Merge remote-tracking branch 'tip/smp/hotplug' into next.2012.09.25b
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27 #include <linux/delay.h>
28 #include <linux/oom.h>
29 #include <linux/smpboot.h>
30
31 #define RCU_KTHREAD_PRIO 1
32
33 #ifdef CONFIG_RCU_BOOST
34 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
35 #else
36 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
37 #endif
38
39 /*
40 * Check the RCU kernel configuration parameters and print informative
41 * messages about anything out of the ordinary. If you like #ifdef, you
42 * will love this function.
43 */
44 static void __init rcu_bootup_announce_oddness(void)
45 {
46 #ifdef CONFIG_RCU_TRACE
47 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
48 #endif
49 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
50 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
51 CONFIG_RCU_FANOUT);
52 #endif
53 #ifdef CONFIG_RCU_FANOUT_EXACT
54 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
55 #endif
56 #ifdef CONFIG_RCU_FAST_NO_HZ
57 printk(KERN_INFO
58 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
59 #endif
60 #ifdef CONFIG_PROVE_RCU
61 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
62 #endif
63 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
64 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
65 #endif
66 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
67 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
68 #endif
69 #if defined(CONFIG_RCU_CPU_STALL_INFO)
70 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
71 #endif
72 #if NUM_RCU_LVL_4 != 0
73 printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
74 #endif
75 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
76 printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
77 if (nr_cpu_ids != NR_CPUS)
78 printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
79 }
80
81 #ifdef CONFIG_TREE_PREEMPT_RCU
82
83 struct rcu_state rcu_preempt_state =
84 RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
85 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
86 static struct rcu_state *rcu_state = &rcu_preempt_state;
87
88 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
89
90 /*
91 * Tell them what RCU they are running.
92 */
93 static void __init rcu_bootup_announce(void)
94 {
95 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
96 rcu_bootup_announce_oddness();
97 }
98
99 /*
100 * Return the number of RCU-preempt batches processed thus far
101 * for debug and statistics.
102 */
103 long rcu_batches_completed_preempt(void)
104 {
105 return rcu_preempt_state.completed;
106 }
107 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
108
109 /*
110 * Return the number of RCU batches processed thus far for debug & stats.
111 */
112 long rcu_batches_completed(void)
113 {
114 return rcu_batches_completed_preempt();
115 }
116 EXPORT_SYMBOL_GPL(rcu_batches_completed);
117
118 /*
119 * Force a quiescent state for preemptible RCU.
120 */
121 void rcu_force_quiescent_state(void)
122 {
123 force_quiescent_state(&rcu_preempt_state);
124 }
125 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
126
127 /*
128 * Record a preemptible-RCU quiescent state for the specified CPU. Note
129 * that this just means that the task currently running on the CPU is
130 * not in a quiescent state. There might be any number of tasks blocked
131 * while in an RCU read-side critical section.
132 *
133 * Unlike the other rcu_*_qs() functions, callers to this function
134 * must disable irqs in order to protect the assignment to
135 * ->rcu_read_unlock_special.
136 */
137 static void rcu_preempt_qs(int cpu)
138 {
139 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
140
141 if (rdp->passed_quiesce == 0)
142 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
143 rdp->passed_quiesce = 1;
144 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
145 }
146
147 /*
148 * We have entered the scheduler, and the current task might soon be
149 * context-switched away from. If this task is in an RCU read-side
150 * critical section, we will no longer be able to rely on the CPU to
151 * record that fact, so we enqueue the task on the blkd_tasks list.
152 * The task will dequeue itself when it exits the outermost enclosing
153 * RCU read-side critical section. Therefore, the current grace period
154 * cannot be permitted to complete until the blkd_tasks list entries
155 * predating the current grace period drain, in other words, until
156 * rnp->gp_tasks becomes NULL.
157 *
158 * Caller must disable preemption.
159 */
160 static void rcu_preempt_note_context_switch(int cpu)
161 {
162 struct task_struct *t = current;
163 unsigned long flags;
164 struct rcu_data *rdp;
165 struct rcu_node *rnp;
166
167 if (t->rcu_read_lock_nesting > 0 &&
168 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
169
170 /* Possibly blocking in an RCU read-side critical section. */
171 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
172 rnp = rdp->mynode;
173 raw_spin_lock_irqsave(&rnp->lock, flags);
174 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
175 t->rcu_blocked_node = rnp;
176
177 /*
178 * If this CPU has already checked in, then this task
179 * will hold up the next grace period rather than the
180 * current grace period. Queue the task accordingly.
181 * If the task is queued for the current grace period
182 * (i.e., this CPU has not yet passed through a quiescent
183 * state for the current grace period), then as long
184 * as that task remains queued, the current grace period
185 * cannot end. Note that there is some uncertainty as
186 * to exactly when the current grace period started.
187 * We take a conservative approach, which can result
188 * in unnecessarily waiting on tasks that started very
189 * slightly after the current grace period began. C'est
190 * la vie!!!
191 *
192 * But first, note that the current CPU must still be
193 * on line!
194 */
195 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
196 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
197 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
198 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
199 rnp->gp_tasks = &t->rcu_node_entry;
200 #ifdef CONFIG_RCU_BOOST
201 if (rnp->boost_tasks != NULL)
202 rnp->boost_tasks = rnp->gp_tasks;
203 #endif /* #ifdef CONFIG_RCU_BOOST */
204 } else {
205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 if (rnp->qsmask & rdp->grpmask)
207 rnp->gp_tasks = &t->rcu_node_entry;
208 }
209 trace_rcu_preempt_task(rdp->rsp->name,
210 t->pid,
211 (rnp->qsmask & rdp->grpmask)
212 ? rnp->gpnum
213 : rnp->gpnum + 1);
214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
215 } else if (t->rcu_read_lock_nesting < 0 &&
216 t->rcu_read_unlock_special) {
217
218 /*
219 * Complete exit from RCU read-side critical section on
220 * behalf of preempted instance of __rcu_read_unlock().
221 */
222 rcu_read_unlock_special(t);
223 }
224
225 /*
226 * Either we were not in an RCU read-side critical section to
227 * begin with, or we have now recorded that critical section
228 * globally. Either way, we can now note a quiescent state
229 * for this CPU. Again, if we were in an RCU read-side critical
230 * section, and if that critical section was blocking the current
231 * grace period, then the fact that the task has been enqueued
232 * means that we continue to block the current grace period.
233 */
234 local_irq_save(flags);
235 rcu_preempt_qs(cpu);
236 local_irq_restore(flags);
237 }
238
239 /*
240 * Check for preempted RCU readers blocking the current grace period
241 * for the specified rcu_node structure. If the caller needs a reliable
242 * answer, it must hold the rcu_node's ->lock.
243 */
244 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
245 {
246 return rnp->gp_tasks != NULL;
247 }
248
249 /*
250 * Record a quiescent state for all tasks that were previously queued
251 * on the specified rcu_node structure and that were blocking the current
252 * RCU grace period. The caller must hold the specified rnp->lock with
253 * irqs disabled, and this lock is released upon return, but irqs remain
254 * disabled.
255 */
256 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
257 __releases(rnp->lock)
258 {
259 unsigned long mask;
260 struct rcu_node *rnp_p;
261
262 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
263 raw_spin_unlock_irqrestore(&rnp->lock, flags);
264 return; /* Still need more quiescent states! */
265 }
266
267 rnp_p = rnp->parent;
268 if (rnp_p == NULL) {
269 /*
270 * Either there is only one rcu_node in the tree,
271 * or tasks were kicked up to root rcu_node due to
272 * CPUs going offline.
273 */
274 rcu_report_qs_rsp(&rcu_preempt_state, flags);
275 return;
276 }
277
278 /* Report up the rest of the hierarchy. */
279 mask = rnp->grpmask;
280 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
281 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
282 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
283 }
284
285 /*
286 * Advance a ->blkd_tasks-list pointer to the next entry, instead
287 * returning NULL if at the end of the list.
