Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rtmutex.c
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/rt-mutex-design.txt for details.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/timer.h>
18
19 #include "rtmutex_common.h"
20
21 /*
22 * lock->owner state tracking:
23 *
24 * lock->owner holds the task_struct pointer of the owner. Bit 0
25 * is used to keep track of the "lock has waiters" state.
26 *
27 * owner bit0
28 * NULL 0 lock is free (fast acquire possible)
29 * NULL 1 lock is free and has waiters and the top waiter
30 * is going to take the lock*
31 * taskpointer 0 lock is held (fast release possible)
32 * taskpointer 1 lock is held and has waiters**
33 *
34 * The fast atomic compare exchange based acquire and release is only
35 * possible when bit 0 of lock->owner is 0.
36 *
37 * (*) It also can be a transitional state when grabbing the lock
38 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
39 * we need to set the bit0 before looking at the lock, and the owner may be
40 * NULL in this small time, hence this can be a transitional state.
41 *
42 * (**) There is a small time when bit 0 is set but there are no
43 * waiters. This can happen when grabbing the lock in the slow path.
44 * To prevent a cmpxchg of the owner releasing the lock, we need to
45 * set this bit before looking at the lock.
46 */
47
48 static void
49 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
50 {
51 unsigned long val = (unsigned long)owner;
52
53 if (rt_mutex_has_waiters(lock))
54 val |= RT_MUTEX_HAS_WAITERS;
55
56 lock->owner = (struct task_struct *)val;
57 }
58
59 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
60 {
61 lock->owner = (struct task_struct *)
62 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
63 }
64
65 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
66 {
67 if (!rt_mutex_has_waiters(lock))
68 clear_rt_mutex_waiters(lock);
69 }
70
71 /*
72 * We can speed up the acquire/release, if the architecture
73 * supports cmpxchg and if there's no debugging state to be set up
74 */
75 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
76 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
77 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
78 {
79 unsigned long owner, *p = (unsigned long *) &lock->owner;
80
81 do {
82 owner = *p;
83 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
84 }
85
86 /*
87 * Safe fastpath aware unlock:
88 * 1) Clear the waiters bit
89 * 2) Drop lock->wait_lock
90 * 3) Try to unlock the lock with cmpxchg
91 */
92 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
93 __releases(lock->wait_lock)
94 {
95 struct task_struct *owner = rt_mutex_owner(lock);
96
97 clear_rt_mutex_waiters(lock);
98 raw_spin_unlock(&lock->wait_lock);
99 /*
100 * If a new waiter comes in between the unlock and the cmpxchg
101 * we have two situations:
102 *
103 * unlock(wait_lock);
104 * lock(wait_lock);
105 * cmpxchg(p, owner, 0) == owner
106 * mark_rt_mutex_waiters(lock);
107 * acquire(lock);
108 * or:
109 *
110 * unlock(wait_lock);
111 * lock(wait_lock);
112 * mark_rt_mutex_waiters(lock);
113 *
114 * cmpxchg(p, owner, 0) != owner
115 * enqueue_waiter();
116 * unlock(wait_lock);
117 * lock(wait_lock);
118 * wake waiter();
119 * unlock(wait_lock);
120 * lock(wait_lock);
121 * acquire(lock);
122 */
123 return rt_mutex_cmpxchg(lock, owner, NULL);
124 }
125
126 #else
127 # define rt_mutex_cmpxchg(l,c,n) (0)
128 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
129 {
130 lock->owner = (struct task_struct *)
131 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
132 }
133
134 /*
135 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
136 */
137 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
138 __releases(lock->wait_lock)
139 {
140 lock->owner = NULL;
141 raw_spin_unlock(&lock->wait_lock);
142 return true;
143 }
144 #endif
145
146 /*
147 * Calculate task priority from the waiter list priority
148 *
149 * Return task->normal_prio when the waiter list is empty or when
150 * the waiter is not allowed to do priority boosting
151 */
152 int rt_mutex_getprio(struct task_struct *task)
153 {
154 if (likely(!task_has_pi_waiters(task)))
155 return task->normal_prio;
156
157 return min(task_top_pi_waiter(task)->pi_list_entry.prio,
158 task->normal_prio);
159 }
160
161 /*
162 * Adjust the priority of a task, after its pi_waiters got modified.
163 *
164 * This can be both boosting and unboosting. task->pi_lock must be held.
165 */
166 static void __rt_mutex_adjust_prio(struct task_struct *task)
167 {
168 int prio = rt_mutex_getprio(task);
169
170 if (task->prio != prio)
171 rt_mutex_setprio(task, prio);
172 }
173
174 /*
175 * Adjust task priority (undo boosting). Called from the exit path of
176 * rt_mutex_slowunlock() and rt_mutex_slowlock().
