include/linux/printk.h: include stdarg.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46
47 #include <asm/uaccess.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/printk.h>
51
52 /* printk's without a loglevel use this.. */
53 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
54
55 /* We show everything that is MORE important than this.. */
56 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
57 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
58
59 int console_printk[4] = {
60 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */
61 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */
62 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */
63 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */
64 };
65
66 /*
67 * Low level drivers may need that to know if they can schedule in
68 * their unblank() callback or not. So let's export it.
69 */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72
73 /*
74 * console_sem protects the console_drivers list, and also
75 * provides serialisation for access to the entire console
76 * driver system.
77 */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 .name = "console_lock"
85 };
86 #endif
87
88 /*
89 * This is used for debugging the mess that is the VT code by
90 * keeping track if we have the console semaphore held. It's
91 * definitely not the perfect debug tool (we don't know if _WE_
92 * hold it are racing, but it helps tracking those weird code
93 * path in the console code where we end up in places I want
94 * locked without the console sempahore held
95 */
96 static int console_locked, console_suspended;
97
98 /*
99 * If exclusive_console is non-NULL then only this console is to be printed to.
100 */
101 static struct console *exclusive_console;
102
103 /*
104 * Array of consoles built from command line options (console=)
105 */
106 struct console_cmdline
107 {
108 char name[8]; /* Name of the driver */
109 int index; /* Minor dev. to use */
110 char *options; /* Options for the driver */
111 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
112 char *brl_options; /* Options for braille driver */
113 #endif
114 };
115
116 #define MAX_CMDLINECONSOLES 8
117
118 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
119 static int selected_console = -1;
120 static int preferred_console = -1;
121 int console_set_on_cmdline;
122 EXPORT_SYMBOL(console_set_on_cmdline);
123
124 /* Flag: console code may call schedule() */
125 static int console_may_schedule;
126
127 /*
128 * The printk log buffer consists of a chain of concatenated variable
129 * length records. Every record starts with a record header, containing
130 * the overall length of the record.
131 *
132 * The heads to the first and last entry in the buffer, as well as the
133 * sequence numbers of these both entries are maintained when messages
134 * are stored..
135 *
136 * If the heads indicate available messages, the length in the header
137 * tells the start next message. A length == 0 for the next message
138 * indicates a wrap-around to the beginning of the buffer.
139 *
140 * Every record carries the monotonic timestamp in microseconds, as well as
141 * the standard userspace syslog level and syslog facility. The usual
142 * kernel messages use LOG_KERN; userspace-injected messages always carry
143 * a matching syslog facility, by default LOG_USER. The origin of every
144 * message can be reliably determined that way.
145 *
146 * The human readable log message directly follows the message header. The
147 * length of the message text is stored in the header, the stored message
148 * is not terminated.
149 *
150 * Optionally, a message can carry a dictionary of properties (key/value pairs),
151 * to provide userspace with a machine-readable message context.
152 *
153 * Examples for well-defined, commonly used property names are:
154 * DEVICE=b12:8 device identifier
155 * b12:8 block dev_t
156 * c127:3 char dev_t
157 * n8 netdev ifindex
158 * +sound:card0 subsystem:devname
159 * SUBSYSTEM=pci driver-core subsystem name
160 *
161 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
162 * follows directly after a '=' character. Every property is terminated by
163 * a '\0' character. The last property is not terminated.
164 *
165 * Example of a message structure:
166 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
167 * 0008 34 00 record is 52 bytes long
168 * 000a 0b 00 text is 11 bytes long
169 * 000c 1f 00 dictionary is 23 bytes long
170 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
171 * 0010 69 74 27 73 20 61 20 6c "it's a l"
172 * 69 6e 65 "ine"
173 * 001b 44 45 56 49 43 "DEVIC"
174 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
175 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
176 * 67 "g"
177 * 0032 00 00 00 padding to next message header
178 *
179 * The 'struct log' buffer header must never be directly exported to
180 * userspace, it is a kernel-private implementation detail that might
181 * need to be changed in the future, when the requirements change.
182 *
183 * /dev/kmsg exports the structured data in the following line format:
184 * "level,sequnum,timestamp;<message text>\n"
185 *
186 * The optional key/value pairs are attached as continuation lines starting
187 * with a space character and terminated by a newline. All possible
188 * non-prinatable characters are escaped in the "\xff" notation.
189 *
190 * Users of the export format should ignore possible additional values
191 * separated by ',', and find the message after the ';' character.
192 */
193
194 enum log_flags {
195 LOG_NOCONS = 1, /* already flushed, do not print to console */
196 LOG_NEWLINE = 2, /* text ended with a newline */
197 LOG_PREFIX = 4, /* text started with a prefix */
198 LOG_CONT = 8, /* text is a fragment of a continuation line */
199 };
200
201 struct log {
202 u64 ts_nsec; /* timestamp in nanoseconds */
203 u16 len; /* length of entire record */
204 u16 text_len; /* length of text buffer */
205 u16 dict_len; /* length of dictionary buffer */
206 u8 facility; /* syslog facility */
207 u8 flags:5; /* internal record flags */
208 u8 level:3; /* syslog level */
209 };
210
211 /*
212 * The logbuf_lock protects kmsg buffer, indices, counters. It is also
213 * used in interesting ways to provide interlocking in console_unlock();
214 */
215 static DEFINE_RAW_SPINLOCK(logbuf_lock);
216
217 #ifdef CONFIG_PRINTK
218 DECLARE_WAIT_QUEUE_HEAD(log_wait);
219 /* the next printk record to read by syslog(READ) or /proc/kmsg */
220 static u64 syslog_seq;
221 static u32 syslog_idx;
222 static enum log_flags syslog_prev;
223 static size_t syslog_partial;
224
225 /* index and sequence number of the first record stored in the buffer */
226 static u64 log_first_seq;
227 static u32 log_first_idx;
228
229 /* index and sequence number of the next record to store in the buffer */
230 static u64 log_next_seq;
231 static u32 log_next_idx;
232
233 /* the next printk record to write to the console */
234 static u64 console_seq;
235 static u32 console_idx;
236 static enum log_flags console_prev;
237
238 /* the next printk record to read after the last 'clear' command */
239 static u64 clear_seq;
240 static u32 clear_idx;
241
242 #define PREFIX_MAX 32
243 #define LOG_LINE_MAX 1024 - PREFIX_MAX
244
245 /* record buffer */
246 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
247 #define LOG_ALIGN 4
248 #else
249 #define LOG_ALIGN __alignof__(struct log)
250 #endif
251 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
252 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
253 static char *log_buf = __log_buf;
254 static u32 log_buf_len = __LOG_BUF_LEN;
255
256 /* cpu currently holding logbuf_lock */
257 static volatile unsigned int logbuf_cpu = UINT_MAX;
258
259 /* human readable text of the record */
260 static char *log_text(const struct log *msg)
261 {
262 return (char *)msg + sizeof(struct log);
263 }
264
265 /* optional key/value pair dictionary attached to the record */
266 static char *log_dict(const struct log *msg)
267 {
268 return (char *)msg + sizeof(struct log) + msg->text_len;
269 }
270
271 /* get record by index; idx must point to valid msg */
272 static struct log *log_from_idx(u32 idx)
273 {
274 struct log *msg = (struct log *)(log_buf + idx);
275
276 /*
277 * A length == 0 record is the end of buffer marker. Wrap around and
278 * read the message at the start of the buffer.
279 */
280 if (!msg->len)
281 return (struct log *)log_buf;
282 return msg;
283 }
284
285 /* get next record; idx must point to valid msg */
286 static u32 log_next(u32 idx)
287 {
288 struct log *msg = (struct log *)(log_buf + idx);
289
290 /* length == 0 indicates the end of the buffer; wrap */
291 /*
292 * A length == 0 record is the end of buffer marker. Wrap around and
293 * read the message at the start of the buffer as *this* one, and
294 * return the one after that.
295 */
296 if (!msg->len) {
297 msg = (struct log *)log_buf;
298 return msg->len;
299 }
300 return idx + msg->len;
301 }
302
303 /* insert record into the buffer, discard old ones, update heads */
304 static void log_store(int facility, int level,
305 enum log_flags flags, u64 ts_nsec,
306 const char *dict, u16 dict_len,
307 const char *text, u16 text_len)
308 {
309 struct log *msg;
310 u32 size, pad_len;
311
312 /* number of '\0' padding bytes to next message */
313 size = sizeof(struct log) + text_len + dict_len;
314 pad_len = (-size) & (LOG_ALIGN - 1);
315 size += pad_len;
316
317 while (log_first_seq < log_next_seq) {
318 u32 free;
319
320 if (log_next_idx > log_first_idx)
321 free = max(log_buf_len - log_next_idx, log_first_idx);
322 else
323 free = log_first_idx - log_next_idx;
324
325 if (free > size + sizeof(struct log))
326 break;
327
328 /* drop old messages until we have enough contiuous space */
329 log_first_idx = log_next(log_first_idx);
330 log_first_seq++;
331 }
332
333 if (log_next_idx + size + sizeof(struct log) >= log_buf_len) {
334 /*
335 * This message + an additional empty header does not fit
336 * at the end of the buffer. Add an empty header with len == 0
337 * to signify a wrap around.
338 */
339 memset(log_buf + log_next_idx, 0, sizeof(struct log));
340 log_next_idx = 0;
341 }
342
343 /* fill message */
344 msg = (struct log *)(log_buf + log_next_idx);
345 memcpy(log_text(msg), text, text_len);
346 msg->text_len = text_len;
347 memcpy(log_dict(msg), dict, dict_len);
348 msg->dict_len = dict_len;
349 msg->facility = facility;
350 msg->level = level & 7;
351 msg->flags = flags & 0x1f;
352 if (ts_nsec > 0)
353 msg->ts_nsec = ts_nsec;
354 else
355 msg->ts_nsec = local_clock();
356 memset(log_dict(msg) + dict_len, 0, pad_len);
357 msg->len = sizeof(struct log) + text_len + dict_len + pad_len;
358
359 /* insert message */
360 log_next_idx += msg->len;
361 log_next_seq++;
362 }
363
364 /* /dev/kmsg - userspace message inject/listen interface */
365 struct devkmsg_user {
366 u64 seq;
367 u32 idx;
368 enum log_flags prev;
369 struct mutex lock;
370 char buf[8192];
371 };
372
373 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
374 unsigned long count, loff_t pos)
375 {
376 char *buf, *line;
377 int i;
378 int level = default_message_loglevel;
379 int facility = 1; /* LOG_USER */
380 size_t len = iov_length(iv, count);
381 ssize_t ret = len;
382
383 if (len > LOG_LINE_MAX)
384 return -EINVAL;
385 buf = kmalloc(len+1, GFP_KERNEL);
386 if (buf == NULL)
387 return -ENOMEM;
388
389 line = buf;
390 for (i = 0; i < count; i++) {
391 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
392 ret = -EFAULT;
393 goto out;
394 }
395 line += iv[i].iov_len;
396 }
397
398 /*
399 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
400 * the decimal value represents 32bit, the lower 3 bit are the log
401 * level, the rest are the log facility.
