpu = 1;
6951 #endif
6952 spin_unlock_irqrestore(&rq->lock, flags);
6953
6954 /* Set the preempt count _outside_ the spinlocks! */
6955 #if defined(CONFIG_PREEMPT)
6956 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6957 #else
6958 task_thread_info(idle)->preempt_count = 0;
6959 #endif
6960 /*
6961 * The idle tasks have their own, simple scheduling class:
6962 */
6963 idle->sched_class = &idle_sched_class;
6964 ftrace_graph_init_task(idle);
6965 }
6966
6967 /*
6968 * In a system that switches off the HZ timer nohz_cpu_mask
6969 * indicates which cpus entered this state. This is used
6970 * in the rcu update to wait only for active cpus. For system
6971 * which do not switch off the HZ timer nohz_cpu_mask should
6972 * always be CPU_BITS_NONE.
6973 */
6974 cpumask_var_t nohz_cpu_mask;
6975
6976 /*
6977 * Increase the granularity value when there are more CPUs,
6978 * because with more CPUs the 'effective latency' as visible
6979 * to users decreases. But the relationship is not linear,
6980 * so pick a second-best guess by going with the log2 of the
6981 * number of CPUs.
6982 *
6983 * This idea comes from the SD scheduler of Con Kolivas:
6984 */
6985 static inline void sched_init_granularity(void)
6986 {
6987 unsigned int factor = 1 + ilog2(num_online_cpus());
6988 const unsigned long limit = 200000000;
6989
6990 sysctl_sched_min_granularity *= factor;
6991 if (sysctl_sched_min_granularity > limit)
6992 sysctl_sched_min_granularity = limit;
6993
6994 sysctl_sched_latency *= factor;
6995 if (sysctl_sched_latency > limit)
6996 sysctl_sched_latency = limit;
6997
6998 sysctl_sched_wakeup_granularity *= factor;
6999
7000 sysctl_sched_shares_ratelimit *= factor;
7001 }
7002
7003 #ifdef CONFIG_SMP
7004 /*
7005 * This is how migration works:
7006 *
7007 * 1) we queue a struct migration_req structure in the source CPU's
7008 * runqueue and wake up that CPU's migration thread.
7009 * 2) we down() the locked semaphore => thread blocks.
7010 * 3) migration thread wakes up (implicitly it forces the migrated
7011 * thread off the CPU)
7012 * 4) it gets the migration request and checks whether the migrated
7013 * task is still in the wrong runqueue.
7014 * 5) if it's in the wrong runqueue then the migration thread removes
7015 * it and puts it into the right queue.
7016 * 6) migration thread up()s the semaphore.
7017 * 7) we wake up and the migration is done.
7018 */
7019
7020 /*
7021 * Change a given task's CPU affinity. Migrate the thread to a
7022 * proper CPU and schedule it away if the CPU it's executing on
7023 * is removed from the allowed bitmask.
7024 *
7025 * NOTE: the caller must have a valid reference to the task, the
7026 * task must not exit() & deallocate itself prematurely. The
7027 * call is not atomic; no spinlocks may be held.
7028 */
7029 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7030 {
7031 struct migration_req req;
7032 unsigned long flags;
7033 struct rq *rq;
7034 int ret = 0;
7035
7036 rq = task_rq_lock(p, &flags);
7037 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7038 ret = -EINVAL;
7039 goto out;
7040 }
7041
7042 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7043 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7044 ret = -EINVAL;
7045 goto out;
7046 }
7047
7048 if (p->sched_class->set_cpus_allowed)
7049 p->sched_class->set_cpus_allowed(p, new_mask);
7050 else {
7051 cpumask_copy(&p->cpus_allowed, new_mask);
7052 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7053 }
7054
7055 /* Can the task run on the task's current CPU? If so, we're done */
7056 if (cpumask_test_cpu(task_cpu(p), new_mask))
7057 goto out;
7058
7059 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7060 /* Need help from migration thread: drop lock and wait. */
7061 struct task_struct *mt = rq->migration_thread;
7062
7063 get_task_struct(mt);
7064 task_rq_unlock(rq, &flags);
7065 wake_up_process(rq->migration_thread);
7066 put_task_struct(mt);
7067 wait_for_completion(&req.done);
7068 tlb_migrate_finish(p->mm);
7069 return 0;
7070 }
7071 out:
7072 task_rq_unlock(rq, &flags);
7073
7074 return ret;
7075 }
7076 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7077
7078 /*
7079 * Move (not current) task off this cpu, onto dest cpu. We're doing
7080 * this because either it can't run here any more (set_cpus_allowed()
7081 * away from this CPU, or CPU going down), or because we're
7082 * attempting to rebalance this task on exec (sched_exec).
7083 *
7084 * So we race with normal scheduler movements, but that's OK, as long
7085 * as the task is no longer on this CPU.
7086 *
7087 * Returns non-zero if task was successfully migrated.
7088 */
7089 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7090 {
7091 struct rq *rq_dest, *rq_src;
7092 int ret = 0, on_rq;
7093
7094 if (unlikely(!cpu_active(dest_cpu)))
7095 return ret;
7096
7097 rq_src = cpu_rq(src_cpu);
7098 rq_dest = cpu_rq(dest_cpu);
7099
7100 double_rq_lock(rq_src, rq_dest);
7101 /* Already moved. */
7102 if (task_cpu(p) != src_cpu)
7103 goto done;
7104 /* Affinity changed (again). */
7105 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7106 goto fail;
7107
7108 on_rq = p->se.on_rq;
7109 if (on_rq)
7110 deactivate_task(rq_src, p, 0);
7111
7112 set_task_cpu(p, dest_cpu);
7113 if (on_rq) {
7114 activate_task(rq_dest, p, 0);
7115 check_preempt_curr(rq_dest, p, 0);
7116 }
7117 done:
7118 ret = 1;
7119 fail:
7120 double_rq_unlock(rq_src, rq_dest);
7121 return ret;
7122 }
7123
7124 #define RCU_MIGRATION_IDLE 0
7125 #define RCU_MIGRATION_NEED_QS 1
7126 #define RCU_MIGRATION_GOT_QS 2
7127 #define RCU_MIGRATION_MUST_SYNC 3
7128
7129 /*
7130 * migration_thread - this is a highprio system thread that performs
7131 * thread migration by bumping thread off CPU then 'pushing' onto
7132 * another runqueue.
7133 */
7134 static int migration_thread(void *data)
7135 {
7136 int badcpu;
7137 int cpu = (long)data;
7138 struct rq *rq;
7139
7140 rq = cpu_rq(cpu);
7141 BUG_ON(rq->migration_thread != current);
7142
7143 set_current_state(TASK_INTERRUPTIBLE);
7144 while (!kthread_should_stop()) {
7145 struct migration_req *req;
7146 struct list_head *head;
7147
7148 spin_lock_irq(&rq->lock);
7149
7150 if (cpu_is_offline(cpu)) {
7151 spin_unlock_irq(&rq->lock);
7152 break;
7153 }
7154
7155 if (rq->active_balance) {
7156 active_load_balance(rq, cpu);
7157 rq->active_balance = 0;
7158 }
7159
7160 head = &rq->migration_queue;
7161
7162 if (list_empty(head)) {
7163 spin_unlock_irq(&rq->lock);
7164 schedule();
7165 set_current_state(TASK_INTERRUPTIBLE);
7166 continue;
7167 }
7168 req = list_entry(head->next, struct migration_req, list);
7169 list_del_init(head->next);
7170
7171 if (req->task != NULL) {
7172 spin_unlock(&rq->lock);
7173 __migrate_task(req->task, cpu, req->dest_cpu);
7174 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7175 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7176 spin_unlock(&rq->lock);
7177 } else {
7178 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7179 spin_unlock(&rq->lock);
7180 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7181 }
7182 local_irq_enable();
7183
7184 complete(&req->done);
7185 }
7186 __set_current_state(TASK_RUNNING);
7187
7188 return 0;
7189 }
7190
7191 #ifdef CONFIG_HOTPLUG_CPU
7192
7193 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7194 {
7195 int ret;
7196
7197 local_irq_disable();
7198 ret = __migrate_task(p, src_cpu, dest_cpu);
7199 local_irq_enable();
7200 return ret;
7201 }
7202
7203 /*
7204 * Figure out where task on dead CPU should go, use force if necessary.
7205 */
7206 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7207 {
7208 int dest_cpu;
7209 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7210
7211 again:
7212 /* Look for allowed, online CPU in same node. */
7213 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7214 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7215 goto move;
7216
7217 /* Any allowed, online CPU? */
7218 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7219 if (dest_cpu < nr_cpu_ids)
7220 goto move;
7221
7222 /* No more Mr. Nice Guy. */
7223 if (dest_cpu >= nr_cpu_ids) {
7224 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7225 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7226
7227 /*
7228 * Don't tell them about moving exiting tasks or
7229 * kernel threads (both mm NULL), since they never
7230 * leave kernel.
7231 */
7232 if (p->mm && printk_ratelimit()) {
7233 printk(KERN_INFO "process %d (%s) no "
7234 "longer affine to cpu%d\n",
7235 task_pid_nr(p), p->comm, dead_cpu);
7236 }
7237 }
7238
7239 move:
7240 /* It can have affinity changed while we were choosing. */
7241 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7242 goto again;
7243 }
7244
7245 /*
7246 * While a dead CPU has no uninterruptible tasks queued at this point,
7247 * it might still have a nonzero ->nr_uninterruptible counter, because
7248 * for performance reasons the counter is not stricly tracking tasks to
7249 * their home CPUs. So we just add the counter to another CPU's counter,
7250 * to keep the global sum constant after CPU-down:
7251 */
7252 static void migrate_nr_uninterruptible(struct rq *rq_src)
7253 {
7254 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7255 unsigned long flags;
7256
7257 local_irq_save(flags);
7258 double_rq_lock(rq_src, rq_dest);
7259 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7260 rq_src->nr_uninterruptible = 0;
7261 double_rq_unlock(rq_src, rq_dest);
7262 local_irq_restore(flags);
7263 }
7264
7265 /* Run through task list and migrate tasks from the dead cpu. */
7266 static void migrate_live_tasks(int src_cpu)
7267 {
7268 struct task_struct *p, *t;
7269
7270 read_lock(&tasklist_lock);
7271
7272 do_each_thread(t, p) {
7273 if (p == current)
7274 continue;
7275
7276 if (task_cpu(p) == src_cpu)
7277 move_task_off_dead_cpu(src_cpu, p);
7278 } while_each_thread(t, p);
7279
7280 read_unlock(&tasklist_lock);
7281 }
7282
7283 /*
7284 * Schedules idle task to be the next runnable task on current CPU.
7285 * It does so by boosting its priority to highest possible.
7286 * Used by CPU offline code.
7287 */
7288 void sched_idle_next(void)
7289 {
7290 int this_cpu = smp_processor_id();
7291 struct rq *rq = cpu_rq(this_cpu);
7292 struct task_struct *p = rq->idle;
7293 unsigned long flags;
7294
7295 /* cpu has to be offline */
7296 BUG_ON(cpu_online(this_cpu));
7297
7298 /*
7299 * Strictly not necessary since rest of the CPUs are stopped by now
7300 * and interrupts disabled on the current cpu.
7301 */
7302 spin_lock_irqsave(&rq->lock, flags);
7303
7304 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7305
7306 update_rq_clock(rq);
7307 activate_task(rq, p, 0);
7308
7309 spin_unlock_irqrestore(&rq->lock, flags);
7310 }
7311
7312 /*
7313 * Ensures that the idle task is using init_mm right before its cpu goes
7314 * offline.
7315 */
7316 void idle_task_exit(void)
7317 {
7318 struct mm_struct *mm = current->active_mm;
7319
7320 BUG_ON(cpu_online(smp_processor_id()));
7321
7322 if (mm != &init_mm)
7323 switch_mm(mm, &init_mm, current);
7324 mmdrop(mm);
7325 }
7326
7327 /* called under rq->lock with disabled interrupts */
7328 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7329 {
7330 struct rq *rq = cpu_rq(dead_cpu);
7331
7332 /* Must be exiting, otherwise would be on tasklist. */
7333 BUG_ON(!p->exit_state);
7334
7335 /* Cannot have done final schedule yet: would have vanished. */
7336 BUG_ON(p->state == TASK_DEAD);
7337
7338 get_task_struct(p);
7339
7340 /*
7341 * Drop lock around migration; if someone else moves it,
7342 * that's OK. No task can be added to this CPU, so iteration is
7343 * fine.
7344 */
7345 spin_unlock_irq(&rq->lock);
7346 move_task_off_dead_cpu(dead_cpu, p);
7347 spin_lock_irq(&rq->lock);
7348
7349 put_task_struct(p);
7350 }
7351
7352 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7353 static void migrate_dead_tasks(unsigned int dead_cpu)
7354 {
7355 struct rq *rq = cpu_rq(dead_cpu);
7356 struct task_struct *next;
7357
7358 for ( ; ; ) {
7359 if (!rq->nr_running)
7360 break;
7361 update_rq_clock(rq);
7362 next = pick_next_task(rq);
7363 if (!next)
7364 break;
7365 next->sched_class->put_prev_task(rq, next);
7366 migrate_dead(dead_cpu, next);
7367
7368 }
7369 }
7370
7371 /*
7372 * remove the tasks which were accounted by rq from calc_load_tasks.
7373 */
7374 static void calc_global_load_remove(struct rq *rq)
7375 {
7376 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7377 rq->calc_load_active = 0;
7378 }
7379 #endif /* CONFIG_HOTPLUG_CPU */
7380
7381 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7382
7383 static struct ctl_table sd_ctl_dir[] = {
7384 {
7385 .procname = "sched_domain",
7386 .mode = 0555,
7387 },
7388 {0, },
7389 };
7390
7391 static struct ctl_table sd_ctl_root[] = {
7392 {
7393 .ctl_name = CTL_KERN,
7394 .procname = "kernel",
7395 .mode = 0555,
7396 .child = sd_ctl_dir,
7397 },
7398 {0, },
7399 };
7400
7401 static struct ctl_table *sd_alloc_ctl_entry(int n)
7402 {
7403 struct ctl_table *entry =
7404 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7405
7406 return entry;
7407 }
7408
7409 static void sd_free_ctl_entry(struct ctl_table **tablep)
7410 {
7411 struct ctl_table *entry;
7412
7413 /*
7414 * In the intermediate directories, both the child directory and
7415 * procname are dynamically allocated and could fail but the mode
7416 * will always be set. In the lowest directory the names are
7417 * static strings and all have proc handlers.