177 *
178 * (Note: We do this outside of the protection of lock->wait_lock to
179 * allow the lock to be taken while or before we readjust the priority
180 * of task. We do not use the spin_xx_mutex() variants here as we are
181 * outside of the debug path.)
182 */
183 static void rt_mutex_adjust_prio(struct task_struct *task)
184 {
185 unsigned long flags;
186
187 raw_spin_lock_irqsave(&task->pi_lock, flags);
188 __rt_mutex_adjust_prio(task);
189 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
190 }
191
192 /*
193 * Max number of times we'll walk the boosting chain:
194 */
195 int max_lock_depth = 1024;
196
197 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
198 {
199 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
200 }
201
202 /*
203 * Adjust the priority chain. Also used for deadlock detection.
204 * Decreases task's usage by one - may thus free the task.
205 * Returns 0 or -EDEADLK.
206 */
207 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
208 int deadlock_detect,
209 struct rt_mutex *orig_lock,
210 struct rt_mutex *next_lock,
211 struct rt_mutex_waiter *orig_waiter,
212 struct task_struct *top_task)
213 {
214 struct rt_mutex *lock;
215 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
216 int detect_deadlock, ret = 0, depth = 0;
217 unsigned long flags;
218
219 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
220 deadlock_detect);
221
222 /*
223 * The (de)boosting is a step by step approach with a lot of
224 * pitfalls. We want this to be preemptible and we want hold a
225 * maximum of two locks per step. So we have to check
226 * carefully whether things change under us.
227 */
228 again:
229 if (++depth > max_lock_depth) {
230 static int prev_max;
231
232 /*
233 * Print this only once. If the admin changes the limit,
234 * print a new message when reaching the limit again.
235 */
236 if (prev_max != max_lock_depth) {
237 prev_max = max_lock_depth;
238 printk(KERN_WARNING "Maximum lock depth %d reached "
239 "task: %s (%d)\n", max_lock_depth,
240 top_task->comm, task_pid_nr(top_task));
241 }
242 put_task_struct(task);
243
244 return -EDEADLK;
245 }
246 retry:
247 /*
248 * Task can not go away as we did a get_task() before !
249 */
250 raw_spin_lock_irqsave(&task->pi_lock, flags);
251
252 waiter = task->pi_blocked_on;
253 /*
254 * Check whether the end of the boosting chain has been
255 * reached or the state of the chain has changed while we
256 * dropped the locks.
257 */
258 if (!waiter)
259 goto out_unlock_pi;
260
261 /*
262 * Check the orig_waiter state. After we dropped the locks,
263 * the previous owner of the lock might have released the lock.
264 */
265 if (orig_waiter && !rt_mutex_owner(orig_lock))
266 goto out_unlock_pi;
267
268 /*
269 * We dropped all locks after taking a refcount on @task, so
270 * the task might have moved on in the lock chain or even left
271 * the chain completely and blocks now on an unrelated lock or
272 * on @orig_lock.
273 *
274 * We stored the lock on which @task was blocked in @next_lock,
275 * so we can detect the chain change.
276 */
277 if (next_lock != waiter->lock)
278 goto out_unlock_pi;
279
280 /*
281 * Drop out, when the task has no waiters. Note,
282 * top_waiter can be NULL, when we are in the deboosting
283 * mode!
284 */
285 if (top_waiter) {
286 if (!task_has_pi_waiters(task))
287 goto out_unlock_pi;
288 /*
289 * If deadlock detection is off, we stop here if we
290 * are not the top pi waiter of the task.
291 */
292 if (!detect_deadlock && top_waiter != task_top_pi_waiter(task))
293 goto out_unlock_pi;
294 }
295
296 /*
297 * When deadlock detection is off then we check, if further
298 * priority adjustment is necessary.
299 */
300 if (!detect_deadlock && waiter->list_entry.prio == task->prio)
301 goto out_unlock_pi;
302
303 lock = waiter->lock;
304 if (!raw_spin_trylock(&lock->wait_lock)) {
305 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
306 cpu_relax();
307 goto retry;
308 }
309
310 /*
311 * Deadlock detection. If the lock is the same as the original
312 * lock which caused us to walk the lock chain or if the
313 * current lock is owned by the task which initiated the chain
314 * walk, we detected a deadlock.
