Merge branch 'common/pfc' into common/pinctrl
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55
56 #include "rcutree.h"
57 #include <trace/events/rcu.h>
58
59 #include "rcu.h"
60
61 /* Data structures. */
62
63 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
64
65 #define RCU_STATE_INITIALIZER(structname) { \
66 .level = { &structname##_state.node[0] }, \
67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \
71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73 }, \
74 .fqs_state = RCU_GP_IDLE, \
75 .gpnum = -300, \
76 .completed = -300, \
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .orphan_nxttail = &structname##_state.orphan_nxtlist, \
79 .orphan_donetail = &structname##_state.orphan_donelist, \
80 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
81 .n_force_qs = 0, \
82 .n_force_qs_ngp = 0, \
83 .name = #structname, \
84 }
85
86 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
87 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
88
89 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
90 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
91
92 static struct rcu_state *rcu_state;
93
94 /*
95 * The rcu_scheduler_active variable transitions from zero to one just
96 * before the first task is spawned. So when this variable is zero, RCU
97 * can assume that there is but one task, allowing RCU to (for example)
98 * optimized synchronize_sched() to a simple barrier(). When this variable
99 * is one, RCU must actually do all the hard work required to detect real
100 * grace periods. This variable is also used to suppress boot-time false
101 * positives from lockdep-RCU error checking.
102 */
103 int rcu_scheduler_active __read_mostly;
104 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
105
106 /*
107 * The rcu_scheduler_fully_active variable transitions from zero to one
108 * during the early_initcall() processing, which is after the scheduler
109 * is capable of creating new tasks. So RCU processing (for example,
110 * creating tasks for RCU priority boosting) must be delayed until after
111 * rcu_scheduler_fully_active transitions from zero to one. We also
112 * currently delay invocation of any RCU callbacks until after this point.
113 *
114 * It might later prove better for people registering RCU callbacks during
115 * early boot to take responsibility for these callbacks, but one step at
116 * a time.
117 */
118 static int rcu_scheduler_fully_active __read_mostly;
119
120 #ifdef CONFIG_RCU_BOOST
121
122 /*
123 * Control variables for per-CPU and per-rcu_node kthreads. These
124 * handle all flavors of RCU.
125 */
126 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
127 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
128 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
129 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
130 DEFINE_PER_CPU(char, rcu_cpu_has_work);
131
132 #endif /* #ifdef CONFIG_RCU_BOOST */
133
134 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
135 static void invoke_rcu_core(void);
136 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
137
138 /*
139 * Track the rcutorture test sequence number and the update version
140 * number within a given test. The rcutorture_testseq is incremented
141 * on every rcutorture module load and unload, so has an odd value
142 * when a test is running. The rcutorture_vernum is set to zero
143 * when rcutorture starts and is incremented on each rcutorture update.
144 * These variables enable correlating rcutorture output with the
145 * RCU tracing information.
146 */
147 unsigned long rcutorture_testseq;
148 unsigned long rcutorture_vernum;
149
150 /* State information for rcu_barrier() and friends. */
151
152 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
153 static atomic_t rcu_barrier_cpu_count;
154 static DEFINE_MUTEX(rcu_barrier_mutex);
155 static struct completion rcu_barrier_completion;
156
157 /*
158 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
159 * permit this function to be invoked without holding the root rcu_node
160 * structure's ->lock, but of course results can be subject to change.
161 */
162 static int rcu_gp_in_progress(struct rcu_state *rsp)
163 {
164 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
165 }
166
167 /*
168 * Note a quiescent state. Because we do not need to know
169 * how many quiescent states passed, just if there was at least
170 * one since the start of the grace period, this just sets a flag.
171 * The caller must have disabled preemption.
172 */
173 void rcu_sched_qs(int cpu)
174 {
175 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182 }
183
184 void rcu_bh_qs(int cpu)
185 {
186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187
188 rdp->passed_quiesce_gpnum = rdp->gpnum;
189 barrier();
190 if (rdp->passed_quiesce == 0)
191 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
192 rdp->passed_quiesce = 1;
193 }
194
195 /*
196 * Note a context switch. This is a quiescent state for RCU-sched,
197 * and requires special handling for preemptible RCU.
198 * The caller must have disabled preemption.
199 */
200 void rcu_note_context_switch(int cpu)
201 {
202 trace_rcu_utilization("Start context switch");
203 rcu_sched_qs(cpu);
204 trace_rcu_utilization("End context switch");
205 }
206 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
207
208 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
209 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
210 .dynticks = ATOMIC_INIT(1),
211 };
212
213 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
214 static int qhimark = 10000; /* If this many pending, ignore blimit. */
215 static int qlowmark = 100; /* Once only this many pending, use blimit. */
216
217 module_param(blimit, int, 0);
218 module_param(qhimark, int, 0);
219 module_param(qlowmark, int, 0);
220
221 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
222 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
223
224 module_param(rcu_cpu_stall_suppress, int, 0644);
225 module_param(rcu_cpu_stall_timeout, int, 0644);
226
227 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
228 static int rcu_pending(int cpu);
229
230 /*
231 * Return the number of RCU-sched batches processed thus far for debug & stats.
232 */
233 long rcu_batches_completed_sched(void)
234 {
235 return rcu_sched_state.completed;
236 }
237 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
238
239 /*
240 * Return the number of RCU BH batches processed thus far for debug & stats.
241 */
242 long rcu_batches_completed_bh(void)
243 {
244 return rcu_bh_state.completed;
245 }
246 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
247
248 /*
249 * Force a quiescent state for RCU BH.
250 */
251 void rcu_bh_force_quiescent_state(void)
252 {
253 force_quiescent_state(&rcu_bh_state, 0);
254 }
255 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
256
257 /*
258 * Record the number of times rcutorture tests have been initiated and
259 * terminated. This information allows the debugfs tracing stats to be
260 * correlated to the rcutorture messages, even when the rcutorture module
261 * is being repeatedly loaded and unloaded. In other words, we cannot
262 * store this state in rcutorture itself.
263 */
264 void rcutorture_record_test_transition(void)
265 {
266 rcutorture_testseq++;
267 rcutorture_vernum = 0;
268 }
269 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
270
271 /*
272 * Record the number of writer passes through the current rcutorture test.
273 * This is also used to correlate debugfs tracing stats with the rcutorture
274 * messages.
275 */
276 void rcutorture_record_progress(unsigned long vernum)
277 {
278 rcutorture_vernum++;
279 }
280 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
281
282 /*
283 * Force a quiescent state for RCU-sched.
284 */
285 void rcu_sched_force_quiescent_state(void)
286 {
287 force_quiescent_state(&rcu_sched_state, 0);
288 }
289 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
290
291 /*
292 * Does the CPU have callbacks ready to be invoked?
293 */
294 static int
295 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
296 {
297 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
298 }
299
300 /*
301 * Does the current CPU require a yet-as-unscheduled grace period?
302 */
303 static int
304 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
305 {
306 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
307 }
308
309 /*
310 * Return the root node of the specified rcu_state structure.
311 */
312 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
313 {
314 return &rsp->node[0];
315 }
316
317 /*
318 * If the specified CPU is offline, tell the caller that it is in
319 * a quiescent state. Otherwise, whack it with a reschedule IPI.
320 * Grace periods can end up waiting on an offline CPU when that
321 * CPU is in the process of coming online -- it will be added to the
322 * rcu_node bitmasks before it actually makes it online. The same thing
323 * can happen while a CPU is in the process of coming online. Because this
324 * race is quite rare, we check for it after detecting that the grace
325 * period has been delayed rather than checking each and every CPU
326 * each and every time we start a new grace period.
327 */
328 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
329 {
330 /*
331 * If the CPU is offline for more than a jiffy, it is in a quiescent
332 * state. We can trust its state not to change because interrupts
333 * are disabled. The reason for the jiffy's worth of slack is to
334 * handle CPUs initializing on the way up and finding their way
335 * to the idle loop on the way down.
336 */
337 if (cpu_is_offline(rdp->cpu) &&
338 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
339 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
340 rdp->offline_fqs++;
341 return 1;
342 }
343 return 0;
344 }
345
346 /*
347 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
348 *
349 * If the new value of the ->dynticks_nesting counter now is zero,
350 * we really have entered idle, and must do the appropriate accounting.
351 * The caller must have disabled interrupts.
352 */
353 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
354 {
355 trace_rcu_dyntick("Start", oldval, 0);
356 if (!is_idle_task(current)) {
357 struct task_struct *idle = idle_task(smp_processor_id());
358
359 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
360 ftrace_dump(DUMP_ALL);
361 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
362 current->pid, current->comm,
363 idle->pid, idle->comm); /* must be idle task! */
364 }
365 rcu_prepare_for_idle(smp_processor_id());
366 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
367 smp_mb__before_atomic_inc(); /* See above. */
368 atomic_inc(&rdtp->dynticks);
369 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
370 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
371
372 /*
373 * The idle task is not permitted to enter the idle loop while
374 * in an RCU read-side critical section.
375 */
376 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
377 "Illegal idle entry in RCU read-side critical section.");
378 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
379 "Illegal idle entry in RCU-bh read-side critical section.");
380 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
381 "Illegal idle entry in RCU-sched read-side critical section.");
382 }
383
384 /**
385 * rcu_idle_enter - inform RCU that current CPU is entering idle
386 *
387 * Enter idle mode, in other words, -leave- the mode in which RCU
388 * read-side critical sections can occur. (Though RCU read-side
389 * critical sections can occur in irq handlers in idle, a possibility
390 * handled by irq_enter() and irq_exit().)
391 *
392 * We crowbar the ->dynticks_nesting field to zero to allow for
393 * the possibility of usermode upcalls having messed up our count
394 * of interrupt nesting level during the prior busy period.
395 */
396 void rcu_idle_enter(void)
397 {
398 unsigned long flags;
399 long long oldval;
400 struct rcu_dynticks *rdtp;
401
402 local_irq_save(flags);
403 rdtp = &__get_cpu_var(rcu_dynticks);
404 oldval = rdtp->dynticks_nesting;
405 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
406 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
407 rdtp->dynticks_nesting = 0;
408 else
409 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
410 rcu_idle_enter_common(rdtp, oldval);
411 local_irq_restore(flags);
412 }
413 EXPORT_SYMBOL_GPL(rcu_idle_enter);
414
415 /**
416 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
417 *
418 * Exit from an interrupt handler, which might possibly result in entering
419 * idle mode, in other words, leaving the mode in which read-side critical
420 * sections can occur.
421 *
422 * This code assumes that the idle loop never does anything that might
423 * result in unbalanced calls to irq_enter() and irq_exit(). If your
424 * architecture violates this assumption, RCU will give you what you
425 * deserve, good and hard. But very infrequently and irreproducibly.
426 *
427 * Use things like work queues to work around this limitation.
428 *
429 * You have been warned.
430 */
431 void rcu_irq_exit(void)
432 {
433 unsigned long flags;
434 long long oldval;
435 struct rcu_dynticks *rdtp;
436
437 local_irq_save(flags);
438 rdtp = &__get_cpu_var(rcu_dynticks);
439 oldval = rdtp->dynticks_nesting;
440 rdtp->dynticks_nesting--;
441 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
442 if (rdtp->dynticks_nesting)
443 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
444 else
445 rcu_idle_enter_common(rdtp, oldval);
446 local_irq_restore(flags);
447 }
448
449 /*
450 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
451 *
452 * If the new value of the ->dynticks_nesting counter was previously zero,
453 * we really have exited idle, and must do the appropriate accounting.
454 * The caller must have disabled interrupts.
455 */
456 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
457 {
458 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
459 atomic_inc(&rdtp->dynticks);
460 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
461 smp_mb__after_atomic_inc(); /* See above. */
462 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
463 rcu_cleanup_after_idle(smp_processor_id());
464 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
465 if (!is_idle_task(current)) {
466 struct task_struct *idle = idle_task(smp_processor_id());
467
468 trace_rcu_dyntick("Error on exit: not idle task",
469 oldval, rdtp->dynticks_nesting);
470 ftrace_dump(DUMP_ALL);
471 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
472 current->pid, current->comm,
473 idle->pid, idle->comm); /* must be idle task! */
474 }
475 }
476
477 /**
478 * rcu_idle_exit - inform RCU that current CPU is leaving idle
479 *
480 * Exit idle mode, in other words, -enter- the mode in which RCU
481 * read-side critical sections can occur.
482 *
483 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
484 * allow for the possibility of usermode upcalls messing up our count
485 * of interrupt nesting level during the busy period that is just
486 * now starting.
487 */
488 void rcu_idle_exit(void)
489 {
490 unsigned long flags;
491 struct rcu_dynticks *rdtp;
492 long long oldval;
493
494 local_irq_save(flags);
495 rdtp = &__get_cpu_var(rcu_dynticks);
496 oldval = rdtp->dynticks_nesting;
497 WARN_ON_ONCE(oldval < 0);
498 if (oldval & DYNTICK_TASK_NEST_MASK)
499 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
500 else
501 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
502 rcu_idle_exit_common(rdtp, oldval);
503 local_irq_restore(flags);
504 }
505 EXPORT_SYMBOL_GPL(rcu_idle_exit);
506
507 /**
508 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
509 *
510 * Enter an interrupt handler, which might possibly result in exiting
511 * idle mode, in other words, entering the mode in which read-side critical
512 * sections can occur.
513 *
514 * Note that the Linux kernel is fully capable of entering an interrupt
515 * handler that it never exits, for example when doing upcalls to
516 * user mode! This code assumes that the idle loop never does upcalls to
517 * user mode. If your architecture does do upcalls from the idle loop (or
518 * does anything else that results in unbalanced calls to the irq_enter()
519 * and irq_exit() functions), RCU will give you what you deserve, good
520 * and hard. But very infrequently and irreproducibly.
521 *
522 * Use things like work queues to work around this limitation.
523 *
524 * You have been warned.
525 */
526 void rcu_irq_enter(void)
527 {
528 unsigned long flags;
529 struct rcu_dynticks *rdtp;
530 long long oldval;
531
532 local_irq_save(flags);
533 rdtp = &__get_cpu_var(rcu_dynticks);
534 oldval = rdtp->dynticks_nesting;
535 rdtp->dynticks_nesting++;
536 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
537 if (oldval)
538 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
539 else
540 rcu_idle_exit_common(rdtp, oldval);
541 local_irq_restore(flags);
542 }
543
544 /**
545 * rcu_nmi_enter - inform RCU of entry to NMI context
546 *
547 * If the CPU was idle with dynamic ticks active, and there is no
548 * irq handler running, this updates rdtp->dynticks_nmi to let the
549 * RCU grace-period handling know that the CPU is active.
550 */
551 void rcu_nmi_enter(void)
552 {
553 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
554
555 if (rdtp->dynticks_nmi_nesting == 0 &&
556 (atomic_read(&rdtp->dynticks) & 0x1))
557 return;
558 rdtp->dynticks_nmi_nesting++;
559 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
560 atomic_inc(&rdtp->dynticks);
561 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
562 smp_mb__after_atomic_inc(); /* See above. */
563 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
564 }
565
566 /**
567 * rcu_nmi_exit - inform RCU of exit from NMI context
568 *
569 * If the CPU was idle with dynamic ticks active, and there is no
570 * irq handler running, this updates rdtp->dynticks_nmi to let the
571 * RCU grace-period handling know that the CPU is no longer active.
572 */
573 void rcu_nmi_exit(void)
574 {
575 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
576
577 if (rdtp->dynticks_nmi_nesting == 0 ||
578 --rdtp->dynticks_nmi_nesting != 0)
579 return;
580 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
581 smp_mb__before_atomic_inc(); /* See above. */
582 atomic_inc(&rdtp->dynticks);
583 smp_mb__after_atomic_inc(); /* Force delay to next write. */
584 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
585 }
586
587 #ifdef CONFIG_PROVE_RCU
588
589 /**
590 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
591 *
592 * If the current CPU is in its idle loop and is neither in an interrupt
593 * or NMI handler, return true.
594 */
595 int rcu_is_cpu_idle(void)
596 {
597 int ret;
598
599 preempt_disable();
600 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
601 preempt_enable();
602 return ret;
603 }
604 EXPORT_SYMBOL(rcu_is_cpu_idle);
605
606 #ifdef CONFIG_HOTPLUG_CPU
607
608 /*
609 * Is the current CPU online? Disable preemption to avoid false positives
610 * that could otherwise happen due to the current CPU number being sampled,
611 * this task being preempted, its old CPU being taken offline, resuming
612 * on some other CPU, then determining that its old CPU is now offline.
613 * It is OK to use RCU on an offline processor during initial boot, hence
614 * the check for rcu_scheduler_fully_active. Note also that it is OK
615 * for a CPU coming online to use RCU for one jiffy prior to marking itself
616 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
617 * offline to continue to use RCU for one jiffy after marking itself
618 * offline in the cpu_online_mask. This leniency is necessary given the
619 * non-atomic nature of the online and offline processing, for example,
620 * the fact that a CPU enters the scheduler after completing the CPU_DYING
621 * notifiers.
622 *
623 * This is also why RCU internally marks CPUs online during the
624 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
625 *
626 * Disable checking if in an NMI handler because we cannot safely report
627 * errors from NMI handlers anyway.
628 */
629 bool rcu_lockdep_current_cpu_online(void)
630 {
631 struct rcu_data *rdp;
632 struct rcu_node *rnp;
633 bool ret;
634
635 if (in_nmi())
636 return 1;
637 preempt_disable();
638 rdp = &__get_cpu_var(rcu_sched_data);
639 rnp = rdp->mynode;
640 ret = (rdp->grpmask & rnp->qsmaskinit) ||
641 !rcu_scheduler_fully_active;
642 preempt_enable();
643 return ret;
644 }
645 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
646
647 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
648
649 #endif /* #ifdef CONFIG_PROVE_RCU */
650
651 /**
652 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
653 *
654 * If the current CPU is idle or running at a first-level (not nested)
655 * interrupt from idle, return true. The caller must have at least
656 * disabled preemption.
657 */
658 int rcu_is_cpu_rrupt_from_idle(void)
659 {
660 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
661 }
662
663 /*
664 * Snapshot the specified CPU's dynticks counter so that we can later
665 * credit them with an implicit quiescent state. Return 1 if this CPU
666 * is in dynticks idle mode, which is an extended quiescent state.
667 */
668 static int dyntick_save_progress_counter(struct rcu_data *rdp)
669 {
670 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
671 return (rdp->dynticks_snap & 0x1) == 0;
672 }
673
674 /*
675 * Return true if the specified CPU has passed through a quiescent
676 * state by virtue of being in or having passed through an dynticks
677 * idle state since the last call to dyntick_save_progress_counter()
678 * for this same CPU.
679 */
680 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
681 {
682 unsigned int curr;
683 unsigned int snap;
684
685 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
686 snap = (unsigned int)rdp->dynticks_snap;
687
688 /*
689 * If the CPU passed through or entered a dynticks idle phase with
690 * no active irq/NMI handlers, then we can safely pretend that the CPU
691 * already acknowledged the request to pass through a quiescent
692 * state. Either way, that CPU cannot possibly be in an RCU
693 * read-side critical section that started before the beginning
694 * of the current RCU grace period.
695 */
696 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
697 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
698 rdp->dynticks_fqs++;
699 return 1;
700 }
701
702 /* Go check for the CPU being offline. */
703 return rcu_implicit_offline_qs(rdp);
704 }
705
706 static int jiffies_till_stall_check(void)
707 {
708 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
709
710 /*
711 * Limit check must be consistent with the Kconfig limits
712 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
713 */
714 if (till_stall_check < 3) {
715 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
716 till_stall_check = 3;
717 } else if (till_stall_check > 300) {
718 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
719 till_stall_check = 300;
720 }
721 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
722 }
723
724 static void record_gp_stall_check_time(struct rcu_state *rsp)
725 {
726 rsp->gp_start = jiffies;
727 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
728 }
729
730 static void print_other_cpu_stall(struct rcu_state *rsp)
731 {
732 int cpu;
733 long delta;
734 unsigned long flags;
735 int ndetected;
736 struct rcu_node *rnp = rcu_get_root(rsp);
737
738 /* Only let one CPU complain about others per time interval. */
739
740 raw_spin_lock_irqsave(&rnp->lock, flags);
741 delta = jiffies - rsp->jiffies_stall;
742 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
743 raw_spin_unlock_irqrestore(&rnp->lock, flags);
744 return;
745 }
746 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
747 raw_spin_unlock_irqrestore(&rnp->lock, flags);
748
749 /*
750 * OK, time to rat on our buddy...
751 * See Documentation/RCU/stallwarn.txt for info on how to debug
752 * RCU CPU stall warnings.
753 */
754 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
755 rsp->name);
756 print_cpu_stall_info_begin();
757 rcu_for_each_leaf_node(rsp, rnp) {
758 raw_spin_lock_irqsave(&rnp->lock, flags);
759 ndetected += rcu_print_task_stall(rnp);
760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
761 if (rnp->qsmask == 0)
762 continue;
763 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
764 if (rnp->qsmask & (1UL << cpu)) {
765 print_cpu_stall_info(rsp, rnp->grplo + cpu);
766 ndetected++;
767 }
768 }
769
770 /*
771 * Now rat on any tasks that got kicked up to the root rcu_node
772 * due to CPU offlining.
773 */
774 rnp = rcu_get_root(rsp);
775 raw_spin_lock_irqsave(&rnp->lock, flags);
776 ndetected = rcu_print_task_stall(rnp);
777 raw_spin_unlock_irqrestore(&rnp->lock, flags);
778
779 print_cpu_stall_info_end();
780 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
781 smp_processor_id(), (long)(jiffies - rsp->gp_start));
782 if (ndetected == 0)
783 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
784 else if (!trigger_all_cpu_backtrace())
785 dump_stack();
786
787 /* If so configured, complain about tasks blocking the grace period. */
788
789 rcu_print_detail_task_stall(rsp);
790
791 force_quiescent_state(rsp, 0); /* Kick them all. */
792 }
793
794 static void print_cpu_stall(struct rcu_state *rsp)
795 {
796 unsigned long flags;
797 struct rcu_node *rnp = rcu_get_root(rsp);
798
799 /*
800 * OK, time to rat on ourselves...
801 * See Documentation/RCU/stallwarn.txt for info on how to debug
802 * RCU CPU stall warnings.
803 */
804 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
805 print_cpu_stall_info_begin();
806 print_cpu_stall_info(rsp, smp_processor_id());
807 print_cpu_stall_info_end();
808 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
809 if (!trigger_all_cpu_backtrace())
810 dump_stack();
811
812 raw_spin_lock_irqsave(&rnp->lock, flags);
813 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
814 rsp->jiffies_stall = jiffies +
815 3 * jiffies_till_stall_check() + 3;
816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
817
818 set_need_resched(); /* kick ourselves to get things going. */
819 }
820
821 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
822 {
823 unsigned long j;
824 unsigned long js;
825 struct rcu_node *rnp;
826
827 if (rcu_cpu_stall_suppress)
828 return;
829 j = ACCESS_ONCE(jiffies);
830 js = ACCESS_ONCE(rsp->jiffies_stall);
831 rnp = rdp->mynode;
832 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
833
834 /* We haven't checked in, so go dump stack. */
835 print_cpu_stall(rsp);
836
837 } else if (rcu_gp_in_progress(rsp) &&
838 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
839
840 /* They had a few time units to dump stack, so complain. */
841 print_other_cpu_stall(rsp);
842 }
843 }
844
845 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
846 {
847 rcu_cpu_stall_suppress = 1;
848 return NOTIFY_DONE;
849 }
850
851 /**
852 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
853 *
854 * Set the stall-warning timeout way off into the future, thus preventing
855 * any RCU CPU stall-warning messages from appearing in the current set of
856 * RCU grace periods.
857 *
858 * The caller must disable hard irqs.
859 */
860 void rcu_cpu_stall_reset(void)
861 {
862 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
863 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
864 rcu_preempt_stall_reset();
865 }
866
867 static struct notifier_block rcu_panic_block = {
868 .notifier_call = rcu_panic,
869 };
870
871 static void __init check_cpu_stall_init(void)
872 {
873 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
874 }
875
876 /*
877 * Update CPU-local rcu_data state to record the newly noticed grace period.
878 * This is used both when we started the grace period and when we notice
879 * that someone else started the grace period. The caller must hold the
880 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
881 * and must have irqs disabled.
882 */
883 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
884 {
885 if (rdp->gpnum != rnp->gpnum) {
886 /*
887 * If the current grace period is waiting for this CPU,
888 * set up to detect a quiescent state, otherwise don't
889 * go looking for one.
890 */
891 rdp->gpnum = rnp->gpnum;
892 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
893 if (rnp->qsmask & rdp->grpmask) {
894 rdp->qs_pending = 1;
895 rdp->passed_quiesce = 0;
896 } else
897 rdp->qs_pending = 0;
898 zero_cpu_stall_ticks(rdp);
899 }
900 }
901
902 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
903 {
904 unsigned long flags;
905 struct rcu_node *rnp;
906
907 local_irq_save(flags);
908 rnp = rdp->mynode;
909 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
910 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
911 local_irq_restore(flags);
912 return;
913 }
914 __note_new_gpnum(rsp, rnp, rdp);
915 raw_spin_unlock_irqrestore(&rnp->lock, flags);
916 }
917
918 /*
919 * Did someone else start a new RCU grace period start since we last
920 * checked? Update local state appropriately if so. Must be called
921 * on the CPU corresponding to rdp.
922 */
923 static int
924 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
925 {
926 unsigned long flags;
927 int ret = 0;
928
929 local_irq_save(flags);
930 if (rdp->gpnum != rsp->gpnum) {
931 note_new_gpnum(rsp, rdp);
932 ret = 1;
933 }
934 local_irq_restore(flags);
935 return ret;
936 }
937
938 /*
939 * Advance this CPU's callbacks, but only if the current grace period
940 * has ended. This may be called only from the CPU to whom the rdp
941 * belongs. In addition, the corresponding leaf rcu_node structure's
942 * ->lock must be held by the caller, with irqs disabled.
943 */
944 static void
945 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
946 {
947 /* Did another grace period end? */
948 if (rdp->completed != rnp->completed) {
949
950 /* Advance callbacks. No harm if list empty. */
951 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
952 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
953 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
954
955 /* Remember that we saw this grace-period completion. */
956 rdp->completed = rnp->completed;
957 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
958
959 /*
960 * If we were in an extended quiescent state, we may have
961 * missed some grace periods that others CPUs handled on
962 * our behalf. Catch up with this state to avoid noting
963 * spurious new grace periods. If another grace period
964 * has started, then rnp->gpnum will have advanced, so
965 * we will detect this later on.
966 */
967 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
968 rdp->gpnum = rdp->completed;
969
970 /*
971 * If RCU does not need a quiescent state from this CPU,
972 * then make sure that this CPU doesn't go looking for one.
973 */
974 if ((rnp->qsmask & rdp->grpmask) == 0)
975 rdp->qs_pending = 0;
976 }
977 }
978
979 /*
980 * Advance this CPU's callbacks, but only if the current grace period
981 * has ended. This may be called only from the CPU to whom the rdp
982 * belongs.
983 */
984 static void
985 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
986 {
987 unsigned long flags;
988 struct rcu_node *rnp;
989
990 local_irq_save(flags);
991 rnp = rdp->mynode;
992 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
993 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
994 local_irq_restore(flags);
995 return;
996 }
997 __rcu_process_gp_end(rsp, rnp, rdp);
998 raw_spin_unlock_irqrestore(&rnp->lock, flags);
999 }
1000
1001 /*
1002 * Do per-CPU grace-period initialization for running CPU. The caller
1003 * must hold the lock of the leaf rcu_node structure corresponding to
1004 * this CPU.
1005 */
1006 static void
1007 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1008 {
1009 /* Prior grace period ended, so advance callbacks for current CPU. */
1010 __rcu_process_gp_end(rsp, rnp, rdp);
1011
1012 /*
1013 * Because this CPU just now started the new grace period, we know
1014 * that all of its callbacks will be covered by this upcoming grace
1015 * period, even the ones that were registered arbitrarily recently.
1016 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1017 *
1018 * Other CPUs cannot be sure exactly when the grace period started.
1019 * Therefore, their recently registered callbacks must pass through
1020 * an additional RCU_NEXT_READY stage, so that they will be handled
1021 * by the next RCU grace period.
1022 */
1023 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1024 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1025
1026 /* Set state so that this CPU will detect the next quiescent state. */
1027 __note_new_gpnum(rsp, rnp, rdp);
1028 }
1029
1030 /*
1031 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1032 * in preparation for detecting the next grace period. The caller must hold
1033 * the root node's ->lock, which is released before return. Hard irqs must
1034 * be disabled.
1035 *
1036 * Note that it is legal for a dying CPU (which is marked as offline) to
1037 * invoke this function. This can happen when the dying CPU reports its
1038 * quiescent state.
1039 */
1040 static void
1041 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1042 __releases(rcu_get_root(rsp)->lock)
1043 {
1044 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1045 struct rcu_node *rnp = rcu_get_root(rsp);
1046
1047 if (!rcu_scheduler_fully_active ||
1048 !cpu_needs_another_gp(rsp, rdp)) {
1049 /*
1050 * Either the scheduler hasn't yet spawned the first
1051 * non-idle task or this CPU does not need another
1052 * grace period. Either way, don't start a new grace
1053 * period.
1054 */
1055 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1056 return;
1057 }
1058
1059 if (rsp->fqs_active) {
1060 /*
1061 * This CPU needs a grace period, but force_quiescent_state()
1062 * is running. Tell it to start one on this CPU's behalf.
1063 */
1064 rsp->fqs_need_gp = 1;
1065 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1066 return;
1067 }
1068
1069 /* Advance to a new grace period and initialize state. */
1070 rsp->gpnum++;
1071 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1072 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1073 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1074 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1075 record_gp_stall_check_time(rsp);
1076 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1077
1078 /* Exclude any concurrent CPU-hotplug operations. */
1079 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1080
1081 /*
1082 * Set the quiescent-state-needed bits in all the rcu_node
1083 * structures for all currently online CPUs in breadth-first
1084 * order, starting from the root rcu_node structure. This
1085 * operation relies on the layout of the hierarchy within the
1086 * rsp->node[] array. Note that other CPUs will access only
1087 * the leaves of the hierarchy, which still indicate that no
1088 * grace period is in progress, at least until the corresponding
1089 * leaf node has been initialized. In addition, we have excluded
1090 * CPU-hotplug operations.
1091 *
1092 * Note that the grace period cannot complete until we finish
1093 * the initialization process, as there will be at least one
1094 * qsmask bit set in the root node until that time, namely the
1095 * one corresponding to this CPU, due to the fact that we have
1096 * irqs disabled.
1097 */
1098 rcu_for_each_node_breadth_first(rsp, rnp) {
1099 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1100 rcu_preempt_check_blocked_tasks(rnp);
1101 rnp->qsmask = rnp->qsmaskinit;
1102 rnp->gpnum = rsp->gpnum;
1103 rnp->completed = rsp->completed;
1104 if (rnp == rdp->mynode)
1105 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1106 rcu_preempt_boost_start_gp(rnp);
1107 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1108 rnp->level, rnp->grplo,
1109 rnp->grphi, rnp->qsmask);
1110 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1111 }
1112
1113 rnp = rcu_get_root(rsp);
1114 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1115 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1116 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1117 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1118 }
1119
1120 /*
1121 * Report a full set of quiescent states to the specified rcu_state
1122 * data structure. This involves cleaning up after the prior grace
1123 * period and letting rcu_start_gp() start up the next grace period
1124 * if one is needed. Note that the caller must hold rnp->lock, as
1125 * required by rcu_start_gp(), which will release it.
1126 */
1127 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1128 __releases(rcu_get_root(rsp)->lock)
1129 {
1130 unsigned long gp_duration;
1131 struct rcu_node *rnp = rcu_get_root(rsp);
1132 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1133
1134 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1135
1136 /*
1137 * Ensure that all grace-period and pre-grace-period activity
1138 * is seen before the assignment to rsp->completed.
1139 */
1140 smp_mb(); /* See above block comment. */
1141 gp_duration = jiffies - rsp->gp_start;
1142 if (gp_duration > rsp->gp_max)
1143 rsp->gp_max = gp_duration;
1144
1145 /*
1146 * We know the grace period is complete, but to everyone else
1147 * it appears to still be ongoing. But it is also the case
1148 * that to everyone else it looks like there is nothing that
1149 * they can do to advance the grace period. It is therefore
1150 * safe for us to drop the lock in order to mark the grace
1151 * period as completed in all of the rcu_node structures.
1152 *
1153 * But if this CPU needs another grace period, it will take
1154 * care of this while initializing the next grace period.
1155 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1156 * because the callbacks have not yet been advanced: Those
1157 * callbacks are waiting on the grace period that just now
1158 * completed.
1159 */
1160 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1161 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1162
1163 /*
1164 * Propagate new ->completed value to rcu_node structures
1165 * so that other CPUs don't have to wait until the start
1166 * of the next grace period to process their callbacks.
1167 */
1168 rcu_for_each_node_breadth_first(rsp, rnp) {
1169 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1170 rnp->completed = rsp->gpnum;
1171 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1172 }
1173 rnp = rcu_get_root(rsp);
1174 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1175 }
1176
1177 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1178 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1179 rsp->fqs_state = RCU_GP_IDLE;
1180 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1181 }
1182
1183 /*
1184 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1185 * Allows quiescent states for a group of CPUs to be reported at one go
1186 * to the specified rcu_node structure, though all the CPUs in the group
1187 * must be represented by the same rcu_node structure (which need not be
1188 * a leaf rcu_node structure, though it often will be). That structure's
1189 * lock must be held upon entry, and it is released before return.
1190 */
1191 static void
1192 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1193 struct rcu_node *rnp, unsigned long flags)
1194 __releases(rnp->lock)
1195 {
1196 struct rcu_node *rnp_c;
1197
1198 /* Walk up the rcu_node hierarchy. */
1199 for (;;) {
1200 if (!(rnp->qsmask & mask)) {
1201
1202 /* Our bit has already been cleared, so done. */
1203 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1204 return;
1205 }
1206 rnp->qsmask &= ~mask;
1207 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1208 mask, rnp->qsmask, rnp->level,
1209 rnp->grplo, rnp->grphi,
1210 !!rnp->gp_tasks);
1211 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1212
1213 /* Other bits still set at this level, so done. */
1214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1215 return;
1216 }
1217 mask = rnp->grpmask;
1218 if (rnp->parent == NULL) {
1219
1220 /* No more levels. Exit loop holding root lock. */
1221
1222 break;
1223 }
1224 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1225 rnp_c = rnp;
1226 rnp = rnp->parent;
1227 raw_spin_lock_irqsave(&rnp->lock, flags);
1228 WARN_ON_ONCE(rnp_c->qsmask);
1229 }
1230
1231 /*
1232 * Get here if we are the last CPU to pass through a quiescent
1233 * state for this grace period. Invoke rcu_report_qs_rsp()
1234 * to clean up and start the next grace period if one is needed.
1235 */
1236 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1237 }
1238
1239 /*
1240 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1241 * structure. This must be either called from the specified CPU, or
1242 * called when the specified CPU is known to be offline (and when it is
1243 * also known that no other CPU is concurrently trying to help the offline
1244 * CPU). The lastcomp argument is used to make sure we are still in the
1245 * grace period of interest. We don't want to end the current grace period
1246 * based on quiescent states detected in an earlier grace period!
1247 */
1248 static void
1249 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1250 {
1251 unsigned long flags;
1252 unsigned long mask;
1253 struct rcu_node *rnp;
1254
1255 rnp = rdp->mynode;
1256 raw_spin_lock_irqsave(&rnp->lock, flags);
1257 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1258
1259 /*
1260 * The grace period in which this quiescent state was
1261 * recorded has ended, so don't report it upwards.
1262 * We will instead need a new quiescent state that lies
1263 * within the current grace period.
1264 */
1265 rdp->passed_quiesce = 0; /* need qs for new gp. */
1266 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1267 return;
1268 }
1269 mask = rdp->grpmask;
1270 if ((rnp->qsmask & mask) == 0) {
1271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1272 } else {
1273 rdp->qs_pending = 0;
1274
1275 /*
1276 * This GP can't end until cpu checks in, so all of our
1277 * callbacks can be processed during the next GP.
1278 */
1279 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1280
1281 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1282 }
1283 }
1284
1285 /*
1286 * Check to see if there is a new grace period of which this CPU
1287 * is not yet aware, and if so, set up local rcu_data state for it.
1288 * Otherwise, see if this CPU has just passed through its first
1289 * quiescent state for this grace period, and record that fact if so.
1290 */
1291 static void
1292 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1293 {
1294 /* If there is now a new grace period, record and return. */
1295 if (check_for_new_grace_period(rsp, rdp))
1296 return;
1297
1298 /*
1299 * Does this CPU still need to do its part for current grace period?
1300 * If no, return and let the other CPUs do their part as well.
1301 */
1302 if (!rdp->qs_pending)
1303 return;
1304
1305 /*
1306 * Was there a quiescent state since the beginning of the grace
1307 * period? If no, then exit and wait for the next call.
1308 */
1309 if (!rdp->passed_quiesce)
1310 return;
1311
1312 /*
1313 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1314 * judge of that).
1315 */
1316 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1317 }
1318
1319 #ifdef CONFIG_HOTPLUG_CPU
1320
1321 /*
1322 * Send the specified CPU's RCU callbacks to the orphanage. The
1323 * specified CPU must be offline, and the caller must hold the
1324 * ->onofflock.
1325 */
1326 static void
1327 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1328 struct rcu_node *rnp, struct rcu_data *rdp)
1329 {
1330 int i;
1331
1332 /*
1333 * Orphan the callbacks. First adjust the counts. This is safe
1334 * because ->onofflock excludes _rcu_barrier()'s adoption of
1335 * the callbacks, thus no memory barrier is required.
1336 */
1337 if (rdp->nxtlist != NULL) {
1338 rsp->qlen_lazy += rdp->qlen_lazy;
1339 rsp->qlen += rdp->qlen;
1340 rdp->n_cbs_orphaned += rdp->qlen;
1341 rdp->qlen_lazy = 0;
1342 rdp->qlen = 0;
1343 }
1344
1345 /*
1346 * Next, move those callbacks still needing a grace period to
1347 * the orphanage, where some other CPU will pick them up.
1348 * Some of the callbacks might have gone partway through a grace
1349 * period, but that is too bad. They get to start over because we
1350 * cannot assume that grace periods are synchronized across CPUs.
1351 * We don't bother updating the ->nxttail[] array yet, instead
1352 * we just reset the whole thing later on.
1353 */
1354 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1355 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1356 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1357 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1358 }
1359
1360 /*
1361 * Then move the ready-to-invoke callbacks to the orphanage,
1362 * where some other CPU will pick them up. These will not be
1363 * required to pass though another grace period: They are done.
1364 */
1365 if (rdp->nxtlist != NULL) {
1366 *rsp->orphan_donetail = rdp->nxtlist;
1367 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1368 }
1369
1370 /* Finally, initialize the rcu_data structure's list to empty. */
1371 rdp->nxtlist = NULL;
1372 for (i = 0; i < RCU_NEXT_SIZE; i++)
1373 rdp->nxttail[i] = &rdp->nxtlist;
1374 }
1375
1376 /*
1377 * Adopt the RCU callbacks from the specified rcu_state structure's
1378 * orphanage. The caller must hold the ->onofflock.
1379 */
1380 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1381 {
1382 int i;
1383 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1384
1385 /*
1386 * If there is an rcu_barrier() operation in progress, then
1387 * only the task doing that operation is permitted to adopt
1388 * callbacks. To do otherwise breaks rcu_barrier() and friends
1389 * by causing them to fail to wait for the callbacks in the
1390 * orphanage.
1391 */
1392 if (rsp->rcu_barrier_in_progress &&
1393 rsp->rcu_barrier_in_progress != current)
1394 return;
1395
1396 /* Do the accounting first. */
1397 rdp->qlen_lazy += rsp->qlen_lazy;
1398 rdp->qlen += rsp->qlen;
1399 rdp->n_cbs_adopted += rsp->qlen;
1400 if (rsp->qlen_lazy != rsp->qlen)
1401 rcu_idle_count_callbacks_posted();
1402 rsp->qlen_lazy = 0;
1403 rsp->qlen = 0;
1404
1405 /*
1406 * We do not need a memory barrier here because the only way we
1407 * can get here if there is an rcu_barrier() in flight is if
1408 * we are the task doing the rcu_barrier().
1409 */
1410
1411 /* First adopt the ready-to-invoke callbacks. */
1412 if (rsp->orphan_donelist != NULL) {
1413 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1414 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1415 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1416 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1417 rdp->nxttail[i] = rsp->orphan_donetail;
1418 rsp->orphan_donelist = NULL;
1419 rsp->orphan_donetail = &rsp->orphan_donelist;
1420 }
1421
1422 /* And then adopt the callbacks that still need a grace period. */
1423 if (rsp->orphan_nxtlist != NULL) {
1424 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1425 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1426 rsp->orphan_nxtlist = NULL;
1427 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1428 }
1429 }
1430
1431 /*
1432 * Trace the fact that this CPU is going offline.
1433 */
1434 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1435 {
1436 RCU_TRACE(unsigned long mask);
1437 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1438 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1439
1440 RCU_TRACE(mask = rdp->grpmask);
1441 trace_rcu_grace_period(rsp->name,
1442 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1443 "cpuofl");
1444 }
1445
1446 /*
1447 * The CPU has been completely removed, and some other CPU is reporting
1448 * this fact from process context. Do the remainder of the cleanup,
1449 * including orphaning the outgoing CPU's RCU callbacks, and also
1450 * adopting them, if there is no _rcu_barrier() instance running.
1451 * There can only be one CPU hotplug operation at a time, so no other
1452 * CPU can be attempting to update rcu_cpu_kthread_task.
1453 */
1454 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1455 {
1456 unsigned long flags;
1457 unsigned long mask;
1458 int need_report = 0;
1459 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1460 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
1461
1462 /* Adjust any no-longer-needed kthreads. */
1463 rcu_stop_cpu_kthread(cpu);
1464 rcu_node_kthread_setaffinity(rnp, -1);
1465
1466 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1467
1468 /* Exclude any attempts to start a new grace period. */
1469 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1470
1471 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1472 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1473 rcu_adopt_orphan_cbs(rsp);
1474
1475 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1476 mask = rdp->grpmask; /* rnp->grplo is constant. */
1477 do {
1478 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1479 rnp->qsmaskinit &= ~mask;
1480 if (rnp->qsmaskinit != 0) {
1481 if (rnp != rdp->mynode)
1482 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1483 break;
1484 }
1485 if (rnp == rdp->mynode)
1486 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1487 else
1488 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1489 mask = rnp->grpmask;
1490 rnp = rnp->parent;
1491 } while (rnp != NULL);
1492
1493 /*
1494 * We still hold the leaf rcu_node structure lock here, and
1495 * irqs are still disabled. The reason for this subterfuge is
1496 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1497 * held leads to deadlock.
1498 */
1499 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1500 rnp = rdp->mynode;
1501 if (need_report & RCU_OFL_TASKS_NORM_GP)
1502 rcu_report_unblock_qs_rnp(rnp, flags);
1503 else
1504 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1505 if (need_report & RCU_OFL_TASKS_EXP_GP)
1506 rcu_report_exp_rnp(rsp, rnp, true);
1507 }
1508
1509 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1510
1511 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1512 {
1513 }
1514
1515 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1516 {
1517 }
1518
1519 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1520 {
1521 }
1522
1523 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1524
1525 /*
1526 * Invoke any RCU callbacks that have made it to the end of their grace
1527 * period. Thottle as specified by rdp->blimit.
1528 */
1529 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1530 {
1531 unsigned long flags;
1532 struct rcu_head *next, *list, **tail;
1533 int bl, count, count_lazy, i;
1534
1535 /* If no callbacks are ready, just return.*/
1536 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1537 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1538 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1539 need_resched(), is_idle_task(current),
1540 rcu_is_callbacks_kthread());
1541 return;
1542 }
1543
1544 /*
1545 * Extract the list of ready callbacks, disabling to prevent
1546 * races with call_rcu() from interrupt handlers.
1547 */
1548 local_irq_save(flags);
1549 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1550 bl = rdp->blimit;
1551 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1552 list = rdp->nxtlist;
1553 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1554 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1555 tail = rdp->nxttail[RCU_DONE_TAIL];
1556 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1557 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1558 rdp->nxttail[i] = &rdp->nxtlist;
1559 local_irq_restore(flags);
1560
1561 /* Invoke callbacks. */
1562 count = count_lazy = 0;
1563 while (list) {
1564 next = list->next;
1565 prefetch(next);
1566 debug_rcu_head_unqueue(list);
1567 if (__rcu_reclaim(rsp->name, list))
1568 count_lazy++;
1569 list = next;
1570 /* Stop only if limit reached and CPU has something to do. */
1571 if (++count >= bl &&
1572 (need_resched() ||
1573 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1574 break;
1575 }
1576
1577 local_irq_save(flags);
1578 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1579 is_idle_task(current),
1580 rcu_is_callbacks_kthread());
1581
1582 /* Update count, and requeue any remaining callbacks. */
1583 if (list != NULL) {
1584 *tail = rdp->nxtlist;
1585 rdp->nxtlist = list;
1586 for (i = 0; i < RCU_NEXT_SIZE; i++)
1587 if (&rdp->nxtlist == rdp->nxttail[i])
1588 rdp->nxttail[i] = tail;
1589 else
1590 break;
1591 }
1592 smp_mb(); /* List handling before counting for rcu_barrier(). */
1593 rdp->qlen_lazy -= count_lazy;
1594 rdp->qlen -= count;
1595 rdp->n_cbs_invoked += count;
1596
1597 /* Reinstate batch limit if we have worked down the excess. */
1598 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1599 rdp->blimit = blimit;
1600
1601 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1602 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1603 rdp->qlen_last_fqs_check = 0;
1604 rdp->n_force_qs_snap = rsp->n_force_qs;
1605 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1606 rdp->qlen_last_fqs_check = rdp->qlen;
1607
1608 local_irq_restore(flags);
1609
1610 /* Re-invoke RCU core processing if there are callbacks remaining. */
1611 if (cpu_has_callbacks_ready_to_invoke(rdp))
1612 invoke_rcu_core();
1613 }
1614
1615 /*
1616 * Check to see if this CPU is in a non-context-switch quiescent state
1617 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1618 * Also schedule RCU core processing.
1619 *
1620 * This function must be called from hardirq context. It is normally
1621 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1622 * false, there is no point in invoking rcu_check_callbacks().
1623 */
1624 void rcu_check_callbacks(int cpu, int user)
1625 {
1626 trace_rcu_utilization("Start scheduler-tick");
1627 increment_cpu_stall_ticks();
1628 if (user || rcu_is_cpu_rrupt_from_idle()) {
1629
1630 /*
1631 * Get here if this CPU took its interrupt from user
1632 * mode or from the idle loop, and if this is not a
1633 * nested interrupt. In this case, the CPU is in
1634 * a quiescent state, so note it.
1635 *
1636 * No memory barrier is required here because both
1637 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1638 * variables that other CPUs neither access nor modify,
1639 * at least not while the corresponding CPU is online.
1640 */
1641
1642 rcu_sched_qs(cpu);
1643 rcu_bh_qs(cpu);
1644
1645 } else if (!in_softirq()) {
1646
1647 /*
1648 * Get here if this CPU did not take its interrupt from
1649 * softirq, in other words, if it is not interrupting
1650 * a rcu_bh read-side critical section. This is an _bh
1651 * critical section, so note it.
1652 */
1653
1654 rcu_bh_qs(cpu);
1655 }
1656 rcu_preempt_check_callbacks(cpu);
1657 if (rcu_pending(cpu))
1658 invoke_rcu_core();
1659 trace_rcu_utilization("End scheduler-tick");
1660 }
1661
1662 /*
1663 * Scan the leaf rcu_node structures, processing dyntick state for any that
1664 * have not yet encountered a quiescent state, using the function specified.
1665 * Also initiate boosting for any threads blocked on the root rcu_node.
1666 *
1667 * The caller must have suppressed start of new grace periods.
1668 */
1669 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1670 {
1671 unsigned long bit;
1672 int cpu;
1673 unsigned long flags;
1674 unsigned long mask;
1675 struct rcu_node *rnp;
1676
1677 rcu_for_each_leaf_node(rsp, rnp) {
1678 mask = 0;
1679 raw_spin_lock_irqsave(&rnp->lock, flags);
1680 if (!rcu_gp_in_progress(rsp)) {
1681 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1682 return;
1683 }
1684 if (rnp->qsmask == 0) {
1685 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1686 continue;
1687 }
1688 cpu = rnp->grplo;
1689 bit = 1;
1690 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1691 if ((rnp->qsmask & bit) != 0 &&
1692 f(per_cpu_ptr(rsp->rda, cpu)))
1693 mask |= bit;
1694 }
1695 if (mask != 0) {
1696
1697 /* rcu_report_qs_rnp() releases rnp->lock. */
1698 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1699 continue;
1700 }
1701 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1702 }
1703 rnp = rcu_get_root(rsp);
1704 if (rnp->qsmask == 0) {
1705 raw_spin_lock_irqsave(&rnp->lock, flags);
1706 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1707 }
1708 }
1709
1710 /*
1711 * Force quiescent states on reluctant CPUs, and also detect which
1712 * CPUs are in dyntick-idle mode.
1713 */
1714 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1715 {
1716 unsigned long flags;
1717 struct rcu_node *rnp = rcu_get_root(rsp);
1718
1719 trace_rcu_utilization("Start fqs");
1720 if (!rcu_gp_in_progress(rsp)) {
1721 trace_rcu_utilization("End fqs");
1722 return; /* No grace period in progress, nothing to force. */
1723 }
1724 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1725 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1726 trace_rcu_utilization("End fqs");
1727 return; /* Someone else is already on the job. */
1728 }
1729 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1730 goto unlock_fqs_ret; /* no emergency and done recently. */
1731 rsp->n_force_qs++;
1732 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1733 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1734 if(!rcu_gp_in_progress(rsp)) {
1735 rsp->n_force_qs_ngp++;
1736 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1737 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1738 }
1739 rsp->fqs_active = 1;
1740 switch (rsp->fqs_state) {
1741 case RCU_GP_IDLE:
1742 case RCU_GP_INIT:
1743
1744 break; /* grace period idle or initializing, ignore. */
1745
1746 case RCU_SAVE_DYNTICK:
1747 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1748 break; /* So gcc recognizes the dead code. */
1749
1750 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1751
1752 /* Record dyntick-idle state. */
1753 force_qs_rnp(rsp, dyntick_save_progress_counter);
1754 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1755 if (rcu_gp_in_progress(rsp))
1756 rsp->fqs_state = RCU_FORCE_QS;
1757 break;
1758
1759 case RCU_FORCE_QS:
1760
1761 /* Check dyntick-idle state, send IPI to laggarts. */
1762 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1763 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1764
1765 /* Leave state in case more forcing is required. */
1766
1767 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1768 break;
1769 }
1770 rsp->fqs_active = 0;
1771 if (rsp->fqs_need_gp) {
1772 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1773 rsp->fqs_need_gp = 0;
1774 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1775 trace_rcu_utilization("End fqs");
1776 return;
1777 }
1778 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1779 unlock_fqs_ret:
1780 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1781 trace_rcu_utilization("End fqs");
1782 }
1783
1784 /*
1785 * This does the RCU core processing work for the specified rcu_state
1786 * and rcu_data structures. This may be called only from the CPU to
1787 * whom the rdp belongs.
1788 */
1789 static void
1790 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1791 {
1792 unsigned long flags;
1793
1794 WARN_ON_ONCE(rdp->beenonline == 0);
1795
1796 /*
1797 * If an RCU GP has gone long enough, go check for dyntick
1798 * idle CPUs and, if needed, send resched IPIs.
1799 */
1800 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1801 force_quiescent_state(rsp, 1);
1802
1803 /*
1804 * Advance callbacks in response to end of earlier grace
1805 * period that some other CPU ended.
1806 */
1807 rcu_process_gp_end(rsp, rdp);
1808
1809 /* Update RCU state based on any recent quiescent states. */
1810 rcu_check_quiescent_state(rsp, rdp);
1811
1812 /* Does this CPU require a not-yet-started grace period? */
1813 if (cpu_needs_another_gp(rsp, rdp)) {
1814 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1815 rcu_start_gp(rsp, flags); /* releases above lock */
1816 }
1817
1818 /* If there are callbacks ready, invoke them. */
1819 if (cpu_has_callbacks_ready_to_invoke(rdp))
1820 invoke_rcu_callbacks(rsp, rdp);
1821 }
1822
1823 /*
1824 * Do RCU core processing for the current CPU.
1825 */
1826 static void rcu_process_callbacks(struct softirq_action *unused)
1827 {
1828 trace_rcu_utilization("Start RCU core");
1829 __rcu_process_callbacks(&rcu_sched_state,
1830 &__get_cpu_var(rcu_sched_data));
1831 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1832 rcu_preempt_process_callbacks();
1833 trace_rcu_utilization("End RCU core");
1834 }
1835
1836 /*
1837 * Schedule RCU callback invocation. If the specified type of RCU
1838 * does not support RCU priority boosting, just do a direct call,
1839 * otherwise wake up the per-CPU kernel kthread. Note that because we
1840 * are running on the current CPU with interrupts disabled, the
1841 * rcu_cpu_kthread_task cannot disappear out from under us.
1842 */
1843 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1844 {
1845 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1846 return;
1847 if (likely(!rsp->boost)) {
1848 rcu_do_batch(rsp, rdp);
1849 return;
1850 }
1851 invoke_rcu_callbacks_kthread();
1852 }
1853
1854 static void invoke_rcu_core(void)
1855 {
1856 raise_softirq(RCU_SOFTIRQ);
1857 }
1858
1859 static void
1860 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1861 struct rcu_state *rsp, bool lazy)
1862 {
1863 unsigned long flags;
1864 struct rcu_data *rdp;
1865
1866 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1867 debug_rcu_head_queue(head);
1868 head->func = func;
1869 head->next = NULL;
1870
1871 smp_mb(); /* Ensure RCU update seen before callback registry. */
1872
1873 /*
1874 * Opportunistically note grace-period endings and beginnings.
1875 * Note that we might see a beginning right after we see an
1876 * end, but never vice versa, since this CPU has to pass through
1877 * a quiescent state betweentimes.
1878 */
1879 local_irq_save(flags);
1880 rdp = this_cpu_ptr(rsp->rda);
1881
1882 /* Add the callback to our list. */
1883 rdp->qlen++;
1884 if (lazy)
1885 rdp->qlen_lazy++;
1886 else
1887 rcu_idle_count_callbacks_posted();
1888 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1889 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1890 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1891
1892 if (__is_kfree_rcu_offset((unsigned long)func))
1893 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1894 rdp->qlen_lazy, rdp->qlen);
1895 else
1896 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1897
1898 /* If interrupts were disabled, don't dive into RCU core. */
1899 if (irqs_disabled_flags(flags)) {
1900 local_irq_restore(flags);
1901 return;
1902 }
1903
1904 /*
1905 * Force the grace period if too many callbacks or too long waiting.
1906 * Enforce hysteresis, and don't invoke force_quiescent_state()
1907 * if some other CPU has recently done so. Also, don't bother
1908 * invoking force_quiescent_state() if the newly enqueued callback
1909 * is the only one waiting for a grace period to complete.
1910 */
1911 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1912
1913 /* Are we ignoring a completed grace period? */
1914 rcu_process_gp_end(rsp, rdp);
1915 check_for_new_grace_period(rsp, rdp);
1916
1917 /* Start a new grace period if one not already started. */
1918 if (!rcu_gp_in_progress(rsp)) {
1919 unsigned long nestflag;
1920 struct rcu_node *rnp_root = rcu_get_root(rsp);
1921
1922 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1923 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1924 } else {
1925 /* Give the grace period a kick. */
1926 rdp->blimit = LONG_MAX;
1927 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1928 *rdp->nxttail[RCU_DONE_TAIL] != head)
1929 force_quiescent_state(rsp, 0);
1930 rdp->n_force_qs_snap = rsp->n_force_qs;
1931 rdp->qlen_last_fqs_check = rdp->qlen;
1932 }
1933 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1934 force_quiescent_state(rsp, 1);
1935 local_irq_restore(flags);
1936 }
1937
1938 /*
1939 * Queue an RCU-sched callback for invocation after a grace period.
1940 */
1941 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1942 {
1943 __call_rcu(head, func, &rcu_sched_state, 0);
1944 }
1945 EXPORT_SYMBOL_GPL(call_rcu_sched);
1946
1947 /*
1948 * Queue an RCU callback for invocation after a quicker grace period.
1949 */
1950 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1951 {
1952 __call_rcu(head, func, &rcu_bh_state, 0);
1953 }
1954 EXPORT_SYMBOL_GPL(call_rcu_bh);
1955
1956 /*
1957 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1958 * any blocking grace-period wait automatically implies a grace period
1959 * if there is only one CPU online at any point time during execution
1960 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1961 * occasionally incorrectly indicate that there are multiple CPUs online
1962 * when there was in fact only one the whole time, as this just adds
1963 * some overhead: RCU still operates correctly.
1964 *
1965 * Of course, sampling num_online_cpus() with preemption enabled can
1966 * give erroneous results if there are concurrent CPU-hotplug operations.
1967 * For example, given a demonic sequence of preemptions in num_online_cpus()
1968 * and CPU-hotplug operations, there could be two or more CPUs online at
1969 * all times, but num_online_cpus() might well return one (or even zero).
1970 *
1971 * However, all such demonic sequences require at least one CPU-offline
1972 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1973 * is only a problem if there is an RCU read-side critical section executing
1974 * throughout. But RCU-sched and RCU-bh read-side critical sections
1975 * disable either preemption or bh, which prevents a CPU from going offline.
1976 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1977 * that there is only one CPU when in fact there was more than one throughout
1978 * is when there were no RCU readers in the system. If there are no
1979 * RCU readers, the grace period by definition can be of zero length,
1980 * regardless of the number of online CPUs.
1981 */
1982 static inline int rcu_blocking_is_gp(void)
1983 {
1984 might_sleep(); /* Check for RCU read-side critical section. */
1985 return num_online_cpus() <= 1;
1986 }
1987
1988 /**
1989 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1990 *
1991 * Control will return to the caller some time after a full rcu-sched
1992 * grace period has elapsed, in other words after all currently executing
1993 * rcu-sched read-side critical sections have completed. These read-side
1994 * critical sections are delimited by rcu_read_lock_sched() and
1995 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1996 * local_irq_disable(), and so on may be used in place of
1997 * rcu_read_lock_sched().
1998 *
1999 * This means that all preempt_disable code sequences, including NMI and
2000 * hardware-interrupt handlers, in progress on entry will have completed
2001 * before this primitive returns. However, this does not guarantee that
2002 * softirq handlers will have completed, since in some kernels, these
2003 * handlers can run in process context, and can block.
2004 *
2005 * This primitive provides the guarantees made by the (now removed)
2006 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2007 * guarantees that rcu_read_lock() sections will have completed.
2008 * In "classic RCU", these two guarantees happen to be one and
2009 * the same, but can differ in realtime RCU implementations.
2010 */
2011 void synchronize_sched(void)
2012 {
2013 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2014 !lock_is_held(&rcu_lock_map) &&
2015 !lock_is_held(&rcu_sched_lock_map),
2016 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2017 if (rcu_blocking_is_gp())
2018 return;
2019 wait_rcu_gp(call_rcu_sched);
2020 }
2021 EXPORT_SYMBOL_GPL(synchronize_sched);
2022
2023 /**
2024 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2025 *
2026 * Control will return to the caller some time after a full rcu_bh grace
2027 * period has elapsed, in other words after all currently executing rcu_bh
2028 * read-side critical sections have completed. RCU read-side critical
2029 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2030 * and may be nested.
2031 */
2032 void synchronize_rcu_bh(void)
2033 {
2034 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2035 !lock_is_held(&rcu_lock_map) &&
2036 !lock_is_held(&rcu_sched_lock_map),
2037 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2038 if (rcu_blocking_is_gp())
2039 return;
2040 wait_rcu_gp(call_rcu_bh);
2041 }
2042 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2043
2044 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2045 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2046
2047 static int synchronize_sched_expedited_cpu_stop(void *data)
2048 {
2049 /*
2050 * There must be a full memory barrier on each affected CPU
2051 * between the time that try_stop_cpus() is called and the
2052 * time that it returns.
2053 *
2054 * In the current initial implementation of cpu_stop, the
2055 * above condition is already met when the control reaches
2056 * this point and the following smp_mb() is not strictly
2057 * necessary. Do smp_mb() anyway for documentation and
2058 * robustness against future implementation changes.
2059 */
2060 smp_mb(); /* See above comment block. */
2061 return 0;
2062 }
2063
2064 /**
2065 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2066 *
2067 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2068 * approach to force the grace period to end quickly. This consumes
2069 * significant time on all CPUs and is unfriendly to real-time workloads,
2070 * so is thus not recommended for any sort of common-case code. In fact,
2071 * if you are using synchronize_sched_expedited() in a loop, please
2072 * restructure your code to batch your updates, and then use a single
2073 * synchronize_sched() instead.
2074 *
2075 * Note that it is illegal to call this function while holding any lock
2076 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2077 * to call this function from a CPU-hotplug notifier. Failing to observe
2078 * these restriction will result in deadlock.
2079 *
2080 * This implementation can be thought of as an application of ticket
2081 * locking to RCU, with sync_sched_expedited_started and
2082 * sync_sched_expedited_done taking on the roles of the halves
2083 * of the ticket-lock word. Each task atomically increments
2084 * sync_sched_expedited_started upon entry, snapshotting the old value,
2085 * then attempts to stop all the CPUs. If this succeeds, then each
2086 * CPU will have executed a context switch, resulting in an RCU-sched
2087 * grace period. We are then done, so we use atomic_cmpxchg() to
2088 * update sync_sched_expedited_done to match our snapshot -- but
2089 * only if someone else has not already advanced past our snapshot.
2090 *
2091 * On the other hand, if try_stop_cpus() fails, we check the value
2092 * of sync_sched_expedited_done. If it has advanced past our
2093 * initial snapshot, then someone else must have forced a grace period
2094 * some time after we took our snapshot. In this case, our work is
2095 * done for us, and we can simply return. Otherwise, we try again,
2096 * but keep our initial snapshot for purposes of checking for someone
2097 * doing our work for us.
2098 *
2099 * If we fail too many times in a row, we fall back to synchronize_sched().
2100 */
2101 void synchronize_sched_expedited(void)
2102 {
2103 int firstsnap, s, snap, trycount = 0;
2104
2105 /* Note that atomic_inc_return() implies full memory barrier. */
2106 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2107 get_online_cpus();
2108 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2109
2110 /*
2111 * Each pass through the following loop attempts to force a
2112 * context switch on each CPU.
2113 */
2114 while (try_stop_cpus(cpu_online_mask,
2115 synchronize_sched_expedited_cpu_stop,
2116 NULL) == -EAGAIN) {
2117 put_online_cpus();
2118
2119 /* No joy, try again later. Or just synchronize_sched(). */
2120 if (trycount++ < 10)
2121 udelay(trycount * num_online_cpus());
2122 else {
2123 synchronize_sched();
2124 return;
2125 }
2126
2127 /* Check to see if someone else did our work for us. */
2128 s = atomic_read(&sync_sched_expedited_done);
2129 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2130 smp_mb(); /* ensure test happens before caller kfree */
2131 return;
2132 }
2133
2134 /*
2135 * Refetching sync_sched_expedited_started allows later
2136 * callers to piggyback on our grace period. We subtract
2137 * 1 to get the same token that the last incrementer got.
2138 * We retry after they started, so our grace period works
2139 * for them, and they started after our first try, so their
2140 * grace period works for us.
2141 */
2142 get_online_cpus();
2143 snap = atomic_read(&sync_sched_expedited_started);
2144 smp_mb(); /* ensure read is before try_stop_cpus(). */
2145 }
2146
2147 /*
2148 * Everyone up to our most recent fetch is covered by our grace
2149 * period. Update the counter, but only if our work is still
2150 * relevant -- which it won't be if someone who started later
2151 * than we did beat us to the punch.
2152 */
2153 do {
2154 s = atomic_read(&sync_sched_expedited_done);
2155 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2156 smp_mb(); /* ensure test happens before caller kfree */
2157 break;
2158 }
2159 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2160
2161 put_online_cpus();
2162 }
2163 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2164
2165 /*
2166 * Check to see if there is any immediate RCU-related work to be done
2167 * by the current CPU, for the specified type of RCU, returning 1 if so.
2168 * The checks are in order of increasing expense: checks that can be
2169 * carried out against CPU-local state are performed first. However,
2170 * we must check for CPU stalls first, else we might not get a chance.
2171 */
2172 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2173 {
2174 struct rcu_node *rnp = rdp->mynode;
2175
2176 rdp->n_rcu_pending++;
2177
2178 /* Check for CPU stalls, if enabled. */
2179 check_cpu_stall(rsp, rdp);
2180
2181 /* Is the RCU core waiting for a quiescent state from this CPU? */
2182 if (rcu_scheduler_fully_active &&
2183 rdp->qs_pending && !rdp->passed_quiesce) {
2184
2185 /*
2186 * If force_quiescent_state() coming soon and this CPU
2187 * needs a quiescent state, and this is either RCU-sched
2188 * or RCU-bh, force a local reschedule.
2189 */
2190 rdp->n_rp_qs_pending++;
2191 if (!rdp->preemptible &&
2192 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2193 jiffies))
2194 set_need_resched();
2195 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2196 rdp->n_rp_report_qs++;
2197 return 1;
2198 }
2199
2200 /* Does this CPU have callbacks ready to invoke? */
2201 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2202 rdp->n_rp_cb_ready++;
2203 return 1;
2204 }
2205
2206 /* Has RCU gone idle with this CPU needing another grace period? */
2207 if (cpu_needs_another_gp(rsp, rdp)) {
2208 rdp->n_rp_cpu_needs_gp++;
2209 return 1;
2210 }
2211
2212 /* Has another RCU grace period completed? */
2213 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2214 rdp->n_rp_gp_completed++;
2215 return 1;
2216 }
2217
2218 /* Has a new RCU grace period started? */
2219 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2220 rdp->n_rp_gp_started++;
2221 return 1;
2222 }
2223
2224 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2225 if (rcu_gp_in_progress(rsp) &&
2226 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2227 rdp->n_rp_need_fqs++;
2228 return 1;
2229 }
2230
2231 /* nothing to do */
2232 rdp->n_rp_need_nothing++;
2233 return 0;
2234 }
2235
2236 /*
2237 * Check to see if there is any immediate RCU-related work to be done
2238 * by the current CPU, returning 1 if so. This function is part of the
2239 * RCU implementation; it is -not- an exported member of the RCU API.
2240 */
2241 static int rcu_pending(int cpu)
2242 {
2243 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2244 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2245 rcu_preempt_pending(cpu);
2246 }
2247
2248 /*
2249 * Check to see if any future RCU-related work will need to be done
2250 * by the current CPU, even if none need be done immediately, returning
2251 * 1 if so.
2252 */
2253 static int rcu_cpu_has_callbacks(int cpu)
2254 {
2255 /* RCU callbacks either ready or pending? */
2256 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2257 per_cpu(rcu_bh_data, cpu).nxtlist ||
2258 rcu_preempt_cpu_has_callbacks(cpu);
2259 }
2260
2261 /*
2262 * RCU callback function for _rcu_barrier(). If we are last, wake
2263 * up the task executing _rcu_barrier().
2264 */
2265 static void rcu_barrier_callback(struct rcu_head *notused)
2266 {
2267 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2268 complete(&rcu_barrier_completion);
2269 }
2270
2271 /*
2272 * Called with preemption disabled, and from cross-cpu IRQ context.
2273 */
2274 static void rcu_barrier_func(void *type)
2275 {
2276 int cpu = smp_processor_id();
2277 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2278 void (*call_rcu_func)(struct rcu_head *head,
2279 void (*func)(struct rcu_head *head));
2280
2281 atomic_inc(&rcu_barrier_cpu_count);
2282 call_rcu_func = type;
2283 call_rcu_func(head, rcu_barrier_callback);
2284 }
2285
2286 /*
2287 * Orchestrate the specified type of RCU barrier, waiting for all
2288 * RCU callbacks of the specified type to complete.
2289 */
2290 static void _rcu_barrier(struct rcu_state *rsp,
2291 void (*call_rcu_func)(struct rcu_head *head,
2292 void (*func)(struct rcu_head *head)))
2293 {
2294 int cpu;
2295 unsigned long flags;
2296 struct rcu_data *rdp;
2297 struct rcu_head rh;
2298
2299 init_rcu_head_on_stack(&rh);
2300
2301 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2302 mutex_lock(&rcu_barrier_mutex);
2303
2304 smp_mb(); /* Prevent any prior operations from leaking in. */
2305
2306 /*
2307 * Initialize the count to one rather than to zero in order to
2308 * avoid a too-soon return to zero in case of a short grace period
2309 * (or preemption of this task). Also flag this task as doing
2310 * an rcu_barrier(). This will prevent anyone else from adopting
2311 * orphaned callbacks, which could cause otherwise failure if a
2312 * CPU went offline and quickly came back online. To see this,
2313 * consider the following sequence of events:
2314 *
2315 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2316 * 2. CPU 1 goes offline, orphaning its callbacks.
2317 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2318 * 4. CPU 1 comes back online.
2319 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2320 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2321 * us -- but before CPU 1's orphaned callbacks are invoked!!!
2322 */
2323 init_completion(&rcu_barrier_completion);
2324 atomic_set(&rcu_barrier_cpu_count, 1);
2325 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2326 rsp->rcu_barrier_in_progress = current;
2327 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2328
2329 /*
2330 * Force every CPU with callbacks to register a new callback
2331 * that will tell us when all the preceding callbacks have
2332 * been invoked. If an offline CPU has callbacks, wait for
2333 * it to either come back online or to finish orphaning those
2334 * callbacks.
2335 */
2336 for_each_possible_cpu(cpu) {
2337 preempt_disable();
2338 rdp = per_cpu_ptr(rsp->rda, cpu);
2339 if (cpu_is_offline(cpu)) {
2340 preempt_enable();
2341 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2342 schedule_timeout_interruptible(1);
2343 } else if (ACCESS_ONCE(rdp->qlen)) {
2344 smp_call_function_single(cpu, rcu_barrier_func,
2345 (void *)call_rcu_func, 1);
2346 preempt_enable();
2347 } else {
2348 preempt_enable();
2349 }
2350 }
2351
2352 /*
2353 * Now that all online CPUs have rcu_barrier_callback() callbacks
2354 * posted, we can adopt all of the orphaned callbacks and place
2355 * an rcu_barrier_callback() callback after them. When that is done,
2356 * we are guaranteed to have an rcu_barrier_callback() callback
2357 * following every callback that could possibly have been
2358 * registered before _rcu_barrier() was called.
2359 */
2360 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2361 rcu_adopt_orphan_cbs(rsp);
2362 rsp->rcu_barrier_in_progress = NULL;
2363 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2364 atomic_inc(&rcu_barrier_cpu_count);
2365 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2366 call_rcu_func(&rh, rcu_barrier_callback);
2367
2368 /*
2369 * Now that we have an rcu_barrier_callback() callback on each
2370 * CPU, and thus each counted, remove the initial count.
2371 */
2372 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2373 complete(&rcu_barrier_completion);
2374
2375 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2376 wait_for_completion(&rcu_barrier_completion);
2377
2378 /* Other rcu_barrier() invocations can now safely proceed. */
2379 mutex_unlock(&rcu_barrier_mutex);
2380
2381 destroy_rcu_head_on_stack(&rh);
2382 }
2383
2384 /**
2385 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2386 */
2387 void rcu_barrier_bh(void)
2388 {
2389 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2390 }
2391 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2392
2393 /**
2394 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2395 */
2396 void rcu_barrier_sched(void)
2397 {
2398 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2399 }
2400 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2401
2402 /*
2403 * Do boot-time initialization of a CPU's per-CPU RCU data.
2404 */
2405 static void __init
2406 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2407 {
2408 unsigned long flags;
2409 int i;
2410 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2411 struct rcu_node *rnp = rcu_get_root(rsp);
2412
2413 /* Set up local state, ensuring consistent view of global state. */
2414 raw_spin_lock_irqsave(&rnp->lock, flags);
2415 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2416 rdp->nxtlist = NULL;
2417 for (i = 0; i < RCU_NEXT_SIZE; i++)
2418 rdp->nxttail[i] = &rdp->nxtlist;
2419 rdp->qlen_lazy = 0;
2420 rdp->qlen = 0;
2421 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2422 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2423 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2424 rdp->cpu = cpu;
2425 rdp->rsp = rsp;
2426 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2427 }
2428
2429 /*
2430 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2431 * offline event can be happening at a given time. Note also that we
2432 * can accept some slop in the rsp->completed access due to the fact
2433 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2434 */
2435 static void __cpuinit
2436 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2437 {
2438 unsigned long flags;
2439 unsigned long mask;
2440 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2441 struct rcu_node *rnp = rcu_get_root(rsp);
2442
2443 /* Set up local state, ensuring consistent view of global state. */
2444 raw_spin_lock_irqsave(&rnp->lock, flags);
2445 rdp->beenonline = 1; /* We have now been online. */
2446 rdp->preemptible = preemptible;
2447 rdp->qlen_last_fqs_check = 0;
2448 rdp->n_force_qs_snap = rsp->n_force_qs;
2449 rdp->blimit = blimit;
2450 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2451 atomic_set(&rdp->dynticks->dynticks,
2452 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2453 rcu_prepare_for_idle_init(cpu);
2454 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2455
2456 /*
2457 * A new grace period might start here. If so, we won't be part
2458 * of it, but that is OK, as we are currently in a quiescent state.
2459 */
2460
2461 /* Exclude any attempts to start a new GP on large systems. */
2462 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2463
2464 /* Add CPU to rcu_node bitmasks. */
2465 rnp = rdp->mynode;
2466 mask = rdp->grpmask;
2467 do {
2468 /* Exclude any attempts to start a new GP on small systems. */
2469 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2470 rnp->qsmaskinit |= mask;
2471 mask = rnp->grpmask;
2472 if (rnp == rdp->mynode) {
2473 /*
2474 * If there is a grace period in progress, we will
2475 * set up to wait for it next time we run the
2476 * RCU core code.
2477 */
2478 rdp->gpnum = rnp->completed;
2479 rdp->completed = rnp->completed;
2480 rdp->passed_quiesce = 0;
2481 rdp->qs_pending = 0;
2482 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2483 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2484 }
2485 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2486 rnp = rnp->parent;
2487 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2488
2489 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2490 }
2491
2492 static void __cpuinit rcu_prepare_cpu(int cpu)
2493 {
2494 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2495 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2496 rcu_preempt_init_percpu_data(cpu);
2497 }
2498
2499 /*
2500 * Handle CPU online/offline notification events.
2501 */
2502 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2503 unsigned long action, void *hcpu)
2504 {
2505 long cpu = (long)hcpu;
2506 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2507 struct rcu_node *rnp = rdp->mynode;
2508
2509 trace_rcu_utilization("Start CPU hotplug");
2510 switch (action) {
2511 case CPU_UP_PREPARE:
2512 case CPU_UP_PREPARE_FROZEN:
2513 rcu_prepare_cpu(cpu);
2514 rcu_prepare_kthreads(cpu);
2515 break;
2516 case CPU_ONLINE:
2517 case CPU_DOWN_FAILED:
2518 rcu_node_kthread_setaffinity(rnp, -1);
2519 rcu_cpu_kthread_setrt(cpu, 1);
2520 break;
2521 case CPU_DOWN_PREPARE:
2522 rcu_node_kthread_setaffinity(rnp, cpu);
2523 rcu_cpu_kthread_setrt(cpu, 0);
2524 break;
2525 case CPU_DYING:
2526 case CPU_DYING_FROZEN:
2527 /*
2528 * The whole machine is "stopped" except this CPU, so we can
2529 * touch any data without introducing corruption. We send the
2530 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2531 */
2532 rcu_cleanup_dying_cpu(&rcu_bh_state);
2533 rcu_cleanup_dying_cpu(&rcu_sched_state);
2534 rcu_preempt_cleanup_dying_cpu();
2535 rcu_cleanup_after_idle(cpu);
2536 break;
2537 case CPU_DEAD:
2538 case CPU_DEAD_FROZEN:
2539 case CPU_UP_CANCELED:
2540 case CPU_UP_CANCELED_FROZEN:
2541 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2542 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2543 rcu_preempt_cleanup_dead_cpu(cpu);
2544 break;
2545 default:
2546 break;
2547 }
2548 trace_rcu_utilization("End CPU hotplug");
2549 return NOTIFY_OK;
2550 }
2551
2552 /*
2553 * This function is invoked towards the end of the scheduler's initialization
2554 * process. Before this is called, the idle task might contain
2555 * RCU read-side critical sections (during which time, this idle
2556 * task is booting the system). After this function is called, the
2557 * idle tasks are prohibited from containing RCU read-side critical
2558 * sections. This function also enables RCU lockdep checking.
2559 */
2560 void rcu_scheduler_starting(void)
2561 {
2562 WARN_ON(num_online_cpus() != 1);
2563 WARN_ON(nr_context_switches() > 0);
2564 rcu_scheduler_active = 1;
2565 }
2566
2567 /*
2568 * Compute the per-level fanout, either using the exact fanout specified
2569 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2570 */
2571 #ifdef CONFIG_RCU_FANOUT_EXACT
2572 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2573 {
2574 int i;
2575
2576 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2577 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2578 rsp->levelspread[0] = CONFIG_RCU_FANOUT_LEAF;
2579 }
2580 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2581 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2582 {
2583 int ccur;
2584 int cprv;
2585 int i;
2586
2587 cprv = NR_CPUS;
2588 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2589 ccur = rsp->levelcnt[i];
2590 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2591 cprv = ccur;
2592 }
2593 }
2594 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2595
2596 /*
2597 * Helper function for rcu_init() that initializes one rcu_state structure.
2598 */
2599 static void __init rcu_init_one(struct rcu_state *rsp,
2600 struct rcu_data __percpu *rda)
2601 {
2602 static char *buf[] = { "rcu_node_level_0",
2603 "rcu_node_level_1",
2604 "rcu_node_level_2",
2605 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2606 int cpustride = 1;
2607 int i;
2608 int j;
2609 struct rcu_node *rnp;
2610
2611 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2612
2613 /* Initialize the level-tracking arrays. */
2614
2615 for (i = 1; i < NUM_RCU_LVLS; i++)
2616 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2617 rcu_init_levelspread(rsp);
2618
2619 /* Initialize the elements themselves, starting from the leaves. */
2620
2621 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2622 cpustride *= rsp->levelspread[i];
2623 rnp = rsp->level[i];
2624 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2625 raw_spin_lock_init(&rnp->lock);
2626 lockdep_set_class_and_name(&rnp->lock,
2627 &rcu_node_class[i], buf[i]);
2628 rnp->gpnum = 0;
2629 rnp->qsmask = 0;
2630 rnp->qsmaskinit = 0;
2631 rnp->grplo = j * cpustride;
2632 rnp->grphi = (j + 1) * cpustride - 1;
2633 if (rnp->grphi >= NR_CPUS)
2634 rnp->grphi = NR_CPUS - 1;
2635 if (i == 0) {
2636 rnp->grpnum = 0;
2637 rnp->grpmask = 0;
2638 rnp->parent = NULL;
2639 } else {
2640 rnp->grpnum = j % rsp->levelspread[i - 1];
2641 rnp->grpmask = 1UL << rnp->grpnum;
2642 rnp->parent = rsp->level[i - 1] +
2643 j / rsp->levelspread[i - 1];
2644 }
2645 rnp->level = i;
2646 INIT_LIST_HEAD(&rnp->blkd_tasks);
2647 }
2648 }
2649
2650 rsp->rda = rda;
2651 rnp = rsp->level[NUM_RCU_LVLS - 1];
2652 for_each_possible_cpu(i) {
2653 while (i > rnp->grphi)
2654 rnp++;
2655 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2656 rcu_boot_init_percpu_data(i, rsp);
2657 }
2658 }
2659
2660 void __init rcu_init(void)
2661 {
2662 int cpu;
2663
2664 rcu_bootup_announce();
2665 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2666 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2667 __rcu_init_preempt();
2668 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2669
2670 /*
2671 * We don't need protection against CPU-hotplug here because
2672 * this is called early in boot, before either interrupts
2673 * or the scheduler are operational.
2674 */
2675 cpu_notifier(rcu_cpu_notify, 0);
2676 for_each_online_cpu(cpu)
2677 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2678 check_cpu_stall_init();
2679 }
2680
2681 #include "rcutree_plugin.h"