Merge tag 'rpmsg-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/ohad/rpmsg
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47
48 #include <asm/uaccess.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/printk.h>
52
53 /* printk's without a loglevel use this.. */
54 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
55
56 /* We show everything that is MORE important than this.. */
57 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
58 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
59
60 int console_printk[4] = {
61 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
62 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
63 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
64 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
65 };
66
67 /*
68 * Low level drivers may need that to know if they can schedule in
69 * their unblank() callback or not. So let's export it.
70 */
71 int oops_in_progress;
72 EXPORT_SYMBOL(oops_in_progress);
73
74 /*
75 * console_sem protects the console_drivers list, and also
76 * provides serialisation for access to the entire console
77 * driver system.
78 */
79 static DEFINE_SEMAPHORE(console_sem);
80 struct console *console_drivers;
81 EXPORT_SYMBOL_GPL(console_drivers);
82
83 #ifdef CONFIG_LOCKDEP
84 static struct lockdep_map console_lock_dep_map = {
85 .name = "console_lock"
86 };
87 #endif
88
89 /*
90 * This is used for debugging the mess that is the VT code by
91 * keeping track if we have the console semaphore held. It's
92 * definitely not the perfect debug tool (we don't know if _WE_
93 * hold it are racing, but it helps tracking those weird code
94 * path in the console code where we end up in places I want
95 * locked without the console sempahore held
96 */
97 static int console_locked, console_suspended;
98
99 /*
100 * If exclusive_console is non-NULL then only this console is to be printed to.
101 */
102 static struct console *exclusive_console;
103
104 /*
105 * Array of consoles built from command line options (console=)
106 */
107 struct console_cmdline
108 {
109 char name[8]; /* Name of the driver */
110 int index; /* Minor dev. to use */
111 char *options; /* Options for the driver */
112 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
113 char *brl_options; /* Options for braille driver */
114 #endif
115 };
116
117 #define MAX_CMDLINECONSOLES 8
118
119 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
120 static int selected_console = -1;
121 static int preferred_console = -1;
122 int console_set_on_cmdline;
123 EXPORT_SYMBOL(console_set_on_cmdline);
124
125 /* Flag: console code may call schedule() */
126 static int console_may_schedule;
127
128 /*
129 * The printk log buffer consists of a chain of concatenated variable
130 * length records. Every record starts with a record header, containing
131 * the overall length of the record.
132 *
133 * The heads to the first and last entry in the buffer, as well as the
134 * sequence numbers of these both entries are maintained when messages
135 * are stored..
136 *
137 * If the heads indicate available messages, the length in the header
138 * tells the start next message. A length == 0 for the next message
139 * indicates a wrap-around to the beginning of the buffer.
140 *
141 * Every record carries the monotonic timestamp in microseconds, as well as
142 * the standard userspace syslog level and syslog facility. The usual
143 * kernel messages use LOG_KERN; userspace-injected messages always carry
144 * a matching syslog facility, by default LOG_USER. The origin of every
145 * message can be reliably determined that way.
146 *
147 * The human readable log message directly follows the message header. The
148 * length of the message text is stored in the header, the stored message
149 * is not terminated.
150 *
151 * Optionally, a message can carry a dictionary of properties (key/value pairs),
152 * to provide userspace with a machine-readable message context.
153 *
154 * Examples for well-defined, commonly used property names are:
155 * DEVICE=b12:8 device identifier
156 * b12:8 block dev_t
157 * c127:3 char dev_t
158 * n8 netdev ifindex
159 * +sound:card0 subsystem:devname
160 * SUBSYSTEM=pci driver-core subsystem name
161 *
162 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
163 * follows directly after a '=' character. Every property is terminated by
164 * a '\0' character. The last property is not terminated.
165 *
166 * Example of a message structure:
167 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
168 * 0008 34 00 record is 52 bytes long
169 * 000a 0b 00 text is 11 bytes long
170 * 000c 1f 00 dictionary is 23 bytes long
171 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
172 * 0010 69 74 27 73 20 61 20 6c "it's a l"
173 * 69 6e 65 "ine"
174 * 001b 44 45 56 49 43 "DEVIC"
175 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
176 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
177 * 67 "g"
178 * 0032 00 00 00 padding to next message header
179 *
180 * The 'struct log' buffer header must never be directly exported to
181 * userspace, it is a kernel-private implementation detail that might
182 * need to be changed in the future, when the requirements change.
183 *
184 * /dev/kmsg exports the structured data in the following line format:
185 * "level,sequnum,timestamp;<message text>\n"
186 *
187 * The optional key/value pairs are attached as continuation lines starting
188 * with a space character and terminated by a newline. All possible
189 * non-prinatable characters are escaped in the "\xff" notation.
190 *
191 * Users of the export format should ignore possible additional values
192 * separated by ',', and find the message after the ';' character.
193 */
194
195 enum log_flags {
196 LOG_NOCONS = 1, /* already flushed, do not print to console */
197 LOG_NEWLINE = 2, /* text ended with a newline */
198 LOG_PREFIX = 4, /* text started with a prefix */
199 LOG_CONT = 8, /* text is a fragment of a continuation line */
200 };
201
202 struct log {
203 u64 ts_nsec; /* timestamp in nanoseconds */
204 u16 len; /* length of entire record */
205 u16 text_len; /* length of text buffer */
206 u16 dict_len; /* length of dictionary buffer */
207 u8 facility; /* syslog facility */
208 u8 flags:5; /* internal record flags */
209 u8 level:3; /* syslog level */
210 };
211
212 /*
213 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
214 * used in interesting ways to provide interlocking in console_unlock();
215 */
216 static DEFINE_RAW_SPINLOCK(logbuf_lock);
217
218 #ifdef CONFIG_PRINTK
219 DECLARE_WAIT_QUEUE_HEAD(log_wait);
220 /* the next printk record to read by syslog(READ) or /proc/kmsg */
221 static u64 syslog_seq;
222 static u32 syslog_idx;
223 static enum log_flags syslog_prev;
224 static size_t syslog_partial;
225
226 /* index and sequence number of the first record stored in the buffer */
227 static u64 log_first_seq;
228 static u32 log_first_idx;
229
230 /* index and sequence number of the next record to store in the buffer */
231 static u64 log_next_seq;
232 static u32 log_next_idx;
233
234 /* the next printk record to write to the console */
235 static u64 console_seq;
236 static u32 console_idx;
237 static enum log_flags console_prev;
238
239 /* the next printk record to read after the last 'clear' command */
240 static u64 clear_seq;
241 static u32 clear_idx;
242
243 #define PREFIX_MAX 32
244 #define LOG_LINE_MAX 1024 - PREFIX_MAX
245
246 /* record buffer */
247 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
248 #define LOG_ALIGN 4
249 #else
250 #define LOG_ALIGN __alignof__(struct log)
251 #endif
252 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
253 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
254 static char *log_buf = __log_buf;
255 static u32 log_buf_len = __LOG_BUF_LEN;
256
257 /* cpu currently holding logbuf_lock */
258 static volatile unsigned int logbuf_cpu = UINT_MAX;
259
260 /* human readable text of the record */
261 static char *log_text(const struct log *msg)
262 {
263 return (char *)msg + sizeof(struct log);
264 }
265
266 /* optional key/value pair dictionary attached to the record */
267 static char *log_dict(const struct log *msg)
268 {
269 return (char *)msg + sizeof(struct log) + msg->text_len;
270 }
271
272 /* get record by index; idx must point to valid msg */
273 static struct log *log_from_idx(u32 idx)
274 {
275 struct log *msg = (struct log *)(log_buf + idx);
276
277 /*
278 * A length == 0 record is the end of buffer marker. Wrap around and
279 * read the message at the start of the buffer.
280 */
281 if (!msg->len)
282 return (struct log *)log_buf;
283 return msg;
284 }
285
286 /* get next record; idx must point to valid msg */
287 static u32 log_next(u32 idx)
288 {
289 struct log *msg = (struct log *)(log_buf + idx);
290
291 /* length == 0 indicates the end of the buffer; wrap */
292 /*
293 * A length == 0 record is the end of buffer marker. Wrap around and
294 * read the message at the start of the buffer as *this* one, and
295 * return the one after that.
296 */
297 if (!msg->len) {
298 msg = (struct log *)log_buf;
299 return msg->len;
300 }
301 return idx + msg->len;
302 }
303
304 /* insert record into the buffer, discard old ones, update heads */
305 static void log_store(int facility, int level,
306 enum log_flags flags, u64 ts_nsec,
307 const char *dict, u16 dict_len,
308 const char *text, u16 text_len)
309 {
310 struct log *msg;
311 u32 size, pad_len;
312
313 /* number of '\0' padding bytes to next message */
314 size = sizeof(struct log) + text_len + dict_len;
315 pad_len = (-size) & (LOG_ALIGN - 1);
316 size += pad_len;
317
318 while (log_first_seq < log_next_seq) {
319 u32 free;
320
321 if (log_next_idx > log_first_idx)
322 free = max(log_buf_len - log_next_idx, log_first_idx);
323 else
324 free = log_first_idx - log_next_idx;
325
326 if (free > size + sizeof(struct log))
327 break;
328
329 /* drop old messages until we have enough contiuous space */
330 log_first_idx = log_next(log_first_idx);
331 log_first_seq++;
332 }
333
334 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
335 /*
336 * This message + an additional empty header does not fit
337 * at the end of the buffer. Add an empty header with len == 0
338 * to signify a wrap around.
339 */
340 memset(log_buf + log_next_idx, 0, sizeof(struct log));
341 log_next_idx = 0;
342 }
343
344 /* fill message */
345 msg = (struct log *)(log_buf + log_next_idx);
346 memcpy(log_text(msg), text, text_len);
347 msg->text_len = text_len;
348 memcpy(log_dict(msg), dict, dict_len);
349 msg->dict_len = dict_len;
350 msg->facility = facility;
351 msg->level = level & 7;
352 msg->flags = flags & 0x1f;
353 if (ts_nsec > 0)
354 msg->ts_nsec = ts_nsec;
355 else
356 msg->ts_nsec = local_clock();
357 memset(log_dict(msg) + dict_len, 0, pad_len);
358 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
359
360 /* insert message */
361 log_next_idx += msg->len;
362 log_next_seq++;
363 }
364
365 /* /dev/kmsg - userspace message inject/listen interface */
366 struct devkmsg_user {
367 u64 seq;
368 u32 idx;
369 enum log_flags prev;
370 struct mutex lock;
371 char buf[8192];
372 };
373
374 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
375 unsigned long count, loff_t pos)
376 {
377 char *buf, *line;
378 int i;
379 int level = default_message_loglevel;
380 int facility = 1; /* LOG_USER */
381 size_t len = iov_length(iv, count);
382 ssize_t ret = len;
383
384 if (len > LOG_LINE_MAX)
385 return -EINVAL;
386 buf = kmalloc(len+1, GFP_KERNEL);
387 if (buf == NULL)
388 return -ENOMEM;
389
390 line = buf;
391 for (i = 0; i < count; i++) {
392 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
393 ret = -EFAULT;
394 goto out;
395 }
396 line += iv[i].iov_len;
397 }
398
399 /*
400 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
401 * the decimal value represents 32bit, the lower 3 bit are the log
402 * level, the rest are the log facility.