315 */
316 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
317 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
318 raw_spin_unlock(&lock->wait_lock);
319 ret = -EDEADLK;
320 goto out_unlock_pi;
321 }
322
323 top_waiter = rt_mutex_top_waiter(lock);
324
325 /* Requeue the waiter */
326 plist_del(&waiter->list_entry, &lock->wait_list);
327 waiter->list_entry.prio = task->prio;
328 plist_add(&waiter->list_entry, &lock->wait_list);
329
330 /* Release the task */
331 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
332 if (!rt_mutex_owner(lock)) {
333 /*
334 * If the requeue above changed the top waiter, then we need
335 * to wake the new top waiter up to try to get the lock.
336 */
337
338 if (top_waiter != rt_mutex_top_waiter(lock))
339 wake_up_process(rt_mutex_top_waiter(lock)->task);
340 raw_spin_unlock(&lock->wait_lock);
341 goto out_put_task;
342 }
343 put_task_struct(task);
344
345 /* Grab the next task */
346 task = rt_mutex_owner(lock);
347 get_task_struct(task);
348 raw_spin_lock_irqsave(&task->pi_lock, flags);
349
350 if (waiter == rt_mutex_top_waiter(lock)) {
351 /* Boost the owner */
352 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
353 waiter->pi_list_entry.prio = waiter->list_entry.prio;
354 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
355 __rt_mutex_adjust_prio(task);
356
357 } else if (top_waiter == waiter) {
358 /* Deboost the owner */
359 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
360 waiter = rt_mutex_top_waiter(lock);
361 waiter->pi_list_entry.prio = waiter->list_entry.prio;
362 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
363 __rt_mutex_adjust_prio(task);
364 }
365
366 /*
367 * Check whether the task which owns the current lock is pi
368 * blocked itself. If yes we store a pointer to the lock for
369 * the lock chain change detection above. After we dropped
370 * task->pi_lock next_lock cannot be dereferenced anymore.
371 */
372 next_lock = task_blocked_on_lock(task);
373
374 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
375
376 top_waiter = rt_mutex_top_waiter(lock);
377 raw_spin_unlock(&lock->wait_lock);
378
379 /*
380 * We reached the end of the lock chain. Stop right here. No
381 * point to go back just to figure that out.
382 */
383 if (!next_lock)
384 goto out_put_task;
385
386 if (!detect_deadlock && waiter != top_waiter)
387 goto out_put_task;
388
389 goto again;
390
391 out_unlock_pi:
392 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
393 out_put_task:
394 put_task_struct(task);
395
396 return ret;
397 }
398
399 /*
400 * Try to take an rt-mutex
401 *
402 * Must be called with lock->wait_lock held.
403 *
404 * @lock: the lock to be acquired.
405 * @task: the task which wants to acquire the lock
406 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
407 */
408 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
409 struct rt_mutex_waiter *waiter)
410 {
411 /*
412 * We have to be careful here if the atomic speedups are
413 * enabled, such that, when
414 * - no other waiter is on the lock
415 * - the lock has been released since we did the cmpxchg
416 * the lock can be released or taken while we are doing the
417 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
418 *
419 * The atomic acquire/release aware variant of
420 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
421 * the WAITERS bit, the atomic release / acquire can not
422 * happen anymore and lock->wait_lock protects us from the
423 * non-atomic case.
424 *
425 * Note, that this might set lock->owner =
426 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
427 * any more. This is fixed up when we take the ownership.
428 * This is the transitional state explained at the top of this file.
429 */
430 mark_rt_mutex_waiters(lock);
431
432 if (rt_mutex_owner(lock))
433 return 0;
434
435 /*
436 * It will get the lock because of one of these conditions:
437 * 1) there is no waiter
438 * 2) higher priority than waiters
439 * 3) it is top waiter
440 */
441 if (rt_mutex_has_waiters(lock)) {
442 if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
443 if (!waiter || waiter != rt_mutex_top_waiter(lock))
444 return 0;
445 }
446 }
447
448 if (waiter || rt_mutex_has_waiters(lock)) {
449 unsigned long flags;
450 struct rt_mutex_waiter *top;
451
452 raw_spin_lock_irqsave(&task->pi_lock, flags);
453
454 /* remove the queued waiter. */
455 if (waiter) {
456 plist_del(&waiter->list_entry, &lock->wait_list);
457 task->pi_blocked_on = NULL;
458 }
459
460 /*
461 * We have to enqueue the top waiter(if it exists) into
462 * task->pi_waiters list.
