Merge branch 'flushing' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38
39 #include <asm/irq_regs.h>
40
41 struct remote_function_call {
42 struct task_struct *p;
43 int (*func)(void *info);
44 void *info;
45 int ret;
46 };
47
48 static void remote_function(void *data)
49 {
50 struct remote_function_call *tfc = data;
51 struct task_struct *p = tfc->p;
52
53 if (p) {
54 tfc->ret = -EAGAIN;
55 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
56 return;
57 }
58
59 tfc->ret = tfc->func(tfc->info);
60 }
61
62 /**
63 * task_function_call - call a function on the cpu on which a task runs
64 * @p: the task to evaluate
65 * @func: the function to be called
66 * @info: the function call argument
67 *
68 * Calls the function @func when the task is currently running. This might
69 * be on the current CPU, which just calls the function directly
70 *
71 * returns: @func return value, or
72 * -ESRCH - when the process isn't running
73 * -EAGAIN - when the process moved away
74 */
75 static int
76 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
77 {
78 struct remote_function_call data = {
79 .p = p,
80 .func = func,
81 .info = info,
82 .ret = -ESRCH, /* No such (running) process */
83 };
84
85 if (task_curr(p))
86 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
87
88 return data.ret;
89 }
90
91 /**
92 * cpu_function_call - call a function on the cpu
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func on the remote cpu.
97 *
98 * returns: @func return value or -ENXIO when the cpu is offline
99 */
100 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
101 {
102 struct remote_function_call data = {
103 .p = NULL,
104 .func = func,
105 .info = info,
106 .ret = -ENXIO, /* No such CPU */
107 };
108
109 smp_call_function_single(cpu, remote_function, &data, 1);
110
111 return data.ret;
112 }
113
114 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
115 PERF_FLAG_FD_OUTPUT |\
116 PERF_FLAG_PID_CGROUP)
117
118 enum event_type_t {
119 EVENT_FLEXIBLE = 0x1,
120 EVENT_PINNED = 0x2,
121 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
122 };
123
124 /*
125 * perf_sched_events : >0 events exist
126 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
127 */
128 atomic_t perf_sched_events __read_mostly;
129 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
130
131 static atomic_t nr_mmap_events __read_mostly;
132 static atomic_t nr_comm_events __read_mostly;
133 static atomic_t nr_task_events __read_mostly;
134
135 static LIST_HEAD(pmus);
136 static DEFINE_MUTEX(pmus_lock);
137 static struct srcu_struct pmus_srcu;
138
139 /*
140 * perf event paranoia level:
141 * -1 - not paranoid at all
142 * 0 - disallow raw tracepoint access for unpriv
143 * 1 - disallow cpu events for unpriv
144 * 2 - disallow kernel profiling for unpriv
145 */
146 int sysctl_perf_event_paranoid __read_mostly = 1;
147
148 /* Minimum for 512 kiB + 1 user control page */
149 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150
151 /*
152 * max perf event sample rate
153 */
154 #define DEFAULT_MAX_SAMPLE_RATE 100000
155 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
156 static int max_samples_per_tick __read_mostly =
157 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
158
159 int perf_proc_update_handler(struct ctl_table *table, int write,
160 void __user *buffer, size_t *lenp,
161 loff_t *ppos)
162 {
163 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
164
165 if (ret || !write)
166 return ret;
167
168 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
169
170 return 0;
171 }
172
173 static atomic64_t perf_event_id;
174
175 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
176 enum event_type_t event_type);
177
178 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type,
180 struct task_struct *task);
181
182 static void update_context_time(struct perf_event_context *ctx);
183 static u64 perf_event_time(struct perf_event *event);
184
185 void __weak perf_event_print_debug(void) { }
186
187 extern __weak const char *perf_pmu_name(void)
188 {
189 return "pmu";
190 }
191
192 static inline u64 perf_clock(void)
193 {
194 return local_clock();
195 }
196
197 static inline struct perf_cpu_context *
198 __get_cpu_context(struct perf_event_context *ctx)
199 {
200 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
201 }
202
203 #ifdef CONFIG_CGROUP_PERF
204
205 /*
206 * Must ensure cgroup is pinned (css_get) before calling
207 * this function. In other words, we cannot call this function
208 * if there is no cgroup event for the current CPU context.
209 */
210 static inline struct perf_cgroup *
211 perf_cgroup_from_task(struct task_struct *task)
212 {
213 return container_of(task_subsys_state(task, perf_subsys_id),
214 struct perf_cgroup, css);
215 }
216
217 static inline bool
218 perf_cgroup_match(struct perf_event *event)
219 {
220 struct perf_event_context *ctx = event->ctx;
221 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
222
223 return !event->cgrp || event->cgrp == cpuctx->cgrp;
224 }
225
226 static inline void perf_get_cgroup(struct perf_event *event)
227 {
228 css_get(&event->cgrp->css);
229 }
230
231 static inline void perf_put_cgroup(struct perf_event *event)
232 {
233 css_put(&event->cgrp->css);
234 }
235
236 static inline void perf_detach_cgroup(struct perf_event *event)
237 {
238 perf_put_cgroup(event);
239 event->cgrp = NULL;
240 }
241
242 static inline int is_cgroup_event(struct perf_event *event)
243 {
244 return event->cgrp != NULL;
245 }
246
247 static inline u64 perf_cgroup_event_time(struct perf_event *event)
248 {
249 struct perf_cgroup_info *t;
250
251 t = per_cpu_ptr(event->cgrp->info, event->cpu);
252 return t->time;
253 }
254
255 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
256 {
257 struct perf_cgroup_info *info;
258 u64 now;
259
260 now = perf_clock();
261
262 info = this_cpu_ptr(cgrp->info);
263
264 info->time += now - info->timestamp;
265 info->timestamp = now;
266 }
267
268 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
269 {
270 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
271 if (cgrp_out)
272 __update_cgrp_time(cgrp_out);
273 }
274
275 static inline void update_cgrp_time_from_event(struct perf_event *event)
276 {
277 struct perf_cgroup *cgrp;
278
279 /*
280 * ensure we access cgroup data only when needed and
281 * when we know the cgroup is pinned (css_get)
282 */
283 if (!is_cgroup_event(event))
284 return;
285
286 cgrp = perf_cgroup_from_task(current);
287 /*
288 * Do not update time when cgroup is not active
289 */
290 if (cgrp == event->cgrp)
291 __update_cgrp_time(event->cgrp);
292 }
293
294 static inline void
295 perf_cgroup_set_timestamp(struct task_struct *task,
296 struct perf_event_context *ctx)
297 {
298 struct perf_cgroup *cgrp;
299 struct perf_cgroup_info *info;
300
301 /*
302 * ctx->lock held by caller
303 * ensure we do not access cgroup data
304 * unless we have the cgroup pinned (css_get)
305 */
306 if (!task || !ctx->nr_cgroups)
307 return;
308
309 cgrp = perf_cgroup_from_task(task);
310 info = this_cpu_ptr(cgrp->info);
311 info->timestamp = ctx->timestamp;
312 }
313
314 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
315 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
316
317 /*
318 * reschedule events based on the cgroup constraint of task.
319 *
320 * mode SWOUT : schedule out everything
321 * mode SWIN : schedule in based on cgroup for next
322 */
323 void perf_cgroup_switch(struct task_struct *task, int mode)
324 {
325 struct perf_cpu_context *cpuctx;
326 struct pmu *pmu;
327 unsigned long flags;
328
329 /*
330 * disable interrupts to avoid geting nr_cgroup
331 * changes via __perf_event_disable(). Also
332 * avoids preemption.
333 */
334 local_irq_save(flags);
335
336 /*
337 * we reschedule only in the presence of cgroup
338 * constrained events.
339 */
340 rcu_read_lock();
341
342 list_for_each_entry_rcu(pmu, &pmus, entry) {
343
344 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
345
346 perf_pmu_disable(cpuctx->ctx.pmu);
347
348 /*
349 * perf_cgroup_events says at least one
350 * context on this CPU has cgroup events.
351 *
352 * ctx->nr_cgroups reports the number of cgroup
353 * events for a context.
354 */
355 if (cpuctx->ctx.nr_cgroups > 0) {
356
357 if (mode & PERF_CGROUP_SWOUT) {
358 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
359 /*
360 * must not be done before ctxswout due
361 * to event_filter_match() in event_sched_out()
362 */
363 cpuctx->cgrp = NULL;
364 }
365
366 if (mode & PERF_CGROUP_SWIN) {
367 /* set cgrp before ctxsw in to
368 * allow event_filter_match() to not
369 * have to pass task around
370 */
371 cpuctx->cgrp = perf_cgroup_from_task(task);
372 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
373 }
374 }
375
376 perf_pmu_enable(cpuctx->ctx.pmu);
377 }
378
379 rcu_read_unlock();
380
381 local_irq_restore(flags);
382 }
383
384 static inline void perf_cgroup_sched_out(struct task_struct *task)
385 {
386 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
387 }
388
389 static inline void perf_cgroup_sched_in(struct task_struct *task)
390 {
391 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
392 }
393
394 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
395 struct perf_event_attr *attr,
396 struct perf_event *group_leader)
397 {
398 struct perf_cgroup *cgrp;
399 struct cgroup_subsys_state *css;
400 struct file *file;
401 int ret = 0, fput_needed;
402
403 file = fget_light(fd, &fput_needed);
404 if (!file)
405 return -EBADF;
406
407 css = cgroup_css_from_dir(file, perf_subsys_id);
408 if (IS_ERR(css)) {
409 ret = PTR_ERR(css);
410 goto out;
411 }
412
413 cgrp = container_of(css, struct perf_cgroup, css);
414 event->cgrp = cgrp;
415
416 /* must be done before we fput() the file */
417 perf_get_cgroup(event);
418
419 /*
420 * all events in a group must monitor
421 * the same cgroup because a task belongs
422 * to only one perf cgroup at a time
423 */
424 if (group_leader && group_leader->cgrp != cgrp) {
425 perf_detach_cgroup(event);
426 ret = -EINVAL;
427 }
428 out:
429 fput_light(file, fput_needed);
430 return ret;
431 }
432
433 static inline void
434 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
435 {
436 struct perf_cgroup_info *t;
437 t = per_cpu_ptr(event->cgrp->info, event->cpu);
438 event->shadow_ctx_time = now - t->timestamp;
439 }
440
441 static inline void
442 perf_cgroup_defer_enabled(struct perf_event *event)
443 {
444 /*
445 * when the current task's perf cgroup does not match
446 * the event's, we need to remember to call the
447 * perf_mark_enable() function the first time a task with
448 * a matching perf cgroup is scheduled in.
449 */
450 if (is_cgroup_event(event) && !perf_cgroup_match(event))
451 event->cgrp_defer_enabled = 1;
452 }
453
454 static inline void
455 perf_cgroup_mark_enabled(struct perf_event *event,
456 struct perf_event_context *ctx)
457 {
458 struct perf_event *sub;
459 u64 tstamp = perf_event_time(event);
460
461 if (!event->cgrp_defer_enabled)
462 return;
463
464 event->cgrp_defer_enabled = 0;
465
466 event->tstamp_enabled = tstamp - event->total_time_enabled;
467 list_for_each_entry(sub, &event->sibling_list, group_entry) {
468 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
469 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
470 sub->cgrp_defer_enabled = 0;
471 }
472 }
473 }
474 #else /* !CONFIG_CGROUP_PERF */
475
476 static inline bool
477 perf_cgroup_match(struct perf_event *event)
478 {
479 return true;
480 }
481
482 static inline void perf_detach_cgroup(struct perf_event *event)
483 {}
484
485 static inline int is_cgroup_event(struct perf_event *event)
486 {
487 return 0;
488 }
489
490 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
491 {
492 return 0;
493 }
494
495 static inline void update_cgrp_time_from_event(struct perf_event *event)
496 {
497 }
498
499 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
500 {
501 }
502
503 static inline void perf_cgroup_sched_out(struct task_struct *task)
504 {
505 }
506
507 static inline void perf_cgroup_sched_in(struct task_struct *task)
508 {
509 }
510
511 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
512 struct perf_event_attr *attr,
513 struct perf_event *group_leader)
514 {
515 return -EINVAL;
516 }
517
518 static inline void
519 perf_cgroup_set_timestamp(struct task_struct *task,
520 struct perf_event_context *ctx)
521 {
522 }
523
524 void
525 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
526 {
527 }
528
529 static inline void
530 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
531 {
532 }
533
534 static inline u64 perf_cgroup_event_time(struct perf_event *event)
535 {
536 return 0;
537 }
538
539 static inline void
540 perf_cgroup_defer_enabled(struct perf_event *event)
541 {
542 }
543
544 static inline void
545 perf_cgroup_mark_enabled(struct perf_event *event,
546 struct perf_event_context *ctx)
547 {
548 }
549 #endif
550
551 void perf_pmu_disable(struct pmu *pmu)
552 {
553 int *count = this_cpu_ptr(pmu->pmu_disable_count);
554 if (!(*count)++)
555 pmu->pmu_disable(pmu);
556 }
557
558 void perf_pmu_enable(struct pmu *pmu)
559 {
560 int *count = this_cpu_ptr(pmu->pmu_disable_count);
561 if (!--(*count))
562 pmu->pmu_enable(pmu);
563 }
564
565 static DEFINE_PER_CPU(struct list_head, rotation_list);
566
567 /*
568 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
569 * because they're strictly cpu affine and rotate_start is called with IRQs
570 * disabled, while rotate_context is called from IRQ context.
571 */
572 static void perf_pmu_rotate_start(struct pmu *pmu)
573 {
574 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
575 struct list_head *head = &__get_cpu_var(rotation_list);
576
577 WARN_ON(!irqs_disabled());
578
579 if (list_empty(&cpuctx->rotation_list))
580 list_add(&cpuctx->rotation_list, head);
581 }
582
583 static void get_ctx(struct perf_event_context *ctx)
584 {
585 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
586 }
587
588 static void free_ctx(struct rcu_head *head)
589 {
590 struct perf_event_context *ctx;
591
592 ctx = container_of(head, struct perf_event_context, rcu_head);
593 kfree(ctx);
594 }
595
596 static void put_ctx(struct perf_event_context *ctx)
597 {
598 if (atomic_dec_and_test(&ctx->refcount)) {
599 if (ctx->parent_ctx)
600 put_ctx(ctx->parent_ctx);
601 if (ctx->task)
602 put_task_struct(ctx->task);
603 call_rcu(&ctx->rcu_head, free_ctx);
604 }
605 }
606
607 static void unclone_ctx(struct perf_event_context *ctx)
608 {
609 if (ctx->parent_ctx) {
610 put_ctx(ctx->parent_ctx);
611 ctx->parent_ctx = NULL;
612 }
613 }
614
615 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
616 {
617 /*
618 * only top level events have the pid namespace they were created in
619 */
620 if (event->parent)
621 event = event->parent;
622
623 return task_tgid_nr_ns(p, event->ns);
624 }
625
626 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
627 {
628 /*
629 * only top level events have the pid namespace they were created in
630 */
631 if (event->parent)
632 event = event->parent;
633
634 return task_pid_nr_ns(p, event->ns);
635 }
636
637 /*
638 * If we inherit events we want to return the parent event id
639 * to userspace.
640 */
641 static u64 primary_event_id(struct perf_event *event)
642 {
643 u64 id = event->id;
644
645 if (event->parent)
646 id = event->parent->id;
647
648 return id;
649 }
650
651 /*
652 * Get the perf_event_context for a task and lock it.
653 * This has to cope with with the fact that until it is locked,
654 * the context could get moved to another task.
655 */
656 static struct perf_event_context *
657 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
658 {
659 struct perf_event_context *ctx;
660
661 rcu_read_lock();
662 retry:
663 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
664 if (ctx) {
665 /*
666 * If this context is a clone of another, it might
667 * get swapped for another underneath us by
668 * perf_event_task_sched_out, though the
669 * rcu_read_lock() protects us from any context
670 * getting freed. Lock the context and check if it
671 * got swapped before we could get the lock, and retry
672 * if so. If we locked the right context, then it
673 * can't get swapped on us any more.
674 */
675 raw_spin_lock_irqsave(&ctx->lock, *flags);
676 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
677 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
678 goto retry;
679 }
680
681 if (!atomic_inc_not_zero(&ctx->refcount)) {
682 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
683 ctx = NULL;
684 }
685 }
686 rcu_read_unlock();
687 return ctx;
688 }
689
690 /*
691 * Get the context for a task and increment its pin_count so it
692 * can't get swapped to another task. This also increments its
693 * reference count so that the context can't get freed.
694 */
695 static struct perf_event_context *
696 perf_pin_task_context(struct task_struct *task, int ctxn)
697 {
698 struct perf_event_context *ctx;
699 unsigned long flags;
700
701 ctx = perf_lock_task_context(task, ctxn, &flags);
702 if (ctx) {
703 ++ctx->pin_count;
704 raw_spin_unlock_irqrestore(&ctx->lock, flags);
705 }
706 return ctx;
707 }
708
709 static void perf_unpin_context(struct perf_event_context *ctx)
710 {
711 unsigned long flags;
712
713 raw_spin_lock_irqsave(&ctx->lock, flags);
714 --ctx->pin_count;
715 raw_spin_unlock_irqrestore(&ctx->lock, flags);
716 }
717
718 /*
719 * Update the record of the current time in a context.
720 */
721 static void update_context_time(struct perf_event_context *ctx)
722 {
723 u64 now = perf_clock();
724
725 ctx->time += now - ctx->timestamp;
726 ctx->timestamp = now;
727 }
728
729 static u64 perf_event_time(struct perf_event *event)
730 {
731 struct perf_event_context *ctx = event->ctx;
732
733 if (is_cgroup_event(event))
734 return perf_cgroup_event_time(event);
735
736 return ctx ? ctx->time : 0;
737 }
738
739 /*
740 * Update the total_time_enabled and total_time_running fields for a event.
741 */
742 static void update_event_times(struct perf_event *event)
743 {
744 struct perf_event_context *ctx = event->ctx;
745 u64 run_end;
746
747 if (event->state < PERF_EVENT_STATE_INACTIVE ||
748 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
749 return;
750 /*
751 * in cgroup mode, time_enabled represents
752 * the time the event was enabled AND active
753 * tasks were in the monitored cgroup. This is
754 * independent of the activity of the context as
755 * there may be a mix of cgroup and non-cgroup events.
756 *
757 * That is why we treat cgroup events differently
758 * here.
759 */
760 if (is_cgroup_event(event))
761 run_end = perf_event_time(event);
762 else if (ctx->is_active)
763 run_end = ctx->time;
764 else
765 run_end = event->tstamp_stopped;
766
767 event->total_time_enabled = run_end - event->tstamp_enabled;
768
769 if (event->state == PERF_EVENT_STATE_INACTIVE)
770 run_end = event->tstamp_stopped;
771 else
772 run_end = perf_event_time(event);
773
774 event->total_time_running = run_end - event->tstamp_running;
775
776 }
777
778 /*
779 * Update total_time_enabled and total_time_running for all events in a group.
780 */
781 static void update_group_times(struct perf_event *leader)
782 {
783 struct perf_event *event;
784
785 update_event_times(leader);
786 list_for_each_entry(event, &leader->sibling_list, group_entry)
787 update_event_times(event);
788 }
789
790 static struct list_head *
791 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
792 {
793 if (event->attr.pinned)
794 return &ctx->pinned_groups;
795 else
796 return &ctx->flexible_groups;
797 }
798
799 /*
800 * Add a event from the lists for its context.
801 * Must be called with ctx->mutex and ctx->lock held.
802 */
803 static void
804 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
805 {
806 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
807 event->attach_state |= PERF_ATTACH_CONTEXT;
808
809 /*
810 * If we're a stand alone event or group leader, we go to the context
811 * list, group events are kept attached to the group so that
812 * perf_group_detach can, at all times, locate all siblings.
813 */
814 if (event->group_leader == event) {
815 struct list_head *list;
816
817 if (is_software_event(event))
818 event->group_flags |= PERF_GROUP_SOFTWARE;
819
820 list = ctx_group_list(event, ctx);
821 list_add_tail(&event->group_entry, list);
822 }
823
824 if (is_cgroup_event(event))
825 ctx->nr_cgroups++;
826
827 list_add_rcu(&event->event_entry, &ctx->event_list);
828 if (!ctx->nr_events)
829 perf_pmu_rotate_start(ctx->pmu);
830 ctx->nr_events++;
831 if (event->attr.inherit_stat)
832 ctx->nr_stat++;
833 }
834
835 /*
836 * Called at perf_event creation and when events are attached/detached from a
837 * group.
838 */
839 static void perf_event__read_size(struct perf_event *event)
840 {
841 int entry = sizeof(u64); /* value */
842 int size = 0;
843 int nr = 1;
844
845 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
846 size += sizeof(u64);
847
848 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
849 size += sizeof(u64);
850
851 if (event->attr.read_format & PERF_FORMAT_ID)
852 entry += sizeof(u64);
853
854 if (event->attr.read_format & PERF_FORMAT_GROUP) {
855 nr += event->group_leader->nr_siblings;
856 size += sizeof(u64);
857 }
858
859 size += entry * nr;
860 event->read_size = size;
861 }
862
863 static void perf_event__header_size(struct perf_event *event)
864 {
865 struct perf_sample_data *data;
866 u64 sample_type = event->attr.sample_type;
867 u16 size = 0;
868
869 perf_event__read_size(event);
870
871 if (sample_type & PERF_SAMPLE_IP)
872 size += sizeof(data->ip);
873
874 if (sample_type & PERF_SAMPLE_ADDR)
875 size += sizeof(data->addr);
876
877 if (sample_type & PERF_SAMPLE_PERIOD)
878 size += sizeof(data->period);
879
880 if (sample_type & PERF_SAMPLE_READ)
881 size += event->read_size;
882
883 event->header_size = size;
884 }
885
886 static void perf_event__id_header_size(struct perf_event *event)
887 {
888 struct perf_sample_data *data;
889 u64 sample_type = event->attr.sample_type;
890 u16 size = 0;
891
892 if (sample_type & PERF_SAMPLE_TID)
893 size += sizeof(data->tid_entry);
894
895 if (sample_type & PERF_SAMPLE_TIME)
896 size += sizeof(data->time);
897
898 if (sample_type & PERF_SAMPLE_ID)
899 size += sizeof(data->id);
900
901 if (sample_type & PERF_SAMPLE_STREAM_ID)
902 size += sizeof(data->stream_id);
903
904 if (sample_type & PERF_SAMPLE_CPU)
905 size += sizeof(data->cpu_entry);
906
907 event->id_header_size = size;
908 }
909
910 static void perf_group_attach(struct perf_event *event)
911 {
912 struct perf_event *group_leader = event->group_leader, *pos;
913
914 /*
915 * We can have double attach due to group movement in perf_event_open.
916 */
917 if (event->attach_state & PERF_ATTACH_GROUP)
918 return;
919
920 event->attach_state |= PERF_ATTACH_GROUP;
921
922 if (group_leader == event)
923 return;
924
925 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
926 !is_software_event(event))
927 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
928
929 list_add_tail(&event->group_entry, &group_leader->sibling_list);
930 group_leader->nr_siblings++;
931
932 perf_event__header_size(group_leader);
933
934 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
935 perf_event__header_size(pos);
936 }
937
938 /*
939 * Remove a event from the lists for its context.
940 * Must be called with ctx->mutex and ctx->lock held.
941 */
942 static void
943 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
944 {
945 struct perf_cpu_context *cpuctx;
946 /*
947 * We can have double detach due to exit/hot-unplug + close.
948 */
949 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
950 return;
951
952 event->attach_state &= ~PERF_ATTACH_CONTEXT;
953
954 if (is_cgroup_event(event)) {
955 ctx->nr_cgroups--;
956 cpuctx = __get_cpu_context(ctx);
957 /*
958 * if there are no more cgroup events
959 * then cler cgrp to avoid stale pointer
960 * in update_cgrp_time_from_cpuctx()
961 */
962 if (!ctx->nr_cgroups)
963 cpuctx->cgrp = NULL;
964 }
965
966 ctx->nr_events--;
967 if (event->attr.inherit_stat)
968 ctx->nr_stat--;
969
970 list_del_rcu(&event->event_entry);
971
972 if (event->group_leader == event)
973 list_del_init(&event->group_entry);
974
975 update_group_times(event);
976
977 /*
978 * If event was in error state, then keep it
979 * that way, otherwise bogus counts will be
980 * returned on read(). The only way to get out
981 * of error state is by explicit re-enabling
982 * of the event
983 */
984 if (event->state > PERF_EVENT_STATE_OFF)
985 event->state = PERF_EVENT_STATE_OFF;
986 }
987
988 static void perf_group_detach(struct perf_event *event)
989 {
990 struct perf_event *sibling, *tmp;
991 struct list_head *list = NULL;
992
993 /*
994 * We can have double detach due to exit/hot-unplug + close.
995 */
996 if (!(event->attach_state & PERF_ATTACH_GROUP))
997 return;
998
999 event->attach_state &= ~PERF_ATTACH_GROUP;
1000
1001 /*
1002 * If this is a sibling, remove it from its group.
1003 */
1004 if (event->group_leader != event) {
1005 list_del_init(&event->group_entry);
1006 event->group_leader->nr_siblings--;
1007 goto out;
1008 }
1009
1010 if (!list_empty(&event->group_entry))
1011 list = &event->group_entry;
1012
1013 /*
1014 * If this was a group event with sibling events then
1015 * upgrade the siblings to singleton events by adding them
1016 * to whatever list we are on.
