rcu: Tone down debugging during boot-up and shutdown.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56
57 #include "rcutree.h"
58 #include <trace/events/rcu.h>
59
60 #include "rcu.h"
61
62 /* Data structures. */
63
64 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66
67 #define RCU_STATE_INITIALIZER(sname, cr) { \
68 .level = { &sname##_state.node[0] }, \
69 .call = cr, \
70 .fqs_state = RCU_GP_IDLE, \
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78 .name = #sname, \
79 }
80
81 struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88 static struct rcu_state *rcu_state;
89 LIST_HEAD(rcu_struct_flavors);
90
91 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93 module_param(rcu_fanout_leaf, int, 0444);
94 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101 };
102 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
104 /*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimize synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
113 int rcu_scheduler_active __read_mostly;
114 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
116 /*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128 static int rcu_scheduler_fully_active __read_mostly;
129
130 #ifdef CONFIG_RCU_BOOST
131
132 /*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139 DEFINE_PER_CPU(char, rcu_cpu_has_work);
140
141 #endif /* #ifdef CONFIG_RCU_BOOST */
142
143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 static void invoke_rcu_core(void);
145 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146
147 /*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156 unsigned long rcutorture_testseq;
157 unsigned long rcutorture_vernum;
158
159 /*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164 static int rcu_gp_in_progress(struct rcu_state *rsp)
165 {
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167 }
168
169 /*
170 * Note a quiescent state. Because we do not need to know
171 * how many quiescent states passed, just if there was at least
172 * one since the start of the grace period, this just sets a flag.
173 * The caller must have disabled preemption.
174 */
175 void rcu_sched_qs(int cpu)
176 {
177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 if (rdp->passed_quiesce == 0)
189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190 rdp->passed_quiesce = 1;
191 }
192
193 /*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
196 * The caller must have disabled preemption.
197 */
198 void rcu_note_context_switch(int cpu)
199 {
200 trace_rcu_utilization("Start context switch");
201 rcu_sched_qs(cpu);
202 rcu_preempt_note_context_switch(cpu);
203 trace_rcu_utilization("End context switch");
204 }
205 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206
207 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209 .dynticks = ATOMIC_INIT(1),
210 };
211
212 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
213 static long qhimark = 10000; /* If this many pending, ignore blimit. */
214 static long qlowmark = 100; /* Once only this many pending, use blimit. */
215
216 module_param(blimit, long, 0444);
217 module_param(qhimark, long, 0444);
218 module_param(qlowmark, long, 0444);
219
220 static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
221 static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
222
223 module_param(jiffies_till_first_fqs, ulong, 0644);
224 module_param(jiffies_till_next_fqs, ulong, 0644);
225
226 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
227 static void force_quiescent_state(struct rcu_state *rsp);
228 static int rcu_pending(int cpu);
229
230 /*
231 * Return the number of RCU-sched batches processed thus far for debug & stats.
232 */
233 long rcu_batches_completed_sched(void)
234 {
235 return rcu_sched_state.completed;
236 }
237 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
238
239 /*
240 * Return the number of RCU BH batches processed thus far for debug & stats.
241 */
242 long rcu_batches_completed_bh(void)
243 {
244 return rcu_bh_state.completed;
245 }
246 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
247
248 /*
249 * Force a quiescent state for RCU BH.
250 */
251 void rcu_bh_force_quiescent_state(void)
252 {
253 force_quiescent_state(&rcu_bh_state);
254 }
255 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
256
257 /*
258 * Record the number of times rcutorture tests have been initiated and
259 * terminated. This information allows the debugfs tracing stats to be
260 * correlated to the rcutorture messages, even when the rcutorture module
261 * is being repeatedly loaded and unloaded. In other words, we cannot
262 * store this state in rcutorture itself.
263 */
264 void rcutorture_record_test_transition(void)
265 {
266 rcutorture_testseq++;
267 rcutorture_vernum = 0;
268 }
269 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
270
271 /*
272 * Record the number of writer passes through the current rcutorture test.
273 * This is also used to correlate debugfs tracing stats with the rcutorture
274 * messages.
275 */
276 void rcutorture_record_progress(unsigned long vernum)
277 {
278 rcutorture_vernum++;
279 }
280 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
281
282 /*
283 * Force a quiescent state for RCU-sched.
284 */
285 void rcu_sched_force_quiescent_state(void)
286 {
287 force_quiescent_state(&rcu_sched_state);
288 }
289 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
290
291 /*
292 * Does the CPU have callbacks ready to be invoked?
293 */
294 static int
295 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
296 {
297 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
298 rdp->nxttail[RCU_DONE_TAIL] != NULL;
299 }
300
301 /*
302 * Does the current CPU require a not-yet-started grace period?
303 * The caller must have disabled interrupts to prevent races with
304 * normal callback registry.
305 */
306 static int
307 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
308 {
309 int i;
310
311 if (rcu_gp_in_progress(rsp))
312 return 0; /* No, a grace period is already in progress. */
313 if (!rdp->nxttail[RCU_NEXT_TAIL])
314 return 0; /* No, this is a no-CBs (or offline) CPU. */
315 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
316 return 1; /* Yes, this CPU has newly registered callbacks. */
317 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
318 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
319 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
320 rdp->nxtcompleted[i]))
321 return 1; /* Yes, CBs for future grace period. */
322 return 0; /* No grace period needed. */
323 }
324
325 /*
326 * Return the root node of the specified rcu_state structure.
327 */
328 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
329 {
330 return &rsp->node[0];
331 }
332
333 /*
334 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
335 *
336 * If the new value of the ->dynticks_nesting counter now is zero,
337 * we really have entered idle, and must do the appropriate accounting.
338 * The caller must have disabled interrupts.
339 */
340 static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
341 bool user)
342 {
343 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
344 if (!user && !is_idle_task(current)) {
345 struct task_struct *idle = idle_task(smp_processor_id());
346
347 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
348 ftrace_dump(DUMP_ORIG);
349 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
350 current->pid, current->comm,
351 idle->pid, idle->comm); /* must be idle task! */
352 }
353 rcu_prepare_for_idle(smp_processor_id());
354 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
355 smp_mb__before_atomic_inc(); /* See above. */
356 atomic_inc(&rdtp->dynticks);
357 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
358 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
359
360 /*
361 * It is illegal to enter an extended quiescent state while
362 * in an RCU read-side critical section.
363 */
364 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
365 "Illegal idle entry in RCU read-side critical section.");
366 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
367 "Illegal idle entry in RCU-bh read-side critical section.");
368 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
369 "Illegal idle entry in RCU-sched read-side critical section.");
370 }
371
372 /*
373 * Enter an RCU extended quiescent state, which can be either the
374 * idle loop or adaptive-tickless usermode execution.
375 */
376 static void rcu_eqs_enter(bool user)
377 {
378 long long oldval;
379 struct rcu_dynticks *rdtp;
380
381 rdtp = &__get_cpu_var(rcu_dynticks);
382 oldval = rdtp->dynticks_nesting;
383 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
384 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
385 rdtp->dynticks_nesting = 0;
386 else
387 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
388 rcu_eqs_enter_common(rdtp, oldval, user);
389 }
390
391 /**
392 * rcu_idle_enter - inform RCU that current CPU is entering idle
393 *
394 * Enter idle mode, in other words, -leave- the mode in which RCU
395 * read-side critical sections can occur. (Though RCU read-side
396 * critical sections can occur in irq handlers in idle, a possibility
397 * handled by irq_enter() and irq_exit().)
398 *
399 * We crowbar the ->dynticks_nesting field to zero to allow for
400 * the possibility of usermode upcalls having messed up our count
401 * of interrupt nesting level during the prior busy period.
402 */
403 void rcu_idle_enter(void)
404 {
405 unsigned long flags;
406
407 local_irq_save(flags);
408 rcu_eqs_enter(false);
409 local_irq_restore(flags);
410 }
411 EXPORT_SYMBOL_GPL(rcu_idle_enter);
412
413 #ifdef CONFIG_RCU_USER_QS
414 /**
415 * rcu_user_enter - inform RCU that we are resuming userspace.
416 *
417 * Enter RCU idle mode right before resuming userspace. No use of RCU
418 * is permitted between this call and rcu_user_exit(). This way the
419 * CPU doesn't need to maintain the tick for RCU maintenance purposes
420 * when the CPU runs in userspace.
421 */
422 void rcu_user_enter(void)
423 {
424 rcu_eqs_enter(1);
425 }
426
427 /**
428 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
429 * after the current irq returns.
430 *
431 * This is similar to rcu_user_enter() but in the context of a non-nesting
432 * irq. After this call, RCU enters into idle mode when the interrupt
433 * returns.
434 */
435 void rcu_user_enter_after_irq(void)
436 {
437 unsigned long flags;
438 struct rcu_dynticks *rdtp;
439
440 local_irq_save(flags);
441 rdtp = &__get_cpu_var(rcu_dynticks);
442 /* Ensure this irq is interrupting a non-idle RCU state. */
443 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
444 rdtp->dynticks_nesting = 1;
445 local_irq_restore(flags);
446 }
447 #endif /* CONFIG_RCU_USER_QS */
448
449 /**
450 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
451 *
452 * Exit from an interrupt handler, which might possibly result in entering
453 * idle mode, in other words, leaving the mode in which read-side critical
454 * sections can occur.
455 *
456 * This code assumes that the idle loop never does anything that might
457 * result in unbalanced calls to irq_enter() and irq_exit(). If your
458 * architecture violates this assumption, RCU will give you what you
459 * deserve, good and hard. But very infrequently and irreproducibly.
460 *
461 * Use things like work queues to work around this limitation.
462 *
463 * You have been warned.
464 */
465 void rcu_irq_exit(void)
466 {
467 unsigned long flags;
468 long long oldval;
469 struct rcu_dynticks *rdtp;
470
471 local_irq_save(flags);
472 rdtp = &__get_cpu_var(rcu_dynticks);
473 oldval = rdtp->dynticks_nesting;
474 rdtp->dynticks_nesting--;
475 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
476 if (rdtp->dynticks_nesting)
477 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
478 else
479 rcu_eqs_enter_common(rdtp, oldval, true);
480 local_irq_restore(flags);
481 }
482
483 /*
484 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
485 *
486 * If the new value of the ->dynticks_nesting counter was previously zero,
487 * we really have exited idle, and must do the appropriate accounting.
488 * The caller must have disabled interrupts.
489 */
490 static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
491 int user)
492 {
493 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
494 atomic_inc(&rdtp->dynticks);
495 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
496 smp_mb__after_atomic_inc(); /* See above. */
497 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
498 rcu_cleanup_after_idle(smp_processor_id());
499 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
500 if (!user && !is_idle_task(current)) {
501 struct task_struct *idle = idle_task(smp_processor_id());
502
503 trace_rcu_dyntick("Error on exit: not idle task",
504 oldval, rdtp->dynticks_nesting);
505 ftrace_dump(DUMP_ORIG);
506 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
507 current->pid, current->comm,
508 idle->pid, idle->comm); /* must be idle task! */
509 }
510 }
511
512 /*
513 * Exit an RCU extended quiescent state, which can be either the
514 * idle loop or adaptive-tickless usermode execution.
515 */
516 static void rcu_eqs_exit(bool user)
517 {
518 struct rcu_dynticks *rdtp;
519 long long oldval;
520
521 rdtp = &__get_cpu_var(rcu_dynticks);
522 oldval = rdtp->dynticks_nesting;
523 WARN_ON_ONCE(oldval < 0);
524 if (oldval & DYNTICK_TASK_NEST_MASK)
525 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
526 else
527 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
528 rcu_eqs_exit_common(rdtp, oldval, user);
529 }
530
531 /**
532 * rcu_idle_exit - inform RCU that current CPU is leaving idle
533 *
534 * Exit idle mode, in other words, -enter- the mode in which RCU
535 * read-side critical sections can occur.
536 *
537 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
538 * allow for the possibility of usermode upcalls messing up our count
539 * of interrupt nesting level during the busy period that is just
540 * now starting.
541 */
542 void rcu_idle_exit(void)
543 {
544 unsigned long flags;
545
546 local_irq_save(flags);
547 rcu_eqs_exit(false);
548 local_irq_restore(flags);
549 }
550 EXPORT_SYMBOL_GPL(rcu_idle_exit);
551
552 #ifdef CONFIG_RCU_USER_QS
553 /**
554 * rcu_user_exit - inform RCU that we are exiting userspace.