463 */
464 if (rt_mutex_has_waiters(lock)) {
465 top = rt_mutex_top_waiter(lock);
466 top->pi_list_entry.prio = top->list_entry.prio;
467 plist_add(&top->pi_list_entry, &task->pi_waiters);
468 }
469 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
470 }
471
472 /* We got the lock. */
473 debug_rt_mutex_lock(lock);
474
475 rt_mutex_set_owner(lock, task);
476
477 rt_mutex_deadlock_account_lock(lock, task);
478
479 return 1;
480 }
481
482 /*
483 * Task blocks on lock.
484 *
485 * Prepare waiter and propagate pi chain
486 *
487 * This must be called with lock->wait_lock held.
488 */
489 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
490 struct rt_mutex_waiter *waiter,
491 struct task_struct *task,
492 int detect_deadlock)
493 {
494 struct task_struct *owner = rt_mutex_owner(lock);
495 struct rt_mutex_waiter *top_waiter = waiter;
496 struct rt_mutex *next_lock;
497 int chain_walk = 0, res;
498 unsigned long flags;
499
500 /*
501 * Early deadlock detection. We really don't want the task to
502 * enqueue on itself just to untangle the mess later. It's not
503 * only an optimization. We drop the locks, so another waiter
504 * can come in before the chain walk detects the deadlock. So
505 * the other will detect the deadlock and return -EDEADLOCK,
506 * which is wrong, as the other waiter is not in a deadlock
507 * situation.
508 */
509 if (owner == task)
510 return -EDEADLK;
511
512 raw_spin_lock_irqsave(&task->pi_lock, flags);
513 __rt_mutex_adjust_prio(task);
514 waiter->task = task;
515 waiter->lock = lock;
516 plist_node_init(&waiter->list_entry, task->prio);
517 plist_node_init(&waiter->pi_list_entry, task->prio);
518
519 /* Get the top priority waiter on the lock */
520 if (rt_mutex_has_waiters(lock))
521 top_waiter = rt_mutex_top_waiter(lock);
522 plist_add(&waiter->list_entry, &lock->wait_list);
523
524 task->pi_blocked_on = waiter;
525
526 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
527
528 if (!owner)
529 return 0;
530
531 raw_spin_lock_irqsave(&owner->pi_lock, flags);
532 if (waiter == rt_mutex_top_waiter(lock)) {
533 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
534 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
535
536 __rt_mutex_adjust_prio(owner);
537 if (owner->pi_blocked_on)
538 chain_walk = 1;
539 } else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) {
540 chain_walk = 1;
541 }
542
543 /* Store the lock on which owner is blocked or NULL */
544 next_lock = task_blocked_on_lock(owner);
545
546 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
547 /*
548 * Even if full deadlock detection is on, if the owner is not
549 * blocked itself, we can avoid finding this out in the chain
550 * walk.
551 */
552 if (!chain_walk || !next_lock)
553 return 0;
554
555 /*
556 * The owner can't disappear while holding a lock,
557 * so the owner struct is protected by wait_lock.
558 * Gets dropped in rt_mutex_adjust_prio_chain()!
559 */
560 get_task_struct(owner);
561
562 raw_spin_unlock(&lock->wait_lock);
563
564 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock,
565 next_lock, waiter, task);
566
567 raw_spin_lock(&lock->wait_lock);
568
569 return res;
570 }
571
572 /*
573 * Wake up the next waiter on the lock.
574 *
575 * Remove the top waiter from the current tasks pi waiter list and
576 * wake it up.
577 *
578 * Called with lock->wait_lock held.
579 */
580 static void wakeup_next_waiter(struct rt_mutex *lock)
581 {
582 struct rt_mutex_waiter *waiter;
583 unsigned long flags;
584
585 raw_spin_lock_irqsave(&current->pi_lock, flags);
586
587 waiter = rt_mutex_top_waiter(lock);
588
589 /*
590 * Remove it from current->pi_waiters. We do not adjust a
591 * possible priority boost right now. We execute wakeup in the
592 * boosted mode and go back to normal after releasing
593 * lock->wait_lock.
594 */
595 plist_del(&waiter->pi_list_entry, &current->pi_waiters);
596
597 /*
598 * As we are waking up the top waiter, and the waiter stays
599 * queued on the lock until it gets the lock, this lock
600 * obviously has waiters. Just set the bit here and this has
601 * the added benefit of forcing all new tasks into the
602 * slow path making sure no task of lower priority than
603 * the top waiter can steal this lock.
604 */
605 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
606
607 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
608
609 /*
610 * It's safe to dereference waiter as it cannot go away as
611 * long as we hold lock->wait_lock. The waiter task needs to
612 * acquire it in order to dequeue the waiter.