403 *
404 * If no prefix or no userspace facility is specified, we
405 * enforce LOG_USER, to be able to reliably distinguish
406 * kernel-generated messages from userspace-injected ones.
407 */
408 line = buf;
409 if (line[0] == '<') {
410 char *endp = NULL;
411
412 i = simple_strtoul(line+1, &endp, 10);
413 if (endp && endp[0] == '>') {
414 level = i & 7;
415 if (i >> 3)
416 facility = i >> 3;
417 endp++;
418 len -= endp - line;
419 line = endp;
420 }
421 }
422 line[len] = '\0';
423
424 printk_emit(facility, level, NULL, 0, "%s", line);
425 out:
426 kfree(buf);
427 return ret;
428 }
429
430 static ssize_t devkmsg_read(struct file *file, char __user *buf,
431 size_t count, loff_t *ppos)
432 {
433 struct devkmsg_user *user = file->private_data;
434 struct log *msg;
435 u64 ts_usec;
436 size_t i;
437 char cont = '-';
438 size_t len;
439 ssize_t ret;
440
441 if (!user)
442 return -EBADF;
443
444 ret = mutex_lock_interruptible(&user->lock);
445 if (ret)
446 return ret;
447 raw_spin_lock_irq(&logbuf_lock);
448 while (user->seq == log_next_seq) {
449 if (file->f_flags & O_NONBLOCK) {
450 ret = -EAGAIN;
451 raw_spin_unlock_irq(&logbuf_lock);
452 goto out;
453 }
454
455 raw_spin_unlock_irq(&logbuf_lock);
456 ret = wait_event_interruptible(log_wait,
457 user->seq != log_next_seq);
458 if (ret)
459 goto out;
460 raw_spin_lock_irq(&logbuf_lock);
461 }
462
463 if (user->seq < log_first_seq) {
464 /* our last seen message is gone, return error and reset */
465 user->idx = log_first_idx;
466 user->seq = log_first_seq;
467 ret = -EPIPE;
468 raw_spin_unlock_irq(&logbuf_lock);
469 goto out;
470 }
471
472 msg = log_from_idx(user->idx);
473 ts_usec = msg->ts_nsec;
474 do_div(ts_usec, 1000);
475
476 /*
477 * If we couldn't merge continuation line fragments during the print,
478 * export the stored flags to allow an optional external merge of the
479 * records. Merging the records isn't always neccessarily correct, like
480 * when we hit a race during printing. In most cases though, it produces
481 * better readable output. 'c' in the record flags mark the first
482 * fragment of a line, '+' the following.
483 */
484 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
485 cont = 'c';
486 else if ((msg->flags & LOG_CONT) ||
487 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
488 cont = '+';
489
490 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
491 (msg->facility << 3) | msg->level,
492 user->seq, ts_usec, cont);
493 user->prev = msg->flags;
494
495 /* escape non-printable characters */
496 for (i = 0; i < msg->text_len; i++) {
497 unsigned char c = log_text(msg)[i];
498
499 if (c < ' ' || c >= 127 || c == '\\')
500 len += sprintf(user->buf + len, "\\x%02x", c);
501 else
502 user->buf[len++] = c;
503 }
504 user->buf[len++] = '\n';
505
506 if (msg->dict_len) {
507 bool line = true;
508
509 for (i = 0; i < msg->dict_len; i++) {
510 unsigned char c = log_dict(msg)[i];
511
512 if (line) {
513 user->buf[len++] = ' ';
514 line = false;
515 }
516
517 if (c == '\0') {
518 user->buf[len++] = '\n';
519 line = true;
520 continue;
521 }
522
523 if (c < ' ' || c >= 127 || c == '\\') {
524 len += sprintf(user->buf + len, "\\x%02x", c);
525 continue;
526 }
527
528 user->buf[len++] = c;
529 }
530 user->buf[len++] = '\n';
531 }
532
533 user->idx = log_next(user->idx);
534 user->seq++;
535 raw_spin_unlock_irq(&logbuf_lock);
536
537 if (len > count) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 if (copy_to_user(buf, user->buf, len)) {
543 ret = -EFAULT;
544 goto out;
545 }
546 ret = len;
547 out:
548 mutex_unlock(&user->lock);
549 return ret;
550 }
551
552 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
553 {
554 struct devkmsg_user *user = file->private_data;
555 loff_t ret = 0;
556
557 if (!user)
558 return -EBADF;
559 if (offset)
560 return -ESPIPE;
561
562 raw_spin_lock_irq(&logbuf_lock);
563 switch (whence) {
564 case SEEK_SET:
565 /* the first record */
566 user->idx = log_first_idx;
567 user->seq = log_first_seq;
568 break;
569 case SEEK_DATA:
570 /*
571 * The first record after the last SYSLOG_ACTION_CLEAR,
572 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
573 * changes no global state, and does not clear anything.
574 */
575 user->idx = clear_idx;
576 user->seq = clear_seq;
577 break;
578 case SEEK_END:
579 /* after the last record */
580 user->idx = log_next_idx;
581 user->seq = log_next_seq;
582 break;
583 default:
584 ret = -EINVAL;
585 }
586 raw_spin_unlock_irq(&logbuf_lock);
587 return ret;
588 }
589
590 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
591 {
592 struct devkmsg_user *user = file->private_data;
593 int ret = 0;
594
595 if (!user)
596 return POLLERR|POLLNVAL;
597
598 poll_wait(file, &log_wait, wait);
599
600 raw_spin_lock_irq(&logbuf_lock);
601 if (user->seq < log_next_seq) {
602 /* return error when data has vanished underneath us */
603 if (user->seq < log_first_seq)
604 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
605 else
606 ret = POLLIN|POLLRDNORM;
607 }
608 raw_spin_unlock_irq(&logbuf_lock);
609
610 return ret;
611 }
612
613 static int devkmsg_open(struct inode *inode, struct file *file)
614 {
615 struct devkmsg_user *user;
616 int err;
617
618 /* write-only does not need any file context */
619 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
620 return 0;
621
622 err = security_syslog(SYSLOG_ACTION_READ_ALL);
623 if (err)
624 return err;
625
626 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
627 if (!user)
628 return -ENOMEM;
629
630 mutex_init(&user->lock);
631
632 raw_spin_lock_irq(&logbuf_lock);
633 user->idx = log_first_idx;
634 user->seq = log_first_seq;
635 raw_spin_unlock_irq(&logbuf_lock);
636
637 file->private_data = user;
638 return 0;
639 }
640
641 static int devkmsg_release(struct inode *inode, struct file *file)
642 {
643 struct devkmsg_user *user = file->private_data;
644
645 if (!user)
646 return 0;
647
648 mutex_destroy(&user->lock);
649 kfree(user);
650 return 0;
651 }
652
653 const struct file_operations kmsg_fops = {
654 .open = devkmsg_open,
655 .read = devkmsg_read,
656 .aio_write = devkmsg_writev,
657 .llseek = devkmsg_llseek,
658 .poll = devkmsg_poll,
659 .release = devkmsg_release,
660 };
661
662 #ifdef CONFIG_KEXEC
663 /*
664 * This appends the listed symbols to /proc/vmcoreinfo
665 *
666 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
667 * obtain access to symbols that are otherwise very difficult to locate. These
668 * symbols are specifically used so that utilities can access and extract the
669 * dmesg log from a vmcore file after a crash.
670 */
671 void log_buf_kexec_setup(void)
672 {
673 VMCOREINFO_SYMBOL(log_buf);
674 VMCOREINFO_SYMBOL(log_buf_len);
675 VMCOREINFO_SYMBOL(log_first_idx);
676 VMCOREINFO_SYMBOL(log_next_idx);
677 /*
678 * Export struct log size and field offsets. User space tools can
679 * parse it and detect any changes to structure down the line.
680 */
681 VMCOREINFO_STRUCT_SIZE(log);
682 VMCOREINFO_OFFSET(log, ts_nsec);
683 VMCOREINFO_OFFSET(log, len);
684 VMCOREINFO_OFFSET(log, text_len);
685 VMCOREINFO_OFFSET(log, dict_len);
686 }
687 #endif
688
689 /* requested log_buf_len from kernel cmdline */
690 static unsigned long __initdata new_log_buf_len;
691
692 /* save requested log_buf_len since it's too early to process it */
693 static int __init log_buf_len_setup(char *str)
694 {
695 unsigned size = memparse(str, &str);
696
697 if (size)
698 size = roundup_pow_of_two(size);
699 if (size > log_buf_len)
700 new_log_buf_len = size;
701
702 return 0;
703 }
704 early_param("log_buf_len", log_buf_len_setup);
705
706 void __init setup_log_buf(int early)
707 {
708 unsigned long flags;
709 char *new_log_buf;
710 int free;
711
712 if (!new_log_buf_len)
713 return;
714
715 if (early) {
716 unsigned long mem;
717
718 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
719 if (!mem)
720 return;
721 new_log_buf = __va(mem);
722 } else {
723 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
724 }
725
726 if (unlikely(!new_log_buf)) {
727 pr_err("log_buf_len: %ld bytes not available\n",
728 new_log_buf_len);
729 return;
730 }
731
732 raw_spin_lock_irqsave(&logbuf_lock, flags);
733 log_buf_len = new_log_buf_len;
734 log_buf = new_log_buf;
735 new_log_buf_len = 0;
736 free = __LOG_BUF_LEN - log_next_idx;
737 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
738 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
739
740 pr_info("log_buf_len: %d\n", log_buf_len);
741 pr_info("early log buf free: %d(%d%%)\n",
742 free, (free * 100) / __LOG_BUF_LEN);
743 }
744
745 static bool __read_mostly ignore_loglevel;
746
747 static int __init ignore_loglevel_setup(char *str)
748 {
749 ignore_loglevel = 1;
750 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
751
752 return 0;
753 }
754
755 early_param("ignore_loglevel", ignore_loglevel_setup);
756 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
757 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
758 "print all kernel messages to the console.");
759
760 #ifdef CONFIG_BOOT_PRINTK_DELAY
761
762 static int boot_delay; /* msecs delay after each printk during bootup */
763 static unsigned long long loops_per_msec; /* based on boot_delay */
764
765 static int __init boot_delay_setup(char *str)
766 {
767 unsigned long lpj;
768
769 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
770 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
771
772 get_option(&str, &boot_delay);
773 if (boot_delay > 10 * 1000)
774 boot_delay = 0;
775
776 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
777 "HZ: %d, loops_per_msec: %llu\n",
778 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
779 return 1;
780 }
781 __setup("boot_delay=", boot_delay_setup);
782
783 static void boot_delay_msec(int level)
784 {
785 unsigned long long k;
786 unsigned long timeout;
787
788 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
789 || (level >= console_loglevel && !ignore_loglevel)) {
790 return;
791 }
792
793 k = (unsigned long long)loops_per_msec * boot_delay;
794
795 timeout = jiffies + msecs_to_jiffies(boot_delay);
796 while (k) {
797 k--;
798 cpu_relax();
799 /*
800 * use (volatile) jiffies to prevent
801 * compiler reduction; loop termination via jiffies
802 * is secondary and may or may not happen.