288 */
289 static struct list_head *rcu_next_node_entry(struct task_struct *t,
290 struct rcu_node *rnp)
291 {
292 struct list_head *np;
293
294 np = t->rcu_node_entry.next;
295 if (np == &rnp->blkd_tasks)
296 np = NULL;
297 return np;
298 }
299
300 /*
301 * Handle special cases during rcu_read_unlock(), such as needing to
302 * notify RCU core processing or task having blocked during the RCU
303 * read-side critical section.
304 */
305 void rcu_read_unlock_special(struct task_struct *t)
306 {
307 int empty;
308 int empty_exp;
309 int empty_exp_now;
310 unsigned long flags;
311 struct list_head *np;
312 #ifdef CONFIG_RCU_BOOST
313 struct rt_mutex *rbmp = NULL;
314 #endif /* #ifdef CONFIG_RCU_BOOST */
315 struct rcu_node *rnp;
316 int special;
317
318 /* NMI handlers cannot block and cannot safely manipulate state. */
319 if (in_nmi())
320 return;
321
322 local_irq_save(flags);
323
324 /*
325 * If RCU core is waiting for this CPU to exit critical section,
326 * let it know that we have done so.
327 */
328 special = t->rcu_read_unlock_special;
329 if (special & RCU_READ_UNLOCK_NEED_QS) {
330 rcu_preempt_qs(smp_processor_id());
331 }
332
333 /* Hardware IRQ handlers cannot block. */
334 if (in_irq() || in_serving_softirq()) {
335 local_irq_restore(flags);
336 return;
337 }
338
339 /* Clean up if blocked during RCU read-side critical section. */
340 if (special & RCU_READ_UNLOCK_BLOCKED) {
341 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
342
343 /*
344 * Remove this task from the list it blocked on. The
345 * task can migrate while we acquire the lock, but at
346 * most one time. So at most two passes through loop.
347 */
348 for (;;) {
349 rnp = t->rcu_blocked_node;
350 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
351 if (rnp == t->rcu_blocked_node)
352 break;
353 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
354 }
355 empty = !rcu_preempt_blocked_readers_cgp(rnp);
356 empty_exp = !rcu_preempted_readers_exp(rnp);
357 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
358 np = rcu_next_node_entry(t, rnp);
359 list_del_init(&t->rcu_node_entry);
360 t->rcu_blocked_node = NULL;
361 trace_rcu_unlock_preempted_task("rcu_preempt",
362 rnp->gpnum, t->pid);
363 if (&t->rcu_node_entry == rnp->gp_tasks)
364 rnp->gp_tasks = np;
365 if (&t->rcu_node_entry == rnp->exp_tasks)
366 rnp->exp_tasks = np;
367 #ifdef CONFIG_RCU_BOOST
368 if (&t->rcu_node_entry == rnp->boost_tasks)
369 rnp->boost_tasks = np;
370 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
371 if (t->rcu_boost_mutex) {
372 rbmp = t->rcu_boost_mutex;
373 t->rcu_boost_mutex = NULL;
374 }
375 #endif /* #ifdef CONFIG_RCU_BOOST */
376
377 /*
378 * If this was the last task on the current list, and if
379 * we aren't waiting on any CPUs, report the quiescent state.
380 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
381 * so we must take a snapshot of the expedited state.
382 */
383 empty_exp_now = !rcu_preempted_readers_exp(rnp);
384 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
385 trace_rcu_quiescent_state_report("preempt_rcu",
386 rnp->gpnum,
387 0, rnp->qsmask,
388 rnp->level,
389 rnp->grplo,
390 rnp->grphi,
391 !!rnp->gp_tasks);
392 rcu_report_unblock_qs_rnp(rnp, flags);
393 } else {
394 raw_spin_unlock_irqrestore(&rnp->lock, flags);
395 }
396
397 #ifdef CONFIG_RCU_BOOST
398 /* Unboost if we were boosted. */
399 if (rbmp)
400 rt_mutex_unlock(rbmp);
401 #endif /* #ifdef CONFIG_RCU_BOOST */
402
403 /*
404 * If this was the last task on the expedited lists,
405 * then we need to report up the rcu_node hierarchy.
406 */
407 if (!empty_exp && empty_exp_now)
408 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
409 } else {
410 local_irq_restore(flags);
411 }
412 }
413
414 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
415
416 /*
417 * Dump detailed information for all tasks blocking the current RCU
418 * grace period on the specified rcu_node structure.
419 */
420 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
421 {
422 unsigned long flags;
423 struct task_struct *t;
424
425 raw_spin_lock_irqsave(&rnp->lock, flags);
426 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
427 raw_spin_unlock_irqrestore(&rnp->lock, flags);
428 return;
429 }
430 t = list_entry(rnp->gp_tasks,
431 struct task_struct, rcu_node_entry);
432 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
433 sched_show_task(t);
434 raw_spin_unlock_irqrestore(&rnp->lock, flags);
435 }
436
437 /*
438 * Dump detailed information for all tasks blocking the current RCU
439 * grace period.
440 */
441 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
442 {
443 struct rcu_node *rnp = rcu_get_root(rsp);
444
445 rcu_print_detail_task_stall_rnp(rnp);
446 rcu_for_each_leaf_node(rsp, rnp)
447 rcu_print_detail_task_stall_rnp(rnp);
448 }
449
450 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
451
452 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
453 {
454 }
455
456 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
457
458 #ifdef CONFIG_RCU_CPU_STALL_INFO
459
460 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
461 {
462 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
463 rnp->level, rnp->grplo, rnp->grphi);
464 }
465
466 static void rcu_print_task_stall_end(void)
467 {
468 printk(KERN_CONT "\n");
469 }
470
471 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
472
473 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
474 {
475 }
476
477 static void rcu_print_task_stall_end(void)
478 {
479 }
480
481 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
482
483 /*
484 * Scan the current list of tasks blocked within RCU read-side critical
485 * sections, printing out the tid of each.
486 */
487 static int rcu_print_task_stall(struct rcu_node *rnp)
488 {
489 struct task_struct *t;
490 int ndetected = 0;
491
492 if (!rcu_preempt_blocked_readers_cgp(rnp))
493 return 0;
494 rcu_print_task_stall_begin(rnp);
495 t = list_entry(rnp->gp_tasks,
496 struct task_struct, rcu_node_entry);
497 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
498 printk(KERN_CONT " P%d", t->pid);
499 ndetected++;
500 }
501 rcu_print_task_stall_end();
502 return ndetected;
503 }
504
505 /*
506 * Check that the list of blocked tasks for the newly completed grace
507 * period is in fact empty. It is a serious bug to complete a grace
508 * period that still has RCU readers blocked! This function must be
509 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
510 * must be held by the caller.
511 *
512 * Also, if there are blocked tasks on the list, they automatically
513 * block the newly created grace period, so set up ->gp_tasks accordingly.
514 */
515 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
516 {
517 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
518 if (!list_empty(&rnp->blkd_tasks))
519 rnp->gp_tasks = rnp->blkd_tasks.next;
520 WARN_ON_ONCE(rnp->qsmask);
521 }
522
523 #ifdef CONFIG_HOTPLUG_CPU
524
525 /*
526 * Handle tasklist migration for case in which all CPUs covered by the
527 * specified rcu_node have gone offline. Move them up to the root
528 * rcu_node. The reason for not just moving them to the immediate
529 * parent is to remove the need for rcu_read_unlock_special() to
530 * make more than two attempts to acquire the target rcu_node's lock.
531 * Returns true if there were tasks blocking the current RCU grace
532 * period.
533 *
534 * Returns 1 if there was previously a task blocking the current grace
535 * period on the specified rcu_node structure.
536 *
537 * The caller must hold rnp->lock with irqs disabled.
538 */
539 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
540 struct rcu_node *rnp,
541 struct rcu_data *rdp)
542 {
543 struct list_head *lp;
544 struct list_head *lp_root;
545 int retval = 0;
546 struct rcu_node *rnp_root = rcu_get_root(rsp);
547 struct task_struct *t;
548
549 if (rnp == rnp_root) {
550 WARN_ONCE(1, "Last CPU thought to be offlined?");
551 return 0; /* Shouldn't happen: at least one CPU online. */
552 }
553
554 /* If we are on an internal node, complain bitterly. */
555 WARN_ON_ONCE(rnp != rdp->mynode);
556
557 /*
558 * Move tasks up to root rcu_node. Don't try to get fancy for
559 * this corner-case operation -- just put this node's tasks
560 * at the head of the root node's list, and update the root node's
561 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
562 * if non-NULL. This might result in waiting for more tasks than
563 * absolutely necessary, but this is a good performance/complexity
564 * tradeoff.
