Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / pid_namespace.c
1 /*
2 * Pid namespaces
3 *
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
8 *
9 */
10
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_ns.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
21
22 struct pid_cache {
23 int nr_ids;
24 char name[16];
25 struct kmem_cache *cachep;
26 struct list_head list;
27 };
28
29 static LIST_HEAD(pid_caches_lh);
30 static DEFINE_MUTEX(pid_caches_mutex);
31 static struct kmem_cache *pid_ns_cachep;
32
33 /*
34 * creates the kmem cache to allocate pids from.
35 * @nr_ids: the number of numerical ids this pid will have to carry
36 */
37
38 static struct kmem_cache *create_pid_cachep(int nr_ids)
39 {
40 struct pid_cache *pcache;
41 struct kmem_cache *cachep;
42
43 mutex_lock(&pid_caches_mutex);
44 list_for_each_entry(pcache, &pid_caches_lh, list)
45 if (pcache->nr_ids == nr_ids)
46 goto out;
47
48 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
49 if (pcache == NULL)
50 goto err_alloc;
51
52 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
53 cachep = kmem_cache_create(pcache->name,
54 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
55 0, SLAB_HWCACHE_ALIGN, NULL);
56 if (cachep == NULL)
57 goto err_cachep;
58
59 pcache->nr_ids = nr_ids;
60 pcache->cachep = cachep;
61 list_add(&pcache->list, &pid_caches_lh);
62 out:
63 mutex_unlock(&pid_caches_mutex);
64 return pcache->cachep;
65
66 err_cachep:
67 kfree(pcache);
68 err_alloc:
69 mutex_unlock(&pid_caches_mutex);
70 return NULL;
71 }
72
73 static void proc_cleanup_work(struct work_struct *work)
74 {
75 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
76 pid_ns_release_proc(ns);
77 }
78
79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
80 #define MAX_PID_NS_LEVEL 32
81
82 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
83 struct pid_namespace *parent_pid_ns)
84 {
85 struct pid_namespace *ns;
86 unsigned int level = parent_pid_ns->level + 1;
87 int i;
88 int err;
89
90 if (level > MAX_PID_NS_LEVEL) {
91 err = -EINVAL;
92 goto out;
93 }
94
95 err = -ENOMEM;
96 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
97 if (ns == NULL)
98 goto out;
99
100 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
101 if (!ns->pidmap[0].page)
102 goto out_free;
103
104 ns->pid_cachep = create_pid_cachep(level + 1);
105 if (ns->pid_cachep == NULL)
106 goto out_free_map;
107
108 err = proc_alloc_inum(&ns->proc_inum);
109 if (err)
110 goto out_free_map;
111
112 kref_init(&ns->kref);
113 ns->level = level;
114 ns->parent = get_pid_ns(parent_pid_ns);
115 ns->user_ns = get_user_ns(user_ns);
116 ns->nr_hashed = PIDNS_HASH_ADDING;
117 INIT_WORK(&ns->proc_work, proc_cleanup_work);
118
119 set_bit(0, ns->pidmap[0].page);
120 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
121
122 for (i = 1; i < PIDMAP_ENTRIES; i++)
123 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
124
125 return ns;
126
127 out_free_map:
128 kfree(ns->pidmap[0].page);
129 out_free:
130 kmem_cache_free(pid_ns_cachep, ns);
131 out:
132 return ERR_PTR(err);
133 }
134
135 static void destroy_pid_namespace(struct pid_namespace *ns)
136 {
137 int i;
138
139 proc_free_inum(ns->proc_inum);
140 for (i = 0; i < PIDMAP_ENTRIES; i++)
141 kfree(ns->pidmap[i].page);
142 put_user_ns(ns->user_ns);
143 kmem_cache_free(pid_ns_cachep, ns);
144 }
145
146 struct pid_namespace *copy_pid_ns(unsigned long flags,
147 struct user_namespace *user_ns, struct pid_namespace *old_ns)
148 {
149 if (!(flags & CLONE_NEWPID))
150 return get_pid_ns(old_ns);
151 if (task_active_pid_ns(current) != old_ns)
152 return ERR_PTR(-EINVAL);
153 return create_pid_namespace(user_ns, old_ns);
154 }
155
156 static void free_pid_ns(struct kref *kref)
157 {
158 struct pid_namespace *ns;
159
160 ns = container_of(kref, struct pid_namespace, kref);
161 destroy_pid_namespace(ns);
162 }
163
164 void put_pid_ns(struct pid_namespace *ns)
165 {
166 struct pid_namespace *parent;
167
168 while (ns != &init_pid_ns) {
169 parent = ns->parent;
170 if (!kref_put(&ns->kref, free_pid_ns))
171 break;
172 ns = parent;
173 }
174 }
175 EXPORT_SYMBOL_GPL(put_pid_ns);
176
177 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
178 {
179 int nr;
180 int rc;
181 struct task_struct *task, *me = current;
182 int init_pids = thread_group_leader(me) ? 1 : 2;
183
184 /* Don't allow any more processes into the pid namespace */
185 disable_pid_allocation(pid_ns);
186
187 /* Ignore SIGCHLD causing any terminated children to autoreap */
188 spin_lock_irq(&me->sighand->siglock);
189 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
190 spin_unlock_irq(&me->sighand->siglock);
191
192 /*
193 * The last thread in the cgroup-init thread group is terminating.
194 * Find remaining pid_ts in the namespace, signal and wait for them
195 * to exit.
