rcu: Abstract common code for RCU grace-period-wait primitives
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutiny_plugin.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright (c) 2010 Linaro
21 *
22 * Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
23 */
24
25 #include <linux/kthread.h>
26 #include <linux/debugfs.h>
27 #include <linux/seq_file.h>
28
29 #ifdef CONFIG_RCU_TRACE
30 #define RCU_TRACE(stmt) stmt
31 #else /* #ifdef CONFIG_RCU_TRACE */
32 #define RCU_TRACE(stmt)
33 #endif /* #else #ifdef CONFIG_RCU_TRACE */
34
35 /* Global control variables for rcupdate callback mechanism. */
36 struct rcu_ctrlblk {
37 struct rcu_head *rcucblist; /* List of pending callbacks (CBs). */
38 struct rcu_head **donetail; /* ->next pointer of last "done" CB. */
39 struct rcu_head **curtail; /* ->next pointer of last CB. */
40 RCU_TRACE(long qlen); /* Number of pending CBs. */
41 };
42
43 /* Definition for rcupdate control block. */
44 static struct rcu_ctrlblk rcu_sched_ctrlblk = {
45 .donetail = &rcu_sched_ctrlblk.rcucblist,
46 .curtail = &rcu_sched_ctrlblk.rcucblist,
47 };
48
49 static struct rcu_ctrlblk rcu_bh_ctrlblk = {
50 .donetail = &rcu_bh_ctrlblk.rcucblist,
51 .curtail = &rcu_bh_ctrlblk.rcucblist,
52 };
53
54 #ifdef CONFIG_DEBUG_LOCK_ALLOC
55 int rcu_scheduler_active __read_mostly;
56 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
57 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
58
59 #ifdef CONFIG_TINY_PREEMPT_RCU
60
61 #include <linux/delay.h>
62
63 /* Global control variables for preemptible RCU. */
64 struct rcu_preempt_ctrlblk {
65 struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
66 struct rcu_head **nexttail;
67 /* Tasks blocked in a preemptible RCU */
68 /* read-side critical section while an */
69 /* preemptible-RCU grace period is in */
70 /* progress must wait for a later grace */
71 /* period. This pointer points to the */
72 /* ->next pointer of the last task that */
73 /* must wait for a later grace period, or */
74 /* to &->rcb.rcucblist if there is no */
75 /* such task. */
76 struct list_head blkd_tasks;
77 /* Tasks blocked in RCU read-side critical */
78 /* section. Tasks are placed at the head */
79 /* of this list and age towards the tail. */
80 struct list_head *gp_tasks;
81 /* Pointer to the first task blocking the */
82 /* current grace period, or NULL if there */
83 /* is no such task. */
84 struct list_head *exp_tasks;
85 /* Pointer to first task blocking the */
86 /* current expedited grace period, or NULL */
87 /* if there is no such task. If there */
88 /* is no current expedited grace period, */
89 /* then there cannot be any such task. */
90 #ifdef CONFIG_RCU_BOOST
91 struct list_head *boost_tasks;
92 /* Pointer to first task that needs to be */
93 /* priority-boosted, or NULL if no priority */
94 /* boosting is needed. If there is no */
95 /* current or expedited grace period, there */
96 /* can be no such task. */
97 #endif /* #ifdef CONFIG_RCU_BOOST */
98 u8 gpnum; /* Current grace period. */
99 u8 gpcpu; /* Last grace period blocked by the CPU. */
100 u8 completed; /* Last grace period completed. */
101 /* If all three are equal, RCU is idle. */
102 #ifdef CONFIG_RCU_BOOST
103 unsigned long boost_time; /* When to start boosting (jiffies) */
104 #endif /* #ifdef CONFIG_RCU_BOOST */
105 #ifdef CONFIG_RCU_TRACE
106 unsigned long n_grace_periods;
107 #ifdef CONFIG_RCU_BOOST
108 unsigned long n_tasks_boosted;
109 /* Total number of tasks boosted. */
110 unsigned long n_exp_boosts;
111 /* Number of tasks boosted for expedited GP. */
112 unsigned long n_normal_boosts;
113 /* Number of tasks boosted for normal GP. */
114 unsigned long n_balk_blkd_tasks;
115 /* Refused to boost: no blocked tasks. */
116 unsigned long n_balk_exp_gp_tasks;
117 /* Refused to boost: nothing blocking GP. */
118 unsigned long n_balk_boost_tasks;
119 /* Refused to boost: already boosting. */
120 unsigned long n_balk_notyet;
121 /* Refused to boost: not yet time. */
122 unsigned long n_balk_nos;
123 /* Refused to boost: not sure why, though. */
124 /* This can happen due to race conditions. */
125 #endif /* #ifdef CONFIG_RCU_BOOST */
126 #endif /* #ifdef CONFIG_RCU_TRACE */
127 };
128
129 static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
130 .rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
131 .rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
132 .nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
133 .blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
134 };
135
136 static int rcu_preempted_readers_exp(void);
137 static void rcu_report_exp_done(void);
138
139 /*
140 * Return true if the CPU has not yet responded to the current grace period.