565 */
566 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
567 retval |= RCU_OFL_TASKS_NORM_GP;
568 if (rcu_preempted_readers_exp(rnp))
569 retval |= RCU_OFL_TASKS_EXP_GP;
570 lp = &rnp->blkd_tasks;
571 lp_root = &rnp_root->blkd_tasks;
572 while (!list_empty(lp)) {
573 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
574 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
575 list_del(&t->rcu_node_entry);
576 t->rcu_blocked_node = rnp_root;
577 list_add(&t->rcu_node_entry, lp_root);
578 if (&t->rcu_node_entry == rnp->gp_tasks)
579 rnp_root->gp_tasks = rnp->gp_tasks;
580 if (&t->rcu_node_entry == rnp->exp_tasks)
581 rnp_root->exp_tasks = rnp->exp_tasks;
582 #ifdef CONFIG_RCU_BOOST
583 if (&t->rcu_node_entry == rnp->boost_tasks)
584 rnp_root->boost_tasks = rnp->boost_tasks;
585 #endif /* #ifdef CONFIG_RCU_BOOST */
586 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
587 }
588
589 rnp->gp_tasks = NULL;
590 rnp->exp_tasks = NULL;
591 #ifdef CONFIG_RCU_BOOST
592 rnp->boost_tasks = NULL;
593 /*
594 * In case root is being boosted and leaf was not. Make sure
595 * that we boost the tasks blocking the current grace period
596 * in this case.
597 */
598 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
599 if (rnp_root->boost_tasks != NULL &&
600 rnp_root->boost_tasks != rnp_root->gp_tasks &&
601 rnp_root->boost_tasks != rnp_root->exp_tasks)
602 rnp_root->boost_tasks = rnp_root->gp_tasks;
603 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
604 #endif /* #ifdef CONFIG_RCU_BOOST */
605
606 return retval;
607 }
608
609 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
610
611 /*
612 * Check for a quiescent state from the current CPU. When a task blocks,
613 * the task is recorded in the corresponding CPU's rcu_node structure,
614 * which is checked elsewhere.
615 *
616 * Caller must disable hard irqs.
617 */
618 static void rcu_preempt_check_callbacks(int cpu)
619 {
620 struct task_struct *t = current;
621
622 if (t->rcu_read_lock_nesting == 0) {
623 rcu_preempt_qs(cpu);
624 return;
625 }
626 if (t->rcu_read_lock_nesting > 0 &&
627 per_cpu(rcu_preempt_data, cpu).qs_pending)
628 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
629 }
630
631 #ifdef CONFIG_RCU_BOOST
632
633 static void rcu_preempt_do_callbacks(void)
634 {
635 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
636 }
637
638 #endif /* #ifdef CONFIG_RCU_BOOST */
639
640 /*
641 * Queue a preemptible-RCU callback for invocation after a grace period.
642 */
643 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
644 {
645 __call_rcu(head, func, &rcu_preempt_state, 0);
646 }
647 EXPORT_SYMBOL_GPL(call_rcu);
648
649 /*
650 * Queue an RCU callback for lazy invocation after a grace period.
651 * This will likely be later named something like "call_rcu_lazy()",
652 * but this change will require some way of tagging the lazy RCU
653 * callbacks in the list of pending callbacks. Until then, this
654 * function may only be called from __kfree_rcu().
655 */
656 void kfree_call_rcu(struct rcu_head *head,
657 void (*func)(struct rcu_head *rcu))
658 {
659 __call_rcu(head, func, &rcu_preempt_state, 1);
660 }
661 EXPORT_SYMBOL_GPL(kfree_call_rcu);
662
663 /**
664 * synchronize_rcu - wait until a grace period has elapsed.
665 *
666 * Control will return to the caller some time after a full grace
667 * period has elapsed, in other words after all currently executing RCU
668 * read-side critical sections have completed. Note, however, that
669 * upon return from synchronize_rcu(), the caller might well be executing
670 * concurrently with new RCU read-side critical sections that began while
671 * synchronize_rcu() was waiting. RCU read-side critical sections are
672 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
673 */
674 void synchronize_rcu(void)
675 {
676 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
677 !lock_is_held(&rcu_lock_map) &&
678 !lock_is_held(&rcu_sched_lock_map),
679 "Illegal synchronize_rcu() in RCU read-side critical section");
680 if (!rcu_scheduler_active)
681 return;
682 wait_rcu_gp(call_rcu);
683 }
684 EXPORT_SYMBOL_GPL(synchronize_rcu);
685
686 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
687 static unsigned long sync_rcu_preempt_exp_count;
688 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
689
690 /*
691 * Return non-zero if there are any tasks in RCU read-side critical
692 * sections blocking the current preemptible-RCU expedited grace period.
693 * If there is no preemptible-RCU expedited grace period currently in
694 * progress, returns zero unconditionally.
695 */
696 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
697 {
698 return rnp->exp_tasks != NULL;
699 }
700
701 /*
702 * return non-zero if there is no RCU expedited grace period in progress
703 * for the specified rcu_node structure, in other words, if all CPUs and
704 * tasks covered by the specified rcu_node structure have done their bit
705 * for the current expedited grace period. Works only for preemptible
706 * RCU -- other RCU implementation use other means.
707 *
708 * Caller must hold sync_rcu_preempt_exp_mutex.
709 */
710 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
711 {
712 return !rcu_preempted_readers_exp(rnp) &&
713 ACCESS_ONCE(rnp->expmask) == 0;
714 }
715
716 /*
717 * Report the exit from RCU read-side critical section for the last task
718 * that queued itself during or before the current expedited preemptible-RCU
719 * grace period. This event is reported either to the rcu_node structure on
720 * which the task was queued or to one of that rcu_node structure's ancestors,
721 * recursively up the tree. (Calm down, calm down, we do the recursion
722 * iteratively!)
723 *
724 * Most callers will set the "wake" flag, but the task initiating the
725 * expedited grace period need not wake itself.
726 *
727 * Caller must hold sync_rcu_preempt_exp_mutex.
728 */
729 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
730 bool wake)
731 {
732 unsigned long flags;
733 unsigned long mask;
734
735 raw_spin_lock_irqsave(&rnp->lock, flags);
736 for (;;) {
737 if (!sync_rcu_preempt_exp_done(rnp)) {
738 raw_spin_unlock_irqrestore(&rnp->lock, flags);
739 break;
740 }
741 if (rnp->parent == NULL) {
742 raw_spin_unlock_irqrestore(&rnp->lock, flags);
743 if (wake)
744 wake_up(&sync_rcu_preempt_exp_wq);
745 break;
746 }
747 mask = rnp->grpmask;
748 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
749 rnp = rnp->parent;
750 raw_spin_lock(&rnp->lock); /* irqs already disabled */
751 rnp->expmask &= ~mask;
752 }
753 }
754
755 /*
756 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
757 * grace period for the specified rcu_node structure. If there are no such
758 * tasks, report it up the rcu_node hierarchy.
759 *
760 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
761 */
762 static void
763 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
764 {
765 unsigned long flags;
766 int must_wait = 0;
767
768 raw_spin_lock_irqsave(&rnp->lock, flags);
769 if (list_empty(&rnp->blkd_tasks)) {
770 raw_spin_unlock_irqrestore(&rnp->lock, flags);
771 } else {
772 rnp->exp_tasks = rnp->blkd_tasks.next;
773 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
774 must_wait = 1;
775 }
776 if (!must_wait)
777 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
778 }
779
780 /**
781 * synchronize_rcu_expedited - Brute-force RCU grace period
782 *
783 * Wait for an RCU-preempt grace period, but expedite it. The basic
784 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
785 * the ->blkd_tasks lists and wait for this list to drain. This consumes
786 * significant time on all CPUs and is unfriendly to real-time workloads,
787 * so is thus not recommended for any sort of common-case code.