555 *
556 * Exit RCU idle mode while entering the kernel because it can
557 * run a RCU read side critical section anytime.
558 */
559 void rcu_user_exit(void)
560 {
561 rcu_eqs_exit(1);
562 }
563
564 /**
565 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
566 * idle mode after the current non-nesting irq returns.
567 *
568 * This is similar to rcu_user_exit() but in the context of an irq.
569 * This is called when the irq has interrupted a userspace RCU idle mode
570 * context. When the current non-nesting interrupt returns after this call,
571 * the CPU won't restore the RCU idle mode.
572 */
573 void rcu_user_exit_after_irq(void)
574 {
575 unsigned long flags;
576 struct rcu_dynticks *rdtp;
577
578 local_irq_save(flags);
579 rdtp = &__get_cpu_var(rcu_dynticks);
580 /* Ensure we are interrupting an RCU idle mode. */
581 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
582 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
583 local_irq_restore(flags);
584 }
585 #endif /* CONFIG_RCU_USER_QS */
586
587 /**
588 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
589 *
590 * Enter an interrupt handler, which might possibly result in exiting
591 * idle mode, in other words, entering the mode in which read-side critical
592 * sections can occur.
593 *
594 * Note that the Linux kernel is fully capable of entering an interrupt
595 * handler that it never exits, for example when doing upcalls to
596 * user mode! This code assumes that the idle loop never does upcalls to
597 * user mode. If your architecture does do upcalls from the idle loop (or
598 * does anything else that results in unbalanced calls to the irq_enter()
599 * and irq_exit() functions), RCU will give you what you deserve, good
600 * and hard. But very infrequently and irreproducibly.
601 *
602 * Use things like work queues to work around this limitation.
603 *
604 * You have been warned.
605 */
606 void rcu_irq_enter(void)
607 {
608 unsigned long flags;
609 struct rcu_dynticks *rdtp;
610 long long oldval;
611
612 local_irq_save(flags);
613 rdtp = &__get_cpu_var(rcu_dynticks);
614 oldval = rdtp->dynticks_nesting;
615 rdtp->dynticks_nesting++;
616 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
617 if (oldval)
618 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
619 else
620 rcu_eqs_exit_common(rdtp, oldval, true);
621 local_irq_restore(flags);
622 }
623
624 /**
625 * rcu_nmi_enter - inform RCU of entry to NMI context
626 *
627 * If the CPU was idle with dynamic ticks active, and there is no
628 * irq handler running, this updates rdtp->dynticks_nmi to let the
629 * RCU grace-period handling know that the CPU is active.
630 */
631 void rcu_nmi_enter(void)
632 {
633 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
634
635 if (rdtp->dynticks_nmi_nesting == 0 &&
636 (atomic_read(&rdtp->dynticks) & 0x1))
637 return;
638 rdtp->dynticks_nmi_nesting++;
639 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
640 atomic_inc(&rdtp->dynticks);
641 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
642 smp_mb__after_atomic_inc(); /* See above. */
643 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
644 }
645
646 /**
647 * rcu_nmi_exit - inform RCU of exit from NMI context
648 *
649 * If the CPU was idle with dynamic ticks active, and there is no
650 * irq handler running, this updates rdtp->dynticks_nmi to let the
651 * RCU grace-period handling know that the CPU is no longer active.
652 */
653 void rcu_nmi_exit(void)
654 {
655 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
656
657 if (rdtp->dynticks_nmi_nesting == 0 ||
658 --rdtp->dynticks_nmi_nesting != 0)
659 return;
660 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
661 smp_mb__before_atomic_inc(); /* See above. */
662 atomic_inc(&rdtp->dynticks);
663 smp_mb__after_atomic_inc(); /* Force delay to next write. */
664 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
665 }
666
667 /**
668 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
669 *
670 * If the current CPU is in its idle loop and is neither in an interrupt
671 * or NMI handler, return true.
672 */
673 int rcu_is_cpu_idle(void)
674 {
675 int ret;
676
677 preempt_disable();
678 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
679 preempt_enable();
680 return ret;
681 }
682 EXPORT_SYMBOL(rcu_is_cpu_idle);
683
684 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
685
686 /*
687 * Is the current CPU online? Disable preemption to avoid false positives
688 * that could otherwise happen due to the current CPU number being sampled,
689 * this task being preempted, its old CPU being taken offline, resuming
690 * on some other CPU, then determining that its old CPU is now offline.
691 * It is OK to use RCU on an offline processor during initial boot, hence
692 * the check for rcu_scheduler_fully_active. Note also that it is OK
693 * for a CPU coming online to use RCU for one jiffy prior to marking itself
694 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
695 * offline to continue to use RCU for one jiffy after marking itself
696 * offline in the cpu_online_mask. This leniency is necessary given the
697 * non-atomic nature of the online and offline processing, for example,
698 * the fact that a CPU enters the scheduler after completing the CPU_DYING
699 * notifiers.
700 *
701 * This is also why RCU internally marks CPUs online during the
702 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
703 *
704 * Disable checking if in an NMI handler because we cannot safely report
705 * errors from NMI handlers anyway.
706 */
707 bool rcu_lockdep_current_cpu_online(void)
708 {
709 struct rcu_data *rdp;
710 struct rcu_node *rnp;
711 bool ret;
712
713 if (in_nmi())
714 return 1;
715 preempt_disable();
716 rdp = &__get_cpu_var(rcu_sched_data);
717 rnp = rdp->mynode;
718 ret = (rdp->grpmask & rnp->qsmaskinit) ||
719 !rcu_scheduler_fully_active;
720 preempt_enable();
721 return ret;
722 }
723 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
724
725 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
726
727 /**
728 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
729 *
730 * If the current CPU is idle or running at a first-level (not nested)
731 * interrupt from idle, return true. The caller must have at least
732 * disabled preemption.
733 */
734 static int rcu_is_cpu_rrupt_from_idle(void)
735 {
736 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
737 }
738
739 /*
740 * Snapshot the specified CPU's dynticks counter so that we can later
741 * credit them with an implicit quiescent state. Return 1 if this CPU
742 * is in dynticks idle mode, which is an extended quiescent state.
743 */
744 static int dyntick_save_progress_counter(struct rcu_data *rdp)
745 {
746 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
747 return (rdp->dynticks_snap & 0x1) == 0;
748 }
749
750 /*
751 * Return true if the specified CPU has passed through a quiescent
752 * state by virtue of being in or having passed through an dynticks
753 * idle state since the last call to dyntick_save_progress_counter()
754 * for this same CPU, or by virtue of having been offline.
755 */
756 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
757 {
758 unsigned int curr;
759 unsigned int snap;
760
761 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
762 snap = (unsigned int)rdp->dynticks_snap;
763
764 /*
765 * If the CPU passed through or entered a dynticks idle phase with
766 * no active irq/NMI handlers, then we can safely pretend that the CPU
767 * already acknowledged the request to pass through a quiescent
768 * state. Either way, that CPU cannot possibly be in an RCU
769 * read-side critical section that started before the beginning
770 * of the current RCU grace period.
771 */
772 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
773 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
774 rdp->dynticks_fqs++;
775 return 1;
776 }
777
778 /*
779 * Check for the CPU being offline, but only if the grace period
780 * is old enough. We don't need to worry about the CPU changing
781 * state: If we see it offline even once, it has been through a
782 * quiescent state.
783 *
784 * The reason for insisting that the grace period be at least
785 * one jiffy old is that CPUs that are not quite online and that
786 * have just gone offline can still execute RCU read-side critical
787 * sections.
788 */
789 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
790 return 0; /* Grace period is not old enough. */
791 barrier();
792 if (cpu_is_offline(rdp->cpu)) {
793 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
794 rdp->offline_fqs++;
795 return 1;
796 }
797 return 0;
798 }
799
800 static void record_gp_stall_check_time(struct rcu_state *rsp)
801 {
802 rsp->gp_start = jiffies;
803 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
804 }
805
806 /*
807 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
808 * for architectures that do not implement trigger_all_cpu_backtrace().
809 * The NMI-triggered stack traces are more accurate because they are
810 * printed by the target CPU.
811 */
812 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
813 {
814 int cpu;
815 unsigned long flags;
816 struct rcu_node *rnp;
817
818 rcu_for_each_leaf_node(rsp, rnp) {
819 raw_spin_lock_irqsave(&rnp->lock, flags);
820 if (rnp->qsmask != 0) {
821 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
822 if (rnp->qsmask & (1UL << cpu))
823 dump_cpu_task(rnp->grplo + cpu);
824 }
825 raw_spin_unlock_irqrestore(&rnp->lock, flags);
826 }
827 }
828
829 static void print_other_cpu_stall(struct rcu_state *rsp)
830 {
831 int cpu;
832 long delta;
833 unsigned long flags;
834 int ndetected = 0;
835 struct rcu_node *rnp = rcu_get_root(rsp);
836 long totqlen = 0;
837
838 /* Only let one CPU complain about others per time interval. */
839
840 raw_spin_lock_irqsave(&rnp->lock, flags);
841 delta = jiffies - rsp->jiffies_stall;
842 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
843 raw_spin_unlock_irqrestore(&rnp->lock, flags);
844 return;
845 }
846 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
847 raw_spin_unlock_irqrestore(&rnp->lock, flags);
848
849 /*
850 * OK, time to rat on our buddy...
851 * See Documentation/RCU/stallwarn.txt for info on how to debug
852 * RCU CPU stall warnings.
853 */
854 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
855 rsp->name);
856 print_cpu_stall_info_begin();
857 rcu_for_each_leaf_node(rsp, rnp) {
858 raw_spin_lock_irqsave(&rnp->lock, flags);
859 ndetected += rcu_print_task_stall(rnp);
860 if (rnp->qsmask != 0) {
861 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
862 if (rnp->qsmask & (1UL << cpu)) {
863 print_cpu_stall_info(rsp,
864 rnp->grplo + cpu);
865 ndetected++;
866 }
867 }
868 raw_spin_unlock_irqrestore(&rnp->lock, flags);
869 }
870
871 /*
872 * Now rat on any tasks that got kicked up to the root rcu_node
873 * due to CPU offlining.
874 */
875 rnp = rcu_get_root(rsp);
876 raw_spin_lock_irqsave(&rnp->lock, flags);
877 ndetected += rcu_print_task_stall(rnp);
878 raw_spin_unlock_irqrestore(&rnp->lock, flags);
879
880 print_cpu_stall_info_end();
881 for_each_possible_cpu(cpu)
882 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
883 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
884 smp_processor_id(), (long)(jiffies - rsp->gp_start),
885 rsp->gpnum, rsp->completed, totqlen);
886 if (ndetected == 0)
887 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
888 else if (!trigger_all_cpu_backtrace())
889 rcu_dump_cpu_stacks(rsp);
890
891 /* Complain about tasks blocking the grace period. */
892
893 rcu_print_detail_task_stall(rsp);
894
895 force_quiescent_state(rsp); /* Kick them all. */
896 }
897
898 static void print_cpu_stall(struct rcu_state *rsp)
899 {
900 int cpu;
901 unsigned long flags;
902 struct rcu_node *rnp = rcu_get_root(rsp);
903 long totqlen = 0;
904
905 /*
906 * OK, time to rat on ourselves...
907 * See Documentation/RCU/stallwarn.txt for info on how to debug
908 * RCU CPU stall warnings.
909 */
910 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
911 print_cpu_stall_info_begin();
912 print_cpu_stall_info(rsp, smp_processor_id());
913 print_cpu_stall_info_end();
914 for_each_possible_cpu(cpu)
915 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
916 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
917 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
918 if (!trigger_all_cpu_backtrace())
919 dump_stack();
920
921 raw_spin_lock_irqsave(&rnp->lock, flags);
922 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
923 rsp->jiffies_stall = jiffies +
924 3 * rcu_jiffies_till_stall_check() + 3;
925 raw_spin_unlock_irqrestore(&rnp->lock, flags);
926
927 set_need_resched(); /* kick ourselves to get things going. */
928 }
929
930 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
931 {
932 unsigned long j;
933 unsigned long js;
934 struct rcu_node *rnp;
935
936 if (rcu_cpu_stall_suppress)
937 return;
938 j = ACCESS_ONCE(jiffies);
939 js = ACCESS_ONCE(rsp->jiffies_stall);
940 rnp = rdp->mynode;
941 if (rcu_gp_in_progress(rsp) &&
942 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
943
944 /* We haven't checked in, so go dump stack. */
945 print_cpu_stall(rsp);
946
947 } else if (rcu_gp_in_progress(rsp) &&
948 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
949
950 /* They had a few time units to dump stack, so complain. */
951 print_other_cpu_stall(rsp);
952 }
953 }
954
955 /**
956 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
957 *
958 * Set the stall-warning timeout way off into the future, thus preventing
959 * any RCU CPU stall-warning messages from appearing in the current set of
960 * RCU grace periods.