141 */
142 static int rcu_cpu_blocking_cur_gp(void)
143 {
144 return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
145 }
146
147 /*
148 * Check for a running RCU reader. Because there is only one CPU,
149 * there can be but one running RCU reader at a time. ;-)
150 */
151 static int rcu_preempt_running_reader(void)
152 {
153 return current->rcu_read_lock_nesting;
154 }
155
156 /*
157 * Check for preempted RCU readers blocking any grace period.
158 * If the caller needs a reliable answer, it must disable hard irqs.
159 */
160 static int rcu_preempt_blocked_readers_any(void)
161 {
162 return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
163 }
164
165 /*
166 * Check for preempted RCU readers blocking the current grace period.
167 * If the caller needs a reliable answer, it must disable hard irqs.
168 */
169 static int rcu_preempt_blocked_readers_cgp(void)
170 {
171 return rcu_preempt_ctrlblk.gp_tasks != NULL;
172 }
173
174 /*
175 * Return true if another preemptible-RCU grace period is needed.
176 */
177 static int rcu_preempt_needs_another_gp(void)
178 {
179 return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
180 }
181
182 /*
183 * Return true if a preemptible-RCU grace period is in progress.
184 * The caller must disable hardirqs.
185 */
186 static int rcu_preempt_gp_in_progress(void)
187 {
188 return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
189 }
190
191 /*
192 * Advance a ->blkd_tasks-list pointer to the next entry, instead
193 * returning NULL if at the end of the list.
194 */
195 static struct list_head *rcu_next_node_entry(struct task_struct *t)
196 {
197 struct list_head *np;
198
199 np = t->rcu_node_entry.next;
200 if (np == &rcu_preempt_ctrlblk.blkd_tasks)
201 np = NULL;
202 return np;
203 }
204
205 #ifdef CONFIG_RCU_TRACE
206
207 #ifdef CONFIG_RCU_BOOST
208 static void rcu_initiate_boost_trace(void);
209 #endif /* #ifdef CONFIG_RCU_BOOST */
210
211 /*
212 * Dump additional statistice for TINY_PREEMPT_RCU.
213 */
214 static void show_tiny_preempt_stats(struct seq_file *m)
215 {
216 seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
217 rcu_preempt_ctrlblk.rcb.qlen,
218 rcu_preempt_ctrlblk.n_grace_periods,
219 rcu_preempt_ctrlblk.gpnum,
220 rcu_preempt_ctrlblk.gpcpu,
221 rcu_preempt_ctrlblk.completed,
222 "T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
223 "N."[!rcu_preempt_ctrlblk.gp_tasks],
224 "E."[!rcu_preempt_ctrlblk.exp_tasks]);
225 #ifdef CONFIG_RCU_BOOST
226 seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
227 " ",
228 "B."[!rcu_preempt_ctrlblk.boost_tasks],
229 rcu_preempt_ctrlblk.n_tasks_boosted,
230 rcu_preempt_ctrlblk.n_exp_boosts,
231 rcu_preempt_ctrlblk.n_normal_boosts,
232 (int)(jiffies & 0xffff),
233 (int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
234 seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
235 " balk",
236 rcu_preempt_ctrlblk.n_balk_blkd_tasks,
237 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
238 rcu_preempt_ctrlblk.n_balk_boost_tasks,
239 rcu_preempt_ctrlblk.n_balk_notyet,
240 rcu_preempt_ctrlblk.n_balk_nos);
241 #endif /* #ifdef CONFIG_RCU_BOOST */
242 }
243
244 #endif /* #ifdef CONFIG_RCU_TRACE */
245
246 #ifdef CONFIG_RCU_BOOST
247
248 #include "rtmutex_common.h"
249
250 /*
251 * Carry out RCU priority boosting on the task indicated by ->boost_tasks,
252 * and advance ->boost_tasks to the next task in the ->blkd_tasks list.