7418 */
7419 for (entry = *tablep; entry->mode; entry++) {
7420 if (entry->child)
7421 sd_free_ctl_entry(&entry->child);
7422 if (entry->proc_handler == NULL)
7423 kfree(entry->procname);
7424 }
7425
7426 kfree(*tablep);
7427 *tablep = NULL;
7428 }
7429
7430 static void
7431 set_table_entry(struct ctl_table *entry,
7432 const char *procname, void *data, int maxlen,
7433 mode_t mode, proc_handler *proc_handler)
7434 {
7435 entry->procname = procname;
7436 entry->data = data;
7437 entry->maxlen = maxlen;
7438 entry->mode = mode;
7439 entry->proc_handler = proc_handler;
7440 }
7441
7442 static struct ctl_table *
7443 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7444 {
7445 struct ctl_table *table = sd_alloc_ctl_entry(13);
7446
7447 if (table == NULL)
7448 return NULL;
7449
7450 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7451 sizeof(long), 0644, proc_doulongvec_minmax);
7452 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7453 sizeof(long), 0644, proc_doulongvec_minmax);
7454 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7455 sizeof(int), 0644, proc_dointvec_minmax);
7456 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7457 sizeof(int), 0644, proc_dointvec_minmax);
7458 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7459 sizeof(int), 0644, proc_dointvec_minmax);
7460 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7461 sizeof(int), 0644, proc_dointvec_minmax);
7462 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7463 sizeof(int), 0644, proc_dointvec_minmax);
7464 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7465 sizeof(int), 0644, proc_dointvec_minmax);
7466 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7467 sizeof(int), 0644, proc_dointvec_minmax);
7468 set_table_entry(&table[9], "cache_nice_tries",
7469 &sd->cache_nice_tries,
7470 sizeof(int), 0644, proc_dointvec_minmax);
7471 set_table_entry(&table[10], "flags", &sd->flags,
7472 sizeof(int), 0644, proc_dointvec_minmax);
7473 set_table_entry(&table[11], "name", sd->name,
7474 CORENAME_MAX_SIZE, 0444, proc_dostring);
7475 /* &table[12] is terminator */
7476
7477 return table;
7478 }
7479
7480 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7481 {
7482 struct ctl_table *entry, *table;
7483 struct sched_domain *sd;
7484 int domain_num = 0, i;
7485 char buf[32];
7486
7487 for_each_domain(cpu, sd)
7488 domain_num++;
7489 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7490 if (table == NULL)
7491 return NULL;
7492
7493 i = 0;
7494 for_each_domain(cpu, sd) {
7495 snprintf(buf, 32, "domain%d", i);
7496 entry->procname = kstrdup(buf, GFP_KERNEL);
7497 entry->mode = 0555;
7498 entry->child = sd_alloc_ctl_domain_table(sd);
7499 entry++;
7500 i++;
7501 }
7502 return table;
7503 }
7504
7505 static struct ctl_table_header *sd_sysctl_header;
7506 static void register_sched_domain_sysctl(void)
7507 {
7508 int i, cpu_num = num_online_cpus();
7509 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7510 char buf[32];
7511
7512 WARN_ON(sd_ctl_dir[0].child);
7513 sd_ctl_dir[0].child = entry;
7514
7515 if (entry == NULL)
7516 return;
7517
7518 for_each_online_cpu(i) {
7519 snprintf(buf, 32, "cpu%d", i);
7520 entry->procname = kstrdup(buf, GFP_KERNEL);
7521 entry->mode = 0555;
7522 entry->child = sd_alloc_ctl_cpu_table(i);
7523 entry++;
7524 }
7525
7526 WARN_ON(sd_sysctl_header);
7527 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7528 }
7529
7530 /* may be called multiple times per register */
7531 static void unregister_sched_domain_sysctl(void)
7532 {
7533 if (sd_sysctl_header)
7534 unregister_sysctl_table(sd_sysctl_header);
7535 sd_sysctl_header = NULL;
7536 if (sd_ctl_dir[0].child)
7537 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7538 }
7539 #else
7540 static void register_sched_domain_sysctl(void)
7541 {
7542 }
7543 static void unregister_sched_domain_sysctl(void)
7544 {
7545 }
7546 #endif
7547
7548 static void set_rq_online(struct rq *rq)
7549 {
7550 if (!rq->online) {
7551 const struct sched_class *class;
7552
7553 cpumask_set_cpu(rq->cpu, rq->rd->online);
7554 rq->online = 1;
7555
7556 for_each_class(class) {
7557 if (class->rq_online)
7558 class->rq_online(rq);
7559 }
7560 }
7561 }
7562
7563 static void set_rq_offline(struct rq *rq)
7564 {
7565 if (rq->online) {
7566 const struct sched_class *class;
7567
7568 for_each_class(class) {
7569 if (class->rq_offline)
7570 class->rq_offline(rq);
7571 }
7572
7573 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7574 rq->online = 0;
7575 }
7576 }
7577
7578 /*
7579 * migration_call - callback that gets triggered when a CPU is added.
7580 * Here we can start up the necessary migration thread for the new CPU.
7581 */
7582 static int __cpuinit
7583 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7584 {
7585 struct task_struct *p;
7586 int cpu = (long)hcpu;
7587 unsigned long flags;
7588 struct rq *rq;
7589
7590 switch (action) {
7591
7592 case CPU_UP_PREPARE:
7593 case CPU_UP_PREPARE_FROZEN:
7594 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7595 if (IS_ERR(p))
7596 return NOTIFY_BAD;
7597 kthread_bind(p, cpu);
7598 /* Must be high prio: stop_machine expects to yield to it. */
7599 rq = task_rq_lock(p, &flags);
7600 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7601 task_rq_unlock(rq, &flags);
7602 get_task_struct(p);
7603 cpu_rq(cpu)->migration_thread = p;
7604 rq->calc_load_update = calc_load_update;
7605 break;
7606
7607 case CPU_ONLINE:
7608 case CPU_ONLINE_FROZEN:
7609 /* Strictly unnecessary, as first user will wake it. */
7610 wake_up_process(cpu_rq(cpu)->migration_thread);
7611
7612 /* Update our root-domain */
7613 rq = cpu_rq(cpu);
7614 spin_lock_irqsave(&rq->lock, flags);
7615 if (rq->rd) {
7616 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7617
7618 set_rq_online(rq);
7619 }
7620 spin_unlock_irqrestore(&rq->lock, flags);
7621 break;
7622
7623 #ifdef CONFIG_HOTPLUG_CPU
7624 case CPU_UP_CANCELED:
7625 case CPU_UP_CANCELED_FROZEN:
7626 if (!cpu_rq(cpu)->migration_thread)
7627 break;
7628 /* Unbind it from offline cpu so it can run. Fall thru. */
7629 kthread_bind(cpu_rq(cpu)->migration_thread,
7630 cpumask_any(cpu_online_mask));
7631 kthread_stop(cpu_rq(cpu)->migration_thread);
7632 put_task_struct(cpu_rq(cpu)->migration_thread);
7633 cpu_rq(cpu)->migration_thread = NULL;
7634 break;
7635
7636 case CPU_DEAD:
7637 case CPU_DEAD_FROZEN:
7638 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7639 migrate_live_tasks(cpu);
7640 rq = cpu_rq(cpu);
7641 kthread_stop(rq->migration_thread);
7642 put_task_struct(rq->migration_thread);
7643 rq->migration_thread = NULL;
7644 /* Idle task back to normal (off runqueue, low prio) */
7645 spin_lock_irq(&rq->lock);
7646 update_rq_clock(rq);
7647 deactivate_task(rq, rq->idle, 0);
7648 rq->idle->static_prio = MAX_PRIO;
7649 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7650 rq->idle->sched_class = &idle_sched_class;
7651 migrate_dead_tasks(cpu);
7652 spin_unlock_irq(&rq->lock);
7653 cpuset_unlock();
7654 migrate_nr_uninterruptible(rq);
7655 BUG_ON(rq->nr_running != 0);
7656 calc_global_load_remove(rq);
7657 /*
7658 * No need to migrate the tasks: it was best-effort if
7659 * they didn't take sched_hotcpu_mutex. Just wake up
7660 * the requestors.
7661 */
7662 spin_lock_irq(&rq->lock);
7663 while (!list_empty(&rq->migration_queue)) {
7664 struct migration_req *req;
7665
7666 req = list_entry(rq->migration_queue.next,
7667 struct migration_req, list);
7668 list_del_init(&req->list);
7669 spin_unlock_irq(&rq->lock);
7670 complete(&req->done);
7671 spin_lock_irq(&rq->lock);
7672 }
7673 spin_unlock_irq(&rq->lock);
7674 break;
7675
7676 case CPU_DYING:
7677 case CPU_DYING_FROZEN:
7678 /* Update our root-domain */
7679 rq = cpu_rq(cpu);
7680 spin_lock_irqsave(&rq->lock, flags);
7681 if (rq->rd) {
7682 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7683 set_rq_offline(rq);
7684 }
7685 spin_unlock_irqrestore(&rq->lock, flags);
7686 break;
7687 #endif
7688 }
7689 return NOTIFY_OK;
7690 }
7691
7692 /*
7693 * Register at high priority so that task migration (migrate_all_tasks)
7694 * happens before everything else. This has to be lower priority than
7695 * the notifier in the perf_event subsystem, though.
7696 */
7697 static struct notifier_block __cpuinitdata migration_notifier = {
7698 .notifier_call = migration_call,
7699 .priority = 10
7700 };
7701
7702 static int __init migration_init(void)
7703 {
7704 void *cpu = (void *)(long)smp_processor_id();
7705 int err;
7706
7707 /* Start one for the boot CPU: */
7708 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7709 BUG_ON(err == NOTIFY_BAD);
7710 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7711 register_cpu_notifier(&migration_notifier);
7712
7713 return 0;
7714 }
7715 early_initcall(migration_init);
7716 #endif
7717
7718 #ifdef CONFIG_SMP
7719
7720 #ifdef CONFIG_SCHED_DEBUG
7721
7722 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7723 struct cpumask *groupmask)
7724 {
7725 struct sched_group *group = sd->groups;
7726 char str[256];
7727
7728 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7729 cpumask_clear(groupmask);
7730
7731 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7732
7733 if (!(sd->flags & SD_LOAD_BALANCE)) {
7734 printk("does not load-balance\n");
7735 if (sd->parent)
7736 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7737 " has parent");
7738 return -1;
7739 }
7740
7741 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7742
7743 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7744 printk(KERN_ERR "ERROR: domain->span does not contain "
7745 "CPU%d\n", cpu);
7746 }
7747 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7748 printk(KERN_ERR "ERROR: domain->groups does not contain"
7749 " CPU%d\n", cpu);
7750 }
7751
7752 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7753 do {
7754 if (!group) {
7755 printk("\n");
7756 printk(KERN_ERR "ERROR: group is NULL\n");
7757 break;
7758 }
7759
7760 if (!group->cpu_power) {
7761 printk(KERN_CONT "\n");
7762 printk(KERN_ERR "ERROR: domain->cpu_power not "
7763 "set\n");
7764 break;
7765 }
7766
7767 if (!cpumask_weight(sched_group_cpus(group))) {
7768 printk(KERN_CONT "\n");
7769 printk(KERN_ERR "ERROR: empty group\n");
7770 break;
7771 }
7772
7773 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7774 printk(KERN_CONT "\n");
7775 printk(KERN_ERR "ERROR: repeated CPUs\n");
7776 break;
7777 }
7778
7779 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7780
7781 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7782
7783 printk(KERN_CONT " %s", str);
7784 if (group->cpu_power != SCHED_LOAD_SCALE) {
7785 printk(KERN_CONT " (cpu_power = %d)",
7786 group->cpu_power);
7787 }
7788
7789 group = group->next;
7790 } while (group != sd->groups);
7791 printk(KERN_CONT "\n");
7792
7793 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7794 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7795
7796 if (sd->parent &&
7797 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7798 printk(KERN_ERR "ERROR: parent span is not a superset "
7799 "of domain->span\n");
7800 return 0;
7801 }
7802
7803 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7804 {
7805 cpumask_var_t groupmask;
7806 int level = 0;
7807
7808 if (!sd) {
7809 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7810 return;
7811 }
7812
7813 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7814
7815 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7816 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7817 return;
7818 }
7819
7820 for (;;) {
7821 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7822 break;
7823 level++;
7824 sd = sd->parent;
7825 if (!sd)
7826 break;
7827 }
7828 free_cpumask_var(groupmask);
7829 }
7830 #else /* !CONFIG_SCHED_DEBUG */
7831 # define sched_domain_debug(sd, cpu) do { } while (0)
7832 #endif /* CONFIG_SCHED_DEBUG */
7833
7834 static int sd_degenerate(struct sched_domain *sd)
7835 {
7836 if (cpumask_weight(sched_domain_span(sd)) == 1)
7837 return 1;
7838
7839 /* Following flags need at least 2 groups */
7840 if (sd->flags & (SD_LOAD_BALANCE |
7841 SD_BALANCE_NEWIDLE |
7842 SD_BALANCE_FORK |
7843 SD_BALANCE_EXEC |
7844 SD_SHARE_CPUPOWER |
7845 SD_SHARE_PKG_RESOURCES)) {
7846 if (sd->groups != sd->groups->next)
7847 return 0;
7848 }
7849
7850 /* Following flags don't use groups */
7851 if (sd->flags & (SD_WAKE_AFFINE))
7852 return 0;
7853
7854 return 1;
7855 }
7856
7857 static int
7858 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7859 {
7860 unsigned long cflags = sd->flags, pflags = parent->flags;
7861
7862 if (sd_degenerate(parent))
7863 return 1;
7864
7865 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7866 return 0;
7867
7868 /* Flags needing groups don't count if only 1 group in parent */
7869 if (parent->groups == parent->groups->next) {
7870 pflags &= ~(SD_LOAD_BALANCE |
7871 SD_BALANCE_NEWIDLE |
7872 SD_BALANCE_FORK |
7873 SD_BALANCE_EXEC |
7874 SD_SHARE_CPUPOWER |
7875 SD_SHARE_PKG_RESOURCES);
7876 if (nr_node_ids == 1)
7877 pflags &= ~SD_SERIALIZE;
7878 }
7879 if (~cflags & pflags)
7880 return 0;
7881
7882 return 1;
7883 }
7884
7885 static void free_rootdomain(struct root_domain *rd)
7886 {
7887 cpupri_cleanup(&rd->cpupri);
7888
7889 free_cpumask_var(rd->rto_mask);
7890 free_cpumask_var(rd->online);
7891 free_cpumask_var(rd->span);
7892 kfree(rd);
7893 }
7894
7895 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7896 {
7897 struct root_domain *old_rd = NULL;
7898 unsigned long flags;
7899
7900 spin_lock_irqsave(&rq->lock, flags);
7901
7902 if (rq->rd) {
7903 old_rd = rq->rd;
7904
7905 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7906 set_rq_offline(rq);
7907
7908 cpumask_clear_cpu(rq->cpu, old_rd->span);
7909
7910 /*
7911 * If we dont want to free the old_rt yet then
7912 * set old_rd to NULL to skip the freeing later
7913 * in this function:
7914 */
7915 if (!atomic_dec_and_test(&old_rd->refcount))
7916 old_rd = NULL;
7917 }
7918
7919 atomic_inc(&rd->refcount);
7920 rq->rd = rd;
7921
7922 cpumask_set_cpu(rq->cpu, rd->span);
7923 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7924 set_rq_online(rq);
7925
7926 spin_unlock_irqrestore(&rq->lock, flags);
7927
7928 if (old_rd)
7929 free_rootdomain(old_rd);
7930 }
7931
7932 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7933 {
7934 gfp_t gfp = GFP_KERNEL;
7935
7936 memset(rd, 0, sizeof(*rd));
7937
7938 if (bootmem)
7939 gfp = GFP_NOWAIT;
7940
7941 if (!alloc_cpumask_var(&rd->span, gfp))
7942 goto out;
7943 if (!alloc_cpumask_var(&rd->online, gfp))
7944 goto free_span;
7945 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7946 goto free_online;
7947
7948 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7949 goto free_rto_mask;
7950 return 0;
7951
7952 free_rto_mask:
7953 free_cpumask_var(rd->rto_mask);
7954 free_online:
7955 free_cpumask_var(rd->online);
7956 free_span:
7957 free_cpumask_var(rd->span);
7958 out:
7959 return -ENOMEM;
7960 }
7961
7962 static void init_defrootdomain(void)
7963 {
7964 init_rootdomain(&def_root_domain, true);
7965
7966 atomic_set(&def_root_domain.refcount, 1);
7967 }
7968
7969 static struct root_domain *alloc_rootdomain(void)
7970 {
7971 struct root_domain *rd;
7972
7973 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7974 if (!rd)
7975 return NULL;
7976
7977 if (init_rootdomain(rd, false) != 0) {
7978 kfree(rd);
7979 return NULL;
7980 }
7981
7982 return rd;
7983 }
7984
7985 /*
7986 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7987 * hold the hotplug lock.