788 * In fact, if you are using synchronize_rcu_expedited() in a loop,
789 * please restructure your code to batch your updates, and then Use a
790 * single synchronize_rcu() instead.
791 *
792 * Note that it is illegal to call this function while holding any lock
793 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
794 * to call this function from a CPU-hotplug notifier. Failing to observe
795 * these restriction will result in deadlock.
796 */
797 void synchronize_rcu_expedited(void)
798 {
799 unsigned long flags;
800 struct rcu_node *rnp;
801 struct rcu_state *rsp = &rcu_preempt_state;
802 unsigned long snap;
803 int trycount = 0;
804
805 smp_mb(); /* Caller's modifications seen first by other CPUs. */
806 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
807 smp_mb(); /* Above access cannot bleed into critical section. */
808
809 /*
810 * Block CPU-hotplug operations. This means that any CPU-hotplug
811 * operation that finds an rcu_node structure with tasks in the
812 * process of being boosted will know that all tasks blocking
813 * this expedited grace period will already be in the process of
814 * being boosted. This simplifies the process of moving tasks
815 * from leaf to root rcu_node structures.
816 */
817 get_online_cpus();
818
819 /*
820 * Acquire lock, falling back to synchronize_rcu() if too many
821 * lock-acquisition failures. Of course, if someone does the
822 * expedited grace period for us, just leave.
823 */
824 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
825 if (ULONG_CMP_LT(snap,
826 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
827 put_online_cpus();
828 goto mb_ret; /* Others did our work for us. */
829 }
830 if (trycount++ < 10) {
831 udelay(trycount * num_online_cpus());
832 } else {
833 put_online_cpus();
834 synchronize_rcu();
835 return;
836 }
837 }
838 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
839 put_online_cpus();
840 goto unlock_mb_ret; /* Others did our work for us. */
841 }
842
843 /* force all RCU readers onto ->blkd_tasks lists. */
844 synchronize_sched_expedited();
845
846 /* Initialize ->expmask for all non-leaf rcu_node structures. */
847 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
848 raw_spin_lock_irqsave(&rnp->lock, flags);
849 rnp->expmask = rnp->qsmaskinit;
850 raw_spin_unlock_irqrestore(&rnp->lock, flags);
851 }
852
853 /* Snapshot current state of ->blkd_tasks lists. */
854 rcu_for_each_leaf_node(rsp, rnp)
855 sync_rcu_preempt_exp_init(rsp, rnp);
856 if (NUM_RCU_NODES > 1)
857 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
858
859 put_online_cpus();
860
861 /* Wait for snapshotted ->blkd_tasks lists to drain. */
862 rnp = rcu_get_root(rsp);
863 wait_event(sync_rcu_preempt_exp_wq,
864 sync_rcu_preempt_exp_done(rnp));
865
866 /* Clean up and exit. */
867 smp_mb(); /* ensure expedited GP seen before counter increment. */
868 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
869 unlock_mb_ret:
870 mutex_unlock(&sync_rcu_preempt_exp_mutex);
871 mb_ret:
872 smp_mb(); /* ensure subsequent action seen after grace period. */
873 }
874 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
875
876 /**
877 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
878 */
879 void rcu_barrier(void)
880 {
881 _rcu_barrier(&rcu_preempt_state);
882 }
883 EXPORT_SYMBOL_GPL(rcu_barrier);
884
885 /*
886 * Initialize preemptible RCU's state structures.
887 */
888 static void __init __rcu_init_preempt(void)
889 {
890 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
891 }
892
893 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
894
895 static struct rcu_state *rcu_state = &rcu_sched_state;
896
897 /*
898 * Tell them what RCU they are running.
899 */
900 static void __init rcu_bootup_announce(void)
901 {
902 printk(KERN_INFO "Hierarchical RCU implementation.\n");
903 rcu_bootup_announce_oddness();
904 }
905
906 /*
907 * Return the number of RCU batches processed thus far for debug & stats.
908 */
909 long rcu_batches_completed(void)
910 {
911 return rcu_batches_completed_sched();
912 }
913 EXPORT_SYMBOL_GPL(rcu_batches_completed);
914
915 /*
916 * Force a quiescent state for RCU, which, because there is no preemptible
917 * RCU, becomes the same as rcu-sched.
918 */
919 void rcu_force_quiescent_state(void)
920 {
921 rcu_sched_force_quiescent_state();
922 }
923 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
924
925 /*
926 * Because preemptible RCU does not exist, we never have to check for
927 * CPUs being in quiescent states.
928 */
929 static void rcu_preempt_note_context_switch(int cpu)
930 {
931 }
932
933 /*
934 * Because preemptible RCU does not exist, there are never any preempted
935 * RCU readers.
936 */
937 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
938 {
939 return 0;
940 }
941
942 #ifdef CONFIG_HOTPLUG_CPU
943
944 /* Because preemptible RCU does not exist, no quieting of tasks. */
945 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
946 {
947 raw_spin_unlock_irqrestore(&rnp->lock, flags);
948 }
949
950 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
951
952 /*
953 * Because preemptible RCU does not exist, we never have to check for
954 * tasks blocked within RCU read-side critical sections.
955 */
956 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
957 {
958 }
959
960 /*
961 * Because preemptible RCU does not exist, we never have to check for
962 * tasks blocked within RCU read-side critical sections.
963 */
964 static int rcu_print_task_stall(struct rcu_node *rnp)
965 {
966 return 0;
967 }
968
969 /*
970 * Because there is no preemptible RCU, there can be no readers blocked,
971 * so there is no need to check for blocked tasks. So check only for
972 * bogus qsmask values.
973 */
974 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
975 {
976 WARN_ON_ONCE(rnp->qsmask);
977 }
978
979 #ifdef CONFIG_HOTPLUG_CPU
980
981 /*
982 * Because preemptible RCU does not exist, it never needs to migrate
983 * tasks that were blocked within RCU read-side critical sections, and
984 * such non-existent tasks cannot possibly have been blocking the current
985 * grace period.
986 */
987 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
988 struct rcu_node *rnp,
989 struct rcu_data *rdp)
990 {
991 return 0;
992 }
993
994 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
995
996 /*
997 * Because preemptible RCU does not exist, it never has any callbacks
998 * to check.
999 */
1000 static void rcu_preempt_check_callbacks(int cpu)
1001 {
1002 }
1003
1004 /*
1005 * Queue an RCU callback for lazy invocation after a grace period.
1006 * This will likely be later named something like "call_rcu_lazy()",
1007 * but this change will require some way of tagging the lazy RCU
1008 * callbacks in the list of pending callbacks. Until then, this
1009 * function may only be called from __kfree_rcu().
1010 *
1011 * Because there is no preemptible RCU, we use RCU-sched instead.
1012 */
1013 void kfree_call_rcu(struct rcu_head *head,
1014 void (*func)(struct rcu_head *rcu))
1015 {
1016 __call_rcu(head, func, &rcu_sched_state, 1);
1017 }
1018 EXPORT_SYMBOL_GPL(kfree_call_rcu);
1019
1020 /*
1021 * Wait for an rcu-preempt grace period, but make it happen quickly.
1022 * But because preemptible RCU does not exist, map to rcu-sched.
1023 */
1024 void synchronize_rcu_expedited(void)
1025 {
1026 synchronize_sched_expedited();
1027 }
1028 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1029
1030 #ifdef CONFIG_HOTPLUG_CPU
1031
1032 /*
1033 * Because preemptible RCU does not exist, there is never any need to
1034 * report on tasks preempted in RCU read-side critical sections during
1035 * expedited RCU grace periods.
1036 */
1037 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1038 bool wake)
1039 {
1040 }
1041
1042 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1043
1044 /*
1045 * Because preemptible RCU does not exist, rcu_barrier() is just
1046 * another name for rcu_barrier_sched().