613 */
614 wake_up_process(waiter->task);
615 }
616
617 /*
618 * Remove a waiter from a lock and give up
619 *
620 * Must be called with lock->wait_lock held and
621 * have just failed to try_to_take_rt_mutex().
622 */
623 static void remove_waiter(struct rt_mutex *lock,
624 struct rt_mutex_waiter *waiter)
625 {
626 int first = (waiter == rt_mutex_top_waiter(lock));
627 struct task_struct *owner = rt_mutex_owner(lock);
628 struct rt_mutex *next_lock = NULL;
629 unsigned long flags;
630
631 raw_spin_lock_irqsave(&current->pi_lock, flags);
632 plist_del(&waiter->list_entry, &lock->wait_list);
633 current->pi_blocked_on = NULL;
634 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
635
636 if (!owner)
637 return;
638
639 if (first) {
640
641 raw_spin_lock_irqsave(&owner->pi_lock, flags);
642
643 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
644
645 if (rt_mutex_has_waiters(lock)) {
646 struct rt_mutex_waiter *next;
647
648 next = rt_mutex_top_waiter(lock);
649 plist_add(&next->pi_list_entry, &owner->pi_waiters);
650 }
651 __rt_mutex_adjust_prio(owner);
652
653 /* Store the lock on which owner is blocked or NULL */
654 next_lock = task_blocked_on_lock(owner);
655
656 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
657 }
658
659 WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
660
661 if (!next_lock)
662 return;
663
664 /* gets dropped in rt_mutex_adjust_prio_chain()! */
665 get_task_struct(owner);
666
667 raw_spin_unlock(&lock->wait_lock);
668
669 rt_mutex_adjust_prio_chain(owner, 0, lock, next_lock, NULL, current);
670
671 raw_spin_lock(&lock->wait_lock);
672 }
673
674 /*
675 * Recheck the pi chain, in case we got a priority setting
676 *
677 * Called from sched_setscheduler
678 */
679 void rt_mutex_adjust_pi(struct task_struct *task)
680 {
681 struct rt_mutex_waiter *waiter;
682 struct rt_mutex *next_lock;
683 unsigned long flags;
684
685 raw_spin_lock_irqsave(&task->pi_lock, flags);
686
687 waiter = task->pi_blocked_on;
688 if (!waiter || waiter->list_entry.prio == task->prio) {
689 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
690 return;
691 }
692 next_lock = waiter->lock;
693 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
694
695 /* gets dropped in rt_mutex_adjust_prio_chain()! */
696 get_task_struct(task);
697
698 rt_mutex_adjust_prio_chain(task, 0, NULL, next_lock, NULL, task);
699 }
700
701 /**
702 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
703 * @lock: the rt_mutex to take
704 * @state: the state the task should block in (TASK_INTERRUPTIBLE
705 * or TASK_UNINTERRUPTIBLE)
706 * @timeout: the pre-initialized and started timer, or NULL for none
707 * @waiter: the pre-initialized rt_mutex_waiter
708 *
709 * lock->wait_lock must be held by the caller.
710 */
711 static int __sched
712 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
713 struct hrtimer_sleeper *timeout,
714 struct rt_mutex_waiter *waiter)
715 {
716 int ret = 0;
717
718 for (;;) {
719 /* Try to acquire the lock: */
720 if (try_to_take_rt_mutex(lock, current, waiter))
721 break;
722
723 /*
724 * TASK_INTERRUPTIBLE checks for signals and
725 * timeout. Ignored otherwise.
726 */
727 if (unlikely(state == TASK_INTERRUPTIBLE)) {
728 /* Signal pending? */
729 if (signal_pending(current))
730 ret = -EINTR;
731 if (timeout && !timeout->task)
732 ret = -ETIMEDOUT;
733 if (ret)
734 break;
735 }
736
737 raw_spin_unlock(&lock->wait_lock);
738
739 debug_rt_mutex_print_deadlock(waiter);
740
741 schedule_rt_mutex(lock);
742
743 raw_spin_lock(&lock->wait_lock);
744 set_current_state(state);
745 }
746
747 return ret;
748 }
749
750 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
751 struct rt_mutex_waiter *w)
752 {
753 /*
754 * If the result is not -EDEADLOCK or the caller requested
755 * deadlock detection, nothing to do here.
756 */
757 if (res != -EDEADLOCK || detect_deadlock)
758 return;
759
760 /*
761 * Yell lowdly and stop the task right here.