7988 */
7989 static void
7990 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7991 {
7992 struct rq *rq = cpu_rq(cpu);
7993 struct sched_domain *tmp;
7994
7995 /* Remove the sched domains which do not contribute to scheduling. */
7996 for (tmp = sd; tmp; ) {
7997 struct sched_domain *parent = tmp->parent;
7998 if (!parent)
7999 break;
8000
8001 if (sd_parent_degenerate(tmp, parent)) {
8002 tmp->parent = parent->parent;
8003 if (parent->parent)
8004 parent->parent->child = tmp;
8005 } else
8006 tmp = tmp->parent;
8007 }
8008
8009 if (sd && sd_degenerate(sd)) {
8010 sd = sd->parent;
8011 if (sd)
8012 sd->child = NULL;
8013 }
8014
8015 sched_domain_debug(sd, cpu);
8016
8017 rq_attach_root(rq, rd);
8018 rcu_assign_pointer(rq->sd, sd);
8019 }
8020
8021 /* cpus with isolated domains */
8022 static cpumask_var_t cpu_isolated_map;
8023
8024 /* Setup the mask of cpus configured for isolated domains */
8025 static int __init isolated_cpu_setup(char *str)
8026 {
8027 cpulist_parse(str, cpu_isolated_map);
8028 return 1;
8029 }
8030
8031 __setup("isolcpus=", isolated_cpu_setup);
8032
8033 /*
8034 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8035 * to a function which identifies what group(along with sched group) a CPU
8036 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8037 * (due to the fact that we keep track of groups covered with a struct cpumask).
8038 *
8039 * init_sched_build_groups will build a circular linked list of the groups
8040 * covered by the given span, and will set each group's ->cpumask correctly,
8041 * and ->cpu_power to 0.
8042 */
8043 static void
8044 init_sched_build_groups(const struct cpumask *span,
8045 const struct cpumask *cpu_map,
8046 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8047 struct sched_group **sg,
8048 struct cpumask *tmpmask),
8049 struct cpumask *covered, struct cpumask *tmpmask)
8050 {
8051 struct sched_group *first = NULL, *last = NULL;
8052 int i;
8053
8054 cpumask_clear(covered);
8055
8056 for_each_cpu(i, span) {
8057 struct sched_group *sg;
8058 int group = group_fn(i, cpu_map, &sg, tmpmask);
8059 int j;
8060
8061 if (cpumask_test_cpu(i, covered))
8062 continue;
8063
8064 cpumask_clear(sched_group_cpus(sg));
8065 sg->cpu_power = 0;
8066
8067 for_each_cpu(j, span) {
8068 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8069 continue;
8070
8071 cpumask_set_cpu(j, covered);
8072 cpumask_set_cpu(j, sched_group_cpus(sg));
8073 }
8074 if (!first)
8075 first = sg;
8076 if (last)
8077 last->next = sg;
8078 last = sg;
8079 }
8080 last->next = first;
8081 }
8082
8083 #define SD_NODES_PER_DOMAIN 16
8084
8085 #ifdef CONFIG_NUMA
8086
8087 /**
8088 * find_next_best_node - find the next node to include in a sched_domain
8089 * @node: node whose sched_domain we're building
8090 * @used_nodes: nodes already in the sched_domain
8091 *
8092 * Find the next node to include in a given scheduling domain. Simply
8093 * finds the closest node not already in the @used_nodes map.
8094 *
8095 * Should use nodemask_t.
8096 */
8097 static int find_next_best_node(int node, nodemask_t *used_nodes)
8098 {
8099 int i, n, val, min_val, best_node = 0;
8100
8101 min_val = INT_MAX;
8102
8103 for (i = 0; i < nr_node_ids; i++) {
8104 /* Start at @node */
8105 n = (node + i) % nr_node_ids;
8106
8107 if (!nr_cpus_node(n))
8108 continue;
8109
8110 /* Skip already used nodes */
8111 if (node_isset(n, *used_nodes))
8112 continue;
8113
8114 /* Simple min distance search */
8115 val = node_distance(node, n);
8116
8117 if (val < min_val) {
8118 min_val = val;
8119 best_node = n;
8120 }
8121 }
8122
8123 node_set(best_node, *used_nodes);
8124 return best_node;
8125 }
8126
8127 /**
8128 * sched_domain_node_span - get a cpumask for a node's sched_domain
8129 * @node: node whose cpumask we're constructing
8130 * @span: resulting cpumask
8131 *
8132 * Given a node, construct a good cpumask for its sched_domain to span. It
8133 * should be one that prevents unnecessary balancing, but also spreads tasks
8134 * out optimally.
8135 */
8136 static void sched_domain_node_span(int node, struct cpumask *span)
8137 {
8138 nodemask_t used_nodes;
8139 int i;
8140
8141 cpumask_clear(span);
8142 nodes_clear(used_nodes);
8143
8144 cpumask_or(span, span, cpumask_of_node(node));
8145 node_set(node, used_nodes);
8146
8147 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8148 int next_node = find_next_best_node(node, &used_nodes);
8149
8150 cpumask_or(span, span, cpumask_of_node(next_node));
8151 }
8152 }
8153 #endif /* CONFIG_NUMA */
8154
8155 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8156
8157 /*
8158 * The cpus mask in sched_group and sched_domain hangs off the end.
8159 *
8160 * ( See the the comments in include/linux/sched.h:struct sched_group
8161 * and struct sched_domain. )
8162 */
8163 struct static_sched_group {
8164 struct sched_group sg;
8165 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8166 };
8167
8168 struct static_sched_domain {
8169 struct sched_domain sd;
8170 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8171 };
8172
8173 struct s_data {
8174 #ifdef CONFIG_NUMA
8175 int sd_allnodes;
8176 cpumask_var_t domainspan;
8177 cpumask_var_t covered;
8178 cpumask_var_t notcovered;
8179 #endif
8180 cpumask_var_t nodemask;
8181 cpumask_var_t this_sibling_map;
8182 cpumask_var_t this_core_map;
8183 cpumask_var_t send_covered;
8184 cpumask_var_t tmpmask;
8185 struct sched_group **sched_group_nodes;
8186 struct root_domain *rd;
8187 };
8188
8189 enum s_alloc {
8190 sa_sched_groups = 0,
8191 sa_rootdomain,
8192 sa_tmpmask,
8193 sa_send_covered,
8194 sa_this_core_map,
8195 sa_this_sibling_map,
8196 sa_nodemask,
8197 sa_sched_group_nodes,
8198 #ifdef CONFIG_NUMA
8199 sa_notcovered,
8200 sa_covered,
8201 sa_domainspan,
8202 #endif
8203 sa_none,
8204 };
8205
8206 /*
8207 * SMT sched-domains:
8208 */
8209 #ifdef CONFIG_SCHED_SMT
8210 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8211 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8212
8213 static int
8214 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8215 struct sched_group **sg, struct cpumask *unused)
8216 {
8217 if (sg)
8218 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8219 return cpu;
8220 }
8221 #endif /* CONFIG_SCHED_SMT */
8222
8223 /*
8224 * multi-core sched-domains:
8225 */
8226 #ifdef CONFIG_SCHED_MC
8227 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8228 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8229 #endif /* CONFIG_SCHED_MC */
8230
8231 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8232 static int
8233 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8234 struct sched_group **sg, struct cpumask *mask)
8235 {
8236 int group;
8237
8238 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8239 group = cpumask_first(mask);
8240 if (sg)
8241 *sg = &per_cpu(sched_group_core, group).sg;
8242 return group;
8243 }
8244 #elif defined(CONFIG_SCHED_MC)
8245 static int
8246 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8247 struct sched_group **sg, struct cpumask *unused)
8248 {
8249 if (sg)
8250 *sg = &per_cpu(sched_group_core, cpu).sg;
8251 return cpu;
8252 }
8253 #endif
8254
8255 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8256 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8257
8258 static int
8259 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8260 struct sched_group **sg, struct cpumask *mask)
8261 {
8262 int group;
8263 #ifdef CONFIG_SCHED_MC
8264 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8265 group = cpumask_first(mask);
8266 #elif defined(CONFIG_SCHED_SMT)
8267 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8268 group = cpumask_first(mask);
8269 #else
8270 group = cpu;
8271 #endif
8272 if (sg)
8273 *sg = &per_cpu(sched_group_phys, group).sg;
8274 return group;
8275 }
8276
8277 #ifdef CONFIG_NUMA
8278 /*
8279 * The init_sched_build_groups can't handle what we want to do with node
8280 * groups, so roll our own. Now each node has its own list of groups which
8281 * gets dynamically allocated.
8282 */
8283 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8284 static struct sched_group ***sched_group_nodes_bycpu;
8285
8286 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8287 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8288
8289 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8290 struct sched_group **sg,
8291 struct cpumask *nodemask)
8292 {
8293 int group;
8294
8295 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8296 group = cpumask_first(nodemask);
8297
8298 if (sg)
8299 *sg = &per_cpu(sched_group_allnodes, group).sg;
8300 return group;
8301 }
8302
8303 static void init_numa_sched_groups_power(struct sched_group *group_head)
8304 {
8305 struct sched_group *sg = group_head;
8306 int j;
8307
8308 if (!sg)
8309 return;
8310 do {
8311 for_each_cpu(j, sched_group_cpus(sg)) {
8312 struct sched_domain *sd;
8313
8314 sd = &per_cpu(phys_domains, j).sd;
8315 if (j != group_first_cpu(sd->groups)) {
8316 /*
8317 * Only add "power" once for each
8318 * physical package.
8319 */
8320 continue;
8321 }
8322
8323 sg->cpu_power += sd->groups->cpu_power;
8324 }
8325 sg = sg->next;
8326 } while (sg != group_head);
8327 }
8328
8329 static int build_numa_sched_groups(struct s_data *d,
8330 const struct cpumask *cpu_map, int num)
8331 {
8332 struct sched_domain *sd;
8333 struct sched_group *sg, *prev;
8334 int n, j;
8335
8336 cpumask_clear(d->covered);
8337 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8338 if (cpumask_empty(d->nodemask)) {
8339 d->sched_group_nodes[num] = NULL;
8340 goto out;
8341 }
8342
8343 sched_domain_node_span(num, d->domainspan);
8344 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8345
8346 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8347 GFP_KERNEL, num);
8348 if (!sg) {
8349 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8350 num);
8351 return -ENOMEM;
8352 }
8353 d->sched_group_nodes[num] = sg;
8354
8355 for_each_cpu(j, d->nodemask) {
8356 sd = &per_cpu(node_domains, j).sd;
8357 sd->groups = sg;
8358 }
8359
8360 sg->cpu_power = 0;
8361 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8362 sg->next = sg;
8363 cpumask_or(d->covered, d->covered, d->nodemask);
8364
8365 prev = sg;
8366 for (j = 0; j < nr_node_ids; j++) {
8367 n = (num + j) % nr_node_ids;
8368 cpumask_complement(d->notcovered, d->covered);
8369 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8370 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8371 if (cpumask_empty(d->tmpmask))
8372 break;
8373 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8374 if (cpumask_empty(d->tmpmask))
8375 continue;
8376 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8377 GFP_KERNEL, num);
8378 if (!sg) {
8379 printk(KERN_WARNING
8380 "Can not alloc domain group for node %d\n", j);
8381 return -ENOMEM;
8382 }
8383 sg->cpu_power = 0;
8384 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8385 sg->next = prev->next;
8386 cpumask_or(d->covered, d->covered, d->tmpmask);
8387 prev->next = sg;
8388 prev = sg;
8389 }
8390 out:
8391 return 0;
8392 }
8393 #endif /* CONFIG_NUMA */
8394
8395 #ifdef CONFIG_NUMA
8396 /* Free memory allocated for various sched_group structures */
8397 static void free_sched_groups(const struct cpumask *cpu_map,
8398 struct cpumask *nodemask)
8399 {
8400 int cpu, i;
8401
8402 for_each_cpu(cpu, cpu_map) {
8403 struct sched_group **sched_group_nodes
8404 = sched_group_nodes_bycpu[cpu];
8405
8406 if (!sched_group_nodes)
8407 continue;
8408
8409 for (i = 0; i < nr_node_ids; i++) {
8410 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8411
8412 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8413 if (cpumask_empty(nodemask))
8414 continue;
8415
8416 if (sg == NULL)
8417 continue;
8418 sg = sg->next;
8419 next_sg:
8420 oldsg = sg;
8421 sg = sg->next;
8422 kfree(oldsg);
8423 if (oldsg != sched_group_nodes[i])
8424 goto next_sg;
8425 }
8426 kfree(sched_group_nodes);
8427 sched_group_nodes_bycpu[cpu] = NULL;
8428 }
8429 }
8430 #else /* !CONFIG_NUMA */
8431 static void free_sched_groups(const struct cpumask *cpu_map,
8432 struct cpumask *nodemask)
8433 {
8434 }
8435 #endif /* CONFIG_NUMA */
8436
8437 /*
8438 * Initialize sched groups cpu_power.