961 *
962 * The caller must disable hard irqs.
963 */
964 void rcu_cpu_stall_reset(void)
965 {
966 struct rcu_state *rsp;
967
968 for_each_rcu_flavor(rsp)
969 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
970 }
971
972 /*
973 * Update CPU-local rcu_data state to record the newly noticed grace period.
974 * This is used both when we started the grace period and when we notice
975 * that someone else started the grace period. The caller must hold the
976 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
977 * and must have irqs disabled.
978 */
979 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
980 {
981 if (rdp->gpnum != rnp->gpnum) {
982 /*
983 * If the current grace period is waiting for this CPU,
984 * set up to detect a quiescent state, otherwise don't
985 * go looking for one.
986 */
987 rdp->gpnum = rnp->gpnum;
988 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
989 rdp->passed_quiesce = 0;
990 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
991 zero_cpu_stall_ticks(rdp);
992 }
993 }
994
995 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
996 {
997 unsigned long flags;
998 struct rcu_node *rnp;
999
1000 local_irq_save(flags);
1001 rnp = rdp->mynode;
1002 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1003 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1004 local_irq_restore(flags);
1005 return;
1006 }
1007 __note_new_gpnum(rsp, rnp, rdp);
1008 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1009 }
1010
1011 /*
1012 * Did someone else start a new RCU grace period start since we last
1013 * checked? Update local state appropriately if so. Must be called
1014 * on the CPU corresponding to rdp.
1015 */
1016 static int
1017 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1018 {
1019 unsigned long flags;
1020 int ret = 0;
1021
1022 local_irq_save(flags);
1023 if (rdp->gpnum != rsp->gpnum) {
1024 note_new_gpnum(rsp, rdp);
1025 ret = 1;
1026 }
1027 local_irq_restore(flags);
1028 return ret;
1029 }
1030
1031 /*
1032 * Initialize the specified rcu_data structure's callback list to empty.
1033 */
1034 static void init_callback_list(struct rcu_data *rdp)
1035 {
1036 int i;
1037
1038 rdp->nxtlist = NULL;
1039 for (i = 0; i < RCU_NEXT_SIZE; i++)
1040 rdp->nxttail[i] = &rdp->nxtlist;
1041 init_nocb_callback_list(rdp);
1042 }
1043
1044 /*
1045 * Determine the value that ->completed will have at the end of the
1046 * next subsequent grace period. This is used to tag callbacks so that
1047 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1048 * been dyntick-idle for an extended period with callbacks under the
1049 * influence of RCU_FAST_NO_HZ.
1050 *
1051 * The caller must hold rnp->lock with interrupts disabled.
1052 */
1053 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1054 struct rcu_node *rnp)
1055 {
1056 /*
1057 * If RCU is idle, we just wait for the next grace period.
1058 * But we can only be sure that RCU is idle if we are looking
1059 * at the root rcu_node structure -- otherwise, a new grace
1060 * period might have started, but just not yet gotten around
1061 * to initializing the current non-root rcu_node structure.
1062 */
1063 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1064 return rnp->completed + 1;
1065
1066 /*
1067 * Otherwise, wait for a possible partial grace period and
1068 * then the subsequent full grace period.
1069 */
1070 return rnp->completed + 2;
1071 }
1072
1073 /*
1074 * If there is room, assign a ->completed number to any callbacks on
1075 * this CPU that have not already been assigned. Also accelerate any
1076 * callbacks that were previously assigned a ->completed number that has
1077 * since proven to be too conservative, which can happen if callbacks get
1078 * assigned a ->completed number while RCU is idle, but with reference to
1079 * a non-root rcu_node structure. This function is idempotent, so it does
1080 * not hurt to call it repeatedly.
1081 *
1082 * The caller must hold rnp->lock with interrupts disabled.
1083 */
1084 static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1085 struct rcu_data *rdp)
1086 {
1087 unsigned long c;
1088 int i;
1089
1090 /* If the CPU has no callbacks, nothing to do. */
1091 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1092 return;
1093
1094 /*
1095 * Starting from the sublist containing the callbacks most
1096 * recently assigned a ->completed number and working down, find the
1097 * first sublist that is not assignable to an upcoming grace period.
1098 * Such a sublist has something in it (first two tests) and has
1099 * a ->completed number assigned that will complete sooner than
1100 * the ->completed number for newly arrived callbacks (last test).
1101 *
1102 * The key point is that any later sublist can be assigned the
1103 * same ->completed number as the newly arrived callbacks, which
1104 * means that the callbacks in any of these later sublist can be
1105 * grouped into a single sublist, whether or not they have already
1106 * been assigned a ->completed number.
1107 */
1108 c = rcu_cbs_completed(rsp, rnp);
1109 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1110 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1111 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1112 break;
1113
1114 /*
1115 * If there are no sublist for unassigned callbacks, leave.
1116 * At the same time, advance "i" one sublist, so that "i" will
1117 * index into the sublist where all the remaining callbacks should
1118 * be grouped into.
1119 */
1120 if (++i >= RCU_NEXT_TAIL)
1121 return;
1122
1123 /*
1124 * Assign all subsequent callbacks' ->completed number to the next
1125 * full grace period and group them all in the sublist initially
1126 * indexed by "i".
1127 */
1128 for (; i <= RCU_NEXT_TAIL; i++) {
1129 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1130 rdp->nxtcompleted[i] = c;
1131 }
1132
1133 /* Trace depending on how much we were able to accelerate. */
1134 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1135 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
1136 else
1137 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
1138 }
1139
1140 /*
1141 * Move any callbacks whose grace period has completed to the
1142 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1143 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1144 * sublist. This function is idempotent, so it does not hurt to
1145 * invoke it repeatedly. As long as it is not invoked -too- often...
1146 *
1147 * The caller must hold rnp->lock with interrupts disabled.
1148 */
1149 static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1150 struct rcu_data *rdp)
1151 {
1152 int i, j;
1153
1154 /* If the CPU has no callbacks, nothing to do. */
1155 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1156 return;
1157
1158 /*
1159 * Find all callbacks whose ->completed numbers indicate that they
1160 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1161 */
1162 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1163 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1164 break;
1165 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1166 }
1167 /* Clean up any sublist tail pointers that were misordered above. */
1168 for (j = RCU_WAIT_TAIL; j < i; j++)
1169 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1170
1171 /* Copy down callbacks to fill in empty sublists. */
1172 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1173 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1174 break;
1175 rdp->nxttail[j] = rdp->nxttail[i];
1176 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1177 }
1178
1179 /* Classify any remaining callbacks. */
1180 rcu_accelerate_cbs(rsp, rnp, rdp);
1181 }
1182
1183 /*
1184 * Advance this CPU's callbacks, but only if the current grace period
1185 * has ended. This may be called only from the CPU to whom the rdp
1186 * belongs. In addition, the corresponding leaf rcu_node structure's
1187 * ->lock must be held by the caller, with irqs disabled.
1188 */
1189 static void
1190 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1191 {
1192 /* Did another grace period end? */
1193 if (rdp->completed == rnp->completed) {
1194
1195 /* No, so just accelerate recent callbacks. */
1196 rcu_accelerate_cbs(rsp, rnp, rdp);
1197
1198 } else {
1199
1200 /* Advance callbacks. */
1201 rcu_advance_cbs(rsp, rnp, rdp);
1202
1203 /* Remember that we saw this grace-period completion. */
1204 rdp->completed = rnp->completed;
1205 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1206
1207 /*
1208 * If we were in an extended quiescent state, we may have
1209 * missed some grace periods that others CPUs handled on
1210 * our behalf. Catch up with this state to avoid noting
1211 * spurious new grace periods. If another grace period
1212 * has started, then rnp->gpnum will have advanced, so
1213 * we will detect this later on. Of course, any quiescent
1214 * states we found for the old GP are now invalid.
1215 */
1216 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1217 rdp->gpnum = rdp->completed;
1218 rdp->passed_quiesce = 0;
1219 }
1220
1221 /*
1222 * If RCU does not need a quiescent state from this CPU,
1223 * then make sure that this CPU doesn't go looking for one.
1224 */
1225 if ((rnp->qsmask & rdp->grpmask) == 0)
1226 rdp->qs_pending = 0;
1227 }
1228 }
1229
1230 /*
1231 * Advance this CPU's callbacks, but only if the current grace period
1232 * has ended. This may be called only from the CPU to whom the rdp
1233 * belongs.
1234 */
1235 static void
1236 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1237 {
1238 unsigned long flags;
1239 struct rcu_node *rnp;
1240
1241 local_irq_save(flags);
1242 rnp = rdp->mynode;
1243 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1244 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1245 local_irq_restore(flags);
1246 return;
1247 }
1248 __rcu_process_gp_end(rsp, rnp, rdp);
1249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1250 }
1251
1252 /*
1253 * Do per-CPU grace-period initialization for running CPU. The caller
1254 * must hold the lock of the leaf rcu_node structure corresponding to
1255 * this CPU.
1256 */
1257 static void
1258 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1259 {
1260 /* Prior grace period ended, so advance callbacks for current CPU. */
1261 __rcu_process_gp_end(rsp, rnp, rdp);
1262
1263 /* Set state so that this CPU will detect the next quiescent state. */
1264 __note_new_gpnum(rsp, rnp, rdp);
1265 }
1266
1267 /*
1268 * Initialize a new grace period.
1269 */
1270 static int rcu_gp_init(struct rcu_state *rsp)
1271 {
1272 struct rcu_data *rdp;
1273 struct rcu_node *rnp = rcu_get_root(rsp);
1274
1275 raw_spin_lock_irq(&rnp->lock);
1276 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1277
1278 if (rcu_gp_in_progress(rsp)) {
1279 /* Grace period already in progress, don't start another. */
1280 raw_spin_unlock_irq(&rnp->lock);
1281 return 0;
1282 }
1283
1284 /* Advance to a new grace period and initialize state. */
1285 rsp->gpnum++;
1286 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1287 record_gp_stall_check_time(rsp);
1288 raw_spin_unlock_irq(&rnp->lock);
1289
1290 /* Exclude any concurrent CPU-hotplug operations. */
1291 mutex_lock(&rsp->onoff_mutex);
1292
1293 /*
1294 * Set the quiescent-state-needed bits in all the rcu_node
1295 * structures for all currently online CPUs in breadth-first order,
1296 * starting from the root rcu_node structure, relying on the layout
1297 * of the tree within the rsp->node[] array. Note that other CPUs
1298 * will access only the leaves of the hierarchy, thus seeing that no
1299 * grace period is in progress, at least until the corresponding
1300 * leaf node has been initialized. In addition, we have excluded
1301 * CPU-hotplug operations.
1302 *
1303 * The grace period cannot complete until the initialization
1304 * process finishes, because this kthread handles both.
1305 */
1306 rcu_for_each_node_breadth_first(rsp, rnp) {
1307 raw_spin_lock_irq(&rnp->lock);
1308 rdp = this_cpu_ptr(rsp->rda);
1309 rcu_preempt_check_blocked_tasks(rnp);
1310 rnp->qsmask = rnp->qsmaskinit;
1311 rnp->gpnum = rsp->gpnum;
1312 WARN_ON_ONCE(rnp->completed != rsp->completed);
1313 rnp->completed = rsp->completed;
1314 if (rnp == rdp->mynode)
1315 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1316 rcu_preempt_boost_start_gp(rnp);
1317 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1318 rnp->level, rnp->grplo,
1319 rnp->grphi, rnp->qsmask);
1320 raw_spin_unlock_irq(&rnp->lock);
1321 #ifdef CONFIG_PROVE_RCU_DELAY
1322 if ((random32() % (rcu_num_nodes * 8)) == 0 &&
1323 system_state == SYSTEM_RUNNING)
1324 schedule_timeout_uninterruptible(2);
1325 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1326 cond_resched();
1327 }
1328
1329 mutex_unlock(&rsp->onoff_mutex);
1330 return 1;
1331 }
1332
1333 /*
1334 * Do one round of quiescent-state forcing.