253 */
254 static int rcu_boost(void)
255 {
256 unsigned long flags;
257 struct rt_mutex mtx;
258 struct task_struct *t;
259 struct list_head *tb;
260
261 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
262 rcu_preempt_ctrlblk.exp_tasks == NULL)
263 return 0; /* Nothing to boost. */
264
265 raw_local_irq_save(flags);
266
267 /*
268 * Recheck with irqs disabled: all tasks in need of boosting
269 * might exit their RCU read-side critical sections on their own
270 * if we are preempted just before disabling irqs.
271 */
272 if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
273 rcu_preempt_ctrlblk.exp_tasks == NULL) {
274 raw_local_irq_restore(flags);
275 return 0;
276 }
277
278 /*
279 * Preferentially boost tasks blocking expedited grace periods.
280 * This cannot starve the normal grace periods because a second
281 * expedited grace period must boost all blocked tasks, including
282 * those blocking the pre-existing normal grace period.
283 */
284 if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
285 tb = rcu_preempt_ctrlblk.exp_tasks;
286 RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
287 } else {
288 tb = rcu_preempt_ctrlblk.boost_tasks;
289 RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
290 }
291 RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
292
293 /*
294 * We boost task t by manufacturing an rt_mutex that appears to
295 * be held by task t. We leave a pointer to that rt_mutex where
296 * task t can find it, and task t will release the mutex when it
297 * exits its outermost RCU read-side critical section. Then
298 * simply acquiring this artificial rt_mutex will boost task
299 * t's priority. (Thanks to tglx for suggesting this approach!)
300 */
301 t = container_of(tb, struct task_struct, rcu_node_entry);
302 rt_mutex_init_proxy_locked(&mtx, t);
303 t->rcu_boost_mutex = &mtx;
304 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BOOSTED;
305 raw_local_irq_restore(flags);
306 rt_mutex_lock(&mtx);
307 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
308
309 return rcu_preempt_ctrlblk.boost_tasks != NULL ||
310 rcu_preempt_ctrlblk.exp_tasks != NULL;
311 }
312
313 /*
314 * Check to see if it is now time to start boosting RCU readers blocking
315 * the current grace period, and, if so, tell the rcu_kthread_task to
316 * start boosting them. If there is an expedited boost in progress,
317 * we wait for it to complete.
318 *
319 * If there are no blocked readers blocking the current grace period,
320 * return 0 to let the caller know, otherwise return 1. Note that this
321 * return value is independent of whether or not boosting was done.
322 */
323 static int rcu_initiate_boost(void)
324 {
325 if (!rcu_preempt_blocked_readers_cgp() &&
326 rcu_preempt_ctrlblk.exp_tasks == NULL) {
327 RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
328 return 0;
329 }
330 if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
331 (rcu_preempt_ctrlblk.gp_tasks != NULL &&
332 rcu_preempt_ctrlblk.boost_tasks == NULL &&
333 ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
334 if (rcu_preempt_ctrlblk.exp_tasks == NULL)
335 rcu_preempt_ctrlblk.boost_tasks =
336 rcu_preempt_ctrlblk.gp_tasks;
337 invoke_rcu_kthread();
338 } else
339 RCU_TRACE(rcu_initiate_boost_trace());
340 return 1;
341 }
342
343 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
344
345 /*
346 * Do priority-boost accounting for the start of a new grace period.
347 */
348 static void rcu_preempt_boost_start_gp(void)
349 {
350 rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
351 }
352
353 #else /* #ifdef CONFIG_RCU_BOOST */
354
355 /*
356 * If there is no RCU priority boosting, we don't boost.