8439 *
8440 * cpu_power indicates the capacity of sched group, which is used while
8441 * distributing the load between different sched groups in a sched domain.
8442 * Typically cpu_power for all the groups in a sched domain will be same unless
8443 * there are asymmetries in the topology. If there are asymmetries, group
8444 * having more cpu_power will pickup more load compared to the group having
8445 * less cpu_power.
8446 */
8447 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8448 {
8449 struct sched_domain *child;
8450 struct sched_group *group;
8451 long power;
8452 int weight;
8453
8454 WARN_ON(!sd || !sd->groups);
8455
8456 if (cpu != group_first_cpu(sd->groups))
8457 return;
8458
8459 child = sd->child;
8460
8461 sd->groups->cpu_power = 0;
8462
8463 if (!child) {
8464 power = SCHED_LOAD_SCALE;
8465 weight = cpumask_weight(sched_domain_span(sd));
8466 /*
8467 * SMT siblings share the power of a single core.
8468 * Usually multiple threads get a better yield out of
8469 * that one core than a single thread would have,
8470 * reflect that in sd->smt_gain.
8471 */
8472 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8473 power *= sd->smt_gain;
8474 power /= weight;
8475 power >>= SCHED_LOAD_SHIFT;
8476 }
8477 sd->groups->cpu_power += power;
8478 return;
8479 }
8480
8481 /*
8482 * Add cpu_power of each child group to this groups cpu_power.
8483 */
8484 group = child->groups;
8485 do {
8486 sd->groups->cpu_power += group->cpu_power;
8487 group = group->next;
8488 } while (group != child->groups);
8489 }
8490
8491 /*
8492 * Initializers for schedule domains
8493 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8494 */
8495
8496 #ifdef CONFIG_SCHED_DEBUG
8497 # define SD_INIT_NAME(sd, type) sd->name = #type
8498 #else
8499 # define SD_INIT_NAME(sd, type) do { } while (0)
8500 #endif
8501
8502 #define SD_INIT(sd, type) sd_init_##type(sd)
8503
8504 #define SD_INIT_FUNC(type) \
8505 static noinline void sd_init_##type(struct sched_domain *sd) \
8506 { \
8507 memset(sd, 0, sizeof(*sd)); \
8508 *sd = SD_##type##_INIT; \
8509 sd->level = SD_LV_##type; \
8510 SD_INIT_NAME(sd, type); \
8511 }
8512
8513 SD_INIT_FUNC(CPU)
8514 #ifdef CONFIG_NUMA
8515 SD_INIT_FUNC(ALLNODES)
8516 SD_INIT_FUNC(NODE)
8517 #endif
8518 #ifdef CONFIG_SCHED_SMT
8519 SD_INIT_FUNC(SIBLING)
8520 #endif
8521 #ifdef CONFIG_SCHED_MC
8522 SD_INIT_FUNC(MC)
8523 #endif
8524
8525 static int default_relax_domain_level = -1;
8526
8527 static int __init setup_relax_domain_level(char *str)
8528 {
8529 unsigned long val;
8530
8531 val = simple_strtoul(str, NULL, 0);
8532 if (val < SD_LV_MAX)
8533 default_relax_domain_level = val;
8534
8535 return 1;
8536 }
8537 __setup("relax_domain_level=", setup_relax_domain_level);
8538
8539 static void set_domain_attribute(struct sched_domain *sd,
8540 struct sched_domain_attr *attr)
8541 {
8542 int request;
8543
8544 if (!attr || attr->relax_domain_level < 0) {
8545 if (default_relax_domain_level < 0)
8546 return;
8547 else
8548 request = default_relax_domain_level;
8549 } else
8550 request = attr->relax_domain_level;
8551 if (request < sd->level) {
8552 /* turn off idle balance on this domain */
8553 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8554 } else {
8555 /* turn on idle balance on this domain */
8556 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8557 }
8558 }
8559
8560 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8561 const struct cpumask *cpu_map)
8562 {
8563 switch (what) {
8564 case sa_sched_groups:
8565 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8566 d->sched_group_nodes = NULL;
8567 case sa_rootdomain:
8568 free_rootdomain(d->rd); /* fall through */
8569 case sa_tmpmask:
8570 free_cpumask_var(d->tmpmask); /* fall through */
8571 case sa_send_covered:
8572 free_cpumask_var(d->send_covered); /* fall through */
8573 case sa_this_core_map:
8574 free_cpumask_var(d->this_core_map); /* fall through */
8575 case sa_this_sibling_map:
8576 free_cpumask_var(d->this_sibling_map); /* fall through */
8577 case sa_nodemask:
8578 free_cpumask_var(d->nodemask); /* fall through */
8579 case sa_sched_group_nodes:
8580 #ifdef CONFIG_NUMA
8581 kfree(d->sched_group_nodes); /* fall through */
8582 case sa_notcovered:
8583 free_cpumask_var(d->notcovered); /* fall through */
8584 case sa_covered:
8585 free_cpumask_var(d->covered); /* fall through */
8586 case sa_domainspan:
8587 free_cpumask_var(d->domainspan); /* fall through */
8588 #endif
8589 case sa_none:
8590 break;
8591 }
8592 }
8593
8594 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8595 const struct cpumask *cpu_map)
8596 {
8597 #ifdef CONFIG_NUMA
8598 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8599 return sa_none;
8600 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8601 return sa_domainspan;
8602 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8603 return sa_covered;
8604 /* Allocate the per-node list of sched groups */
8605 d->sched_group_nodes = kcalloc(nr_node_ids,
8606 sizeof(struct sched_group *), GFP_KERNEL);
8607 if (!d->sched_group_nodes) {
8608 printk(KERN_WARNING "Can not alloc sched group node list\n");
8609 return sa_notcovered;
8610 }
8611 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8612 #endif
8613 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8614 return sa_sched_group_nodes;
8615 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8616 return sa_nodemask;
8617 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8618 return sa_this_sibling_map;
8619 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8620 return sa_this_core_map;
8621 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8622 return sa_send_covered;
8623 d->rd = alloc_rootdomain();
8624 if (!d->rd) {
8625 printk(KERN_WARNING "Cannot alloc root domain\n");
8626 return sa_tmpmask;
8627 }
8628 return sa_rootdomain;
8629 }
8630
8631 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8632 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8633 {
8634 struct sched_domain *sd = NULL;
8635 #ifdef CONFIG_NUMA
8636 struct sched_domain *parent;
8637
8638 d->sd_allnodes = 0;
8639 if (cpumask_weight(cpu_map) >
8640 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8641 sd = &per_cpu(allnodes_domains, i).sd;
8642 SD_INIT(sd, ALLNODES);
8643 set_domain_attribute(sd, attr);
8644 cpumask_copy(sched_domain_span(sd), cpu_map);
8645 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8646 d->sd_allnodes = 1;
8647 }
8648 parent = sd;
8649
8650 sd = &per_cpu(node_domains, i).sd;
8651 SD_INIT(sd, NODE);
8652 set_domain_attribute(sd, attr);
8653 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8654 sd->parent = parent;
8655 if (parent)
8656 parent->child = sd;
8657 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8658 #endif
8659 return sd;
8660 }
8661
8662 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8663 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8664 struct sched_domain *parent, int i)
8665 {
8666 struct sched_domain *sd;
8667 sd = &per_cpu(phys_domains, i).sd;
8668 SD_INIT(sd, CPU);
8669 set_domain_attribute(sd, attr);
8670 cpumask_copy(sched_domain_span(sd), d->nodemask);
8671 sd->parent = parent;
8672 if (parent)
8673 parent->child = sd;
8674 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8675 return sd;
8676 }
8677
8678 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8679 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8680 struct sched_domain *parent, int i)
8681 {
8682 struct sched_domain *sd = parent;
8683 #ifdef CONFIG_SCHED_MC
8684 sd = &per_cpu(core_domains, i).sd;
8685 SD_INIT(sd, MC);
8686 set_domain_attribute(sd, attr);
8687 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8688 sd->parent = parent;
8689 parent->child = sd;
8690 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8691 #endif
8692 return sd;
8693 }
8694
8695 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8696 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8697 struct sched_domain *parent, int i)
8698 {
8699 struct sched_domain *sd = parent;
8700 #ifdef CONFIG_SCHED_SMT
8701 sd = &per_cpu(cpu_domains, i).sd;
8702 SD_INIT(sd, SIBLING);
8703 set_domain_attribute(sd, attr);
8704 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8705 sd->parent = parent;
8706 parent->child = sd;
8707 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8708 #endif
8709 return sd;
8710 }
8711
8712 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8713 const struct cpumask *cpu_map, int cpu)
8714 {
8715 switch (l) {
8716 #ifdef CONFIG_SCHED_SMT
8717 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8718 cpumask_and(d->this_sibling_map, cpu_map,
8719 topology_thread_cpumask(cpu));
8720 if (cpu == cpumask_first(d->this_sibling_map))
8721 init_sched_build_groups(d->this_sibling_map, cpu_map,
8722 &cpu_to_cpu_group,
8723 d->send_covered, d->tmpmask);
8724 break;
8725 #endif
8726 #ifdef CONFIG_SCHED_MC
8727 case SD_LV_MC: /* set up multi-core groups */
8728 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8729 if (cpu == cpumask_first(d->this_core_map))
8730 init_sched_build_groups(d->this_core_map, cpu_map,
8731 &cpu_to_core_group,
8732 d->send_covered, d->tmpmask);
8733 break;
8734 #endif
8735 case SD_LV_CPU: /* set up physical groups */
8736 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8737 if (!cpumask_empty(d->nodemask))
8738 init_sched_build_groups(d->nodemask, cpu_map,
8739 &cpu_to_phys_group,
8740 d->send_covered, d->tmpmask);
8741 break;
8742 #ifdef CONFIG_NUMA
8743 case SD_LV_ALLNODES:
8744 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8745 d->send_covered, d->tmpmask);
8746 break;
8747 #endif
8748 default:
8749 break;
8750 }
8751 }
8752
8753 /*
8754 * Build sched domains for a given set of cpus and attach the sched domains
8755 * to the individual cpus
8756 */
8757 static int __build_sched_domains(const struct cpumask *cpu_map,
8758 struct sched_domain_attr *attr)
8759 {
8760 enum s_alloc alloc_state = sa_none;
8761 struct s_data d;
8762 struct sched_domain *sd;
8763 int i;
8764 #ifdef CONFIG_NUMA
8765 d.sd_allnodes = 0;
8766 #endif
8767
8768 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8769 if (alloc_state != sa_rootdomain)
8770 goto error;
8771 alloc_state = sa_sched_groups;
8772
8773 /*
8774 * Set up domains for cpus specified by the cpu_map.
8775 */
8776 for_each_cpu(i, cpu_map) {
8777 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8778 cpu_map);
8779
8780 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8781 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8782 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8783 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8784 }
8785
8786 for_each_cpu(i, cpu_map) {
8787 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8788 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8789 }
8790
8791 /* Set up physical groups */
8792 for (i = 0; i < nr_node_ids; i++)
8793 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8794
8795 #ifdef CONFIG_NUMA
8796 /* Set up node groups */
8797 if (d.sd_allnodes)
8798 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8799
8800 for (i = 0; i < nr_node_ids; i++)
8801 if (build_numa_sched_groups(&d, cpu_map, i))
8802 goto error;
8803 #endif
8804
8805 /* Calculate CPU power for physical packages and nodes */
8806 #ifdef CONFIG_SCHED_SMT
8807 for_each_cpu(i, cpu_map) {
8808 sd = &per_cpu(cpu_domains, i).sd;
8809 init_sched_groups_power(i, sd);
8810 }
8811 #endif
8812 #ifdef CONFIG_SCHED_MC
8813 for_each_cpu(i, cpu_map) {
8814 sd = &per_cpu(core_domains, i).sd;
8815 init_sched_groups_power(i, sd);
8816 }
8817 #endif
8818
8819 for_each_cpu(i, cpu_map) {
8820 sd = &per_cpu(phys_domains, i).sd;
8821 init_sched_groups_power(i, sd);
8822 }
8823
8824 #ifdef CONFIG_NUMA
8825 for (i = 0; i < nr_node_ids; i++)
8826 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8827
8828 if (d.sd_allnodes) {
8829 struct sched_group *sg;
8830
8831 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8832 d.tmpmask);
8833 init_numa_sched_groups_power(sg);
8834 }
8835 #endif
8836
8837 /* Attach the domains */
8838 for_each_cpu(i, cpu_map) {
8839 #ifdef CONFIG_SCHED_SMT
8840 sd = &per_cpu(cpu_domains, i).sd;
8841 #elif defined(CONFIG_SCHED_MC)
8842 sd = &per_cpu(core_domains, i).sd;
8843 #else
8844 sd = &per_cpu(phys_domains, i).sd;
8845 #endif
8846 cpu_attach_domain(sd, d.rd, i);
8847 }
8848
8849 d.sched_group_nodes = NULL; /* don't free this we still need it */
8850 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8851 return 0;
8852
8853 error:
8854 __free_domain_allocs(&d, alloc_state, cpu_map);
8855 return -ENOMEM;
8856 }
8857
8858 static int build_sched_domains(const struct cpumask *cpu_map)
8859 {
8860 return __build_sched_domains(cpu_map, NULL);
8861 }
8862
8863 static struct cpumask *doms_cur; /* current sched domains */
8864 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8865 static struct sched_domain_attr *dattr_cur;
8866 /* attribues of custom domains in 'doms_cur' */
8867
8868 /*
8869 * Special case: If a kmalloc of a doms_cur partition (array of
8870 * cpumask) fails, then fallback to a single sched domain,
8871 * as determined by the single cpumask fallback_doms.
8872 */
8873 static cpumask_var_t fallback_doms;
8874
8875 /*
8876 * arch_update_cpu_topology lets virtualized architectures update the
8877 * cpu core maps. It is supposed to return 1 if the topology changed
8878 * or 0 if it stayed the same.