1335 */
1336 int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1337 {
1338 int fqs_state = fqs_state_in;
1339 struct rcu_node *rnp = rcu_get_root(rsp);
1340
1341 rsp->n_force_qs++;
1342 if (fqs_state == RCU_SAVE_DYNTICK) {
1343 /* Collect dyntick-idle snapshots. */
1344 force_qs_rnp(rsp, dyntick_save_progress_counter);
1345 fqs_state = RCU_FORCE_QS;
1346 } else {
1347 /* Handle dyntick-idle and offline CPUs. */
1348 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1349 }
1350 /* Clear flag to prevent immediate re-entry. */
1351 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1352 raw_spin_lock_irq(&rnp->lock);
1353 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1354 raw_spin_unlock_irq(&rnp->lock);
1355 }
1356 return fqs_state;
1357 }
1358
1359 /*
1360 * Clean up after the old grace period.
1361 */
1362 static void rcu_gp_cleanup(struct rcu_state *rsp)
1363 {
1364 unsigned long gp_duration;
1365 struct rcu_data *rdp;
1366 struct rcu_node *rnp = rcu_get_root(rsp);
1367
1368 raw_spin_lock_irq(&rnp->lock);
1369 gp_duration = jiffies - rsp->gp_start;
1370 if (gp_duration > rsp->gp_max)
1371 rsp->gp_max = gp_duration;
1372
1373 /*
1374 * We know the grace period is complete, but to everyone else
1375 * it appears to still be ongoing. But it is also the case
1376 * that to everyone else it looks like there is nothing that
1377 * they can do to advance the grace period. It is therefore
1378 * safe for us to drop the lock in order to mark the grace
1379 * period as completed in all of the rcu_node structures.
1380 */
1381 raw_spin_unlock_irq(&rnp->lock);
1382
1383 /*
1384 * Propagate new ->completed value to rcu_node structures so
1385 * that other CPUs don't have to wait until the start of the next
1386 * grace period to process their callbacks. This also avoids
1387 * some nasty RCU grace-period initialization races by forcing
1388 * the end of the current grace period to be completely recorded in
1389 * all of the rcu_node structures before the beginning of the next
1390 * grace period is recorded in any of the rcu_node structures.
1391 */
1392 rcu_for_each_node_breadth_first(rsp, rnp) {
1393 raw_spin_lock_irq(&rnp->lock);
1394 rnp->completed = rsp->gpnum;
1395 raw_spin_unlock_irq(&rnp->lock);
1396 cond_resched();
1397 }
1398 rnp = rcu_get_root(rsp);
1399 raw_spin_lock_irq(&rnp->lock);
1400
1401 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1402 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1403 rsp->fqs_state = RCU_GP_IDLE;
1404 rdp = this_cpu_ptr(rsp->rda);
1405 if (cpu_needs_another_gp(rsp, rdp))
1406 rsp->gp_flags = 1;
1407 raw_spin_unlock_irq(&rnp->lock);
1408 }
1409
1410 /*
1411 * Body of kthread that handles grace periods.
1412 */
1413 static int __noreturn rcu_gp_kthread(void *arg)
1414 {
1415 int fqs_state;
1416 unsigned long j;
1417 int ret;
1418 struct rcu_state *rsp = arg;
1419 struct rcu_node *rnp = rcu_get_root(rsp);
1420
1421 for (;;) {
1422
1423 /* Handle grace-period start. */
1424 for (;;) {
1425 wait_event_interruptible(rsp->gp_wq,
1426 rsp->gp_flags &
1427 RCU_GP_FLAG_INIT);
1428 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1429 rcu_gp_init(rsp))
1430 break;
1431 cond_resched();
1432 flush_signals(current);
1433 }
1434
1435 /* Handle quiescent-state forcing. */
1436 fqs_state = RCU_SAVE_DYNTICK;
1437 j = jiffies_till_first_fqs;
1438 if (j > HZ) {
1439 j = HZ;
1440 jiffies_till_first_fqs = HZ;
1441 }
1442 for (;;) {
1443 rsp->jiffies_force_qs = jiffies + j;
1444 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1445 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1446 (!ACCESS_ONCE(rnp->qsmask) &&
1447 !rcu_preempt_blocked_readers_cgp(rnp)),
1448 j);
1449 /* If grace period done, leave loop. */
1450 if (!ACCESS_ONCE(rnp->qsmask) &&
1451 !rcu_preempt_blocked_readers_cgp(rnp))
1452 break;
1453 /* If time for quiescent-state forcing, do it. */
1454 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1455 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1456 cond_resched();
1457 } else {
1458 /* Deal with stray signal. */
1459 cond_resched();
1460 flush_signals(current);
1461 }
1462 j = jiffies_till_next_fqs;
1463 if (j > HZ) {
1464 j = HZ;
1465 jiffies_till_next_fqs = HZ;
1466 } else if (j < 1) {
1467 j = 1;
1468 jiffies_till_next_fqs = 1;
1469 }
1470 }
1471
1472 /* Handle grace-period end. */
1473 rcu_gp_cleanup(rsp);
1474 }
1475 }
1476
1477 /*
1478 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1479 * in preparation for detecting the next grace period. The caller must hold
1480 * the root node's ->lock, which is released before return. Hard irqs must
1481 * be disabled.
1482 *
1483 * Note that it is legal for a dying CPU (which is marked as offline) to
1484 * invoke this function. This can happen when the dying CPU reports its
1485 * quiescent state.
1486 */
1487 static void
1488 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1489 __releases(rcu_get_root(rsp)->lock)
1490 {
1491 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1492 struct rcu_node *rnp = rcu_get_root(rsp);
1493
1494 if (!rsp->gp_kthread ||
1495 !cpu_needs_another_gp(rsp, rdp)) {
1496 /*
1497 * Either we have not yet spawned the grace-period
1498 * task, this CPU does not need another grace period,
1499 * or a grace period is already in progress.
1500 * Either way, don't start a new grace period.
1501 */
1502 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1503 return;
1504 }
1505
1506 /*
1507 * Because there is no grace period in progress right now,
1508 * any callbacks we have up to this point will be satisfied
1509 * by the next grace period. So this is a good place to
1510 * assign a grace period number to recently posted callbacks.
1511 */
1512 rcu_accelerate_cbs(rsp, rnp, rdp);
1513
1514 rsp->gp_flags = RCU_GP_FLAG_INIT;
1515 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
1516
1517 /* Ensure that CPU is aware of completion of last grace period. */
1518 rcu_process_gp_end(rsp, rdp);
1519 local_irq_restore(flags);
1520
1521 /* Wake up rcu_gp_kthread() to start the grace period. */
1522 wake_up(&rsp->gp_wq);
1523 }
1524
1525 /*
1526 * Report a full set of quiescent states to the specified rcu_state
1527 * data structure. This involves cleaning up after the prior grace
1528 * period and letting rcu_start_gp() start up the next grace period
1529 * if one is needed. Note that the caller must hold rnp->lock, as
1530 * required by rcu_start_gp(), which will release it.
1531 */
1532 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1533 __releases(rcu_get_root(rsp)->lock)
1534 {
1535 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1536 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1537 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
1538 }
1539
1540 /*
1541 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1542 * Allows quiescent states for a group of CPUs to be reported at one go
1543 * to the specified rcu_node structure, though all the CPUs in the group
1544 * must be represented by the same rcu_node structure (which need not be
1545 * a leaf rcu_node structure, though it often will be). That structure's
1546 * lock must be held upon entry, and it is released before return.
1547 */
1548 static void
1549 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1550 struct rcu_node *rnp, unsigned long flags)
1551 __releases(rnp->lock)
1552 {
1553 struct rcu_node *rnp_c;
1554
1555 /* Walk up the rcu_node hierarchy. */
1556 for (;;) {
1557 if (!(rnp->qsmask & mask)) {
1558
1559 /* Our bit has already been cleared, so done. */
1560 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1561 return;
1562 }
1563 rnp->qsmask &= ~mask;
1564 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1565 mask, rnp->qsmask, rnp->level,
1566 rnp->grplo, rnp->grphi,
1567 !!rnp->gp_tasks);
1568 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1569
1570 /* Other bits still set at this level, so done. */
1571 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1572 return;
1573 }
1574 mask = rnp->grpmask;
1575 if (rnp->parent == NULL) {
1576
1577 /* No more levels. Exit loop holding root lock. */
1578
1579 break;
1580 }
1581 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1582 rnp_c = rnp;
1583 rnp = rnp->parent;
1584 raw_spin_lock_irqsave(&rnp->lock, flags);
1585 WARN_ON_ONCE(rnp_c->qsmask);
1586 }
1587
1588 /*
1589 * Get here if we are the last CPU to pass through a quiescent
1590 * state for this grace period. Invoke rcu_report_qs_rsp()
1591 * to clean up and start the next grace period if one is needed.
1592 */
1593 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1594 }
1595
1596 /*
1597 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1598 * structure. This must be either called from the specified CPU, or
1599 * called when the specified CPU is known to be offline (and when it is
1600 * also known that no other CPU is concurrently trying to help the offline
1601 * CPU). The lastcomp argument is used to make sure we are still in the
1602 * grace period of interest. We don't want to end the current grace period
1603 * based on quiescent states detected in an earlier grace period!
1604 */
1605 static void
1606 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1607 {
1608 unsigned long flags;
1609 unsigned long mask;
1610 struct rcu_node *rnp;
1611
1612 rnp = rdp->mynode;
1613 raw_spin_lock_irqsave(&rnp->lock, flags);
1614 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1615 rnp->completed == rnp->gpnum) {
1616
1617 /*
1618 * The grace period in which this quiescent state was
1619 * recorded has ended, so don't report it upwards.
1620 * We will instead need a new quiescent state that lies
1621 * within the current grace period.
1622 */
1623 rdp->passed_quiesce = 0; /* need qs for new gp. */
1624 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1625 return;
1626 }
1627 mask = rdp->grpmask;
1628 if ((rnp->qsmask & mask) == 0) {
1629 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1630 } else {
1631 rdp->qs_pending = 0;
1632
1633 /*
1634 * This GP can't end until cpu checks in, so all of our
1635 * callbacks can be processed during the next GP.
1636 */
1637 rcu_accelerate_cbs(rsp, rnp, rdp);
1638
1639 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1640 }
1641 }
1642
1643 /*
1644 * Check to see if there is a new grace period of which this CPU
1645 * is not yet aware, and if so, set up local rcu_data state for it.
1646 * Otherwise, see if this CPU has just passed through its first
1647 * quiescent state for this grace period, and record that fact if so.
1648 */
1649 static void
1650 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1651 {
1652 /* If there is now a new grace period, record and return. */
1653 if (check_for_new_grace_period(rsp, rdp))
1654 return;
1655
1656 /*
1657 * Does this CPU still need to do its part for current grace period?
1658 * If no, return and let the other CPUs do their part as well.
1659 */
1660 if (!rdp->qs_pending)
1661 return;
1662
1663 /*
1664 * Was there a quiescent state since the beginning of the grace
1665 * period? If no, then exit and wait for the next call.
1666 */
1667 if (!rdp->passed_quiesce)
1668 return;
1669
1670 /*
1671 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1672 * judge of that).
1673 */
1674 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1675 }
1676
1677 #ifdef CONFIG_HOTPLUG_CPU
1678
1679 /*
1680 * Send the specified CPU's RCU callbacks to the orphanage. The
1681 * specified CPU must be offline, and the caller must hold the
1682 * ->orphan_lock.
1683 */
1684 static void
1685 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1686 struct rcu_node *rnp, struct rcu_data *rdp)
1687 {
1688 /* No-CBs CPUs do not have orphanable callbacks. */
1689 if (is_nocb_cpu(rdp->cpu))
1690 return;
1691
1692 /*
1693 * Orphan the callbacks. First adjust the counts. This is safe
1694 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1695 * cannot be running now. Thus no memory barrier is required.