803 */
804 if (time_after(jiffies, timeout))
805 break;
806 touch_nmi_watchdog();
807 }
808 }
809 #else
810 static inline void boot_delay_msec(int level)
811 {
812 }
813 #endif
814
815 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
816 int dmesg_restrict = 1;
817 #else
818 int dmesg_restrict;
819 #endif
820
821 static int syslog_action_restricted(int type)
822 {
823 if (dmesg_restrict)
824 return 1;
825 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
826 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
827 }
828
829 static int check_syslog_permissions(int type, bool from_file)
830 {
831 /*
832 * If this is from /proc/kmsg and we've already opened it, then we've
833 * already done the capabilities checks at open time.
834 */
835 if (from_file && type != SYSLOG_ACTION_OPEN)
836 return 0;
837
838 if (syslog_action_restricted(type)) {
839 if (capable(CAP_SYSLOG))
840 return 0;
841 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
842 if (capable(CAP_SYS_ADMIN)) {
843 printk_once(KERN_WARNING "%s (%d): "
844 "Attempt to access syslog with CAP_SYS_ADMIN "
845 "but no CAP_SYSLOG (deprecated).\n",
846 current->comm, task_pid_nr(current));
847 return 0;
848 }
849 return -EPERM;
850 }
851 return 0;
852 }
853
854 #if defined(CONFIG_PRINTK_TIME)
855 static bool printk_time = 1;
856 #else
857 static bool printk_time;
858 #endif
859 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
860
861 static size_t print_time(u64 ts, char *buf)
862 {
863 unsigned long rem_nsec;
864
865 if (!printk_time)
866 return 0;
867
868 rem_nsec = do_div(ts, 1000000000);
869
870 if (!buf)
871 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
872
873 return sprintf(buf, "[%5lu.%06lu] ",
874 (unsigned long)ts, rem_nsec / 1000);
875 }
876
877 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
878 {
879 size_t len = 0;
880 unsigned int prefix = (msg->facility << 3) | msg->level;
881
882 if (syslog) {
883 if (buf) {
884 len += sprintf(buf, "<%u>", prefix);
885 } else {
886 len += 3;
887 if (prefix > 999)
888 len += 3;
889 else if (prefix > 99)
890 len += 2;
891 else if (prefix > 9)
892 len++;
893 }
894 }
895
896 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
897 return len;
898 }
899
900 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
901 bool syslog, char *buf, size_t size)
902 {
903 const char *text = log_text(msg);
904 size_t text_size = msg->text_len;
905 bool prefix = true;
906 bool newline = true;
907 size_t len = 0;
908
909 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
910 prefix = false;
911
912 if (msg->flags & LOG_CONT) {
913 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
914 prefix = false;
915
916 if (!(msg->flags & LOG_NEWLINE))
917 newline = false;
918 }
919
920 do {
921 const char *next = memchr(text, '\n', text_size);
922 size_t text_len;
923
924 if (next) {
925 text_len = next - text;
926 next++;
927 text_size -= next - text;
928 } else {
929 text_len = text_size;
930 }
931
932 if (buf) {
933 if (print_prefix(msg, syslog, NULL) +
934 text_len + 1 >= size - len)
935 break;
936
937 if (prefix)
938 len += print_prefix(msg, syslog, buf + len);
939 memcpy(buf + len, text, text_len);
940 len += text_len;
941 if (next || newline)
942 buf[len++] = '\n';
943 } else {
944 /* SYSLOG_ACTION_* buffer size only calculation */
945 if (prefix)
946 len += print_prefix(msg, syslog, NULL);
947 len += text_len;
948 if (next || newline)
949 len++;
950 }
951
952 prefix = true;
953 text = next;
954 } while (text);
955
956 return len;
957 }
958
959 static int syslog_print(char __user *buf, int size)
960 {
961 char *text;
962 struct log *msg;
963 int len = 0;
964
965 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
966 if (!text)
967 return -ENOMEM;
968
969 while (size > 0) {
970 size_t n;
971 size_t skip;
972
973 raw_spin_lock_irq(&logbuf_lock);
974 if (syslog_seq < log_first_seq) {
975 /* messages are gone, move to first one */
976 syslog_seq = log_first_seq;
977 syslog_idx = log_first_idx;
978 syslog_prev = 0;
979 syslog_partial = 0;
980 }
981 if (syslog_seq == log_next_seq) {
982 raw_spin_unlock_irq(&logbuf_lock);
983 break;
984 }
985
986 skip = syslog_partial;
987 msg = log_from_idx(syslog_idx);
988 n = msg_print_text(msg, syslog_prev, true, text,
989 LOG_LINE_MAX + PREFIX_MAX);
990 if (n - syslog_partial <= size) {
991 /* message fits into buffer, move forward */
992 syslog_idx = log_next(syslog_idx);
993 syslog_seq++;
994 syslog_prev = msg->flags;
995 n -= syslog_partial;
996 syslog_partial = 0;
997 } else if (!len){
998 /* partial read(), remember position */
999 n = size;
1000 syslog_partial += n;
1001 } else
1002 n = 0;
1003 raw_spin_unlock_irq(&logbuf_lock);
1004
1005 if (!n)
1006 break;
1007
1008 if (copy_to_user(buf, text + skip, n)) {
1009 if (!len)
1010 len = -EFAULT;
1011 break;
1012 }
1013
1014 len += n;
1015 size -= n;
1016 buf += n;
1017 }
1018
1019 kfree(text);
1020 return len;
1021 }
1022
1023 static int syslog_print_all(char __user *buf, int size, bool clear)
1024 {
1025 char *text;
1026 int len = 0;
1027
1028 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1029 if (!text)
1030 return -ENOMEM;
1031
1032 raw_spin_lock_irq(&logbuf_lock);
1033 if (buf) {
1034 u64 next_seq;
1035 u64 seq;
1036 u32 idx;
1037 enum log_flags prev;
1038
1039 if (clear_seq < log_first_seq) {
1040 /* messages are gone, move to first available one */
1041 clear_seq = log_first_seq;
1042 clear_idx = log_first_idx;
1043 }
1044
1045 /*
1046 * Find first record that fits, including all following records,
1047 * into the user-provided buffer for this dump.
1048 */
1049 seq = clear_seq;
1050 idx = clear_idx;
1051 prev = 0;
1052 while (seq < log_next_seq) {
1053 struct log *msg = log_from_idx(idx);
1054
1055 len += msg_print_text(msg, prev, true, NULL, 0);
1056 prev = msg->flags;
1057 idx = log_next(idx);
1058 seq++;
1059 }
1060
1061 /* move first record forward until length fits into the buffer */
1062 seq = clear_seq;
1063 idx = clear_idx;
1064 prev = 0;
1065 while (len > size && seq < log_next_seq) {
1066 struct log *msg = log_from_idx(idx);
1067
1068 len -= msg_print_text(msg, prev, true, NULL, 0);
1069 prev = msg->flags;
1070 idx = log_next(idx);
1071 seq++;
1072 }
1073
1074 /* last message fitting into this dump */
1075 next_seq = log_next_seq;
1076
1077 len = 0;
1078 prev = 0;
1079 while (len >= 0 && seq < next_seq) {
1080 struct log *msg = log_from_idx(idx);
1081 int textlen;
1082
1083 textlen = msg_print_text(msg, prev, true, text,
1084 LOG_LINE_MAX + PREFIX_MAX);
1085 if (textlen < 0) {
1086 len = textlen;
1087 break;
1088 }
1089 idx = log_next(idx);
1090 seq++;
1091 prev = msg->flags;
1092
1093 raw_spin_unlock_irq(&logbuf_lock);
1094 if (copy_to_user(buf + len, text, textlen))
1095 len = -EFAULT;
1096 else
1097 len += textlen;
1098 raw_spin_lock_irq(&logbuf_lock);
1099
1100 if (seq < log_first_seq) {
1101 /* messages are gone, move to next one */
1102 seq = log_first_seq;
1103 idx = log_first_idx;
1104 prev = 0;
1105 }
1106 }
1107 }
1108
1109 if (clear) {
1110 clear_seq = log_next_seq;
1111 clear_idx = log_next_idx;
1112 }
1113 raw_spin_unlock_irq(&logbuf_lock);
1114
1115 kfree(text);
1116 return len;
1117 }
1118
1119 int do_syslog(int type, char __user *buf, int len, bool from_file)
1120 {
1121 bool clear = false;
1122 static int saved_console_loglevel = -1;
1123 int error;
1124
1125 error = check_syslog_permissions(type, from_file);
1126 if (error)
1127 goto out;
1128
1129 error = security_syslog(type);
1130 if (error)
1131 return error;
1132
1133 switch (type) {
1134 case SYSLOG_ACTION_CLOSE: /* Close log */
1135 break;
1136 case SYSLOG_ACTION_OPEN: /* Open log */
1137 break;
1138 case SYSLOG_ACTION_READ: /* Read from log */
1139 error = -EINVAL;
1140 if (!buf || len < 0)
1141 goto out;
1142 error = 0;
1143 if (!len)
1144 goto out;
1145 if (!access_ok(VERIFY_WRITE, buf, len)) {
1146 error = -EFAULT;
1147 goto out;
1148 }
1149 error = wait_event_interruptible(log_wait,
1150 syslog_seq != log_next_seq);
1151 if (error)
1152 goto out;
1153 error = syslog_print(buf, len);
1154 break;
1155 /* Read/clear last kernel messages */
1156 case SYSLOG_ACTION_READ_CLEAR:
1157 clear = true;
1158 /* FALL THRU */
1159 /* Read last kernel messages */
1160 case SYSLOG_ACTION_READ_ALL:
1161 error = -EINVAL;
1162 if (!buf || len < 0)
1163 goto out;
1164 error = 0;
1165 if (!len)
1166 goto out;
1167 if (!access_ok(VERIFY_WRITE, buf, len)) {
1168 error = -EFAULT;
1169 goto out;
1170 }
1171 error = syslog_print_all(buf, len, clear);
1172 break;
1173 /* Clear ring buffer */
1174 case SYSLOG_ACTION_CLEAR:
1175 syslog_print_all(NULL, 0, true);
1176 break;
1177 /* Disable logging to console */
1178 case SYSLOG_ACTION_CONSOLE_OFF:
1179 if (saved_console_loglevel == -1)
1180 saved_console_loglevel = console_loglevel;
1181 console_loglevel = minimum_console_loglevel;
1182 break;
1183 /* Enable logging to console */
1184 case SYSLOG_ACTION_CONSOLE_ON:
1185 if (saved_console_loglevel != -1) {
1186 console_loglevel = saved_console_loglevel;
1187 saved_console_loglevel = -1;
1188 }
1189 break;
1190 /* Set level of messages printed to console */
1191 case SYSLOG_ACTION_CONSOLE_LEVEL:
1192 error = -EINVAL;
1193 if (len < 1 || len > 8)
1194 goto out;
1195 if (len < minimum_console_loglevel)
1196 len = minimum_console_loglevel;
1197 console_loglevel = len;
1198 /* Implicitly re-enable logging to console */
1199 saved_console_loglevel = -1;
1200 error = 0;
1201 break;
1202 /* Number of chars in the log buffer */
1203 case SYSLOG_ACTION_SIZE_UNREAD:
1204 raw_spin_lock_irq(&logbuf_lock);
1205 if (syslog_seq < log_first_seq) {
1206 /* messages are gone, move to first one */
1207 syslog_seq = log_first_seq;
1208 syslog_idx = log_first_idx;
1209 syslog_prev = 0;
1210 syslog_partial = 0;
1211 }
1212 if (from_file) {
1213 /*
1214 * Short-cut for poll(/"proc/kmsg") which simply checks
1215 * for pending data, not the size; return the count of
1216 * records, not the length.