1047 */
1048 void rcu_barrier(void)
1049 {
1050 rcu_barrier_sched();
1051 }
1052 EXPORT_SYMBOL_GPL(rcu_barrier);
1053
1054 /*
1055 * Because preemptible RCU does not exist, it need not be initialized.
1056 */
1057 static void __init __rcu_init_preempt(void)
1058 {
1059 }
1060
1061 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1062
1063 #ifdef CONFIG_RCU_BOOST
1064
1065 #include "rtmutex_common.h"
1066
1067 #ifdef CONFIG_RCU_TRACE
1068
1069 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1070 {
1071 if (list_empty(&rnp->blkd_tasks))
1072 rnp->n_balk_blkd_tasks++;
1073 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1074 rnp->n_balk_exp_gp_tasks++;
1075 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1076 rnp->n_balk_boost_tasks++;
1077 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1078 rnp->n_balk_notblocked++;
1079 else if (rnp->gp_tasks != NULL &&
1080 ULONG_CMP_LT(jiffies, rnp->boost_time))
1081 rnp->n_balk_notyet++;
1082 else
1083 rnp->n_balk_nos++;
1084 }
1085
1086 #else /* #ifdef CONFIG_RCU_TRACE */
1087
1088 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1089 {
1090 }
1091
1092 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1093
1094 static void rcu_wake_cond(struct task_struct *t, int status)
1095 {
1096 /*
1097 * If the thread is yielding, only wake it when this
1098 * is invoked from idle
1099 */
1100 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1101 wake_up_process(t);
1102 }
1103
1104 /*
1105 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1106 * or ->boost_tasks, advancing the pointer to the next task in the
1107 * ->blkd_tasks list.
1108 *
1109 * Note that irqs must be enabled: boosting the task can block.
1110 * Returns 1 if there are more tasks needing to be boosted.
1111 */
1112 static int rcu_boost(struct rcu_node *rnp)
1113 {
1114 unsigned long flags;
1115 struct rt_mutex mtx;
1116 struct task_struct *t;
1117 struct list_head *tb;
1118
1119 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1120 return 0; /* Nothing left to boost. */
1121
1122 raw_spin_lock_irqsave(&rnp->lock, flags);
1123
1124 /*
1125 * Recheck under the lock: all tasks in need of boosting
1126 * might exit their RCU read-side critical sections on their own.
1127 */
1128 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1129 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1130 return 0;
1131 }
1132
1133 /*
1134 * Preferentially boost tasks blocking expedited grace periods.
1135 * This cannot starve the normal grace periods because a second
1136 * expedited grace period must boost all blocked tasks, including
1137 * those blocking the pre-existing normal grace period.
1138 */
1139 if (rnp->exp_tasks != NULL) {
1140 tb = rnp->exp_tasks;
1141 rnp->n_exp_boosts++;
1142 } else {
1143 tb = rnp->boost_tasks;
1144 rnp->n_normal_boosts++;
1145 }
1146 rnp->n_tasks_boosted++;
1147
1148 /*
1149 * We boost task t by manufacturing an rt_mutex that appears to
1150 * be held by task t. We leave a pointer to that rt_mutex where
1151 * task t can find it, and task t will release the mutex when it
1152 * exits its outermost RCU read-side critical section. Then
1153 * simply acquiring this artificial rt_mutex will boost task
1154 * t's priority. (Thanks to tglx for suggesting this approach!)
1155 *
1156 * Note that task t must acquire rnp->lock to remove itself from
1157 * the ->blkd_tasks list, which it will do from exit() if from
1158 * nowhere else. We therefore are guaranteed that task t will
1159 * stay around at least until we drop rnp->lock. Note that
1160 * rnp->lock also resolves races between our priority boosting
1161 * and task t's exiting its outermost RCU read-side critical
1162 * section.
1163 */
1164 t = container_of(tb, struct task_struct, rcu_node_entry);
1165 rt_mutex_init_proxy_locked(&mtx, t);
1166 t->rcu_boost_mutex = &mtx;
1167 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1168 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1169 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1170
1171 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1172 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1173 }
1174
1175 /*
1176 * Priority-boosting kthread. One per leaf rcu_node and one for the
1177 * root rcu_node.
1178 */
1179 static int rcu_boost_kthread(void *arg)
1180 {
1181 struct rcu_node *rnp = (struct rcu_node *)arg;
1182 int spincnt = 0;
1183 int more2boost;
1184
1185 trace_rcu_utilization("Start boost kthread@init");
1186 for (;;) {
1187 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1188 trace_rcu_utilization("End boost kthread@rcu_wait");
1189 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1190 trace_rcu_utilization("Start boost kthread@rcu_wait");
1191 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1192 more2boost = rcu_boost(rnp);
1193 if (more2boost)
1194 spincnt++;
1195 else
1196 spincnt = 0;
1197 if (spincnt > 10) {
1198 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1199 trace_rcu_utilization("End boost kthread@rcu_yield");
1200 schedule_timeout_interruptible(2);
1201 trace_rcu_utilization("Start boost kthread@rcu_yield");
1202 spincnt = 0;
1203 }
1204 }
1205 /* NOTREACHED */
1206 trace_rcu_utilization("End boost kthread@notreached");
1207 return 0;
1208 }
1209
1210 /*
1211 * Check to see if it is time to start boosting RCU readers that are
1212 * blocking the current grace period, and, if so, tell the per-rcu_node
1213 * kthread to start boosting them. If there is an expedited grace
1214 * period in progress, it is always time to boost.
1215 *
1216 * The caller must hold rnp->lock, which this function releases.
1217 * The ->boost_kthread_task is immortal, so we don't need to worry
1218 * about it going away.
1219 */
1220 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1221 {
1222 struct task_struct *t;
1223
1224 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1225 rnp->n_balk_exp_gp_tasks++;
1226 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1227 return;
1228 }
1229 if (rnp->exp_tasks != NULL ||
1230 (rnp->gp_tasks != NULL &&
1231 rnp->boost_tasks == NULL &&
1232 rnp->qsmask == 0 &&
1233 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1234 if (rnp->exp_tasks == NULL)
1235 rnp->boost_tasks = rnp->gp_tasks;
1236 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1237 t = rnp->boost_kthread_task;
1238 if (t)
1239 rcu_wake_cond(t, rnp->boost_kthread_status);
1240 } else {
1241 rcu_initiate_boost_trace(rnp);
1242 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1243 }
1244 }
1245
1246 /*
1247 * Wake up the per-CPU kthread to invoke RCU callbacks.
1248 */
1249 static void invoke_rcu_callbacks_kthread(void)
1250 {
1251 unsigned long flags;
1252
1253 local_irq_save(flags);
1254 __this_cpu_write(rcu_cpu_has_work, 1);
1255 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1256 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1257 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1258 __this_cpu_read(rcu_cpu_kthread_status));
1259 }
1260 local_irq_restore(flags);
1261 }
1262
1263 /*
1264 * Is the current CPU running the RCU-callbacks kthread?
1265 * Caller must have preemption disabled.
1266 */
1267 static bool rcu_is_callbacks_kthread(void)
1268 {
1269 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1270 }
1271
1272 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1273
1274 /*
1275 * Do priority-boost accounting for the start of a new grace period.
1276 */
1277 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1278 {
1279 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1280 }
1281
1282 /*
1283 * Create an RCU-boost kthread for the specified node if one does not
1284 * already exist. We only create this kthread for preemptible RCU.
1285 * Returns zero if all is well, a negated errno otherwise.