1017 */
1018 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1019 if (list)
1020 list_move_tail(&sibling->group_entry, list);
1021 sibling->group_leader = sibling;
1022
1023 /* Inherit group flags from the previous leader */
1024 sibling->group_flags = event->group_flags;
1025 }
1026
1027 out:
1028 perf_event__header_size(event->group_leader);
1029
1030 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1031 perf_event__header_size(tmp);
1032 }
1033
1034 static inline int
1035 event_filter_match(struct perf_event *event)
1036 {
1037 return (event->cpu == -1 || event->cpu == smp_processor_id())
1038 && perf_cgroup_match(event);
1039 }
1040
1041 static void
1042 event_sched_out(struct perf_event *event,
1043 struct perf_cpu_context *cpuctx,
1044 struct perf_event_context *ctx)
1045 {
1046 u64 tstamp = perf_event_time(event);
1047 u64 delta;
1048 /*
1049 * An event which could not be activated because of
1050 * filter mismatch still needs to have its timings
1051 * maintained, otherwise bogus information is return
1052 * via read() for time_enabled, time_running:
1053 */
1054 if (event->state == PERF_EVENT_STATE_INACTIVE
1055 && !event_filter_match(event)) {
1056 delta = tstamp - event->tstamp_stopped;
1057 event->tstamp_running += delta;
1058 event->tstamp_stopped = tstamp;
1059 }
1060
1061 if (event->state != PERF_EVENT_STATE_ACTIVE)
1062 return;
1063
1064 event->state = PERF_EVENT_STATE_INACTIVE;
1065 if (event->pending_disable) {
1066 event->pending_disable = 0;
1067 event->state = PERF_EVENT_STATE_OFF;
1068 }
1069 event->tstamp_stopped = tstamp;
1070 event->pmu->del(event, 0);
1071 event->oncpu = -1;
1072
1073 if (!is_software_event(event))
1074 cpuctx->active_oncpu--;
1075 ctx->nr_active--;
1076 if (event->attr.exclusive || !cpuctx->active_oncpu)
1077 cpuctx->exclusive = 0;
1078 }
1079
1080 static void
1081 group_sched_out(struct perf_event *group_event,
1082 struct perf_cpu_context *cpuctx,
1083 struct perf_event_context *ctx)
1084 {
1085 struct perf_event *event;
1086 int state = group_event->state;
1087
1088 event_sched_out(group_event, cpuctx, ctx);
1089
1090 /*
1091 * Schedule out siblings (if any):
1092 */
1093 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1094 event_sched_out(event, cpuctx, ctx);
1095
1096 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1097 cpuctx->exclusive = 0;
1098 }
1099
1100 /*
1101 * Cross CPU call to remove a performance event
1102 *
1103 * We disable the event on the hardware level first. After that we
1104 * remove it from the context list.
1105 */
1106 static int __perf_remove_from_context(void *info)
1107 {
1108 struct perf_event *event = info;
1109 struct perf_event_context *ctx = event->ctx;
1110 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1111
1112 raw_spin_lock(&ctx->lock);
1113 event_sched_out(event, cpuctx, ctx);
1114 list_del_event(event, ctx);
1115 raw_spin_unlock(&ctx->lock);
1116
1117 return 0;
1118 }
1119
1120
1121 /*
1122 * Remove the event from a task's (or a CPU's) list of events.
1123 *
1124 * CPU events are removed with a smp call. For task events we only
1125 * call when the task is on a CPU.
1126 *
1127 * If event->ctx is a cloned context, callers must make sure that
1128 * every task struct that event->ctx->task could possibly point to
1129 * remains valid. This is OK when called from perf_release since
1130 * that only calls us on the top-level context, which can't be a clone.
1131 * When called from perf_event_exit_task, it's OK because the
1132 * context has been detached from its task.
1133 */
1134 static void perf_remove_from_context(struct perf_event *event)
1135 {
1136 struct perf_event_context *ctx = event->ctx;
1137 struct task_struct *task = ctx->task;
1138
1139 lockdep_assert_held(&ctx->mutex);
1140
1141 if (!task) {
1142 /*
1143 * Per cpu events are removed via an smp call and
1144 * the removal is always successful.
1145 */
1146 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1147 return;
1148 }
1149
1150 retry:
1151 if (!task_function_call(task, __perf_remove_from_context, event))
1152 return;
1153
1154 raw_spin_lock_irq(&ctx->lock);
1155 /*
1156 * If we failed to find a running task, but find the context active now
1157 * that we've acquired the ctx->lock, retry.
1158 */
1159 if (ctx->is_active) {
1160 raw_spin_unlock_irq(&ctx->lock);
1161 goto retry;
1162 }
1163
1164 /*
1165 * Since the task isn't running, its safe to remove the event, us
1166 * holding the ctx->lock ensures the task won't get scheduled in.
1167 */
1168 list_del_event(event, ctx);
1169 raw_spin_unlock_irq(&ctx->lock);
1170 }
1171
1172 /*
1173 * Cross CPU call to disable a performance event
1174 */
1175 static int __perf_event_disable(void *info)
1176 {
1177 struct perf_event *event = info;
1178 struct perf_event_context *ctx = event->ctx;
1179 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1180
1181 /*
1182 * If this is a per-task event, need to check whether this
1183 * event's task is the current task on this cpu.
1184 *
1185 * Can trigger due to concurrent perf_event_context_sched_out()
1186 * flipping contexts around.
1187 */
1188 if (ctx->task && cpuctx->task_ctx != ctx)
1189 return -EINVAL;
1190
1191 raw_spin_lock(&ctx->lock);
1192
1193 /*
1194 * If the event is on, turn it off.
1195 * If it is in error state, leave it in error state.
1196 */
1197 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1198 update_context_time(ctx);
1199 update_cgrp_time_from_event(event);
1200 update_group_times(event);
1201 if (event == event->group_leader)
1202 group_sched_out(event, cpuctx, ctx);
1203 else
1204 event_sched_out(event, cpuctx, ctx);
1205 event->state = PERF_EVENT_STATE_OFF;
1206 }
1207
1208 raw_spin_unlock(&ctx->lock);
1209
1210 return 0;
1211 }
1212
1213 /*
1214 * Disable a event.
1215 *
1216 * If event->ctx is a cloned context, callers must make sure that
1217 * every task struct that event->ctx->task could possibly point to
1218 * remains valid. This condition is satisifed when called through
1219 * perf_event_for_each_child or perf_event_for_each because they
1220 * hold the top-level event's child_mutex, so any descendant that
1221 * goes to exit will block in sync_child_event.
1222 * When called from perf_pending_event it's OK because event->ctx
1223 * is the current context on this CPU and preemption is disabled,
1224 * hence we can't get into perf_event_task_sched_out for this context.
1225 */
1226 void perf_event_disable(struct perf_event *event)
1227 {
1228 struct perf_event_context *ctx = event->ctx;
1229 struct task_struct *task = ctx->task;
1230
1231 if (!task) {
1232 /*
1233 * Disable the event on the cpu that it's on
1234 */
1235 cpu_function_call(event->cpu, __perf_event_disable, event);
1236 return;
1237 }
1238
1239 retry:
1240 if (!task_function_call(task, __perf_event_disable, event))
1241 return;
1242
1243 raw_spin_lock_irq(&ctx->lock);
1244 /*
1245 * If the event is still active, we need to retry the cross-call.
1246 */
1247 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1248 raw_spin_unlock_irq(&ctx->lock);
1249 /*
1250 * Reload the task pointer, it might have been changed by
1251 * a concurrent perf_event_context_sched_out().
1252 */
1253 task = ctx->task;
1254 goto retry;
1255 }
1256
1257 /*
1258 * Since we have the lock this context can't be scheduled
1259 * in, so we can change the state safely.
1260 */
1261 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1262 update_group_times(event);
1263 event->state = PERF_EVENT_STATE_OFF;
1264 }
1265 raw_spin_unlock_irq(&ctx->lock);
1266 }
1267
1268 static void perf_set_shadow_time(struct perf_event *event,
1269 struct perf_event_context *ctx,
1270 u64 tstamp)
1271 {
1272 /*
1273 * use the correct time source for the time snapshot
1274 *
1275 * We could get by without this by leveraging the
1276 * fact that to get to this function, the caller
1277 * has most likely already called update_context_time()
1278 * and update_cgrp_time_xx() and thus both timestamp
1279 * are identical (or very close). Given that tstamp is,
1280 * already adjusted for cgroup, we could say that:
1281 * tstamp - ctx->timestamp
1282 * is equivalent to
1283 * tstamp - cgrp->timestamp.
1284 *
1285 * Then, in perf_output_read(), the calculation would
1286 * work with no changes because:
1287 * - event is guaranteed scheduled in
1288 * - no scheduled out in between
1289 * - thus the timestamp would be the same
1290 *
1291 * But this is a bit hairy.
1292 *
1293 * So instead, we have an explicit cgroup call to remain
1294 * within the time time source all along. We believe it
1295 * is cleaner and simpler to understand.
1296 */
1297 if (is_cgroup_event(event))
1298 perf_cgroup_set_shadow_time(event, tstamp);
1299 else
1300 event->shadow_ctx_time = tstamp - ctx->timestamp;
1301 }
1302
1303 #define MAX_INTERRUPTS (~0ULL)
1304
1305 static void perf_log_throttle(struct perf_event *event, int enable);
1306
1307 static int
1308 event_sched_in(struct perf_event *event,
1309 struct perf_cpu_context *cpuctx,
1310 struct perf_event_context *ctx)
1311 {
1312 u64 tstamp = perf_event_time(event);
1313
1314 if (event->state <= PERF_EVENT_STATE_OFF)
1315 return 0;
1316
1317 event->state = PERF_EVENT_STATE_ACTIVE;
1318 event->oncpu = smp_processor_id();
1319
1320 /*
1321 * Unthrottle events, since we scheduled we might have missed several
1322 * ticks already, also for a heavily scheduling task there is little
1323 * guarantee it'll get a tick in a timely manner.
1324 */
1325 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1326 perf_log_throttle(event, 1);
1327 event->hw.interrupts = 0;
1328 }
1329
1330 /*
1331 * The new state must be visible before we turn it on in the hardware:
1332 */
1333 smp_wmb();
1334
1335 if (event->pmu->add(event, PERF_EF_START)) {
1336 event->state = PERF_EVENT_STATE_INACTIVE;
1337 event->oncpu = -1;
1338 return -EAGAIN;
1339 }
1340
1341 event->tstamp_running += tstamp - event->tstamp_stopped;
1342
1343 perf_set_shadow_time(event, ctx, tstamp);
1344
1345 if (!is_software_event(event))
1346 cpuctx->active_oncpu++;
1347 ctx->nr_active++;
1348
1349 if (event->attr.exclusive)
1350 cpuctx->exclusive = 1;
1351
1352 return 0;
1353 }
1354
1355 static int
1356 group_sched_in(struct perf_event *group_event,
1357 struct perf_cpu_context *cpuctx,
1358 struct perf_event_context *ctx)
1359 {
1360 struct perf_event *event, *partial_group = NULL;
1361 struct pmu *pmu = group_event->pmu;
1362 u64 now = ctx->time;
1363 bool simulate = false;
1364
1365 if (group_event->state == PERF_EVENT_STATE_OFF)
1366 return 0;
1367
1368 pmu->start_txn(pmu);
1369
1370 if (event_sched_in(group_event, cpuctx, ctx)) {
1371 pmu->cancel_txn(pmu);
1372 return -EAGAIN;
1373 }
1374
1375 /*
1376 * Schedule in siblings as one group (if any):
1377 */
1378 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1379 if (event_sched_in(event, cpuctx, ctx)) {
1380 partial_group = event;
1381 goto group_error;
1382 }
1383 }
1384
1385 if (!pmu->commit_txn(pmu))
1386 return 0;
1387
1388 group_error:
1389 /*
1390 * Groups can be scheduled in as one unit only, so undo any
1391 * partial group before returning:
1392 * The events up to the failed event are scheduled out normally,
1393 * tstamp_stopped will be updated.
1394 *
1395 * The failed events and the remaining siblings need to have
1396 * their timings updated as if they had gone thru event_sched_in()
1397 * and event_sched_out(). This is required to get consistent timings
1398 * across the group. This also takes care of the case where the group
1399 * could never be scheduled by ensuring tstamp_stopped is set to mark
1400 * the time the event was actually stopped, such that time delta
1401 * calculation in update_event_times() is correct.
1402 */
1403 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1404 if (event == partial_group)
1405 simulate = true;
1406
1407 if (simulate) {
1408 event->tstamp_running += now - event->tstamp_stopped;
1409 event->tstamp_stopped = now;
1410 } else {
1411 event_sched_out(event, cpuctx, ctx);
1412 }
1413 }
1414 event_sched_out(group_event, cpuctx, ctx);
1415
1416 pmu->cancel_txn(pmu);
1417
1418 return -EAGAIN;
1419 }
1420
1421 /*
1422 * Work out whether we can put this event group on the CPU now.
1423 */
1424 static int group_can_go_on(struct perf_event *event,
1425 struct perf_cpu_context *cpuctx,
1426 int can_add_hw)
1427 {
1428 /*
1429 * Groups consisting entirely of software events can always go on.
1430 */
1431 if (event->group_flags & PERF_GROUP_SOFTWARE)
1432 return 1;
1433 /*
1434 * If an exclusive group is already on, no other hardware
1435 * events can go on.
1436 */
1437 if (cpuctx->exclusive)
1438 return 0;
1439 /*
1440 * If this group is exclusive and there are already
1441 * events on the CPU, it can't go on.
1442 */
1443 if (event->attr.exclusive && cpuctx->active_oncpu)
1444 return 0;
1445 /*
1446 * Otherwise, try to add it if all previous groups were able
1447 * to go on.
1448 */
1449 return can_add_hw;
1450 }
1451
1452 static void add_event_to_ctx(struct perf_event *event,
1453 struct perf_event_context *ctx)
1454 {
1455 u64 tstamp = perf_event_time(event);
1456
1457 list_add_event(event, ctx);
1458 perf_group_attach(event);
1459 event->tstamp_enabled = tstamp;
1460 event->tstamp_running = tstamp;
1461 event->tstamp_stopped = tstamp;
1462 }
1463
1464 static void perf_event_context_sched_in(struct perf_event_context *ctx,
1465 struct task_struct *tsk);
1466
1467 /*
1468 * Cross CPU call to install and enable a performance event
1469 *
1470 * Must be called with ctx->mutex held
1471 */
1472 static int __perf_install_in_context(void *info)
1473 {
1474 struct perf_event *event = info;
1475 struct perf_event_context *ctx = event->ctx;
1476 struct perf_event *leader = event->group_leader;
1477 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1478 int err;
1479
1480 /*
1481 * In case we're installing a new context to an already running task,
1482 * could also happen before perf_event_task_sched_in() on architectures
1483 * which do context switches with IRQs enabled.
1484 */
1485 if (ctx->task && !cpuctx->task_ctx)
1486 perf_event_context_sched_in(ctx, ctx->task);
1487
1488 raw_spin_lock(&ctx->lock);
1489 ctx->is_active = 1;
1490 update_context_time(ctx);
1491 /*
1492 * update cgrp time only if current cgrp
1493 * matches event->cgrp. Must be done before
1494 * calling add_event_to_ctx()
1495 */
1496 update_cgrp_time_from_event(event);
1497
1498 add_event_to_ctx(event, ctx);
1499
1500 if (!event_filter_match(event))
1501 goto unlock;
1502
1503 /*
1504 * Don't put the event on if it is disabled or if
1505 * it is in a group and the group isn't on.
1506 */
1507 if (event->state != PERF_EVENT_STATE_INACTIVE ||
1508 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1509 goto unlock;
1510
1511 /*
1512 * An exclusive event can't go on if there are already active
1513 * hardware events, and no hardware event can go on if there
1514 * is already an exclusive event on.
1515 */
1516 if (!group_can_go_on(event, cpuctx, 1))
1517 err = -EEXIST;
1518 else
1519 err = event_sched_in(event, cpuctx, ctx);
1520
1521 if (err) {
1522 /*
1523 * This event couldn't go on. If it is in a group
1524 * then we have to pull the whole group off.
1525 * If the event group is pinned then put it in error state.
1526 */
1527 if (leader != event)
1528 group_sched_out(leader, cpuctx, ctx);
1529 if (leader->attr.pinned) {
1530 update_group_times(leader);
1531 leader->state = PERF_EVENT_STATE_ERROR;
1532 }
1533 }
1534
1535 unlock:
1536 raw_spin_unlock(&ctx->lock);
1537
1538 return 0;
1539 }
1540
1541 /*
1542 * Attach a performance event to a context
1543 *
1544 * First we add the event to the list with the hardware enable bit
1545 * in event->hw_config cleared.
1546 *
1547 * If the event is attached to a task which is on a CPU we use a smp
1548 * call to enable it in the task context. The task might have been
1549 * scheduled away, but we check this in the smp call again.
1550 */
1551 static void
1552 perf_install_in_context(struct perf_event_context *ctx,
1553 struct perf_event *event,
1554 int cpu)
1555 {
1556 struct task_struct *task = ctx->task;
1557
1558 lockdep_assert_held(&ctx->mutex);
1559
1560 event->ctx = ctx;
1561
1562 if (!task) {
1563 /*
1564 * Per cpu events are installed via an smp call and
1565 * the install is always successful.
1566 */
1567 cpu_function_call(cpu, __perf_install_in_context, event);
1568 return;
1569 }
1570
1571 retry:
1572 if (!task_function_call(task, __perf_install_in_context, event))
1573 return;
1574
1575 raw_spin_lock_irq(&ctx->lock);
1576 /*
1577 * If we failed to find a running task, but find the context active now
1578 * that we've acquired the ctx->lock, retry.
1579 */
1580 if (ctx->is_active) {
1581 raw_spin_unlock_irq(&ctx->lock);
1582 goto retry;
1583 }
1584
1585 /*
1586 * Since the task isn't running, its safe to add the event, us holding
1587 * the ctx->lock ensures the task won't get scheduled in.
1588 */
1589 add_event_to_ctx(event, ctx);
1590 raw_spin_unlock_irq(&ctx->lock);
1591 }
1592
1593 /*
1594 * Put a event into inactive state and update time fields.
1595 * Enabling the leader of a group effectively enables all
1596 * the group members that aren't explicitly disabled, so we
1597 * have to update their ->tstamp_enabled also.
1598 * Note: this works for group members as well as group leaders
1599 * since the non-leader members' sibling_lists will be empty.
1600 */
1601 static void __perf_event_mark_enabled(struct perf_event *event,
1602 struct perf_event_context *ctx)
1603 {
1604 struct perf_event *sub;
1605 u64 tstamp = perf_event_time(event);
1606
1607 event->state = PERF_EVENT_STATE_INACTIVE;
1608 event->tstamp_enabled = tstamp - event->total_time_enabled;
1609 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1610 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1611 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1612 }
1613 }
1614
1615 /*
1616 * Cross CPU call to enable a performance event
1617 */
1618 static int __perf_event_enable(void *info)
1619 {
1620 struct perf_event *event = info;
1621 struct perf_event_context *ctx = event->ctx;
1622 struct perf_event *leader = event->group_leader;
1623 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1624 int err;
1625
1626 if (WARN_ON_ONCE(!ctx->is_active))
1627 return -EINVAL;
1628
1629 raw_spin_lock(&ctx->lock);
1630 update_context_time(ctx);
1631
1632 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1633 goto unlock;
1634
1635 /*
1636 * set current task's cgroup time reference point
1637 */
1638 perf_cgroup_set_timestamp(current, ctx);
1639
1640 __perf_event_mark_enabled(event, ctx);
1641
1642 if (!event_filter_match(event)) {
1643 if (is_cgroup_event(event))
1644 perf_cgroup_defer_enabled(event);
1645 goto unlock;
1646 }
1647
1648 /*
1649 * If the event is in a group and isn't the group leader,
1650 * then don't put it on unless the group is on.
1651 */
1652 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1653 goto unlock;
1654
1655 if (!group_can_go_on(event, cpuctx, 1)) {
1656 err = -EEXIST;
1657 } else {
1658 if (event == leader)
1659 err = group_sched_in(event, cpuctx, ctx);
1660 else
1661 err = event_sched_in(event, cpuctx, ctx);
1662 }
1663
1664 if (err) {
1665 /*
1666 * If this event can't go on and it's part of a
1667 * group, then the whole group has to come off.
1668 */
1669 if (leader != event)
1670 group_sched_out(leader, cpuctx, ctx);
1671 if (leader->attr.pinned) {
1672 update_group_times(leader);
1673 leader->state = PERF_EVENT_STATE_ERROR;
1674 }
1675 }
1676
1677 unlock:
1678 raw_spin_unlock(&ctx->lock);
1679
1680 return 0;
1681 }
1682
1683 /*
1684 * Enable a event.
1685 *
1686 * If event->ctx is a cloned context, callers must make sure that
1687 * every task struct that event->ctx->task could possibly point to
1688 * remains valid. This condition is satisfied when called through
1689 * perf_event_for_each_child or perf_event_for_each as described
1690 * for perf_event_disable.
1691 */
1692 void perf_event_enable(struct perf_event *event)
1693 {
1694 struct perf_event_context *ctx = event->ctx;
1695 struct task_struct *task = ctx->task;
1696
1697 if (!task) {
1698 /*
1699 * Enable the event on the cpu that it's on
1700 */
1701 cpu_function_call(event->cpu, __perf_event_enable, event);
1702 return;
1703 }
1704
1705 raw_spin_lock_irq(&ctx->lock);
1706 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1707 goto out;
1708
1709 /*
1710 * If the event is in error state, clear that first.
1711 * That way, if we see the event in error state below, we
1712 * know that it has gone back into error state, as distinct
1713 * from the task having been scheduled away before the
1714 * cross-call arrived.
1715 */
1716 if (event->state == PERF_EVENT_STATE_ERROR)
1717 event->state = PERF_EVENT_STATE_OFF;
1718
1719 retry:
1720 if (!ctx->is_active) {
1721 __perf_event_mark_enabled(event, ctx);
1722 goto out;
1723 }
1724
1725 raw_spin_unlock_irq(&ctx->lock);
1726
1727 if (!task_function_call(task, __perf_event_enable, event))
1728 return;
1729
1730 raw_spin_lock_irq(&ctx->lock);
1731
1732 /*
1733 * If the context is active and the event is still off,
1734 * we need to retry the cross-call.
1735 */
1736 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1737 /*
1738 * task could have been flipped by a concurrent
1739 * perf_event_context_sched_out()
1740 */
1741 task = ctx->task;
1742 goto retry;
1743 }
1744
1745 out:
1746 raw_spin_unlock_irq(&ctx->lock);
1747 }
1748
1749 static int perf_event_refresh(struct perf_event *event, int refresh)
1750 {
1751 /*
1752 * not supported on inherited events
1753 */
1754 if (event->attr.inherit || !is_sampling_event(event))
1755 return -EINVAL;
1756
1757 atomic_add(refresh, &event->event_limit);
1758 perf_event_enable(event);
1759
1760 return 0;
1761 }
1762
1763 static void ctx_sched_out(struct perf_event_context *ctx,
1764 struct perf_cpu_context *cpuctx,
1765 enum event_type_t event_type)
1766 {
1767 struct perf_event *event;
1768
1769 raw_spin_lock(&ctx->lock);
1770 perf_pmu_disable(ctx->pmu);
1771 ctx->is_active = 0;
1772 if (likely(!ctx->nr_events))
1773 goto out;
1774 update_context_time(ctx);
1775 update_cgrp_time_from_cpuctx(cpuctx);
1776
1777 if (!ctx->nr_active)
1778 goto out;
1779
1780 if (event_type & EVENT_PINNED) {
1781 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1782 group_sched_out(event, cpuctx, ctx);
1783 }
1784
1785 if (event_type & EVENT_FLEXIBLE) {
1786 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1787 group_sched_out(event, cpuctx, ctx);
1788 }
1789 out:
1790 perf_pmu_enable(ctx->pmu);
1791 raw_spin_unlock(&ctx->lock);
1792 }
1793
1794 /*
1795 * Test whether two contexts are equivalent, i.e. whether they
1796 * have both been cloned from the same version of the same context
1797 * and they both have the same number of enabled events.
1798 * If the number of enabled events is the same, then the set
1799 * of enabled events should be the same, because these are both
1800 * inherited contexts, therefore we can't access individual events
1801 * in them directly with an fd; we can only enable/disable all
1802 * events via prctl, or enable/disable all events in a family
1803 * via ioctl, which will have the same effect on both contexts.
1804 */
1805 static int context_equiv(struct perf_event_context *ctx1,
1806 struct perf_event_context *ctx2)
1807 {
1808 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1809 && ctx1->parent_gen == ctx2->parent_gen
1810 && !ctx1->pin_count && !ctx2->pin_count;
1811 }
1812
1813 static void __perf_event_sync_stat(struct perf_event *event,
1814 struct perf_event *next_event)
1815 {
1816 u64 value;
1817
1818 if (!event->attr.inherit_stat)
1819 return;
1820
1821 /*
1822 * Update the event value, we cannot use perf_event_read()
1823 * because we're in the middle of a context switch and have IRQs
1824 * disabled, which upsets smp_call_function_single(), however
1825 * we know the event must be on the current CPU, therefore we
1826 * don't need to use it.
1827 */
1828 switch (event->state) {
1829 case PERF_EVENT_STATE_ACTIVE:
1830 event->pmu->read(event);
1831 /* fall-through */
1832
1833 case PERF_EVENT_STATE_INACTIVE:
1834 update_event_times(event);
1835 break;
1836
1837 default:
1838 break;
1839 }
1840
1841 /*
1842 * In order to keep per-task stats reliable we need to flip the event
1843 * values when we flip the contexts.
1844 */
1845 value = local64_read(&next_event->count);
1846 value = local64_xchg(&event->count, value);
1847 local64_set(&next_event->count, value);
1848
1849 swap(event->total_time_enabled, next_event->total_time_enabled);
1850 swap(event->total_time_running, next_event->total_time_running);
1851
1852 /*
1853 * Since we swizzled the values, update the user visible data too.
1854 */
1855 perf_event_update_userpage(event);
1856 perf_event_update_userpage(next_event);
1857 }
1858
1859 #define list_next_entry(pos, member) \
1860 list_entry(pos->member.next, typeof(*pos), member)
1861
1862 static void perf_event_sync_stat(struct perf_event_context *ctx,
1863 struct perf_event_context *next_ctx)
1864 {
1865 struct perf_event *event, *next_event;
1866
1867 if (!ctx->nr_stat)
1868 return;
1869
1870 update_context_time(ctx);
1871
1872 event = list_first_entry(&ctx->event_list,
1873 struct perf_event, event_entry);
1874
1875 next_event = list_first_entry(&next_ctx->event_list,
1876 struct perf_event, event_entry);
1877
1878 while (&event->event_entry != &ctx->event_list &&
1879 &next_event->event_entry != &next_ctx->event_list) {
1880
1881 __perf_event_sync_stat(event, next_event);
1882
1883 event = list_next_entry(event, event_entry);
1884 next_event = list_next_entry(next_event, event_entry);
1885 }
1886 }
1887
1888 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1889 struct task_struct *next)
1890 {
1891 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1892 struct perf_event_context *next_ctx;
1893 struct perf_event_context *parent;
1894 struct perf_cpu_context *cpuctx;
1895 int do_switch = 1;
1896
1897 if (likely(!ctx))
1898 return;
1899
1900 cpuctx = __get_cpu_context(ctx);
1901 if (!cpuctx->task_ctx)
1902 return;
1903
1904 rcu_read_lock();
1905 parent = rcu_dereference(ctx->parent_ctx);
1906 next_ctx = next->perf_event_ctxp[ctxn];
1907 if (parent && next_ctx &&
1908 rcu_dereference(next_ctx->parent_ctx) == parent) {
1909 /*
1910 * Looks like the two contexts are clones, so we might be
1911 * able to optimize the context switch. We lock both
1912 * contexts and check that they are clones under the
1913 * lock (including re-checking that neither has been
1914 * uncloned in the meantime). It doesn't matter which
1915 * order we take the locks because no other cpu could
1916 * be trying to lock both of these tasks.