8879 */
8880 int __attribute__((weak)) arch_update_cpu_topology(void)
8881 {
8882 return 0;
8883 }
8884
8885 /*
8886 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8887 * For now this just excludes isolated cpus, but could be used to
8888 * exclude other special cases in the future.
8889 */
8890 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8891 {
8892 int err;
8893
8894 arch_update_cpu_topology();
8895 ndoms_cur = 1;
8896 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8897 if (!doms_cur)
8898 doms_cur = fallback_doms;
8899 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8900 dattr_cur = NULL;
8901 err = build_sched_domains(doms_cur);
8902 register_sched_domain_sysctl();
8903
8904 return err;
8905 }
8906
8907 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8908 struct cpumask *tmpmask)
8909 {
8910 free_sched_groups(cpu_map, tmpmask);
8911 }
8912
8913 /*
8914 * Detach sched domains from a group of cpus specified in cpu_map
8915 * These cpus will now be attached to the NULL domain
8916 */
8917 static void detach_destroy_domains(const struct cpumask *cpu_map)
8918 {
8919 /* Save because hotplug lock held. */
8920 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8921 int i;
8922
8923 for_each_cpu(i, cpu_map)
8924 cpu_attach_domain(NULL, &def_root_domain, i);
8925 synchronize_sched();
8926 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8927 }
8928
8929 /* handle null as "default" */
8930 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8931 struct sched_domain_attr *new, int idx_new)
8932 {
8933 struct sched_domain_attr tmp;
8934
8935 /* fast path */
8936 if (!new && !cur)
8937 return 1;
8938
8939 tmp = SD_ATTR_INIT;
8940 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8941 new ? (new + idx_new) : &tmp,
8942 sizeof(struct sched_domain_attr));
8943 }
8944
8945 /*
8946 * Partition sched domains as specified by the 'ndoms_new'
8947 * cpumasks in the array doms_new[] of cpumasks. This compares
8948 * doms_new[] to the current sched domain partitioning, doms_cur[].
8949 * It destroys each deleted domain and builds each new domain.
8950 *
8951 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8952 * The masks don't intersect (don't overlap.) We should setup one
8953 * sched domain for each mask. CPUs not in any of the cpumasks will
8954 * not be load balanced. If the same cpumask appears both in the
8955 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8956 * it as it is.
8957 *
8958 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8959 * ownership of it and will kfree it when done with it. If the caller
8960 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8961 * ndoms_new == 1, and partition_sched_domains() will fallback to
8962 * the single partition 'fallback_doms', it also forces the domains
8963 * to be rebuilt.
8964 *
8965 * If doms_new == NULL it will be replaced with cpu_online_mask.
8966 * ndoms_new == 0 is a special case for destroying existing domains,
8967 * and it will not create the default domain.
8968 *
8969 * Call with hotplug lock held
8970 */
8971 /* FIXME: Change to struct cpumask *doms_new[] */
8972 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8973 struct sched_domain_attr *dattr_new)
8974 {
8975 int i, j, n;
8976 int new_topology;
8977
8978 mutex_lock(&sched_domains_mutex);
8979
8980 /* always unregister in case we don't destroy any domains */
8981 unregister_sched_domain_sysctl();
8982
8983 /* Let architecture update cpu core mappings. */
8984 new_topology = arch_update_cpu_topology();
8985
8986 n = doms_new ? ndoms_new : 0;
8987
8988 /* Destroy deleted domains */
8989 for (i = 0; i < ndoms_cur; i++) {
8990 for (j = 0; j < n && !new_topology; j++) {
8991 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8992 && dattrs_equal(dattr_cur, i, dattr_new, j))
8993 goto match1;
8994 }
8995 /* no match - a current sched domain not in new doms_new[] */
8996 detach_destroy_domains(doms_cur + i);
8997 match1:
8998 ;
8999 }
9000
9001 if (doms_new == NULL) {
9002 ndoms_cur = 0;
9003 doms_new = fallback_doms;
9004 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9005 WARN_ON_ONCE(dattr_new);
9006 }
9007
9008 /* Build new domains */
9009 for (i = 0; i < ndoms_new; i++) {
9010 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9011 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9012 && dattrs_equal(dattr_new, i, dattr_cur, j))
9013 goto match2;
9014 }
9015 /* no match - add a new doms_new */
9016 __build_sched_domains(doms_new + i,
9017 dattr_new ? dattr_new + i : NULL);
9018 match2:
9019 ;
9020 }
9021
9022 /* Remember the new sched domains */
9023 if (doms_cur != fallback_doms)
9024 kfree(doms_cur);
9025 kfree(dattr_cur); /* kfree(NULL) is safe */
9026 doms_cur = doms_new;
9027 dattr_cur = dattr_new;
9028 ndoms_cur = ndoms_new;
9029
9030 register_sched_domain_sysctl();
9031
9032 mutex_unlock(&sched_domains_mutex);
9033 }
9034
9035 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9036 static void arch_reinit_sched_domains(void)
9037 {
9038 get_online_cpus();
9039
9040 /* Destroy domains first to force the rebuild */
9041 partition_sched_domains(0, NULL, NULL);
9042
9043 rebuild_sched_domains();
9044 put_online_cpus();
9045 }
9046
9047 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9048 {
9049 unsigned int level = 0;
9050
9051 if (sscanf(buf, "%u", &level) != 1)
9052 return -EINVAL;
9053
9054 /*
9055 * level is always be positive so don't check for
9056 * level < POWERSAVINGS_BALANCE_NONE which is 0
9057 * What happens on 0 or 1 byte write,
9058 * need to check for count as well?
9059 */
9060
9061 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9062 return -EINVAL;
9063
9064 if (smt)
9065 sched_smt_power_savings = level;
9066 else
9067 sched_mc_power_savings = level;
9068
9069 arch_reinit_sched_domains();
9070
9071 return count;
9072 }
9073
9074 #ifdef CONFIG_SCHED_MC
9075 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9076 char *page)
9077 {
9078 return sprintf(page, "%u\n", sched_mc_power_savings);
9079 }
9080 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9081 const char *buf, size_t count)
9082 {
9083 return sched_power_savings_store(buf, count, 0);
9084 }
9085 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9086 sched_mc_power_savings_show,
9087 sched_mc_power_savings_store);
9088 #endif
9089
9090 #ifdef CONFIG_SCHED_SMT
9091 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9092 char *page)
9093 {
9094 return sprintf(page, "%u\n", sched_smt_power_savings);
9095 }
9096 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9097 const char *buf, size_t count)
9098 {
9099 return sched_power_savings_store(buf, count, 1);
9100 }
9101 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9102 sched_smt_power_savings_show,
9103 sched_smt_power_savings_store);
9104 #endif
9105
9106 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9107 {
9108 int err = 0;
9109
9110 #ifdef CONFIG_SCHED_SMT
9111 if (smt_capable())
9112 err = sysfs_create_file(&cls->kset.kobj,
9113 &attr_sched_smt_power_savings.attr);
9114 #endif
9115 #ifdef CONFIG_SCHED_MC
9116 if (!err && mc_capable())
9117 err = sysfs_create_file(&cls->kset.kobj,
9118 &attr_sched_mc_power_savings.attr);
9119 #endif
9120 return err;
9121 }
9122 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9123
9124 #ifndef CONFIG_CPUSETS
9125 /*
9126 * Add online and remove offline CPUs from the scheduler domains.
9127 * When cpusets are enabled they take over this function.
9128 */
9129 static int update_sched_domains(struct notifier_block *nfb,
9130 unsigned long action, void *hcpu)
9131 {
9132 switch (action) {
9133 case CPU_ONLINE:
9134 case CPU_ONLINE_FROZEN:
9135 case CPU_DEAD:
9136 case CPU_DEAD_FROZEN:
9137 partition_sched_domains(1, NULL, NULL);
9138 return NOTIFY_OK;
9139
9140 default:
9141 return NOTIFY_DONE;
9142 }
9143 }
9144 #endif
9145
9146 static int update_runtime(struct notifier_block *nfb,
9147 unsigned long action, void *hcpu)
9148 {
9149 int cpu = (int)(long)hcpu;
9150
9151 switch (action) {
9152 case CPU_DOWN_PREPARE:
9153 case CPU_DOWN_PREPARE_FROZEN:
9154 disable_runtime(cpu_rq(cpu));
9155 return NOTIFY_OK;
9156
9157 case CPU_DOWN_FAILED:
9158 case CPU_DOWN_FAILED_FROZEN:
9159 case CPU_ONLINE:
9160 case CPU_ONLINE_FROZEN:
9161 enable_runtime(cpu_rq(cpu));
9162 return NOTIFY_OK;
9163
9164 default:
9165 return NOTIFY_DONE;
9166 }
9167 }
9168
9169 void __init sched_init_smp(void)
9170 {
9171 cpumask_var_t non_isolated_cpus;
9172
9173 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9174
9175 #if defined(CONFIG_NUMA)
9176 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9177 GFP_KERNEL);
9178 BUG_ON(sched_group_nodes_bycpu == NULL);
9179 #endif
9180 get_online_cpus();
9181 mutex_lock(&sched_domains_mutex);
9182 arch_init_sched_domains(cpu_online_mask);
9183 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9184 if (cpumask_empty(non_isolated_cpus))
9185 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9186 mutex_unlock(&sched_domains_mutex);
9187 put_online_cpus();
9188
9189 #ifndef CONFIG_CPUSETS
9190 /* XXX: Theoretical race here - CPU may be hotplugged now */
9191 hotcpu_notifier(update_sched_domains, 0);
9192 #endif
9193
9194 /* RT runtime code needs to handle some hotplug events */
9195 hotcpu_notifier(update_runtime, 0);
9196
9197 init_hrtick();
9198
9199 /* Move init over to a non-isolated CPU */
9200 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9201 BUG();
9202 sched_init_granularity();
9203 free_cpumask_var(non_isolated_cpus);
9204
9205 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9206 init_sched_rt_class();
9207 }
9208 #else
9209 void __init sched_init_smp(void)
9210 {
9211 sched_init_granularity();
9212 }
9213 #endif /* CONFIG_SMP */
9214
9215 const_debug unsigned int sysctl_timer_migration = 1;
9216
9217 int in_sched_functions(unsigned long addr)
9218 {
9219 return in_lock_functions(addr) ||
9220 (addr >= (unsigned long)__sched_text_start
9221 && addr < (unsigned long)__sched_text_end);
9222 }
9223
9224 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9225 {
9226 cfs_rq->tasks_timeline = RB_ROOT;
9227 INIT_LIST_HEAD(&cfs_rq->tasks);
9228 #ifdef CONFIG_FAIR_GROUP_SCHED
9229 cfs_rq->rq = rq;
9230 #endif
9231 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9232 }
9233
9234 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9235 {
9236 struct rt_prio_array *array;
9237 int i;
9238
9239 array = &rt_rq->active;
9240 for (i = 0; i < MAX_RT_PRIO; i++) {
9241 INIT_LIST_HEAD(array->queue + i);
9242 __clear_bit(i, array->bitmap);
9243 }
9244 /* delimiter for bitsearch: */
9245 __set_bit(MAX_RT_PRIO, array->bitmap);
9246
9247 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9248 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9249 #ifdef CONFIG_SMP
9250 rt_rq->highest_prio.next = MAX_RT_PRIO;
9251 #endif
9252 #endif
9253 #ifdef CONFIG_SMP
9254 rt_rq->rt_nr_migratory = 0;
9255 rt_rq->overloaded = 0;
9256 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9257 #endif
9258
9259 rt_rq->rt_time = 0;
9260 rt_rq->rt_throttled = 0;
9261 rt_rq->rt_runtime = 0;
9262 spin_lock_init(&rt_rq->rt_runtime_lock);
9263
9264 #ifdef CONFIG_RT_GROUP_SCHED
9265 rt_rq->rt_nr_boosted = 0;
9266 rt_rq->rq = rq;
9267 #endif
9268 }
9269
9270 #ifdef CONFIG_FAIR_GROUP_SCHED
9271 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9272 struct sched_entity *se, int cpu, int add,
9273 struct sched_entity *parent)
9274 {
9275 struct rq *rq = cpu_rq(cpu);
9276 tg->cfs_rq[cpu] = cfs_rq;
9277 init_cfs_rq(cfs_rq, rq);
9278 cfs_rq->tg = tg;
9279 if (add)
9280 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9281
9282 tg->se[cpu] = se;
9283 /* se could be NULL for init_task_group */
9284 if (!se)
9285 return;
9286
9287 if (!parent)
9288 se->cfs_rq = &rq->cfs;
9289 else
9290 se->cfs_rq = parent->my_q;
9291
9292 se->my_q = cfs_rq;
9293 se->load.weight = tg->shares;
9294 se->load.inv_weight = 0;
9295 se->parent = parent;
9296 }
9297 #endif
9298
9299 #ifdef CONFIG_RT_GROUP_SCHED
9300 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9301 struct sched_rt_entity *rt_se, int cpu, int add,
9302 struct sched_rt_entity *parent)
9303 {
9304 struct rq *rq = cpu_rq(cpu);
9305
9306 tg->rt_rq[cpu] = rt_rq;
9307 init_rt_rq(rt_rq, rq);
9308 rt_rq->tg = tg;
9309 rt_rq->rt_se = rt_se;
9310 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9311 if (add)
9312 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9313
9314 tg->rt_se[cpu] = rt_se;
9315 if (!rt_se)
9316 return;
9317
9318 if (!parent)
9319 rt_se->rt_rq = &rq->rt;
9320 else
9321 rt_se->rt_rq = parent->my_q;
9322
9323 rt_se->my_q = rt_rq;
9324 rt_se->parent = parent;
9325 INIT_LIST_HEAD(&rt_se->run_list);
9326 }
9327 #endif
9328
9329 void __init sched_init(void)
9330 {
9331 int i, j;
9332 unsigned long alloc_size = 0, ptr;
9333
9334 #ifdef CONFIG_FAIR_GROUP_SCHED
9335 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9336 #endif
9337 #ifdef CONFIG_RT_GROUP_SCHED
9338 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9339 #endif
9340 #ifdef CONFIG_USER_SCHED
9341 alloc_size *= 2;
9342 #endif
9343 #ifdef CONFIG_CPUMASK_OFFSTACK
9344 alloc_size += num_possible_cpus() * cpumask_size();
9345 #endif
9346 /*
9347 * As sched_init() is called before page_alloc is setup,
9348 * we use alloc_bootmem().