1696 */
1697 if (rdp->nxtlist != NULL) {
1698 rsp->qlen_lazy += rdp->qlen_lazy;
1699 rsp->qlen += rdp->qlen;
1700 rdp->n_cbs_orphaned += rdp->qlen;
1701 rdp->qlen_lazy = 0;
1702 ACCESS_ONCE(rdp->qlen) = 0;
1703 }
1704
1705 /*
1706 * Next, move those callbacks still needing a grace period to
1707 * the orphanage, where some other CPU will pick them up.
1708 * Some of the callbacks might have gone partway through a grace
1709 * period, but that is too bad. They get to start over because we
1710 * cannot assume that grace periods are synchronized across CPUs.
1711 * We don't bother updating the ->nxttail[] array yet, instead
1712 * we just reset the whole thing later on.
1713 */
1714 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1715 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1716 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1717 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1718 }
1719
1720 /*
1721 * Then move the ready-to-invoke callbacks to the orphanage,
1722 * where some other CPU will pick them up. These will not be
1723 * required to pass though another grace period: They are done.
1724 */
1725 if (rdp->nxtlist != NULL) {
1726 *rsp->orphan_donetail = rdp->nxtlist;
1727 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1728 }
1729
1730 /* Finally, initialize the rcu_data structure's list to empty. */
1731 init_callback_list(rdp);
1732 }
1733
1734 /*
1735 * Adopt the RCU callbacks from the specified rcu_state structure's
1736 * orphanage. The caller must hold the ->orphan_lock.
1737 */
1738 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1739 {
1740 int i;
1741 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1742
1743 /* No-CBs CPUs are handled specially. */
1744 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1745 return;
1746
1747 /* Do the accounting first. */
1748 rdp->qlen_lazy += rsp->qlen_lazy;
1749 rdp->qlen += rsp->qlen;
1750 rdp->n_cbs_adopted += rsp->qlen;
1751 if (rsp->qlen_lazy != rsp->qlen)
1752 rcu_idle_count_callbacks_posted();
1753 rsp->qlen_lazy = 0;
1754 rsp->qlen = 0;
1755
1756 /*
1757 * We do not need a memory barrier here because the only way we
1758 * can get here if there is an rcu_barrier() in flight is if
1759 * we are the task doing the rcu_barrier().
1760 */
1761
1762 /* First adopt the ready-to-invoke callbacks. */
1763 if (rsp->orphan_donelist != NULL) {
1764 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1765 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1766 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1767 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1768 rdp->nxttail[i] = rsp->orphan_donetail;
1769 rsp->orphan_donelist = NULL;
1770 rsp->orphan_donetail = &rsp->orphan_donelist;
1771 }
1772
1773 /* And then adopt the callbacks that still need a grace period. */
1774 if (rsp->orphan_nxtlist != NULL) {
1775 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1776 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1777 rsp->orphan_nxtlist = NULL;
1778 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1779 }
1780 }
1781
1782 /*
1783 * Trace the fact that this CPU is going offline.
1784 */
1785 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1786 {
1787 RCU_TRACE(unsigned long mask);
1788 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1789 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1790
1791 RCU_TRACE(mask = rdp->grpmask);
1792 trace_rcu_grace_period(rsp->name,
1793 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1794 "cpuofl");
1795 }
1796
1797 /*
1798 * The CPU has been completely removed, and some other CPU is reporting
1799 * this fact from process context. Do the remainder of the cleanup,
1800 * including orphaning the outgoing CPU's RCU callbacks, and also
1801 * adopting them. There can only be one CPU hotplug operation at a time,
1802 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1803 */
1804 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1805 {
1806 unsigned long flags;
1807 unsigned long mask;
1808 int need_report = 0;
1809 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1810 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1811
1812 /* Adjust any no-longer-needed kthreads. */
1813 rcu_boost_kthread_setaffinity(rnp, -1);
1814
1815 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1816
1817 /* Exclude any attempts to start a new grace period. */
1818 mutex_lock(&rsp->onoff_mutex);
1819 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1820
1821 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1822 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1823 rcu_adopt_orphan_cbs(rsp);
1824
1825 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1826 mask = rdp->grpmask; /* rnp->grplo is constant. */
1827 do {
1828 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1829 rnp->qsmaskinit &= ~mask;
1830 if (rnp->qsmaskinit != 0) {
1831 if (rnp != rdp->mynode)
1832 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1833 break;
1834 }
1835 if (rnp == rdp->mynode)
1836 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1837 else
1838 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1839 mask = rnp->grpmask;
1840 rnp = rnp->parent;
1841 } while (rnp != NULL);
1842
1843 /*
1844 * We still hold the leaf rcu_node structure lock here, and
1845 * irqs are still disabled. The reason for this subterfuge is
1846 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1847 * held leads to deadlock.
1848 */
1849 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1850 rnp = rdp->mynode;
1851 if (need_report & RCU_OFL_TASKS_NORM_GP)
1852 rcu_report_unblock_qs_rnp(rnp, flags);
1853 else
1854 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1855 if (need_report & RCU_OFL_TASKS_EXP_GP)
1856 rcu_report_exp_rnp(rsp, rnp, true);
1857 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1858 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1859 cpu, rdp->qlen, rdp->nxtlist);
1860 init_callback_list(rdp);
1861 /* Disallow further callbacks on this CPU. */
1862 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1863 mutex_unlock(&rsp->onoff_mutex);
1864 }
1865
1866 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1867
1868 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1869 {
1870 }
1871
1872 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1873 {
1874 }
1875
1876 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1877
1878 /*
1879 * Invoke any RCU callbacks that have made it to the end of their grace
1880 * period. Thottle as specified by rdp->blimit.
1881 */
1882 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1883 {
1884 unsigned long flags;
1885 struct rcu_head *next, *list, **tail;
1886 long bl, count, count_lazy;
1887 int i;
1888
1889 /* If no callbacks are ready, just return. */
1890 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1891 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1892 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1893 need_resched(), is_idle_task(current),
1894 rcu_is_callbacks_kthread());
1895 return;
1896 }
1897
1898 /*
1899 * Extract the list of ready callbacks, disabling to prevent
1900 * races with call_rcu() from interrupt handlers.
1901 */
1902 local_irq_save(flags);
1903 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1904 bl = rdp->blimit;
1905 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1906 list = rdp->nxtlist;
1907 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1908 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1909 tail = rdp->nxttail[RCU_DONE_TAIL];
1910 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1911 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1912 rdp->nxttail[i] = &rdp->nxtlist;
1913 local_irq_restore(flags);
1914
1915 /* Invoke callbacks. */
1916 count = count_lazy = 0;
1917 while (list) {
1918 next = list->next;
1919 prefetch(next);
1920 debug_rcu_head_unqueue(list);
1921 if (__rcu_reclaim(rsp->name, list))
1922 count_lazy++;
1923 list = next;
1924 /* Stop only if limit reached and CPU has something to do. */
1925 if (++count >= bl &&
1926 (need_resched() ||
1927 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1928 break;
1929 }
1930
1931 local_irq_save(flags);
1932 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1933 is_idle_task(current),
1934 rcu_is_callbacks_kthread());
1935
1936 /* Update count, and requeue any remaining callbacks. */
1937 if (list != NULL) {
1938 *tail = rdp->nxtlist;
1939 rdp->nxtlist = list;
1940 for (i = 0; i < RCU_NEXT_SIZE; i++)
1941 if (&rdp->nxtlist == rdp->nxttail[i])
1942 rdp->nxttail[i] = tail;
1943 else
1944 break;
1945 }
1946 smp_mb(); /* List handling before counting for rcu_barrier(). */
1947 rdp->qlen_lazy -= count_lazy;
1948 ACCESS_ONCE(rdp->qlen) -= count;
1949 rdp->n_cbs_invoked += count;
1950
1951 /* Reinstate batch limit if we have worked down the excess. */
1952 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1953 rdp->blimit = blimit;
1954
1955 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1956 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1957 rdp->qlen_last_fqs_check = 0;
1958 rdp->n_force_qs_snap = rsp->n_force_qs;
1959 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1960 rdp->qlen_last_fqs_check = rdp->qlen;
1961 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1962
1963 local_irq_restore(flags);
1964
1965 /* Re-invoke RCU core processing if there are callbacks remaining. */
1966 if (cpu_has_callbacks_ready_to_invoke(rdp))
1967 invoke_rcu_core();
1968 }
1969
1970 /*
1971 * Check to see if this CPU is in a non-context-switch quiescent state
1972 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1973 * Also schedule RCU core processing.
1974 *
1975 * This function must be called from hardirq context. It is normally
1976 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1977 * false, there is no point in invoking rcu_check_callbacks().
1978 */
1979 void rcu_check_callbacks(int cpu, int user)
1980 {
1981 trace_rcu_utilization("Start scheduler-tick");
1982 increment_cpu_stall_ticks();
1983 if (user || rcu_is_cpu_rrupt_from_idle()) {
1984
1985 /*
1986 * Get here if this CPU took its interrupt from user
1987 * mode or from the idle loop, and if this is not a
1988 * nested interrupt. In this case, the CPU is in
1989 * a quiescent state, so note it.
1990 *
1991 * No memory barrier is required here because both
1992 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1993 * variables that other CPUs neither access nor modify,
1994 * at least not while the corresponding CPU is online.
1995 */
1996
1997 rcu_sched_qs(cpu);
1998 rcu_bh_qs(cpu);
1999
2000 } else if (!in_softirq()) {
2001
2002 /*
2003 * Get here if this CPU did not take its interrupt from
2004 * softirq, in other words, if it is not interrupting
2005 * a rcu_bh read-side critical section. This is an _bh
2006 * critical section, so note it.
2007 */
2008
2009 rcu_bh_qs(cpu);
2010 }
2011 rcu_preempt_check_callbacks(cpu);
2012 if (rcu_pending(cpu))
2013 invoke_rcu_core();
2014 trace_rcu_utilization("End scheduler-tick");
2015 }
2016
2017 /*
2018 * Scan the leaf rcu_node structures, processing dyntick state for any that
2019 * have not yet encountered a quiescent state, using the function specified.
2020 * Also initiate boosting for any threads blocked on the root rcu_node.
2021 *
2022 * The caller must have suppressed start of new grace periods.
2023 */
2024 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2025 {
2026 unsigned long bit;
2027 int cpu;
2028 unsigned long flags;
2029 unsigned long mask;
2030 struct rcu_node *rnp;
2031
2032 rcu_for_each_leaf_node(rsp, rnp) {
2033 cond_resched();
2034 mask = 0;
2035 raw_spin_lock_irqsave(&rnp->lock, flags);
2036 if (!rcu_gp_in_progress(rsp)) {
2037 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2038 return;
2039 }
2040 if (rnp->qsmask == 0) {
2041 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2042 continue;
2043 }
2044 cpu = rnp->grplo;
2045 bit = 1;
2046 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2047 if ((rnp->qsmask & bit) != 0 &&
2048 f(per_cpu_ptr(rsp->rda, cpu)))
2049 mask |= bit;
2050 }
2051 if (mask != 0) {
2052
2053 /* rcu_report_qs_rnp() releases rnp->lock. */
2054 rcu_report_qs_rnp(mask, rsp, rnp, flags);
2055 continue;
2056 }
2057 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2058 }
2059 rnp = rcu_get_root(rsp);
2060 if (rnp->qsmask == 0) {
2061 raw_spin_lock_irqsave(&rnp->lock, flags);
2062 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2063 }
2064 }
2065
2066 /*
2067 * Force quiescent states on reluctant CPUs, and also detect which
2068 * CPUs are in dyntick-idle mode.
2069 */
2070 static void force_quiescent_state(struct rcu_state *rsp)
2071 {
2072 unsigned long flags;
2073 bool ret;
2074 struct rcu_node *rnp;
2075 struct rcu_node *rnp_old = NULL;
2076
2077 /* Funnel through hierarchy to reduce memory contention. */
2078 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2079 for (; rnp != NULL; rnp = rnp->parent) {
2080 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2081 !raw_spin_trylock(&rnp->fqslock);
2082 if (rnp_old != NULL)
2083 raw_spin_unlock(&rnp_old->fqslock);
2084 if (ret) {
2085 rsp->n_force_qs_lh++;
2086 return;
2087 }
2088 rnp_old = rnp;
2089 }
2090 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2091
2092 /* Reached the root of the rcu_node tree, acquire lock. */
2093 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2094 raw_spin_unlock(&rnp_old->fqslock);
2095 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2096 rsp->n_force_qs_lh++;
2097 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2098 return; /* Someone beat us to it. */
2099 }
2100 rsp->gp_flags |= RCU_GP_FLAG_FQS;
2101 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2102 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
2103 }
2104
2105 /*
2106 * This does the RCU core processing work for the specified rcu_state
2107 * and rcu_data structures. This may be called only from the CPU to
2108 * whom the rdp belongs.