402 *
403 * If no prefix or no userspace facility is specified, we
404 * enforce LOG_USER, to be able to reliably distinguish
405 * kernel-generated messages from userspace-injected ones.
406 */
407 line = buf;
408 if (line[0] == '<') {
409 char *endp = NULL;
410
411 i = simple_strtoul(line+1, &endp, 10);
412 if (endp && endp[0] == '>') {
413 level = i & 7;
414 if (i >> 3)
415 facility = i >> 3;
416 endp++;
417 len -= endp - line;
418 line = endp;
419 }
420 }
421 line[len] = '\0';
422
423 printk_emit(facility, level, NULL, 0, "%s", line);
424 out:
425 kfree(buf);
426 return ret;
427 }
428
429 static ssize_t devkmsg_read(struct file *file, char __user *buf,
430 size_t count, loff_t *ppos)
431 {
432 struct devkmsg_user *user = file->private_data;
433 struct log *msg;
434 u64 ts_usec;
435 size_t i;
436 char cont = '-';
437 size_t len;
438 ssize_t ret;
439
440 if (!user)
441 return -EBADF;
442
443 ret = mutex_lock_interruptible(&user->lock);
444 if (ret)
445 return ret;
446 raw_spin_lock_irq(&logbuf_lock);
447 while (user->seq == log_next_seq) {
448 if (file->f_flags & O_NONBLOCK) {
449 ret = -EAGAIN;
450 raw_spin_unlock_irq(&logbuf_lock);
451 goto out;
452 }
453
454 raw_spin_unlock_irq(&logbuf_lock);
455 ret = wait_event_interruptible(log_wait,
456 user->seq != log_next_seq);
457 if (ret)
458 goto out;
459 raw_spin_lock_irq(&logbuf_lock);
460 }
461
462 if (user->seq < log_first_seq) {
463 /* our last seen message is gone, return error and reset */
464 user->idx = log_first_idx;
465 user->seq = log_first_seq;
466 ret = -EPIPE;
467 raw_spin_unlock_irq(&logbuf_lock);
468 goto out;
469 }
470
471 msg = log_from_idx(user->idx);
472 ts_usec = msg->ts_nsec;
473 do_div(ts_usec, 1000);
474
475 /*
476 * If we couldn't merge continuation line fragments during the print,
477 * export the stored flags to allow an optional external merge of the
478 * records. Merging the records isn't always neccessarily correct, like
479 * when we hit a race during printing. In most cases though, it produces
480 * better readable output. 'c' in the record flags mark the first
481 * fragment of a line, '+' the following.
482 */
483 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
484 cont = 'c';
485 else if ((msg->flags & LOG_CONT) ||
486 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
487 cont = '+';
488
489 len = sprintf(user->buf, "%u,%llu,%llu,%c;",
490 (msg->facility << 3) | msg->level,
491 user->seq, ts_usec, cont);
492 user->prev = msg->flags;
493
494 /* escape non-printable characters */
495 for (i = 0; i < msg->text_len; i++) {
496 unsigned char c = log_text(msg)[i];
497
498 if (c < ' ' || c >= 127 || c == '\\')
499 len += sprintf(user->buf + len, "\\x%02x", c);
500 else
501 user->buf[len++] = c;
502 }
503 user->buf[len++] = '\n';
504
505 if (msg->dict_len) {
506 bool line = true;
507
508 for (i = 0; i < msg->dict_len; i++) {
509 unsigned char c = log_dict(msg)[i];
510
511 if (line) {
512 user->buf[len++] = ' ';
513 line = false;
514 }
515
516 if (c == '\0') {
517 user->buf[len++] = '\n';
518 line = true;
519 continue;
520 }
521
522 if (c < ' ' || c >= 127 || c == '\\') {
523 len += sprintf(user->buf + len, "\\x%02x", c);
524 continue;
525 }
526
527 user->buf[len++] = c;
528 }
529 user->buf[len++] = '\n';
530 }
531
532 user->idx = log_next(user->idx);
533 user->seq++;
534 raw_spin_unlock_irq(&logbuf_lock);
535
536 if (len > count) {
537 ret = -EINVAL;
538 goto out;
539 }
540
541 if (copy_to_user(buf, user->buf, len)) {
542 ret = -EFAULT;
543 goto out;
544 }
545 ret = len;
546 out:
547 mutex_unlock(&user->lock);
548 return ret;
549 }
550
551 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
552 {
553 struct devkmsg_user *user = file->private_data;
554 loff_t ret = 0;
555
556 if (!user)
557 return -EBADF;
558 if (offset)
559 return -ESPIPE;
560
561 raw_spin_lock_irq(&logbuf_lock);
562 switch (whence) {
563 case SEEK_SET:
564 /* the first record */
565 user->idx = log_first_idx;
566 user->seq = log_first_seq;
567 break;
568 case SEEK_DATA:
569 /*
570 * The first record after the last SYSLOG_ACTION_CLEAR,
571 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
572 * changes no global state, and does not clear anything.
573 */
574 user->idx = clear_idx;
575 user->seq = clear_seq;
576 break;
577 case SEEK_END:
578 /* after the last record */
579 user->idx = log_next_idx;
580 user->seq = log_next_seq;
581 break;
582 default:
583 ret = -EINVAL;
584 }
585 raw_spin_unlock_irq(&logbuf_lock);
586 return ret;
587 }
588
589 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
590 {
591 struct devkmsg_user *user = file->private_data;
592 int ret = 0;
593
594 if (!user)
595 return POLLERR|POLLNVAL;
596
597 poll_wait(file, &log_wait, wait);
598
599 raw_spin_lock_irq(&logbuf_lock);
600 if (user->seq < log_next_seq) {
601 /* return error when data has vanished underneath us */
602 if (user->seq < log_first_seq)
603 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
604 ret = POLLIN|POLLRDNORM;
605 }
606 raw_spin_unlock_irq(&logbuf_lock);
607
608 return ret;
609 }
610
611 static int devkmsg_open(struct inode *inode, struct file *file)
612 {
613 struct devkmsg_user *user;
614 int err;
615
616 /* write-only does not need any file context */
617 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
618 return 0;
619
620 err = security_syslog(SYSLOG_ACTION_READ_ALL);
621 if (err)
622 return err;
623
624 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
625 if (!user)
626 return -ENOMEM;
627
628 mutex_init(&user->lock);
629
630 raw_spin_lock_irq(&logbuf_lock);
631 user->idx = log_first_idx;
632 user->seq = log_first_seq;
633 raw_spin_unlock_irq(&logbuf_lock);
634
635 file->private_data = user;
636 return 0;
637 }
638
639 static int devkmsg_release(struct inode *inode, struct file *file)
640 {
641 struct devkmsg_user *user = file->private_data;
642
643 if (!user)
644 return 0;
645
646 mutex_destroy(&user->lock);
647 kfree(user);
648 return 0;
649 }
650
651 const struct file_operations kmsg_fops = {
652 .open = devkmsg_open,
653 .read = devkmsg_read,
654 .aio_write = devkmsg_writev,
655 .llseek = devkmsg_llseek,
656 .poll = devkmsg_poll,
657 .release = devkmsg_release,
658 };
659
660 #ifdef CONFIG_KEXEC
661 /*
662 * This appends the listed symbols to /proc/vmcoreinfo
663 *
664 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to
665 * obtain access to symbols that are otherwise very difficult to locate. These
666 * symbols are specifically used so that utilities can access and extract the
667 * dmesg log from a vmcore file after a crash.
668 */
669 void log_buf_kexec_setup(void)
670 {
671 VMCOREINFO_SYMBOL(log_buf);
672 VMCOREINFO_SYMBOL(log_buf_len);
673 VMCOREINFO_SYMBOL(log_first_idx);
674 VMCOREINFO_SYMBOL(log_next_idx);
675 /*
676 * Export struct log size and field offsets. User space tools can
677 * parse it and detect any changes to structure down the line.
678 */
679 VMCOREINFO_STRUCT_SIZE(log);
680 VMCOREINFO_OFFSET(log, ts_nsec);
681 VMCOREINFO_OFFSET(log, len);
682 VMCOREINFO_OFFSET(log, text_len);
683 VMCOREINFO_OFFSET(log, dict_len);
684 }
685 #endif
686
687 /* requested log_buf_len from kernel cmdline */
688 static unsigned long __initdata new_log_buf_len;
689
690 /* save requested log_buf_len since it's too early to process it */
691 static int __init log_buf_len_setup(char *str)
692 {
693 unsigned size = memparse(str, &str);
694
695 if (size)
696 size = roundup_pow_of_two(size);
697 if (size > log_buf_len)
698 new_log_buf_len = size;
699
700 return 0;
701 }
702 early_param("log_buf_len", log_buf_len_setup);
703
704 void __init setup_log_buf(int early)
705 {
706 unsigned long flags;
707 char *new_log_buf;
708 int free;
709
710 if (!new_log_buf_len)
711 return;
712
713 if (early) {
714 unsigned long mem;
715
716 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
717 if (!mem)
718 return;
719 new_log_buf = __va(mem);
720 } else {
721 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
722 }
723
724 if (unlikely(!new_log_buf)) {
725 pr_err("log_buf_len: %ld bytes not available\n",
726 new_log_buf_len);
727 return;
728 }
729
730 raw_spin_lock_irqsave(&logbuf_lock, flags);
731 log_buf_len = new_log_buf_len;
732 log_buf = new_log_buf;
733 new_log_buf_len = 0;
734 free = __LOG_BUF_LEN - log_next_idx;
735 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
736 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
737
738 pr_info("log_buf_len: %d\n", log_buf_len);
739 pr_info("early log buf free: %d(%d%%)\n",
740 free, (free * 100) / __LOG_BUF_LEN);
741 }
742
743 static bool __read_mostly ignore_loglevel;
744
745 static int __init ignore_loglevel_setup(char *str)
746 {
747 ignore_loglevel = 1;
748 printk(KERN_INFO "debug: ignoring loglevel setting.\n");
749
750 return 0;
751 }
752
753 early_param("ignore_loglevel", ignore_loglevel_setup);
754 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
755 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
756 "print all kernel messages to the console.");
757
758 #ifdef CONFIG_BOOT_PRINTK_DELAY
759
760 static int boot_delay; /* msecs delay after each printk during bootup */
761 static unsigned long long loops_per_msec; /* based on boot_delay */
762
763 static int __init boot_delay_setup(char *str)
764 {
765 unsigned long lpj;
766
767 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
768 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
769
770 get_option(&str, &boot_delay);
771 if (boot_delay > 10 * 1000)
772 boot_delay = 0;
773
774 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
775 "HZ: %d, loops_per_msec: %llu\n",
776 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
777 return 1;
778 }
779 __setup("boot_delay=", boot_delay_setup);
780
781 static void boot_delay_msec(int level)
782 {
783 unsigned long long k;
784 unsigned long timeout;
785
786 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
787 || (level >= console_loglevel && !ignore_loglevel)) {
788 return;
789 }
790
791 k = (unsigned long long)loops_per_msec * boot_delay;
792
793 timeout = jiffies + msecs_to_jiffies(boot_delay);
794 while (k) {
795 k--;
796 cpu_relax();
797 /*
798 * use (volatile) jiffies to prevent
799 * compiler reduction; loop termination via jiffies
800 * is secondary and may or may not happen.
801 */
802 if (time_after(jiffies, timeout))
803 break;
804 touch_nmi_watchdog();
805 }
806 }
807 #else
808 static inline void boot_delay_msec(int level)
809 {
810 }
811 #endif
812
813 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
814 int dmesg_restrict = 1;
815 #else
816 int dmesg_restrict;
817 #endif
818
819 static int syslog_action_restricted(int type)
820 {
821 if (dmesg_restrict)
822 return 1;
823 /* Unless restricted, we allow "read all" and "get buffer size" for everybody */
824 return type != SYSLOG_ACTION_READ_ALL && type != SYSLOG_ACTION_SIZE_BUFFER;
825 }
826
827 static int check_syslog_permissions(int type, bool from_file)
828 {
829 /*
830 * If this is from /proc/kmsg and we've already opened it, then we've
831 * already done the capabilities checks at open time.
832 */
833 if (from_file && type != SYSLOG_ACTION_OPEN)
834 return 0;
835
836 if (syslog_action_restricted(type)) {
837 if (capable(CAP_SYSLOG))
838 return 0;
839 /* For historical reasons, accept CAP_SYS_ADMIN too, with a warning */
840 if (capable(CAP_SYS_ADMIN)) {
841 printk_once(KERN_WARNING "%s (%d): "
842 "Attempt to access syslog with CAP_SYS_ADMIN "
843 "but no CAP_SYSLOG (deprecated).\n",
844 current->comm, task_pid_nr(current));
845 return 0;
846 }
847 return -EPERM;
848 }
849 return 0;
850 }
851
852 #if defined(CONFIG_PRINTK_TIME)
853 static bool printk_time = 1;
854 #else
855 static bool printk_time;
856 #endif
857 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
858
859 static size_t print_time(u64 ts, char *buf)
860 {
861 unsigned long rem_nsec;
862
863 if (!printk_time)
864 return 0;
865
866 rem_nsec = do_div(ts, 1000000000);
867
868 if (!buf)
869 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
870
871 return sprintf(buf, "[%5lu.%06lu] ",
872 (unsigned long)ts, rem_nsec / 1000);
873 }
874
875 static size_t print_prefix(const struct log *msg, bool syslog, char *buf)
876 {
877 size_t len = 0;
878 unsigned int prefix = (msg->facility << 3) | msg->level;
879
880 if (syslog) {
881 if (buf) {
882 len += sprintf(buf, "<%u>", prefix);
883 } else {
884 len += 3;
885 if (prefix > 999)
886 len += 3;
887 else if (prefix > 99)
888 len += 2;
889 else if (prefix > 9)
890 len++;
891 }
892 }
893
894 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
895 return len;
896 }
897
898 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
899 bool syslog, char *buf, size_t size)
900 {
901 const char *text = log_text(msg);
902 size_t text_size = msg->text_len;
903 bool prefix = true;
904 bool newline = true;
905 size_t len = 0;
906
907 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
908 prefix = false;
909
910 if (msg->flags & LOG_CONT) {
911 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
912 prefix = false;
913
914 if (!(msg->flags & LOG_NEWLINE))
915 newline = false;
916 }
917
918 do {
919 const char *next = memchr(text, '\n', text_size);
920 size_t text_len;
921
922 if (next) {
923 text_len = next - text;
924 next++;
925 text_size -= next - text;
926 } else {
927 text_len = text_size;
928 }
929
930 if (buf) {
931 if (print_prefix(msg, syslog, NULL) +
932 text_len + 1 >= size - len)
933 break;
934
935 if (prefix)
936 len += print_prefix(msg, syslog, buf + len);
937 memcpy(buf + len, text, text_len);
938 len += text_len;
939 if (next || newline)
940 buf[len++] = '\n';
941 } else {
942 /* SYSLOG_ACTION_* buffer size only calculation */
943 if (prefix)
944 len += print_prefix(msg, syslog, NULL);
945 len += text_len;
946 if (next || newline)
947 len++;
948 }
949
950 prefix = true;
951 text = next;
952 } while (text);
953
954 return len;
955 }
956
957 static int syslog_print(char __user *buf, int size)
958 {
959 char *text;
960 struct log *msg;
961 int len = 0;
962
963 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
964 if (!text)
965 return -ENOMEM;
966
967 while (size > 0) {
968 size_t n;
969 size_t skip;
970
971 raw_spin_lock_irq(&logbuf_lock);
972 if (syslog_seq < log_first_seq) {
973 /* messages are gone, move to first one */
974 syslog_seq = log_first_seq;
975 syslog_idx = log_first_idx;
976 syslog_prev = 0;
977 syslog_partial = 0;
978 }
979 if (syslog_seq == log_next_seq) {
980 raw_spin_unlock_irq(&logbuf_lock);
981 break;
982 }
983
984 skip = syslog_partial;
985 msg = log_from_idx(syslog_idx);
986 n = msg_print_text(msg, syslog_prev, true, text,
987 LOG_LINE_MAX + PREFIX_MAX);
988 if (n - syslog_partial <= size) {
989 /* message fits into buffer, move forward */
990 syslog_idx = log_next(syslog_idx);
991 syslog_seq++;
992 syslog_prev = msg->flags;
993 n -= syslog_partial;
994 syslog_partial = 0;
995 } else if (!len){
996 /* partial read(), remember position */
997 n = size;
998 syslog_partial += n;
999 } else
1000 n = 0;
1001 raw_spin_unlock_irq(&logbuf_lock);
1002
1003 if (!n)
1004 break;
1005
1006 if (copy_to_user(buf, text + skip, n)) {
1007 if (!len)
1008 len = -EFAULT;
1009 break;
1010 }
1011
1012 len += n;
1013 size -= n;
1014 buf += n;
1015 }
1016
1017 kfree(text);
1018 return len;
1019 }
1020
1021 static int syslog_print_all(char __user *buf, int size, bool clear)
1022 {
1023 char *text;
1024 int len = 0;
1025
1026 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1027 if (!text)
1028 return -ENOMEM;
1029
1030 raw_spin_lock_irq(&logbuf_lock);
1031 if (buf) {
1032 u64 next_seq;
1033 u64 seq;
1034 u32 idx;
1035 enum log_flags prev;
1036
1037 if (clear_seq < log_first_seq) {
1038 /* messages are gone, move to first available one */
1039 clear_seq = log_first_seq;
1040 clear_idx = log_first_idx;
1041 }
1042
1043 /*
1044 * Find first record that fits, including all following records,
1045 * into the user-provided buffer for this dump.
1046 */
1047 seq = clear_seq;
1048 idx = clear_idx;
1049 prev = 0;
1050 while (seq < log_next_seq) {
1051 struct log *msg = log_from_idx(idx);
1052
1053 len += msg_print_text(msg, prev, true, NULL, 0);
1054 prev = msg->flags;
1055 idx = log_next(idx);
1056 seq++;
1057 }
1058
1059 /* move first record forward until length fits into the buffer */
1060 seq = clear_seq;
1061 idx = clear_idx;
1062 prev = 0;
1063 while (len > size && seq < log_next_seq) {
1064 struct log *msg = log_from_idx(idx);
1065
1066 len -= msg_print_text(msg, prev, true, NULL, 0);
1067 prev = msg->flags;
1068 idx = log_next(idx);
1069 seq++;
1070 }
1071
1072 /* last message fitting into this dump */
1073 next_seq = log_next_seq;
1074
1075 len = 0;
1076 prev = 0;
1077 while (len >= 0 && seq < next_seq) {
1078 struct log *msg = log_from_idx(idx);
1079 int textlen;
1080
1081 textlen = msg_print_text(msg, prev, true, text,
1082 LOG_LINE_MAX + PREFIX_MAX);
1083 if (textlen < 0) {
1084 len = textlen;
1085 break;
1086 }
1087 idx = log_next(idx);
1088 seq++;
1089 prev = msg->flags;
1090
1091 raw_spin_unlock_irq(&logbuf_lock);
1092 if (copy_to_user(buf + len, text, textlen))
1093 len = -EFAULT;
1094 else
1095 len += textlen;
1096 raw_spin_lock_irq(&logbuf_lock);
1097
1098 if (seq < log_first_seq) {
1099 /* messages are gone, move to next one */
1100 seq = log_first_seq;
1101 idx = log_first_idx;
1102 prev = 0;
1103 }
1104 }
1105 }
1106
1107 if (clear) {
1108 clear_seq = log_next_seq;
1109 clear_idx = log_next_idx;
1110 }
1111 raw_spin_unlock_irq(&logbuf_lock);
1112
1113 kfree(text);
1114 return len;
1115 }
1116
1117 int do_syslog(int type, char __user *buf, int len, bool from_file)
1118 {
1119 bool clear = false;
1120 static int saved_console_loglevel = -1;
1121 int error;
1122
1123 error = check_syslog_permissions(type, from_file);
1124 if (error)
1125 goto out;
1126
1127 error = security_syslog(type);
1128 if (error)
1129 return error;
1130
1131 switch (type) {
1132 case SYSLOG_ACTION_CLOSE: /* Close log */
1133 break;
1134 case SYSLOG_ACTION_OPEN: /* Open log */
1135 break;
1136 case SYSLOG_ACTION_READ: /* Read from log */
1137 error = -EINVAL;
1138 if (!buf || len < 0)
1139 goto out;
1140 error = 0;
1141 if (!len)
1142 goto out;
1143 if (!access_ok(VERIFY_WRITE, buf, len)) {
1144 error = -EFAULT;
1145 goto out;
1146 }
1147 error = wait_event_interruptible(log_wait,
1148 syslog_seq != log_next_seq);
1149 if (error)
1150 goto out;
1151 error = syslog_print(buf, len);
1152 break;
1153 /* Read/clear last kernel messages */
1154 case SYSLOG_ACTION_READ_CLEAR:
1155 clear = true;
1156 /* FALL THRU */
1157 /* Read last kernel messages */
1158 case SYSLOG_ACTION_READ_ALL:
1159 error = -EINVAL;
1160 if (!buf || len < 0)
1161 goto out;
1162 error = 0;
1163 if (!len)
1164 goto out;
1165 if (!access_ok(VERIFY_WRITE, buf, len)) {
1166 error = -EFAULT;
1167 goto out;
1168 }
1169 error = syslog_print_all(buf, len, clear);
1170 break;
1171 /* Clear ring buffer */
1172 case SYSLOG_ACTION_CLEAR:
1173 syslog_print_all(NULL, 0, true);
1174 break;
1175 /* Disable logging to console */
1176 case SYSLOG_ACTION_CONSOLE_OFF:
1177 if (saved_console_loglevel == -1)
1178 saved_console_loglevel = console_loglevel;
1179 console_loglevel = minimum_console_loglevel;
1180 break;
1181 /* Enable logging to console */
1182 case SYSLOG_ACTION_CONSOLE_ON:
1183 if (saved_console_loglevel != -1) {
1184 console_loglevel = saved_console_loglevel;
1185 saved_console_loglevel = -1;
1186 }
1187 break;
1188 /* Set level of messages printed to console */
1189 case SYSLOG_ACTION_CONSOLE_LEVEL:
1190 error = -EINVAL;
1191 if (len < 1 || len > 8)
1192 goto out;
1193 if (len < minimum_console_loglevel)
1194 len = minimum_console_loglevel;
1195 console_loglevel = len;
1196 /* Implicitly re-enable logging to console */
1197 saved_console_loglevel = -1;
1198 error = 0;
1199 break;
1200 /* Number of chars in the log buffer */
1201 case SYSLOG_ACTION_SIZE_UNREAD:
1202 raw_spin_lock_irq(&logbuf_lock);
1203 if (syslog_seq < log_first_seq) {
1204 /* messages are gone, move to first one */
1205 syslog_seq = log_first_seq;
1206 syslog_idx = log_first_idx;
1207 syslog_prev = 0;
1208 syslog_partial = 0;
1209 }
1210 if (from_file) {
1211 /*
1212 * Short-cut for poll(/"proc/kmsg") which simply checks
1213 * for pending data, not the size; return the count of
1214 * records, not the length.