9349 */
9350 if (alloc_size) {
9351 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9352
9353 #ifdef CONFIG_FAIR_GROUP_SCHED
9354 init_task_group.se = (struct sched_entity **)ptr;
9355 ptr += nr_cpu_ids * sizeof(void **);
9356
9357 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9358 ptr += nr_cpu_ids * sizeof(void **);
9359
9360 #ifdef CONFIG_USER_SCHED
9361 root_task_group.se = (struct sched_entity **)ptr;
9362 ptr += nr_cpu_ids * sizeof(void **);
9363
9364 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9365 ptr += nr_cpu_ids * sizeof(void **);
9366 #endif /* CONFIG_USER_SCHED */
9367 #endif /* CONFIG_FAIR_GROUP_SCHED */
9368 #ifdef CONFIG_RT_GROUP_SCHED
9369 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9370 ptr += nr_cpu_ids * sizeof(void **);
9371
9372 init_task_group.rt_rq = (struct rt_rq **)ptr;
9373 ptr += nr_cpu_ids * sizeof(void **);
9374
9375 #ifdef CONFIG_USER_SCHED
9376 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9377 ptr += nr_cpu_ids * sizeof(void **);
9378
9379 root_task_group.rt_rq = (struct rt_rq **)ptr;
9380 ptr += nr_cpu_ids * sizeof(void **);
9381 #endif /* CONFIG_USER_SCHED */
9382 #endif /* CONFIG_RT_GROUP_SCHED */
9383 #ifdef CONFIG_CPUMASK_OFFSTACK
9384 for_each_possible_cpu(i) {
9385 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9386 ptr += cpumask_size();
9387 }
9388 #endif /* CONFIG_CPUMASK_OFFSTACK */
9389 }
9390
9391 #ifdef CONFIG_SMP
9392 init_defrootdomain();
9393 #endif
9394
9395 init_rt_bandwidth(&def_rt_bandwidth,
9396 global_rt_period(), global_rt_runtime());
9397
9398 #ifdef CONFIG_RT_GROUP_SCHED
9399 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9400 global_rt_period(), global_rt_runtime());
9401 #ifdef CONFIG_USER_SCHED
9402 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9403 global_rt_period(), RUNTIME_INF);
9404 #endif /* CONFIG_USER_SCHED */
9405 #endif /* CONFIG_RT_GROUP_SCHED */
9406
9407 #ifdef CONFIG_GROUP_SCHED
9408 list_add(&init_task_group.list, &task_groups);
9409 INIT_LIST_HEAD(&init_task_group.children);
9410
9411 #ifdef CONFIG_USER_SCHED
9412 INIT_LIST_HEAD(&root_task_group.children);
9413 init_task_group.parent = &root_task_group;
9414 list_add(&init_task_group.siblings, &root_task_group.children);
9415 #endif /* CONFIG_USER_SCHED */
9416 #endif /* CONFIG_GROUP_SCHED */
9417
9418 for_each_possible_cpu(i) {
9419 struct rq *rq;
9420
9421 rq = cpu_rq(i);
9422 spin_lock_init(&rq->lock);
9423 rq->nr_running = 0;
9424 rq->calc_load_active = 0;
9425 rq->calc_load_update = jiffies + LOAD_FREQ;
9426 init_cfs_rq(&rq->cfs, rq);
9427 init_rt_rq(&rq->rt, rq);
9428 #ifdef CONFIG_FAIR_GROUP_SCHED
9429 init_task_group.shares = init_task_group_load;
9430 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9431 #ifdef CONFIG_CGROUP_SCHED
9432 /*
9433 * How much cpu bandwidth does init_task_group get?
9434 *
9435 * In case of task-groups formed thr' the cgroup filesystem, it
9436 * gets 100% of the cpu resources in the system. This overall
9437 * system cpu resource is divided among the tasks of
9438 * init_task_group and its child task-groups in a fair manner,
9439 * based on each entity's (task or task-group's) weight
9440 * (se->load.weight).
9441 *
9442 * In other words, if init_task_group has 10 tasks of weight
9443 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9444 * then A0's share of the cpu resource is:
9445 *
9446 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9447 *
9448 * We achieve this by letting init_task_group's tasks sit
9449 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9450 */
9451 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9452 #elif defined CONFIG_USER_SCHED
9453 root_task_group.shares = NICE_0_LOAD;
9454 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9455 /*
9456 * In case of task-groups formed thr' the user id of tasks,
9457 * init_task_group represents tasks belonging to root user.
9458 * Hence it forms a sibling of all subsequent groups formed.
9459 * In this case, init_task_group gets only a fraction of overall
9460 * system cpu resource, based on the weight assigned to root
9461 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9462 * by letting tasks of init_task_group sit in a separate cfs_rq
9463 * (init_tg_cfs_rq) and having one entity represent this group of
9464 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9465 */
9466 init_tg_cfs_entry(&init_task_group,
9467 &per_cpu(init_tg_cfs_rq, i),
9468 &per_cpu(init_sched_entity, i), i, 1,
9469 root_task_group.se[i]);
9470
9471 #endif
9472 #endif /* CONFIG_FAIR_GROUP_SCHED */
9473
9474 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9475 #ifdef CONFIG_RT_GROUP_SCHED
9476 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9477 #ifdef CONFIG_CGROUP_SCHED
9478 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9479 #elif defined CONFIG_USER_SCHED
9480 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9481 init_tg_rt_entry(&init_task_group,
9482 &per_cpu(init_rt_rq, i),
9483 &per_cpu(init_sched_rt_entity, i), i, 1,
9484 root_task_group.rt_se[i]);
9485 #endif
9486 #endif
9487
9488 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9489 rq->cpu_load[j] = 0;
9490 #ifdef CONFIG_SMP
9491 rq->sd = NULL;
9492 rq->rd = NULL;
9493 rq->post_schedule = 0;
9494 rq->active_balance = 0;
9495 rq->next_balance = jiffies;
9496 rq->push_cpu = 0;
9497 rq->cpu = i;
9498 rq->online = 0;
9499 rq->migration_thread = NULL;
9500 INIT_LIST_HEAD(&rq->migration_queue);
9501 rq_attach_root(rq, &def_root_domain);
9502 #endif
9503 init_rq_hrtick(rq);
9504 atomic_set(&rq->nr_iowait, 0);
9505 }
9506
9507 set_load_weight(&init_task);
9508
9509 #ifdef CONFIG_PREEMPT_NOTIFIERS
9510 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9511 #endif
9512
9513 #ifdef CONFIG_SMP
9514 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9515 #endif
9516
9517 #ifdef CONFIG_RT_MUTEXES
9518 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9519 #endif
9520
9521 /*
9522 * The boot idle thread does lazy MMU switching as well:
9523 */
9524 atomic_inc(&init_mm.mm_count);
9525 enter_lazy_tlb(&init_mm, current);
9526
9527 /*
9528 * Make us the idle thread. Technically, schedule() should not be
9529 * called from this thread, however somewhere below it might be,
9530 * but because we are the idle thread, we just pick up running again
9531 * when this runqueue becomes "idle".
9532 */
9533 init_idle(current, smp_processor_id());
9534
9535 calc_load_update = jiffies + LOAD_FREQ;
9536
9537 /*
9538 * During early bootup we pretend to be a normal task:
9539 */
9540 current->sched_class = &fair_sched_class;
9541
9542 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9543 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9544 #ifdef CONFIG_SMP
9545 #ifdef CONFIG_NO_HZ
9546 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9547 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9548 #endif
9549 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9550 #endif /* SMP */
9551
9552 perf_event_init();
9553
9554 scheduler_running = 1;
9555 }
9556
9557 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9558 static inline int preempt_count_equals(int preempt_offset)
9559 {
9560 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9561
9562 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9563 }
9564
9565 void __might_sleep(char *file, int line, int preempt_offset)
9566 {
9567 #ifdef in_atomic
9568 static unsigned long prev_jiffy; /* ratelimiting */
9569
9570 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9571 system_state != SYSTEM_RUNNING || oops_in_progress)
9572 return;
9573 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9574 return;
9575 prev_jiffy = jiffies;
9576
9577 printk(KERN_ERR
9578 "BUG: sleeping function called from invalid context at %s:%d\n",
9579 file, line);
9580 printk(KERN_ERR
9581 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9582 in_atomic(), irqs_disabled(),
9583 current->pid, current->comm);
9584
9585 debug_show_held_locks(current);
9586 if (irqs_disabled())
9587 print_irqtrace_events(current);
9588 dump_stack();
9589 #endif
9590 }
9591 EXPORT_SYMBOL(__might_sleep);
9592 #endif
9593
9594 #ifdef CONFIG_MAGIC_SYSRQ
9595 static void normalize_task(struct rq *rq, struct task_struct *p)
9596 {
9597 int on_rq;
9598
9599 update_rq_clock(rq);
9600 on_rq = p->se.on_rq;
9601 if (on_rq)
9602 deactivate_task(rq, p, 0);
9603 __setscheduler(rq, p, SCHED_NORMAL, 0);
9604 if (on_rq) {
9605 activate_task(rq, p, 0);
9606 resched_task(rq->curr);
9607 }
9608 }
9609
9610 void normalize_rt_tasks(void)
9611 {
9612 struct task_struct *g, *p;
9613 unsigned long flags;
9614 struct rq *rq;
9615
9616 read_lock_irqsave(&tasklist_lock, flags);
9617 do_each_thread(g, p) {
9618 /*
9619 * Only normalize user tasks:
9620 */
9621 if (!p->mm)
9622 continue;
9623
9624 p->se.exec_start = 0;
9625 #ifdef CONFIG_SCHEDSTATS
9626 p->se.wait_start = 0;
9627 p->se.sleep_start = 0;
9628 p->se.block_start = 0;
9629 #endif
9630
9631 if (!rt_task(p)) {
9632 /*
9633 * Renice negative nice level userspace
9634 * tasks back to 0:
9635 */
9636 if (TASK_NICE(p) < 0 && p->mm)
9637 set_user_nice(p, 0);
9638 continue;
9639 }
9640
9641 spin_lock(&p->pi_lock);
9642 rq = __task_rq_lock(p);
9643
9644 normalize_task(rq, p);
9645
9646 __task_rq_unlock(rq);
9647 spin_unlock(&p->pi_lock);
9648 } while_each_thread(g, p);
9649
9650 read_unlock_irqrestore(&tasklist_lock, flags);
9651 }
9652
9653 #endif /* CONFIG_MAGIC_SYSRQ */
9654
9655 #ifdef CONFIG_IA64
9656 /*
9657 * These functions are only useful for the IA64 MCA handling.
9658 *
9659 * They can only be called when the whole system has been
9660 * stopped - every CPU needs to be quiescent, and no scheduling
9661 * activity can take place. Using them for anything else would
9662 * be a serious bug, and as a result, they aren't even visible
9663 * under any other configuration.
9664 */
9665
9666 /**
9667 * curr_task - return the current task for a given cpu.
9668 * @cpu: the processor in question.
9669 *
9670 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9671 */
9672 struct task_struct *curr_task(int cpu)
9673 {
9674 return cpu_curr(cpu);
9675 }
9676
9677 /**
9678 * set_curr_task - set the current task for a given cpu.
9679 * @cpu: the processor in question.
9680 * @p: the task pointer to set.
9681 *
9682 * Description: This function must only be used when non-maskable interrupts
9683 * are serviced on a separate stack. It allows the architecture to switch the
9684 * notion of the current task on a cpu in a non-blocking manner. This function
9685 * must be called with all CPU's synchronized, and interrupts disabled, the
9686 * and caller must save the original value of the current task (see
9687 * curr_task() above) and restore that value before reenabling interrupts and
9688 * re-starting the system.
