[PATCH] Define struct pspace
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 */
22
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/bootmem.h>
28 #include <linux/hash.h>
29 #include <linux/pspace.h>
30
31 #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
32 static struct hlist_head *pid_hash;
33 static int pidhash_shift;
34 static kmem_cache_t *pid_cachep;
35
36 int pid_max = PID_MAX_DEFAULT;
37
38 #define RESERVED_PIDS 300
39
40 int pid_max_min = RESERVED_PIDS + 1;
41 int pid_max_max = PID_MAX_LIMIT;
42
43 #define BITS_PER_PAGE (PAGE_SIZE*8)
44 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
45
46 static inline int mk_pid(struct pspace *pspace, struct pidmap *map, int off)
47 {
48 return (map - pspace->pidmap)*BITS_PER_PAGE + off;
49 }
50
51 #define find_next_offset(map, off) \
52 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
53
54 /*
55 * PID-map pages start out as NULL, they get allocated upon
56 * first use and are never deallocated. This way a low pid_max
57 * value does not cause lots of bitmaps to be allocated, but
58 * the scheme scales to up to 4 million PIDs, runtime.
59 */
60 struct pspace init_pspace = {
61 .pidmap = {
62 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
63 },
64 .last_pid = 0
65 };
66
67 /*
68 * Note: disable interrupts while the pidmap_lock is held as an
69 * interrupt might come in and do read_lock(&tasklist_lock).
70 *
71 * If we don't disable interrupts there is a nasty deadlock between
72 * detach_pid()->free_pid() and another cpu that does
73 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
74 * read_lock(&tasklist_lock);
75 *
76 * After we clean up the tasklist_lock and know there are no
77 * irq handlers that take it we can leave the interrupts enabled.
78 * For now it is easier to be safe than to prove it can't happen.
79 */
80
81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
82
83 static fastcall void free_pidmap(struct pspace *pspace, int pid)
84 {
85 struct pidmap *map = pspace->pidmap + pid / BITS_PER_PAGE;
86 int offset = pid & BITS_PER_PAGE_MASK;
87
88 clear_bit(offset, map->page);
89 atomic_inc(&map->nr_free);
90 }
91
92 static int alloc_pidmap(struct pspace *pspace)
93 {
94 int i, offset, max_scan, pid, last = pspace->last_pid;
95 struct pidmap *map;
96
97 pid = last + 1;
98 if (pid >= pid_max)
99 pid = RESERVED_PIDS;
100 offset = pid & BITS_PER_PAGE_MASK;
101 map = &pspace->pidmap[pid/BITS_PER_PAGE];
102 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
103 for (i = 0; i <= max_scan; ++i) {
104 if (unlikely(!map->page)) {
105 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
106 /*
107 * Free the page if someone raced with us
108 * installing it:
109 */
110 spin_lock_irq(&pidmap_lock);
111 if (map->page)
112 kfree(page);
113 else
114 map->page = page;
115 spin_unlock_irq(&pidmap_lock);
116 if (unlikely(!map->page))
117 break;
118 }
119 if (likely(atomic_read(&map->nr_free))) {
120 do {
121 if (!test_and_set_bit(offset, map->page)) {
122 atomic_dec(&map->nr_free);
123 pspace->last_pid = pid;
124 return pid;
125 }
126 offset = find_next_offset(map, offset);
127 pid = mk_pid(pspace, map, offset);
128 /*
129 * find_next_offset() found a bit, the pid from it
130 * is in-bounds, and if we fell back to the last
131 * bitmap block and the final block was the same
132 * as the starting point, pid is before last_pid.
133 */
134 } while (offset < BITS_PER_PAGE && pid < pid_max &&
135 (i != max_scan || pid < last ||
136 !((last+1) & BITS_PER_PAGE_MASK)));
137 }
138 if (map < &pspace->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
139 ++map;
140 offset = 0;
141 } else {
142 map = &pspace->pidmap[0];
143 offset = RESERVED_PIDS;
144 if (unlikely(last == offset))
145 break;
146 }
147 pid = mk_pid(pspace, map, offset);
148 }
149 return -1;
150 }
151
152 static int next_pidmap(int last)
153 {
154 int offset;
155 struct pidmap *map;
156
157 offset = (last + 1) & BITS_PER_PAGE_MASK;
158 map = &pidmap_array[(last + 1)/BITS_PER_PAGE];
159 for (; map < &pidmap_array[PIDMAP_ENTRIES]; map++, offset = 0) {
160 if (unlikely(!map->page))
161 continue;
162 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
163 if (offset < BITS_PER_PAGE)
164 return mk_pid(map, offset);
165 }
166 return -1;
167 }
168
169 fastcall void put_pid(struct pid *pid)
170 {
171 if (!pid)
172 return;
173 if ((atomic_read(&pid->count) == 1) ||
174 atomic_dec_and_test(&pid->count))
175 kmem_cache_free(pid_cachep, pid);
176 }
177 EXPORT_SYMBOL_GPL(put_pid);
178
179 static void delayed_put_pid(struct rcu_head *rhp)
180 {
181 struct pid *pid = container_of(rhp, struct pid, rcu);
182 put_pid(pid);
183 }
184
185 fastcall void free_pid(struct pid *pid)
186 {
187 /* We can be called with write_lock_irq(&tasklist_lock) held */