1217 */
1218 error = log_next_idx - syslog_idx;
1219 } else {
1220 u64 seq = syslog_seq;
1221 u32 idx = syslog_idx;
1222 enum log_flags prev = syslog_prev;
1223
1224 error = 0;
1225 while (seq < log_next_seq) {
1226 struct log *msg = log_from_idx(idx);
1227
1228 error += msg_print_text(msg, prev, true, NULL, 0);
1229 idx = log_next(idx);
1230 seq++;
1231 prev = msg->flags;
1232 }
1233 error -= syslog_partial;
1234 }
1235 raw_spin_unlock_irq(&logbuf_lock);
1236 break;
1237 /* Size of the log buffer */
1238 case SYSLOG_ACTION_SIZE_BUFFER:
1239 error = log_buf_len;
1240 break;
1241 default:
1242 error = -EINVAL;
1243 break;
1244 }
1245 out:
1246 return error;
1247 }
1248
1249 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1250 {
1251 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1252 }
1253
1254 /*
1255 * Call the console drivers, asking them to write out
1256 * log_buf[start] to log_buf[end - 1].
1257 * The console_lock must be held.
1258 */
1259 static void call_console_drivers(int level, const char *text, size_t len)
1260 {
1261 struct console *con;
1262
1263 trace_console(text, len);
1264
1265 if (level >= console_loglevel && !ignore_loglevel)
1266 return;
1267 if (!console_drivers)
1268 return;
1269
1270 for_each_console(con) {
1271 if (exclusive_console && con != exclusive_console)
1272 continue;
1273 if (!(con->flags & CON_ENABLED))
1274 continue;
1275 if (!con->write)
1276 continue;
1277 if (!cpu_online(smp_processor_id()) &&
1278 !(con->flags & CON_ANYTIME))
1279 continue;
1280 con->write(con, text, len);
1281 }
1282 }
1283
1284 /*
1285 * Zap console related locks when oopsing. Only zap at most once
1286 * every 10 seconds, to leave time for slow consoles to print a
1287 * full oops.
1288 */
1289 static void zap_locks(void)
1290 {
1291 static unsigned long oops_timestamp;
1292
1293 if (time_after_eq(jiffies, oops_timestamp) &&
1294 !time_after(jiffies, oops_timestamp + 30 * HZ))
1295 return;
1296
1297 oops_timestamp = jiffies;
1298
1299 debug_locks_off();
1300 /* If a crash is occurring, make sure we can't deadlock */
1301 raw_spin_lock_init(&logbuf_lock);
1302 /* And make sure that we print immediately */
1303 sema_init(&console_sem, 1);
1304 }
1305
1306 /* Check if we have any console registered that can be called early in boot. */
1307 static int have_callable_console(void)
1308 {
1309 struct console *con;
1310
1311 for_each_console(con)
1312 if (con->flags & CON_ANYTIME)
1313 return 1;
1314
1315 return 0;
1316 }
1317
1318 /*
1319 * Can we actually use the console at this time on this cpu?
1320 *
1321 * Console drivers may assume that per-cpu resources have
1322 * been allocated. So unless they're explicitly marked as
1323 * being able to cope (CON_ANYTIME) don't call them until
1324 * this CPU is officially up.
1325 */
1326 static inline int can_use_console(unsigned int cpu)
1327 {
1328 return cpu_online(cpu) || have_callable_console();
1329 }
1330
1331 /*
1332 * Try to get console ownership to actually show the kernel
1333 * messages from a 'printk'. Return true (and with the
1334 * console_lock held, and 'console_locked' set) if it
1335 * is successful, false otherwise.
1336 *
1337 * This gets called with the 'logbuf_lock' spinlock held and
1338 * interrupts disabled. It should return with 'lockbuf_lock'
1339 * released but interrupts still disabled.
1340 */
1341 static int console_trylock_for_printk(unsigned int cpu)
1342 __releases(&logbuf_lock)
1343 {
1344 int retval = 0, wake = 0;
1345
1346 if (console_trylock()) {
1347 retval = 1;
1348
1349 /*
1350 * If we can't use the console, we need to release
1351 * the console semaphore by hand to avoid flushing
1352 * the buffer. We need to hold the console semaphore
1353 * in order to do this test safely.
1354 */
1355 if (!can_use_console(cpu)) {
1356 console_locked = 0;
1357 wake = 1;
1358 retval = 0;
1359 }
1360 }
1361 logbuf_cpu = UINT_MAX;
1362 if (wake)
1363 up(&console_sem);
1364 raw_spin_unlock(&logbuf_lock);
1365 return retval;
1366 }
1367
1368 int printk_delay_msec __read_mostly;
1369
1370 static inline void printk_delay(void)
1371 {
1372 if (unlikely(printk_delay_msec)) {
1373 int m = printk_delay_msec;
1374
1375 while (m--) {
1376 mdelay(1);
1377 touch_nmi_watchdog();
1378 }
1379 }
1380 }
1381
1382 /*
1383 * Continuation lines are buffered, and not committed to the record buffer
1384 * until the line is complete, or a race forces it. The line fragments
1385 * though, are printed immediately to the consoles to ensure everything has
1386 * reached the console in case of a kernel crash.
1387 */
1388 static struct cont {
1389 char buf[LOG_LINE_MAX];
1390 size_t len; /* length == 0 means unused buffer */
1391 size_t cons; /* bytes written to console */
1392 struct task_struct *owner; /* task of first print*/
1393 u64 ts_nsec; /* time of first print */
1394 u8 level; /* log level of first message */
1395 u8 facility; /* log level of first message */
1396 enum log_flags flags; /* prefix, newline flags */
1397 bool flushed:1; /* buffer sealed and committed */
1398 } cont;
1399
1400 static void cont_flush(enum log_flags flags)
1401 {
1402 if (cont.flushed)
1403 return;
1404 if (cont.len == 0)
1405 return;
1406
1407 if (cont.cons) {
1408 /*
1409 * If a fragment of this line was directly flushed to the
1410 * console; wait for the console to pick up the rest of the
1411 * line. LOG_NOCONS suppresses a duplicated output.
1412 */
1413 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1414 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1415 cont.flags = flags;
1416 cont.flushed = true;
1417 } else {
1418 /*
1419 * If no fragment of this line ever reached the console,
1420 * just submit it to the store and free the buffer.
1421 */
1422 log_store(cont.facility, cont.level, flags, 0,
1423 NULL, 0, cont.buf, cont.len);
1424 cont.len = 0;
1425 }
1426 }
1427
1428 static bool cont_add(int facility, int level, const char *text, size_t len)
1429 {
1430 if (cont.len && cont.flushed)
1431 return false;
1432
1433 if (cont.len + len > sizeof(cont.buf)) {
1434 /* the line gets too long, split it up in separate records */
1435 cont_flush(LOG_CONT);
1436 return false;
1437 }
1438
1439 if (!cont.len) {
1440 cont.facility = facility;
1441 cont.level = level;
1442 cont.owner = current;
1443 cont.ts_nsec = local_clock();
1444 cont.flags = 0;
1445 cont.cons = 0;
1446 cont.flushed = false;
1447 }
1448
1449 memcpy(cont.buf + cont.len, text, len);
1450 cont.len += len;
1451
1452 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1453 cont_flush(LOG_CONT);
1454
1455 return true;
1456 }
1457
1458 static size_t cont_print_text(char *text, size_t size)
1459 {
1460 size_t textlen = 0;
1461 size_t len;
1462
1463 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1464 textlen += print_time(cont.ts_nsec, text);
1465 size -= textlen;
1466 }
1467
1468 len = cont.len - cont.cons;
1469 if (len > 0) {
1470 if (len+1 > size)
1471 len = size-1;
1472 memcpy(text + textlen, cont.buf + cont.cons, len);
1473 textlen += len;
1474 cont.cons = cont.len;
1475 }
1476
1477 if (cont.flushed) {
1478 if (cont.flags & LOG_NEWLINE)
1479 text[textlen++] = '\n';
1480 /* got everything, release buffer */
1481 cont.len = 0;
1482 }
1483 return textlen;
1484 }
1485
1486 asmlinkage int vprintk_emit(int facility, int level,
1487 const char *dict, size_t dictlen,
1488 const char *fmt, va_list args)
1489 {
1490 static int recursion_bug;
1491 static char textbuf[LOG_LINE_MAX];
1492 char *text = textbuf;
1493 size_t text_len;
1494 enum log_flags lflags = 0;
1495 unsigned long flags;
1496 int this_cpu;
1497 int printed_len = 0;
1498
1499 boot_delay_msec(level);
1500 printk_delay();
1501
1502 /* This stops the holder of console_sem just where we want him */
1503 local_irq_save(flags);
1504 this_cpu = smp_processor_id();
1505
1506 /*
1507 * Ouch, printk recursed into itself!