1286 */
1287 static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1288 struct rcu_node *rnp)
1289 {
1290 int rnp_index = rnp - &rsp->node[0];
1291 unsigned long flags;
1292 struct sched_param sp;
1293 struct task_struct *t;
1294
1295 if (&rcu_preempt_state != rsp)
1296 return 0;
1297
1298 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1299 return 0;
1300
1301 rsp->boost = 1;
1302 if (rnp->boost_kthread_task != NULL)
1303 return 0;
1304 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1305 "rcub/%d", rnp_index);
1306 if (IS_ERR(t))
1307 return PTR_ERR(t);
1308 raw_spin_lock_irqsave(&rnp->lock, flags);
1309 rnp->boost_kthread_task = t;
1310 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1311 sp.sched_priority = RCU_BOOST_PRIO;
1312 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1313 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1314 return 0;
1315 }
1316
1317 static void rcu_kthread_do_work(void)
1318 {
1319 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1320 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1321 rcu_preempt_do_callbacks();
1322 }
1323
1324 static void rcu_cpu_kthread_setup(unsigned int cpu)
1325 {
1326 struct sched_param sp;
1327
1328 sp.sched_priority = RCU_KTHREAD_PRIO;
1329 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1330 }
1331
1332 static void rcu_cpu_kthread_park(unsigned int cpu)
1333 {
1334 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1335 }
1336
1337 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1338 {
1339 return __get_cpu_var(rcu_cpu_has_work);
1340 }
1341
1342 /*
1343 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1344 * RCU softirq used in flavors and configurations of RCU that do not
1345 * support RCU priority boosting.
1346 */
1347 static void rcu_cpu_kthread(unsigned int cpu)
1348 {
1349 unsigned int *statusp = &__get_cpu_var(rcu_cpu_kthread_status);
1350 char work, *workp = &__get_cpu_var(rcu_cpu_has_work);
1351 int spincnt;
1352
1353 for (spincnt = 0; spincnt < 10; spincnt++) {
1354 trace_rcu_utilization("Start CPU kthread@rcu_wait");
1355 local_bh_disable();
1356 *statusp = RCU_KTHREAD_RUNNING;
1357 this_cpu_inc(rcu_cpu_kthread_loops);
1358 local_irq_disable();
1359 work = *workp;
1360 *workp = 0;
1361 local_irq_enable();
1362 if (work)
1363 rcu_kthread_do_work();
1364 local_bh_enable();
1365 if (*workp == 0) {
1366 trace_rcu_utilization("End CPU kthread@rcu_wait");
1367 *statusp = RCU_KTHREAD_WAITING;
1368 return;
1369 }
1370 }
1371 *statusp = RCU_KTHREAD_YIELDING;
1372 trace_rcu_utilization("Start CPU kthread@rcu_yield");
1373 schedule_timeout_interruptible(2);
1374 trace_rcu_utilization("End CPU kthread@rcu_yield");
1375 *statusp = RCU_KTHREAD_WAITING;
1376 }
1377
1378 /*
1379 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1380 * served by the rcu_node in question. The CPU hotplug lock is still
1381 * held, so the value of rnp->qsmaskinit will be stable.
1382 *
1383 * We don't include outgoingcpu in the affinity set, use -1 if there is
1384 * no outgoing CPU. If there are no CPUs left in the affinity set,
1385 * this function allows the kthread to execute on any CPU.
1386 */
1387 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1388 {
1389 struct task_struct *t = rnp->boost_kthread_task;
1390 unsigned long mask = rnp->qsmaskinit;
1391 cpumask_var_t cm;
1392 int cpu;
1393
1394 if (!t)
1395 return;
1396 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1397 return;
1398 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1399 if ((mask & 0x1) && cpu != outgoingcpu)
1400 cpumask_set_cpu(cpu, cm);
1401 if (cpumask_weight(cm) == 0) {
1402 cpumask_setall(cm);
1403 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1404 cpumask_clear_cpu(cpu, cm);
1405 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1406 }
1407 set_cpus_allowed_ptr(t, cm);
1408 free_cpumask_var(cm);
1409 }
1410
1411 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1412 .store = &rcu_cpu_kthread_task,
1413 .thread_should_run = rcu_cpu_kthread_should_run,
1414 .thread_fn = rcu_cpu_kthread,
1415 .thread_comm = "rcuc/%u",
1416 .setup = rcu_cpu_kthread_setup,
1417 .park = rcu_cpu_kthread_park,
1418 };
1419
1420 /*
1421 * Spawn all kthreads -- called as soon as the scheduler is running.
1422 */
1423 static int __init rcu_spawn_kthreads(void)
1424 {
1425 struct rcu_node *rnp;
1426 int cpu;
1427
1428 rcu_scheduler_fully_active = 1;
1429 for_each_possible_cpu(cpu)
1430 per_cpu(rcu_cpu_has_work, cpu) = 0;
1431 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1432 rnp = rcu_get_root(rcu_state);
1433 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1434 if (NUM_RCU_NODES > 1) {
1435 rcu_for_each_leaf_node(rcu_state, rnp)
1436 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1437 }
1438 return 0;
1439 }
1440 early_initcall(rcu_spawn_kthreads);
1441
1442 static void __cpuinit rcu_prepare_kthreads(int cpu)
1443 {
1444 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1445 struct rcu_node *rnp = rdp->mynode;
1446
1447 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1448 if (rcu_scheduler_fully_active)
1449 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1450 }
1451
1452 #else /* #ifdef CONFIG_RCU_BOOST */
1453
1454 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1455 {
1456 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1457 }
1458
1459 static void invoke_rcu_callbacks_kthread(void)
1460 {
1461 WARN_ON_ONCE(1);
1462 }
1463
1464 static bool rcu_is_callbacks_kthread(void)
1465 {
1466 return false;
1467 }
1468
1469 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1470 {
1471 }
1472
1473 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1474 {
1475 }
1476
1477 static int __init rcu_scheduler_really_started(void)
1478 {
1479 rcu_scheduler_fully_active = 1;
1480 return 0;
1481 }
1482 early_initcall(rcu_scheduler_really_started);
1483
1484 static void __cpuinit rcu_prepare_kthreads(int cpu)
1485 {
1486 }
1487
1488 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1489
1490 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1491
1492 /*
1493 * Check to see if any future RCU-related work will need to be done
1494 * by the current CPU, even if none need be done immediately, returning
1495 * 1 if so. This function is part of the RCU implementation; it is -not-
1496 * an exported member of the RCU API.
1497 *
1498 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1499 * any flavor of RCU.
1500 */
1501 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1502 {
1503 *delta_jiffies = ULONG_MAX;
1504 return rcu_cpu_has_callbacks(cpu);
1505 }
1506
1507 /*
1508 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1509 */
1510 static void rcu_prepare_for_idle_init(int cpu)
1511 {
1512 }
1513
1514 /*
1515 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1516 * after it.
1517 */
1518 static void rcu_cleanup_after_idle(int cpu)
1519 {
1520 }
1521
1522 /*
1523 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1524 * is nothing.
1525 */
1526 static void rcu_prepare_for_idle(int cpu)
1527 {
1528 }
1529
1530 /*
1531 * Don't bother keeping a running count of the number of RCU callbacks
1532 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1533 */
1534 static void rcu_idle_count_callbacks_posted(void)
1535 {
1536 }
1537
1538 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1539
1540 /*
1541 * This code is invoked when a CPU goes idle, at which point we want
1542 * to have the CPU do everything required for RCU so that it can enter
1543 * the energy-efficient dyntick-idle mode. This is handled by a
1544 * state machine implemented by rcu_prepare_for_idle() below.
1545 *
1546 * The following three proprocessor symbols control this state machine:
1547 *
1548 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1549 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1550 * scheduling-clock interrupt than to loop through the state machine
1551 * at full power.
1552 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1553 * optional if RCU does not need anything immediately from this
1554 * CPU, even if this CPU still has RCU callbacks queued. The first
1555 * times through the state machine are mandatory: we need to give
1556 * the state machine a chance to communicate a quiescent state
1557 * to the RCU core.
1558 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1559 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1560 * is sized to be roughly one RCU grace period. Those energy-efficiency
1561 * benchmarkers who might otherwise be tempted to set this to a large
1562 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1563 * system. And if you are -that- concerned about energy efficiency,
1564 * just power the system down and be done with it!
1565 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1566 * permitted to sleep in dyntick-idle mode with only lazy RCU
1567 * callbacks pending. Setting this too high can OOM your system.
1568 *
1569 * The values below work well in practice. If future workloads require
1570 * adjustment, they can be converted into kernel config parameters, though
1571 * making the state machine smarter might be a better option.