9689 *
9690 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9691 */
9692 void set_curr_task(int cpu, struct task_struct *p)
9693 {
9694 cpu_curr(cpu) = p;
9695 }
9696
9697 #endif
9698
9699 #ifdef CONFIG_FAIR_GROUP_SCHED
9700 static void free_fair_sched_group(struct task_group *tg)
9701 {
9702 int i;
9703
9704 for_each_possible_cpu(i) {
9705 if (tg->cfs_rq)
9706 kfree(tg->cfs_rq[i]);
9707 if (tg->se)
9708 kfree(tg->se[i]);
9709 }
9710
9711 kfree(tg->cfs_rq);
9712 kfree(tg->se);
9713 }
9714
9715 static
9716 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9717 {
9718 struct cfs_rq *cfs_rq;
9719 struct sched_entity *se;
9720 struct rq *rq;
9721 int i;
9722
9723 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9724 if (!tg->cfs_rq)
9725 goto err;
9726 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9727 if (!tg->se)
9728 goto err;
9729
9730 tg->shares = NICE_0_LOAD;
9731
9732 for_each_possible_cpu(i) {
9733 rq = cpu_rq(i);
9734
9735 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9736 GFP_KERNEL, cpu_to_node(i));
9737 if (!cfs_rq)
9738 goto err;
9739
9740 se = kzalloc_node(sizeof(struct sched_entity),
9741 GFP_KERNEL, cpu_to_node(i));
9742 if (!se)
9743 goto err;
9744
9745 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9746 }
9747
9748 return 1;
9749
9750 err:
9751 return 0;
9752 }
9753
9754 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9755 {
9756 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9757 &cpu_rq(cpu)->leaf_cfs_rq_list);
9758 }
9759
9760 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9761 {
9762 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9763 }
9764 #else /* !CONFG_FAIR_GROUP_SCHED */
9765 static inline void free_fair_sched_group(struct task_group *tg)
9766 {
9767 }
9768
9769 static inline
9770 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9771 {
9772 return 1;
9773 }
9774
9775 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9776 {
9777 }
9778
9779 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9780 {
9781 }
9782 #endif /* CONFIG_FAIR_GROUP_SCHED */
9783
9784 #ifdef CONFIG_RT_GROUP_SCHED
9785 static void free_rt_sched_group(struct task_group *tg)
9786 {
9787 int i;
9788
9789 destroy_rt_bandwidth(&tg->rt_bandwidth);
9790
9791 for_each_possible_cpu(i) {
9792 if (tg->rt_rq)
9793 kfree(tg->rt_rq[i]);
9794 if (tg->rt_se)
9795 kfree(tg->rt_se[i]);
9796 }
9797
9798 kfree(tg->rt_rq);
9799 kfree(tg->rt_se);
9800 }
9801
9802 static
9803 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9804 {
9805 struct rt_rq *rt_rq;
9806 struct sched_rt_entity *rt_se;
9807 struct rq *rq;
9808 int i;
9809
9810 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9811 if (!tg->rt_rq)
9812 goto err;
9813 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9814 if (!tg->rt_se)
9815 goto err;
9816
9817 init_rt_bandwidth(&tg->rt_bandwidth,
9818 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9819
9820 for_each_possible_cpu(i) {
9821 rq = cpu_rq(i);
9822
9823 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9824 GFP_KERNEL, cpu_to_node(i));
9825 if (!rt_rq)
9826 goto err;
9827
9828 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9829 GFP_KERNEL, cpu_to_node(i));
9830 if (!rt_se)
9831 goto err;
9832
9833 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9834 }
9835
9836 return 1;
9837
9838 err:
9839 return 0;
9840 }
9841
9842 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9843 {
9844 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9845 &cpu_rq(cpu)->leaf_rt_rq_list);
9846 }
9847
9848 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9849 {
9850 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9851 }
9852 #else /* !CONFIG_RT_GROUP_SCHED */
9853 static inline void free_rt_sched_group(struct task_group *tg)
9854 {
9855 }
9856
9857 static inline
9858 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9859 {
9860 return 1;
9861 }
9862
9863 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9864 {
9865 }
9866
9867 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9868 {
9869 }
9870 #endif /* CONFIG_RT_GROUP_SCHED */
9871
9872 #ifdef CONFIG_GROUP_SCHED
9873 static void free_sched_group(struct task_group *tg)
9874 {
9875 free_fair_sched_group(tg);
9876 free_rt_sched_group(tg);
9877 kfree(tg);
9878 }
9879
9880 /* allocate runqueue etc for a new task group */
9881 struct task_group *sched_create_group(struct task_group *parent)
9882 {
9883 struct task_group *tg;
9884 unsigned long flags;
9885 int i;
9886
9887 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9888 if (!tg)
9889 return ERR_PTR(-ENOMEM);
9890
9891 if (!alloc_fair_sched_group(tg, parent))
9892 goto err;
9893
9894 if (!alloc_rt_sched_group(tg, parent))
9895 goto err;
9896
9897 spin_lock_irqsave(&task_group_lock, flags);
9898 for_each_possible_cpu(i) {
9899 register_fair_sched_group(tg, i);
9900 register_rt_sched_group(tg, i);
9901 }
9902 list_add_rcu(&tg->list, &task_groups);
9903
9904 WARN_ON(!parent); /* root should already exist */
9905
9906 tg->parent = parent;
9907 INIT_LIST_HEAD(&tg->children);
9908 list_add_rcu(&tg->siblings, &parent->children);
9909 spin_unlock_irqrestore(&task_group_lock, flags);
9910
9911 return tg;
9912
9913 err:
9914 free_sched_group(tg);
9915 return ERR_PTR(-ENOMEM);
9916 }
9917
9918 /* rcu callback to free various structures associated with a task group */
9919 static void free_sched_group_rcu(struct rcu_head *rhp)
9920 {
9921 /* now it should be safe to free those cfs_rqs */
9922 free_sched_group(container_of(rhp, struct task_group, rcu));
9923 }
9924
9925 /* Destroy runqueue etc associated with a task group */
9926 void sched_destroy_group(struct task_group *tg)
9927 {
9928 unsigned long flags;
9929 int i;
9930
9931 spin_lock_irqsave(&task_group_lock, flags);
9932 for_each_possible_cpu(i) {
9933 unregister_fair_sched_group(tg, i);
9934 unregister_rt_sched_group(tg, i);
9935 }
9936 list_del_rcu(&tg->list);
9937 list_del_rcu(&tg->siblings);
9938 spin_unlock_irqrestore(&task_group_lock, flags);
9939
9940 /* wait for possible concurrent references to cfs_rqs complete */
9941 call_rcu(&tg->rcu, free_sched_group_rcu);
9942 }
9943
9944 /* change task's runqueue when it moves between groups.
9945 * The caller of this function should have put the task in its new group
9946 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9947 * reflect its new group.
9948 */
9949 void sched_move_task(struct task_struct *tsk)
9950 {
9951 int on_rq, running;
9952 unsigned long flags;
9953 struct rq *rq;
9954
9955 rq = task_rq_lock(tsk, &flags);
9956
9957 update_rq_clock(rq);
9958
9959 running = task_current(rq, tsk);
9960 on_rq = tsk->se.on_rq;
9961
9962 if (on_rq)
9963 dequeue_task(rq, tsk, 0);
9964 if (unlikely(running))
9965 tsk->sched_class->put_prev_task(rq, tsk);
9966
9967 set_task_rq(tsk, task_cpu(tsk));
9968
9969 #ifdef CONFIG_FAIR_GROUP_SCHED
9970 if (tsk->sched_class->moved_group)
9971 tsk->sched_class->moved_group(tsk);
9972 #endif
9973
9974 if (unlikely(running))
9975 tsk->sched_class->set_curr_task(rq);
9976 if (on_rq)
9977 enqueue_task(rq, tsk, 0);
9978
9979 task_rq_unlock(rq, &flags);
9980 }
9981 #endif /* CONFIG_GROUP_SCHED */
9982
9983 #ifdef CONFIG_FAIR_GROUP_SCHED
9984 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9985 {
9986 struct cfs_rq *cfs_rq = se->cfs_rq;
9987 int on_rq;
9988
9989 on_rq = se->on_rq;
9990 if (on_rq)
9991 dequeue_entity(cfs_rq, se, 0);
9992
9993 se->load.weight = shares;
9994 se->load.inv_weight = 0;
9995
9996 if (on_rq)
9997 enqueue_entity(cfs_rq, se, 0);
9998 }
9999
10000 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10001 {
10002 struct cfs_rq *cfs_rq = se->cfs_rq;
10003 struct rq *rq = cfs_rq->rq;
10004 unsigned long flags;
10005
10006 spin_lock_irqsave(&rq->lock, flags);
10007 __set_se_shares(se, shares);
10008 spin_unlock_irqrestore(&rq->lock, flags);
10009 }
10010
10011 static DEFINE_MUTEX(shares_mutex);
10012
10013 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10014 {
10015 int i;
10016 unsigned long flags;
10017
10018 /*
10019 * We can't change the weight of the root cgroup.
10020 */
10021 if (!tg->se[0])
10022 return -EINVAL;
10023
10024 if (shares < MIN_SHARES)
10025 shares = MIN_SHARES;
10026 else if (shares > MAX_SHARES)
10027 shares = MAX_SHARES;
10028
10029 mutex_lock(&shares_mutex);
10030 if (tg->shares == shares)
10031 goto done;
10032
10033 spin_lock_irqsave(&task_group_lock, flags);
10034 for_each_possible_cpu(i)
10035 unregister_fair_sched_group(tg, i);
10036 list_del_rcu(&tg->siblings);
10037 spin_unlock_irqrestore(&task_group_lock, flags);
10038
10039 /* wait for any ongoing reference to this group to finish */
10040 synchronize_sched();
10041
10042 /*
10043 * Now we are free to modify the group's share on each cpu
10044 * w/o tripping rebalance_share or load_balance_fair.
10045 */
10046 tg->shares = shares;
10047 for_each_possible_cpu(i) {
10048 /*
10049 * force a rebalance
10050 */
10051 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10052 set_se_shares(tg->se[i], shares);
10053 }
10054
10055 /*
10056 * Enable load balance activity on this group, by inserting it back on
10057 * each cpu's rq->leaf_cfs_rq_list.
10058 */
10059 spin_lock_irqsave(&task_group_lock, flags);
10060 for_each_possible_cpu(i)
10061 register_fair_sched_group(tg, i);
10062 list_add_rcu(&tg->siblings, &tg->parent->children);
10063 spin_unlock_irqrestore(&task_group_lock, flags);
10064 done:
10065 mutex_unlock(&shares_mutex);
10066 return 0;
10067 }
10068
10069 unsigned long sched_group_shares(struct task_group *tg)
10070 {
10071 return tg->shares;
10072 }
10073 #endif
10074
10075 #ifdef CONFIG_RT_GROUP_SCHED
10076 /*
10077 * Ensure that the real time constraints are schedulable.
10078 */
10079 static DEFINE_MUTEX(rt_constraints_mutex);
10080
10081 static unsigned long to_ratio(u64 period, u64 runtime)
10082 {
10083 if (runtime == RUNTIME_INF)
10084 return 1ULL << 20;
10085
10086 return div64_u64(runtime << 20, period);
10087 }
10088
10089 /* Must be called with tasklist_lock held */
10090 static inline int tg_has_rt_tasks(struct task_group *tg)
10091 {
10092 struct task_struct *g, *p;
10093
10094 do_each_thread(g, p) {
10095 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10096 return 1;
10097 } while_each_thread(g, p);
10098
10099 return 0;
10100 }
10101
10102 struct rt_schedulable_data {
10103 struct task_group *tg;
10104 u64 rt_period;
10105 u64 rt_runtime;
10106 };
10107
10108 static int tg_schedulable(struct task_group *tg, void *data)
10109 {
10110 struct rt_schedulable_data *d = data;
10111 struct task_group *child;
10112 unsigned long total, sum = 0;
10113 u64 period, runtime;
10114
10115 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10116 runtime = tg->rt_bandwidth.rt_runtime;
10117
10118 if (tg == d->tg) {
10119 period = d->rt_period;
10120 runtime = d->rt_runtime;
10121 }
10122
10123 #ifdef CONFIG_USER_SCHED
10124 if (tg == &root_task_group) {
10125 period = global_rt_period();
10126 runtime = global_rt_runtime();
10127 }
10128 #endif
10129
10130 /*
10131 * Cannot have more runtime than the period.
10132 */
10133 if (runtime > period && runtime != RUNTIME_INF)
10134 return -EINVAL;
10135
10136 /*
10137 * Ensure we don't starve existing RT tasks.
10138 */
10139 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10140 return -EBUSY;
10141
10142 total = to_ratio(period, runtime);
10143
10144 /*
10145 * Nobody can have more than the global setting allows.
10146 */
10147 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10148 return -EINVAL;
10149
10150 /*
10151 * The sum of our children's runtime should not exceed our own.
10152 */
10153 list_for_each_entry_rcu(child, &tg->children, siblings) {
10154 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10155 runtime = child->rt_bandwidth.rt_runtime;
10156
10157 if (child == d->tg) {
10158 period = d->rt_period;
10159 runtime = d->rt_runtime;
10160 }
10161
10162 sum += to_ratio(period, runtime);
10163 }
10164
10165 if (sum > total)
10166 return -EINVAL;
10167
10168 return 0;
10169 }
10170
10171 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10172 {
10173 struct rt_schedulable_data data = {
10174 .tg = tg,
10175 .rt_period = period,
10176 .rt_runtime = runtime,
10177 };
10178
10179 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10180 }
10181
10182 static int tg_set_bandwidth(struct task_group *tg,
10183 u64 rt_period, u64 rt_runtime)
10184 {
10185 int i, err = 0;
10186
10187 mutex_lock(&rt_constraints_mutex);
10188 read_lock(&tasklist_lock);
10189 err = __rt_schedulable(tg, rt_period, rt_runtime);
10190 if (err)
10191 goto unlock;
10192
10193 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10194 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10195 tg->rt_bandwidth.rt_runtime = rt_runtime;
10196
10197 for_each_possible_cpu(i) {
10198 struct rt_rq *rt_rq = tg->rt_rq[i];
10199
10200 spin_lock(&rt_rq->rt_runtime_lock);
10201 rt_rq->rt_runtime = rt_runtime;
10202 spin_unlock(&rt_rq->rt_runtime_lock);
10203 }
10204 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10205 unlock:
10206 read_unlock(&tasklist_lock);
10207 mutex_unlock(&rt_constraints_mutex);
10208
10209 return err;
10210 }
10211
10212 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10213 {
10214 u64 rt_runtime, rt_period;
10215
10216 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10217 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10218 if (rt_runtime_us < 0)
10219 rt_runtime = RUNTIME_INF;
10220
10221 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10222 }
10223
10224 long sched_group_rt_runtime(struct task_group *tg)
10225 {
10226 u64 rt_runtime_us;
10227
10228 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10229 return -1;
10230
10231 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10232 do_div(rt_runtime_us, NSEC_PER_USEC);
10233 return rt_runtime_us;
10234 }
10235
10236 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10237 {
10238 u64 rt_runtime, rt_period;
10239
10240 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10241 rt_runtime = tg->rt_bandwidth.rt_runtime;
10242
10243 if (rt_period == 0)
10244 return -EINVAL;
10245
10246 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10247 }
10248
10249 long sched_group_rt_period(struct task_group *tg)
10250 {
10251 u64 rt_period_us;
10252
10253 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10254 do_div(rt_period_us, NSEC_PER_USEC);
10255 return rt_period_us;
10256 }
10257
10258 static int sched_rt_global_constraints(void)
10259 {
10260 u64 runtime, period;
10261 int ret = 0;
10262
10263 if (sysctl_sched_rt_period <= 0)
10264 return -EINVAL;
10265
10266 runtime = global_rt_runtime();
10267 period = global_rt_period();
10268
10269 /*
10270 * Sanity check on the sysctl variables.
10271 */
10272 if (runtime > period && runtime != RUNTIME_INF)
10273 return -EINVAL;
10274
10275 mutex_lock(&rt_constraints_mutex);
10276 read_lock(&tasklist_lock);
10277 ret = __rt_schedulable(NULL, 0, 0);
10278 read_unlock(&tasklist_lock);
10279 mutex_unlock(&rt_constraints_mutex);
10280
10281 return ret;
10282 }
10283
10284 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10285 {
10286 /* Don't accept realtime tasks when there is no way for them to run */
10287 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10288 return 0;
10289
10290 return 1;
10291 }
10292
10293 #else /* !CONFIG_RT_GROUP_SCHED */
10294 static int sched_rt_global_constraints(void)
10295 {
10296 unsigned long flags;
10297 int i;
10298
10299 if (sysctl_sched_rt_period <= 0)
10300 return -EINVAL;
10301
10302 /*
10303 * There's always some RT tasks in the root group
10304 * -- migration, kstopmachine etc..