2109 */
2110 static void
2111 __rcu_process_callbacks(struct rcu_state *rsp)
2112 {
2113 unsigned long flags;
2114 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2115
2116 WARN_ON_ONCE(rdp->beenonline == 0);
2117
2118 /* Handle the end of a grace period that some other CPU ended. */
2119 rcu_process_gp_end(rsp, rdp);
2120
2121 /* Update RCU state based on any recent quiescent states. */
2122 rcu_check_quiescent_state(rsp, rdp);
2123
2124 /* Does this CPU require a not-yet-started grace period? */
2125 local_irq_save(flags);
2126 if (cpu_needs_another_gp(rsp, rdp)) {
2127 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2128 rcu_start_gp(rsp, flags); /* releases above lock */
2129 } else {
2130 local_irq_restore(flags);
2131 }
2132
2133 /* If there are callbacks ready, invoke them. */
2134 if (cpu_has_callbacks_ready_to_invoke(rdp))
2135 invoke_rcu_callbacks(rsp, rdp);
2136 }
2137
2138 /*
2139 * Do RCU core processing for the current CPU.
2140 */
2141 static void rcu_process_callbacks(struct softirq_action *unused)
2142 {
2143 struct rcu_state *rsp;
2144
2145 if (cpu_is_offline(smp_processor_id()))
2146 return;
2147 trace_rcu_utilization("Start RCU core");
2148 for_each_rcu_flavor(rsp)
2149 __rcu_process_callbacks(rsp);
2150 trace_rcu_utilization("End RCU core");
2151 }
2152
2153 /*
2154 * Schedule RCU callback invocation. If the specified type of RCU
2155 * does not support RCU priority boosting, just do a direct call,
2156 * otherwise wake up the per-CPU kernel kthread. Note that because we
2157 * are running on the current CPU with interrupts disabled, the
2158 * rcu_cpu_kthread_task cannot disappear out from under us.
2159 */
2160 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2161 {
2162 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2163 return;
2164 if (likely(!rsp->boost)) {
2165 rcu_do_batch(rsp, rdp);
2166 return;
2167 }
2168 invoke_rcu_callbacks_kthread();
2169 }
2170
2171 static void invoke_rcu_core(void)
2172 {
2173 if (cpu_online(smp_processor_id()))
2174 raise_softirq(RCU_SOFTIRQ);
2175 }
2176
2177 /*
2178 * Handle any core-RCU processing required by a call_rcu() invocation.
2179 */
2180 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2181 struct rcu_head *head, unsigned long flags)
2182 {
2183 /*
2184 * If called from an extended quiescent state, invoke the RCU
2185 * core in order to force a re-evaluation of RCU's idleness.
2186 */
2187 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2188 invoke_rcu_core();
2189
2190 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2191 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2192 return;
2193
2194 /*
2195 * Force the grace period if too many callbacks or too long waiting.
2196 * Enforce hysteresis, and don't invoke force_quiescent_state()
2197 * if some other CPU has recently done so. Also, don't bother
2198 * invoking force_quiescent_state() if the newly enqueued callback
2199 * is the only one waiting for a grace period to complete.
2200 */
2201 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2202
2203 /* Are we ignoring a completed grace period? */
2204 rcu_process_gp_end(rsp, rdp);
2205 check_for_new_grace_period(rsp, rdp);
2206
2207 /* Start a new grace period if one not already started. */
2208 if (!rcu_gp_in_progress(rsp)) {
2209 unsigned long nestflag;
2210 struct rcu_node *rnp_root = rcu_get_root(rsp);
2211
2212 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2213 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2214 } else {
2215 /* Give the grace period a kick. */
2216 rdp->blimit = LONG_MAX;
2217 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2218 *rdp->nxttail[RCU_DONE_TAIL] != head)
2219 force_quiescent_state(rsp);
2220 rdp->n_force_qs_snap = rsp->n_force_qs;
2221 rdp->qlen_last_fqs_check = rdp->qlen;
2222 }
2223 }
2224 }
2225
2226 /*
2227 * Helper function for call_rcu() and friends. The cpu argument will
2228 * normally be -1, indicating "currently running CPU". It may specify
2229 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2230 * is expected to specify a CPU.
2231 */
2232 static void
2233 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2234 struct rcu_state *rsp, int cpu, bool lazy)
2235 {
2236 unsigned long flags;
2237 struct rcu_data *rdp;
2238
2239 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2240 debug_rcu_head_queue(head);
2241 head->func = func;
2242 head->next = NULL;
2243
2244 /*
2245 * Opportunistically note grace-period endings and beginnings.
2246 * Note that we might see a beginning right after we see an
2247 * end, but never vice versa, since this CPU has to pass through
2248 * a quiescent state betweentimes.
2249 */
2250 local_irq_save(flags);
2251 rdp = this_cpu_ptr(rsp->rda);
2252
2253 /* Add the callback to our list. */
2254 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2255 int offline;
2256
2257 if (cpu != -1)
2258 rdp = per_cpu_ptr(rsp->rda, cpu);
2259 offline = !__call_rcu_nocb(rdp, head, lazy);
2260 WARN_ON_ONCE(offline);
2261 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2262 local_irq_restore(flags);
2263 return;
2264 }
2265 ACCESS_ONCE(rdp->qlen)++;
2266 if (lazy)
2267 rdp->qlen_lazy++;
2268 else
2269 rcu_idle_count_callbacks_posted();
2270 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2271 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2272 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2273
2274 if (__is_kfree_rcu_offset((unsigned long)func))
2275 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2276 rdp->qlen_lazy, rdp->qlen);
2277 else
2278 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2279
2280 /* Go handle any RCU core processing required. */
2281 __call_rcu_core(rsp, rdp, head, flags);
2282 local_irq_restore(flags);
2283 }
2284
2285 /*
2286 * Queue an RCU-sched callback for invocation after a grace period.
2287 */
2288 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2289 {
2290 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2291 }
2292 EXPORT_SYMBOL_GPL(call_rcu_sched);
2293
2294 /*
2295 * Queue an RCU callback for invocation after a quicker grace period.
2296 */
2297 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2298 {
2299 __call_rcu(head, func, &rcu_bh_state, -1, 0);
2300 }
2301 EXPORT_SYMBOL_GPL(call_rcu_bh);
2302
2303 /*
2304 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2305 * any blocking grace-period wait automatically implies a grace period
2306 * if there is only one CPU online at any point time during execution
2307 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2308 * occasionally incorrectly indicate that there are multiple CPUs online
2309 * when there was in fact only one the whole time, as this just adds
2310 * some overhead: RCU still operates correctly.
2311 */
2312 static inline int rcu_blocking_is_gp(void)
2313 {
2314 int ret;
2315
2316 might_sleep(); /* Check for RCU read-side critical section. */
2317 preempt_disable();
2318 ret = num_online_cpus() <= 1;
2319 preempt_enable();
2320 return ret;
2321 }
2322
2323 /**
2324 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2325 *
2326 * Control will return to the caller some time after a full rcu-sched
2327 * grace period has elapsed, in other words after all currently executing
2328 * rcu-sched read-side critical sections have completed. These read-side
2329 * critical sections are delimited by rcu_read_lock_sched() and
2330 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2331 * local_irq_disable(), and so on may be used in place of
2332 * rcu_read_lock_sched().
2333 *
2334 * This means that all preempt_disable code sequences, including NMI and
2335 * non-threaded hardware-interrupt handlers, in progress on entry will
2336 * have completed before this primitive returns. However, this does not
2337 * guarantee that softirq handlers will have completed, since in some
2338 * kernels, these handlers can run in process context, and can block.
2339 *
2340 * Note that this guarantee implies further memory-ordering guarantees.
2341 * On systems with more than one CPU, when synchronize_sched() returns,
2342 * each CPU is guaranteed to have executed a full memory barrier since the
2343 * end of its last RCU-sched read-side critical section whose beginning
2344 * preceded the call to synchronize_sched(). In addition, each CPU having
2345 * an RCU read-side critical section that extends beyond the return from
2346 * synchronize_sched() is guaranteed to have executed a full memory barrier
2347 * after the beginning of synchronize_sched() and before the beginning of
2348 * that RCU read-side critical section. Note that these guarantees include
2349 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2350 * that are executing in the kernel.
2351 *
2352 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2353 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2354 * to have executed a full memory barrier during the execution of
2355 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2356 * again only if the system has more than one CPU).
2357 *
2358 * This primitive provides the guarantees made by the (now removed)
2359 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2360 * guarantees that rcu_read_lock() sections will have completed.
2361 * In "classic RCU", these two guarantees happen to be one and
2362 * the same, but can differ in realtime RCU implementations.
2363 */
2364 void synchronize_sched(void)
2365 {
2366 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2367 !lock_is_held(&rcu_lock_map) &&
2368 !lock_is_held(&rcu_sched_lock_map),
2369 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2370 if (rcu_blocking_is_gp())
2371 return;
2372 if (rcu_expedited)
2373 synchronize_sched_expedited();
2374 else
2375 wait_rcu_gp(call_rcu_sched);
2376 }
2377 EXPORT_SYMBOL_GPL(synchronize_sched);
2378
2379 /**
2380 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2381 *
2382 * Control will return to the caller some time after a full rcu_bh grace
2383 * period has elapsed, in other words after all currently executing rcu_bh
2384 * read-side critical sections have completed. RCU read-side critical
2385 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2386 * and may be nested.
2387 *
2388 * See the description of synchronize_sched() for more detailed information
2389 * on memory ordering guarantees.
2390 */
2391 void synchronize_rcu_bh(void)
2392 {
2393 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2394 !lock_is_held(&rcu_lock_map) &&
2395 !lock_is_held(&rcu_sched_lock_map),
2396 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2397 if (rcu_blocking_is_gp())
2398 return;
2399 if (rcu_expedited)
2400 synchronize_rcu_bh_expedited();
2401 else
2402 wait_rcu_gp(call_rcu_bh);
2403 }
2404 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2405
2406 static int synchronize_sched_expedited_cpu_stop(void *data)
2407 {
2408 /*
2409 * There must be a full memory barrier on each affected CPU
2410 * between the time that try_stop_cpus() is called and the
2411 * time that it returns.
2412 *
2413 * In the current initial implementation of cpu_stop, the
2414 * above condition is already met when the control reaches
2415 * this point and the following smp_mb() is not strictly
2416 * necessary. Do smp_mb() anyway for documentation and
2417 * robustness against future implementation changes.
2418 */
2419 smp_mb(); /* See above comment block. */
2420 return 0;
2421 }
2422
2423 /**
2424 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2425 *
2426 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2427 * approach to force the grace period to end quickly. This consumes
2428 * significant time on all CPUs and is unfriendly to real-time workloads,
2429 * so is thus not recommended for any sort of common-case code. In fact,
2430 * if you are using synchronize_sched_expedited() in a loop, please
2431 * restructure your code to batch your updates, and then use a single
2432 * synchronize_sched() instead.
2433 *
2434 * Note that it is illegal to call this function while holding any lock
2435 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2436 * to call this function from a CPU-hotplug notifier. Failing to observe
2437 * these restriction will result in deadlock.
2438 *
2439 * This implementation can be thought of as an application of ticket
2440 * locking to RCU, with sync_sched_expedited_started and
2441 * sync_sched_expedited_done taking on the roles of the halves
2442 * of the ticket-lock word. Each task atomically increments
2443 * sync_sched_expedited_started upon entry, snapshotting the old value,
2444 * then attempts to stop all the CPUs. If this succeeds, then each
2445 * CPU will have executed a context switch, resulting in an RCU-sched
2446 * grace period. We are then done, so we use atomic_cmpxchg() to
2447 * update sync_sched_expedited_done to match our snapshot -- but
2448 * only if someone else has not already advanced past our snapshot.