1572 */
1573 #define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1574 #define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
1575 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1576 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1577
1578 extern int tick_nohz_enabled;
1579
1580 /*
1581 * Does the specified flavor of RCU have non-lazy callbacks pending on
1582 * the specified CPU? Both RCU flavor and CPU are specified by the
1583 * rcu_data structure.
1584 */
1585 static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
1586 {
1587 return rdp->qlen != rdp->qlen_lazy;
1588 }
1589
1590 #ifdef CONFIG_TREE_PREEMPT_RCU
1591
1592 /*
1593 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
1594 * is no RCU-preempt in the kernel.)
1595 */
1596 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1597 {
1598 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
1599
1600 return __rcu_cpu_has_nonlazy_callbacks(rdp);
1601 }
1602
1603 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1604
1605 static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1606 {
1607 return 0;
1608 }
1609
1610 #endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
1611
1612 /*
1613 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
1614 */
1615 static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
1616 {
1617 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
1618 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
1619 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
1620 }
1621
1622 /*
1623 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1624 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1625 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1626 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1627 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1628 * it is better to incur scheduling-clock interrupts than to spin
1629 * continuously for the same time duration!
1630 *
1631 * The delta_jiffies argument is used to store the time when RCU is
1632 * going to need the CPU again if it still has callbacks. The reason
1633 * for this is that rcu_prepare_for_idle() might need to post a timer,
1634 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
1635 * the wakeup time for this CPU. This means that RCU's timer can be
1636 * delayed until the wakeup time, which defeats the purpose of posting
1637 * a timer.
1638 */
1639 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1640 {
1641 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1642
1643 /* Flag a new idle sojourn to the idle-entry state machine. */
1644 rdtp->idle_first_pass = 1;
1645 /* If no callbacks, RCU doesn't need the CPU. */
1646 if (!rcu_cpu_has_callbacks(cpu)) {
1647 *delta_jiffies = ULONG_MAX;
1648 return 0;
1649 }
1650 if (rdtp->dyntick_holdoff == jiffies) {
1651 /* RCU recently tried and failed, so don't try again. */
1652 *delta_jiffies = 1;
1653 return 1;
1654 }
1655 /* Set up for the possibility that RCU will post a timer. */
1656 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1657 *delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
1658 RCU_IDLE_GP_DELAY) - jiffies;
1659 } else {
1660 *delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
1661 *delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
1662 }
1663 return 0;
1664 }
1665
1666 /*
1667 * Handler for smp_call_function_single(). The only point of this
1668 * handler is to wake the CPU up, so the handler does only tracing.
1669 */
1670 void rcu_idle_demigrate(void *unused)
1671 {
1672 trace_rcu_prep_idle("Demigrate");
1673 }
1674
1675 /*
1676 * Timer handler used to force CPU to start pushing its remaining RCU
1677 * callbacks in the case where it entered dyntick-idle mode with callbacks
1678 * pending. The hander doesn't really need to do anything because the
1679 * real work is done upon re-entry to idle, or by the next scheduling-clock
1680 * interrupt should idle not be re-entered.
1681 *
1682 * One special case: the timer gets migrated without awakening the CPU
1683 * on which the timer was scheduled on. In this case, we must wake up
1684 * that CPU. We do so with smp_call_function_single().
1685 */
1686 static void rcu_idle_gp_timer_func(unsigned long cpu_in)
1687 {
1688 int cpu = (int)cpu_in;
1689
1690 trace_rcu_prep_idle("Timer");
1691 if (cpu != smp_processor_id())
1692 smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
1693 else
1694 WARN_ON_ONCE(1); /* Getting here can hang the system... */
1695 }
1696
1697 /*
1698 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
1699 */
1700 static void rcu_prepare_for_idle_init(int cpu)
1701 {
1702 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1703
1704 rdtp->dyntick_holdoff = jiffies - 1;
1705 setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
1706 rdtp->idle_gp_timer_expires = jiffies - 1;
1707 rdtp->idle_first_pass = 1;
1708 }
1709
1710 /*
1711 * Clean up for exit from idle. Because we are exiting from idle, there
1712 * is no longer any point to ->idle_gp_timer, so cancel it. This will
1713 * do nothing if this timer is not active, so just cancel it unconditionally.
1714 */
1715 static void rcu_cleanup_after_idle(int cpu)
1716 {
1717 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1718
1719 del_timer(&rdtp->idle_gp_timer);
1720 trace_rcu_prep_idle("Cleanup after idle");
1721 rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
1722 }
1723
1724 /*
1725 * Check to see if any RCU-related work can be done by the current CPU,
1726 * and if so, schedule a softirq to get it done. This function is part
1727 * of the RCU implementation; it is -not- an exported member of the RCU API.
1728 *
1729 * The idea is for the current CPU to clear out all work required by the
1730 * RCU core for the current grace period, so that this CPU can be permitted
1731 * to enter dyntick-idle mode. In some cases, it will need to be awakened
1732 * at the end of the grace period by whatever CPU ends the grace period.
1733 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
1734 * number of wakeups by a modest integer factor.
1735 *
1736 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1737 * disabled, we do one pass of force_quiescent_state(), then do a
1738 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
1739 * later. The ->dyntick_drain field controls the sequencing.
1740 *
1741 * The caller must have disabled interrupts.
1742 */
1743 static void rcu_prepare_for_idle(int cpu)
1744 {
1745 struct timer_list *tp;
1746 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1747 int tne;
1748
1749 /* Handle nohz enablement switches conservatively. */
1750 tne = ACCESS_ONCE(tick_nohz_enabled);
1751 if (tne != rdtp->tick_nohz_enabled_snap) {
1752 if (rcu_cpu_has_callbacks(cpu))
1753 invoke_rcu_core(); /* force nohz to see update. */
1754 rdtp->tick_nohz_enabled_snap = tne;
1755 return;
1756 }
1757 if (!tne)
1758 return;
1759
1760 /*
1761 * If this is an idle re-entry, for example, due to use of
1762 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
1763 * loop, then don't take any state-machine actions, unless the
1764 * momentary exit from idle queued additional non-lazy callbacks.
1765 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
1766 * pending.
1767 */
1768 if (!rdtp->idle_first_pass &&
1769 (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
1770 if (rcu_cpu_has_callbacks(cpu)) {
1771 tp = &rdtp->idle_gp_timer;
1772 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1773 }
1774 return;
1775 }
1776 rdtp->idle_first_pass = 0;
1777 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
1778
1779 /*
1780 * If there are no callbacks on this CPU, enter dyntick-idle mode.
1781 * Also reset state to avoid prejudicing later attempts.
1782 */
1783 if (!rcu_cpu_has_callbacks(cpu)) {
1784 rdtp->dyntick_holdoff = jiffies - 1;
1785 rdtp->dyntick_drain = 0;
1786 trace_rcu_prep_idle("No callbacks");
1787 return;
1788 }
1789
1790 /*
1791 * If in holdoff mode, just return. We will presumably have
1792 * refrained from disabling the scheduling-clock tick.
1793 */
1794 if (rdtp->dyntick_holdoff == jiffies) {
1795 trace_rcu_prep_idle("In holdoff");
1796 return;
1797 }
1798
1799 /* Check and update the ->dyntick_drain sequencing. */
1800 if (rdtp->dyntick_drain <= 0) {
1801 /* First time through, initialize the counter. */
1802 rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
1803 } else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
1804 !rcu_pending(cpu) &&
1805 !local_softirq_pending()) {
1806 /* Can we go dyntick-idle despite still having callbacks? */
1807 rdtp->dyntick_drain = 0;
1808 rdtp->dyntick_holdoff = jiffies;
1809 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1810 trace_rcu_prep_idle("Dyntick with callbacks");
1811 rdtp->idle_gp_timer_expires =
1812 round_up(jiffies + RCU_IDLE_GP_DELAY,
1813 RCU_IDLE_GP_DELAY);
1814 } else {
1815 rdtp->idle_gp_timer_expires =
1816 round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
1817 trace_rcu_prep_idle("Dyntick with lazy callbacks");
1818 }
1819 tp = &rdtp->idle_gp_timer;
1820 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
1821 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1822 return; /* Nothing more to do immediately. */
1823 } else if (--(rdtp->dyntick_drain) <= 0) {
1824 /* We have hit the limit, so time to give up. */
1825 rdtp->dyntick_holdoff = jiffies;
1826 trace_rcu_prep_idle("Begin holdoff");
1827 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
1828 return;
1829 }
1830
1831 /*
1832 * Do one step of pushing the remaining RCU callbacks through
1833 * the RCU core state machine.