1508 */
1509 if (unlikely(logbuf_cpu == this_cpu)) {
1510 /*
1511 * If a crash is occurring during printk() on this CPU,
1512 * then try to get the crash message out but make sure
1513 * we can't deadlock. Otherwise just return to avoid the
1514 * recursion and return - but flag the recursion so that
1515 * it can be printed at the next appropriate moment:
1516 */
1517 if (!oops_in_progress && !lockdep_recursing(current)) {
1518 recursion_bug = 1;
1519 goto out_restore_irqs;
1520 }
1521 zap_locks();
1522 }
1523
1524 lockdep_off();
1525 raw_spin_lock(&logbuf_lock);
1526 logbuf_cpu = this_cpu;
1527
1528 if (recursion_bug) {
1529 static const char recursion_msg[] =
1530 "BUG: recent printk recursion!";
1531
1532 recursion_bug = 0;
1533 printed_len += strlen(recursion_msg);
1534 /* emit KERN_CRIT message */
1535 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1536 NULL, 0, recursion_msg, printed_len);
1537 }
1538
1539 /*
1540 * The printf needs to come first; we need the syslog
1541 * prefix which might be passed-in as a parameter.
1542 */
1543 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1544
1545 /* mark and strip a trailing newline */
1546 if (text_len && text[text_len-1] == '\n') {
1547 text_len--;
1548 lflags |= LOG_NEWLINE;
1549 }
1550
1551 /* strip kernel syslog prefix and extract log level or control flags */
1552 if (facility == 0) {
1553 int kern_level = printk_get_level(text);
1554
1555 if (kern_level) {
1556 const char *end_of_header = printk_skip_level(text);
1557 switch (kern_level) {
1558 case '0' ... '7':
1559 if (level == -1)
1560 level = kern_level - '0';
1561 case 'd': /* KERN_DEFAULT */
1562 lflags |= LOG_PREFIX;
1563 case 'c': /* KERN_CONT */
1564 break;
1565 }
1566 text_len -= end_of_header - text;
1567 text = (char *)end_of_header;
1568 }
1569 }
1570
1571 if (level == -1)
1572 level = default_message_loglevel;
1573
1574 if (dict)
1575 lflags |= LOG_PREFIX|LOG_NEWLINE;
1576
1577 if (!(lflags & LOG_NEWLINE)) {
1578 /*
1579 * Flush the conflicting buffer. An earlier newline was missing,
1580 * or another task also prints continuation lines.
1581 */
1582 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1583 cont_flush(LOG_NEWLINE);
1584
1585 /* buffer line if possible, otherwise store it right away */
1586 if (!cont_add(facility, level, text, text_len))
1587 log_store(facility, level, lflags | LOG_CONT, 0,
1588 dict, dictlen, text, text_len);
1589 } else {
1590 bool stored = false;
1591
1592 /*
1593 * If an earlier newline was missing and it was the same task,
1594 * either merge it with the current buffer and flush, or if
1595 * there was a race with interrupts (prefix == true) then just
1596 * flush it out and store this line separately.
1597 */
1598 if (cont.len && cont.owner == current) {
1599 if (!(lflags & LOG_PREFIX))
1600 stored = cont_add(facility, level, text, text_len);
1601 cont_flush(LOG_NEWLINE);
1602 }
1603
1604 if (!stored)
1605 log_store(facility, level, lflags, 0,
1606 dict, dictlen, text, text_len);
1607 }
1608 printed_len += text_len;
1609
1610 /*
1611 * Try to acquire and then immediately release the console semaphore.
1612 * The release will print out buffers and wake up /dev/kmsg and syslog()
1613 * users.
1614 *
1615 * The console_trylock_for_printk() function will release 'logbuf_lock'
1616 * regardless of whether it actually gets the console semaphore or not.
1617 */
1618 if (console_trylock_for_printk(this_cpu))
1619 console_unlock();
1620
1621 lockdep_on();
1622 out_restore_irqs:
1623 local_irq_restore(flags);
1624
1625 return printed_len;
1626 }
1627 EXPORT_SYMBOL(vprintk_emit);
1628
1629 asmlinkage int vprintk(const char *fmt, va_list args)
1630 {
1631 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1632 }
1633 EXPORT_SYMBOL(vprintk);
1634
1635 asmlinkage int printk_emit(int facility, int level,
1636 const char *dict, size_t dictlen,
1637 const char *fmt, ...)
1638 {
1639 va_list args;
1640 int r;
1641
1642 va_start(args, fmt);
1643 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1644 va_end(args);
1645
1646 return r;
1647 }
1648 EXPORT_SYMBOL(printk_emit);
1649
1650 /**
1651 * printk - print a kernel message
1652 * @fmt: format string
1653 *
1654 * This is printk(). It can be called from any context. We want it to work.
1655 *
1656 * We try to grab the console_lock. If we succeed, it's easy - we log the
1657 * output and call the console drivers. If we fail to get the semaphore, we
1658 * place the output into the log buffer and return. The current holder of
1659 * the console_sem will notice the new output in console_unlock(); and will
1660 * send it to the consoles before releasing the lock.
1661 *
1662 * One effect of this deferred printing is that code which calls printk() and
1663 * then changes console_loglevel may break. This is because console_loglevel
1664 * is inspected when the actual printing occurs.
1665 *
1666 * See also:
1667 * printf(3)
1668 *
1669 * See the vsnprintf() documentation for format string extensions over C99.
1670 */
1671 asmlinkage int printk(const char *fmt, ...)
1672 {
1673 va_list args;
1674 int r;
1675
1676 #ifdef CONFIG_KGDB_KDB
1677 if (unlikely(kdb_trap_printk)) {
1678 va_start(args, fmt);
1679 r = vkdb_printf(fmt, args);
1680 va_end(args);
1681 return r;
1682 }
1683 #endif
1684 va_start(args, fmt);
1685 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1686 va_end(args);
1687
1688 return r;
1689 }
1690 EXPORT_SYMBOL(printk);
1691
1692 #else /* CONFIG_PRINTK */
1693
1694 #define LOG_LINE_MAX 0
1695 #define PREFIX_MAX 0
1696 #define LOG_LINE_MAX 0
1697 static u64 syslog_seq;
1698 static u32 syslog_idx;
1699 static u64 console_seq;
1700 static u32 console_idx;
1701 static enum log_flags syslog_prev;
1702 static u64 log_first_seq;
1703 static u32 log_first_idx;
1704 static u64 log_next_seq;
1705 static enum log_flags console_prev;
1706 static struct cont {
1707 size_t len;
1708 size_t cons;
1709 u8 level;
1710 bool flushed:1;
1711 } cont;
1712 static struct log *log_from_idx(u32 idx) { return NULL; }
1713 static u32 log_next(u32 idx) { return 0; }
1714 static void call_console_drivers(int level, const char *text, size_t len) {}
1715 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
1716 bool syslog, char *buf, size_t size) { return 0; }
1717 static size_t cont_print_text(char *text, size_t size) { return 0; }
1718
1719 #endif /* CONFIG_PRINTK */
1720
1721 #ifdef CONFIG_EARLY_PRINTK
1722 struct console *early_console;
1723
1724 void early_vprintk(const char *fmt, va_list ap)
1725 {
1726 if (early_console) {
1727 char buf[512];
1728 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1729
1730 early_console->write(early_console, buf, n);
1731 }
1732 }
1733
1734 asmlinkage void early_printk(const char *fmt, ...)
1735 {
1736 va_list ap;
1737
1738 va_start(ap, fmt);
1739 early_vprintk(fmt, ap);
1740 va_end(ap);
1741 }
1742 #endif
1743
1744 static int __add_preferred_console(char *name, int idx, char *options,
1745 char *brl_options)
1746 {
1747 struct console_cmdline *c;
1748 int i;
1749
1750 /*
1751 * See if this tty is not yet registered, and
1752 * if we have a slot free.
1753 */
1754 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1755 if (strcmp(console_cmdline[i].name, name) == 0 &&
1756 console_cmdline[i].index == idx) {
1757 if (!brl_options)
1758 selected_console = i;
1759 return 0;
1760 }
1761 if (i == MAX_CMDLINECONSOLES)
1762 return -E2BIG;
1763 if (!brl_options)
1764 selected_console = i;
1765 c = &console_cmdline[i];
1766 strlcpy(c->name, name, sizeof(c->name));
1767 c->options = options;
1768 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1769 c->brl_options = brl_options;
1770 #endif
1771 c->index = idx;
1772 return 0;
1773 }
1774 /*
1775 * Set up a list of consoles. Called from init/main.c
1776 */
1777 static int __init console_setup(char *str)
1778 {
1779 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1780 char *s, *options, *brl_options = NULL;
1781 int idx;
1782
1783 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1784 if (!memcmp(str, "brl,", 4)) {
1785 brl_options = "";
1786 str += 4;
1787 } else if (!memcmp(str, "brl=", 4)) {
1788 brl_options = str + 4;
1789 str = strchr(brl_options, ',');
1790 if (!str) {
1791 printk(KERN_ERR "need port name after brl=\n");
1792 return 1;
1793 }
1794 *(str++) = 0;
1795 }
1796 #endif
1797
1798 /*
1799 * Decode str into name, index, options.
1800 */
1801 if (str[0] >= '0' && str[0] <= '9') {
1802 strcpy(buf, "ttyS");
1803 strncpy(buf + 4, str, sizeof(buf) - 5);
1804 } else {
1805 strncpy(buf, str, sizeof(buf) - 1);
1806 }
1807 buf[sizeof(buf) - 1] = 0;
1808 if ((options = strchr(str, ',')) != NULL)
1809 *(options++) = 0;
1810 #ifdef __sparc__
1811 if (!strcmp(str, "ttya"))
1812 strcpy(buf, "ttyS0");
1813 if (!strcmp(str, "ttyb"))
1814 strcpy(buf, "ttyS1");
1815 #endif
1816 for (s = buf; *s; s++)
1817 if ((*s >= '0' && *s <= '9') || *s == ',')
1818 break;
1819 idx = simple_strtoul(s, NULL, 10);
1820 *s = 0;
1821
1822 __add_preferred_console(buf, idx, options, brl_options);
1823 console_set_on_cmdline = 1;
1824 return 1;
1825 }
1826 __setup("console=", console_setup);
1827
1828 /**
1829 * add_preferred_console - add a device to the list of preferred consoles.
1830 * @name: device name
1831 * @idx: device index
1832 * @options: options for this console
1833 *
1834 * The last preferred console added will be used for kernel messages
1835 * and stdin/out/err for init. Normally this is used by console_setup
1836 * above to handle user-supplied console arguments; however it can also
1837 * be used by arch-specific code either to override the user or more
1838 * commonly to provide a default console (ie from PROM variables) when
1839 * the user has not supplied one.