762 */
763 rt_mutex_print_deadlock(w);
764 while (1) {
765 set_current_state(TASK_INTERRUPTIBLE);
766 schedule();
767 }
768 }
769
770 /*
771 * Slow path lock function:
772 */
773 static int __sched
774 rt_mutex_slowlock(struct rt_mutex *lock, int state,
775 struct hrtimer_sleeper *timeout,
776 int detect_deadlock)
777 {
778 struct rt_mutex_waiter waiter;
779 int ret = 0;
780
781 debug_rt_mutex_init_waiter(&waiter);
782
783 raw_spin_lock(&lock->wait_lock);
784
785 /* Try to acquire the lock again: */
786 if (try_to_take_rt_mutex(lock, current, NULL)) {
787 raw_spin_unlock(&lock->wait_lock);
788 return 0;
789 }
790
791 set_current_state(state);
792
793 /* Setup the timer, when timeout != NULL */
794 if (unlikely(timeout)) {
795 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
796 if (!hrtimer_active(&timeout->timer))
797 timeout->task = NULL;
798 }
799
800 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
801
802 if (likely(!ret))
803 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
804
805 set_current_state(TASK_RUNNING);
806
807 if (unlikely(ret)) {
808 remove_waiter(lock, &waiter);
809 rt_mutex_handle_deadlock(ret, detect_deadlock, &waiter);
810 }
811
812 /*
813 * try_to_take_rt_mutex() sets the waiter bit
814 * unconditionally. We might have to fix that up.
815 */
816 fixup_rt_mutex_waiters(lock);
817
818 raw_spin_unlock(&lock->wait_lock);
819
820 /* Remove pending timer: */
821 if (unlikely(timeout))
822 hrtimer_cancel(&timeout->timer);
823
824 debug_rt_mutex_free_waiter(&waiter);
825
826 return ret;
827 }
828
829 /*
830 * Slow path try-lock function:
831 */
832 static inline int
833 rt_mutex_slowtrylock(struct rt_mutex *lock)
834 {
835 int ret = 0;
836
837 raw_spin_lock(&lock->wait_lock);
838
839 if (likely(rt_mutex_owner(lock) != current)) {
840
841 ret = try_to_take_rt_mutex(lock, current, NULL);
842 /*
843 * try_to_take_rt_mutex() sets the lock waiters
844 * bit unconditionally. Clean this up.
845 */
846 fixup_rt_mutex_waiters(lock);
847 }
848
849 raw_spin_unlock(&lock->wait_lock);
850
851 return ret;
852 }
853
854 /*
855 * Slow path to release a rt-mutex:
856 */
857 static void __sched
858 rt_mutex_slowunlock(struct rt_mutex *lock)
859 {
860 raw_spin_lock(&lock->wait_lock);
861
862 debug_rt_mutex_unlock(lock);
863
864 rt_mutex_deadlock_account_unlock(current);
865
866 /*
867 * We must be careful here if the fast path is enabled. If we
868 * have no waiters queued we cannot set owner to NULL here
869 * because of:
870 *
871 * foo->lock->owner = NULL;
872 * rtmutex_lock(foo->lock); <- fast path
873 * free = atomic_dec_and_test(foo->refcnt);
874 * rtmutex_unlock(foo->lock); <- fast path
875 * if (free)
876 * kfree(foo);
877 * raw_spin_unlock(foo->lock->wait_lock);
878 *
879 * So for the fastpath enabled kernel:
880 *
881 * Nothing can set the waiters bit as long as we hold
882 * lock->wait_lock. So we do the following sequence:
883 *
884 * owner = rt_mutex_owner(lock);
885 * clear_rt_mutex_waiters(lock);
886 * raw_spin_unlock(&lock->wait_lock);
887 * if (cmpxchg(&lock->owner, owner, 0) == owner)
888 * return;
889 * goto retry;
890 *
891 * The fastpath disabled variant is simple as all access to
892 * lock->owner is serialized by lock->wait_lock:
893 *
894 * lock->owner = NULL;
895 * raw_spin_unlock(&lock->wait_lock);
896 */
897 while (!rt_mutex_has_waiters(lock)) {
898 /* Drops lock->wait_lock ! */
899 if (unlock_rt_mutex_safe(lock) == true)
900 return;
901 /* Relock the rtmutex and try again */
902 raw_spin_lock(&lock->wait_lock);
903 }
904
905 /*
906 * The wakeup next waiter path does not suffer from the above
907 * race. See the comments there.
908 */
909 wakeup_next_waiter(lock);
910
911 raw_spin_unlock(&lock->wait_lock);
912
913 /* Undo pi boosting if necessary: */
914 rt_mutex_adjust_prio(current);
915 }
916
917 /*
918 * debug aware fast / slowpath lock,trylock,unlock
919 *
920 * The atomic acquire/release ops are compiled away, when either the
921 * architecture does not support cmpxchg or when debugging is enabled.