188 unsigned long flags;
189
190 spin_lock_irqsave(&pidmap_lock, flags);
191 hlist_del_rcu(&pid->pid_chain);
192 spin_unlock_irqrestore(&pidmap_lock, flags);
193
194 free_pidmap(&init_pspace, pid->nr);
195 call_rcu(&pid->rcu, delayed_put_pid);
196 }
197
198 struct pid *alloc_pid(void)
199 {
200 struct pid *pid;
201 enum pid_type type;
202 int nr = -1;
203
204 pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL);
205 if (!pid)
206 goto out;
207
208 nr = alloc_pidmap(&init_pspace);
209 if (nr < 0)
210 goto out_free;
211
212 atomic_set(&pid->count, 1);
213 pid->nr = nr;
214 for (type = 0; type < PIDTYPE_MAX; ++type)
215 INIT_HLIST_HEAD(&pid->tasks[type]);
216
217 spin_lock_irq(&pidmap_lock);
218 hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]);
219 spin_unlock_irq(&pidmap_lock);
220
221 out:
222 return pid;
223
224 out_free:
225 kmem_cache_free(pid_cachep, pid);
226 pid = NULL;
227 goto out;
228 }
229
230 struct pid * fastcall find_pid(int nr)
231 {
232 struct hlist_node *elem;
233 struct pid *pid;
234
235 hlist_for_each_entry_rcu(pid, elem,
236 &pid_hash[pid_hashfn(nr)], pid_chain) {
237 if (pid->nr == nr)
238 return pid;
239 }
240 return NULL;
241 }
242 EXPORT_SYMBOL_GPL(find_pid);
243
244 int fastcall attach_pid(struct task_struct *task, enum pid_type type, int nr)
245 {
246 struct pid_link *link;
247 struct pid *pid;
248
249 link = &task->pids[type];
250 link->pid = pid = find_pid(nr);
251 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
252
253 return 0;
254 }
255
256 void fastcall detach_pid(struct task_struct *task, enum pid_type type)
257 {
258 struct pid_link *link;
259 struct pid *pid;
260 int tmp;
261
262 link = &task->pids[type];
263 pid = link->pid;
264
265 hlist_del_rcu(&link->node);
266 link->pid = NULL;
267
268 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
269 if (!hlist_empty(&pid->tasks[tmp]))
270 return;
271
272 free_pid(pid);
273 }
274
275 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
276 void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
277 enum pid_type type)
278 {
279 new->pids[type].pid = old->pids[type].pid;
280 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
281 old->pids[type].pid = NULL;
282 }
283
284 struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
285 {
286 struct task_struct *result = NULL;
287 if (pid) {
288 struct hlist_node *first;
289 first = rcu_dereference(pid->tasks[type].first);
290 if (first)
291 result = hlist_entry(first, struct task_struct, pids[(type)].node);
292 }
293 return result;
294 }
295
296 /*
297 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
298 */
299 struct task_struct *find_task_by_pid_type(int type, int nr)
300 {
301 return pid_task(find_pid(nr), type);
302 }
303
304 EXPORT_SYMBOL(find_task_by_pid_type);
305
306 struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
307 {
308 struct task_struct *result;
309 rcu_read_lock();
310 result = pid_task(pid, type);
311 if (result)
312 get_task_struct(result);
313 rcu_read_unlock();
314 return result;
315 }
316
317 struct pid *find_get_pid(pid_t nr)
318 {
319 struct pid *pid;
320
321 rcu_read_lock();
322 pid = get_pid(find_pid(nr));
323 rcu_read_unlock();
324
325 return pid;
326 }
327
328 /*
329 * Used by proc to find the first pid that is greater then or equal to nr.
330 *
331 * If there is a pid at nr this function is exactly the same as find_pid.
332 */
333 struct pid *find_ge_pid(int nr)
334 {
335 struct pid *pid;
336
337 do {
338 pid = find_pid(nr);
339 if (pid)
340 break;
341 nr = next_pidmap(nr);
342 } while (nr > 0);
343
344 return pid;
345 }
346 EXPORT_SYMBOL_GPL(find_get_pid);
347
348 /*
349 * The pid hash table is scaled according to the amount of memory in the
350 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
351 * more.
352 */
353 void __init pidhash_init(void)
354 {
355 int i, pidhash_size;
356 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
357
358 pidhash_shift = max(4, fls(megabytes * 4));
359 pidhash_shift = min(12, pidhash_shift);
360 pidhash_size = 1 << pidhash_shift;
361
362 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
363 pidhash_size, pidhash_shift,
364 pidhash_size * sizeof(struct hlist_head));
365
366 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
367 if (!pid_hash)
368 panic("Could not alloc pidhash!\n");
369 for (i = 0; i < pidhash_size; i++)
370 INIT_HLIST_HEAD(&pid_hash[i]);
371 }
372
373 void __init pidmap_init(void)
374 {
375 init_pspace.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
376 /* Reserve PID 0. We never call free_pidmap(0) */
377 set_bit(0, init_pspace.pidmap[0].page);
378 atomic_dec(&init_pspace.pidmap[0].nr_free);
379
380 pid_cachep = kmem_cache_create("pid", sizeof(struct pid),
381 __alignof__(struct pid),
382 SLAB_PANIC, NULL, NULL);
383 }