1840 */
1841 int add_preferred_console(char *name, int idx, char *options)
1842 {
1843 return __add_preferred_console(name, idx, options, NULL);
1844 }
1845
1846 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1847 {
1848 struct console_cmdline *c;
1849 int i;
1850
1851 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1852 if (strcmp(console_cmdline[i].name, name) == 0 &&
1853 console_cmdline[i].index == idx) {
1854 c = &console_cmdline[i];
1855 strlcpy(c->name, name_new, sizeof(c->name));
1856 c->name[sizeof(c->name) - 1] = 0;
1857 c->options = options;
1858 c->index = idx_new;
1859 return i;
1860 }
1861 /* not found */
1862 return -1;
1863 }
1864
1865 bool console_suspend_enabled = 1;
1866 EXPORT_SYMBOL(console_suspend_enabled);
1867
1868 static int __init console_suspend_disable(char *str)
1869 {
1870 console_suspend_enabled = 0;
1871 return 1;
1872 }
1873 __setup("no_console_suspend", console_suspend_disable);
1874 module_param_named(console_suspend, console_suspend_enabled,
1875 bool, S_IRUGO | S_IWUSR);
1876 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1877 " and hibernate operations");
1878
1879 /**
1880 * suspend_console - suspend the console subsystem
1881 *
1882 * This disables printk() while we go into suspend states
1883 */
1884 void suspend_console(void)
1885 {
1886 if (!console_suspend_enabled)
1887 return;
1888 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1889 console_lock();
1890 console_suspended = 1;
1891 up(&console_sem);
1892 }
1893
1894 void resume_console(void)
1895 {
1896 if (!console_suspend_enabled)
1897 return;
1898 down(&console_sem);
1899 console_suspended = 0;
1900 console_unlock();
1901 }
1902
1903 /**
1904 * console_cpu_notify - print deferred console messages after CPU hotplug
1905 * @self: notifier struct
1906 * @action: CPU hotplug event
1907 * @hcpu: unused
1908 *
1909 * If printk() is called from a CPU that is not online yet, the messages
1910 * will be spooled but will not show up on the console. This function is
1911 * called when a new CPU comes online (or fails to come up), and ensures
1912 * that any such output gets printed.
1913 */
1914 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1915 unsigned long action, void *hcpu)
1916 {
1917 switch (action) {
1918 case CPU_ONLINE:
1919 case CPU_DEAD:
1920 case CPU_DOWN_FAILED:
1921 case CPU_UP_CANCELED:
1922 console_lock();
1923 console_unlock();
1924 }
1925 return NOTIFY_OK;
1926 }
1927
1928 /**
1929 * console_lock - lock the console system for exclusive use.
1930 *
1931 * Acquires a lock which guarantees that the caller has
1932 * exclusive access to the console system and the console_drivers list.
1933 *
1934 * Can sleep, returns nothing.
1935 */
1936 void console_lock(void)
1937 {
1938 might_sleep();
1939
1940 down(&console_sem);
1941 if (console_suspended)
1942 return;
1943 console_locked = 1;
1944 console_may_schedule = 1;
1945 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1946 }
1947 EXPORT_SYMBOL(console_lock);
1948
1949 /**
1950 * console_trylock - try to lock the console system for exclusive use.
1951 *
1952 * Tried to acquire a lock which guarantees that the caller has
1953 * exclusive access to the console system and the console_drivers list.
1954 *
1955 * returns 1 on success, and 0 on failure to acquire the lock.
1956 */
1957 int console_trylock(void)
1958 {
1959 if (down_trylock(&console_sem))
1960 return 0;
1961 if (console_suspended) {
1962 up(&console_sem);
1963 return 0;
1964 }
1965 console_locked = 1;
1966 console_may_schedule = 0;
1967 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1968 return 1;
1969 }
1970 EXPORT_SYMBOL(console_trylock);
1971
1972 int is_console_locked(void)
1973 {
1974 return console_locked;
1975 }
1976
1977 static void console_cont_flush(char *text, size_t size)
1978 {
1979 unsigned long flags;
1980 size_t len;
1981
1982 raw_spin_lock_irqsave(&logbuf_lock, flags);
1983
1984 if (!cont.len)
1985 goto out;
1986
1987 /*
1988 * We still queue earlier records, likely because the console was
1989 * busy. The earlier ones need to be printed before this one, we
1990 * did not flush any fragment so far, so just let it queue up.
1991 */
1992 if (console_seq < log_next_seq && !cont.cons)
1993 goto out;
1994
1995 len = cont_print_text(text, size);
1996 raw_spin_unlock(&logbuf_lock);
1997 stop_critical_timings();
1998 call_console_drivers(cont.level, text, len);
1999 start_critical_timings();
2000 local_irq_restore(flags);
2001 return;
2002 out:
2003 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2004 }
2005
2006 /**
2007 * console_unlock - unlock the console system
2008 *
2009 * Releases the console_lock which the caller holds on the console system
2010 * and the console driver list.
2011 *
2012 * While the console_lock was held, console output may have been buffered
2013 * by printk(). If this is the case, console_unlock(); emits
2014 * the output prior to releasing the lock.
2015 *
2016 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2017 *
2018 * console_unlock(); may be called from any context.
2019 */
2020 void console_unlock(void)
2021 {
2022 static char text[LOG_LINE_MAX + PREFIX_MAX];
2023 static u64 seen_seq;
2024 unsigned long flags;
2025 bool wake_klogd = false;
2026 bool retry;
2027
2028 if (console_suspended) {
2029 up(&console_sem);
2030 return;
2031 }
2032
2033 console_may_schedule = 0;
2034
2035 /* flush buffered message fragment immediately to console */
2036 console_cont_flush(text, sizeof(text));
2037 again:
2038 for (;;) {
2039 struct log *msg;
2040 size_t len;
2041 int level;
2042
2043 raw_spin_lock_irqsave(&logbuf_lock, flags);
2044 if (seen_seq != log_next_seq) {
2045 wake_klogd = true;
2046 seen_seq = log_next_seq;
2047 }
2048
2049 if (console_seq < log_first_seq) {
2050 /* messages are gone, move to first one */
2051 console_seq = log_first_seq;
2052 console_idx = log_first_idx;
2053 console_prev = 0;
2054 }
2055 skip:
2056 if (console_seq == log_next_seq)
2057 break;
2058
2059 msg = log_from_idx(console_idx);
2060 if (msg->flags & LOG_NOCONS) {
2061 /*
2062 * Skip record we have buffered and already printed
2063 * directly to the console when we received it.
2064 */
2065 console_idx = log_next(console_idx);
2066 console_seq++;
2067 /*
2068 * We will get here again when we register a new
2069 * CON_PRINTBUFFER console. Clear the flag so we
2070 * will properly dump everything later.
2071 */
2072 msg->flags &= ~LOG_NOCONS;
2073 console_prev = msg->flags;
2074 goto skip;
2075 }
2076
2077 level = msg->level;
2078 len = msg_print_text(msg, console_prev, false,
2079 text, sizeof(text));
2080 console_idx = log_next(console_idx);
2081 console_seq++;
2082 console_prev = msg->flags;
2083 raw_spin_unlock(&logbuf_lock);
2084
2085 stop_critical_timings(); /* don't trace print latency */
2086 call_console_drivers(level, text, len);
2087 start_critical_timings();
2088 local_irq_restore(flags);
2089 }
2090 console_locked = 0;
2091 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2092
2093 /* Release the exclusive_console once it is used */
2094 if (unlikely(exclusive_console))
2095 exclusive_console = NULL;
2096
2097 raw_spin_unlock(&logbuf_lock);
2098
2099 up(&console_sem);
2100
2101 /*
2102 * Someone could have filled up the buffer again, so re-check if there's
2103 * something to flush. In case we cannot trylock the console_sem again,
2104 * there's a new owner and the console_unlock() from them will do the
2105 * flush, no worries.
2106 */
2107 raw_spin_lock(&logbuf_lock);
2108 retry = console_seq != log_next_seq;
2109 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2110
2111 if (retry && console_trylock())
2112 goto again;
2113
2114 if (wake_klogd)
2115 wake_up_klogd();
2116 }
2117 EXPORT_SYMBOL(console_unlock);
2118
2119 /**
2120 * console_conditional_schedule - yield the CPU if required
2121 *
2122 * If the console code is currently allowed to sleep, and
2123 * if this CPU should yield the CPU to another task, do
2124 * so here.
2125 *
2126 * Must be called within console_lock();.
2127 */
2128 void __sched console_conditional_schedule(void)
2129 {
2130 if (console_may_schedule)
2131 cond_resched();
2132 }
2133 EXPORT_SYMBOL(console_conditional_schedule);
2134
2135 void console_unblank(void)
2136 {
2137 struct console *c;
2138
2139 /*
2140 * console_unblank can no longer be called in interrupt context unless
2141 * oops_in_progress is set to 1..
2142 */
2143 if (oops_in_progress) {
2144 if (down_trylock(&console_sem) != 0)
2145 return;
2146 } else
2147 console_lock();
2148
2149 console_locked = 1;
2150 console_may_schedule = 0;
2151 for_each_console(c)
2152 if ((c->flags & CON_ENABLED) && c->unblank)
2153 c->unblank();
2154 console_unlock();
2155 }
2156
2157 /*
2158 * Return the console tty driver structure and its associated index
2159 */
2160 struct tty_driver *console_device(int *index)
2161 {
2162 struct console *c;
2163 struct tty_driver *driver = NULL;
2164
2165 console_lock();
2166 for_each_console(c) {
2167 if (!c->device)
2168 continue;
2169 driver = c->device(c, index);
2170 if (driver)
2171 break;
2172 }
2173 console_unlock();
2174 return driver;
2175 }
2176
2177 /*
2178 * Prevent further output on the passed console device so that (for example)
2179 * serial drivers can disable console output before suspending a port, and can
2180 * re-enable output afterwards.
2181 */
2182 void console_stop(struct console *console)
2183 {
2184 console_lock();
2185 console->flags &= ~CON_ENABLED;
2186 console_unlock();
2187 }
2188 EXPORT_SYMBOL(console_stop);
2189
2190 void console_start(struct console *console)
2191 {
2192 console_lock();
2193 console->flags |= CON_ENABLED;
2194 console_unlock();
2195 }
2196 EXPORT_SYMBOL(console_start);
2197
2198 static int __read_mostly keep_bootcon;
2199
2200 static int __init keep_bootcon_setup(char *str)
2201 {
2202 keep_bootcon = 1;
2203 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2204
2205 return 0;
2206 }
2207
2208 early_param("keep_bootcon", keep_bootcon_setup);
2209
2210 /*
2211 * The console driver calls this routine during kernel initialization
2212 * to register the console printing procedure with printk() and to
2213 * print any messages that were printed by the kernel before the
2214 * console driver was initialized.