10305 */
10306 if (sysctl_sched_rt_runtime == 0)
10307 return -EBUSY;
10308
10309 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10310 for_each_possible_cpu(i) {
10311 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10312
10313 spin_lock(&rt_rq->rt_runtime_lock);
10314 rt_rq->rt_runtime = global_rt_runtime();
10315 spin_unlock(&rt_rq->rt_runtime_lock);
10316 }
10317 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10318
10319 return 0;
10320 }
10321 #endif /* CONFIG_RT_GROUP_SCHED */
10322
10323 int sched_rt_handler(struct ctl_table *table, int write,
10324 struct file *filp, void __user *buffer, size_t *lenp,
10325 loff_t *ppos)
10326 {
10327 int ret;
10328 int old_period, old_runtime;
10329 static DEFINE_MUTEX(mutex);
10330
10331 mutex_lock(&mutex);
10332 old_period = sysctl_sched_rt_period;
10333 old_runtime = sysctl_sched_rt_runtime;
10334
10335 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10336
10337 if (!ret && write) {
10338 ret = sched_rt_global_constraints();
10339 if (ret) {
10340 sysctl_sched_rt_period = old_period;
10341 sysctl_sched_rt_runtime = old_runtime;
10342 } else {
10343 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10344 def_rt_bandwidth.rt_period =
10345 ns_to_ktime(global_rt_period());
10346 }
10347 }
10348 mutex_unlock(&mutex);
10349
10350 return ret;
10351 }
10352
10353 #ifdef CONFIG_CGROUP_SCHED
10354
10355 /* return corresponding task_group object of a cgroup */
10356 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10357 {
10358 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10359 struct task_group, css);
10360 }
10361
10362 static struct cgroup_subsys_state *
10363 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10364 {
10365 struct task_group *tg, *parent;
10366
10367 if (!cgrp->parent) {
10368 /* This is early initialization for the top cgroup */
10369 return &init_task_group.css;
10370 }
10371
10372 parent = cgroup_tg(cgrp->parent);
10373 tg = sched_create_group(parent);
10374 if (IS_ERR(tg))
10375 return ERR_PTR(-ENOMEM);
10376
10377 return &tg->css;
10378 }
10379
10380 static void
10381 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10382 {
10383 struct task_group *tg = cgroup_tg(cgrp);
10384
10385 sched_destroy_group(tg);
10386 }
10387
10388 static int
10389 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10390 struct task_struct *tsk)
10391 {
10392 #ifdef CONFIG_RT_GROUP_SCHED
10393 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10394 return -EINVAL;
10395 #else
10396 /* We don't support RT-tasks being in separate groups */
10397 if (tsk->sched_class != &fair_sched_class)
10398 return -EINVAL;
10399 #endif
10400
10401 return 0;
10402 }
10403
10404 static void
10405 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10406 struct cgroup *old_cont, struct task_struct *tsk)
10407 {
10408 sched_move_task(tsk);
10409 }
10410
10411 #ifdef CONFIG_FAIR_GROUP_SCHED
10412 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10413 u64 shareval)
10414 {
10415 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10416 }
10417
10418 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10419 {
10420 struct task_group *tg = cgroup_tg(cgrp);
10421
10422 return (u64) tg->shares;
10423 }
10424 #endif /* CONFIG_FAIR_GROUP_SCHED */
10425
10426 #ifdef CONFIG_RT_GROUP_SCHED
10427 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10428 s64 val)
10429 {
10430 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10431 }
10432
10433 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10434 {
10435 return sched_group_rt_runtime(cgroup_tg(cgrp));
10436 }
10437
10438 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10439 u64 rt_period_us)
10440 {
10441 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10442 }
10443
10444 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10445 {
10446 return sched_group_rt_period(cgroup_tg(cgrp));
10447 }
10448 #endif /* CONFIG_RT_GROUP_SCHED */
10449
10450 static struct cftype cpu_files[] = {
10451 #ifdef CONFIG_FAIR_GROUP_SCHED
10452 {
10453 .name = "shares",
10454 .read_u64 = cpu_shares_read_u64,
10455 .write_u64 = cpu_shares_write_u64,
10456 },
10457 #endif
10458 #ifdef CONFIG_RT_GROUP_SCHED
10459 {
10460 .name = "rt_runtime_us",
10461 .read_s64 = cpu_rt_runtime_read,
10462 .write_s64 = cpu_rt_runtime_write,
10463 },
10464 {
10465 .name = "rt_period_us",
10466 .read_u64 = cpu_rt_period_read_uint,
10467 .write_u64 = cpu_rt_period_write_uint,
10468 },
10469 #endif
10470 };
10471
10472 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10473 {
10474 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10475 }
10476
10477 struct cgroup_subsys cpu_cgroup_subsys = {
10478 .name = "cpu",
10479 .create = cpu_cgroup_create,
10480 .destroy = cpu_cgroup_destroy,
10481 .can_attach = cpu_cgroup_can_attach,
10482 .attach = cpu_cgroup_attach,
10483 .populate = cpu_cgroup_populate,
10484 .subsys_id = cpu_cgroup_subsys_id,
10485 .early_init = 1,
10486 };
10487
10488 #endif /* CONFIG_CGROUP_SCHED */
10489
10490 #ifdef CONFIG_CGROUP_CPUACCT
10491
10492 /*
10493 * CPU accounting code for task groups.
10494 *
10495 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10496 * (balbir@in.ibm.com).
10497 */
10498
10499 /* track cpu usage of a group of tasks and its child groups */
10500 struct cpuacct {
10501 struct cgroup_subsys_state css;
10502 /* cpuusage holds pointer to a u64-type object on every cpu */
10503 u64 *cpuusage;
10504 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10505 struct cpuacct *parent;
10506 };
10507
10508 struct cgroup_subsys cpuacct_subsys;
10509
10510 /* return cpu accounting group corresponding to this container */
10511 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10512 {
10513 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10514 struct cpuacct, css);
10515 }
10516
10517 /* return cpu accounting group to which this task belongs */
10518 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10519 {
10520 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10521 struct cpuacct, css);
10522 }
10523
10524 /* create a new cpu accounting group */
10525 static struct cgroup_subsys_state *cpuacct_create(
10526 struct cgroup_subsys *ss, struct cgroup *cgrp)
10527 {
10528 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10529 int i;
10530
10531 if (!ca)
10532 goto out;
10533
10534 ca->cpuusage = alloc_percpu(u64);
10535 if (!ca->cpuusage)
10536 goto out_free_ca;
10537
10538 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10539 if (percpu_counter_init(&ca->cpustat[i], 0))
10540 goto out_free_counters;
10541
10542 if (cgrp->parent)
10543 ca->parent = cgroup_ca(cgrp->parent);
10544
10545 return &ca->css;
10546
10547 out_free_counters:
10548 while (--i >= 0)
10549 percpu_counter_destroy(&ca->cpustat[i]);
10550 free_percpu(ca->cpuusage);
10551 out_free_ca:
10552 kfree(ca);
10553 out:
10554 return ERR_PTR(-ENOMEM);
10555 }
10556
10557 /* destroy an existing cpu accounting group */
10558 static void
10559 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10560 {
10561 struct cpuacct *ca = cgroup_ca(cgrp);
10562 int i;
10563
10564 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10565 percpu_counter_destroy(&ca->cpustat[i]);
10566 free_percpu(ca->cpuusage);
10567 kfree(ca);
10568 }
10569
10570 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10571 {
10572 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10573 u64 data;
10574
10575 #ifndef CONFIG_64BIT
10576 /*
10577 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10578 */
10579 spin_lock_irq(&cpu_rq(cpu)->lock);
10580 data = *cpuusage;
10581 spin_unlock_irq(&cpu_rq(cpu)->lock);
10582 #else
10583 data = *cpuusage;
10584 #endif
10585
10586 return data;
10587 }
10588
10589 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10590 {
10591 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10592
10593 #ifndef CONFIG_64BIT
10594 /*
10595 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10596 */
10597 spin_lock_irq(&cpu_rq(cpu)->lock);
10598 *cpuusage = val;
10599 spin_unlock_irq(&cpu_rq(cpu)->lock);
10600 #else
10601 *cpuusage = val;
10602 #endif
10603 }
10604
10605 /* return total cpu usage (in nanoseconds) of a group */
10606 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10607 {
10608 struct cpuacct *ca = cgroup_ca(cgrp);
10609 u64 totalcpuusage = 0;
10610 int i;
10611
10612 for_each_present_cpu(i)
10613 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10614
10615 return totalcpuusage;
10616 }
10617
10618 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10619 u64 reset)
10620 {
10621 struct cpuacct *ca = cgroup_ca(cgrp);
10622 int err = 0;
10623 int i;
10624
10625 if (reset) {
10626 err = -EINVAL;
10627 goto out;
10628 }
10629
10630 for_each_present_cpu(i)
10631 cpuacct_cpuusage_write(ca, i, 0);
10632
10633 out:
10634 return err;
10635 }
10636
10637 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10638 struct seq_file *m)
10639 {
10640 struct cpuacct *ca = cgroup_ca(cgroup);
10641 u64 percpu;
10642 int i;
10643
10644 for_each_present_cpu(i) {
10645 percpu = cpuacct_cpuusage_read(ca, i);
10646 seq_printf(m, "%llu ", (unsigned long long) percpu);
10647 }
10648 seq_printf(m, "\n");
10649 return 0;
10650 }
10651
10652 static const char *cpuacct_stat_desc[] = {
10653 [CPUACCT_STAT_USER] = "user",
10654 [CPUACCT_STAT_SYSTEM] = "system",
10655 };
10656
10657 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10658 struct cgroup_map_cb *cb)
10659 {
10660 struct cpuacct *ca = cgroup_ca(cgrp);
10661 int i;
10662
10663 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10664 s64 val = percpu_counter_read(&ca->cpustat[i]);
10665 val = cputime64_to_clock_t(val);
10666 cb->fill(cb, cpuacct_stat_desc[i], val);
10667 }
10668 return 0;
10669 }
10670
10671 static struct cftype files[] = {
10672 {
10673 .name = "usage",
10674 .read_u64 = cpuusage_read,
10675 .write_u64 = cpuusage_write,
10676 },
10677 {
10678 .name = "usage_percpu",
10679 .read_seq_string = cpuacct_percpu_seq_read,
10680 },
10681 {
10682 .name = "stat",
10683 .read_map = cpuacct_stats_show,
10684 },
10685 };
10686
10687 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10688 {
10689 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10690 }
10691
10692 /*
10693 * charge this task's execution time to its accounting group.
10694 *
10695 * called with rq->lock held.
10696 */
10697 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10698 {
10699 struct cpuacct *ca;
10700 int cpu;
10701
10702 if (unlikely(!cpuacct_subsys.active))
10703 return;
10704
10705 cpu = task_cpu(tsk);
10706
10707 rcu_read_lock();
10708
10709 ca = task_ca(tsk);
10710
10711 for (; ca; ca = ca->parent) {
10712 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10713 *cpuusage += cputime;
10714 }
10715
10716 rcu_read_unlock();
10717 }
10718
10719 /*
10720 * Charge the system/user time to the task's accounting group.
10721 */
10722 static void cpuacct_update_stats(struct task_struct *tsk,
10723 enum cpuacct_stat_index idx, cputime_t val)
10724 {
10725 struct cpuacct *ca;
10726
10727 if (unlikely(!cpuacct_subsys.active))
10728 return;
10729
10730 rcu_read_lock();
10731 ca = task_ca(tsk);
10732
10733 do {
10734 percpu_counter_add(&ca->cpustat[idx], val);
10735 ca = ca->parent;
10736 } while (ca);
10737 rcu_read_unlock();
10738 }
10739
10740 struct cgroup_subsys cpuacct_subsys = {
10741 .name = "cpuacct",
10742 .create = cpuacct_create,
10743 .destroy = cpuacct_destroy,
10744 .populate = cpuacct_populate,
10745 .subsys_id = cpuacct_subsys_id,
10746 };
10747 #endif /* CONFIG_CGROUP_CPUACCT */
10748
10749 #ifndef CONFIG_SMP
10750
10751 int rcu_expedited_torture_stats(char *page)
10752 {
10753 return 0;
10754 }
10755 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10756
10757 void synchronize_sched_expedited(void)
10758 {
10759 }
10760 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10761
10762 #else /* #ifndef CONFIG_SMP */
10763
10764 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10765 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10766
10767 #define RCU_EXPEDITED_STATE_POST -2
10768 #define RCU_EXPEDITED_STATE_IDLE -1
10769
10770 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10771
10772 int rcu_expedited_torture_stats(char *page)
10773 {
10774 int cnt = 0;
10775 int cpu;
10776
10777 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10778 for_each_online_cpu(cpu) {
10779 cnt += sprintf(&page[cnt], " %d:%d",
10780 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10781 }
10782 cnt += sprintf(&page[cnt], "\n");
10783 return cnt;
10784 }
10785 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10786
10787 static long synchronize_sched_expedited_count;
10788
10789 /*
10790 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10791 * approach to force grace period to end quickly. This consumes
10792 * significant time on all CPUs, and is thus not recommended for
10793 * any sort of common-case code.
10794 *
10795 * Note that it is illegal to call this function while holding any
10796 * lock that is acquired by a CPU-hotplug notifier. Failing to
10797 * observe this restriction will result in deadlock.
10798 */
10799 void synchronize_sched_expedited(void)
10800 {
10801 int cpu;
10802 unsigned long flags;
10803 bool need_full_sync = 0;
10804 struct rq *rq;
10805 struct migration_req *req;
10806 long snap;
10807 int trycount = 0;
10808
10809 smp_mb(); /* ensure prior mod happens before capturing snap. */
10810 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10811 get_online_cpus();
10812 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10813 put_online_cpus();
10814 if (trycount++ < 10)
10815 udelay(trycount * num_online_cpus());
10816 else {
10817 synchronize_sched();
10818 return;
10819 }
10820 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10821 smp_mb(); /* ensure test happens before caller kfree */
10822 return;
10823 }
10824 get_online_cpus();
10825 }
10826 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10827 for_each_online_cpu(cpu) {
10828 rq = cpu_rq(cpu);
10829 req = &per_cpu(rcu_migration_req, cpu);
10830 init_completion(&req->done);
10831 req->task = NULL;
10832 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10833 spin_lock_irqsave(&rq->lock, flags);
10834 list_add(&req->list, &rq->migration_queue);
10835 spin_unlock_irqrestore(&rq->lock, flags);
10836 wake_up_process(rq->migration_thread);
10837 }
10838 for_each_online_cpu(cpu) {
10839 rcu_expedited_state = cpu;
10840 req = &per_cpu(rcu_migration_req, cpu);
10841 rq = cpu_rq(cpu);
10842 wait_for_completion(&req->done);
10843 spin_lock_irqsave(&rq->lock, flags);
10844 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10845 need_full_sync = 1;
10846 req->dest_cpu = RCU_MIGRATION_IDLE;
10847 spin_unlock_irqrestore(&rq->lock, flags);
10848 }
10849 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10850 mutex_unlock(&rcu_sched_expedited_mutex);
10851 put_online_cpus();
10852 if (need_full_sync)
10853 synchronize_sched();
10854 }
10855 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10856
10857 #endif /* #else #ifndef CONFIG_SMP */