922 */
923 static inline int
924 rt_mutex_fastlock(struct rt_mutex *lock, int state,
925 int detect_deadlock,
926 int (*slowfn)(struct rt_mutex *lock, int state,
927 struct hrtimer_sleeper *timeout,
928 int detect_deadlock))
929 {
930 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
931 rt_mutex_deadlock_account_lock(lock, current);
932 return 0;
933 } else
934 return slowfn(lock, state, NULL, detect_deadlock);
935 }
936
937 static inline int
938 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
939 struct hrtimer_sleeper *timeout, int detect_deadlock,
940 int (*slowfn)(struct rt_mutex *lock, int state,
941 struct hrtimer_sleeper *timeout,
942 int detect_deadlock))
943 {
944 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
945 rt_mutex_deadlock_account_lock(lock, current);
946 return 0;
947 } else
948 return slowfn(lock, state, timeout, detect_deadlock);
949 }
950
951 static inline int
952 rt_mutex_fasttrylock(struct rt_mutex *lock,
953 int (*slowfn)(struct rt_mutex *lock))
954 {
955 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
956 rt_mutex_deadlock_account_lock(lock, current);
957 return 1;
958 }
959 return slowfn(lock);
960 }
961
962 static inline void
963 rt_mutex_fastunlock(struct rt_mutex *lock,
964 void (*slowfn)(struct rt_mutex *lock))
965 {
966 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
967 rt_mutex_deadlock_account_unlock(current);
968 else
969 slowfn(lock);
970 }
971
972 /**
973 * rt_mutex_lock - lock a rt_mutex
974 *
975 * @lock: the rt_mutex to be locked
976 */
977 void __sched rt_mutex_lock(struct rt_mutex *lock)
978 {
979 might_sleep();
980
981 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
982 }
983 EXPORT_SYMBOL_GPL(rt_mutex_lock);
984
985 /**
986 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
987 *
988 * @lock: the rt_mutex to be locked
989 * @detect_deadlock: deadlock detection on/off
990 *
991 * Returns:
992 * 0 on success
993 * -EINTR when interrupted by a signal
994 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
995 */
996 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
997 int detect_deadlock)
998 {
999 might_sleep();
1000
1001 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
1002 detect_deadlock, rt_mutex_slowlock);
1003 }
1004 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1005
1006 /**
1007 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1008 * the timeout structure is provided
1009 * by the caller
1010 *
1011 * @lock: the rt_mutex to be locked
1012 * @timeout: timeout structure or NULL (no timeout)
1013 * @detect_deadlock: deadlock detection on/off
1014 *
1015 * Returns:
1016 * 0 on success
1017 * -EINTR when interrupted by a signal
1018 * -ETIMEDOUT when the timeout expired
1019 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
1020 */
1021 int
1022 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
1023 int detect_deadlock)
1024 {
1025 might_sleep();
1026
1027 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1028 detect_deadlock, rt_mutex_slowlock);
1029 }
1030 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1031
1032 /**
1033 * rt_mutex_trylock - try to lock a rt_mutex
1034 *
1035 * @lock: the rt_mutex to be locked
1036 *
1037 * Returns 1 on success and 0 on contention
1038 */
1039 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1040 {
1041 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1042 }
1043 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1044
1045 /**
1046 * rt_mutex_unlock - unlock a rt_mutex
1047 *
1048 * @lock: the rt_mutex to be unlocked
1049 */
1050 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1051 {
1052 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1053 }
1054 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1055
1056 /**
1057 * rt_mutex_destroy - mark a mutex unusable
1058 * @lock: the mutex to be destroyed
1059 *
1060 * This function marks the mutex uninitialized, and any subsequent
1061 * use of the mutex is forbidden. The mutex must not be locked when
1062 * this function is called.
1063 */
1064 void rt_mutex_destroy(struct rt_mutex *lock)
1065 {
1066 WARN_ON(rt_mutex_is_locked(lock));
1067 #ifdef CONFIG_DEBUG_RT_MUTEXES
1068 lock->magic = NULL;
1069 #endif
1070 }
1071
1072 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1073
1074 /**
1075 * __rt_mutex_init - initialize the rt lock
1076 *
1077 * @lock: the rt lock to be initialized
1078 *
1079 * Initialize the rt lock to unlocked state.