2215 *
2216 * This can happen pretty early during the boot process (because of
2217 * early_printk) - sometimes before setup_arch() completes - be careful
2218 * of what kernel features are used - they may not be initialised yet.
2219 *
2220 * There are two types of consoles - bootconsoles (early_printk) and
2221 * "real" consoles (everything which is not a bootconsole) which are
2222 * handled differently.
2223 * - Any number of bootconsoles can be registered at any time.
2224 * - As soon as a "real" console is registered, all bootconsoles
2225 * will be unregistered automatically.
2226 * - Once a "real" console is registered, any attempt to register a
2227 * bootconsoles will be rejected
2228 */
2229 void register_console(struct console *newcon)
2230 {
2231 int i;
2232 unsigned long flags;
2233 struct console *bcon = NULL;
2234
2235 /*
2236 * before we register a new CON_BOOT console, make sure we don't
2237 * already have a valid console
2238 */
2239 if (console_drivers && newcon->flags & CON_BOOT) {
2240 /* find the last or real console */
2241 for_each_console(bcon) {
2242 if (!(bcon->flags & CON_BOOT)) {
2243 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2244 newcon->name, newcon->index);
2245 return;
2246 }
2247 }
2248 }
2249
2250 if (console_drivers && console_drivers->flags & CON_BOOT)
2251 bcon = console_drivers;
2252
2253 if (preferred_console < 0 || bcon || !console_drivers)
2254 preferred_console = selected_console;
2255
2256 if (newcon->early_setup)
2257 newcon->early_setup();
2258
2259 /*
2260 * See if we want to use this console driver. If we
2261 * didn't select a console we take the first one
2262 * that registers here.
2263 */
2264 if (preferred_console < 0) {
2265 if (newcon->index < 0)
2266 newcon->index = 0;
2267 if (newcon->setup == NULL ||
2268 newcon->setup(newcon, NULL) == 0) {
2269 newcon->flags |= CON_ENABLED;
2270 if (newcon->device) {
2271 newcon->flags |= CON_CONSDEV;
2272 preferred_console = 0;
2273 }
2274 }
2275 }
2276
2277 /*
2278 * See if this console matches one we selected on
2279 * the command line.
2280 */
2281 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2282 i++) {
2283 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2284 continue;
2285 if (newcon->index >= 0 &&
2286 newcon->index != console_cmdline[i].index)
2287 continue;
2288 if (newcon->index < 0)
2289 newcon->index = console_cmdline[i].index;
2290 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2291 if (console_cmdline[i].brl_options) {
2292 newcon->flags |= CON_BRL;
2293 braille_register_console(newcon,
2294 console_cmdline[i].index,
2295 console_cmdline[i].options,
2296 console_cmdline[i].brl_options);
2297 return;
2298 }
2299 #endif
2300 if (newcon->setup &&
2301 newcon->setup(newcon, console_cmdline[i].options) != 0)
2302 break;
2303 newcon->flags |= CON_ENABLED;
2304 newcon->index = console_cmdline[i].index;
2305 if (i == selected_console) {
2306 newcon->flags |= CON_CONSDEV;
2307 preferred_console = selected_console;
2308 }
2309 break;
2310 }
2311
2312 if (!(newcon->flags & CON_ENABLED))
2313 return;
2314
2315 /*
2316 * If we have a bootconsole, and are switching to a real console,
2317 * don't print everything out again, since when the boot console, and
2318 * the real console are the same physical device, it's annoying to
2319 * see the beginning boot messages twice
2320 */
2321 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2322 newcon->flags &= ~CON_PRINTBUFFER;
2323
2324 /*
2325 * Put this console in the list - keep the
2326 * preferred driver at the head of the list.
2327 */
2328 console_lock();
2329 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2330 newcon->next = console_drivers;
2331 console_drivers = newcon;
2332 if (newcon->next)
2333 newcon->next->flags &= ~CON_CONSDEV;
2334 } else {
2335 newcon->next = console_drivers->next;
2336 console_drivers->next = newcon;
2337 }
2338 if (newcon->flags & CON_PRINTBUFFER) {
2339 /*
2340 * console_unlock(); will print out the buffered messages
2341 * for us.
2342 */
2343 raw_spin_lock_irqsave(&logbuf_lock, flags);
2344 console_seq = syslog_seq;
2345 console_idx = syslog_idx;
2346 console_prev = syslog_prev;
2347 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2348 /*
2349 * We're about to replay the log buffer. Only do this to the
2350 * just-registered console to avoid excessive message spam to
2351 * the already-registered consoles.
2352 */
2353 exclusive_console = newcon;
2354 }
2355 console_unlock();
2356 console_sysfs_notify();
2357
2358 /*
2359 * By unregistering the bootconsoles after we enable the real console
2360 * we get the "console xxx enabled" message on all the consoles -
2361 * boot consoles, real consoles, etc - this is to ensure that end
2362 * users know there might be something in the kernel's log buffer that
2363 * went to the bootconsole (that they do not see on the real console)
2364 */
2365 if (bcon &&
2366 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2367 !keep_bootcon) {
2368 /* we need to iterate through twice, to make sure we print
2369 * everything out, before we unregister the console(s)
2370 */
2371 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2372 newcon->name, newcon->index);
2373 for_each_console(bcon)
2374 if (bcon->flags & CON_BOOT)
2375 unregister_console(bcon);
2376 } else {
2377 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2378 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2379 newcon->name, newcon->index);
2380 }
2381 }
2382 EXPORT_SYMBOL(register_console);
2383
2384 int unregister_console(struct console *console)
2385 {
2386 struct console *a, *b;
2387 int res = 1;
2388
2389 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2390 if (console->flags & CON_BRL)
2391 return braille_unregister_console(console);
2392 #endif
2393
2394 console_lock();
2395 if (console_drivers == console) {
2396 console_drivers=console->next;
2397 res = 0;
2398 } else if (console_drivers) {
2399 for (a=console_drivers->next, b=console_drivers ;
2400 a; b=a, a=b->next) {
2401 if (a == console) {
2402 b->next = a->next;
2403 res = 0;
2404 break;
2405 }
2406 }
2407 }
2408
2409 /*
2410 * If this isn't the last console and it has CON_CONSDEV set, we
2411 * need to set it on the next preferred console.
2412 */
2413 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2414 console_drivers->flags |= CON_CONSDEV;
2415
2416 console_unlock();
2417 console_sysfs_notify();
2418 return res;
2419 }
2420 EXPORT_SYMBOL(unregister_console);
2421
2422 static int __init printk_late_init(void)
2423 {
2424 struct console *con;
2425
2426 for_each_console(con) {
2427 if (!keep_bootcon && con->flags & CON_BOOT) {
2428 printk(KERN_INFO "turn off boot console %s%d\n",
2429 con->name, con->index);
2430 unregister_console(con);
2431 }
2432 }
2433 hotcpu_notifier(console_cpu_notify, 0);
2434 return 0;
2435 }
2436 late_initcall(printk_late_init);
2437
2438 #if defined CONFIG_PRINTK
2439 /*
2440 * Delayed printk version, for scheduler-internal messages:
2441 */
2442 #define PRINTK_BUF_SIZE 512
2443
2444 #define PRINTK_PENDING_WAKEUP 0x01
2445 #define PRINTK_PENDING_SCHED 0x02
2446
2447 static DEFINE_PER_CPU(int, printk_pending);
2448 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2449
2450 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2451 {
2452 int pending = __this_cpu_xchg(printk_pending, 0);
2453
2454 if (pending & PRINTK_PENDING_SCHED) {
2455 char *buf = __get_cpu_var(printk_sched_buf);
2456 printk(KERN_WARNING "[sched_delayed] %s", buf);
2457 }
2458
2459 if (pending & PRINTK_PENDING_WAKEUP)
2460 wake_up_interruptible(&log_wait);
2461 }
2462
2463 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2464 .func = wake_up_klogd_work_func,
2465 .flags = IRQ_WORK_LAZY,
2466 };
2467
2468 void wake_up_klogd(void)
2469 {
2470 preempt_disable();
2471 if (waitqueue_active(&log_wait)) {
2472 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2473 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2474 }
2475 preempt_enable();
2476 }
2477
2478 int printk_sched(const char *fmt, ...)
2479 {
2480 unsigned long flags;
2481 va_list args;
2482 char *buf;
2483 int r;
2484
2485 local_irq_save(flags);
2486 buf = __get_cpu_var(printk_sched_buf);
2487
2488 va_start(args, fmt);
2489 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2490 va_end(args);
2491
2492 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2493 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2494 local_irq_restore(flags);
2495
2496 return r;
2497 }
2498
2499 /*
2500 * printk rate limiting, lifted from the networking subsystem.
2501 *
2502 * This enforces a rate limit: not more than 10 kernel messages
2503 * every 5s to make a denial-of-service attack impossible.
2504 */
2505 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2506
2507 int __printk_ratelimit(const char *func)
2508 {
2509 return ___ratelimit(&printk_ratelimit_state, func);
2510 }
2511 EXPORT_SYMBOL(__printk_ratelimit);
2512
2513 /**
2514 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2515 * @caller_jiffies: pointer to caller's state
2516 * @interval_msecs: minimum interval between prints
2517 *
2518 * printk_timed_ratelimit() returns true if more than @interval_msecs
2519 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2520 * returned true.
2521 */
2522 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2523 unsigned int interval_msecs)
2524 {
2525 if (*caller_jiffies == 0
2526 || !time_in_range(jiffies, *caller_jiffies,
2527 *caller_jiffies
2528 + msecs_to_jiffies(interval_msecs))) {
2529 *caller_jiffies = jiffies;
2530 return true;
2531 }
2532 return false;
2533 }
2534 EXPORT_SYMBOL(printk_timed_ratelimit);
2535
2536 static DEFINE_SPINLOCK(dump_list_lock);
2537 static LIST_HEAD(dump_list);
2538
2539 /**
2540 * kmsg_dump_register - register a kernel log dumper.
2541 * @dumper: pointer to the kmsg_dumper structure
2542 *
2543 * Adds a kernel log dumper to the system. The dump callback in the
2544 * structure will be called when the kernel oopses or panics and must be
2545 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2546 */
2547 int kmsg_dump_register(struct kmsg_dumper *dumper)
2548 {
2549 unsigned long flags;
2550 int err = -EBUSY;
2551
2552 /* The dump callback needs to be set */
2553 if (!dumper->dump)
2554 return -EINVAL;
2555
2556 spin_lock_irqsave(&dump_list_lock, flags);
2557 /* Don't allow registering multiple times */
2558 if (!dumper->registered) {
2559 dumper->registered = 1;
2560 list_add_tail_rcu(&dumper->list, &dump_list);
2561 err = 0;
2562 }
2563 spin_unlock_irqrestore(&dump_list_lock, flags);
2564
2565 return err;
2566 }
2567 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2568
2569 /**
2570 * kmsg_dump_unregister - unregister a kmsg dumper.