2449 *
2450 * On the other hand, if try_stop_cpus() fails, we check the value
2451 * of sync_sched_expedited_done. If it has advanced past our
2452 * initial snapshot, then someone else must have forced a grace period
2453 * some time after we took our snapshot. In this case, our work is
2454 * done for us, and we can simply return. Otherwise, we try again,
2455 * but keep our initial snapshot for purposes of checking for someone
2456 * doing our work for us.
2457 *
2458 * If we fail too many times in a row, we fall back to synchronize_sched().
2459 */
2460 void synchronize_sched_expedited(void)
2461 {
2462 long firstsnap, s, snap;
2463 int trycount = 0;
2464 struct rcu_state *rsp = &rcu_sched_state;
2465
2466 /*
2467 * If we are in danger of counter wrap, just do synchronize_sched().
2468 * By allowing sync_sched_expedited_started to advance no more than
2469 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2470 * that more than 3.5 billion CPUs would be required to force a
2471 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2472 * course be required on a 64-bit system.
2473 */
2474 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2475 (ulong)atomic_long_read(&rsp->expedited_done) +
2476 ULONG_MAX / 8)) {
2477 synchronize_sched();
2478 atomic_long_inc(&rsp->expedited_wrap);
2479 return;
2480 }
2481
2482 /*
2483 * Take a ticket. Note that atomic_inc_return() implies a
2484 * full memory barrier.
2485 */
2486 snap = atomic_long_inc_return(&rsp->expedited_start);
2487 firstsnap = snap;
2488 get_online_cpus();
2489 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2490
2491 /*
2492 * Each pass through the following loop attempts to force a
2493 * context switch on each CPU.
2494 */
2495 while (try_stop_cpus(cpu_online_mask,
2496 synchronize_sched_expedited_cpu_stop,
2497 NULL) == -EAGAIN) {
2498 put_online_cpus();
2499 atomic_long_inc(&rsp->expedited_tryfail);
2500
2501 /* Check to see if someone else did our work for us. */
2502 s = atomic_long_read(&rsp->expedited_done);
2503 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2504 /* ensure test happens before caller kfree */
2505 smp_mb__before_atomic_inc(); /* ^^^ */
2506 atomic_long_inc(&rsp->expedited_workdone1);
2507 return;
2508 }
2509
2510 /* No joy, try again later. Or just synchronize_sched(). */
2511 if (trycount++ < 10) {
2512 udelay(trycount * num_online_cpus());
2513 } else {
2514 wait_rcu_gp(call_rcu_sched);
2515 atomic_long_inc(&rsp->expedited_normal);
2516 return;
2517 }
2518
2519 /* Recheck to see if someone else did our work for us. */
2520 s = atomic_long_read(&rsp->expedited_done);
2521 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2522 /* ensure test happens before caller kfree */
2523 smp_mb__before_atomic_inc(); /* ^^^ */
2524 atomic_long_inc(&rsp->expedited_workdone2);
2525 return;
2526 }
2527
2528 /*
2529 * Refetching sync_sched_expedited_started allows later
2530 * callers to piggyback on our grace period. We retry
2531 * after they started, so our grace period works for them,
2532 * and they started after our first try, so their grace
2533 * period works for us.
2534 */
2535 get_online_cpus();
2536 snap = atomic_long_read(&rsp->expedited_start);
2537 smp_mb(); /* ensure read is before try_stop_cpus(). */
2538 }
2539 atomic_long_inc(&rsp->expedited_stoppedcpus);
2540
2541 /*
2542 * Everyone up to our most recent fetch is covered by our grace
2543 * period. Update the counter, but only if our work is still
2544 * relevant -- which it won't be if someone who started later
2545 * than we did already did their update.
2546 */
2547 do {
2548 atomic_long_inc(&rsp->expedited_done_tries);
2549 s = atomic_long_read(&rsp->expedited_done);
2550 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2551 /* ensure test happens before caller kfree */
2552 smp_mb__before_atomic_inc(); /* ^^^ */
2553 atomic_long_inc(&rsp->expedited_done_lost);
2554 break;
2555 }
2556 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2557 atomic_long_inc(&rsp->expedited_done_exit);
2558
2559 put_online_cpus();
2560 }
2561 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2562
2563 /*
2564 * Check to see if there is any immediate RCU-related work to be done
2565 * by the current CPU, for the specified type of RCU, returning 1 if so.
2566 * The checks are in order of increasing expense: checks that can be
2567 * carried out against CPU-local state are performed first. However,
2568 * we must check for CPU stalls first, else we might not get a chance.
2569 */
2570 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2571 {
2572 struct rcu_node *rnp = rdp->mynode;
2573
2574 rdp->n_rcu_pending++;
2575
2576 /* Check for CPU stalls, if enabled. */
2577 check_cpu_stall(rsp, rdp);
2578
2579 /* Is the RCU core waiting for a quiescent state from this CPU? */
2580 if (rcu_scheduler_fully_active &&
2581 rdp->qs_pending && !rdp->passed_quiesce) {
2582 rdp->n_rp_qs_pending++;
2583 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2584 rdp->n_rp_report_qs++;
2585 return 1;
2586 }
2587
2588 /* Does this CPU have callbacks ready to invoke? */
2589 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2590 rdp->n_rp_cb_ready++;
2591 return 1;
2592 }
2593
2594 /* Has RCU gone idle with this CPU needing another grace period? */
2595 if (cpu_needs_another_gp(rsp, rdp)) {
2596 rdp->n_rp_cpu_needs_gp++;
2597 return 1;
2598 }
2599
2600 /* Has another RCU grace period completed? */
2601 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2602 rdp->n_rp_gp_completed++;
2603 return 1;
2604 }
2605
2606 /* Has a new RCU grace period started? */
2607 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2608 rdp->n_rp_gp_started++;
2609 return 1;
2610 }
2611
2612 /* nothing to do */
2613 rdp->n_rp_need_nothing++;
2614 return 0;
2615 }
2616
2617 /*
2618 * Check to see if there is any immediate RCU-related work to be done
2619 * by the current CPU, returning 1 if so. This function is part of the
2620 * RCU implementation; it is -not- an exported member of the RCU API.
2621 */
2622 static int rcu_pending(int cpu)
2623 {
2624 struct rcu_state *rsp;
2625
2626 for_each_rcu_flavor(rsp)
2627 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2628 return 1;
2629 return 0;
2630 }
2631
2632 /*
2633 * Check to see if any future RCU-related work will need to be done
2634 * by the current CPU, even if none need be done immediately, returning
2635 * 1 if so.
2636 */
2637 static int rcu_cpu_has_callbacks(int cpu)
2638 {
2639 struct rcu_state *rsp;
2640
2641 /* RCU callbacks either ready or pending? */
2642 for_each_rcu_flavor(rsp)
2643 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2644 return 1;
2645 return 0;
2646 }
2647
2648 /*
2649 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2650 * the compiler is expected to optimize this away.
2651 */
2652 static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2653 int cpu, unsigned long done)
2654 {
2655 trace_rcu_barrier(rsp->name, s, cpu,
2656 atomic_read(&rsp->barrier_cpu_count), done);
2657 }
2658
2659 /*
2660 * RCU callback function for _rcu_barrier(). If we are last, wake
2661 * up the task executing _rcu_barrier().
2662 */
2663 static void rcu_barrier_callback(struct rcu_head *rhp)
2664 {
2665 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2666 struct rcu_state *rsp = rdp->rsp;
2667
2668 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2669 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2670 complete(&rsp->barrier_completion);
2671 } else {
2672 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2673 }
2674 }
2675
2676 /*
2677 * Called with preemption disabled, and from cross-cpu IRQ context.
2678 */
2679 static void rcu_barrier_func(void *type)
2680 {
2681 struct rcu_state *rsp = type;
2682 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2683
2684 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2685 atomic_inc(&rsp->barrier_cpu_count);
2686 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2687 }
2688
2689 /*
2690 * Orchestrate the specified type of RCU barrier, waiting for all
2691 * RCU callbacks of the specified type to complete.
2692 */
2693 static void _rcu_barrier(struct rcu_state *rsp)
2694 {
2695 int cpu;
2696 struct rcu_data *rdp;
2697 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2698 unsigned long snap_done;
2699
2700 _rcu_barrier_trace(rsp, "Begin", -1, snap);
2701
2702 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2703 mutex_lock(&rsp->barrier_mutex);
2704
2705 /*
2706 * Ensure that all prior references, including to ->n_barrier_done,
2707 * are ordered before the _rcu_barrier() machinery.
2708 */
2709 smp_mb(); /* See above block comment. */
2710
2711 /*
2712 * Recheck ->n_barrier_done to see if others did our work for us.
2713 * This means checking ->n_barrier_done for an even-to-odd-to-even
2714 * transition. The "if" expression below therefore rounds the old
2715 * value up to the next even number and adds two before comparing.
2716 */
2717 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2718 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
2719 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2720 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2721 smp_mb(); /* caller's subsequent code after above check. */
2722 mutex_unlock(&rsp->barrier_mutex);
2723 return;
2724 }
2725
2726 /*
2727 * Increment ->n_barrier_done to avoid duplicate work. Use
2728 * ACCESS_ONCE() to prevent the compiler from speculating
2729 * the increment to precede the early-exit check.
2730 */
2731 ACCESS_ONCE(rsp->n_barrier_done)++;
2732 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2733 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2734 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2735
2736 /*
2737 * Initialize the count to one rather than to zero in order to
2738 * avoid a too-soon return to zero in case of a short grace period
2739 * (or preemption of this task). Exclude CPU-hotplug operations
2740 * to ensure that no offline CPU has callbacks queued.
2741 */
2742 init_completion(&rsp->barrier_completion);
2743 atomic_set(&rsp->barrier_cpu_count, 1);
2744 get_online_cpus();
2745
2746 /*
2747 * Force each CPU with callbacks to register a new callback.
2748 * When that callback is invoked, we will know that all of the
2749 * corresponding CPU's preceding callbacks have been invoked.
2750 */
2751 for_each_possible_cpu(cpu) {
2752 if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
2753 continue;
2754 rdp = per_cpu_ptr(rsp->rda, cpu);
2755 if (is_nocb_cpu(cpu)) {
2756 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2757 rsp->n_barrier_done);
2758 atomic_inc(&rsp->barrier_cpu_count);
2759 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2760 rsp, cpu, 0);
2761 } else if (ACCESS_ONCE(rdp->qlen)) {
2762 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2763 rsp->n_barrier_done);
2764 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2765 } else {
2766 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2767 rsp->n_barrier_done);
2768 }
2769 }
2770 put_online_cpus();
2771
2772 /*
2773 * Now that we have an rcu_barrier_callback() callback on each
2774 * CPU, and thus each counted, remove the initial count.
2775 */
2776 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2777 complete(&rsp->barrier_completion);
2778
2779 /* Increment ->n_barrier_done to prevent duplicate work. */
2780 smp_mb(); /* Keep increment after above mechanism. */
2781 ACCESS_ONCE(rsp->n_barrier_done)++;
2782 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2783 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2784 smp_mb(); /* Keep increment before caller's subsequent code. */
2785
2786 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2787 wait_for_completion(&rsp->barrier_completion);
2788
2789 /* Other rcu_barrier() invocations can now safely proceed. */
2790 mutex_unlock(&rsp->barrier_mutex);
2791 }
2792
2793 /**
2794 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2795 */
2796 void rcu_barrier_bh(void)
2797 {
2798 _rcu_barrier(&rcu_bh_state);
2799 }
2800 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2801
2802 /**
2803 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2804 */
2805 void rcu_barrier_sched(void)
2806 {
2807 _rcu_barrier(&rcu_sched_state);
2808 }
2809 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2810
2811 /*
2812 * Do boot-time initialization of a CPU's per-CPU RCU data.