1917 */
1918 raw_spin_lock(&ctx->lock);
1919 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1920 if (context_equiv(ctx, next_ctx)) {
1921 /*
1922 * XXX do we need a memory barrier of sorts
1923 * wrt to rcu_dereference() of perf_event_ctxp
1924 */
1925 task->perf_event_ctxp[ctxn] = next_ctx;
1926 next->perf_event_ctxp[ctxn] = ctx;
1927 ctx->task = next;
1928 next_ctx->task = task;
1929 do_switch = 0;
1930
1931 perf_event_sync_stat(ctx, next_ctx);
1932 }
1933 raw_spin_unlock(&next_ctx->lock);
1934 raw_spin_unlock(&ctx->lock);
1935 }
1936 rcu_read_unlock();
1937
1938 if (do_switch) {
1939 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1940 cpuctx->task_ctx = NULL;
1941 }
1942 }
1943
1944 #define for_each_task_context_nr(ctxn) \
1945 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1946
1947 /*
1948 * Called from scheduler to remove the events of the current task,
1949 * with interrupts disabled.
1950 *
1951 * We stop each event and update the event value in event->count.
1952 *
1953 * This does not protect us against NMI, but disable()
1954 * sets the disabled bit in the control field of event _before_
1955 * accessing the event control register. If a NMI hits, then it will
1956 * not restart the event.
1957 */
1958 void __perf_event_task_sched_out(struct task_struct *task,
1959 struct task_struct *next)
1960 {
1961 int ctxn;
1962
1963 for_each_task_context_nr(ctxn)
1964 perf_event_context_sched_out(task, ctxn, next);
1965
1966 /*
1967 * if cgroup events exist on this CPU, then we need
1968 * to check if we have to switch out PMU state.
1969 * cgroup event are system-wide mode only
1970 */
1971 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
1972 perf_cgroup_sched_out(task);
1973 }
1974
1975 static void task_ctx_sched_out(struct perf_event_context *ctx,
1976 enum event_type_t event_type)
1977 {
1978 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1979
1980 if (!cpuctx->task_ctx)
1981 return;
1982
1983 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1984 return;
1985
1986 ctx_sched_out(ctx, cpuctx, event_type);
1987 cpuctx->task_ctx = NULL;
1988 }
1989
1990 /*
1991 * Called with IRQs disabled
1992 */
1993 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1994 enum event_type_t event_type)
1995 {
1996 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1997 }
1998
1999 static void
2000 ctx_pinned_sched_in(struct perf_event_context *ctx,
2001 struct perf_cpu_context *cpuctx)
2002 {
2003 struct perf_event *event;
2004
2005 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2006 if (event->state <= PERF_EVENT_STATE_OFF)
2007 continue;
2008 if (!event_filter_match(event))
2009 continue;
2010
2011 /* may need to reset tstamp_enabled */
2012 if (is_cgroup_event(event))
2013 perf_cgroup_mark_enabled(event, ctx);
2014
2015 if (group_can_go_on(event, cpuctx, 1))
2016 group_sched_in(event, cpuctx, ctx);
2017
2018 /*
2019 * If this pinned group hasn't been scheduled,
2020 * put it in error state.
2021 */
2022 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2023 update_group_times(event);
2024 event->state = PERF_EVENT_STATE_ERROR;
2025 }
2026 }
2027 }
2028
2029 static void
2030 ctx_flexible_sched_in(struct perf_event_context *ctx,
2031 struct perf_cpu_context *cpuctx)
2032 {
2033 struct perf_event *event;
2034 int can_add_hw = 1;
2035
2036 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2037 /* Ignore events in OFF or ERROR state */
2038 if (event->state <= PERF_EVENT_STATE_OFF)
2039 continue;
2040 /*
2041 * Listen to the 'cpu' scheduling filter constraint
2042 * of events:
2043 */
2044 if (!event_filter_match(event))
2045 continue;
2046
2047 /* may need to reset tstamp_enabled */
2048 if (is_cgroup_event(event))
2049 perf_cgroup_mark_enabled(event, ctx);
2050
2051 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2052 if (group_sched_in(event, cpuctx, ctx))
2053 can_add_hw = 0;
2054 }
2055 }
2056 }
2057
2058 static void
2059 ctx_sched_in(struct perf_event_context *ctx,
2060 struct perf_cpu_context *cpuctx,
2061 enum event_type_t event_type,
2062 struct task_struct *task)
2063 {
2064 u64 now;
2065
2066 raw_spin_lock(&ctx->lock);
2067 ctx->is_active = 1;
2068 if (likely(!ctx->nr_events))
2069 goto out;
2070
2071 now = perf_clock();
2072 ctx->timestamp = now;
2073 perf_cgroup_set_timestamp(task, ctx);
2074 /*
2075 * First go through the list and put on any pinned groups
2076 * in order to give them the best chance of going on.
2077 */
2078 if (event_type & EVENT_PINNED)
2079 ctx_pinned_sched_in(ctx, cpuctx);
2080
2081 /* Then walk through the lower prio flexible groups */
2082 if (event_type & EVENT_FLEXIBLE)
2083 ctx_flexible_sched_in(ctx, cpuctx);
2084
2085 out:
2086 raw_spin_unlock(&ctx->lock);
2087 }
2088
2089 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2090 enum event_type_t event_type,
2091 struct task_struct *task)
2092 {
2093 struct perf_event_context *ctx = &cpuctx->ctx;
2094
2095 ctx_sched_in(ctx, cpuctx, event_type, task);
2096 }
2097
2098 static void task_ctx_sched_in(struct perf_event_context *ctx,
2099 enum event_type_t event_type)
2100 {
2101 struct perf_cpu_context *cpuctx;
2102
2103 cpuctx = __get_cpu_context(ctx);
2104 if (cpuctx->task_ctx == ctx)
2105 return;
2106
2107 ctx_sched_in(ctx, cpuctx, event_type, NULL);
2108 cpuctx->task_ctx = ctx;
2109 }
2110
2111 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2112 struct task_struct *task)
2113 {
2114 struct perf_cpu_context *cpuctx;
2115
2116 cpuctx = __get_cpu_context(ctx);
2117 if (cpuctx->task_ctx == ctx)
2118 return;
2119
2120 perf_pmu_disable(ctx->pmu);
2121 /*
2122 * We want to keep the following priority order:
2123 * cpu pinned (that don't need to move), task pinned,
2124 * cpu flexible, task flexible.
2125 */
2126 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2127
2128 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2129 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2130 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2131
2132 cpuctx->task_ctx = ctx;
2133
2134 /*
2135 * Since these rotations are per-cpu, we need to ensure the
2136 * cpu-context we got scheduled on is actually rotating.
2137 */
2138 perf_pmu_rotate_start(ctx->pmu);
2139 perf_pmu_enable(ctx->pmu);
2140 }
2141
2142 /*
2143 * Called from scheduler to add the events of the current task
2144 * with interrupts disabled.
2145 *
2146 * We restore the event value and then enable it.
2147 *
2148 * This does not protect us against NMI, but enable()
2149 * sets the enabled bit in the control field of event _before_
2150 * accessing the event control register. If a NMI hits, then it will
2151 * keep the event running.
2152 */
2153 void __perf_event_task_sched_in(struct task_struct *task)
2154 {
2155 struct perf_event_context *ctx;
2156 int ctxn;
2157
2158 for_each_task_context_nr(ctxn) {
2159 ctx = task->perf_event_ctxp[ctxn];
2160 if (likely(!ctx))
2161 continue;
2162
2163 perf_event_context_sched_in(ctx, task);
2164 }
2165 /*
2166 * if cgroup events exist on this CPU, then we need
2167 * to check if we have to switch in PMU state.
2168 * cgroup event are system-wide mode only
2169 */
2170 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2171 perf_cgroup_sched_in(task);
2172 }
2173
2174 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2175 {
2176 u64 frequency = event->attr.sample_freq;
2177 u64 sec = NSEC_PER_SEC;
2178 u64 divisor, dividend;
2179
2180 int count_fls, nsec_fls, frequency_fls, sec_fls;
2181
2182 count_fls = fls64(count);
2183 nsec_fls = fls64(nsec);
2184 frequency_fls = fls64(frequency);
2185 sec_fls = 30;
2186
2187 /*
2188 * We got @count in @nsec, with a target of sample_freq HZ
2189 * the target period becomes:
2190 *
2191 * @count * 10^9
2192 * period = -------------------
2193 * @nsec * sample_freq
2194 *
2195 */
2196
2197 /*
2198 * Reduce accuracy by one bit such that @a and @b converge
2199 * to a similar magnitude.
2200 */
2201 #define REDUCE_FLS(a, b) \
2202 do { \
2203 if (a##_fls > b##_fls) { \
2204 a >>= 1; \
2205 a##_fls--; \
2206 } else { \
2207 b >>= 1; \
2208 b##_fls--; \
2209 } \
2210 } while (0)
2211
2212 /*
2213 * Reduce accuracy until either term fits in a u64, then proceed with
2214 * the other, so that finally we can do a u64/u64 division.
2215 */
2216 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2217 REDUCE_FLS(nsec, frequency);
2218 REDUCE_FLS(sec, count);
2219 }
2220
2221 if (count_fls + sec_fls > 64) {
2222 divisor = nsec * frequency;
2223
2224 while (count_fls + sec_fls > 64) {
2225 REDUCE_FLS(count, sec);
2226 divisor >>= 1;
2227 }
2228
2229 dividend = count * sec;
2230 } else {
2231 dividend = count * sec;
2232
2233 while (nsec_fls + frequency_fls > 64) {
2234 REDUCE_FLS(nsec, frequency);
2235 dividend >>= 1;
2236 }
2237
2238 divisor = nsec * frequency;
2239 }
2240
2241 if (!divisor)
2242 return dividend;
2243
2244 return div64_u64(dividend, divisor);
2245 }
2246
2247 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2248 {
2249 struct hw_perf_event *hwc = &event->hw;
2250 s64 period, sample_period;
2251 s64 delta;
2252
2253 period = perf_calculate_period(event, nsec, count);
2254
2255 delta = (s64)(period - hwc->sample_period);
2256 delta = (delta + 7) / 8; /* low pass filter */
2257
2258 sample_period = hwc->sample_period + delta;
2259
2260 if (!sample_period)
2261 sample_period = 1;
2262
2263 hwc->sample_period = sample_period;
2264
2265 if (local64_read(&hwc->period_left) > 8*sample_period) {
2266 event->pmu->stop(event, PERF_EF_UPDATE);
2267 local64_set(&hwc->period_left, 0);
2268 event->pmu->start(event, PERF_EF_RELOAD);
2269 }
2270 }
2271
2272 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2273 {
2274 struct perf_event *event;
2275 struct hw_perf_event *hwc;
2276 u64 interrupts, now;
2277 s64 delta;
2278
2279 raw_spin_lock(&ctx->lock);
2280 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2281 if (event->state != PERF_EVENT_STATE_ACTIVE)
2282 continue;
2283
2284 if (!event_filter_match(event))
2285 continue;
2286
2287 hwc = &event->hw;
2288
2289 interrupts = hwc->interrupts;
2290 hwc->interrupts = 0;
2291
2292 /*
2293 * unthrottle events on the tick
2294 */
2295 if (interrupts == MAX_INTERRUPTS) {
2296 perf_log_throttle(event, 1);
2297 event->pmu->start(event, 0);
2298 }
2299
2300 if (!event->attr.freq || !event->attr.sample_freq)
2301 continue;
2302
2303 event->pmu->read(event);
2304 now = local64_read(&event->count);
2305 delta = now - hwc->freq_count_stamp;
2306 hwc->freq_count_stamp = now;
2307
2308 if (delta > 0)
2309 perf_adjust_period(event, period, delta);
2310 }
2311 raw_spin_unlock(&ctx->lock);
2312 }
2313
2314 /*
2315 * Round-robin a context's events:
2316 */
2317 static void rotate_ctx(struct perf_event_context *ctx)
2318 {
2319 raw_spin_lock(&ctx->lock);
2320
2321 /*
2322 * Rotate the first entry last of non-pinned groups. Rotation might be
2323 * disabled by the inheritance code.
2324 */
2325 if (!ctx->rotate_disable)
2326 list_rotate_left(&ctx->flexible_groups);
2327
2328 raw_spin_unlock(&ctx->lock);
2329 }
2330
2331 /*
2332 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2333 * because they're strictly cpu affine and rotate_start is called with IRQs
2334 * disabled, while rotate_context is called from IRQ context.
2335 */
2336 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2337 {
2338 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2339 struct perf_event_context *ctx = NULL;
2340 int rotate = 0, remove = 1;
2341
2342 if (cpuctx->ctx.nr_events) {
2343 remove = 0;
2344 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2345 rotate = 1;
2346 }
2347
2348 ctx = cpuctx->task_ctx;
2349 if (ctx && ctx->nr_events) {
2350 remove = 0;
2351 if (ctx->nr_events != ctx->nr_active)
2352 rotate = 1;
2353 }
2354
2355 perf_pmu_disable(cpuctx->ctx.pmu);
2356 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2357 if (ctx)
2358 perf_ctx_adjust_freq(ctx, interval);
2359
2360 if (!rotate)
2361 goto done;
2362
2363 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2364 if (ctx)
2365 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
2366
2367 rotate_ctx(&cpuctx->ctx);
2368 if (ctx)
2369 rotate_ctx(ctx);
2370
2371 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2372 if (ctx)
2373 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2374
2375 done:
2376 if (remove)
2377 list_del_init(&cpuctx->rotation_list);
2378
2379 perf_pmu_enable(cpuctx->ctx.pmu);
2380 }
2381
2382 void perf_event_task_tick(void)
2383 {
2384 struct list_head *head = &__get_cpu_var(rotation_list);
2385 struct perf_cpu_context *cpuctx, *tmp;
2386
2387 WARN_ON(!irqs_disabled());
2388
2389 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2390 if (cpuctx->jiffies_interval == 1 ||
2391 !(jiffies % cpuctx->jiffies_interval))
2392 perf_rotate_context(cpuctx);
2393 }
2394 }
2395
2396 static int event_enable_on_exec(struct perf_event *event,
2397 struct perf_event_context *ctx)
2398 {
2399 if (!event->attr.enable_on_exec)
2400 return 0;
2401
2402 event->attr.enable_on_exec = 0;
2403 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2404 return 0;
2405
2406 __perf_event_mark_enabled(event, ctx);
2407
2408 return 1;
2409 }
2410
2411 /*
2412 * Enable all of a task's events that have been marked enable-on-exec.
2413 * This expects task == current.
2414 */
2415 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2416 {
2417 struct perf_event *event;
2418 unsigned long flags;
2419 int enabled = 0;
2420 int ret;
2421
2422 local_irq_save(flags);
2423 if (!ctx || !ctx->nr_events)
2424 goto out;
2425
2426 task_ctx_sched_out(ctx, EVENT_ALL);
2427
2428 raw_spin_lock(&ctx->lock);
2429
2430 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2431 ret = event_enable_on_exec(event, ctx);
2432 if (ret)
2433 enabled = 1;
2434 }
2435
2436 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2437 ret = event_enable_on_exec(event, ctx);
2438 if (ret)
2439 enabled = 1;
2440 }
2441
2442 /*
2443 * Unclone this context if we enabled any event.
2444 */
2445 if (enabled)
2446 unclone_ctx(ctx);
2447
2448 raw_spin_unlock(&ctx->lock);
2449
2450 perf_event_context_sched_in(ctx, ctx->task);
2451 out:
2452 local_irq_restore(flags);
2453 }
2454
2455 /*
2456 * Cross CPU call to read the hardware event
2457 */
2458 static void __perf_event_read(void *info)
2459 {
2460 struct perf_event *event = info;
2461 struct perf_event_context *ctx = event->ctx;
2462 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2463
2464 /*
2465 * If this is a task context, we need to check whether it is
2466 * the current task context of this cpu. If not it has been
2467 * scheduled out before the smp call arrived. In that case
2468 * event->count would have been updated to a recent sample
2469 * when the event was scheduled out.
2470 */
2471 if (ctx->task && cpuctx->task_ctx != ctx)
2472 return;
2473
2474 raw_spin_lock(&ctx->lock);
2475 if (ctx->is_active) {
2476 update_context_time(ctx);
2477 update_cgrp_time_from_event(event);
2478 }
2479 update_event_times(event);
2480 if (event->state == PERF_EVENT_STATE_ACTIVE)
2481 event->pmu->read(event);
2482 raw_spin_unlock(&ctx->lock);
2483 }
2484
2485 static inline u64 perf_event_count(struct perf_event *event)
2486 {
2487 return local64_read(&event->count) + atomic64_read(&event->child_count);
2488 }
2489
2490 static u64 perf_event_read(struct perf_event *event)
2491 {
2492 /*
2493 * If event is enabled and currently active on a CPU, update the
2494 * value in the event structure:
2495 */
2496 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2497 smp_call_function_single(event->oncpu,
2498 __perf_event_read, event, 1);
2499 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2500 struct perf_event_context *ctx = event->ctx;
2501 unsigned long flags;
2502
2503 raw_spin_lock_irqsave(&ctx->lock, flags);
2504 /*
2505 * may read while context is not active
2506 * (e.g., thread is blocked), in that case
2507 * we cannot update context time
2508 */
2509 if (ctx->is_active) {
2510 update_context_time(ctx);
2511 update_cgrp_time_from_event(event);
2512 }
2513 update_event_times(event);
2514 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2515 }
2516
2517 return perf_event_count(event);
2518 }
2519
2520 /*
2521 * Callchain support
2522 */
2523
2524 struct callchain_cpus_entries {
2525 struct rcu_head rcu_head;
2526 struct perf_callchain_entry *cpu_entries[0];
2527 };
2528
2529 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2530 static atomic_t nr_callchain_events;
2531 static DEFINE_MUTEX(callchain_mutex);
2532 struct callchain_cpus_entries *callchain_cpus_entries;
2533
2534
2535 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2536 struct pt_regs *regs)
2537 {
2538 }
2539
2540 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2541 struct pt_regs *regs)
2542 {
2543 }
2544
2545 static void release_callchain_buffers_rcu(struct rcu_head *head)
2546 {
2547 struct callchain_cpus_entries *entries;
2548 int cpu;
2549
2550 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2551
2552 for_each_possible_cpu(cpu)
2553 kfree(entries->cpu_entries[cpu]);
2554
2555 kfree(entries);
2556 }
2557
2558 static void release_callchain_buffers(void)
2559 {
2560 struct callchain_cpus_entries *entries;
2561
2562 entries = callchain_cpus_entries;
2563 rcu_assign_pointer(callchain_cpus_entries, NULL);
2564 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2565 }
2566
2567 static int alloc_callchain_buffers(void)
2568 {
2569 int cpu;
2570 int size;
2571 struct callchain_cpus_entries *entries;
2572
2573 /*
2574 * We can't use the percpu allocation API for data that can be
2575 * accessed from NMI. Use a temporary manual per cpu allocation
2576 * until that gets sorted out.
2577 */
2578 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2579
2580 entries = kzalloc(size, GFP_KERNEL);
2581 if (!entries)
2582 return -ENOMEM;
2583
2584 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2585
2586 for_each_possible_cpu(cpu) {
2587 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2588 cpu_to_node(cpu));
2589 if (!entries->cpu_entries[cpu])
2590 goto fail;
2591 }
2592
2593 rcu_assign_pointer(callchain_cpus_entries, entries);
2594
2595 return 0;
2596
2597 fail:
2598 for_each_possible_cpu(cpu)
2599 kfree(entries->cpu_entries[cpu]);
2600 kfree(entries);
2601
2602 return -ENOMEM;
2603 }
2604
2605 static int get_callchain_buffers(void)
2606 {
2607 int err = 0;
2608 int count;
2609
2610 mutex_lock(&callchain_mutex);
2611
2612 count = atomic_inc_return(&nr_callchain_events);
2613 if (WARN_ON_ONCE(count < 1)) {
2614 err = -EINVAL;
2615 goto exit;
2616 }
2617
2618 if (count > 1) {
2619 /* If the allocation failed, give up */
2620 if (!callchain_cpus_entries)
2621 err = -ENOMEM;
2622 goto exit;
2623 }
2624
2625 err = alloc_callchain_buffers();
2626 if (err)
2627 release_callchain_buffers();
2628 exit:
2629 mutex_unlock(&callchain_mutex);
2630
2631 return err;
2632 }
2633
2634 static void put_callchain_buffers(void)
2635 {
2636 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2637 release_callchain_buffers();
2638 mutex_unlock(&callchain_mutex);
2639 }
2640 }
2641
2642 static int get_recursion_context(int *recursion)
2643 {
2644 int rctx;
2645
2646 if (in_nmi())
2647 rctx = 3;
2648 else if (in_irq())
2649 rctx = 2;
2650 else if (in_softirq())
2651 rctx = 1;
2652 else
2653 rctx = 0;
2654
2655 if (recursion[rctx])
2656 return -1;
2657
2658 recursion[rctx]++;
2659 barrier();
2660
2661 return rctx;
2662 }
2663
2664 static inline void put_recursion_context(int *recursion, int rctx)
2665 {
2666 barrier();
2667 recursion[rctx]--;
2668 }
2669
2670 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2671 {
2672 int cpu;
2673 struct callchain_cpus_entries *entries;
2674
2675 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2676 if (*rctx == -1)
2677 return NULL;
2678
2679 entries = rcu_dereference(callchain_cpus_entries);
2680 if (!entries)
2681 return NULL;
2682
2683 cpu = smp_processor_id();
2684
2685 return &entries->cpu_entries[cpu][*rctx];
2686 }
2687
2688 static void
2689 put_callchain_entry(int rctx)
2690 {
2691 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2692 }
2693
2694 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2695 {
2696 int rctx;
2697 struct perf_callchain_entry *entry;
2698
2699
2700 entry = get_callchain_entry(&rctx);
2701 if (rctx == -1)
2702 return NULL;
2703
2704 if (!entry)
2705 goto exit_put;
2706
2707 entry->nr = 0;
2708
2709 if (!user_mode(regs)) {
2710 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2711 perf_callchain_kernel(entry, regs);
2712 if (current->mm)
2713 regs = task_pt_regs(current);
2714 else
2715 regs = NULL;
2716 }
2717
2718 if (regs) {
2719 perf_callchain_store(entry, PERF_CONTEXT_USER);
2720 perf_callchain_user(entry, regs);
2721 }
2722
2723 exit_put:
2724 put_callchain_entry(rctx);
2725
2726 return entry;
2727 }
2728
2729 /*
2730 * Initialize the perf_event context in a task_struct:
2731 */
2732 static void __perf_event_init_context(struct perf_event_context *ctx)
2733 {
2734 raw_spin_lock_init(&ctx->lock);
2735 mutex_init(&ctx->mutex);
2736 INIT_LIST_HEAD(&ctx->pinned_groups);
2737 INIT_LIST_HEAD(&ctx->flexible_groups);
2738 INIT_LIST_HEAD(&ctx->event_list);
2739 atomic_set(&ctx->refcount, 1);
2740 }
2741
2742 static struct perf_event_context *
2743 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2744 {
2745 struct perf_event_context *ctx;
2746
2747 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2748 if (!ctx)
2749 return NULL;
2750
2751 __perf_event_init_context(ctx);
2752 if (task) {
2753 ctx->task = task;
2754 get_task_struct(task);
2755 }
2756 ctx->pmu = pmu;
2757
2758 return ctx;
2759 }
2760
2761 static struct task_struct *
2762 find_lively_task_by_vpid(pid_t vpid)
2763 {
2764 struct task_struct *task;
2765 int err;
2766
2767 rcu_read_lock();
2768 if (!vpid)
2769 task = current;
2770 else
2771 task = find_task_by_vpid(vpid);
2772 if (task)
2773 get_task_struct(task);
2774 rcu_read_unlock();
2775
2776 if (!task)
2777 return ERR_PTR(-ESRCH);
2778
2779 /* Reuse ptrace permission checks for now. */
2780 err = -EACCES;
2781 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2782 goto errout;
2783
2784 return task;
2785 errout:
2786 put_task_struct(task);
2787 return ERR_PTR(err);
2788
2789 }
2790
2791 /*
2792 * Returns a matching context with refcount and pincount.
2793 */
2794 static struct perf_event_context *
2795 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2796 {
2797 struct perf_event_context *ctx;
2798 struct perf_cpu_context *cpuctx;
2799 unsigned long flags;
2800 int ctxn, err;
2801
2802 if (!task) {
2803 /* Must be root to operate on a CPU event: */
2804 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2805 return ERR_PTR(-EACCES);
2806
2807 /*
2808 * We could be clever and allow to attach a event to an
2809 * offline CPU and activate it when the CPU comes up, but
2810 * that's for later.
2811 */
2812 if (!cpu_online(cpu))
2813 return ERR_PTR(-ENODEV);
2814
2815 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2816 ctx = &cpuctx->ctx;
2817 get_ctx(ctx);
2818 ++ctx->pin_count;
2819
2820 return ctx;
2821 }
2822
2823 err = -EINVAL;
2824 ctxn = pmu->task_ctx_nr;
2825 if (ctxn < 0)
2826 goto errout;
2827
2828 retry:
2829 ctx = perf_lock_task_context(task, ctxn, &flags);
2830 if (ctx) {
2831 unclone_ctx(ctx);
2832 ++ctx->pin_count;
2833 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2834 }
2835
2836 if (!ctx) {
2837 ctx = alloc_perf_context(pmu, task);
2838 err = -ENOMEM;
2839 if (!ctx)
2840 goto errout;
2841
2842 get_ctx(ctx);
2843
2844 err = 0;
2845 mutex_lock(&task->perf_event_mutex);
2846 /*
2847 * If it has already passed perf_event_exit_task().
2848 * we must see PF_EXITING, it takes this mutex too.
2849 */
2850 if (task->flags & PF_EXITING)
2851 err = -ESRCH;
2852 else if (task->perf_event_ctxp[ctxn])
2853 err = -EAGAIN;
2854 else {
2855 ++ctx->pin_count;
2856 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2857 }
2858 mutex_unlock(&task->perf_event_mutex);
2859
2860 if (unlikely(err)) {
2861 put_task_struct(task);
2862 kfree(ctx);
2863
2864 if (err == -EAGAIN)
2865 goto retry;
2866 goto errout;
2867 }
2868 }
2869
2870 return ctx;
2871
2872 errout:
2873 return ERR_PTR(err);
2874 }
2875
2876 static void perf_event_free_filter(struct perf_event *event);
2877
2878 static void free_event_rcu(struct rcu_head *head)
2879 {
2880 struct perf_event *event;
2881
2882 event = container_of(head, struct perf_event, rcu_head);
2883 if (event->ns)
2884 put_pid_ns(event->ns);
2885 perf_event_free_filter(event);
2886 kfree(event);
2887 }
2888
2889 static void perf_buffer_put(struct perf_buffer *buffer);
2890
2891 static void free_event(struct perf_event *event)
2892 {
2893 irq_work_sync(&event->pending);
2894
2895 if (!event->parent) {
2896 if (event->attach_state & PERF_ATTACH_TASK)
2897 jump_label_dec(&perf_sched_events);
2898 if (event->attr.mmap || event->attr.mmap_data)
2899 atomic_dec(&nr_mmap_events);
2900 if (event->attr.comm)
2901 atomic_dec(&nr_comm_events);
2902 if (event->attr.task)
2903 atomic_dec(&nr_task_events);
2904 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2905 put_callchain_buffers();
2906 if (is_cgroup_event(event)) {
2907 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2908 jump_label_dec(&perf_sched_events);
2909 }
2910 }
2911
2912 if (event->buffer) {
2913 perf_buffer_put(event->buffer);
2914 event->buffer = NULL;
2915 }
2916
2917 if (is_cgroup_event(event))
2918 perf_detach_cgroup(event);
2919
2920 if (event->destroy)
2921 event->destroy(event);
2922
2923 if (event->ctx)
2924 put_ctx(event->ctx);
2925
2926 call_rcu(&event->rcu_head, free_event_rcu);
2927 }
2928
2929 int perf_event_release_kernel(struct perf_event *event)
2930 {
2931 struct perf_event_context *ctx = event->ctx;
2932
2933 /*
2934 * Remove from the PMU, can't get re-enabled since we got
2935 * here because the last ref went.
2936 */
2937 perf_event_disable(event);
2938
2939 WARN_ON_ONCE(ctx->parent_ctx);
2940 /*
2941 * There are two ways this annotation is useful:
2942 *
2943 * 1) there is a lock recursion from perf_event_exit_task
2944 * see the comment there.
2945 *
2946 * 2) there is a lock-inversion with mmap_sem through
2947 * perf_event_read_group(), which takes faults while
2948 * holding ctx->mutex, however this is called after
2949 * the last filedesc died, so there is no possibility
2950 * to trigger the AB-BA case.
2951 */
2952 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2953 raw_spin_lock_irq(&ctx->lock);
2954 perf_group_detach(event);
2955 list_del_event(event, ctx);
2956 raw_spin_unlock_irq(&ctx->lock);
2957 mutex_unlock(&ctx->mutex);
2958
2959 free_event(event);
2960
2961 return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2964
2965 /*
2966 * Called when the last reference to the file is gone.
2967 */
2968 static int perf_release(struct inode *inode, struct file *file)
2969 {
2970 struct perf_event *event = file->private_data;
2971 struct task_struct *owner;
2972
2973 file->private_data = NULL;
2974
2975 rcu_read_lock();
2976 owner = ACCESS_ONCE(event->owner);
2977 /*
2978 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2979 * !owner it means the list deletion is complete and we can indeed
2980 * free this event, otherwise we need to serialize on
2981 * owner->perf_event_mutex.
2982 */
2983 smp_read_barrier_depends();
2984 if (owner) {
2985 /*
2986 * Since delayed_put_task_struct() also drops the last
2987 * task reference we can safely take a new reference
2988 * while holding the rcu_read_lock().
2989 */
2990 get_task_struct(owner);
2991 }
2992 rcu_read_unlock();
2993
2994 if (owner) {
2995 mutex_lock(&owner->perf_event_mutex);
2996 /*
2997 * We have to re-check the event->owner field, if it is cleared
2998 * we raced with perf_event_exit_task(), acquiring the mutex
2999 * ensured they're done, and we can proceed with freeing the
3000 * event.
3001 */
3002 if (event->owner)
3003 list_del_init(&event->owner_entry);
3004 mutex_unlock(&owner->perf_event_mutex);
3005 put_task_struct(owner);
3006 }
3007
3008 return perf_event_release_kernel(event);
3009 }
3010
3011 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3012 {
3013 struct perf_event *child;
3014 u64 total = 0;
3015
3016 *enabled = 0;
3017 *running = 0;
3018
3019 mutex_lock(&event->child_mutex);
3020 total += perf_event_read(event);
3021 *enabled += event->total_time_enabled +
3022 atomic64_read(&event->child_total_time_enabled);
3023 *running += event->total_time_running +
3024 atomic64_read(&event->child_total_time_running);
3025
3026 list_for_each_entry(child, &event->child_list, child_list) {
3027 total += perf_event_read(child);
3028 *enabled += child->total_time_enabled;
3029 *running += child->total_time_running;
3030 }
3031 mutex_unlock(&event->child_mutex);
3032
3033 return total;
3034 }
3035 EXPORT_SYMBOL_GPL(perf_event_read_value);
3036
3037 static int perf_event_read_group(struct perf_event *event,
3038 u64 read_format, char __user *buf)
3039 {
3040 struct perf_event *leader = event->group_leader, *sub;
3041 int n = 0, size = 0, ret = -EFAULT;
3042 struct perf_event_context *ctx = leader->ctx;
3043 u64 values[5];
3044 u64 count, enabled, running;
3045
3046 mutex_lock(&ctx->mutex);
3047 count = perf_event_read_value(leader, &enabled, &running);
3048
3049 values[n++] = 1 + leader->nr_siblings;
3050 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3051 values[n++] = enabled;
3052 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3053 values[n++] = running;
3054 values[n++] = count;
3055 if (read_format & PERF_FORMAT_ID)
3056 values[n++] = primary_event_id(leader);
3057
3058 size = n * sizeof(u64);
3059
3060 if (copy_to_user(buf, values, size))
3061 goto unlock;
3062
3063 ret = size;
3064
3065 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3066 n = 0;
3067
3068 values[n++] = perf_event_read_value(sub, &enabled, &running);
3069 if (read_format & PERF_FORMAT_ID)
3070 values[n++] = primary_event_id(sub);
3071
3072 size = n * sizeof(u64);
3073
3074 if (copy_to_user(buf + ret, values, size)) {
3075 ret = -EFAULT;
3076 goto unlock;
3077 }
3078
3079 ret += size;
3080 }
3081 unlock:
3082 mutex_unlock(&ctx->mutex);
3083
3084 return ret;
3085 }
3086
3087 static int perf_event_read_one(struct perf_event *event,
3088 u64 read_format, char __user *buf)
3089 {
3090 u64 enabled, running;
3091 u64 values[4];
3092 int n = 0;
3093
3094 values[n++] = perf_event_read_value(event, &enabled, &running);
3095 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3096 values[n++] = enabled;
3097 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3098 values[n++] = running;
3099 if (read_format & PERF_FORMAT_ID)
3100 values[n++] = primary_event_id(event);
3101
3102 if (copy_to_user(buf, values, n * sizeof(u64)))
3103 return -EFAULT;
3104
3105 return n * sizeof(u64);
3106 }
3107
3108 /*
3109 * Read the performance event - simple non blocking version for now
3110 */
3111 static ssize_t
3112 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3113 {
3114 u64 read_format = event->attr.read_format;
3115 int ret;
3116
3117 /*
3118 * Return end-of-file for a read on a event that is in
3119 * error state (i.e. because it was pinned but it couldn't be
3120 * scheduled on to the CPU at some point).
3121 */
3122 if (event->state == PERF_EVENT_STATE_ERROR)
3123 return 0;
3124
3125 if (count < event->read_size)
3126 return -ENOSPC;
3127
3128 WARN_ON_ONCE(event->ctx->parent_ctx);
3129 if (read_format & PERF_FORMAT_GROUP)
3130 ret = perf_event_read_group(event, read_format, buf);
3131 else
3132 ret = perf_event_read_one(event, read_format, buf);
3133
3134 return ret;
3135 }
3136
3137 static ssize_t
3138 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3139 {
3140 struct perf_event *event = file->private_data;
3141
3142 return perf_read_hw(event, buf, count);
3143 }
3144
3145 static unsigned int perf_poll(struct file *file, poll_table *wait)
3146 {
3147 struct perf_event *event = file->private_data;
3148 struct perf_buffer *buffer;
3149 unsigned int events = POLL_HUP;
3150
3151 rcu_read_lock();
3152 buffer = rcu_dereference(event->buffer);
3153 if (buffer)
3154 events = atomic_xchg(&buffer->poll, 0);
3155 rcu_read_unlock();
3156
3157 poll_wait(file, &event->waitq, wait);
3158
3159 return events;
3160 }
3161
3162 static void perf_event_reset(struct perf_event *event)
3163 {
3164 (void)perf_event_read(event);
3165 local64_set(&event->count, 0);
3166 perf_event_update_userpage(event);
3167 }
3168
3169 /*
3170 * Holding the top-level event's child_mutex means that any
3171 * descendant process that has inherited this event will block
3172 * in sync_child_event if it goes to exit, thus satisfying the
3173 * task existence requirements of perf_event_enable/disable.
3174 */
3175 static void perf_event_for_each_child(struct perf_event *event,
3176 void (*func)(struct perf_event *))
3177 {
3178 struct perf_event *child;
3179
3180 WARN_ON_ONCE(event->ctx->parent_ctx);
3181 mutex_lock(&event->child_mutex);
3182 func(event);
3183 list_for_each_entry(child, &event->child_list, child_list)
3184 func(child);
3185 mutex_unlock(&event->child_mutex);
3186 }
3187
3188 static void perf_event_for_each(struct perf_event *event,
3189 void (*func)(struct perf_event *))
3190 {
3191 struct perf_event_context *ctx = event->ctx;
3192 struct perf_event *sibling;
3193
3194 WARN_ON_ONCE(ctx->parent_ctx);
3195 mutex_lock(&ctx->mutex);
3196 event = event->group_leader;
3197
3198 perf_event_for_each_child(event, func);
3199 func(event);
3200 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3201 perf_event_for_each_child(event, func);
3202 mutex_unlock(&ctx->mutex);
3203 }
3204
3205 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3206 {
3207 struct perf_event_context *ctx = event->ctx;
3208 int ret = 0;
3209 u64 value;
3210
3211 if (!is_sampling_event(event))
3212 return -EINVAL;
3213
3214 if (copy_from_user(&value, arg, sizeof(value)))
3215 return -EFAULT;
3216
3217 if (!value)
3218 return -EINVAL;
3219
3220 raw_spin_lock_irq(&ctx->lock);
3221 if (event->attr.freq) {
3222 if (value > sysctl_perf_event_sample_rate) {
3223 ret = -EINVAL;
3224 goto unlock;
3225 }
3226
3227 event->attr.sample_freq = value;
3228 } else {
3229 event->attr.sample_period = value;
3230 event->hw.sample_period = value;
3231 }
3232 unlock:
3233 raw_spin_unlock_irq(&ctx->lock);
3234
3235 return ret;
3236 }
3237
3238 static const struct file_operations perf_fops;
3239
3240 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3241 {
3242 struct file *file;
3243
3244 file = fget_light(fd, fput_needed);
3245 if (!file)
3246 return ERR_PTR(-EBADF);
3247
3248 if (file->f_op != &perf_fops) {
3249 fput_light(file, *fput_needed);
3250 *fput_needed = 0;
3251 return ERR_PTR(-EBADF);
3252 }
3253
3254 return file->private_data;
3255 }
3256
3257 static int perf_event_set_output(struct perf_event *event,
3258 struct perf_event *output_event);
3259 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3260
3261 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3262 {
3263 struct perf_event *event = file->private_data;
3264 void (*func)(struct perf_event *);
3265 u32 flags = arg;
3266
3267 switch (cmd) {
3268 case PERF_EVENT_IOC_ENABLE:
3269 func = perf_event_enable;
3270 break;
3271 case PERF_EVENT_IOC_DISABLE:
3272 func = perf_event_disable;
3273 break;
3274 case PERF_EVENT_IOC_RESET:
3275 func = perf_event_reset;
3276 break;
3277
3278 case PERF_EVENT_IOC_REFRESH:
3279 return perf_event_refresh(event, arg);
3280
3281 case PERF_EVENT_IOC_PERIOD:
3282 return perf_event_period(event, (u64 __user *)arg);
3283
3284 case PERF_EVENT_IOC_SET_OUTPUT:
3285 {
3286 struct perf_event *output_event = NULL;
3287 int fput_needed = 0;
3288 int ret;
3289
3290 if (arg != -1) {
3291 output_event = perf_fget_light(arg, &fput_needed);
3292 if (IS_ERR(output_event))
3293 return PTR_ERR(output_event);
3294 }
3295
3296 ret = perf_event_set_output(event, output_event);
3297 if (output_event)
3298 fput_light(output_event->filp, fput_needed);
3299
3300 return ret;
3301 }
3302
3303 case PERF_EVENT_IOC_SET_FILTER:
3304 return perf_event_set_filter(event, (void __user *)arg);
3305
3306 default:
3307 return -ENOTTY;
3308 }
3309
3310 if (flags & PERF_IOC_FLAG_GROUP)
3311 perf_event_for_each(event, func);
3312 else
3313 perf_event_for_each_child(event, func);
3314
3315 return 0;
3316 }
3317
3318 int perf_event_task_enable(void)
3319 {
3320 struct perf_event *event;
3321
3322 mutex_lock(&current->perf_event_mutex);
3323 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3324 perf_event_for_each_child(event, perf_event_enable);
3325 mutex_unlock(&current->perf_event_mutex);
3326
3327 return 0;
3328 }
3329
3330 int perf_event_task_disable(void)
3331 {
3332 struct perf_event *event;
3333
3334 mutex_lock(&current->perf_event_mutex);
3335 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3336 perf_event_for_each_child(event, perf_event_disable);
3337 mutex_unlock(&current->perf_event_mutex);
3338
3339 return 0;
3340 }
3341
3342 #ifndef PERF_EVENT_INDEX_OFFSET
3343 # define PERF_EVENT_INDEX_OFFSET 0
3344 #endif
3345
3346 static int perf_event_index(struct perf_event *event)
3347 {
3348 if (event->hw.state & PERF_HES_STOPPED)
3349 return 0;
3350
3351 if (event->state != PERF_EVENT_STATE_ACTIVE)
3352 return 0;
3353
3354 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3355 }
3356
3357 /*
3358 * Callers need to ensure there can be no nesting of this function, otherwise
3359 * the seqlock logic goes bad. We can not serialize this because the arch
3360 * code calls this from NMI context.
3361 */
3362 void perf_event_update_userpage(struct perf_event *event)
3363 {
3364 struct perf_event_mmap_page *userpg;
3365 struct perf_buffer *buffer;
3366
3367 rcu_read_lock();
3368 buffer = rcu_dereference(event->buffer);
3369 if (!buffer)
3370 goto unlock;
3371
3372 userpg = buffer->user_page;
3373
3374 /*
3375 * Disable preemption so as to not let the corresponding user-space
3376 * spin too long if we get preempted.
3377 */
3378 preempt_disable();
3379 ++userpg->lock;
3380 barrier();
3381 userpg->index = perf_event_index(event);
3382 userpg->offset = perf_event_count(event);
3383 if (event->state == PERF_EVENT_STATE_ACTIVE)
3384 userpg->offset -= local64_read(&event->hw.prev_count);
3385
3386 userpg->time_enabled = event->total_time_enabled +
3387 atomic64_read(&event->child_total_time_enabled);
3388
3389 userpg->time_running = event->total_time_running +
3390 atomic64_read(&event->child_total_time_running);
3391
3392 barrier();
3393 ++userpg->lock;
3394 preempt_enable();
3395 unlock:
3396 rcu_read_unlock();
3397 }
3398
3399 static unsigned long perf_data_size(struct perf_buffer *buffer);
3400
3401 static void
3402 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
3403 {
3404 long max_size = perf_data_size(buffer);
3405
3406 if (watermark)
3407 buffer->watermark = min(max_size, watermark);
3408
3409 if (!buffer->watermark)
3410 buffer->watermark = max_size / 2;
3411
3412 if (flags & PERF_BUFFER_WRITABLE)
3413 buffer->writable = 1;
3414
3415 atomic_set(&buffer->refcount, 1);
3416 }
3417
3418 #ifndef CONFIG_PERF_USE_VMALLOC
3419
3420 /*
3421 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
3422 */
3423
3424 static struct page *
3425 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3426 {
3427 if (pgoff > buffer->nr_pages)
3428 return NULL;
3429
3430 if (pgoff == 0)
3431 return virt_to_page(buffer->user_page);
3432
3433 return virt_to_page(buffer->data_pages[pgoff - 1]);
3434 }
3435
3436 static void *perf_mmap_alloc_page(int cpu)
3437 {
3438 struct page *page;
3439 int node;
3440
3441 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
3442 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
3443 if (!page)
3444 return NULL;
3445
3446 return page_address(page);
3447 }
3448
3449 static struct perf_buffer *
3450 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3451 {
3452 struct perf_buffer *buffer;
3453 unsigned long size;
3454 int i;
3455
3456 size = sizeof(struct perf_buffer);
3457 size += nr_pages * sizeof(void *);
3458
3459 buffer = kzalloc(size, GFP_KERNEL);
3460 if (!buffer)
3461 goto fail;
3462
3463 buffer->user_page = perf_mmap_alloc_page(cpu);
3464 if (!buffer->user_page)
3465 goto fail_user_page;
3466
3467 for (i = 0; i < nr_pages; i++) {
3468 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3469 if (!buffer->data_pages[i])
3470 goto fail_data_pages;
3471 }
3472
3473 buffer->nr_pages = nr_pages;
3474
3475 perf_buffer_init(buffer, watermark, flags);
3476
3477 return buffer;
3478
3479 fail_data_pages:
3480 for (i--; i >= 0; i--)
3481 free_page((unsigned long)buffer->data_pages[i]);
3482
3483 free_page((unsigned long)buffer->user_page);
3484
3485 fail_user_page:
3486 kfree(buffer);
3487
3488 fail:
3489 return NULL;
3490 }
3491
3492 static void perf_mmap_free_page(unsigned long addr)
3493 {
3494 struct page *page = virt_to_page((void *)addr);
3495
3496 page->mapping = NULL;
3497 __free_page(page);
3498 }
3499
3500 static void perf_buffer_free(struct perf_buffer *buffer)
3501 {
3502 int i;
3503
3504 perf_mmap_free_page((unsigned long)buffer->user_page);
3505 for (i = 0; i < buffer->nr_pages; i++)
3506 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
3507 kfree(buffer);
3508 }
3509
3510 static inline int page_order(struct perf_buffer *buffer)
3511 {
3512 return 0;
3513 }
3514
3515 #else
3516
3517 /*
3518 * Back perf_mmap() with vmalloc memory.
3519 *
3520 * Required for architectures that have d-cache aliasing issues.
3521 */
3522
3523 static inline int page_order(struct perf_buffer *buffer)
3524 {
3525 return buffer->page_order;
3526 }
3527
3528 static struct page *
3529 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3530 {
3531 if (pgoff > (1UL << page_order(buffer)))
3532 return NULL;
3533
3534 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3535 }
3536
3537 static void perf_mmap_unmark_page(void *addr)
3538 {
3539 struct page *page = vmalloc_to_page(addr);
3540
3541 page->mapping = NULL;
3542 }
3543
3544 static void perf_buffer_free_work(struct work_struct *work)
3545 {
3546 struct perf_buffer *buffer;
3547 void *base;
3548 int i, nr;
3549
3550 buffer = container_of(work, struct perf_buffer, work);
3551 nr = 1 << page_order(buffer);
3552
3553 base = buffer->user_page;
3554 for (i = 0; i < nr + 1; i++)
3555 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
3556
3557 vfree(base);
3558 kfree(buffer);
3559 }
3560
3561 static void perf_buffer_free(struct perf_buffer *buffer)
3562 {
3563 schedule_work(&buffer->work);
3564 }
3565
3566 static struct perf_buffer *
3567 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3568 {
3569 struct perf_buffer *buffer;
3570 unsigned long size;
3571 void *all_buf;
3572
3573 size = sizeof(struct perf_buffer);
3574 size += sizeof(void *);
3575
3576 buffer = kzalloc(size, GFP_KERNEL);
3577 if (!buffer)
3578 goto fail;
3579
3580 INIT_WORK(&buffer->work, perf_buffer_free_work);
3581
3582 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
3583 if (!all_buf)
3584 goto fail_all_buf;
3585
3586 buffer->user_page = all_buf;
3587 buffer->data_pages[0] = all_buf + PAGE_SIZE;
3588 buffer->page_order = ilog2(nr_pages);
3589 buffer->nr_pages = 1;
3590
3591 perf_buffer_init(buffer, watermark, flags);
3592
3593 return buffer;
3594
3595 fail_all_buf:
3596 kfree(buffer);
3597
3598 fail:
3599 return NULL;
3600 }
3601
3602 #endif
3603
3604 static unsigned long perf_data_size(struct perf_buffer *buffer)
3605 {
3606 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3607 }
3608
3609 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3610 {
3611 struct perf_event *event = vma->vm_file->private_data;
3612 struct perf_buffer *buffer;
3613 int ret = VM_FAULT_SIGBUS;
3614
3615 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3616 if (vmf->pgoff == 0)
3617 ret = 0;
3618 return ret;
3619 }
3620
3621 rcu_read_lock();
3622 buffer = rcu_dereference(event->buffer);
3623 if (!buffer)
3624 goto unlock;
3625
3626 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3627 goto unlock;
3628
3629 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3630 if (!vmf->page)
3631 goto unlock;
3632
3633 get_page(vmf->page);
3634 vmf->page->mapping = vma->vm_file->f_mapping;
3635 vmf->page->index = vmf->pgoff;
3636
3637 ret = 0;
3638 unlock:
3639 rcu_read_unlock();
3640
3641 return ret;
3642 }
3643
3644 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3645 {
3646 struct perf_buffer *buffer;
3647
3648 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3649 perf_buffer_free(buffer);
3650 }
3651
3652 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3653 {
3654 struct perf_buffer *buffer;
3655
3656 rcu_read_lock();
3657 buffer = rcu_dereference(event->buffer);
3658 if (buffer) {
3659 if (!atomic_inc_not_zero(&buffer->refcount))
3660 buffer = NULL;
3661 }
3662 rcu_read_unlock();
3663
3664 return buffer;
3665 }
3666
3667 static void perf_buffer_put(struct perf_buffer *buffer)
3668 {
3669 if (!atomic_dec_and_test(&buffer->refcount))
3670 return;
3671
3672 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3673 }
3674
3675 static void perf_mmap_open(struct vm_area_struct *vma)
3676 {
3677 struct perf_event *event = vma->vm_file->private_data;
3678
3679 atomic_inc(&event->mmap_count);
3680 }
3681
3682 static void perf_mmap_close(struct vm_area_struct *vma)
3683 {
3684 struct perf_event *event = vma->vm_file->private_data;
3685
3686 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3687 unsigned long size = perf_data_size(event->buffer);
3688 struct user_struct *user = event->mmap_user;
3689 struct perf_buffer *buffer = event->buffer;
3690
3691 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3692 vma->vm_mm->locked_vm -= event->mmap_locked;
3693 rcu_assign_pointer(event->buffer, NULL);
3694 mutex_unlock(&event->mmap_mutex);
3695
3696 perf_buffer_put(buffer);
3697 free_uid(user);
3698 }
3699 }
3700
3701 static const struct vm_operations_struct perf_mmap_vmops = {
3702 .open = perf_mmap_open,
3703 .close = perf_mmap_close,
3704 .fault = perf_mmap_fault,
3705 .page_mkwrite = perf_mmap_fault,
3706 };
3707
3708 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3709 {
3710 struct perf_event *event = file->private_data;
3711 unsigned long user_locked, user_lock_limit;
3712 struct user_struct *user = current_user();
3713 unsigned long locked, lock_limit;
3714 struct perf_buffer *buffer;
3715 unsigned long vma_size;
3716 unsigned long nr_pages;
3717 long user_extra, extra;
3718 int ret = 0, flags = 0;
3719
3720 /*
3721 * Don't allow mmap() of inherited per-task counters. This would
3722 * create a performance issue due to all children writing to the
3723 * same buffer.
3724 */
3725 if (event->cpu == -1 && event->attr.inherit)
3726 return -EINVAL;
3727
3728 if (!(vma->vm_flags & VM_SHARED))
3729 return -EINVAL;
3730
3731 vma_size = vma->vm_end - vma->vm_start;
3732 nr_pages = (vma_size / PAGE_SIZE) - 1;
3733
3734 /*
3735 * If we have buffer pages ensure they're a power-of-two number, so we
3736 * can do bitmasks instead of modulo.
3737 */
3738 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3739 return -EINVAL;
3740
3741 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3742 return -EINVAL;
3743
3744 if (vma->vm_pgoff != 0)
3745 return -EINVAL;
3746
3747 WARN_ON_ONCE(event->ctx->parent_ctx);
3748 mutex_lock(&event->mmap_mutex);
3749 if (event->buffer) {
3750 if (event->buffer->nr_pages == nr_pages)
3751 atomic_inc(&event->buffer->refcount);
3752 else
3753 ret = -EINVAL;
3754 goto unlock;
3755 }
3756
3757 user_extra = nr_pages + 1;
3758 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3759
3760 /*
3761 * Increase the limit linearly with more CPUs:
3762 */
3763 user_lock_limit *= num_online_cpus();
3764
3765 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3766
3767 extra = 0;
3768 if (user_locked > user_lock_limit)
3769 extra = user_locked - user_lock_limit;
3770
3771 lock_limit = rlimit(RLIMIT_MEMLOCK);
3772 lock_limit >>= PAGE_SHIFT;
3773 locked = vma->vm_mm->locked_vm + extra;
3774
3775 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3776 !capable(CAP_IPC_LOCK)) {
3777 ret = -EPERM;
3778 goto unlock;
3779 }
3780
3781 WARN_ON(event->buffer);
3782
3783 if (vma->vm_flags & VM_WRITE)
3784 flags |= PERF_BUFFER_WRITABLE;
3785
3786 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3787 event->cpu, flags);
3788 if (!buffer) {
3789 ret = -ENOMEM;
3790 goto unlock;
3791 }
3792 rcu_assign_pointer(event->buffer, buffer);
3793
3794 atomic_long_add(user_extra, &user->locked_vm);
3795 event->mmap_locked = extra;
3796 event->mmap_user = get_current_user();
3797 vma->vm_mm->locked_vm += event->mmap_locked;
3798
3799 unlock:
3800 if (!ret)
3801 atomic_inc(&event->mmap_count);
3802 mutex_unlock(&event->mmap_mutex);
3803
3804 vma->vm_flags |= VM_RESERVED;
3805 vma->vm_ops = &perf_mmap_vmops;
3806
3807 return ret;
3808 }
3809
3810 static int perf_fasync(int fd, struct file *filp, int on)
3811 {
3812 struct inode *inode = filp->f_path.dentry->d_inode;
3813 struct perf_event *event = filp->private_data;
3814 int retval;
3815
3816 mutex_lock(&inode->i_mutex);
3817 retval = fasync_helper(fd, filp, on, &event->fasync);
3818 mutex_unlock(&inode->i_mutex);
3819
3820 if (retval < 0)
3821 return retval;
3822
3823 return 0;
3824 }
3825
3826 static const struct file_operations perf_fops = {
3827 .llseek = no_llseek,
3828 .release = perf_release,
3829 .read = perf_read,
3830 .poll = perf_poll,
3831 .unlocked_ioctl = perf_ioctl,
3832 .compat_ioctl = perf_ioctl,
3833 .mmap = perf_mmap,
3834 .fasync = perf_fasync,
3835 };
3836
3837 /*
3838 * Perf event wakeup
3839 *
3840 * If there's data, ensure we set the poll() state and publish everything
3841 * to user-space before waking everybody up.
3842 */
3843
3844 void perf_event_wakeup(struct perf_event *event)
3845 {
3846 wake_up_all(&event->waitq);
3847
3848 if (event->pending_kill) {
3849 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3850 event->pending_kill = 0;
3851 }
3852 }
3853
3854 static void perf_pending_event(struct irq_work *entry)
3855 {
3856 struct perf_event *event = container_of(entry,
3857 struct perf_event, pending);
3858
3859 if (event->pending_disable) {
3860 event->pending_disable = 0;
3861 __perf_event_disable(event);
3862 }
3863
3864 if (event->pending_wakeup) {
3865 event->pending_wakeup = 0;
3866 perf_event_wakeup(event);
3867 }
3868 }
3869
3870 /*
3871 * We assume there is only KVM supporting the callbacks.
3872 * Later on, we might change it to a list if there is
3873 * another virtualization implementation supporting the callbacks.
3874 */
3875 struct perf_guest_info_callbacks *perf_guest_cbs;
3876
3877 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3878 {
3879 perf_guest_cbs = cbs;
3880 return 0;
3881 }
3882 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3883
3884 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3885 {
3886 perf_guest_cbs = NULL;
3887 return 0;
3888 }
3889 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3890
3891 /*
3892 * Output
3893 */
3894 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3895 unsigned long offset, unsigned long head)
3896 {
3897 unsigned long mask;
3898
3899 if (!buffer->writable)
3900 return true;
3901
3902 mask = perf_data_size(buffer) - 1;
3903
3904 offset = (offset - tail) & mask;
3905 head = (head - tail) & mask;
3906
3907 if ((int)(head - offset) < 0)
3908 return false;
3909
3910 return true;
3911 }
3912
3913 static void perf_output_wakeup(struct perf_output_handle *handle)
3914 {
3915 atomic_set(&handle->buffer->poll, POLL_IN);
3916
3917 if (handle->nmi) {
3918 handle->event->pending_wakeup = 1;
3919 irq_work_queue(&handle->event->pending);
3920 } else
3921 perf_event_wakeup(handle->event);
3922 }
3923
3924 /*
3925 * We need to ensure a later event_id doesn't publish a head when a former
3926 * event isn't done writing. However since we need to deal with NMIs we
3927 * cannot fully serialize things.
3928 *
3929 * We only publish the head (and generate a wakeup) when the outer-most
3930 * event completes.
3931 */
3932 static void perf_output_get_handle(struct perf_output_handle *handle)
3933 {
3934 struct perf_buffer *buffer = handle->buffer;
3935
3936 preempt_disable();
3937 local_inc(&buffer->nest);
3938 handle->wakeup = local_read(&buffer->wakeup);
3939 }
3940
3941 static void perf_output_put_handle(struct perf_output_handle *handle)
3942 {
3943 struct perf_buffer *buffer = handle->buffer;
3944 unsigned long head;
3945
3946 again:
3947 head = local_read(&buffer->head);
3948
3949 /*
3950 * IRQ/NMI can happen here, which means we can miss a head update.
3951 */
3952
3953 if (!local_dec_and_test(&buffer->nest))
3954 goto out;
3955
3956 /*
3957 * Publish the known good head. Rely on the full barrier implied
3958 * by atomic_dec_and_test() order the buffer->head read and this
3959 * write.
3960 */
3961 buffer->user_page->data_head = head;
3962
3963 /*
3964 * Now check if we missed an update, rely on the (compiler)
3965 * barrier in atomic_dec_and_test() to re-read buffer->head.
3966 */
3967 if (unlikely(head != local_read(&buffer->head))) {
3968 local_inc(&buffer->nest);
3969 goto again;
3970 }
3971
3972 if (handle->wakeup != local_read(&buffer->wakeup))
3973 perf_output_wakeup(handle);
3974
3975 out:
3976 preempt_enable();
3977 }
3978
3979 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3980 const void *buf, unsigned int len)
3981 {
3982 do {
3983 unsigned long size = min_t(unsigned long, handle->size, len);
3984
3985 memcpy(handle->addr, buf, size);
3986
3987 len -= size;
3988 handle->addr += size;
3989 buf += size;
3990 handle->size -= size;
3991 if (!handle->size) {
3992 struct perf_buffer *buffer = handle->buffer;
3993
3994 handle->page++;
3995 handle->page &= buffer->nr_pages - 1;
3996 handle->addr = buffer->data_pages[handle->page];
3997 handle->size = PAGE_SIZE << page_order(buffer);
3998 }
3999 } while (len);
4000 }
4001
4002 static void __perf_event_header__init_id(struct perf_event_header *header,
4003 struct perf_sample_data *data,
4004 struct perf_event *event)
4005 {
4006 u64 sample_type = event->attr.sample_type;
4007
4008 data->type = sample_type;
4009 header->size += event->id_header_size;
4010
4011 if (sample_type & PERF_SAMPLE_TID) {
4012 /* namespace issues */
4013 data->tid_entry.pid = perf_event_pid(event, current);
4014 data->tid_entry.tid = perf_event_tid(event, current);
4015 }
4016
4017 if (sample_type & PERF_SAMPLE_TIME)
4018 data->time = perf_clock();
4019
4020 if (sample_type & PERF_SAMPLE_ID)
4021 data->id = primary_event_id(event);
4022
4023 if (sample_type & PERF_SAMPLE_STREAM_ID)
4024 data->stream_id = event->id;
4025
4026 if (sample_type & PERF_SAMPLE_CPU) {
4027 data->cpu_entry.cpu = raw_smp_processor_id();
4028 data->cpu_entry.reserved = 0;
4029 }
4030 }
4031
4032 static void perf_event_header__init_id(struct perf_event_header *header,
4033 struct perf_sample_data *data,
4034 struct perf_event *event)
4035 {
4036 if (event->attr.sample_id_all)
4037 __perf_event_header__init_id(header, data, event);
4038 }
4039
4040 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4041 struct perf_sample_data *data)
4042 {
4043 u64 sample_type = data->type;
4044
4045 if (sample_type & PERF_SAMPLE_TID)
4046 perf_output_put(handle, data->tid_entry);
4047
4048 if (sample_type & PERF_SAMPLE_TIME)
4049 perf_output_put(handle, data->time);
4050
4051 if (sample_type & PERF_SAMPLE_ID)
4052 perf_output_put(handle, data->id);
4053
4054 if (sample_type & PERF_SAMPLE_STREAM_ID)
4055 perf_output_put(handle, data->stream_id);
4056
4057 if (sample_type & PERF_SAMPLE_CPU)
4058 perf_output_put(handle, data->cpu_entry);
4059 }
4060
4061 static void perf_event__output_id_sample(struct perf_event *event,
4062 struct perf_output_handle *handle,
4063 struct perf_sample_data *sample)
4064 {
4065 if (event->attr.sample_id_all)
4066 __perf_event__output_id_sample(handle, sample);
4067 }
4068
4069 int perf_output_begin(struct perf_output_handle *handle,
4070 struct perf_event *event, unsigned int size,
4071 int nmi, int sample)
4072 {
4073 struct perf_buffer *buffer;
4074 unsigned long tail, offset, head;
4075 int have_lost;
4076 struct perf_sample_data sample_data;
4077 struct {
4078 struct perf_event_header header;
4079 u64 id;
4080 u64 lost;
4081 } lost_event;
4082
4083 rcu_read_lock();
4084 /*
4085 * For inherited events we send all the output towards the parent.
4086 */
4087 if (event->parent)
4088 event = event->parent;
4089
4090 buffer = rcu_dereference(event->buffer);
4091 if (!buffer)
4092 goto out;
4093
4094 handle->buffer = buffer;
4095 handle->event = event;
4096 handle->nmi = nmi;
4097 handle->sample = sample;
4098
4099 if (!buffer->nr_pages)
4100 goto out;
4101
4102 have_lost = local_read(&buffer->lost);
4103 if (have_lost) {
4104 lost_event.header.size = sizeof(lost_event);
4105 perf_event_header__init_id(&lost_event.header, &sample_data,
4106 event);
4107 size += lost_event.header.size;
4108 }
4109
4110 perf_output_get_handle(handle);
4111
4112 do {
4113 /*
4114 * Userspace could choose to issue a mb() before updating the
4115 * tail pointer. So that all reads will be completed before the
4116 * write is issued.
4117 */
4118 tail = ACCESS_ONCE(buffer->user_page->data_tail);
4119 smp_rmb();
4120 offset = head = local_read(&buffer->head);
4121 head += size;
4122 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4123 goto fail;
4124 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
4125
4126 if (head - local_read(&buffer->wakeup) > buffer->watermark)
4127 local_add(buffer->watermark, &buffer->wakeup);
4128
4129 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
4130 handle->page &= buffer->nr_pages - 1;
4131 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
4132 handle->addr = buffer->data_pages[handle->page];
4133 handle->addr += handle->size;
4134 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4135
4136 if (have_lost) {
4137 lost_event.header.type = PERF_RECORD_LOST;
4138 lost_event.header.misc = 0;
4139 lost_event.id = event->id;
4140 lost_event.lost = local_xchg(&buffer->lost, 0);
4141
4142 perf_output_put(handle, lost_event);
4143 perf_event__output_id_sample(event, handle, &sample_data);
4144 }
4145
4146 return 0;
4147
4148 fail:
4149 local_inc(&buffer->lost);
4150 perf_output_put_handle(handle);
4151 out:
4152 rcu_read_unlock();
4153
4154 return -ENOSPC;
4155 }
4156
4157 void perf_output_end(struct perf_output_handle *handle)
4158 {
4159 struct perf_event *event = handle->event;
4160 struct perf_buffer *buffer = handle->buffer;
4161
4162 int wakeup_events = event->attr.wakeup_events;
4163
4164 if (handle->sample && wakeup_events) {
4165 int events = local_inc_return(&buffer->events);
4166 if (events >= wakeup_events) {
4167 local_sub(wakeup_events, &buffer->events);
4168 local_inc(&buffer->wakeup);
4169 }
4170 }
4171
4172 perf_output_put_handle(handle);
4173 rcu_read_unlock();
4174 }
4175
4176 static void perf_output_read_one(struct perf_output_handle *handle,
4177 struct perf_event *event,
4178 u64 enabled, u64 running)
4179 {
4180 u64 read_format = event->attr.read_format;
4181 u64 values[4];
4182 int n = 0;
4183
4184 values[n++] = perf_event_count(event);
4185 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4186 values[n++] = enabled +
4187 atomic64_read(&event->child_total_time_enabled);
4188 }
4189 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4190 values[n++] = running +
4191 atomic64_read(&event->child_total_time_running);
4192 }
4193 if (read_format & PERF_FORMAT_ID)
4194 values[n++] = primary_event_id(event);
4195
4196 perf_output_copy(handle, values, n * sizeof(u64));
4197 }
4198
4199 /*
4200 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4201 */
4202 static void perf_output_read_group(struct perf_output_handle *handle,
4203 struct perf_event *event,
4204 u64 enabled, u64 running)
4205 {
4206 struct perf_event *leader = event->group_leader, *sub;
4207 u64 read_format = event->attr.read_format;
4208 u64 values[5];
4209 int n = 0;
4210
4211 values[n++] = 1 + leader->nr_siblings;
4212
4213 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4214 values[n++] = enabled;
4215
4216 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4217 values[n++] = running;
4218
4219 if (leader != event)
4220 leader->pmu->read(leader);
4221
4222 values[n++] = perf_event_count(leader);
4223 if (read_format & PERF_FORMAT_ID)
4224 values[n++] = primary_event_id(leader);
4225
4226 perf_output_copy(handle, values, n * sizeof(u64));
4227
4228 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4229 n = 0;
4230
4231 if (sub != event)
4232 sub->pmu->read(sub);
4233
4234 values[n++] = perf_event_count(sub);
4235 if (read_format & PERF_FORMAT_ID)
4236 values[n++] = primary_event_id(sub);
4237
4238 perf_output_copy(handle, values, n * sizeof(u64));
4239 }
4240 }
4241
4242 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4243 PERF_FORMAT_TOTAL_TIME_RUNNING)
4244
4245 static void perf_output_read(struct perf_output_handle *handle,
4246 struct perf_event *event)
4247 {
4248 u64 enabled = 0, running = 0, now, ctx_time;
4249 u64 read_format = event->attr.read_format;
4250
4251 /*
4252 * compute total_time_enabled, total_time_running
4253 * based on snapshot values taken when the event
4254 * was last scheduled in.
4255 *
4256 * we cannot simply called update_context_time()
4257 * because of locking issue as we are called in
4258 * NMI context
4259 */
4260 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
4261 now = perf_clock();
4262 ctx_time = event->shadow_ctx_time + now;
4263 enabled = ctx_time - event->tstamp_enabled;
4264 running = ctx_time - event->tstamp_running;
4265 }
4266
4267 if (event->attr.read_format & PERF_FORMAT_GROUP)
4268 perf_output_read_group(handle, event, enabled, running);
4269 else
4270 perf_output_read_one(handle, event, enabled, running);
4271 }
4272
4273 void perf_output_sample(struct perf_output_handle *handle,
4274 struct perf_event_header *header,
4275 struct perf_sample_data *data,
4276 struct perf_event *event)
4277 {
4278 u64 sample_type = data->type;
4279
4280 perf_output_put(handle, *header);
4281
4282 if (sample_type & PERF_SAMPLE_IP)
4283 perf_output_put(handle, data->ip);
4284
4285 if (sample_type & PERF_SAMPLE_TID)
4286 perf_output_put(handle, data->tid_entry);
4287
4288 if (sample_type & PERF_SAMPLE_TIME)
4289 perf_output_put(handle, data->time);
4290
4291 if (sample_type & PERF_SAMPLE_ADDR)
4292 perf_output_put(handle, data->addr);
4293
4294 if (sample_type & PERF_SAMPLE_ID)
4295 perf_output_put(handle, data->id);
4296
4297 if (sample_type & PERF_SAMPLE_STREAM_ID)
4298 perf_output_put(handle, data->stream_id);
4299
4300 if (sample_type & PERF_SAMPLE_CPU)
4301 perf_output_put(handle, data->cpu_entry);
4302
4303 if (sample_type & PERF_SAMPLE_PERIOD)
4304 perf_output_put(handle, data->period);
4305
4306 if (sample_type & PERF_SAMPLE_READ)
4307 perf_output_read(handle, event);
4308
4309 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4310 if (data->callchain) {
4311 int size = 1;
4312
4313 if (data->callchain)
4314 size += data->callchain->nr;
4315
4316 size *= sizeof(u64);
4317
4318 perf_output_copy(handle, data->callchain, size);
4319 } else {
4320 u64 nr = 0;
4321 perf_output_put(handle, nr);
4322 }
4323 }
4324
4325 if (sample_type & PERF_SAMPLE_RAW) {
4326 if (data->raw) {
4327 perf_output_put(handle, data->raw->size);
4328 perf_output_copy(handle, data->raw->data,
4329 data->raw->size);
4330 } else {
4331 struct {
4332 u32 size;
4333 u32 data;
4334 } raw = {
4335 .size = sizeof(u32),
4336 .data = 0,
4337 };
4338 perf_output_put(handle, raw);
4339 }
4340 }
4341 }
4342
4343 void perf_prepare_sample(struct perf_event_header *header,
4344 struct perf_sample_data *data,
4345 struct perf_event *event,
4346 struct pt_regs *regs)
4347 {
4348 u64 sample_type = event->attr.sample_type;
4349
4350 header->type = PERF_RECORD_SAMPLE;
4351 header->size = sizeof(*header) + event->header_size;
4352
4353 header->misc = 0;
4354 header->misc |= perf_misc_flags(regs);
4355
4356 __perf_event_header__init_id(header, data, event);
4357
4358 if (sample_type & PERF_SAMPLE_IP)
4359 data->ip = perf_instruction_pointer(regs);
4360
4361 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4362 int size = 1;
4363
4364 data->callchain = perf_callchain(regs);
4365
4366 if (data->callchain)
4367 size += data->callchain->nr;
4368
4369 header->size += size * sizeof(u64);
4370 }
4371
4372 if (sample_type & PERF_SAMPLE_RAW) {
4373 int size = sizeof(u32);
4374
4375 if (data->raw)
4376 size += data->raw->size;
4377 else
4378 size += sizeof(u32);
4379
4380 WARN_ON_ONCE(size & (sizeof(u64)-1));
4381 header->size += size;
4382 }
4383 }
4384
4385 static void perf_event_output(struct perf_event *event, int nmi,
4386 struct perf_sample_data *data,
4387 struct pt_regs *regs)
4388 {
4389 struct perf_output_handle handle;
4390 struct perf_event_header header;
4391
4392 /* protect the callchain buffers */
4393 rcu_read_lock();
4394
4395 perf_prepare_sample(&header, data, event, regs);
4396
4397 if (perf_output_begin(&handle, event, header.size, nmi, 1))
4398 goto exit;
4399
4400 perf_output_sample(&handle, &header, data, event);
4401
4402 perf_output_end(&handle);
4403
4404 exit:
4405 rcu_read_unlock();
4406 }
4407
4408 /*
4409 * read event_id
4410 */
4411
4412 struct perf_read_event {
4413 struct perf_event_header header;
4414
4415 u32 pid;
4416 u32 tid;
4417 };
4418
4419 static void
4420 perf_event_read_event(struct perf_event *event,
4421 struct task_struct *task)
4422 {
4423 struct perf_output_handle handle;
4424 struct perf_sample_data sample;
4425 struct perf_read_event read_event = {
4426 .header = {
4427 .type = PERF_RECORD_READ,
4428 .misc = 0,
4429 .size = sizeof(read_event) + event->read_size,
4430 },
4431 .pid = perf_event_pid(event, task),
4432 .tid = perf_event_tid(event, task),
4433 };
4434 int ret;
4435
4436 perf_event_header__init_id(&read_event.header, &sample, event);
4437 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4438 if (ret)
4439 return;
4440
4441 perf_output_put(&handle, read_event);
4442 perf_output_read(&handle, event);
4443 perf_event__output_id_sample(event, &handle, &sample);
4444
4445 perf_output_end(&handle);
4446 }
4447
4448 /*
4449 * task tracking -- fork/exit
4450 *
4451 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4452 */
4453
4454 struct perf_task_event {
4455 struct task_struct *task;
4456 struct perf_event_context *task_ctx;
4457
4458 struct {
4459 struct perf_event_header header;
4460
4461 u32 pid;
4462 u32 ppid;
4463 u32 tid;
4464 u32 ptid;
4465 u64 time;
4466 } event_id;
4467 };
4468
4469 static void perf_event_task_output(struct perf_event *event,
4470 struct perf_task_event *task_event)
4471 {
4472 struct perf_output_handle handle;
4473 struct perf_sample_data sample;
4474 struct task_struct *task = task_event->task;
4475 int ret, size = task_event->event_id.header.size;
4476
4477 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4478
4479 ret = perf_output_begin(&handle, event,
4480 task_event->event_id.header.size, 0, 0);
4481 if (ret)
4482 goto out;
4483
4484 task_event->event_id.pid = perf_event_pid(event, task);
4485 task_event->event_id.ppid = perf_event_pid(event, current);
4486
4487 task_event->event_id.tid = perf_event_tid(event, task);
4488 task_event->event_id.ptid = perf_event_tid(event, current);
4489
4490 perf_output_put(&handle, task_event->event_id);
4491
4492 perf_event__output_id_sample(event, &handle, &sample);
4493
4494 perf_output_end(&handle);
4495 out:
4496 task_event->event_id.header.size = size;
4497 }
4498
4499 static int perf_event_task_match(struct perf_event *event)
4500 {
4501 if (event->state < PERF_EVENT_STATE_INACTIVE)
4502 return 0;
4503
4504 if (!event_filter_match(event))
4505 return 0;
4506
4507 if (event->attr.comm || event->attr.mmap ||
4508 event->attr.mmap_data || event->attr.task)
4509 return 1;
4510
4511 return 0;
4512 }
4513
4514 static void perf_event_task_ctx(struct perf_event_context *ctx,
4515 struct perf_task_event *task_event)
4516 {
4517 struct perf_event *event;
4518
4519 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4520 if (perf_event_task_match(event))
4521 perf_event_task_output(event, task_event);
4522 }
4523 }
4524
4525 static void perf_event_task_event(struct perf_task_event *task_event)
4526 {
4527 struct perf_cpu_context *cpuctx;
4528 struct perf_event_context *ctx;
4529 struct pmu *pmu;
4530 int ctxn;
4531
4532 rcu_read_lock();
4533 list_for_each_entry_rcu(pmu, &pmus, entry) {
4534 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4535 if (cpuctx->active_pmu != pmu)
4536 goto next;
4537 perf_event_task_ctx(&cpuctx->ctx, task_event);
4538
4539 ctx = task_event->task_ctx;
4540 if (!ctx) {
4541 ctxn = pmu->task_ctx_nr;
4542 if (ctxn < 0)
4543 goto next;
4544 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4545 }
4546 if (ctx)
4547 perf_event_task_ctx(ctx, task_event);
4548 next:
4549 put_cpu_ptr(pmu->pmu_cpu_context);
4550 }
4551 rcu_read_unlock();
4552 }
4553
4554 static void perf_event_task(struct task_struct *task,
4555 struct perf_event_context *task_ctx,
4556 int new)
4557 {
4558 struct perf_task_event task_event;
4559
4560 if (!atomic_read(&nr_comm_events) &&
4561 !atomic_read(&nr_mmap_events) &&
4562 !atomic_read(&nr_task_events))
4563 return;
4564
4565 task_event = (struct perf_task_event){
4566 .task = task,
4567 .task_ctx = task_ctx,
4568 .event_id = {
4569 .header = {
4570 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4571 .misc = 0,
4572 .size = sizeof(task_event.event_id),
4573 },
4574 /* .pid */
4575 /* .ppid */
4576 /* .tid */
4577 /* .ptid */
4578 .time = perf_clock(),
4579 },
4580 };
4581
4582 perf_event_task_event(&task_event);
4583 }
4584
4585 void perf_event_fork(struct task_struct *task)
4586 {
4587 perf_event_task(task, NULL, 1);
4588 }
4589
4590 /*
4591 * comm tracking
4592 */
4593
4594 struct perf_comm_event {
4595 struct task_struct *task;
4596 char *comm;
4597 int comm_size;
4598
4599 struct {
4600 struct perf_event_header header;
4601
4602 u32 pid;
4603 u32 tid;
4604 } event_id;
4605 };
4606
4607 static void perf_event_comm_output(struct perf_event *event,
4608 struct perf_comm_event *comm_event)
4609 {
4610 struct perf_output_handle handle;
4611 struct perf_sample_data sample;
4612 int size = comm_event->event_id.header.size;
4613 int ret;
4614
4615 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4616 ret = perf_output_begin(&handle, event,
4617 comm_event->event_id.header.size, 0, 0);
4618
4619 if (ret)
4620 goto out;
4621
4622 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4623 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4624
4625 perf_output_put(&handle, comm_event->event_id);
4626 perf_output_copy(&handle, comm_event->comm,
4627 comm_event->comm_size);
4628
4629 perf_event__output_id_sample(event, &handle, &sample);
4630
4631 perf_output_end(&handle);
4632 out:
4633 comm_event->event_id.header.size = size;
4634 }
4635
4636 static int perf_event_comm_match(struct perf_event *event)
4637 {
4638 if (event->state < PERF_EVENT_STATE_INACTIVE)
4639 return 0;
4640
4641 if (!event_filter_match(event))
4642 return 0;
4643
4644 if (event->attr.comm)
4645 return 1;
4646
4647 return 0;
4648 }
4649
4650 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4651 struct perf_comm_event *comm_event)
4652 {
4653 struct perf_event *event;
4654
4655 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4656 if (perf_event_comm_match(event))
4657 perf_event_comm_output(event, comm_event);
4658 }
4659 }
4660
4661 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4662 {
4663 struct perf_cpu_context *cpuctx;
4664 struct perf_event_context *ctx;
4665 char comm[TASK_COMM_LEN];
4666 unsigned int size;
4667 struct pmu *pmu;
4668 int ctxn;
4669
4670 memset(comm, 0, sizeof(comm));
4671 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4672 size = ALIGN(strlen(comm)+1, sizeof(u64));
4673
4674 comm_event->comm = comm;
4675 comm_event->comm_size = size;
4676
4677 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4678 rcu_read_lock();
4679 list_for_each_entry_rcu(pmu, &pmus, entry) {
4680 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4681 if (cpuctx->active_pmu != pmu)
4682 goto next;
4683 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4684
4685 ctxn = pmu->task_ctx_nr;
4686 if (ctxn < 0)
4687 goto next;
4688
4689 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4690 if (ctx)
4691 perf_event_comm_ctx(ctx, comm_event);
4692 next:
4693 put_cpu_ptr(pmu->pmu_cpu_context);
4694 }
4695 rcu_read_unlock();
4696 }
4697
4698 void perf_event_comm(struct task_struct *task)
4699 {
4700 struct perf_comm_event comm_event;
4701 struct perf_event_context *ctx;
4702 int ctxn;
4703
4704 for_each_task_context_nr(ctxn) {
4705 ctx = task->perf_event_ctxp[ctxn];
4706 if (!ctx)
4707 continue;
4708
4709 perf_event_enable_on_exec(ctx);
4710 }
4711
4712 if (!atomic_read(&nr_comm_events))
4713 return;
4714
4715 comm_event = (struct perf_comm_event){
4716 .task = task,
4717 /* .comm */
4718 /* .comm_size */
4719 .event_id = {
4720 .header = {
4721 .type = PERF_RECORD_COMM,
4722 .misc = 0,
4723 /* .size */
4724 },
4725 /* .pid */
4726 /* .tid */
4727 },
4728 };
4729
4730 perf_event_comm_event(&comm_event);
4731 }
4732
4733 /*
4734 * mmap tracking
4735 */
4736
4737 struct perf_mmap_event {
4738 struct vm_area_struct *vma;
4739
4740 const char *file_name;
4741 int file_size;
4742
4743 struct {
4744 struct perf_event_header header;
4745
4746 u32 pid;
4747 u32 tid;
4748 u64 start;
4749 u64 len;
4750 u64 pgoff;
4751 } event_id;
4752 };
4753
4754 static void perf_event_mmap_output(struct perf_event *event,
4755 struct perf_mmap_event *mmap_event)
4756 {
4757 struct perf_output_handle handle;
4758 struct perf_sample_data sample;
4759 int size = mmap_event->event_id.header.size;
4760 int ret;
4761
4762 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4763 ret = perf_output_begin(&handle, event,
4764 mmap_event->event_id.header.size, 0, 0);
4765 if (ret)
4766 goto out;
4767
4768 mmap_event->event_id.pid = perf_event_pid(event, current);
4769 mmap_event->event_id.tid = perf_event_tid(event, current);
4770
4771 perf_output_put(&handle, mmap_event->event_id);
4772 perf_output_copy(&handle, mmap_event->file_name,
4773 mmap_event->file_size);
4774
4775 perf_event__output_id_sample(event, &handle, &sample);
4776
4777 perf_output_end(&handle);
4778 out:
4779 mmap_event->event_id.header.size = size;
4780 }
4781
4782 static int perf_event_mmap_match(struct perf_event *event,
4783 struct perf_mmap_event *mmap_event,
4784 int executable)
4785 {
4786 if (event->state < PERF_EVENT_STATE_INACTIVE)
4787 return 0;
4788
4789 if (!event_filter_match(event))
4790 return 0;
4791
4792 if ((!executable && event->attr.mmap_data) ||
4793 (executable && event->attr.mmap))
4794 return 1;
4795
4796 return 0;
4797 }
4798
4799 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4800 struct perf_mmap_event *mmap_event,
4801 int executable)
4802 {
4803 struct perf_event *event;
4804
4805 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4806 if (perf_event_mmap_match(event, mmap_event, executable))
4807 perf_event_mmap_output(event, mmap_event);
4808 }
4809 }
4810
4811 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4812 {
4813 struct perf_cpu_context *cpuctx;
4814 struct perf_event_context *ctx;
4815 struct vm_area_struct *vma = mmap_event->vma;
4816 struct file *file = vma->vm_file;
4817 unsigned int size;
4818 char tmp[16];
4819 char *buf = NULL;
4820 const char *name;
4821 struct pmu *pmu;
4822 int ctxn;
4823
4824 memset(tmp, 0, sizeof(tmp));
4825
4826 if (file) {
4827 /*
4828 * d_path works from the end of the buffer backwards, so we
4829 * need to add enough zero bytes after the string to handle
4830 * the 64bit alignment we do later.
4831 */
4832 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4833 if (!buf) {
4834 name = strncpy(tmp, "//enomem", sizeof(tmp));
4835 goto got_name;
4836 }
4837 name = d_path(&file->f_path, buf, PATH_MAX);
4838 if (IS_ERR(name)) {
4839 name = strncpy(tmp, "//toolong", sizeof(tmp));
4840 goto got_name;
4841 }
4842 } else {
4843 if (arch_vma_name(mmap_event->vma)) {
4844 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4845 sizeof(tmp));
4846 goto got_name;
4847 }
4848
4849 if (!vma->vm_mm) {
4850 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4851 goto got_name;
4852 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4853 vma->vm_end >= vma->vm_mm->brk) {
4854 name = strncpy(tmp, "[heap]", sizeof(tmp));
4855 goto got_name;
4856 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4857 vma->vm_end >= vma->vm_mm->start_stack) {
4858 name = strncpy(tmp, "[stack]", sizeof(tmp));
4859 goto got_name;
4860 }
4861
4862 name = strncpy(tmp, "//anon", sizeof(tmp));
4863 goto got_name;
4864 }
4865
4866 got_name:
4867 size = ALIGN(strlen(name)+1, sizeof(u64));
4868
4869 mmap_event->file_name = name;
4870 mmap_event->file_size = size;
4871
4872 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4873
4874 rcu_read_lock();
4875 list_for_each_entry_rcu(pmu, &pmus, entry) {
4876 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4877 if (cpuctx->active_pmu != pmu)
4878 goto next;
4879 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4880 vma->vm_flags & VM_EXEC);
4881
4882 ctxn = pmu->task_ctx_nr;
4883 if (ctxn < 0)
4884 goto next;
4885
4886 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4887 if (ctx) {
4888 perf_event_mmap_ctx(ctx, mmap_event,
4889 vma->vm_flags & VM_EXEC);
4890 }
4891 next:
4892 put_cpu_ptr(pmu->pmu_cpu_context);
4893 }
4894 rcu_read_unlock();
4895
4896 kfree(buf);
4897 }
4898
4899 void perf_event_mmap(struct vm_area_struct *vma)
4900 {
4901 struct perf_mmap_event mmap_event;
4902
4903 if (!atomic_read(&nr_mmap_events))
4904 return;
4905
4906 mmap_event = (struct perf_mmap_event){
4907 .vma = vma,
4908 /* .file_name */
4909 /* .file_size */
4910 .event_id = {
4911 .header = {
4912 .type = PERF_RECORD_MMAP,
4913 .misc = PERF_RECORD_MISC_USER,
4914 /* .size */
4915 },
4916 /* .pid */
4917 /* .tid */
4918 .start = vma->vm_start,
4919 .len = vma->vm_end - vma->vm_start,
4920 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4921 },
4922 };
4923
4924 perf_event_mmap_event(&mmap_event);
4925 }
4926
4927 /*
4928 * IRQ throttle logging
4929 */
4930
4931 static void perf_log_throttle(struct perf_event *event, int enable)
4932 {
4933 struct perf_output_handle handle;
4934 struct perf_sample_data sample;
4935 int ret;
4936
4937 struct {
4938 struct perf_event_header header;
4939 u64 time;
4940 u64 id;
4941 u64 stream_id;
4942 } throttle_event = {
4943 .header = {
4944 .type = PERF_RECORD_THROTTLE,
4945 .misc = 0,
4946 .size = sizeof(throttle_event),
4947 },
4948 .time = perf_clock(),
4949 .id = primary_event_id(event),
4950 .stream_id = event->id,
4951 };
4952
4953 if (enable)
4954 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4955
4956 perf_event_header__init_id(&throttle_event.header, &sample, event);
4957
4958 ret = perf_output_begin(&handle, event,
4959 throttle_event.header.size, 1, 0);
4960 if (ret)
4961 return;
4962
4963 perf_output_put(&handle, throttle_event);
4964 perf_event__output_id_sample(event, &handle, &sample);
4965 perf_output_end(&handle);
4966 }
4967
4968 /*
4969 * Generic event overflow handling, sampling.
4970 */
4971
4972 static int __perf_event_overflow(struct perf_event *event, int nmi,
4973 int throttle, struct perf_sample_data *data,
4974 struct pt_regs *regs)
4975 {
4976 int events = atomic_read(&event->event_limit);
4977 struct hw_perf_event *hwc = &event->hw;
4978 int ret = 0;
4979
4980 /*
4981 * Non-sampling counters might still use the PMI to fold short
4982 * hardware counters, ignore those.
4983 */
4984 if (unlikely(!is_sampling_event(event)))
4985 return 0;
4986
4987 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4988 if (throttle) {
4989 hwc->interrupts = MAX_INTERRUPTS;
4990 perf_log_throttle(event, 0);
4991 ret = 1;
4992 }
4993 } else
4994 hwc->interrupts++;
4995
4996 if (event->attr.freq) {
4997 u64 now = perf_clock();
4998 s64 delta = now - hwc->freq_time_stamp;
4999
5000 hwc->freq_time_stamp = now;
5001
5002 if (delta > 0 && delta < 2*TICK_NSEC)
5003 perf_adjust_period(event, delta, hwc->last_period);
5004 }
5005
5006 /*
5007 * XXX event_limit might not quite work as expected on inherited
5008 * events
5009 */
5010
5011 event->pending_kill = POLL_IN;
5012 if (events && atomic_dec_and_test(&event->event_limit)) {
5013 ret = 1;
5014 event->pending_kill = POLL_HUP;
5015 if (nmi) {
5016 event->pending_disable = 1;
5017 irq_work_queue(&event->pending);
5018 } else
5019 perf_event_disable(event);
5020 }
5021
5022 if (event->overflow_handler)
5023 event->overflow_handler(event, nmi, data, regs);
5024 else
5025 perf_event_output(event, nmi, data, regs);
5026
5027 return ret;
5028 }
5029
5030 int perf_event_overflow(struct perf_event *event, int nmi,
5031 struct perf_sample_data *data,
5032 struct pt_regs *regs)
5033 {
5034 return __perf_event_overflow(event, nmi, 1, data, regs);
5035 }
5036
5037 /*
5038 * Generic software event infrastructure
5039 */
5040
5041 struct swevent_htable {
5042 struct swevent_hlist *swevent_hlist;
5043 struct mutex hlist_mutex;
5044 int hlist_refcount;
5045
5046 /* Recursion avoidance in each contexts */
5047 int recursion[PERF_NR_CONTEXTS];
5048 };
5049
5050 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5051
5052 /*
5053 * We directly increment event->count and keep a second value in
5054 * event->hw.period_left to count intervals. This period event
5055 * is kept in the range [-sample_period, 0] so that we can use the
5056 * sign as trigger.
5057 */
5058
5059 static u64 perf_swevent_set_period(struct perf_event *event)
5060 {
5061 struct hw_perf_event *hwc = &event->hw;
5062 u64 period = hwc->last_period;
5063 u64 nr, offset;
5064 s64 old, val;
5065
5066 hwc->last_period = hwc->sample_period;
5067
5068 again:
5069 old = val = local64_read(&hwc->period_left);
5070 if (val < 0)
5071 return 0;
5072
5073 nr = div64_u64(period + val, period);
5074 offset = nr * period;
5075 val -= offset;
5076 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5077 goto again;
5078
5079 return nr;
5080 }
5081
5082 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5083 int nmi, struct perf_sample_data *data,
5084 struct pt_regs *regs)
5085 {
5086 struct hw_perf_event *hwc = &event->hw;
5087 int throttle = 0;
5088
5089 data->period = event->hw.last_period;
5090 if (!overflow)
5091 overflow = perf_swevent_set_period(event);
5092
5093 if (hwc->interrupts == MAX_INTERRUPTS)
5094 return;
5095
5096 for (; overflow; overflow--) {
5097 if (__perf_event_overflow(event, nmi, throttle,
5098 data, regs)) {
5099 /*
5100 * We inhibit the overflow from happening when
5101 * hwc->interrupts == MAX_INTERRUPTS.
5102 */
5103 break;
5104 }
5105 throttle = 1;
5106 }
5107 }
5108
5109 static void perf_swevent_event(struct perf_event *event, u64 nr,
5110 int nmi, struct perf_sample_data *data,
5111 struct pt_regs *regs)
5112 {
5113 struct hw_perf_event *hwc = &event->hw;
5114
5115 local64_add(nr, &event->count);
5116
5117 if (!regs)
5118 return;
5119
5120 if (!is_sampling_event(event))
5121 return;
5122
5123 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5124 return perf_swevent_overflow(event, 1, nmi, data, regs);
5125
5126 if (local64_add_negative(nr, &hwc->period_left))
5127 return;
5128
5129 perf_swevent_overflow(event, 0, nmi, data, regs);
5130 }
5131
5132 static int perf_exclude_event(struct perf_event *event,
5133 struct pt_regs *regs)
5134 {
5135 if (event->hw.state & PERF_HES_STOPPED)
5136 return 1;
5137
5138 if (regs) {
5139 if (event->attr.exclude_user && user_mode(regs))
5140 return 1;
5141
5142 if (event->attr.exclude_kernel && !user_mode(regs))
5143 return 1;
5144 }
5145
5146 return 0;
5147 }
5148
5149 static int perf_swevent_match(struct perf_event *event,
5150 enum perf_type_id type,
5151 u32 event_id,
5152 struct perf_sample_data *data,
5153 struct pt_regs *regs)
5154 {
5155 if (event->attr.type != type)
5156 return 0;
5157
5158 if (event->attr.config != event_id)
5159 return 0;
5160
5161 if (perf_exclude_event(event, regs))
5162 return 0;
5163
5164 return 1;
5165 }
5166
5167 static inline u64 swevent_hash(u64 type, u32 event_id)
5168 {
5169 u64 val = event_id | (type << 32);
5170
5171 return hash_64(val, SWEVENT_HLIST_BITS);
5172 }
5173
5174 static inline struct hlist_head *
5175 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5176 {
5177 u64 hash = swevent_hash(type, event_id);
5178
5179 return &hlist->heads[hash];
5180 }
5181
5182 /* For the read side: events when they trigger */
5183 static inline struct hlist_head *
5184 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5185 {
5186 struct swevent_hlist *hlist;
5187
5188 hlist = rcu_dereference(swhash->swevent_hlist);
5189 if (!hlist)
5190 return NULL;
5191
5192 return __find_swevent_head(hlist, type, event_id);
5193 }
5194
5195 /* For the event head insertion and removal in the hlist */
5196 static inline struct hlist_head *
5197 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5198 {
5199 struct swevent_hlist *hlist;
5200 u32 event_id = event->attr.config;
5201 u64 type = event->attr.type;
5202
5203 /*
5204 * Event scheduling is always serialized against hlist allocation
5205 * and release. Which makes the protected version suitable here.
5206 * The context lock guarantees that.
5207 */
5208 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5209 lockdep_is_held(&event->ctx->lock));
5210 if (!hlist)
5211 return NULL;
5212
5213 return __find_swevent_head(hlist, type, event_id);
5214 }
5215
5216 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5217 u64 nr, int nmi,
5218 struct perf_sample_data *data,
5219 struct pt_regs *regs)
5220 {
5221 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5222 struct perf_event *event;
5223 struct hlist_node *node;
5224 struct hlist_head *head;
5225
5226 rcu_read_lock();
5227 head = find_swevent_head_rcu(swhash, type, event_id);
5228 if (!head)
5229 goto end;
5230
5231 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5232 if (perf_swevent_match(event, type, event_id, data, regs))
5233 perf_swevent_event(event, nr, nmi, data, regs);
5234 }
5235 end:
5236 rcu_read_unlock();
5237 }
5238
5239 int perf_swevent_get_recursion_context(void)
5240 {
5241 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5242
5243 return get_recursion_context(swhash->recursion);
5244 }
5245 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5246
5247 inline void perf_swevent_put_recursion_context(int rctx)
5248 {
5249 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5250
5251 put_recursion_context(swhash->recursion, rctx);
5252 }
5253
5254 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5255 struct pt_regs *regs, u64 addr)
5256 {
5257 struct perf_sample_data data;
5258 int rctx;
5259
5260 preempt_disable_notrace();
5261 rctx = perf_swevent_get_recursion_context();
5262 if (rctx < 0)
5263 return;
5264
5265 perf_sample_data_init(&data, addr);
5266
5267 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5268
5269 perf_swevent_put_recursion_context(rctx);
5270 preempt_enable_notrace();
5271 }
5272
5273 static void perf_swevent_read(struct perf_event *event)
5274 {
5275 }
5276
5277 static int perf_swevent_add(struct perf_event *event, int flags)
5278 {
5279 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5280 struct hw_perf_event *hwc = &event->hw;
5281 struct hlist_head *head;
5282
5283 if (is_sampling_event(event)) {
5284 hwc->last_period = hwc->sample_period;
5285 perf_swevent_set_period(event);
5286 }
5287
5288 hwc->state = !(flags & PERF_EF_START);
5289
5290 head = find_swevent_head(swhash, event);
5291 if (WARN_ON_ONCE(!head))
5292 return -EINVAL;
5293
5294 hlist_add_head_rcu(&event->hlist_entry, head);
5295
5296 return 0;
5297 }
5298
5299 static void perf_swevent_del(struct perf_event *event, int flags)
5300 {
5301 hlist_del_rcu(&event->hlist_entry);
5302 }
5303
5304 static void perf_swevent_start(struct perf_event *event, int flags)
5305 {
5306 event->hw.state = 0;
5307 }
5308
5309 static void perf_swevent_stop(struct perf_event *event, int flags)
5310 {
5311 event->hw.state = PERF_HES_STOPPED;
5312 }
5313
5314 /* Deref the hlist from the update side */
5315 static inline struct swevent_hlist *
5316 swevent_hlist_deref(struct swevent_htable *swhash)
5317 {
5318 return rcu_dereference_protected(swhash->swevent_hlist,
5319 lockdep_is_held(&swhash->hlist_mutex));
5320 }
5321
5322 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
5323 {
5324 struct swevent_hlist *hlist;
5325
5326 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
5327 kfree(hlist);
5328 }
5329
5330 static void swevent_hlist_release(struct swevent_htable *swhash)
5331 {
5332 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5333
5334 if (!hlist)
5335 return;
5336
5337 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5338 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
5339 }
5340
5341 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5342 {
5343 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5344
5345 mutex_lock(&swhash->hlist_mutex);
5346
5347 if (!--swhash->hlist_refcount)
5348 swevent_hlist_release(swhash);
5349
5350 mutex_unlock(&swhash->hlist_mutex);
5351 }
5352
5353 static void swevent_hlist_put(struct perf_event *event)
5354 {
5355 int cpu;
5356
5357 if (event->cpu != -1) {
5358 swevent_hlist_put_cpu(event, event->cpu);
5359 return;
5360 }
5361
5362 for_each_possible_cpu(cpu)
5363 swevent_hlist_put_cpu(event, cpu);
5364 }
5365
5366 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5367 {
5368 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5369 int err = 0;
5370
5371 mutex_lock(&swhash->hlist_mutex);
5372
5373 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5374 struct swevent_hlist *hlist;
5375
5376 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5377 if (!hlist) {
5378 err = -ENOMEM;
5379 goto exit;
5380 }
5381 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5382 }
5383 swhash->hlist_refcount++;
5384 exit:
5385 mutex_unlock(&swhash->hlist_mutex);
5386
5387 return err;
5388 }
5389
5390 static int swevent_hlist_get(struct perf_event *event)
5391 {
5392 int err;
5393 int cpu, failed_cpu;
5394
5395 if (event->cpu != -1)
5396 return swevent_hlist_get_cpu(event, event->cpu);
5397
5398 get_online_cpus();
5399 for_each_possible_cpu(cpu) {
5400 err = swevent_hlist_get_cpu(event, cpu);
5401 if (err) {
5402 failed_cpu = cpu;
5403 goto fail;
5404 }
5405 }
5406 put_online_cpus();
5407
5408 return 0;
5409 fail:
5410 for_each_possible_cpu(cpu) {
5411 if (cpu == failed_cpu)
5412 break;
5413 swevent_hlist_put_cpu(event, cpu);
5414 }
5415
5416 put_online_cpus();
5417 return err;
5418 }
5419
5420 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
5421
5422 static void sw_perf_event_destroy(struct perf_event *event)
5423 {
5424 u64 event_id = event->attr.config;
5425
5426 WARN_ON(event->parent);
5427
5428 jump_label_dec(&perf_swevent_enabled[event_id]);
5429 swevent_hlist_put(event);
5430 }
5431
5432 static int perf_swevent_init(struct perf_event *event)
5433 {
5434 int event_id = event->attr.config;
5435
5436 if (event->attr.type != PERF_TYPE_SOFTWARE)
5437 return -ENOENT;
5438
5439 switch (event_id) {
5440 case PERF_COUNT_SW_CPU_CLOCK:
5441 case PERF_COUNT_SW_TASK_CLOCK:
5442 return -ENOENT;
5443
5444 default:
5445 break;
5446 }
5447
5448 if (event_id >= PERF_COUNT_SW_MAX)
5449 return -ENOENT;
5450
5451 if (!event->parent) {
5452 int err;
5453
5454 err = swevent_hlist_get(event);
5455 if (err)
5456 return err;
5457
5458 jump_label_inc(&perf_swevent_enabled[event_id]);
5459 event->destroy = sw_perf_event_destroy;
5460 }
5461
5462 return 0;
5463 }
5464
5465 static struct pmu perf_swevent = {
5466 .task_ctx_nr = perf_sw_context,
5467
5468 .event_init = perf_swevent_init,
5469 .add = perf_swevent_add,
5470 .del = perf_swevent_del,
5471 .start = perf_swevent_start,
5472 .stop = perf_swevent_stop,
5473 .read = perf_swevent_read,
5474 };
5475
5476 #ifdef CONFIG_EVENT_TRACING
5477
5478 static int perf_tp_filter_match(struct perf_event *event,
5479 struct perf_sample_data *data)
5480 {
5481 void *record = data->raw->data;
5482
5483 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5484 return 1;
5485 return 0;
5486 }
5487
5488 static int perf_tp_event_match(struct perf_event *event,
5489 struct perf_sample_data *data,
5490 struct pt_regs *regs)
5491 {
5492 if (event->hw.state & PERF_HES_STOPPED)
5493 return 0;
5494 /*
5495 * All tracepoints are from kernel-space.
5496 */
5497 if (event->attr.exclude_kernel)
5498 return 0;
5499
5500 if (!perf_tp_filter_match(event, data))
5501 return 0;
5502
5503 return 1;
5504 }
5505
5506 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5507 struct pt_regs *regs, struct hlist_head *head, int rctx)
5508 {
5509 struct perf_sample_data data;
5510 struct perf_event *event;
5511 struct hlist_node *node;
5512
5513 struct perf_raw_record raw = {
5514 .size = entry_size,
5515 .data = record,
5516 };
5517
5518 perf_sample_data_init(&data, addr);
5519 data.raw = &raw;
5520
5521 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5522 if (perf_tp_event_match(event, &data, regs))
5523 perf_swevent_event(event, count, 1, &data, regs);
5524 }
5525
5526 perf_swevent_put_recursion_context(rctx);
5527 }
5528 EXPORT_SYMBOL_GPL(perf_tp_event);
5529
5530 static void tp_perf_event_destroy(struct perf_event *event)
5531 {
5532 perf_trace_destroy(event);
5533 }
5534
5535 static int perf_tp_event_init(struct perf_event *event)
5536 {
5537 int err;
5538
5539 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5540 return -ENOENT;
5541
5542 err = perf_trace_init(event);
5543 if (err)
5544 return err;
5545
5546 event->destroy = tp_perf_event_destroy;
5547
5548 return 0;
5549 }
5550
5551 static struct pmu perf_tracepoint = {
5552 .task_ctx_nr = perf_sw_context,
5553
5554 .event_init = perf_tp_event_init,
5555 .add = perf_trace_add,
5556 .del = perf_trace_del,
5557 .start = perf_swevent_start,
5558 .stop = perf_swevent_stop,
5559 .read = perf_swevent_read,
5560 };
5561
5562 static inline void perf_tp_register(void)
5563 {
5564 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5565 }
5566
5567 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5568 {
5569 char *filter_str;
5570 int ret;
5571
5572 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5573 return -EINVAL;
5574
5575 filter_str = strndup_user(arg, PAGE_SIZE);
5576 if (IS_ERR(filter_str))
5577 return PTR_ERR(filter_str);
5578
5579 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5580
5581 kfree(filter_str);
5582 return ret;
5583 }
5584
5585 static void perf_event_free_filter(struct perf_event *event)
5586 {
5587 ftrace_profile_free_filter(event);
5588 }
5589
5590 #else
5591
5592 static inline void perf_tp_register(void)
5593 {
5594 }
5595
5596 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5597 {
5598 return -ENOENT;
5599 }
5600
5601 static void perf_event_free_filter(struct perf_event *event)
5602 {
5603 }
5604
5605 #endif /* CONFIG_EVENT_TRACING */
5606
5607 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5608 void perf_bp_event(struct perf_event *bp, void *data)
5609 {
5610 struct perf_sample_data sample;
5611 struct pt_regs *regs = data;
5612
5613 perf_sample_data_init(&sample, bp->attr.bp_addr);
5614
5615 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5616 perf_swevent_event(bp, 1, 1, &sample, regs);
5617 }
5618 #endif
5619
5620 /*
5621 * hrtimer based swevent callback
5622 */
5623
5624 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5625 {
5626 enum hrtimer_restart ret = HRTIMER_RESTART;
5627 struct perf_sample_data data;
5628 struct pt_regs *regs;
5629 struct perf_event *event;
5630 u64 period;
5631
5632 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5633
5634 if (event->state != PERF_EVENT_STATE_ACTIVE)
5635 return HRTIMER_NORESTART;
5636
5637 event->pmu->read(event);
5638
5639 perf_sample_data_init(&data, 0);
5640 data.period = event->hw.last_period;
5641 regs = get_irq_regs();
5642
5643 if (regs && !perf_exclude_event(event, regs)) {
5644 if (!(event->attr.exclude_idle && current->pid == 0))
5645 if (perf_event_overflow(event, 0, &data, regs))
5646 ret = HRTIMER_NORESTART;
5647 }
5648
5649 period = max_t(u64, 10000, event->hw.sample_period);
5650 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5651
5652 return ret;
5653 }
5654
5655 static void perf_swevent_start_hrtimer(struct perf_event *event)
5656 {
5657 struct hw_perf_event *hwc = &event->hw;
5658 s64 period;
5659
5660 if (!is_sampling_event(event))
5661 return;
5662
5663 period = local64_read(&hwc->period_left);
5664 if (period) {
5665 if (period < 0)
5666 period = 10000;
5667
5668 local64_set(&hwc->period_left, 0);
5669 } else {
5670 period = max_t(u64, 10000, hwc->sample_period);
5671 }
5672 __hrtimer_start_range_ns(&hwc->hrtimer,
5673 ns_to_ktime(period), 0,
5674 HRTIMER_MODE_REL_PINNED, 0);
5675 }
5676
5677 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5678 {
5679 struct hw_perf_event *hwc = &event->hw;
5680
5681 if (is_sampling_event(event)) {
5682 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5683 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5684
5685 hrtimer_cancel(&hwc->hrtimer);
5686 }
5687 }
5688
5689 static void perf_swevent_init_hrtimer(struct perf_event *event)
5690 {
5691 struct hw_perf_event *hwc = &event->hw;
5692
5693 if (!is_sampling_event(event))
5694 return;
5695
5696 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5697 hwc->hrtimer.function = perf_swevent_hrtimer;
5698
5699 /*
5700 * Since hrtimers have a fixed rate, we can do a static freq->period
5701 * mapping and avoid the whole period adjust feedback stuff.
5702 */
5703 if (event->attr.freq) {
5704 long freq = event->attr.sample_freq;
5705
5706 event->attr.sample_period = NSEC_PER_SEC / freq;
5707 hwc->sample_period = event->attr.sample_period;
5708 local64_set(&hwc->period_left, hwc->sample_period);
5709 event->attr.freq = 0;
5710 }
5711 }
5712
5713 /*
5714 * Software event: cpu wall time clock
5715 */
5716
5717 static void cpu_clock_event_update(struct perf_event *event)
5718 {
5719 s64 prev;
5720 u64 now;
5721
5722 now = local_clock();
5723 prev = local64_xchg(&event->hw.prev_count, now);
5724 local64_add(now - prev, &event->count);
5725 }
5726
5727 static void cpu_clock_event_start(struct perf_event *event, int flags)
5728 {
5729 local64_set(&event->hw.prev_count, local_clock());
5730 perf_swevent_start_hrtimer(event);
5731 }
5732
5733 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5734 {
5735 perf_swevent_cancel_hrtimer(event);
5736 cpu_clock_event_update(event);
5737 }
5738
5739 static int cpu_clock_event_add(struct perf_event *event, int flags)
5740 {
5741 if (flags & PERF_EF_START)
5742 cpu_clock_event_start(event, flags);
5743
5744 return 0;
5745 }
5746
5747 static void cpu_clock_event_del(struct perf_event *event, int flags)
5748 {
5749 cpu_clock_event_stop(event, flags);
5750 }
5751
5752 static void cpu_clock_event_read(struct perf_event *event)
5753 {
5754 cpu_clock_event_update(event);
5755 }
5756
5757 static int cpu_clock_event_init(struct perf_event *event)
5758 {
5759 if (event->attr.type != PERF_TYPE_SOFTWARE)
5760 return -ENOENT;
5761
5762 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5763 return -ENOENT;
5764
5765 perf_swevent_init_hrtimer(event);
5766
5767 return 0;
5768 }
5769
5770 static struct pmu perf_cpu_clock = {
5771 .task_ctx_nr = perf_sw_context,
5772
5773 .event_init = cpu_clock_event_init,
5774 .add = cpu_clock_event_add,
5775 .del = cpu_clock_event_del,
5776 .start = cpu_clock_event_start,
5777 .stop = cpu_clock_event_stop,
5778 .read = cpu_clock_event_read,
5779 };
5780
5781 /*
5782 * Software event: task time clock
5783 */
5784
5785 static void task_clock_event_update(struct perf_event *event, u64 now)
5786 {
5787 u64 prev;
5788 s64 delta;
5789
5790 prev = local64_xchg(&event->hw.prev_count, now);
5791 delta = now - prev;
5792 local64_add(delta, &event->count);
5793 }
5794
5795 static void task_clock_event_start(struct perf_event *event, int flags)
5796 {
5797 local64_set(&event->hw.prev_count, event->ctx->time);
5798 perf_swevent_start_hrtimer(event);
5799 }
5800
5801 static void task_clock_event_stop(struct perf_event *event, int flags)
5802 {
5803 perf_swevent_cancel_hrtimer(event);
5804 task_clock_event_update(event, event->ctx->time);
5805 }
5806
5807 static int task_clock_event_add(struct perf_event *event, int flags)
5808 {
5809 if (flags & PERF_EF_START)
5810 task_clock_event_start(event, flags);
5811
5812 return 0;
5813 }
5814
5815 static void task_clock_event_del(struct perf_event *event, int flags)
5816 {
5817 task_clock_event_stop(event, PERF_EF_UPDATE);
5818 }
5819
5820 static void task_clock_event_read(struct perf_event *event)
5821 {
5822 u64 now = perf_clock();
5823 u64 delta = now - event->ctx->timestamp;
5824 u64 time = event->ctx->time + delta;
5825
5826 task_clock_event_update(event, time);
5827 }
5828
5829 static int task_clock_event_init(struct perf_event *event)
5830 {
5831 if (event->attr.type != PERF_TYPE_SOFTWARE)
5832 return -ENOENT;
5833
5834 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5835 return -ENOENT;
5836
5837 perf_swevent_init_hrtimer(event);
5838
5839 return 0;
5840 }
5841
5842 static struct pmu perf_task_clock = {
5843 .task_ctx_nr = perf_sw_context,
5844
5845 .event_init = task_clock_event_init,
5846 .add = task_clock_event_add,
5847 .del = task_clock_event_del,
5848 .start = task_clock_event_start,
5849 .stop = task_clock_event_stop,
5850 .read = task_clock_event_read,
5851 };
5852
5853 static void perf_pmu_nop_void(struct pmu *pmu)
5854 {
5855 }
5856
5857 static int perf_pmu_nop_int(struct pmu *pmu)
5858 {
5859 return 0;
5860 }
5861
5862 static void perf_pmu_start_txn(struct pmu *pmu)
5863 {
5864 perf_pmu_disable(pmu);
5865 }
5866
5867 static int perf_pmu_commit_txn(struct pmu *pmu)
5868 {
5869 perf_pmu_enable(pmu);
5870 return 0;
5871 }
5872
5873 static void perf_pmu_cancel_txn(struct pmu *pmu)
5874 {
5875 perf_pmu_enable(pmu);
5876 }
5877
5878 /*
5879 * Ensures all contexts with the same task_ctx_nr have the same
5880 * pmu_cpu_context too.
5881 */
5882 static void *find_pmu_context(int ctxn)
5883 {
5884 struct pmu *pmu;
5885
5886 if (ctxn < 0)
5887 return NULL;
5888
5889 list_for_each_entry(pmu, &pmus, entry) {
5890 if (pmu->task_ctx_nr == ctxn)
5891 return pmu->pmu_cpu_context;
5892 }
5893
5894 return NULL;
5895 }
5896
5897 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5898 {
5899 int cpu;
5900
5901 for_each_possible_cpu(cpu) {
5902 struct perf_cpu_context *cpuctx;
5903
5904 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5905
5906 if (cpuctx->active_pmu == old_pmu)
5907 cpuctx->active_pmu = pmu;
5908 }
5909 }
5910
5911 static void free_pmu_context(struct pmu *pmu)
5912 {
5913 struct pmu *i;
5914
5915 mutex_lock(&pmus_lock);
5916 /*
5917 * Like a real lame refcount.
5918 */
5919 list_for_each_entry(i, &pmus, entry) {
5920 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5921 update_pmu_context(i, pmu);
5922 goto out;
5923 }
5924 }
5925
5926 free_percpu(pmu->pmu_cpu_context);
5927 out:
5928 mutex_unlock(&pmus_lock);
5929 }
5930 static struct idr pmu_idr;
5931
5932 static ssize_t
5933 type_show(struct device *dev, struct device_attribute *attr, char *page)
5934 {
5935 struct pmu *pmu = dev_get_drvdata(dev);
5936
5937 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5938 }
5939
5940 static struct device_attribute pmu_dev_attrs[] = {
5941 __ATTR_RO(type),
5942 __ATTR_NULL,
5943 };
5944
5945 static int pmu_bus_running;
5946 static struct bus_type pmu_bus = {
5947 .name = "event_source",
5948 .dev_attrs = pmu_dev_attrs,
5949 };
5950
5951 static void pmu_dev_release(struct device *dev)
5952 {
5953 kfree(dev);
5954 }
5955
5956 static int pmu_dev_alloc(struct pmu *pmu)
5957 {
5958 int ret = -ENOMEM;
5959
5960 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5961 if (!pmu->dev)
5962 goto out;
5963
5964 device_initialize(pmu->dev);
5965 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5966 if (ret)
5967 goto free_dev;
5968
5969 dev_set_drvdata(pmu->dev, pmu);
5970 pmu->dev->bus = &pmu_bus;
5971 pmu->dev->release = pmu_dev_release;
5972 ret = device_add(pmu->dev);
5973 if (ret)
5974 goto free_dev;
5975
5976 out:
5977 return ret;
5978
5979 free_dev:
5980 put_device(pmu->dev);
5981 goto out;
5982 }
5983
5984 static struct lock_class_key cpuctx_mutex;
5985
5986 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5987 {
5988 int cpu, ret;
5989
5990 mutex_lock(&pmus_lock);
5991 ret = -ENOMEM;
5992 pmu->pmu_disable_count = alloc_percpu(int);
5993 if (!pmu->pmu_disable_count)
5994 goto unlock;
5995
5996 pmu->type = -1;
5997 if (!name)
5998 goto skip_type;
5999 pmu->name = name;
6000
6001 if (type < 0) {
6002 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
6003 if (!err)
6004 goto free_pdc;
6005
6006 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
6007 if (err) {
6008 ret = err;
6009 goto free_pdc;
6010 }
6011 }
6012 pmu->type = type;
6013
6014 if (pmu_bus_running) {
6015 ret = pmu_dev_alloc(pmu);
6016 if (ret)
6017 goto free_idr;
6018 }
6019
6020 skip_type:
6021 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6022 if (pmu->pmu_cpu_context)
6023 goto got_cpu_context;
6024
6025 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6026 if (!pmu->pmu_cpu_context)
6027 goto free_dev;
6028
6029 for_each_possible_cpu(cpu) {
6030 struct perf_cpu_context *cpuctx;
6031
6032 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6033 __perf_event_init_context(&cpuctx->ctx);
6034 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6035 cpuctx->ctx.type = cpu_context;
6036 cpuctx->ctx.pmu = pmu;
6037 cpuctx->jiffies_interval = 1;
6038 INIT_LIST_HEAD(&cpuctx->rotation_list);
6039 cpuctx->active_pmu = pmu;
6040 }
6041
6042 got_cpu_context:
6043 if (!pmu->start_txn) {
6044 if (pmu->pmu_enable) {
6045 /*
6046 * If we have pmu_enable/pmu_disable calls, install
6047 * transaction stubs that use that to try and batch
6048 * hardware accesses.
6049 */
6050 pmu->start_txn = perf_pmu_start_txn;
6051 pmu->commit_txn = perf_pmu_commit_txn;
6052 pmu->cancel_txn = perf_pmu_cancel_txn;
6053 } else {
6054 pmu->start_txn = perf_pmu_nop_void;
6055 pmu->commit_txn = perf_pmu_nop_int;
6056 pmu->cancel_txn = perf_pmu_nop_void;
6057 }
6058 }
6059
6060 if (!pmu->pmu_enable) {
6061 pmu->pmu_enable = perf_pmu_nop_void;
6062 pmu->pmu_disable = perf_pmu_nop_void;
6063 }
6064
6065 list_add_rcu(&pmu->entry, &pmus);
6066 ret = 0;
6067 unlock:
6068 mutex_unlock(&pmus_lock);
6069
6070 return ret;
6071
6072 free_dev:
6073 device_del(pmu->dev);
6074 put_device(pmu->dev);
6075
6076 free_idr:
6077 if (pmu->type >= PERF_TYPE_MAX)
6078 idr_remove(&pmu_idr, pmu->type);
6079
6080 free_pdc:
6081 free_percpu(pmu->pmu_disable_count);
6082 goto unlock;
6083 }
6084
6085 void perf_pmu_unregister(struct pmu *pmu)
6086 {
6087 mutex_lock(&pmus_lock);
6088 list_del_rcu(&pmu->entry);
6089 mutex_unlock(&pmus_lock);
6090
6091 /*
6092 * We dereference the pmu list under both SRCU and regular RCU, so
6093 * synchronize against both of those.
6094 */
6095 synchronize_srcu(&pmus_srcu);
6096 synchronize_rcu();
6097
6098 free_percpu(pmu->pmu_disable_count);
6099 if (pmu->type >= PERF_TYPE_MAX)
6100 idr_remove(&pmu_idr, pmu->type);
6101 device_del(pmu->dev);
6102 put_device(pmu->dev);
6103 free_pmu_context(pmu);
6104 }
6105
6106 struct pmu *perf_init_event(struct perf_event *event)
6107 {
6108 struct pmu *pmu = NULL;
6109 int idx;
6110 int ret;
6111
6112 idx = srcu_read_lock(&pmus_srcu);
6113
6114 rcu_read_lock();
6115 pmu = idr_find(&pmu_idr, event->attr.type);
6116 rcu_read_unlock();
6117 if (pmu) {
6118 ret = pmu->event_init(event);
6119 if (ret)
6120 pmu = ERR_PTR(ret);
6121 goto unlock;
6122 }
6123
6124 list_for_each_entry_rcu(pmu, &pmus, entry) {
6125 ret = pmu->event_init(event);
6126 if (!ret)
6127 goto unlock;
6128
6129 if (ret != -ENOENT) {
6130 pmu = ERR_PTR(ret);
6131 goto unlock;
6132 }
6133 }
6134 pmu = ERR_PTR(-ENOENT);
6135 unlock:
6136 srcu_read_unlock(&pmus_srcu, idx);
6137
6138 return pmu;
6139 }
6140
6141 /*
6142 * Allocate and initialize a event structure
6143 */
6144 static struct perf_event *
6145 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6146 struct task_struct *task,
6147 struct perf_event *group_leader,
6148 struct perf_event *parent_event,
6149 perf_overflow_handler_t overflow_handler)
6150 {
6151 struct pmu *pmu;
6152 struct perf_event *event;
6153 struct hw_perf_event *hwc;
6154 long err;
6155
6156 if ((unsigned)cpu >= nr_cpu_ids) {
6157 if (!task || cpu != -1)
6158 return ERR_PTR(-EINVAL);
6159 }
6160
6161 event = kzalloc(sizeof(*event), GFP_KERNEL);
6162 if (!event)
6163 return ERR_PTR(-ENOMEM);
6164
6165 /*
6166 * Single events are their own group leaders, with an
6167 * empty sibling list:
6168 */
6169 if (!group_leader)
6170 group_leader = event;
6171
6172 mutex_init(&event->child_mutex);
6173 INIT_LIST_HEAD(&event->child_list);
6174
6175 INIT_LIST_HEAD(&event->group_entry);
6176 INIT_LIST_HEAD(&event->event_entry);
6177 INIT_LIST_HEAD(&event->sibling_list);
6178 init_waitqueue_head(&event->waitq);
6179 init_irq_work(&event->pending, perf_pending_event);
6180
6181 mutex_init(&event->mmap_mutex);
6182
6183 event->cpu = cpu;
6184 event->attr = *attr;
6185 event->group_leader = group_leader;
6186 event->pmu = NULL;
6187 event->oncpu = -1;
6188
6189 event->parent = parent_event;
6190
6191 event->ns = get_pid_ns(current->nsproxy->pid_ns);
6192 event->id = atomic64_inc_return(&perf_event_id);
6193
6194 event->state = PERF_EVENT_STATE_INACTIVE;
6195
6196 if (task) {
6197 event->attach_state = PERF_ATTACH_TASK;
6198 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6199 /*
6200 * hw_breakpoint is a bit difficult here..
6201 */
6202 if (attr->type == PERF_TYPE_BREAKPOINT)
6203 event->hw.bp_target = task;
6204 #endif
6205 }
6206
6207 if (!overflow_handler && parent_event)
6208 overflow_handler = parent_event->overflow_handler;
6209
6210 event->overflow_handler = overflow_handler;
6211
6212 if (attr->disabled)
6213 event->state = PERF_EVENT_STATE_OFF;
6214
6215 pmu = NULL;
6216
6217 hwc = &event->hw;
6218 hwc->sample_period = attr->sample_period;
6219 if (attr->freq && attr->sample_freq)
6220 hwc->sample_period = 1;
6221 hwc->last_period = hwc->sample_period;
6222
6223 local64_set(&hwc->period_left, hwc->sample_period);
6224
6225 /*
6226 * we currently do not support PERF_FORMAT_GROUP on inherited events
6227 */
6228 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6229 goto done;
6230
6231 pmu = perf_init_event(event);
6232
6233 done:
6234 err = 0;
6235 if (!pmu)
6236 err = -EINVAL;
6237 else if (IS_ERR(pmu))
6238 err = PTR_ERR(pmu);
6239
6240 if (err) {
6241 if (event->ns)
6242 put_pid_ns(event->ns);
6243 kfree(event);
6244 return ERR_PTR(err);
6245 }
6246
6247 event->pmu = pmu;
6248
6249 if (!event->parent) {
6250 if (event->attach_state & PERF_ATTACH_TASK)
6251 jump_label_inc(&perf_sched_events);
6252 if (event->attr.mmap || event->attr.mmap_data)
6253 atomic_inc(&nr_mmap_events);
6254 if (event->attr.comm)
6255 atomic_inc(&nr_comm_events);
6256 if (event->attr.task)
6257 atomic_inc(&nr_task_events);
6258 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6259 err = get_callchain_buffers();
6260 if (err) {
6261 free_event(event);
6262 return ERR_PTR(err);
6263 }
6264 }
6265 }
6266
6267 return event;
6268 }
6269
6270 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6271 struct perf_event_attr *attr)
6272 {
6273 u32 size;
6274 int ret;
6275
6276 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6277 return -EFAULT;
6278
6279 /*
6280 * zero the full structure, so that a short copy will be nice.
6281 */
6282 memset(attr, 0, sizeof(*attr));
6283
6284 ret = get_user(size, &uattr->size);
6285 if (ret)
6286 return ret;
6287
6288 if (size > PAGE_SIZE) /* silly large */
6289 goto err_size;
6290
6291 if (!size) /* abi compat */
6292 size = PERF_ATTR_SIZE_VER0;
6293
6294 if (size < PERF_ATTR_SIZE_VER0)
6295 goto err_size;
6296
6297 /*
6298 * If we're handed a bigger struct than we know of,
6299 * ensure all the unknown bits are 0 - i.e. new
6300 * user-space does not rely on any kernel feature
6301 * extensions we dont know about yet.
6302 */
6303 if (size > sizeof(*attr)) {
6304 unsigned char __user *addr;
6305 unsigned char __user *end;
6306 unsigned char val;
6307
6308 addr = (void __user *)uattr + sizeof(*attr);
6309 end = (void __user *)uattr + size;
6310
6311 for (; addr < end; addr++) {
6312 ret = get_user(val, addr);
6313 if (ret)
6314 return ret;
6315 if (val)
6316 goto err_size;
6317 }
6318 size = sizeof(*attr);
6319 }
6320
6321 ret = copy_from_user(attr, uattr, size);
6322 if (ret)
6323 return -EFAULT;
6324
6325 /*
6326 * If the type exists, the corresponding creation will verify
6327 * the attr->config.
6328 */
6329 if (attr->type >= PERF_TYPE_MAX)
6330 return -EINVAL;
6331
6332 if (attr->__reserved_1)
6333 return -EINVAL;
6334
6335 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6336 return -EINVAL;
6337
6338 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6339 return -EINVAL;
6340
6341 out:
6342 return ret;
6343
6344 err_size:
6345 put_user(sizeof(*attr), &uattr->size);
6346 ret = -E2BIG;
6347 goto out;
6348 }
6349
6350 static int
6351 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6352 {
6353 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6354 int ret = -EINVAL;
6355
6356 if (!output_event)
6357 goto set;
6358
6359 /* don't allow circular references */
6360 if (event == output_event)
6361 goto out;
6362
6363 /*
6364 * Don't allow cross-cpu buffers
6365 */
6366 if (output_event->cpu != event->cpu)
6367 goto out;
6368
6369 /*
6370 * If its not a per-cpu buffer, it must be the same task.
6371 */
6372 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6373 goto out;
6374
6375 set:
6376 mutex_lock(&event->mmap_mutex);
6377 /* Can't redirect output if we've got an active mmap() */
6378 if (atomic_read(&event->mmap_count))
6379 goto unlock;
6380
6381 if (output_event) {
6382 /* get the buffer we want to redirect to */
6383 buffer = perf_buffer_get(output_event);
6384 if (!buffer)
6385 goto unlock;
6386 }
6387
6388 old_buffer = event->buffer;
6389 rcu_assign_pointer(event->buffer, buffer);
6390 ret = 0;
6391 unlock:
6392 mutex_unlock(&event->mmap_mutex);
6393
6394 if (old_buffer)
6395 perf_buffer_put(old_buffer);
6396 out:
6397 return ret;
6398 }
6399
6400 /**
6401 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6402 *
6403 * @attr_uptr: event_id type attributes for monitoring/sampling
6404 * @pid: target pid
6405 * @cpu: target cpu
6406 * @group_fd: group leader event fd
6407 */
6408 SYSCALL_DEFINE5(perf_event_open,
6409 struct perf_event_attr __user *, attr_uptr,
6410 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6411 {
6412 struct perf_event *group_leader = NULL, *output_event = NULL;
6413 struct perf_event *event, *sibling;
6414 struct perf_event_attr attr;
6415 struct perf_event_context *ctx;
6416 struct file *event_file = NULL;
6417 struct file *group_file = NULL;
6418 struct task_struct *task = NULL;
6419 struct pmu *pmu;
6420 int event_fd;
6421 int move_group = 0;
6422 int fput_needed = 0;
6423 int err;
6424
6425 /* for future expandability... */
6426 if (flags & ~PERF_FLAG_ALL)
6427 return -EINVAL;
6428
6429 err = perf_copy_attr(attr_uptr, &attr);
6430 if (err)
6431 return err;
6432
6433 if (!attr.exclude_kernel) {
6434 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6435 return -EACCES;
6436 }
6437
6438 if (attr.freq) {
6439 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6440 return -EINVAL;
6441 }
6442
6443 /*
6444 * In cgroup mode, the pid argument is used to pass the fd
6445 * opened to the cgroup directory in cgroupfs. The cpu argument
6446 * designates the cpu on which to monitor threads from that
6447 * cgroup.
6448 */
6449 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6450 return -EINVAL;
6451
6452 event_fd = get_unused_fd_flags(O_RDWR);
6453 if (event_fd < 0)
6454 return event_fd;
6455
6456 if (group_fd != -1) {
6457 group_leader = perf_fget_light(group_fd, &fput_needed);
6458 if (IS_ERR(group_leader)) {
6459 err = PTR_ERR(group_leader);
6460 goto err_fd;
6461 }
6462 group_file = group_leader->filp;
6463 if (flags & PERF_FLAG_FD_OUTPUT)
6464 output_event = group_leader;
6465 if (flags & PERF_FLAG_FD_NO_GROUP)
6466 group_leader = NULL;
6467 }
6468
6469 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6470 task = find_lively_task_by_vpid(pid);
6471 if (IS_ERR(task)) {
6472 err = PTR_ERR(task);
6473 goto err_group_fd;
6474 }
6475 }
6476
6477 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6478 if (IS_ERR(event)) {
6479 err = PTR_ERR(event);
6480 goto err_task;
6481 }
6482
6483 if (flags & PERF_FLAG_PID_CGROUP) {
6484 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6485 if (err)
6486 goto err_alloc;
6487 /*
6488 * one more event:
6489 * - that has cgroup constraint on event->cpu
6490 * - that may need work on context switch
6491 */
6492 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6493 jump_label_inc(&perf_sched_events);
6494 }
6495
6496 /*
6497 * Special case software events and allow them to be part of
6498 * any hardware group.
6499 */
6500 pmu = event->pmu;
6501
6502 if (group_leader &&
6503 (is_software_event(event) != is_software_event(group_leader))) {
6504 if (is_software_event(event)) {
6505 /*
6506 * If event and group_leader are not both a software
6507 * event, and event is, then group leader is not.
6508 *
6509 * Allow the addition of software events to !software
6510 * groups, this is safe because software events never
6511 * fail to schedule.
6512 */
6513 pmu = group_leader->pmu;
6514 } else if (is_software_event(group_leader) &&
6515 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6516 /*
6517 * In case the group is a pure software group, and we
6518 * try to add a hardware event, move the whole group to
6519 * the hardware context.
6520 */
6521 move_group = 1;
6522 }
6523 }
6524
6525 /*
6526 * Get the target context (task or percpu):
6527 */
6528 ctx = find_get_context(pmu, task, cpu);
6529 if (IS_ERR(ctx)) {
6530 err = PTR_ERR(ctx);
6531 goto err_alloc;
6532 }
6533
6534 if (task) {
6535 put_task_struct(task);
6536 task = NULL;
6537 }
6538
6539 /*
6540 * Look up the group leader (we will attach this event to it):
6541 */
6542 if (group_leader) {
6543 err = -EINVAL;
6544
6545 /*
6546 * Do not allow a recursive hierarchy (this new sibling
6547 * becoming part of another group-sibling):
6548 */
6549 if (group_leader->group_leader != group_leader)
6550 goto err_context;
6551 /*
6552 * Do not allow to attach to a group in a different
6553 * task or CPU context:
6554 */
6555 if (move_group) {
6556 if (group_leader->ctx->type != ctx->type)
6557 goto err_context;
6558 } else {
6559 if (group_leader->ctx != ctx)
6560 goto err_context;
6561 }
6562
6563 /*
6564 * Only a group leader can be exclusive or pinned
6565 */
6566 if (attr.exclusive || attr.pinned)
6567 goto err_context;
6568 }
6569
6570 if (output_event) {
6571 err = perf_event_set_output(event, output_event);
6572 if (err)
6573 goto err_context;
6574 }
6575
6576 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6577 if (IS_ERR(event_file)) {
6578 err = PTR_ERR(event_file);
6579 goto err_context;
6580 }
6581
6582 if (move_group) {
6583 struct perf_event_context *gctx = group_leader->ctx;
6584
6585 mutex_lock(&gctx->mutex);
6586 perf_remove_from_context(group_leader);
6587 list_for_each_entry(sibling, &group_leader->sibling_list,
6588 group_entry) {
6589 perf_remove_from_context(sibling);
6590 put_ctx(gctx);
6591 }
6592 mutex_unlock(&gctx->mutex);
6593 put_ctx(gctx);
6594 }
6595
6596 event->filp = event_file;
6597 WARN_ON_ONCE(ctx->parent_ctx);
6598 mutex_lock(&ctx->mutex);
6599
6600 if (move_group) {
6601 perf_install_in_context(ctx, group_leader, cpu);
6602 get_ctx(ctx);
6603 list_for_each_entry(sibling, &group_leader->sibling_list,
6604 group_entry) {
6605 perf_install_in_context(ctx, sibling, cpu);
6606 get_ctx(ctx);
6607 }
6608 }
6609
6610 perf_install_in_context(ctx, event, cpu);
6611 ++ctx->generation;
6612 perf_unpin_context(ctx);
6613 mutex_unlock(&ctx->mutex);
6614
6615 event->owner = current;
6616
6617 mutex_lock(&current->perf_event_mutex);
6618 list_add_tail(&event->owner_entry, &current->perf_event_list);
6619 mutex_unlock(&current->perf_event_mutex);
6620
6621 /*
6622 * Precalculate sample_data sizes
6623 */
6624 perf_event__header_size(event);
6625 perf_event__id_header_size(event);
6626
6627 /*
6628 * Drop the reference on the group_event after placing the
6629 * new event on the sibling_list. This ensures destruction
6630 * of the group leader will find the pointer to itself in
6631 * perf_group_detach().
6632 */
6633 fput_light(group_file, fput_needed);
6634 fd_install(event_fd, event_file);
6635 return event_fd;
6636
6637 err_context:
6638 perf_unpin_context(ctx);
6639 put_ctx(ctx);
6640 err_alloc:
6641 free_event(event);
6642 err_task:
6643 if (task)
6644 put_task_struct(task);
6645 err_group_fd:
6646 fput_light(group_file, fput_needed);
6647 err_fd:
6648 put_unused_fd(event_fd);
6649 return err;
6650 }
6651
6652 /**
6653 * perf_event_create_kernel_counter
6654 *
6655 * @attr: attributes of the counter to create
6656 * @cpu: cpu in which the counter is bound
6657 * @task: task to profile (NULL for percpu)
6658 */
6659 struct perf_event *
6660 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6661 struct task_struct *task,
6662 perf_overflow_handler_t overflow_handler)
6663 {
6664 struct perf_event_context *ctx;
6665 struct perf_event *event;
6666 int err;
6667
6668 /*
6669 * Get the target context (task or percpu):
6670 */
6671
6672 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6673 if (IS_ERR(event)) {
6674 err = PTR_ERR(event);
6675 goto err;
6676 }
6677
6678 ctx = find_get_context(event->pmu, task, cpu);
6679 if (IS_ERR(ctx)) {
6680 err = PTR_ERR(ctx);
6681 goto err_free;
6682 }
6683
6684 event->filp = NULL;
6685 WARN_ON_ONCE(ctx->parent_ctx);
6686 mutex_lock(&ctx->mutex);
6687 perf_install_in_context(ctx, event, cpu);
6688 ++ctx->generation;
6689 perf_unpin_context(ctx);
6690 mutex_unlock(&ctx->mutex);
6691
6692 return event;
6693
6694 err_free:
6695 free_event(event);
6696 err:
6697 return ERR_PTR(err);
6698 }
6699 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6700
6701 static void sync_child_event(struct perf_event *child_event,
6702 struct task_struct *child)
6703 {
6704 struct perf_event *parent_event = child_event->parent;
6705 u64 child_val;
6706
6707 if (child_event->attr.inherit_stat)
6708 perf_event_read_event(child_event, child);
6709
6710 child_val = perf_event_count(child_event);
6711
6712 /*
6713 * Add back the child's count to the parent's count:
6714 */
6715 atomic64_add(child_val, &parent_event->child_count);
6716 atomic64_add(child_event->total_time_enabled,
6717 &parent_event->child_total_time_enabled);
6718 atomic64_add(child_event->total_time_running,
6719 &parent_event->child_total_time_running);
6720
6721 /*
6722 * Remove this event from the parent's list
6723 */
6724 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6725 mutex_lock(&parent_event->child_mutex);
6726 list_del_init(&child_event->child_list);
6727 mutex_unlock(&parent_event->child_mutex);
6728
6729 /*
6730 * Release the parent event, if this was the last
6731 * reference to it.
6732 */
6733 fput(parent_event->filp);
6734 }
6735
6736 static void
6737 __perf_event_exit_task(struct perf_event *child_event,
6738 struct perf_event_context *child_ctx,
6739 struct task_struct *child)
6740 {
6741 if (child_event->parent) {
6742 raw_spin_lock_irq(&child_ctx->lock);
6743 perf_group_detach(child_event);
6744 raw_spin_unlock_irq(&child_ctx->lock);
6745 }
6746
6747 perf_remove_from_context(child_event);
6748
6749 /*
6750 * It can happen that the parent exits first, and has events
6751 * that are still around due to the child reference. These
6752 * events need to be zapped.
6753 */
6754 if (child_event->parent) {
6755 sync_child_event(child_event, child);
6756 free_event(child_event);
6757 }
6758 }
6759
6760 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6761 {
6762 struct perf_event *child_event, *tmp;
6763 struct perf_event_context *child_ctx;
6764 unsigned long flags;
6765
6766 if (likely(!child->perf_event_ctxp[ctxn])) {
6767 perf_event_task(child, NULL, 0);
6768 return;
6769 }
6770
6771 local_irq_save(flags);
6772 /*
6773 * We can't reschedule here because interrupts are disabled,
6774 * and either child is current or it is a task that can't be
6775 * scheduled, so we are now safe from rescheduling changing
6776 * our context.
6777 */
6778 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6779 task_ctx_sched_out(child_ctx, EVENT_ALL);
6780
6781 /*
6782 * Take the context lock here so that if find_get_context is
6783 * reading child->perf_event_ctxp, we wait until it has
6784 * incremented the context's refcount before we do put_ctx below.
6785 */
6786 raw_spin_lock(&child_ctx->lock);
6787 child->perf_event_ctxp[ctxn] = NULL;
6788 /*
6789 * If this context is a clone; unclone it so it can't get
6790 * swapped to another process while we're removing all
6791 * the events from it.
6792 */
6793 unclone_ctx(child_ctx);
6794 update_context_time(child_ctx);
6795 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6796
6797 /*
6798 * Report the task dead after unscheduling the events so that we
6799 * won't get any samples after PERF_RECORD_EXIT. We can however still
6800 * get a few PERF_RECORD_READ events.
6801 */
6802 perf_event_task(child, child_ctx, 0);
6803
6804 /*
6805 * We can recurse on the same lock type through:
6806 *
6807 * __perf_event_exit_task()
6808 * sync_child_event()
6809 * fput(parent_event->filp)
6810 * perf_release()
6811 * mutex_lock(&ctx->mutex)
6812 *
6813 * But since its the parent context it won't be the same instance.
6814 */
6815 mutex_lock(&child_ctx->mutex);
6816
6817 again:
6818 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6819 group_entry)
6820 __perf_event_exit_task(child_event, child_ctx, child);
6821
6822 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6823 group_entry)
6824 __perf_event_exit_task(child_event, child_ctx, child);
6825
6826 /*
6827 * If the last event was a group event, it will have appended all
6828 * its siblings to the list, but we obtained 'tmp' before that which
6829 * will still point to the list head terminating the iteration.
6830 */
6831 if (!list_empty(&child_ctx->pinned_groups) ||
6832 !list_empty(&child_ctx->flexible_groups))
6833 goto again;
6834
6835 mutex_unlock(&child_ctx->mutex);
6836
6837 put_ctx(child_ctx);
6838 }
6839
6840 /*
6841 * When a child task exits, feed back event values to parent events.
6842 */
6843 void perf_event_exit_task(struct task_struct *child)
6844 {
6845 struct perf_event *event, *tmp;
6846 int ctxn;
6847
6848 mutex_lock(&child->perf_event_mutex);
6849 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6850 owner_entry) {
6851 list_del_init(&event->owner_entry);
6852
6853 /*
6854 * Ensure the list deletion is visible before we clear
6855 * the owner, closes a race against perf_release() where
6856 * we need to serialize on the owner->perf_event_mutex.
6857 */
6858 smp_wmb();
6859 event->owner = NULL;
6860 }
6861 mutex_unlock(&child->perf_event_mutex);
6862
6863 for_each_task_context_nr(ctxn)
6864 perf_event_exit_task_context(child, ctxn);
6865 }
6866
6867 static void perf_free_event(struct perf_event *event,
6868 struct perf_event_context *ctx)
6869 {
6870 struct perf_event *parent = event->parent;
6871
6872 if (WARN_ON_ONCE(!parent))
6873 return;
6874
6875 mutex_lock(&parent->child_mutex);
6876 list_del_init(&event->child_list);
6877 mutex_unlock(&parent->child_mutex);
6878
6879 fput(parent->filp);
6880
6881 perf_group_detach(event);
6882 list_del_event(event, ctx);
6883 free_event(event);
6884 }
6885
6886 /*
6887 * free an unexposed, unused context as created by inheritance by
6888 * perf_event_init_task below, used by fork() in case of fail.
6889 */
6890 void perf_event_free_task(struct task_struct *task)
6891 {
6892 struct perf_event_context *ctx;
6893 struct perf_event *event, *tmp;
6894 int ctxn;
6895
6896 for_each_task_context_nr(ctxn) {
6897 ctx = task->perf_event_ctxp[ctxn];
6898 if (!ctx)
6899 continue;
6900
6901 mutex_lock(&ctx->mutex);
6902 again:
6903 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6904 group_entry)
6905 perf_free_event(event, ctx);
6906
6907 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6908 group_entry)
6909 perf_free_event(event, ctx);
6910
6911 if (!list_empty(&ctx->pinned_groups) ||
6912 !list_empty(&ctx->flexible_groups))
6913 goto again;
6914
6915 mutex_unlock(&ctx->mutex);
6916
6917 put_ctx(ctx);
6918 }
6919 }
6920
6921 void perf_event_delayed_put(struct task_struct *task)
6922 {
6923 int ctxn;
6924
6925 for_each_task_context_nr(ctxn)
6926 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6927 }
6928
6929 /*
6930 * inherit a event from parent task to child task:
6931 */
6932 static struct perf_event *
6933 inherit_event(struct perf_event *parent_event,
6934 struct task_struct *parent,
6935 struct perf_event_context *parent_ctx,
6936 struct task_struct *child,
6937 struct perf_event *group_leader,
6938 struct perf_event_context *child_ctx)
6939 {
6940 struct perf_event *child_event;
6941 unsigned long flags;
6942
6943 /*
6944 * Instead of creating recursive hierarchies of events,
6945 * we link inherited events back to the original parent,
6946 * which has a filp for sure, which we use as the reference
6947 * count:
6948 */
6949 if (parent_event->parent)
6950 parent_event = parent_event->parent;
6951
6952 child_event = perf_event_alloc(&parent_event->attr,
6953 parent_event->cpu,
6954 child,
6955 group_leader, parent_event,
6956 NULL);
6957 if (IS_ERR(child_event))
6958 return child_event;
6959 get_ctx(child_ctx);
6960
6961 /*
6962 * Make the child state follow the state of the parent event,
6963 * not its attr.disabled bit. We hold the parent's mutex,
6964 * so we won't race with perf_event_{en, dis}able_family.
6965 */
6966 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6967 child_event->state = PERF_EVENT_STATE_INACTIVE;
6968 else
6969 child_event->state = PERF_EVENT_STATE_OFF;
6970
6971 if (parent_event->attr.freq) {
6972 u64 sample_period = parent_event->hw.sample_period;
6973 struct hw_perf_event *hwc = &child_event->hw;
6974
6975 hwc->sample_period = sample_period;
6976 hwc->last_period = sample_period;
6977
6978 local64_set(&hwc->period_left, sample_period);
6979 }
6980
6981 child_event->ctx = child_ctx;
6982 child_event->overflow_handler = parent_event->overflow_handler;
6983
6984 /*
6985 * Precalculate sample_data sizes
6986 */
6987 perf_event__header_size(child_event);
6988 perf_event__id_header_size(child_event);
6989
6990 /*
6991 * Link it up in the child's context:
6992 */
6993 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6994 add_event_to_ctx(child_event, child_ctx);
6995 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6996
6997 /*
6998 * Get a reference to the parent filp - we will fput it
6999 * when the child event exits. This is safe to do because
7000 * we are in the parent and we know that the filp still
7001 * exists and has a nonzero count:
7002 */
7003 atomic_long_inc(&parent_event->filp->f_count);
7004
7005 /*
7006 * Link this into the parent event's child list
7007 */
7008 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7009 mutex_lock(&parent_event->child_mutex);
7010 list_add_tail(&child_event->child_list, &parent_event->child_list);
7011 mutex_unlock(&parent_event->child_mutex);
7012
7013 return child_event;
7014 }
7015
7016 static int inherit_group(struct perf_event *parent_event,
7017 struct task_struct *parent,
7018 struct perf_event_context *parent_ctx,
7019 struct task_struct *child,
7020 struct perf_event_context *child_ctx)
7021 {
7022 struct perf_event *leader;
7023 struct perf_event *sub;
7024 struct perf_event *child_ctr;
7025
7026 leader = inherit_event(parent_event, parent, parent_ctx,
7027 child, NULL, child_ctx);
7028 if (IS_ERR(leader))
7029 return PTR_ERR(leader);
7030 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7031 child_ctr = inherit_event(sub, parent, parent_ctx,
7032 child, leader, child_ctx);
7033 if (IS_ERR(child_ctr))
7034 return PTR_ERR(child_ctr);
7035 }
7036 return 0;
7037 }
7038
7039 static int
7040 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7041 struct perf_event_context *parent_ctx,
7042 struct task_struct *child, int ctxn,
7043 int *inherited_all)
7044 {
7045 int ret;
7046 struct perf_event_context *child_ctx;
7047
7048 if (!event->attr.inherit) {
7049 *inherited_all = 0;
7050 return 0;
7051 }
7052
7053 child_ctx = child->perf_event_ctxp[ctxn];
7054 if (!child_ctx) {
7055 /*
7056 * This is executed from the parent task context, so
7057 * inherit events that have been marked for cloning.
7058 * First allocate and initialize a context for the
7059 * child.
7060 */
7061
7062 child_ctx = alloc_perf_context(event->pmu, child);
7063 if (!child_ctx)
7064 return -ENOMEM;
7065
7066 child->perf_event_ctxp[ctxn] = child_ctx;
7067 }
7068
7069 ret = inherit_group(event, parent, parent_ctx,
7070 child, child_ctx);
7071
7072 if (ret)
7073 *inherited_all = 0;
7074
7075 return ret;
7076 }
7077
7078 /*
7079 * Initialize the perf_event context in task_struct
7080 */
7081 int perf_event_init_context(struct task_struct *child, int ctxn)
7082 {
7083 struct perf_event_context *child_ctx, *parent_ctx;
7084 struct perf_event_context *cloned_ctx;
7085 struct perf_event *event;
7086 struct task_struct *parent = current;
7087 int inherited_all = 1;
7088 unsigned long flags;
7089 int ret = 0;
7090
7091 if (likely(!parent->perf_event_ctxp[ctxn]))
7092 return 0;
7093
7094 /*
7095 * If the parent's context is a clone, pin it so it won't get
7096 * swapped under us.
7097 */
7098 parent_ctx = perf_pin_task_context(parent, ctxn);
7099
7100 /*
7101 * No need to check if parent_ctx != NULL here; since we saw
7102 * it non-NULL earlier, the only reason for it to become NULL
7103 * is if we exit, and since we're currently in the middle of
7104 * a fork we can't be exiting at the same time.
7105 */
7106
7107 /*
7108 * Lock the parent list. No need to lock the child - not PID
7109 * hashed yet and not running, so nobody can access it.
7110 */
7111 mutex_lock(&parent_ctx->mutex);
7112
7113 /*
7114 * We dont have to disable NMIs - we are only looking at
7115 * the list, not manipulating it:
7116 */
7117 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7118 ret = inherit_task_group(event, parent, parent_ctx,
7119 child, ctxn, &inherited_all);
7120 if (ret)
7121 break;
7122 }
7123
7124 /*
7125 * We can't hold ctx->lock when iterating the ->flexible_group list due
7126 * to allocations, but we need to prevent rotation because
7127 * rotate_ctx() will change the list from interrupt context.
7128 */
7129 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7130 parent_ctx->rotate_disable = 1;
7131 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7132
7133 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7134 ret = inherit_task_group(event, parent, parent_ctx,
7135 child, ctxn, &inherited_all);
7136 if (ret)
7137 break;
7138 }
7139
7140 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7141 parent_ctx->rotate_disable = 0;
7142
7143 child_ctx = child->perf_event_ctxp[ctxn];
7144
7145 if (child_ctx && inherited_all) {
7146 /*
7147 * Mark the child context as a clone of the parent
7148 * context, or of whatever the parent is a clone of.
7149 *
7150 * Note that if the parent is a clone, the holding of
7151 * parent_ctx->lock avoids it from being uncloned.
7152 */
7153 cloned_ctx = parent_ctx->parent_ctx;
7154 if (cloned_ctx) {
7155 child_ctx->parent_ctx = cloned_ctx;
7156 child_ctx->parent_gen = parent_ctx->parent_gen;
7157 } else {
7158 child_ctx->parent_ctx = parent_ctx;
7159 child_ctx->parent_gen = parent_ctx->generation;
7160 }
7161 get_ctx(child_ctx->parent_ctx);
7162 }
7163
7164 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7165 mutex_unlock(&parent_ctx->mutex);
7166
7167 perf_unpin_context(parent_ctx);
7168 put_ctx(parent_ctx);
7169
7170 return ret;
7171 }
7172
7173 /*
7174 * Initialize the perf_event context in task_struct
7175 */
7176 int perf_event_init_task(struct task_struct *child)
7177 {
7178 int ctxn, ret;
7179
7180 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7181 mutex_init(&child->perf_event_mutex);
7182 INIT_LIST_HEAD(&child->perf_event_list);
7183
7184 for_each_task_context_nr(ctxn) {
7185 ret = perf_event_init_context(child, ctxn);
7186 if (ret)
7187 return ret;
7188 }
7189
7190 return 0;
7191 }
7192
7193 static void __init perf_event_init_all_cpus(void)
7194 {
7195 struct swevent_htable *swhash;
7196 int cpu;
7197
7198 for_each_possible_cpu(cpu) {
7199 swhash = &per_cpu(swevent_htable, cpu);
7200 mutex_init(&swhash->hlist_mutex);
7201 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7202 }
7203 }
7204
7205 static void __cpuinit perf_event_init_cpu(int cpu)
7206 {
7207 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7208
7209 mutex_lock(&swhash->hlist_mutex);
7210 if (swhash->hlist_refcount > 0) {
7211 struct swevent_hlist *hlist;
7212
7213 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7214 WARN_ON(!hlist);
7215 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7216 }
7217 mutex_unlock(&swhash->hlist_mutex);
7218 }
7219
7220 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7221 static void perf_pmu_rotate_stop(struct pmu *pmu)
7222 {
7223 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7224
7225 WARN_ON(!irqs_disabled());
7226
7227 list_del_init(&cpuctx->rotation_list);
7228 }
7229
7230 static void __perf_event_exit_context(void *__info)
7231 {
7232 struct perf_event_context *ctx = __info;
7233 struct perf_event *event, *tmp;
7234
7235 perf_pmu_rotate_stop(ctx->pmu);
7236
7237 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7238 __perf_remove_from_context(event);
7239 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7240 __perf_remove_from_context(event);
7241 }
7242
7243 static void perf_event_exit_cpu_context(int cpu)
7244 {
7245 struct perf_event_context *ctx;
7246 struct pmu *pmu;
7247 int idx;
7248
7249 idx = srcu_read_lock(&pmus_srcu);
7250 list_for_each_entry_rcu(pmu, &pmus, entry) {
7251 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7252
7253 mutex_lock(&ctx->mutex);
7254 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7255 mutex_unlock(&ctx->mutex);
7256 }
7257 srcu_read_unlock(&pmus_srcu, idx);
7258 }
7259
7260 static void perf_event_exit_cpu(int cpu)
7261 {
7262 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7263
7264 mutex_lock(&swhash->hlist_mutex);
7265 swevent_hlist_release(swhash);
7266 mutex_unlock(&swhash->hlist_mutex);
7267
7268 perf_event_exit_cpu_context(cpu);
7269 }
7270 #else
7271 static inline void perf_event_exit_cpu(int cpu) { }
7272 #endif
7273
7274 static int
7275 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7276 {
7277 int cpu;
7278
7279 for_each_online_cpu(cpu)
7280 perf_event_exit_cpu(cpu);
7281
7282 return NOTIFY_OK;
7283 }
7284
7285 /*
7286 * Run the perf reboot notifier at the very last possible moment so that
7287 * the generic watchdog code runs as long as possible.
7288 */
7289 static struct notifier_block perf_reboot_notifier = {
7290 .notifier_call = perf_reboot,
7291 .priority = INT_MIN,
7292 };
7293
7294 static int __cpuinit
7295 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7296 {
7297 unsigned int cpu = (long)hcpu;
7298
7299 switch (action & ~CPU_TASKS_FROZEN) {
7300
7301 case CPU_UP_PREPARE:
7302 case CPU_DOWN_FAILED:
7303 perf_event_init_cpu(cpu);
7304 break;
7305
7306 case CPU_UP_CANCELED:
7307 case CPU_DOWN_PREPARE:
7308 perf_event_exit_cpu(cpu);
7309 break;
7310
7311 default:
7312 break;
7313 }
7314
7315 return NOTIFY_OK;
7316 }
7317
7318 void __init perf_event_init(void)
7319 {
7320 int ret;
7321
7322 idr_init(&pmu_idr);
7323
7324 perf_event_init_all_cpus();
7325 init_srcu_struct(&pmus_srcu);
7326 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7327 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7328 perf_pmu_register(&perf_task_clock, NULL, -1);
7329 perf_tp_register();
7330 perf_cpu_notifier(perf_cpu_notify);
7331 register_reboot_notifier(&perf_reboot_notifier);
7332
7333 ret = init_hw_breakpoint();
7334 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7335 }
7336
7337 static int __init perf_event_sysfs_init(void)
7338 {
7339 struct pmu *pmu;
7340 int ret;
7341
7342 mutex_lock(&pmus_lock);
7343
7344 ret = bus_register(&pmu_bus);
7345 if (ret)
7346 goto unlock;
7347
7348 list_for_each_entry(pmu, &pmus, entry) {
7349 if (!pmu->name || pmu->type < 0)
7350 continue;
7351
7352 ret = pmu_dev_alloc(pmu);
7353 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7354 }
7355 pmu_bus_running = 1;
7356 ret = 0;
7357
7358 unlock:
7359 mutex_unlock(&pmus_lock);
7360
7361 return ret;
7362 }
7363 device_initcall(perf_event_sysfs_init);
7364
7365 #ifdef CONFIG_CGROUP_PERF
7366 static struct cgroup_subsys_state *perf_cgroup_create(
7367 struct cgroup_subsys *ss, struct cgroup *cont)
7368 {
7369 struct perf_cgroup *jc;
7370
7371 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7372 if (!jc)
7373 return ERR_PTR(-ENOMEM);
7374
7375 jc->info = alloc_percpu(struct perf_cgroup_info);
7376 if (!jc->info) {
7377 kfree(jc);
7378 return ERR_PTR(-ENOMEM);
7379 }
7380
7381 return &jc->css;
7382 }
7383
7384 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7385 struct cgroup *cont)
7386 {
7387 struct perf_cgroup *jc;
7388 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7389 struct perf_cgroup, css);
7390 free_percpu(jc->info);
7391 kfree(jc);
7392 }
7393
7394 static int __perf_cgroup_move(void *info)
7395 {
7396 struct task_struct *task = info;
7397 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7398 return 0;
7399 }
7400
7401 static void perf_cgroup_move(struct task_struct *task)
7402 {
7403 task_function_call(task, __perf_cgroup_move, task);
7404 }
7405
7406 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7407 struct cgroup *old_cgrp, struct task_struct *task,
7408 bool threadgroup)
7409 {
7410 perf_cgroup_move(task);
7411 if (threadgroup) {
7412 struct task_struct *c;
7413 rcu_read_lock();
7414 list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
7415 perf_cgroup_move(c);
7416 }
7417 rcu_read_unlock();
7418 }
7419 }
7420
7421 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7422 struct cgroup *old_cgrp, struct task_struct *task)
7423 {
7424 /*
7425 * cgroup_exit() is called in the copy_process() failure path.
7426 * Ignore this case since the task hasn't ran yet, this avoids
7427 * trying to poke a half freed task state from generic code.
7428 */
7429 if (!(task->flags & PF_EXITING))
7430 return;
7431
7432 perf_cgroup_move(task);
7433 }
7434
7435 struct cgroup_subsys perf_subsys = {
7436 .name = "perf_event",
7437 .subsys_id = perf_subsys_id,
7438 .create = perf_cgroup_create,
7439 .destroy = perf_cgroup_destroy,
7440 .exit = perf_cgroup_exit,
7441 .attach = perf_cgroup_attach,
7442 };
7443 #endif /* CONFIG_CGROUP_PERF */