2571 * @dumper: pointer to the kmsg_dumper structure
2572 *
2573 * Removes a dump device from the system. Returns zero on success and
2574 * %-EINVAL otherwise.
2575 */
2576 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2577 {
2578 unsigned long flags;
2579 int err = -EINVAL;
2580
2581 spin_lock_irqsave(&dump_list_lock, flags);
2582 if (dumper->registered) {
2583 dumper->registered = 0;
2584 list_del_rcu(&dumper->list);
2585 err = 0;
2586 }
2587 spin_unlock_irqrestore(&dump_list_lock, flags);
2588 synchronize_rcu();
2589
2590 return err;
2591 }
2592 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2593
2594 static bool always_kmsg_dump;
2595 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2596
2597 /**
2598 * kmsg_dump - dump kernel log to kernel message dumpers.
2599 * @reason: the reason (oops, panic etc) for dumping
2600 *
2601 * Call each of the registered dumper's dump() callback, which can
2602 * retrieve the kmsg records with kmsg_dump_get_line() or
2603 * kmsg_dump_get_buffer().
2604 */
2605 void kmsg_dump(enum kmsg_dump_reason reason)
2606 {
2607 struct kmsg_dumper *dumper;
2608 unsigned long flags;
2609
2610 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2611 return;
2612
2613 rcu_read_lock();
2614 list_for_each_entry_rcu(dumper, &dump_list, list) {
2615 if (dumper->max_reason && reason > dumper->max_reason)
2616 continue;
2617
2618 /* initialize iterator with data about the stored records */
2619 dumper->active = true;
2620
2621 raw_spin_lock_irqsave(&logbuf_lock, flags);
2622 dumper->cur_seq = clear_seq;
2623 dumper->cur_idx = clear_idx;
2624 dumper->next_seq = log_next_seq;
2625 dumper->next_idx = log_next_idx;
2626 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2627
2628 /* invoke dumper which will iterate over records */
2629 dumper->dump(dumper, reason);
2630
2631 /* reset iterator */
2632 dumper->active = false;
2633 }
2634 rcu_read_unlock();
2635 }
2636
2637 /**
2638 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2639 * @dumper: registered kmsg dumper
2640 * @syslog: include the "<4>" prefixes
2641 * @line: buffer to copy the line to
2642 * @size: maximum size of the buffer
2643 * @len: length of line placed into buffer
2644 *
2645 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2646 * record, and copy one record into the provided buffer.
2647 *
2648 * Consecutive calls will return the next available record moving
2649 * towards the end of the buffer with the youngest messages.
2650 *
2651 * A return value of FALSE indicates that there are no more records to
2652 * read.
2653 *
2654 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2655 */
2656 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2657 char *line, size_t size, size_t *len)
2658 {
2659 struct log *msg;
2660 size_t l = 0;
2661 bool ret = false;
2662
2663 if (!dumper->active)
2664 goto out;
2665
2666 if (dumper->cur_seq < log_first_seq) {
2667 /* messages are gone, move to first available one */
2668 dumper->cur_seq = log_first_seq;
2669 dumper->cur_idx = log_first_idx;
2670 }
2671
2672 /* last entry */
2673 if (dumper->cur_seq >= log_next_seq)
2674 goto out;
2675
2676 msg = log_from_idx(dumper->cur_idx);
2677 l = msg_print_text(msg, 0, syslog, line, size);
2678
2679 dumper->cur_idx = log_next(dumper->cur_idx);
2680 dumper->cur_seq++;
2681 ret = true;
2682 out:
2683 if (len)
2684 *len = l;
2685 return ret;
2686 }
2687
2688 /**
2689 * kmsg_dump_get_line - retrieve one kmsg log line
2690 * @dumper: registered kmsg dumper
2691 * @syslog: include the "<4>" prefixes
2692 * @line: buffer to copy the line to
2693 * @size: maximum size of the buffer
2694 * @len: length of line placed into buffer
2695 *
2696 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2697 * record, and copy one record into the provided buffer.
2698 *
2699 * Consecutive calls will return the next available record moving
2700 * towards the end of the buffer with the youngest messages.
2701 *
2702 * A return value of FALSE indicates that there are no more records to
2703 * read.
2704 */
2705 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2706 char *line, size_t size, size_t *len)
2707 {
2708 unsigned long flags;
2709 bool ret;
2710
2711 raw_spin_lock_irqsave(&logbuf_lock, flags);
2712 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2713 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2714
2715 return ret;
2716 }
2717 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2718
2719 /**
2720 * kmsg_dump_get_buffer - copy kmsg log lines
2721 * @dumper: registered kmsg dumper
2722 * @syslog: include the "<4>" prefixes
2723 * @buf: buffer to copy the line to
2724 * @size: maximum size of the buffer
2725 * @len: length of line placed into buffer
2726 *
2727 * Start at the end of the kmsg buffer and fill the provided buffer
2728 * with as many of the the *youngest* kmsg records that fit into it.
2729 * If the buffer is large enough, all available kmsg records will be
2730 * copied with a single call.
2731 *
2732 * Consecutive calls will fill the buffer with the next block of
2733 * available older records, not including the earlier retrieved ones.
2734 *
2735 * A return value of FALSE indicates that there are no more records to
2736 * read.
2737 */
2738 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2739 char *buf, size_t size, size_t *len)
2740 {
2741 unsigned long flags;
2742 u64 seq;
2743 u32 idx;
2744 u64 next_seq;
2745 u32 next_idx;
2746 enum log_flags prev;
2747 size_t l = 0;
2748 bool ret = false;
2749
2750 if (!dumper->active)
2751 goto out;
2752
2753 raw_spin_lock_irqsave(&logbuf_lock, flags);
2754 if (dumper->cur_seq < log_first_seq) {
2755 /* messages are gone, move to first available one */
2756 dumper->cur_seq = log_first_seq;
2757 dumper->cur_idx = log_first_idx;
2758 }
2759
2760 /* last entry */
2761 if (dumper->cur_seq >= dumper->next_seq) {
2762 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2763 goto out;
2764 }
2765
2766 /* calculate length of entire buffer */
2767 seq = dumper->cur_seq;
2768 idx = dumper->cur_idx;
2769 prev = 0;
2770 while (seq < dumper->next_seq) {
2771 struct log *msg = log_from_idx(idx);
2772
2773 l += msg_print_text(msg, prev, true, NULL, 0);
2774 idx = log_next(idx);
2775 seq++;
2776 prev = msg->flags;
2777 }
2778
2779 /* move first record forward until length fits into the buffer */
2780 seq = dumper->cur_seq;
2781 idx = dumper->cur_idx;
2782 prev = 0;
2783 while (l > size && seq < dumper->next_seq) {
2784 struct log *msg = log_from_idx(idx);
2785
2786 l -= msg_print_text(msg, prev, true, NULL, 0);
2787 idx = log_next(idx);
2788 seq++;
2789 prev = msg->flags;
2790 }
2791
2792 /* last message in next interation */
2793 next_seq = seq;
2794 next_idx = idx;
2795
2796 l = 0;
2797 prev = 0;
2798 while (seq < dumper->next_seq) {
2799 struct log *msg = log_from_idx(idx);
2800
2801 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2802 idx = log_next(idx);
2803 seq++;
2804 prev = msg->flags;
2805 }
2806
2807 dumper->next_seq = next_seq;
2808 dumper->next_idx = next_idx;
2809 ret = true;
2810 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2811 out:
2812 if (len)
2813 *len = l;
2814 return ret;
2815 }
2816 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2817
2818 /**
2819 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2820 * @dumper: registered kmsg dumper
2821 *
2822 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2823 * kmsg_dump_get_buffer() can be called again and used multiple
2824 * times within the same dumper.dump() callback.
2825 *
2826 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2827 */
2828 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2829 {
2830 dumper->cur_seq = clear_seq;
2831 dumper->cur_idx = clear_idx;
2832 dumper->next_seq = log_next_seq;
2833 dumper->next_idx = log_next_idx;
2834 }
2835
2836 /**
2837 * kmsg_dump_rewind - reset the interator
2838 * @dumper: registered kmsg dumper
2839 *
2840 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2841 * kmsg_dump_get_buffer() can be called again and used multiple
2842 * times within the same dumper.dump() callback.
2843 */
2844 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2845 {
2846 unsigned long flags;
2847
2848 raw_spin_lock_irqsave(&logbuf_lock, flags);
2849 kmsg_dump_rewind_nolock(dumper);
2850 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2851 }
2852 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2853
2854 static char dump_stack_arch_desc_str[128];
2855
2856 /**
2857 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2858 * @fmt: printf-style format string
2859 * @...: arguments for the format string
2860 *
2861 * The configured string will be printed right after utsname during task
2862 * dumps. Usually used to add arch-specific system identifiers. If an
2863 * arch wants to make use of such an ID string, it should initialize this
2864 * as soon as possible during boot.
2865 */
2866 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2867 {
2868 va_list args;
2869
2870 va_start(args, fmt);
2871 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2872 fmt, args);
2873 va_end(args);
2874 }
2875
2876 /**
2877 * dump_stack_print_info - print generic debug info for dump_stack()
2878 * @log_lvl: log level
2879 *
2880 * Arch-specific dump_stack() implementations can use this function to
2881 * print out the same debug information as the generic dump_stack().
2882 */
2883 void dump_stack_print_info(const char *log_lvl)
2884 {
2885 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2886 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2887 print_tainted(), init_utsname()->release,
2888 (int)strcspn(init_utsname()->version, " "),
2889 init_utsname()->version);
2890
2891 if (dump_stack_arch_desc_str[0] != '\0')
2892 printk("%sHardware name: %s\n",
2893 log_lvl, dump_stack_arch_desc_str);
2894
2895 print_worker_info(log_lvl, current);
2896 }
2897
2898 /**
2899 * show_regs_print_info - print generic debug info for show_regs()
2900 * @log_lvl: log level
2901 *
2902 * show_regs() implementations can use this function to print out generic
2903 * debug information.
2904 */
2905 void show_regs_print_info(const char *log_lvl)
2906 {
2907 dump_stack_print_info(log_lvl);
2908
2909 printk("%stask: %p ti: %p task.ti: %p\n",
2910 log_lvl, current, current_thread_info(),
2911 task_thread_info(current));
2912 }
2913
2914 #endif