357 */
358 static int rcu_boost(void)
359 {
360 return 0;
361 }
362
363 /*
364 * If there is no RCU priority boosting, we don't initiate boosting,
365 * but we do indicate whether there are blocked readers blocking the
366 * current grace period.
367 */
368 static int rcu_initiate_boost(void)
369 {
370 return rcu_preempt_blocked_readers_cgp();
371 }
372
373 /*
374 * If there is no RCU priority boosting, nothing to do at grace-period start.
375 */
376 static void rcu_preempt_boost_start_gp(void)
377 {
378 }
379
380 #endif /* else #ifdef CONFIG_RCU_BOOST */
381
382 /*
383 * Record a preemptible-RCU quiescent state for the specified CPU. Note
384 * that this just means that the task currently running on the CPU is
385 * in a quiescent state. There might be any number of tasks blocked
386 * while in an RCU read-side critical section.
387 *
388 * Unlike the other rcu_*_qs() functions, callers to this function
389 * must disable irqs in order to protect the assignment to
390 * ->rcu_read_unlock_special.
391 *
392 * Because this is a single-CPU implementation, the only way a grace
393 * period can end is if the CPU is in a quiescent state. The reason is
394 * that a blocked preemptible-RCU reader can exit its critical section
395 * only if the CPU is running it at the time. Therefore, when the
396 * last task blocking the current grace period exits its RCU read-side
397 * critical section, neither the CPU nor blocked tasks will be stopping
398 * the current grace period. (In contrast, SMP implementations
399 * might have CPUs running in RCU read-side critical sections that
400 * block later grace periods -- but this is not possible given only
401 * one CPU.)
402 */
403 static void rcu_preempt_cpu_qs(void)
404 {
405 /* Record both CPU and task as having responded to current GP. */
406 rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
407 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
408
409 /* If there is no GP then there is nothing more to do. */
410 if (!rcu_preempt_gp_in_progress())
411 return;
412 /*
413 * Check up on boosting. If there are readers blocking the
414 * current grace period, leave.
415 */
416 if (rcu_initiate_boost())
417 return;
418
419 /* Advance callbacks. */
420 rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
421 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
422 rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
423
424 /* If there are no blocked readers, next GP is done instantly. */
425 if (!rcu_preempt_blocked_readers_any())
426 rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
427
428 /* If there are done callbacks, cause them to be invoked. */
429 if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
430 invoke_rcu_kthread();
431 }
432
433 /*
434 * Start a new RCU grace period if warranted. Hard irqs must be disabled.
435 */
436 static void rcu_preempt_start_gp(void)
437 {
438 if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
439
440 /* Official start of GP. */
441 rcu_preempt_ctrlblk.gpnum++;
442 RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
443
444 /* Any blocked RCU readers block new GP. */
445 if (rcu_preempt_blocked_readers_any())
446 rcu_preempt_ctrlblk.gp_tasks =
447 rcu_preempt_ctrlblk.blkd_tasks.next;
448
449 /* Set up for RCU priority boosting. */
450 rcu_preempt_boost_start_gp();
451
452 /* If there is no running reader, CPU is done with GP. */
453 if (!rcu_preempt_running_reader())
454 rcu_preempt_cpu_qs();
455 }
456 }
457
458 /*
459 * We have entered the scheduler, and the current task might soon be
460 * context-switched away from. If this task is in an RCU read-side
461 * critical section, we will no longer be able to rely on the CPU to
462 * record that fact, so we enqueue the task on the blkd_tasks list.
463 * If the task started after the current grace period began, as recorded
464 * by ->gpcpu, we enqueue at the beginning of the list. Otherwise
465 * before the element referenced by ->gp_tasks (or at the tail if
466 * ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
467 * The task will dequeue itself when it exits the outermost enclosing
468 * RCU read-side critical section. Therefore, the current grace period
469 * cannot be permitted to complete until the ->gp_tasks pointer becomes
470 * NULL.
471 *
472 * Caller must disable preemption.