2813 */
2814 static void __init
2815 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2816 {
2817 unsigned long flags;
2818 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2819 struct rcu_node *rnp = rcu_get_root(rsp);
2820
2821 /* Set up local state, ensuring consistent view of global state. */
2822 raw_spin_lock_irqsave(&rnp->lock, flags);
2823 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2824 init_callback_list(rdp);
2825 rdp->qlen_lazy = 0;
2826 ACCESS_ONCE(rdp->qlen) = 0;
2827 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2828 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2829 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2830 rdp->cpu = cpu;
2831 rdp->rsp = rsp;
2832 rcu_boot_init_nocb_percpu_data(rdp);
2833 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2834 }
2835
2836 /*
2837 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2838 * offline event can be happening at a given time. Note also that we
2839 * can accept some slop in the rsp->completed access due to the fact
2840 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2841 */
2842 static void __cpuinit
2843 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2844 {
2845 unsigned long flags;
2846 unsigned long mask;
2847 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2848 struct rcu_node *rnp = rcu_get_root(rsp);
2849
2850 /* Exclude new grace periods. */
2851 mutex_lock(&rsp->onoff_mutex);
2852
2853 /* Set up local state, ensuring consistent view of global state. */
2854 raw_spin_lock_irqsave(&rnp->lock, flags);
2855 rdp->beenonline = 1; /* We have now been online. */
2856 rdp->preemptible = preemptible;
2857 rdp->qlen_last_fqs_check = 0;
2858 rdp->n_force_qs_snap = rsp->n_force_qs;
2859 rdp->blimit = blimit;
2860 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
2861 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2862 atomic_set(&rdp->dynticks->dynticks,
2863 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2864 rcu_prepare_for_idle_init(cpu);
2865 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2866
2867 /* Add CPU to rcu_node bitmasks. */
2868 rnp = rdp->mynode;
2869 mask = rdp->grpmask;
2870 do {
2871 /* Exclude any attempts to start a new GP on small systems. */
2872 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2873 rnp->qsmaskinit |= mask;
2874 mask = rnp->grpmask;
2875 if (rnp == rdp->mynode) {
2876 /*
2877 * If there is a grace period in progress, we will
2878 * set up to wait for it next time we run the
2879 * RCU core code.
2880 */
2881 rdp->gpnum = rnp->completed;
2882 rdp->completed = rnp->completed;
2883 rdp->passed_quiesce = 0;
2884 rdp->qs_pending = 0;
2885 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2886 }
2887 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2888 rnp = rnp->parent;
2889 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2890 local_irq_restore(flags);
2891
2892 mutex_unlock(&rsp->onoff_mutex);
2893 }
2894
2895 static void __cpuinit rcu_prepare_cpu(int cpu)
2896 {
2897 struct rcu_state *rsp;
2898
2899 for_each_rcu_flavor(rsp)
2900 rcu_init_percpu_data(cpu, rsp,
2901 strcmp(rsp->name, "rcu_preempt") == 0);
2902 }
2903
2904 /*
2905 * Handle CPU online/offline notification events.
2906 */
2907 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2908 unsigned long action, void *hcpu)
2909 {
2910 long cpu = (long)hcpu;
2911 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2912 struct rcu_node *rnp = rdp->mynode;
2913 struct rcu_state *rsp;
2914 int ret = NOTIFY_OK;
2915
2916 trace_rcu_utilization("Start CPU hotplug");
2917 switch (action) {
2918 case CPU_UP_PREPARE:
2919 case CPU_UP_PREPARE_FROZEN:
2920 rcu_prepare_cpu(cpu);
2921 rcu_prepare_kthreads(cpu);
2922 break;
2923 case CPU_ONLINE:
2924 case CPU_DOWN_FAILED:
2925 rcu_boost_kthread_setaffinity(rnp, -1);
2926 break;
2927 case CPU_DOWN_PREPARE:
2928 if (nocb_cpu_expendable(cpu))
2929 rcu_boost_kthread_setaffinity(rnp, cpu);
2930 else
2931 ret = NOTIFY_BAD;
2932 break;
2933 case CPU_DYING:
2934 case CPU_DYING_FROZEN:
2935 for_each_rcu_flavor(rsp)
2936 rcu_cleanup_dying_cpu(rsp);
2937 rcu_cleanup_after_idle(cpu);
2938 break;
2939 case CPU_DEAD:
2940 case CPU_DEAD_FROZEN:
2941 case CPU_UP_CANCELED:
2942 case CPU_UP_CANCELED_FROZEN:
2943 for_each_rcu_flavor(rsp)
2944 rcu_cleanup_dead_cpu(cpu, rsp);
2945 break;
2946 default:
2947 break;
2948 }
2949 trace_rcu_utilization("End CPU hotplug");
2950 return ret;
2951 }
2952
2953 /*
2954 * Spawn the kthread that handles this RCU flavor's grace periods.
2955 */
2956 static int __init rcu_spawn_gp_kthread(void)
2957 {
2958 unsigned long flags;
2959 struct rcu_node *rnp;
2960 struct rcu_state *rsp;
2961 struct task_struct *t;
2962
2963 for_each_rcu_flavor(rsp) {
2964 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2965 BUG_ON(IS_ERR(t));
2966 rnp = rcu_get_root(rsp);
2967 raw_spin_lock_irqsave(&rnp->lock, flags);
2968 rsp->gp_kthread = t;
2969 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2970 rcu_spawn_nocb_kthreads(rsp);
2971 }
2972 return 0;
2973 }
2974 early_initcall(rcu_spawn_gp_kthread);
2975
2976 /*
2977 * This function is invoked towards the end of the scheduler's initialization
2978 * process. Before this is called, the idle task might contain
2979 * RCU read-side critical sections (during which time, this idle
2980 * task is booting the system). After this function is called, the
2981 * idle tasks are prohibited from containing RCU read-side critical
2982 * sections. This function also enables RCU lockdep checking.
2983 */
2984 void rcu_scheduler_starting(void)
2985 {
2986 WARN_ON(num_online_cpus() != 1);
2987 WARN_ON(nr_context_switches() > 0);
2988 rcu_scheduler_active = 1;
2989 }
2990
2991 /*
2992 * Compute the per-level fanout, either using the exact fanout specified
2993 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2994 */
2995 #ifdef CONFIG_RCU_FANOUT_EXACT
2996 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2997 {
2998 int i;
2999
3000 for (i = rcu_num_lvls - 1; i > 0; i--)
3001 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3002 rsp->levelspread[0] = rcu_fanout_leaf;
3003 }
3004 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3005 static void __init rcu_init_levelspread(struct rcu_state *rsp)
3006 {
3007 int ccur;
3008 int cprv;
3009 int i;
3010
3011 cprv = nr_cpu_ids;
3012 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3013 ccur = rsp->levelcnt[i];
3014 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3015 cprv = ccur;
3016 }
3017 }
3018 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3019
3020 /*
3021 * Helper function for rcu_init() that initializes one rcu_state structure.
3022 */
3023 static void __init rcu_init_one(struct rcu_state *rsp,
3024 struct rcu_data __percpu *rda)
3025 {
3026 static char *buf[] = { "rcu_node_0",
3027 "rcu_node_1",
3028 "rcu_node_2",
3029 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3030 static char *fqs[] = { "rcu_node_fqs_0",
3031 "rcu_node_fqs_1",
3032 "rcu_node_fqs_2",
3033 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
3034 int cpustride = 1;
3035 int i;
3036 int j;
3037 struct rcu_node *rnp;
3038
3039 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3040
3041 /* Silence gcc 4.8 warning about array index out of range. */
3042 if (rcu_num_lvls > RCU_NUM_LVLS)
3043 panic("rcu_init_one: rcu_num_lvls overflow");
3044
3045 /* Initialize the level-tracking arrays. */
3046
3047 for (i = 0; i < rcu_num_lvls; i++)
3048 rsp->levelcnt[i] = num_rcu_lvl[i];
3049 for (i = 1; i < rcu_num_lvls; i++)
3050 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3051 rcu_init_levelspread(rsp);
3052
3053 /* Initialize the elements themselves, starting from the leaves. */
3054
3055 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3056 cpustride *= rsp->levelspread[i];
3057 rnp = rsp->level[i];
3058 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3059 raw_spin_lock_init(&rnp->lock);
3060 lockdep_set_class_and_name(&rnp->lock,
3061 &rcu_node_class[i], buf[i]);
3062 raw_spin_lock_init(&rnp->fqslock);
3063 lockdep_set_class_and_name(&rnp->fqslock,
3064 &rcu_fqs_class[i], fqs[i]);
3065 rnp->gpnum = rsp->gpnum;
3066 rnp->completed = rsp->completed;
3067 rnp->qsmask = 0;
3068 rnp->qsmaskinit = 0;
3069 rnp->grplo = j * cpustride;
3070 rnp->grphi = (j + 1) * cpustride - 1;
3071 if (rnp->grphi >= NR_CPUS)
3072 rnp->grphi = NR_CPUS - 1;
3073 if (i == 0) {
3074 rnp->grpnum = 0;
3075 rnp->grpmask = 0;
3076 rnp->parent = NULL;
3077 } else {
3078 rnp->grpnum = j % rsp->levelspread[i - 1];
3079 rnp->grpmask = 1UL << rnp->grpnum;
3080 rnp->parent = rsp->level[i - 1] +
3081 j / rsp->levelspread[i - 1];
3082 }
3083 rnp->level = i;
3084 INIT_LIST_HEAD(&rnp->blkd_tasks);
3085 }
3086 }
3087
3088 rsp->rda = rda;
3089 init_waitqueue_head(&rsp->gp_wq);
3090 rnp = rsp->level[rcu_num_lvls - 1];
3091 for_each_possible_cpu(i) {
3092 while (i > rnp->grphi)
3093 rnp++;
3094 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3095 rcu_boot_init_percpu_data(i, rsp);
3096 }
3097 list_add(&rsp->flavors, &rcu_struct_flavors);
3098 }
3099
3100 /*
3101 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3102 * replace the definitions in rcutree.h because those are needed to size
3103 * the ->node array in the rcu_state structure.
3104 */
3105 static void __init rcu_init_geometry(void)
3106 {
3107 int i;
3108 int j;
3109 int n = nr_cpu_ids;
3110 int rcu_capacity[MAX_RCU_LVLS + 1];
3111
3112 /* If the compile-time values are accurate, just leave. */
3113 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3114 nr_cpu_ids == NR_CPUS)
3115 return;
3116
3117 /*
3118 * Compute number of nodes that can be handled an rcu_node tree
3119 * with the given number of levels. Setting rcu_capacity[0] makes
3120 * some of the arithmetic easier.
3121 */
3122 rcu_capacity[0] = 1;
3123 rcu_capacity[1] = rcu_fanout_leaf;
3124 for (i = 2; i <= MAX_RCU_LVLS; i++)
3125 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3126
3127 /*
3128 * The boot-time rcu_fanout_leaf parameter is only permitted
3129 * to increase the leaf-level fanout, not decrease it. Of course,
3130 * the leaf-level fanout cannot exceed the number of bits in
3131 * the rcu_node masks. Finally, the tree must be able to accommodate
3132 * the configured number of CPUs. Complain and fall back to the
3133 * compile-time values if these limits are exceeded.
3134 */
3135 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3136 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3137 n > rcu_capacity[MAX_RCU_LVLS]) {
3138 WARN_ON(1);
3139 return;
3140 }
3141
3142 /* Calculate the number of rcu_nodes at each level of the tree. */
3143 for (i = 1; i <= MAX_RCU_LVLS; i++)
3144 if (n <= rcu_capacity[i]) {
3145 for (j = 0; j <= i; j++)
3146 num_rcu_lvl[j] =
3147 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3148 rcu_num_lvls = i;
3149 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3150 num_rcu_lvl[j] = 0;
3151 break;
3152 }
3153
3154 /* Calculate the total number of rcu_node structures. */
3155 rcu_num_nodes = 0;
3156 for (i = 0; i <= MAX_RCU_LVLS; i++)
3157 rcu_num_nodes += num_rcu_lvl[i];
3158 rcu_num_nodes -= n;
3159 }
3160
3161 void __init rcu_init(void)
3162 {
3163 int cpu;
3164
3165 rcu_bootup_announce();
3166 rcu_init_geometry();
3167 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3168 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3169 __rcu_init_preempt();
3170 rcu_init_nocb();
3171 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3172
3173 /*
3174 * We don't need protection against CPU-hotplug here because
3175 * this is called early in boot, before either interrupts
3176 * or the scheduler are operational.
3177 */
3178 cpu_notifier(rcu_cpu_notify, 0);
3179 for_each_online_cpu(cpu)
3180 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3181 }
3182
3183 #include "rcutree_plugin.h"