196 *
197 * Note: This signals each threads in the namespace - even those that
198 * belong to the same thread group, To avoid this, we would have
199 * to walk the entire tasklist looking a processes in this
200 * namespace, but that could be unnecessarily expensive if the
201 * pid namespace has just a few processes. Or we need to
202 * maintain a tasklist for each pid namespace.
203 *
204 */
205 read_lock(&tasklist_lock);
206 nr = next_pidmap(pid_ns, 1);
207 while (nr > 0) {
208 rcu_read_lock();
209
210 task = pid_task(find_vpid(nr), PIDTYPE_PID);
211 if (task && !__fatal_signal_pending(task))
212 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
213
214 rcu_read_unlock();
215
216 nr = next_pidmap(pid_ns, nr);
217 }
218 read_unlock(&tasklist_lock);
219
220 /* Firstly reap the EXIT_ZOMBIE children we may have. */
221 do {
222 clear_thread_flag(TIF_SIGPENDING);
223 rc = sys_wait4(-1, NULL, __WALL, NULL);
224 } while (rc != -ECHILD);
225
226 /*
227 * sys_wait4() above can't reap the TASK_DEAD children.
228 * Make sure they all go away, see free_pid().
229 */
230 for (;;) {
231 set_current_state(TASK_UNINTERRUPTIBLE);
232 if (pid_ns->nr_hashed == init_pids)
233 break;
234 schedule();
235 }
236 __set_current_state(TASK_RUNNING);
237
238 if (pid_ns->reboot)
239 current->signal->group_exit_code = pid_ns->reboot;
240
241 acct_exit_ns(pid_ns);
242 return;
243 }
244
245 #ifdef CONFIG_CHECKPOINT_RESTORE
246 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
247 void __user *buffer, size_t *lenp, loff_t *ppos)
248 {
249 struct pid_namespace *pid_ns = task_active_pid_ns(current);
250 struct ctl_table tmp = *table;
251
252 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
253 return -EPERM;
254
255 /*
256 * Writing directly to ns' last_pid field is OK, since this field
257 * is volatile in a living namespace anyway and a code writing to
258 * it should synchronize its usage with external means.
259 */
260
261 tmp.data = &pid_ns->last_pid;
262 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
263 }
264
265 extern int pid_max;
266 static int zero = 0;
267 static struct ctl_table pid_ns_ctl_table[] = {
268 {
269 .procname = "ns_last_pid",
270 .maxlen = sizeof(int),
271 .mode = 0666, /* permissions are checked in the handler */
272 .proc_handler = pid_ns_ctl_handler,
273 .extra1 = &zero,
274 .extra2 = &pid_max,
275 },
276 { }
277 };
278 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
279 #endif /* CONFIG_CHECKPOINT_RESTORE */
280
281 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
282 {
283 if (pid_ns == &init_pid_ns)
284 return 0;
285
286 switch (cmd) {
287 case LINUX_REBOOT_CMD_RESTART2:
288 case LINUX_REBOOT_CMD_RESTART:
289 pid_ns->reboot = SIGHUP;
290 break;
291
292 case LINUX_REBOOT_CMD_POWER_OFF:
293 case LINUX_REBOOT_CMD_HALT:
294 pid_ns->reboot = SIGINT;
295 break;
296 default:
297 return -EINVAL;
298 }
299
300 read_lock(&tasklist_lock);
301 force_sig(SIGKILL, pid_ns->child_reaper);
302 read_unlock(&tasklist_lock);
303
304 do_exit(0);
305
306 /* Not reached */
307 return 0;
308 }
309
310 static void *pidns_get(struct task_struct *task)
311 {
312 struct pid_namespace *ns;
313
314 rcu_read_lock();
315 ns = task_active_pid_ns(task);
316 if (ns)
317 get_pid_ns(ns);
318 rcu_read_unlock();
319
320 return ns;
321 }
322
323 static void pidns_put(void *ns)
324 {
325 put_pid_ns(ns);
326 }
327
328 static int pidns_install(struct nsproxy *nsproxy, void *ns)
329 {
330 struct pid_namespace *active = task_active_pid_ns(current);
331 struct pid_namespace *ancestor, *new = ns;
332
333 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
334 !nsown_capable(CAP_SYS_ADMIN))
335 return -EPERM;
336
337 /*
338 * Only allow entering the current active pid namespace
339 * or a child of the current active pid namespace.
340 *
341 * This is required for fork to return a usable pid value and
342 * this maintains the property that processes and their
343 * children can not escape their current pid namespace.
344 */
345 if (new->level < active->level)
346 return -EINVAL;
347
348 ancestor = new;
349 while (ancestor->level > active->level)
350 ancestor = ancestor->parent;
351 if (ancestor != active)
352 return -EINVAL;
353
354 put_pid_ns(nsproxy->pid_ns);
355 nsproxy->pid_ns = get_pid_ns(new);
356 return 0;
357 }
358
359 static unsigned int pidns_inum(void *ns)
360 {
361 struct pid_namespace *pid_ns = ns;
362 return pid_ns->proc_inum;
363 }
364
365 const struct proc_ns_operations pidns_operations = {
366 .name = "pid",
367 .type = CLONE_NEWPID,
368 .get = pidns_get,
369 .put = pidns_put,
370 .install = pidns_install,
371 .inum = pidns_inum,
372 };
373
374 static __init int pid_namespaces_init(void)
375 {
376 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
377
378 #ifdef CONFIG_CHECKPOINT_RESTORE
379 register_sysctl_paths(kern_path, pid_ns_ctl_table);
380 #endif
381 return 0;
382 }
383
384 __initcall(pid_namespaces_init);