1215 */
1216 error = log_next_idx - syslog_idx;
1217 } else {
1218 u64 seq = syslog_seq;
1219 u32 idx = syslog_idx;
1220 enum log_flags prev = syslog_prev;
1221
1222 error = 0;
1223 while (seq < log_next_seq) {
1224 struct log *msg = log_from_idx(idx);
1225
1226 error += msg_print_text(msg, prev, true, NULL, 0);
1227 idx = log_next(idx);
1228 seq++;
1229 prev = msg->flags;
1230 }
1231 error -= syslog_partial;
1232 }
1233 raw_spin_unlock_irq(&logbuf_lock);
1234 break;
1235 /* Size of the log buffer */
1236 case SYSLOG_ACTION_SIZE_BUFFER:
1237 error = log_buf_len;
1238 break;
1239 default:
1240 error = -EINVAL;
1241 break;
1242 }
1243 out:
1244 return error;
1245 }
1246
1247 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1248 {
1249 return do_syslog(type, buf, len, SYSLOG_FROM_CALL);
1250 }
1251
1252 /*
1253 * Call the console drivers, asking them to write out
1254 * log_buf[start] to log_buf[end - 1].
1255 * The console_lock must be held.
1256 */
1257 static void call_console_drivers(int level, const char *text, size_t len)
1258 {
1259 struct console *con;
1260
1261 trace_console(text, len);
1262
1263 if (level >= console_loglevel && !ignore_loglevel)
1264 return;
1265 if (!console_drivers)
1266 return;
1267
1268 for_each_console(con) {
1269 if (exclusive_console && con != exclusive_console)
1270 continue;
1271 if (!(con->flags & CON_ENABLED))
1272 continue;
1273 if (!con->write)
1274 continue;
1275 if (!cpu_online(smp_processor_id()) &&
1276 !(con->flags & CON_ANYTIME))
1277 continue;
1278 con->write(con, text, len);
1279 }
1280 }
1281
1282 /*
1283 * Zap console related locks when oopsing. Only zap at most once
1284 * every 10 seconds, to leave time for slow consoles to print a
1285 * full oops.
1286 */
1287 static void zap_locks(void)
1288 {
1289 static unsigned long oops_timestamp;
1290
1291 if (time_after_eq(jiffies, oops_timestamp) &&
1292 !time_after(jiffies, oops_timestamp + 30 * HZ))
1293 return;
1294
1295 oops_timestamp = jiffies;
1296
1297 debug_locks_off();
1298 /* If a crash is occurring, make sure we can't deadlock */
1299 raw_spin_lock_init(&logbuf_lock);
1300 /* And make sure that we print immediately */
1301 sema_init(&console_sem, 1);
1302 }
1303
1304 /* Check if we have any console registered that can be called early in boot. */
1305 static int have_callable_console(void)
1306 {
1307 struct console *con;
1308
1309 for_each_console(con)
1310 if (con->flags & CON_ANYTIME)
1311 return 1;
1312
1313 return 0;
1314 }
1315
1316 /*
1317 * Can we actually use the console at this time on this cpu?
1318 *
1319 * Console drivers may assume that per-cpu resources have
1320 * been allocated. So unless they're explicitly marked as
1321 * being able to cope (CON_ANYTIME) don't call them until
1322 * this CPU is officially up.
1323 */
1324 static inline int can_use_console(unsigned int cpu)
1325 {
1326 return cpu_online(cpu) || have_callable_console();
1327 }
1328
1329 /*
1330 * Try to get console ownership to actually show the kernel
1331 * messages from a 'printk'. Return true (and with the
1332 * console_lock held, and 'console_locked' set) if it
1333 * is successful, false otherwise.
1334 *
1335 * This gets called with the 'logbuf_lock' spinlock held and
1336 * interrupts disabled. It should return with 'lockbuf_lock'
1337 * released but interrupts still disabled.
1338 */
1339 static int console_trylock_for_printk(unsigned int cpu)
1340 __releases(&logbuf_lock)
1341 {
1342 int retval = 0, wake = 0;
1343
1344 if (console_trylock()) {
1345 retval = 1;
1346
1347 /*
1348 * If we can't use the console, we need to release
1349 * the console semaphore by hand to avoid flushing
1350 * the buffer. We need to hold the console semaphore
1351 * in order to do this test safely.
1352 */
1353 if (!can_use_console(cpu)) {
1354 console_locked = 0;
1355 wake = 1;
1356 retval = 0;
1357 }
1358 }
1359 logbuf_cpu = UINT_MAX;
1360 if (wake)
1361 up(&console_sem);
1362 raw_spin_unlock(&logbuf_lock);
1363 return retval;
1364 }
1365
1366 int printk_delay_msec __read_mostly;
1367
1368 static inline void printk_delay(void)
1369 {
1370 if (unlikely(printk_delay_msec)) {
1371 int m = printk_delay_msec;
1372
1373 while (m--) {
1374 mdelay(1);
1375 touch_nmi_watchdog();
1376 }
1377 }
1378 }
1379
1380 /*
1381 * Continuation lines are buffered, and not committed to the record buffer
1382 * until the line is complete, or a race forces it. The line fragments
1383 * though, are printed immediately to the consoles to ensure everything has
1384 * reached the console in case of a kernel crash.
1385 */
1386 static struct cont {
1387 char buf[LOG_LINE_MAX];
1388 size_t len; /* length == 0 means unused buffer */
1389 size_t cons; /* bytes written to console */
1390 struct task_struct *owner; /* task of first print*/
1391 u64 ts_nsec; /* time of first print */
1392 u8 level; /* log level of first message */
1393 u8 facility; /* log level of first message */
1394 enum log_flags flags; /* prefix, newline flags */
1395 bool flushed:1; /* buffer sealed and committed */
1396 } cont;
1397
1398 static void cont_flush(enum log_flags flags)
1399 {
1400 if (cont.flushed)
1401 return;
1402 if (cont.len == 0)
1403 return;
1404
1405 if (cont.cons) {
1406 /*
1407 * If a fragment of this line was directly flushed to the
1408 * console; wait for the console to pick up the rest of the
1409 * line. LOG_NOCONS suppresses a duplicated output.
1410 */
1411 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1412 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1413 cont.flags = flags;
1414 cont.flushed = true;
1415 } else {
1416 /*
1417 * If no fragment of this line ever reached the console,
1418 * just submit it to the store and free the buffer.
1419 */
1420 log_store(cont.facility, cont.level, flags, 0,
1421 NULL, 0, cont.buf, cont.len);
1422 cont.len = 0;
1423 }
1424 }
1425
1426 static bool cont_add(int facility, int level, const char *text, size_t len)
1427 {
1428 if (cont.len && cont.flushed)
1429 return false;
1430
1431 if (cont.len + len > sizeof(cont.buf)) {
1432 /* the line gets too long, split it up in separate records */
1433 cont_flush(LOG_CONT);
1434 return false;
1435 }
1436
1437 if (!cont.len) {
1438 cont.facility = facility;
1439 cont.level = level;
1440 cont.owner = current;
1441 cont.ts_nsec = local_clock();
1442 cont.flags = 0;
1443 cont.cons = 0;
1444 cont.flushed = false;
1445 }
1446
1447 memcpy(cont.buf + cont.len, text, len);
1448 cont.len += len;
1449
1450 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1451 cont_flush(LOG_CONT);
1452
1453 return true;
1454 }
1455
1456 static size_t cont_print_text(char *text, size_t size)
1457 {
1458 size_t textlen = 0;
1459 size_t len;
1460
1461 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1462 textlen += print_time(cont.ts_nsec, text);
1463 size -= textlen;
1464 }
1465
1466 len = cont.len - cont.cons;
1467 if (len > 0) {
1468 if (len+1 > size)
1469 len = size-1;
1470 memcpy(text + textlen, cont.buf + cont.cons, len);
1471 textlen += len;
1472 cont.cons = cont.len;
1473 }
1474
1475 if (cont.flushed) {
1476 if (cont.flags & LOG_NEWLINE)
1477 text[textlen++] = '\n';
1478 /* got everything, release buffer */
1479 cont.len = 0;
1480 }
1481 return textlen;
1482 }
1483
1484 asmlinkage int vprintk_emit(int facility, int level,
1485 const char *dict, size_t dictlen,
1486 const char *fmt, va_list args)
1487 {
1488 static int recursion_bug;
1489 static char textbuf[LOG_LINE_MAX];
1490 char *text = textbuf;
1491 size_t text_len;
1492 enum log_flags lflags = 0;
1493 unsigned long flags;
1494 int this_cpu;
1495 int printed_len = 0;
1496
1497 boot_delay_msec(level);
1498 printk_delay();
1499
1500 /* This stops the holder of console_sem just where we want him */
1501 local_irq_save(flags);
1502 this_cpu = smp_processor_id();
1503
1504 /*
1505 * Ouch, printk recursed into itself!