473 */
474 void rcu_preempt_note_context_switch(void)
475 {
476 struct task_struct *t = current;
477 unsigned long flags;
478
479 local_irq_save(flags); /* must exclude scheduler_tick(). */
480 if (rcu_preempt_running_reader() &&
481 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
482
483 /* Possibly blocking in an RCU read-side critical section. */
484 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
485
486 /*
487 * If this CPU has already checked in, then this task
488 * will hold up the next grace period rather than the
489 * current grace period. Queue the task accordingly.
490 * If the task is queued for the current grace period
491 * (i.e., this CPU has not yet passed through a quiescent
492 * state for the current grace period), then as long
493 * as that task remains queued, the current grace period
494 * cannot end.
495 */
496 list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
497 if (rcu_cpu_blocking_cur_gp())
498 rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
499 }
500
501 /*
502 * Either we were not in an RCU read-side critical section to
503 * begin with, or we have now recorded that critical section
504 * globally. Either way, we can now note a quiescent state
505 * for this CPU. Again, if we were in an RCU read-side critical
506 * section, and if that critical section was blocking the current
507 * grace period, then the fact that the task has been enqueued
508 * means that current grace period continues to be blocked.
509 */
510 rcu_preempt_cpu_qs();
511 local_irq_restore(flags);
512 }
513
514 /*
515 * Tiny-preemptible RCU implementation for rcu_read_lock().
516 * Just increment ->rcu_read_lock_nesting, shared state will be updated
517 * if we block.
518 */
519 void __rcu_read_lock(void)
520 {
521 current->rcu_read_lock_nesting++;
522 barrier(); /* needed if we ever invoke rcu_read_lock in rcutiny.c */
523 }
524 EXPORT_SYMBOL_GPL(__rcu_read_lock);
525
526 /*
527 * Handle special cases during rcu_read_unlock(), such as needing to
528 * notify RCU core processing or task having blocked during the RCU
529 * read-side critical section.
530 */
531 static void rcu_read_unlock_special(struct task_struct *t)
532 {
533 int empty;
534 int empty_exp;
535 unsigned long flags;
536 struct list_head *np;
537 int special;
538
539 /*
540 * NMI handlers cannot block and cannot safely manipulate state.
541 * They therefore cannot possibly be special, so just leave.
542 */
543 if (in_nmi())
544 return;
545
546 local_irq_save(flags);
547
548 /*
549 * If RCU core is waiting for this CPU to exit critical section,
550 * let it know that we have done so.
551 */
552 special = t->rcu_read_unlock_special;
553 if (special & RCU_READ_UNLOCK_NEED_QS)
554 rcu_preempt_cpu_qs();
555
556 /* Hardware IRQ handlers cannot block. */
557 if (in_irq()) {
558 local_irq_restore(flags);
559 return;
560 }
561
562 /* Clean up if blocked during RCU read-side critical section. */
563 if (special & RCU_READ_UNLOCK_BLOCKED) {
564 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
565
566 /*
567 * Remove this task from the ->blkd_tasks list and adjust
568 * any pointers that might have been referencing it.
569 */
570 empty = !rcu_preempt_blocked_readers_cgp();
571 empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
572 np = rcu_next_node_entry(t);
573 list_del_init(&t->rcu_node_entry);
574 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
575 rcu_preempt_ctrlblk.gp_tasks = np;
576 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
577 rcu_preempt_ctrlblk.exp_tasks = np;
578 #ifdef CONFIG_RCU_BOOST
579 if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
580 rcu_preempt_ctrlblk.boost_tasks = np;
581 #endif /* #ifdef CONFIG_RCU_BOOST */
582
583 /*
584 * If this was the last task on the current list, and if
585 * we aren't waiting on the CPU, report the quiescent state
586 * and start a new grace period if needed.
587 */
588 if (!empty && !rcu_preempt_blocked_readers_cgp()) {
589 rcu_preempt_cpu_qs();
590 rcu_preempt_start_gp();
591 }
592
593 /*
594 * If this was the last task on the expedited lists,
595 * then we need wake up the waiting task.
596 */
597 if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
598 rcu_report_exp_done();
599 }
600 #ifdef CONFIG_RCU_BOOST
601 /* Unboost self if was boosted. */
602 if (special & RCU_READ_UNLOCK_BOOSTED) {
603 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BOOSTED;
604 rt_mutex_unlock(t->rcu_boost_mutex);
605 t->rcu_boost_mutex = NULL;
606 }
607 #endif /* #ifdef CONFIG_RCU_BOOST */
608 local_irq_restore(flags);
609 }
610
611 /*
612 * Tiny-preemptible RCU implementation for rcu_read_unlock().
613 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
614 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
615 * invoke rcu_read_unlock_special() to clean up after a context switch
616 * in an RCU read-side critical section and other special cases.
617 */
618 void __rcu_read_unlock(void)
619 {
620 struct task_struct *t = current;
621
622 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutiny.c */
623 --t->rcu_read_lock_nesting;
624 barrier(); /* decrement before load of ->rcu_read_unlock_special */
625 if (t->rcu_read_lock_nesting == 0 &&
626 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
627 rcu_read_unlock_special(t);
628 #ifdef CONFIG_PROVE_LOCKING
629 WARN_ON_ONCE(t->rcu_read_lock_nesting < 0);
630 #endif /* #ifdef CONFIG_PROVE_LOCKING */
631 }
632 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
633
634 /*
635 * Check for a quiescent state from the current CPU. When a task blocks,
636 * the task is recorded in the rcu_preempt_ctrlblk structure, which is
637 * checked elsewhere. This is called from the scheduling-clock interrupt.
638 *
639 * Caller must disable hard irqs.
640 */
641 static void rcu_preempt_check_callbacks(void)
642 {
643 struct task_struct *t = current;
644
645 if (rcu_preempt_gp_in_progress() &&
646 (!rcu_preempt_running_reader() ||
647 !rcu_cpu_blocking_cur_gp()))
648 rcu_preempt_cpu_qs();
649 if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
650 rcu_preempt_ctrlblk.rcb.donetail)
651 invoke_rcu_kthread();
652 if (rcu_preempt_gp_in_progress() &&
653 rcu_cpu_blocking_cur_gp() &&
654 rcu_preempt_running_reader())
655 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
656 }
657
658 /*
659 * TINY_PREEMPT_RCU has an extra callback-list tail pointer to
660 * update, so this is invoked from rcu_process_callbacks() to
661 * handle that case. Of course, it is invoked for all flavors of
662 * RCU, but RCU callbacks can appear only on one of the lists, and
663 * neither ->nexttail nor ->donetail can possibly be NULL, so there
664 * is no need for an explicit check.
665 */
666 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
667 {
668 if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
669 rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
670 }
671
672 /*
673 * Process callbacks for preemptible RCU.
674 */
675 static void rcu_preempt_process_callbacks(void)
676 {
677 rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
678 }
679
680 /*
681 * Queue a preemptible -RCU callback for invocation after a grace period.
682 */
683 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
684 {
685 unsigned long flags;
686
687 debug_rcu_head_queue(head);
688 head->func = func;
689 head->next = NULL;
690
691 local_irq_save(flags);
692 *rcu_preempt_ctrlblk.nexttail = head;
693 rcu_preempt_ctrlblk.nexttail = &head->next;
694 RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
695 rcu_preempt_start_gp(); /* checks to see if GP needed. */
696 local_irq_restore(flags);
697 }
698 EXPORT_SYMBOL_GPL(call_rcu);
699
700 /*
701 * synchronize_rcu - wait until a grace period has elapsed.
702 *
703 * Control will return to the caller some time after a full grace
704 * period has elapsed, in other words after all currently executing RCU
705 * read-side critical sections have completed. RCU read-side critical
706 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
707 * and may be nested.
708 */
709 void synchronize_rcu(void)
710 {
711 #ifdef CONFIG_DEBUG_LOCK_ALLOC
712 if (!rcu_scheduler_active)
713 return;
714 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
715
716 WARN_ON_ONCE(rcu_preempt_running_reader());
717 if (!rcu_preempt_blocked_readers_any())
718 return;
719
720 /* Once we get past the fastpath checks, same code as rcu_barrier(). */
721 rcu_barrier();
722 }
723 EXPORT_SYMBOL_GPL(synchronize_rcu);
724
725 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
726 static unsigned long sync_rcu_preempt_exp_count;
727 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
728
729 /*
730 * Return non-zero if there are any tasks in RCU read-side critical
731 * sections blocking the current preemptible-RCU expedited grace period.
732 * If there is no preemptible-RCU expedited grace period currently in
733 * progress, returns zero unconditionally.
734 */
735 static int rcu_preempted_readers_exp(void)
736 {
737 return rcu_preempt_ctrlblk.exp_tasks != NULL;
738 }
739
740 /*
741 * Report the exit from RCU read-side critical section for the last task
742 * that queued itself during or before the current expedited preemptible-RCU
743 * grace period.
744 */
745 static void rcu_report_exp_done(void)
746 {
747 wake_up(&sync_rcu_preempt_exp_wq);
748 }
749
750 /*
751 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
752 * is to rely in the fact that there is but one CPU, and that it is
753 * illegal for a task to invoke synchronize_rcu_expedited() while in a
754 * preemptible-RCU read-side critical section. Therefore, any such
755 * critical sections must correspond to blocked tasks, which must therefore
756 * be on the ->blkd_tasks list. So just record the current head of the
757 * list in the ->exp_tasks pointer, and wait for all tasks including and
758 * after the task pointed to by ->exp_tasks to drain.
759 */
760 void synchronize_rcu_expedited(void)
761 {
762 unsigned long flags;
763 struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
764 unsigned long snap;
765
766 barrier(); /* ensure prior action seen before grace period. */
767
768 WARN_ON_ONCE(rcu_preempt_running_reader());
769
770 /*
771 * Acquire lock so that there is only one preemptible RCU grace
772 * period in flight. Of course, if someone does the expedited
773 * grace period for us while we are acquiring the lock, just leave.
774 */
775 snap = sync_rcu_preempt_exp_count + 1;
776 mutex_lock(&sync_rcu_preempt_exp_mutex);
777 if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
778 goto unlock_mb_ret; /* Others did our work for us. */
779
780 local_irq_save(flags);
781
782 /*
783 * All RCU readers have to already be on blkd_tasks because
784 * we cannot legally be executing in an RCU read-side critical
785 * section.
786 */
787
788 /* Snapshot current head of ->blkd_tasks list. */
789 rpcp->exp_tasks = rpcp->blkd_tasks.next;
790 if (rpcp->exp_tasks == &rpcp->blkd_tasks)
791 rpcp->exp_tasks = NULL;
792
793 /* Wait for tail of ->blkd_tasks list to drain. */
794 if (!rcu_preempted_readers_exp())
795 local_irq_restore(flags);
796 else {
797 rcu_initiate_boost();
798 local_irq_restore(flags);
799 wait_event(sync_rcu_preempt_exp_wq,
800 !rcu_preempted_readers_exp());
801 }
802
803 /* Clean up and exit. */
804 barrier(); /* ensure expedited GP seen before counter increment. */
805 sync_rcu_preempt_exp_count++;
806 unlock_mb_ret:
807 mutex_unlock(&sync_rcu_preempt_exp_mutex);
808 barrier(); /* ensure subsequent action seen after grace period. */
809 }
810 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
811
812 /*
813 * Does preemptible RCU need the CPU to stay out of dynticks mode?
814 */
815 int rcu_preempt_needs_cpu(void)
816 {
817 if (!rcu_preempt_running_reader())
818 rcu_preempt_cpu_qs();
819 return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
820 }
821
822 /*
823 * Check for a task exiting while in a preemptible -RCU read-side
824 * critical section, clean up if so. No need to issue warnings,
825 * as debug_check_no_locks_held() already does this if lockdep
826 * is enabled.
827 */
828 void exit_rcu(void)
829 {
830 struct task_struct *t = current;
831
832 if (t->rcu_read_lock_nesting == 0)
833 return;
834 t->rcu_read_lock_nesting = 1;
835 __rcu_read_unlock();
836 }
837
838 #else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
839
840 #ifdef CONFIG_RCU_TRACE
841
842 /*
843 * Because preemptible RCU does not exist, it is not necessary to
844 * dump out its statistics.
845 */
846 static void show_tiny_preempt_stats(struct seq_file *m)
847 {
848 }
849
850 #endif /* #ifdef CONFIG_RCU_TRACE */
851
852 /*
853 * Because preemptible RCU does not exist, it is never necessary to
854 * boost preempted RCU readers.
855 */
856 static int rcu_boost(void)
857 {
858 return 0;
859 }
860
861 /*
862 * Because preemptible RCU does not exist, it never has any callbacks
863 * to check.
864 */
865 static void rcu_preempt_check_callbacks(void)
866 {
867 }
868
869 /*
870 * Because preemptible RCU does not exist, it never has any callbacks
871 * to remove.
872 */
873 static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
874 {
875 }
876
877 /*
878 * Because preemptible RCU does not exist, it never has any callbacks
879 * to process.
880 */
881 static void rcu_preempt_process_callbacks(void)
882 {
883 }
884
885 #endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
886
887 #ifdef CONFIG_DEBUG_LOCK_ALLOC
888 #include <linux/kernel_stat.h>
889
890 /*
891 * During boot, we forgive RCU lockdep issues. After this function is
892 * invoked, we start taking RCU lockdep issues seriously.
893 */
894 void __init rcu_scheduler_starting(void)
895 {
896 WARN_ON(nr_context_switches() > 0);
897 rcu_scheduler_active = 1;
898 }
899
900 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
901
902 #ifdef CONFIG_RCU_BOOST
903 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
904 #else /* #ifdef CONFIG_RCU_BOOST */
905 #define RCU_BOOST_PRIO 1
906 #endif /* #else #ifdef CONFIG_RCU_BOOST */
907
908 #ifdef CONFIG_RCU_TRACE
909
910 #ifdef CONFIG_RCU_BOOST
911
912 static void rcu_initiate_boost_trace(void)
913 {
914 if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
915 rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
916 else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
917 rcu_preempt_ctrlblk.exp_tasks == NULL)
918 rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
919 else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
920 rcu_preempt_ctrlblk.n_balk_boost_tasks++;
921 else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
922 rcu_preempt_ctrlblk.n_balk_notyet++;
923 else
924 rcu_preempt_ctrlblk.n_balk_nos++;
925 }
926
927 #endif /* #ifdef CONFIG_RCU_BOOST */
928
929 static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
930 {
931 unsigned long flags;
932
933 raw_local_irq_save(flags);
934 rcp->qlen -= n;
935 raw_local_irq_restore(flags);
936 }
937
938 /*
939 * Dump statistics for TINY_RCU, such as they are.
940 */
941 static int show_tiny_stats(struct seq_file *m, void *unused)
942 {
943 show_tiny_preempt_stats(m);
944 seq_printf(m, "rcu_sched: qlen: %ld\n", rcu_sched_ctrlblk.qlen);
945 seq_printf(m, "rcu_bh: qlen: %ld\n", rcu_bh_ctrlblk.qlen);
946 return 0;
947 }
948
949 static int show_tiny_stats_open(struct inode *inode, struct file *file)
950 {
951 return single_open(file, show_tiny_stats, NULL);
952 }
953
954 static const struct file_operations show_tiny_stats_fops = {
955 .owner = THIS_MODULE,
956 .open = show_tiny_stats_open,
957 .read = seq_read,
958 .llseek = seq_lseek,
959 .release = single_release,
960 };
961
962 static struct dentry *rcudir;
963
964 static int __init rcutiny_trace_init(void)
965 {
966 struct dentry *retval;
967
968 rcudir = debugfs_create_dir("rcu", NULL);
969 if (!rcudir)
970 goto free_out;
971 retval = debugfs_create_file("rcudata", 0444, rcudir,
972 NULL, &show_tiny_stats_fops);
973 if (!retval)
974 goto free_out;
975 return 0;
976 free_out:
977 debugfs_remove_recursive(rcudir);
978 return 1;
979 }
980
981 static void __exit rcutiny_trace_cleanup(void)
982 {
983 debugfs_remove_recursive(rcudir);
984 }
985
986 module_init(rcutiny_trace_init);
987 module_exit(rcutiny_trace_cleanup);
988
989 MODULE_AUTHOR("Paul E. McKenney");
990 MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation");
991 MODULE_LICENSE("GPL");
992
993 #endif /* #ifdef CONFIG_RCU_TRACE */