1080 *
1081 * Initializing of a locked rt lock is not allowed
1082 */
1083 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1084 {
1085 lock->owner = NULL;
1086 raw_spin_lock_init(&lock->wait_lock);
1087 plist_head_init(&lock->wait_list);
1088
1089 debug_rt_mutex_init(lock, name);
1090 }
1091 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1092
1093 /**
1094 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1095 * proxy owner
1096 *
1097 * @lock: the rt_mutex to be locked
1098 * @proxy_owner:the task to set as owner
1099 *
1100 * No locking. Caller has to do serializing itself
1101 * Special API call for PI-futex support
1102 */
1103 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1104 struct task_struct *proxy_owner)
1105 {
1106 __rt_mutex_init(lock, NULL);
1107 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1108 rt_mutex_set_owner(lock, proxy_owner);
1109 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1110 }
1111
1112 /**
1113 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1114 *
1115 * @lock: the rt_mutex to be locked
1116 *
1117 * No locking. Caller has to do serializing itself
1118 * Special API call for PI-futex support
1119 */
1120 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1121 struct task_struct *proxy_owner)
1122 {
1123 debug_rt_mutex_proxy_unlock(lock);
1124 rt_mutex_set_owner(lock, NULL);
1125 rt_mutex_deadlock_account_unlock(proxy_owner);
1126 }
1127
1128 /**
1129 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1130 * @lock: the rt_mutex to take
1131 * @waiter: the pre-initialized rt_mutex_waiter
1132 * @task: the task to prepare
1133 * @detect_deadlock: perform deadlock detection (1) or not (0)
1134 *
1135 * Returns:
1136 * 0 - task blocked on lock
1137 * 1 - acquired the lock for task, caller should wake it up
1138 * <0 - error
1139 *
1140 * Special API call for FUTEX_REQUEUE_PI support.
1141 */
1142 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1143 struct rt_mutex_waiter *waiter,
1144 struct task_struct *task, int detect_deadlock)
1145 {
1146 int ret;
1147
1148 raw_spin_lock(&lock->wait_lock);
1149
1150 if (try_to_take_rt_mutex(lock, task, NULL)) {
1151 raw_spin_unlock(&lock->wait_lock);
1152 return 1;
1153 }
1154
1155 /* We enforce deadlock detection for futexes */
1156 ret = task_blocks_on_rt_mutex(lock, waiter, task, 1);
1157
1158 if (ret && !rt_mutex_owner(lock)) {
1159 /*
1160 * Reset the return value. We might have
1161 * returned with -EDEADLK and the owner
1162 * released the lock while we were walking the
1163 * pi chain. Let the waiter sort it out.
1164 */
1165 ret = 0;
1166 }
1167
1168 if (unlikely(ret))
1169 remove_waiter(lock, waiter);
1170
1171 raw_spin_unlock(&lock->wait_lock);
1172
1173 debug_rt_mutex_print_deadlock(waiter);
1174
1175 return ret;
1176 }
1177
1178 /**
1179 * rt_mutex_next_owner - return the next owner of the lock
1180 *
1181 * @lock: the rt lock query
1182 *
1183 * Returns the next owner of the lock or NULL
1184 *
1185 * Caller has to serialize against other accessors to the lock
1186 * itself.
1187 *
1188 * Special API call for PI-futex support
1189 */
1190 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1191 {
1192 if (!rt_mutex_has_waiters(lock))
1193 return NULL;
1194
1195 return rt_mutex_top_waiter(lock)->task;
1196 }
1197
1198 /**
1199 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1200 * @lock: the rt_mutex we were woken on
1201 * @to: the timeout, null if none. hrtimer should already have
1202 * been started.
1203 * @waiter: the pre-initialized rt_mutex_waiter
1204 * @detect_deadlock: perform deadlock detection (1) or not (0)
1205 *
1206 * Complete the lock acquisition started our behalf by another thread.
1207 *
1208 * Returns:
1209 * 0 - success
1210 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1211 *
1212 * Special API call for PI-futex requeue support
1213 */
1214 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1215 struct hrtimer_sleeper *to,
1216 struct rt_mutex_waiter *waiter,
1217 int detect_deadlock)
1218 {
1219 int ret;
1220
1221 raw_spin_lock(&lock->wait_lock);
1222
1223 set_current_state(TASK_INTERRUPTIBLE);
1224
1225 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1226
1227 set_current_state(TASK_RUNNING);
1228
1229 if (unlikely(ret))
1230 remove_waiter(lock, waiter);
1231
1232 /*
1233 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1234 * have to fix that up.
1235 */
1236 fixup_rt_mutex_waiters(lock);
1237
1238 raw_spin_unlock(&lock->wait_lock);
1239
1240 return ret;
1241 }