1506 */
1507 if (unlikely(logbuf_cpu == this_cpu)) {
1508 /*
1509 * If a crash is occurring during printk() on this CPU,
1510 * then try to get the crash message out but make sure
1511 * we can't deadlock. Otherwise just return to avoid the
1512 * recursion and return - but flag the recursion so that
1513 * it can be printed at the next appropriate moment:
1514 */
1515 if (!oops_in_progress && !lockdep_recursing(current)) {
1516 recursion_bug = 1;
1517 goto out_restore_irqs;
1518 }
1519 zap_locks();
1520 }
1521
1522 lockdep_off();
1523 raw_spin_lock(&logbuf_lock);
1524 logbuf_cpu = this_cpu;
1525
1526 if (recursion_bug) {
1527 static const char recursion_msg[] =
1528 "BUG: recent printk recursion!";
1529
1530 recursion_bug = 0;
1531 printed_len += strlen(recursion_msg);
1532 /* emit KERN_CRIT message */
1533 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1534 NULL, 0, recursion_msg, printed_len);
1535 }
1536
1537 /*
1538 * The printf needs to come first; we need the syslog
1539 * prefix which might be passed-in as a parameter.
1540 */
1541 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1542
1543 /* mark and strip a trailing newline */
1544 if (text_len && text[text_len-1] == '\n') {
1545 text_len--;
1546 lflags |= LOG_NEWLINE;
1547 }
1548
1549 /* strip kernel syslog prefix and extract log level or control flags */
1550 if (facility == 0) {
1551 int kern_level = printk_get_level(text);
1552
1553 if (kern_level) {
1554 const char *end_of_header = printk_skip_level(text);
1555 switch (kern_level) {
1556 case '0' ... '7':
1557 if (level == -1)
1558 level = kern_level - '0';
1559 case 'd': /* KERN_DEFAULT */
1560 lflags |= LOG_PREFIX;
1561 case 'c': /* KERN_CONT */
1562 break;
1563 }
1564 text_len -= end_of_header - text;
1565 text = (char *)end_of_header;
1566 }
1567 }
1568
1569 if (level == -1)
1570 level = default_message_loglevel;
1571
1572 if (dict)
1573 lflags |= LOG_PREFIX|LOG_NEWLINE;
1574
1575 if (!(lflags & LOG_NEWLINE)) {
1576 /*
1577 * Flush the conflicting buffer. An earlier newline was missing,
1578 * or another task also prints continuation lines.
1579 */
1580 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1581 cont_flush(LOG_NEWLINE);
1582
1583 /* buffer line if possible, otherwise store it right away */
1584 if (!cont_add(facility, level, text, text_len))
1585 log_store(facility, level, lflags | LOG_CONT, 0,
1586 dict, dictlen, text, text_len);
1587 } else {
1588 bool stored = false;
1589
1590 /*
1591 * If an earlier newline was missing and it was the same task,
1592 * either merge it with the current buffer and flush, or if
1593 * there was a race with interrupts (prefix == true) then just
1594 * flush it out and store this line separately.
1595 */
1596 if (cont.len && cont.owner == current) {
1597 if (!(lflags & LOG_PREFIX))
1598 stored = cont_add(facility, level, text, text_len);
1599 cont_flush(LOG_NEWLINE);
1600 }
1601
1602 if (!stored)
1603 log_store(facility, level, lflags, 0,
1604 dict, dictlen, text, text_len);
1605 }
1606 printed_len += text_len;
1607
1608 /*
1609 * Try to acquire and then immediately release the console semaphore.
1610 * The release will print out buffers and wake up /dev/kmsg and syslog()
1611 * users.
1612 *
1613 * The console_trylock_for_printk() function will release 'logbuf_lock'
1614 * regardless of whether it actually gets the console semaphore or not.
1615 */
1616 if (console_trylock_for_printk(this_cpu))
1617 console_unlock();
1618
1619 lockdep_on();
1620 out_restore_irqs:
1621 local_irq_restore(flags);
1622
1623 return printed_len;
1624 }
1625 EXPORT_SYMBOL(vprintk_emit);
1626
1627 asmlinkage int vprintk(const char *fmt, va_list args)
1628 {
1629 return vprintk_emit(0, -1, NULL, 0, fmt, args);
1630 }
1631 EXPORT_SYMBOL(vprintk);
1632
1633 asmlinkage int printk_emit(int facility, int level,
1634 const char *dict, size_t dictlen,
1635 const char *fmt, ...)
1636 {
1637 va_list args;
1638 int r;
1639
1640 va_start(args, fmt);
1641 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1642 va_end(args);
1643
1644 return r;
1645 }
1646 EXPORT_SYMBOL(printk_emit);
1647
1648 /**
1649 * printk - print a kernel message
1650 * @fmt: format string
1651 *
1652 * This is printk(). It can be called from any context. We want it to work.
1653 *
1654 * We try to grab the console_lock. If we succeed, it's easy - we log the
1655 * output and call the console drivers. If we fail to get the semaphore, we
1656 * place the output into the log buffer and return. The current holder of
1657 * the console_sem will notice the new output in console_unlock(); and will
1658 * send it to the consoles before releasing the lock.
1659 *
1660 * One effect of this deferred printing is that code which calls printk() and
1661 * then changes console_loglevel may break. This is because console_loglevel
1662 * is inspected when the actual printing occurs.
1663 *
1664 * See also:
1665 * printf(3)
1666 *
1667 * See the vsnprintf() documentation for format string extensions over C99.
1668 */
1669 asmlinkage int printk(const char *fmt, ...)
1670 {
1671 va_list args;
1672 int r;
1673
1674 #ifdef CONFIG_KGDB_KDB
1675 if (unlikely(kdb_trap_printk)) {
1676 va_start(args, fmt);
1677 r = vkdb_printf(fmt, args);
1678 va_end(args);
1679 return r;
1680 }
1681 #endif
1682 va_start(args, fmt);
1683 r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1684 va_end(args);
1685
1686 return r;
1687 }
1688 EXPORT_SYMBOL(printk);
1689
1690 #else /* CONFIG_PRINTK */
1691
1692 #define LOG_LINE_MAX 0
1693 #define PREFIX_MAX 0
1694 #define LOG_LINE_MAX 0
1695 static u64 syslog_seq;
1696 static u32 syslog_idx;
1697 static u64 console_seq;
1698 static u32 console_idx;
1699 static enum log_flags syslog_prev;
1700 static u64 log_first_seq;
1701 static u32 log_first_idx;
1702 static u64 log_next_seq;
1703 static enum log_flags console_prev;
1704 static struct cont {
1705 size_t len;
1706 size_t cons;
1707 u8 level;
1708 bool flushed:1;
1709 } cont;
1710 static struct log *log_from_idx(u32 idx) { return NULL; }
1711 static u32 log_next(u32 idx) { return 0; }
1712 static void call_console_drivers(int level, const char *text, size_t len) {}
1713 static size_t msg_print_text(const struct log *msg, enum log_flags prev,
1714 bool syslog, char *buf, size_t size) { return 0; }
1715 static size_t cont_print_text(char *text, size_t size) { return 0; }
1716
1717 #endif /* CONFIG_PRINTK */
1718
1719 #ifdef CONFIG_EARLY_PRINTK
1720 struct console *early_console;
1721
1722 void early_vprintk(const char *fmt, va_list ap)
1723 {
1724 if (early_console) {
1725 char buf[512];
1726 int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1727
1728 early_console->write(early_console, buf, n);
1729 }
1730 }
1731
1732 asmlinkage void early_printk(const char *fmt, ...)
1733 {
1734 va_list ap;
1735
1736 va_start(ap, fmt);
1737 early_vprintk(fmt, ap);
1738 va_end(ap);
1739 }
1740 #endif
1741
1742 static int __add_preferred_console(char *name, int idx, char *options,
1743 char *brl_options)
1744 {
1745 struct console_cmdline *c;
1746 int i;
1747
1748 /*
1749 * See if this tty is not yet registered, and
1750 * if we have a slot free.
1751 */
1752 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1753 if (strcmp(console_cmdline[i].name, name) == 0 &&
1754 console_cmdline[i].index == idx) {
1755 if (!brl_options)
1756 selected_console = i;
1757 return 0;
1758 }
1759 if (i == MAX_CMDLINECONSOLES)
1760 return -E2BIG;
1761 if (!brl_options)
1762 selected_console = i;
1763 c = &console_cmdline[i];
1764 strlcpy(c->name, name, sizeof(c->name));
1765 c->options = options;
1766 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1767 c->brl_options = brl_options;
1768 #endif
1769 c->index = idx;
1770 return 0;
1771 }
1772 /*
1773 * Set up a list of consoles. Called from init/main.c
1774 */
1775 static int __init console_setup(char *str)
1776 {
1777 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1778 char *s, *options, *brl_options = NULL;
1779 int idx;
1780
1781 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
1782 if (!memcmp(str, "brl,", 4)) {
1783 brl_options = "";
1784 str += 4;
1785 } else if (!memcmp(str, "brl=", 4)) {
1786 brl_options = str + 4;
1787 str = strchr(brl_options, ',');
1788 if (!str) {
1789 printk(KERN_ERR "need port name after brl=\n");
1790 return 1;
1791 }
1792 *(str++) = 0;
1793 }
1794 #endif
1795
1796 /*
1797 * Decode str into name, index, options.
1798 */
1799 if (str[0] >= '0' && str[0] <= '9') {
1800 strcpy(buf, "ttyS");
1801 strncpy(buf + 4, str, sizeof(buf) - 5);
1802 } else {
1803 strncpy(buf, str, sizeof(buf) - 1);
1804 }
1805 buf[sizeof(buf) - 1] = 0;
1806 if ((options = strchr(str, ',')) != NULL)
1807 *(options++) = 0;
1808 #ifdef __sparc__
1809 if (!strcmp(str, "ttya"))
1810 strcpy(buf, "ttyS0");
1811 if (!strcmp(str, "ttyb"))
1812 strcpy(buf, "ttyS1");
1813 #endif
1814 for (s = buf; *s; s++)
1815 if ((*s >= '0' && *s <= '9') || *s == ',')
1816 break;
1817 idx = simple_strtoul(s, NULL, 10);
1818 *s = 0;
1819
1820 __add_preferred_console(buf, idx, options, brl_options);
1821 console_set_on_cmdline = 1;
1822 return 1;
1823 }
1824 __setup("console=", console_setup);
1825
1826 /**
1827 * add_preferred_console - add a device to the list of preferred consoles.
1828 * @name: device name
1829 * @idx: device index
1830 * @options: options for this console
1831 *
1832 * The last preferred console added will be used for kernel messages
1833 * and stdin/out/err for init. Normally this is used by console_setup
1834 * above to handle user-supplied console arguments; however it can also
1835 * be used by arch-specific code either to override the user or more
1836 * commonly to provide a default console (ie from PROM variables) when
1837 * the user has not supplied one.
1838 */
1839 int add_preferred_console(char *name, int idx, char *options)
1840 {
1841 return __add_preferred_console(name, idx, options, NULL);
1842 }
1843
1844 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1845 {
1846 struct console_cmdline *c;
1847 int i;
1848
1849 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0]; i++)
1850 if (strcmp(console_cmdline[i].name, name) == 0 &&
1851 console_cmdline[i].index == idx) {
1852 c = &console_cmdline[i];
1853 strlcpy(c->name, name_new, sizeof(c->name));
1854 c->name[sizeof(c->name) - 1] = 0;
1855 c->options = options;
1856 c->index = idx_new;
1857 return i;
1858 }
1859 /* not found */
1860 return -1;
1861 }
1862
1863 bool console_suspend_enabled = 1;
1864 EXPORT_SYMBOL(console_suspend_enabled);
1865
1866 static int __init console_suspend_disable(char *str)
1867 {
1868 console_suspend_enabled = 0;
1869 return 1;
1870 }
1871 __setup("no_console_suspend", console_suspend_disable);
1872 module_param_named(console_suspend, console_suspend_enabled,
1873 bool, S_IRUGO | S_IWUSR);
1874 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1875 " and hibernate operations");
1876
1877 /**
1878 * suspend_console - suspend the console subsystem
1879 *
1880 * This disables printk() while we go into suspend states
1881 */
1882 void suspend_console(void)
1883 {
1884 if (!console_suspend_enabled)
1885 return;
1886 printk("Suspending console(s) (use no_console_suspend to debug)\n");
1887 console_lock();
1888 console_suspended = 1;
1889 up(&console_sem);
1890 }
1891
1892 void resume_console(void)
1893 {
1894 if (!console_suspend_enabled)
1895 return;
1896 down(&console_sem);
1897 console_suspended = 0;
1898 console_unlock();
1899 }
1900
1901 /**
1902 * console_cpu_notify - print deferred console messages after CPU hotplug
1903 * @self: notifier struct
1904 * @action: CPU hotplug event
1905 * @hcpu: unused
1906 *
1907 * If printk() is called from a CPU that is not online yet, the messages
1908 * will be spooled but will not show up on the console. This function is
1909 * called when a new CPU comes online (or fails to come up), and ensures
1910 * that any such output gets printed.
1911 */
1912 static int __cpuinit console_cpu_notify(struct notifier_block *self,
1913 unsigned long action, void *hcpu)
1914 {
1915 switch (action) {
1916 case CPU_ONLINE:
1917 case CPU_DEAD:
1918 case CPU_DOWN_FAILED:
1919 case CPU_UP_CANCELED:
1920 console_lock();
1921 console_unlock();
1922 }
1923 return NOTIFY_OK;
1924 }
1925
1926 /**
1927 * console_lock - lock the console system for exclusive use.
1928 *
1929 * Acquires a lock which guarantees that the caller has
1930 * exclusive access to the console system and the console_drivers list.
1931 *
1932 * Can sleep, returns nothing.
1933 */
1934 void console_lock(void)
1935 {
1936 might_sleep();
1937
1938 down(&console_sem);
1939 if (console_suspended)
1940 return;
1941 console_locked = 1;
1942 console_may_schedule = 1;
1943 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1944 }
1945 EXPORT_SYMBOL(console_lock);
1946
1947 /**
1948 * console_trylock - try to lock the console system for exclusive use.
1949 *
1950 * Tried to acquire a lock which guarantees that the caller has
1951 * exclusive access to the console system and the console_drivers list.
1952 *
1953 * returns 1 on success, and 0 on failure to acquire the lock.
1954 */
1955 int console_trylock(void)
1956 {
1957 if (down_trylock(&console_sem))
1958 return 0;
1959 if (console_suspended) {
1960 up(&console_sem);
1961 return 0;
1962 }
1963 console_locked = 1;
1964 console_may_schedule = 0;
1965 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1966 return 1;
1967 }
1968 EXPORT_SYMBOL(console_trylock);
1969
1970 int is_console_locked(void)
1971 {
1972 return console_locked;
1973 }
1974
1975 static void console_cont_flush(char *text, size_t size)
1976 {
1977 unsigned long flags;
1978 size_t len;
1979
1980 raw_spin_lock_irqsave(&logbuf_lock, flags);
1981
1982 if (!cont.len)
1983 goto out;
1984
1985 /*
1986 * We still queue earlier records, likely because the console was
1987 * busy. The earlier ones need to be printed before this one, we
1988 * did not flush any fragment so far, so just let it queue up.
1989 */
1990 if (console_seq < log_next_seq && !cont.cons)
1991 goto out;
1992
1993 len = cont_print_text(text, size);
1994 raw_spin_unlock(&logbuf_lock);
1995 stop_critical_timings();
1996 call_console_drivers(cont.level, text, len);
1997 start_critical_timings();
1998 local_irq_restore(flags);
1999 return;
2000 out:
2001 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2002 }
2003
2004 /**
2005 * console_unlock - unlock the console system
2006 *
2007 * Releases the console_lock which the caller holds on the console system
2008 * and the console driver list.
2009 *
2010 * While the console_lock was held, console output may have been buffered
2011 * by printk(). If this is the case, console_unlock(); emits
2012 * the output prior to releasing the lock.
2013 *
2014 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2015 *
2016 * console_unlock(); may be called from any context.
2017 */
2018 void console_unlock(void)
2019 {
2020 static char text[LOG_LINE_MAX + PREFIX_MAX];
2021 static u64 seen_seq;
2022 unsigned long flags;
2023 bool wake_klogd = false;
2024 bool retry;
2025
2026 if (console_suspended) {
2027 up(&console_sem);
2028 return;
2029 }
2030
2031 console_may_schedule = 0;
2032
2033 /* flush buffered message fragment immediately to console */
2034 console_cont_flush(text, sizeof(text));
2035 again:
2036 for (;;) {
2037 struct log *msg;
2038 size_t len;
2039 int level;
2040
2041 raw_spin_lock_irqsave(&logbuf_lock, flags);
2042 if (seen_seq != log_next_seq) {
2043 wake_klogd = true;
2044 seen_seq = log_next_seq;
2045 }
2046
2047 if (console_seq < log_first_seq) {
2048 /* messages are gone, move to first one */
2049 console_seq = log_first_seq;
2050 console_idx = log_first_idx;
2051 console_prev = 0;
2052 }
2053 skip:
2054 if (console_seq == log_next_seq)
2055 break;
2056
2057 msg = log_from_idx(console_idx);
2058 if (msg->flags & LOG_NOCONS) {
2059 /*
2060 * Skip record we have buffered and already printed
2061 * directly to the console when we received it.
2062 */
2063 console_idx = log_next(console_idx);
2064 console_seq++;
2065 /*
2066 * We will get here again when we register a new
2067 * CON_PRINTBUFFER console. Clear the flag so we
2068 * will properly dump everything later.
2069 */
2070 msg->flags &= ~LOG_NOCONS;
2071 console_prev = msg->flags;
2072 goto skip;
2073 }
2074
2075 level = msg->level;
2076 len = msg_print_text(msg, console_prev, false,
2077 text, sizeof(text));
2078 console_idx = log_next(console_idx);
2079 console_seq++;
2080 console_prev = msg->flags;
2081 raw_spin_unlock(&logbuf_lock);
2082
2083 stop_critical_timings(); /* don't trace print latency */
2084 call_console_drivers(level, text, len);
2085 start_critical_timings();
2086 local_irq_restore(flags);
2087 }
2088 console_locked = 0;
2089 mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2090
2091 /* Release the exclusive_console once it is used */
2092 if (unlikely(exclusive_console))
2093 exclusive_console = NULL;
2094
2095 raw_spin_unlock(&logbuf_lock);
2096
2097 up(&console_sem);
2098
2099 /*
2100 * Someone could have filled up the buffer again, so re-check if there's
2101 * something to flush. In case we cannot trylock the console_sem again,
2102 * there's a new owner and the console_unlock() from them will do the
2103 * flush, no worries.
2104 */
2105 raw_spin_lock(&logbuf_lock);
2106 retry = console_seq != log_next_seq;
2107 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2108
2109 if (retry && console_trylock())
2110 goto again;
2111
2112 if (wake_klogd)
2113 wake_up_klogd();
2114 }
2115 EXPORT_SYMBOL(console_unlock);
2116
2117 /**
2118 * console_conditional_schedule - yield the CPU if required
2119 *
2120 * If the console code is currently allowed to sleep, and
2121 * if this CPU should yield the CPU to another task, do
2122 * so here.
2123 *
2124 * Must be called within console_lock();.
2125 */
2126 void __sched console_conditional_schedule(void)
2127 {
2128 if (console_may_schedule)
2129 cond_resched();
2130 }
2131 EXPORT_SYMBOL(console_conditional_schedule);
2132
2133 void console_unblank(void)
2134 {
2135 struct console *c;
2136
2137 /*
2138 * console_unblank can no longer be called in interrupt context unless
2139 * oops_in_progress is set to 1..
2140 */
2141 if (oops_in_progress) {
2142 if (down_trylock(&console_sem) != 0)
2143 return;
2144 } else
2145 console_lock();
2146
2147 console_locked = 1;
2148 console_may_schedule = 0;
2149 for_each_console(c)
2150 if ((c->flags & CON_ENABLED) && c->unblank)
2151 c->unblank();
2152 console_unlock();
2153 }
2154
2155 /*
2156 * Return the console tty driver structure and its associated index
2157 */
2158 struct tty_driver *console_device(int *index)
2159 {
2160 struct console *c;
2161 struct tty_driver *driver = NULL;
2162
2163 console_lock();
2164 for_each_console(c) {
2165 if (!c->device)
2166 continue;
2167 driver = c->device(c, index);
2168 if (driver)
2169 break;
2170 }
2171 console_unlock();
2172 return driver;
2173 }
2174
2175 /*
2176 * Prevent further output on the passed console device so that (for example)
2177 * serial drivers can disable console output before suspending a port, and can
2178 * re-enable output afterwards.
2179 */
2180 void console_stop(struct console *console)
2181 {
2182 console_lock();
2183 console->flags &= ~CON_ENABLED;
2184 console_unlock();
2185 }
2186 EXPORT_SYMBOL(console_stop);
2187
2188 void console_start(struct console *console)
2189 {
2190 console_lock();
2191 console->flags |= CON_ENABLED;
2192 console_unlock();
2193 }
2194 EXPORT_SYMBOL(console_start);
2195
2196 static int __read_mostly keep_bootcon;
2197
2198 static int __init keep_bootcon_setup(char *str)
2199 {
2200 keep_bootcon = 1;
2201 printk(KERN_INFO "debug: skip boot console de-registration.\n");
2202
2203 return 0;
2204 }
2205
2206 early_param("keep_bootcon", keep_bootcon_setup);
2207
2208 /*
2209 * The console driver calls this routine during kernel initialization
2210 * to register the console printing procedure with printk() and to
2211 * print any messages that were printed by the kernel before the
2212 * console driver was initialized.
2213 *
2214 * This can happen pretty early during the boot process (because of
2215 * early_printk) - sometimes before setup_arch() completes - be careful
2216 * of what kernel features are used - they may not be initialised yet.
2217 *
2218 * There are two types of consoles - bootconsoles (early_printk) and
2219 * "real" consoles (everything which is not a bootconsole) which are
2220 * handled differently.
2221 * - Any number of bootconsoles can be registered at any time.
2222 * - As soon as a "real" console is registered, all bootconsoles
2223 * will be unregistered automatically.
2224 * - Once a "real" console is registered, any attempt to register a
2225 * bootconsoles will be rejected
2226 */
2227 void register_console(struct console *newcon)
2228 {
2229 int i;
2230 unsigned long flags;
2231 struct console *bcon = NULL;
2232
2233 /*
2234 * before we register a new CON_BOOT console, make sure we don't
2235 * already have a valid console
2236 */
2237 if (console_drivers && newcon->flags & CON_BOOT) {
2238 /* find the last or real console */
2239 for_each_console(bcon) {
2240 if (!(bcon->flags & CON_BOOT)) {
2241 printk(KERN_INFO "Too late to register bootconsole %s%d\n",
2242 newcon->name, newcon->index);
2243 return;
2244 }
2245 }
2246 }
2247
2248 if (console_drivers && console_drivers->flags & CON_BOOT)
2249 bcon = console_drivers;
2250
2251 if (preferred_console < 0 || bcon || !console_drivers)
2252 preferred_console = selected_console;
2253
2254 if (newcon->early_setup)
2255 newcon->early_setup();
2256
2257 /*
2258 * See if we want to use this console driver. If we
2259 * didn't select a console we take the first one
2260 * that registers here.
2261 */
2262 if (preferred_console < 0) {
2263 if (newcon->index < 0)
2264 newcon->index = 0;
2265 if (newcon->setup == NULL ||
2266 newcon->setup(newcon, NULL) == 0) {
2267 newcon->flags |= CON_ENABLED;
2268 if (newcon->device) {
2269 newcon->flags |= CON_CONSDEV;
2270 preferred_console = 0;
2271 }
2272 }
2273 }
2274
2275 /*
2276 * See if this console matches one we selected on
2277 * the command line.
2278 */
2279 for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];
2280 i++) {
2281 if (strcmp(console_cmdline[i].name, newcon->name) != 0)
2282 continue;
2283 if (newcon->index >= 0 &&
2284 newcon->index != console_cmdline[i].index)
2285 continue;
2286 if (newcon->index < 0)
2287 newcon->index = console_cmdline[i].index;
2288 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2289 if (console_cmdline[i].brl_options) {
2290 newcon->flags |= CON_BRL;
2291 braille_register_console(newcon,
2292 console_cmdline[i].index,
2293 console_cmdline[i].options,
2294 console_cmdline[i].brl_options);
2295 return;
2296 }
2297 #endif
2298 if (newcon->setup &&
2299 newcon->setup(newcon, console_cmdline[i].options) != 0)
2300 break;
2301 newcon->flags |= CON_ENABLED;
2302 newcon->index = console_cmdline[i].index;
2303 if (i == selected_console) {
2304 newcon->flags |= CON_CONSDEV;
2305 preferred_console = selected_console;
2306 }
2307 break;
2308 }
2309
2310 if (!(newcon->flags & CON_ENABLED))
2311 return;
2312
2313 /*
2314 * If we have a bootconsole, and are switching to a real console,
2315 * don't print everything out again, since when the boot console, and
2316 * the real console are the same physical device, it's annoying to
2317 * see the beginning boot messages twice
2318 */
2319 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2320 newcon->flags &= ~CON_PRINTBUFFER;
2321
2322 /*
2323 * Put this console in the list - keep the
2324 * preferred driver at the head of the list.
2325 */
2326 console_lock();
2327 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2328 newcon->next = console_drivers;
2329 console_drivers = newcon;
2330 if (newcon->next)
2331 newcon->next->flags &= ~CON_CONSDEV;
2332 } else {
2333 newcon->next = console_drivers->next;
2334 console_drivers->next = newcon;
2335 }
2336 if (newcon->flags & CON_PRINTBUFFER) {
2337 /*
2338 * console_unlock(); will print out the buffered messages
2339 * for us.
2340 */
2341 raw_spin_lock_irqsave(&logbuf_lock, flags);
2342 console_seq = syslog_seq;
2343 console_idx = syslog_idx;
2344 console_prev = syslog_prev;
2345 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2346 /*
2347 * We're about to replay the log buffer. Only do this to the
2348 * just-registered console to avoid excessive message spam to
2349 * the already-registered consoles.
2350 */
2351 exclusive_console = newcon;
2352 }
2353 console_unlock();
2354 console_sysfs_notify();
2355
2356 /*
2357 * By unregistering the bootconsoles after we enable the real console
2358 * we get the "console xxx enabled" message on all the consoles -
2359 * boot consoles, real consoles, etc - this is to ensure that end
2360 * users know there might be something in the kernel's log buffer that
2361 * went to the bootconsole (that they do not see on the real console)
2362 */
2363 if (bcon &&
2364 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2365 !keep_bootcon) {
2366 /* we need to iterate through twice, to make sure we print
2367 * everything out, before we unregister the console(s)
2368 */
2369 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n",
2370 newcon->name, newcon->index);
2371 for_each_console(bcon)
2372 if (bcon->flags & CON_BOOT)
2373 unregister_console(bcon);
2374 } else {
2375 printk(KERN_INFO "%sconsole [%s%d] enabled\n",
2376 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2377 newcon->name, newcon->index);
2378 }
2379 }
2380 EXPORT_SYMBOL(register_console);
2381
2382 int unregister_console(struct console *console)
2383 {
2384 struct console *a, *b;
2385 int res = 1;
2386
2387 #ifdef CONFIG_A11Y_BRAILLE_CONSOLE
2388 if (console->flags & CON_BRL)
2389 return braille_unregister_console(console);
2390 #endif
2391
2392 console_lock();
2393 if (console_drivers == console) {
2394 console_drivers=console->next;
2395 res = 0;
2396 } else if (console_drivers) {
2397 for (a=console_drivers->next, b=console_drivers ;
2398 a; b=a, a=b->next) {
2399 if (a == console) {
2400 b->next = a->next;
2401 res = 0;
2402 break;
2403 }
2404 }
2405 }
2406
2407 /*
2408 * If this isn't the last console and it has CON_CONSDEV set, we
2409 * need to set it on the next preferred console.
2410 */
2411 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2412 console_drivers->flags |= CON_CONSDEV;
2413
2414 console_unlock();
2415 console_sysfs_notify();
2416 return res;
2417 }
2418 EXPORT_SYMBOL(unregister_console);
2419
2420 static int __init printk_late_init(void)
2421 {
2422 struct console *con;
2423
2424 for_each_console(con) {
2425 if (!keep_bootcon && con->flags & CON_BOOT) {
2426 printk(KERN_INFO "turn off boot console %s%d\n",
2427 con->name, con->index);
2428 unregister_console(con);
2429 }
2430 }
2431 hotcpu_notifier(console_cpu_notify, 0);
2432 return 0;
2433 }
2434 late_initcall(printk_late_init);
2435
2436 #if defined CONFIG_PRINTK
2437 /*
2438 * Delayed printk version, for scheduler-internal messages:
2439 */
2440 #define PRINTK_BUF_SIZE 512
2441
2442 #define PRINTK_PENDING_WAKEUP 0x01
2443 #define PRINTK_PENDING_SCHED 0x02
2444
2445 static DEFINE_PER_CPU(int, printk_pending);
2446 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2447
2448 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2449 {
2450 int pending = __this_cpu_xchg(printk_pending, 0);
2451
2452 if (pending & PRINTK_PENDING_SCHED) {
2453 char *buf = __get_cpu_var(printk_sched_buf);
2454 printk(KERN_WARNING "[sched_delayed] %s", buf);
2455 }
2456
2457 if (pending & PRINTK_PENDING_WAKEUP)
2458 wake_up_interruptible(&log_wait);
2459 }
2460
2461 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2462 .func = wake_up_klogd_work_func,
2463 .flags = IRQ_WORK_LAZY,
2464 };
2465
2466 void wake_up_klogd(void)
2467 {
2468 preempt_disable();
2469 if (waitqueue_active(&log_wait)) {
2470 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2471 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2472 }
2473 preempt_enable();
2474 }
2475
2476 int printk_sched(const char *fmt, ...)
2477 {
2478 unsigned long flags;
2479 va_list args;
2480 char *buf;
2481 int r;
2482
2483 local_irq_save(flags);
2484 buf = __get_cpu_var(printk_sched_buf);
2485
2486 va_start(args, fmt);
2487 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2488 va_end(args);
2489
2490 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2491 irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2492 local_irq_restore(flags);
2493
2494 return r;
2495 }
2496
2497 /*
2498 * printk rate limiting, lifted from the networking subsystem.
2499 *
2500 * This enforces a rate limit: not more than 10 kernel messages
2501 * every 5s to make a denial-of-service attack impossible.
2502 */
2503 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2504
2505 int __printk_ratelimit(const char *func)
2506 {
2507 return ___ratelimit(&printk_ratelimit_state, func);
2508 }
2509 EXPORT_SYMBOL(__printk_ratelimit);
2510
2511 /**
2512 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2513 * @caller_jiffies: pointer to caller's state
2514 * @interval_msecs: minimum interval between prints
2515 *
2516 * printk_timed_ratelimit() returns true if more than @interval_msecs
2517 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2518 * returned true.
2519 */
2520 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2521 unsigned int interval_msecs)
2522 {
2523 if (*caller_jiffies == 0
2524 || !time_in_range(jiffies, *caller_jiffies,
2525 *caller_jiffies
2526 + msecs_to_jiffies(interval_msecs))) {
2527 *caller_jiffies = jiffies;
2528 return true;
2529 }
2530 return false;
2531 }
2532 EXPORT_SYMBOL(printk_timed_ratelimit);
2533
2534 static DEFINE_SPINLOCK(dump_list_lock);
2535 static LIST_HEAD(dump_list);
2536
2537 /**
2538 * kmsg_dump_register - register a kernel log dumper.
2539 * @dumper: pointer to the kmsg_dumper structure
2540 *
2541 * Adds a kernel log dumper to the system. The dump callback in the
2542 * structure will be called when the kernel oopses or panics and must be
2543 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2544 */
2545 int kmsg_dump_register(struct kmsg_dumper *dumper)
2546 {
2547 unsigned long flags;
2548 int err = -EBUSY;
2549
2550 /* The dump callback needs to be set */
2551 if (!dumper->dump)
2552 return -EINVAL;
2553
2554 spin_lock_irqsave(&dump_list_lock, flags);
2555 /* Don't allow registering multiple times */
2556 if (!dumper->registered) {
2557 dumper->registered = 1;
2558 list_add_tail_rcu(&dumper->list, &dump_list);
2559 err = 0;
2560 }
2561 spin_unlock_irqrestore(&dump_list_lock, flags);
2562
2563 return err;
2564 }
2565 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2566
2567 /**
2568 * kmsg_dump_unregister - unregister a kmsg dumper.
2569 * @dumper: pointer to the kmsg_dumper structure
2570 *
2571 * Removes a dump device from the system. Returns zero on success and
2572 * %-EINVAL otherwise.
2573 */
2574 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2575 {
2576 unsigned long flags;
2577 int err = -EINVAL;
2578
2579 spin_lock_irqsave(&dump_list_lock, flags);
2580 if (dumper->registered) {
2581 dumper->registered = 0;
2582 list_del_rcu(&dumper->list);
2583 err = 0;
2584 }
2585 spin_unlock_irqrestore(&dump_list_lock, flags);
2586 synchronize_rcu();
2587
2588 return err;
2589 }
2590 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2591
2592 static bool always_kmsg_dump;
2593 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2594
2595 /**
2596 * kmsg_dump - dump kernel log to kernel message dumpers.
2597 * @reason: the reason (oops, panic etc) for dumping
2598 *
2599 * Call each of the registered dumper's dump() callback, which can
2600 * retrieve the kmsg records with kmsg_dump_get_line() or
2601 * kmsg_dump_get_buffer().
2602 */
2603 void kmsg_dump(enum kmsg_dump_reason reason)
2604 {
2605 struct kmsg_dumper *dumper;
2606 unsigned long flags;
2607
2608 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2609 return;
2610
2611 rcu_read_lock();
2612 list_for_each_entry_rcu(dumper, &dump_list, list) {
2613 if (dumper->max_reason && reason > dumper->max_reason)
2614 continue;
2615
2616 /* initialize iterator with data about the stored records */
2617 dumper->active = true;
2618
2619 raw_spin_lock_irqsave(&logbuf_lock, flags);
2620 dumper->cur_seq = clear_seq;
2621 dumper->cur_idx = clear_idx;
2622 dumper->next_seq = log_next_seq;
2623 dumper->next_idx = log_next_idx;
2624 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2625
2626 /* invoke dumper which will iterate over records */
2627 dumper->dump(dumper, reason);
2628
2629 /* reset iterator */
2630 dumper->active = false;
2631 }
2632 rcu_read_unlock();
2633 }
2634
2635 /**
2636 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2637 * @dumper: registered kmsg dumper
2638 * @syslog: include the "<4>" prefixes
2639 * @line: buffer to copy the line to
2640 * @size: maximum size of the buffer
2641 * @len: length of line placed into buffer
2642 *
2643 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2644 * record, and copy one record into the provided buffer.
2645 *
2646 * Consecutive calls will return the next available record moving
2647 * towards the end of the buffer with the youngest messages.
2648 *
2649 * A return value of FALSE indicates that there are no more records to
2650 * read.
2651 *
2652 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2653 */
2654 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2655 char *line, size_t size, size_t *len)
2656 {
2657 struct log *msg;
2658 size_t l = 0;
2659 bool ret = false;
2660
2661 if (!dumper->active)
2662 goto out;
2663
2664 if (dumper->cur_seq < log_first_seq) {
2665 /* messages are gone, move to first available one */
2666 dumper->cur_seq = log_first_seq;
2667 dumper->cur_idx = log_first_idx;
2668 }
2669
2670 /* last entry */
2671 if (dumper->cur_seq >= log_next_seq)
2672 goto out;
2673
2674 msg = log_from_idx(dumper->cur_idx);
2675 l = msg_print_text(msg, 0, syslog, line, size);
2676
2677 dumper->cur_idx = log_next(dumper->cur_idx);
2678 dumper->cur_seq++;
2679 ret = true;
2680 out:
2681 if (len)
2682 *len = l;
2683 return ret;
2684 }
2685
2686 /**
2687 * kmsg_dump_get_line - retrieve one kmsg log line
2688 * @dumper: registered kmsg dumper
2689 * @syslog: include the "<4>" prefixes
2690 * @line: buffer to copy the line to
2691 * @size: maximum size of the buffer
2692 * @len: length of line placed into buffer
2693 *
2694 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2695 * record, and copy one record into the provided buffer.
2696 *
2697 * Consecutive calls will return the next available record moving
2698 * towards the end of the buffer with the youngest messages.
2699 *
2700 * A return value of FALSE indicates that there are no more records to
2701 * read.
2702 */
2703 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2704 char *line, size_t size, size_t *len)
2705 {
2706 unsigned long flags;
2707 bool ret;
2708
2709 raw_spin_lock_irqsave(&logbuf_lock, flags);
2710 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2711 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2712
2713 return ret;
2714 }
2715 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2716
2717 /**
2718 * kmsg_dump_get_buffer - copy kmsg log lines
2719 * @dumper: registered kmsg dumper
2720 * @syslog: include the "<4>" prefixes
2721 * @buf: buffer to copy the line to
2722 * @size: maximum size of the buffer
2723 * @len: length of line placed into buffer
2724 *
2725 * Start at the end of the kmsg buffer and fill the provided buffer
2726 * with as many of the the *youngest* kmsg records that fit into it.
2727 * If the buffer is large enough, all available kmsg records will be
2728 * copied with a single call.
2729 *
2730 * Consecutive calls will fill the buffer with the next block of
2731 * available older records, not including the earlier retrieved ones.
2732 *
2733 * A return value of FALSE indicates that there are no more records to
2734 * read.
2735 */
2736 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2737 char *buf, size_t size, size_t *len)
2738 {
2739 unsigned long flags;
2740 u64 seq;
2741 u32 idx;
2742 u64 next_seq;
2743 u32 next_idx;
2744 enum log_flags prev;
2745 size_t l = 0;
2746 bool ret = false;
2747
2748 if (!dumper->active)
2749 goto out;
2750
2751 raw_spin_lock_irqsave(&logbuf_lock, flags);
2752 if (dumper->cur_seq < log_first_seq) {
2753 /* messages are gone, move to first available one */
2754 dumper->cur_seq = log_first_seq;
2755 dumper->cur_idx = log_first_idx;
2756 }
2757
2758 /* last entry */
2759 if (dumper->cur_seq >= dumper->next_seq) {
2760 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2761 goto out;
2762 }
2763
2764 /* calculate length of entire buffer */
2765 seq = dumper->cur_seq;
2766 idx = dumper->cur_idx;
2767 prev = 0;
2768 while (seq < dumper->next_seq) {
2769 struct log *msg = log_from_idx(idx);
2770
2771 l += msg_print_text(msg, prev, true, NULL, 0);
2772 idx = log_next(idx);
2773 seq++;
2774 prev = msg->flags;
2775 }
2776
2777 /* move first record forward until length fits into the buffer */
2778 seq = dumper->cur_seq;
2779 idx = dumper->cur_idx;
2780 prev = 0;
2781 while (l > size && seq < dumper->next_seq) {
2782 struct log *msg = log_from_idx(idx);
2783
2784 l -= msg_print_text(msg, prev, true, NULL, 0);
2785 idx = log_next(idx);
2786 seq++;
2787 prev = msg->flags;
2788 }
2789
2790 /* last message in next interation */
2791 next_seq = seq;
2792 next_idx = idx;
2793
2794 l = 0;
2795 prev = 0;
2796 while (seq < dumper->next_seq) {
2797 struct log *msg = log_from_idx(idx);
2798
2799 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2800 idx = log_next(idx);
2801 seq++;
2802 prev = msg->flags;
2803 }
2804
2805 dumper->next_seq = next_seq;
2806 dumper->next_idx = next_idx;
2807 ret = true;
2808 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2809 out:
2810 if (len)
2811 *len = l;
2812 return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2815
2816 /**
2817 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2818 * @dumper: registered kmsg dumper
2819 *
2820 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2821 * kmsg_dump_get_buffer() can be called again and used multiple
2822 * times within the same dumper.dump() callback.
2823 *
2824 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2825 */
2826 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2827 {
2828 dumper->cur_seq = clear_seq;
2829 dumper->cur_idx = clear_idx;
2830 dumper->next_seq = log_next_seq;
2831 dumper->next_idx = log_next_idx;
2832 }
2833
2834 /**
2835 * kmsg_dump_rewind - reset the interator
2836 * @dumper: registered kmsg dumper
2837 *
2838 * Reset the dumper's iterator so that kmsg_dump_get_line() and
2839 * kmsg_dump_get_buffer() can be called again and used multiple
2840 * times within the same dumper.dump() callback.
2841 */
2842 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2843 {
2844 unsigned long flags;
2845
2846 raw_spin_lock_irqsave(&logbuf_lock, flags);
2847 kmsg_dump_rewind_nolock(dumper);
2848 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2849 }
2850 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2851 #endif