1834 */
1835 #ifdef CONFIG_TREE_PREEMPT_RCU
1836 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
1837 rcu_preempt_qs(cpu);
1838 force_quiescent_state(&rcu_preempt_state);
1839 }
1840 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1841 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1842 rcu_sched_qs(cpu);
1843 force_quiescent_state(&rcu_sched_state);
1844 }
1845 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1846 rcu_bh_qs(cpu);
1847 force_quiescent_state(&rcu_bh_state);
1848 }
1849
1850 /*
1851 * If RCU callbacks are still pending, RCU still needs this CPU.
1852 * So try forcing the callbacks through the grace period.
1853 */
1854 if (rcu_cpu_has_callbacks(cpu)) {
1855 trace_rcu_prep_idle("More callbacks");
1856 invoke_rcu_core();
1857 } else {
1858 trace_rcu_prep_idle("Callbacks drained");
1859 }
1860 }
1861
1862 /*
1863 * Keep a running count of the number of non-lazy callbacks posted
1864 * on this CPU. This running counter (which is never decremented) allows
1865 * rcu_prepare_for_idle() to detect when something out of the idle loop
1866 * posts a callback, even if an equal number of callbacks are invoked.
1867 * Of course, callbacks should only be posted from within a trace event
1868 * designed to be called from idle or from within RCU_NONIDLE().
1869 */
1870 static void rcu_idle_count_callbacks_posted(void)
1871 {
1872 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1873 }
1874
1875 /*
1876 * Data for flushing lazy RCU callbacks at OOM time.
1877 */
1878 static atomic_t oom_callback_count;
1879 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1880
1881 /*
1882 * RCU OOM callback -- decrement the outstanding count and deliver the
1883 * wake-up if we are the last one.
1884 */
1885 static void rcu_oom_callback(struct rcu_head *rhp)
1886 {
1887 if (atomic_dec_and_test(&oom_callback_count))
1888 wake_up(&oom_callback_wq);
1889 }
1890
1891 /*
1892 * Post an rcu_oom_notify callback on the current CPU if it has at
1893 * least one lazy callback. This will unnecessarily post callbacks
1894 * to CPUs that already have a non-lazy callback at the end of their
1895 * callback list, but this is an infrequent operation, so accept some
1896 * extra overhead to keep things simple.
1897 */
1898 static void rcu_oom_notify_cpu(void *unused)
1899 {
1900 struct rcu_state *rsp;
1901 struct rcu_data *rdp;
1902
1903 for_each_rcu_flavor(rsp) {
1904 rdp = __this_cpu_ptr(rsp->rda);
1905 if (rdp->qlen_lazy != 0) {
1906 atomic_inc(&oom_callback_count);
1907 rsp->call(&rdp->oom_head, rcu_oom_callback);
1908 }
1909 }
1910 }
1911
1912 /*
1913 * If low on memory, ensure that each CPU has a non-lazy callback.
1914 * This will wake up CPUs that have only lazy callbacks, in turn
1915 * ensuring that they free up the corresponding memory in a timely manner.
1916 * Because an uncertain amount of memory will be freed in some uncertain
1917 * timeframe, we do not claim to have freed anything.
1918 */
1919 static int rcu_oom_notify(struct notifier_block *self,
1920 unsigned long notused, void *nfreed)
1921 {
1922 int cpu;
1923
1924 /* Wait for callbacks from earlier instance to complete. */
1925 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1926
1927 /*
1928 * Prevent premature wakeup: ensure that all increments happen
1929 * before there is a chance of the counter reaching zero.
1930 */
1931 atomic_set(&oom_callback_count, 1);
1932
1933 get_online_cpus();
1934 for_each_online_cpu(cpu) {
1935 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1936 cond_resched();
1937 }
1938 put_online_cpus();
1939
1940 /* Unconditionally decrement: no need to wake ourselves up. */
1941 atomic_dec(&oom_callback_count);
1942
1943 return NOTIFY_OK;
1944 }
1945
1946 static struct notifier_block rcu_oom_nb = {
1947 .notifier_call = rcu_oom_notify
1948 };
1949
1950 static int __init rcu_register_oom_notifier(void)
1951 {
1952 register_oom_notifier(&rcu_oom_nb);
1953 return 0;
1954 }
1955 early_initcall(rcu_register_oom_notifier);
1956
1957 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1958
1959 #ifdef CONFIG_RCU_CPU_STALL_INFO
1960
1961 #ifdef CONFIG_RCU_FAST_NO_HZ
1962
1963 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1964 {
1965 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1966 struct timer_list *tltp = &rdtp->idle_gp_timer;
1967 char c;
1968
1969 c = rdtp->dyntick_holdoff == jiffies ? 'H' : '.';
1970 if (timer_pending(tltp))
1971 sprintf(cp, "drain=%d %c timer=%lu",
1972 rdtp->dyntick_drain, c, tltp->expires - jiffies);
1973 else
1974 sprintf(cp, "drain=%d %c timer not pending",
1975 rdtp->dyntick_drain, c);
1976 }
1977
1978 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1979
1980 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1981 {
1982 *cp = '\0';
1983 }
1984
1985 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1986
1987 /* Initiate the stall-info list. */
1988 static void print_cpu_stall_info_begin(void)
1989 {
1990 printk(KERN_CONT "\n");
1991 }
1992
1993 /*
1994 * Print out diagnostic information for the specified stalled CPU.
1995 *
1996 * If the specified CPU is aware of the current RCU grace period
1997 * (flavor specified by rsp), then print the number of scheduling
1998 * clock interrupts the CPU has taken during the time that it has
1999 * been aware. Otherwise, print the number of RCU grace periods
2000 * that this CPU is ignorant of, for example, "1" if the CPU was
2001 * aware of the previous grace period.
2002 *
2003 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2004 */
2005 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2006 {
2007 char fast_no_hz[72];
2008 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2009 struct rcu_dynticks *rdtp = rdp->dynticks;
2010 char *ticks_title;
2011 unsigned long ticks_value;
2012
2013 if (rsp->gpnum == rdp->gpnum) {
2014 ticks_title = "ticks this GP";
2015 ticks_value = rdp->ticks_this_gp;
2016 } else {
2017 ticks_title = "GPs behind";
2018 ticks_value = rsp->gpnum - rdp->gpnum;
2019 }
2020 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2021 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2022 cpu, ticks_value, ticks_title,
2023 atomic_read(&rdtp->dynticks) & 0xfff,
2024 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2025 fast_no_hz);
2026 }
2027
2028 /* Terminate the stall-info list. */
2029 static void print_cpu_stall_info_end(void)
2030 {
2031 printk(KERN_ERR "\t");
2032 }
2033
2034 /* Zero ->ticks_this_gp for all flavors of RCU. */
2035 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2036 {
2037 rdp->ticks_this_gp = 0;
2038 }
2039
2040 /* Increment ->ticks_this_gp for all flavors of RCU. */
2041 static void increment_cpu_stall_ticks(void)
2042 {
2043 struct rcu_state *rsp;
2044
2045 for_each_rcu_flavor(rsp)
2046 __this_cpu_ptr(rsp->rda)->ticks_this_gp++;
2047 }
2048
2049 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2050
2051 static void print_cpu_stall_info_begin(void)
2052 {
2053 printk(KERN_CONT " {");
2054 }
2055
2056 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2057 {
2058 printk(KERN_CONT " %d", cpu);
2059 }
2060
2061 static void print_cpu_stall_info_end(void)
2062 {
2063 printk(KERN_CONT "} ");
2064 }
2065
2066 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2067 {
2068 }
2069
2070 static void increment_cpu_stall_ticks(void)
2071 {
2072 }
2073
2074 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */