drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / mutex.c
1 /*
2 * kernel/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
18 * Also see Documentation/mutex-design.txt.
19 */
20 #include <linux/mutex.h>
21 #include <linux/sched.h>
22 #include <linux/sched/rt.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/debug_locks.h>
27
28 /*
29 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
30 * which forces all calls into the slowpath:
31 */
32 #ifdef CONFIG_DEBUG_MUTEXES
33 # include "mutex-debug.h"
34 # include <asm-generic/mutex-null.h>
35
36 # ifndef CONFIG_LOCKDEP
37 # define CREATE_TRACE_POINTS
38 # endif
39 # include <trace/events/lock.h>
40
41 #else
42 # include "mutex.h"
43 # include <asm/mutex.h>
44 #endif
45
46 /*
47 * A negative mutex count indicates that waiters are sleeping waiting for the
48 * mutex.
49 */
50 #define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
51
52 void
53 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
54 {
55 atomic_set(&lock->count, 1);
56 spin_lock_init(&lock->wait_lock);
57 INIT_LIST_HEAD(&lock->wait_list);
58 mutex_clear_owner(lock);
59 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
60 lock->spin_mlock = NULL;
61 #endif
62
63 debug_mutex_init(lock, name, key);
64 }
65
66 EXPORT_SYMBOL(__mutex_init);
67
68 #ifndef CONFIG_DEBUG_LOCK_ALLOC
69 /*
70 * We split the mutex lock/unlock logic into separate fastpath and
71 * slowpath functions, to reduce the register pressure on the fastpath.
72 * We also put the fastpath first in the kernel image, to make sure the
73 * branch is predicted by the CPU as default-untaken.
74 */
75 static __used noinline void __sched
76 __mutex_lock_slowpath(atomic_t *lock_count);
77
78 /**
79 * mutex_lock - acquire the mutex
80 * @lock: the mutex to be acquired
81 *
82 * Lock the mutex exclusively for this task. If the mutex is not
83 * available right now, it will sleep until it can get it.
84 *
85 * The mutex must later on be released by the same task that
86 * acquired it. Recursive locking is not allowed. The task
87 * may not exit without first unlocking the mutex. Also, kernel
88 * memory where the mutex resides mutex must not be freed with
89 * the mutex still locked. The mutex must first be initialized
90 * (or statically defined) before it can be locked. memset()-ing
91 * the mutex to 0 is not allowed.
92 *
93 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
94 * checks that will enforce the restrictions and will also do
95 * deadlock debugging. )
96 *
97 * This function is similar to (but not equivalent to) down().
98 */
99 void __sched mutex_lock(struct mutex *lock)
100 {
101 might_sleep();
102 /*
103 * The locking fastpath is the 1->0 transition from
104 * 'unlocked' into 'locked' state.
105 */
106 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
107 mutex_set_owner(lock);
108 }
109
110 EXPORT_SYMBOL(mutex_lock);
111 #endif
112
113 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
114 /*
115 * In order to avoid a stampede of mutex spinners from acquiring the mutex
116 * more or less simultaneously, the spinners need to acquire a MCS lock
117 * first before spinning on the owner field.
118 *
119 * We don't inline mspin_lock() so that perf can correctly account for the
120 * time spent in this lock function.
121 */
122 struct mspin_node {
123 struct mspin_node *next ;
124 int locked; /* 1 if lock acquired */
125 };
126 #define MLOCK(mutex) ((struct mspin_node **)&((mutex)->spin_mlock))
127
128 static noinline
129 void mspin_lock(struct mspin_node **lock, struct mspin_node *node)
130 {
131 struct mspin_node *prev;
132
133 /* Init node */
134 node->locked = 0;
135 node->next = NULL;
136
137 prev = xchg(lock, node);
138 if (likely(prev == NULL)) {
139 /* Lock acquired */
140 node->locked = 1;
141 return;
142 }
143 ACCESS_ONCE(prev->next) = node;
144 smp_wmb();
145 /* Wait until the lock holder passes the lock down */
146 while (!ACCESS_ONCE(node->locked))
147 arch_mutex_cpu_relax();
148 }
149
150 static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node)
151 {
152 struct mspin_node *next = ACCESS_ONCE(node->next);
153
154 if (likely(!next)) {
155 /*
156 * Release the lock by setting it to NULL
157 */
158 if (cmpxchg(lock, node, NULL) == node)
159 return;
160 /* Wait until the next pointer is set */
161 while (!(next = ACCESS_ONCE(node->next)))
162 arch_mutex_cpu_relax();
163 }
164 ACCESS_ONCE(next->locked) = 1;
165 smp_wmb();
166 }
167
168 /*
169 * Mutex spinning code migrated from kernel/sched/core.c
170 */
171
172 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
173 {
174 if (lock->owner != owner)
175 return false;
176
177 /*
178 * Ensure we emit the owner->on_cpu, dereference _after_ checking
179 * lock->owner still matches owner, if that fails, owner might
180 * point to free()d memory, if it still matches, the rcu_read_lock()
181 * ensures the memory stays valid.
182 */
183 barrier();
184
185 return owner->on_cpu;
186 }
187
188 /*
189 * Look out! "owner" is an entirely speculative pointer
190 * access and not reliable.
191 */
192 static noinline
193 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
194 {
195 rcu_read_lock();
196 while (owner_running(lock, owner)) {
197 if (need_resched())
198 break;
199
200 arch_mutex_cpu_relax();
201 }
202 rcu_read_unlock();
203
204 /*
205 * We break out the loop above on need_resched() and when the
206 * owner changed, which is a sign for heavy contention. Return
207 * success only when lock->owner is NULL.
208 */
209 return lock->owner == NULL;
210 }
211
212 /*
213 * Initial check for entering the mutex spinning loop
214 */
215 static inline int mutex_can_spin_on_owner(struct mutex *lock)
216 {
217 int retval = 1;
218
219 rcu_read_lock();
220 if (lock->owner)
221 retval = lock->owner->on_cpu;
222 rcu_read_unlock();
223 /*
224 * if lock->owner is not set, the mutex owner may have just acquired
225 * it and not set the owner yet or the mutex has been released.
226 */
227 return retval;
228 }
229 #endif
230
231 static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
232
233 /**
234 * mutex_unlock - release the mutex
235 * @lock: the mutex to be released
236 *
237 * Unlock a mutex that has been locked by this task previously.
238 *
239 * This function must not be used in interrupt context. Unlocking
240 * of a not locked mutex is not allowed.
241 *
242 * This function is similar to (but not equivalent to) up().
243 */
244 void __sched mutex_unlock(struct mutex *lock)
245 {
246 /*
247 * The unlocking fastpath is the 0->1 transition from 'locked'
248 * into 'unlocked' state:
249 */
250 #ifndef CONFIG_DEBUG_MUTEXES
251 /*
252 * When debugging is enabled we must not clear the owner before time,
253 * the slow path will always be taken, and that clears the owner field
254 * after verifying that it was indeed current.
255 */
256 mutex_clear_owner(lock);
257 #endif
258 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
259 }
260
261 EXPORT_SYMBOL(mutex_unlock);
262
263 /*
264 * Lock a mutex (possibly interruptible), slowpath:
265 */
266 static inline int __sched
267 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
268 struct lockdep_map *nest_lock, unsigned long ip)
269 {
270 struct task_struct *task = current;
271 struct mutex_waiter waiter;
272 unsigned long flags;
273 #ifdef CONFIG_DEBUG_MUTEXES
274 unsigned char __mutex_contended = 0;
275 #endif
276
277 preempt_disable();
278 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
279
280 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
281 /*
282 * Optimistic spinning.
283 *
284 * We try to spin for acquisition when we find that there are no
285 * pending waiters and the lock owner is currently running on a
286 * (different) CPU.
287 *
288 * The rationale is that if the lock owner is running, it is likely to
289 * release the lock soon.
290 *
291 * Since this needs the lock owner, and this mutex implementation
292 * doesn't track the owner atomically in the lock field, we need to
293 * track it non-atomically.
294 *
295 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
296 * to serialize everything.
297 *
298 * The mutex spinners are queued up using MCS lock so that only one
299 * spinner can compete for the mutex. However, if mutex spinning isn't
300 * going to happen, there is no point in going through the lock/unlock
301 * overhead.
302 */
303 if (!mutex_can_spin_on_owner(lock))
304 goto slowpath;
305
306 for (;;) {
307 struct task_struct *owner;
308 struct mspin_node node;
309
310 /*
311 * If there's an owner, wait for it to either
312 * release the lock or go to sleep.
313 */
314 mspin_lock(MLOCK(lock), &node);
315 owner = ACCESS_ONCE(lock->owner);
316 if (owner && !mutex_spin_on_owner(lock, owner)) {
317 mspin_unlock(MLOCK(lock), &node);
318 break;
319 }
320
321 if ((atomic_read(&lock->count) == 1) &&
322 (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
323 lock_acquired(&lock->dep_map, ip);
324 mutex_set_owner(lock);
325 mspin_unlock(MLOCK(lock), &node);
326 preempt_enable();
327 return 0;
328 }
329 mspin_unlock(MLOCK(lock), &node);
330
331 /*
332 * When there's no owner, we might have preempted between the
333 * owner acquiring the lock and setting the owner field. If
334 * we're an RT task that will live-lock because we won't let
335 * the owner complete.
336 */
337 if (!owner && (need_resched() || rt_task(task)))
338 break;
339
340 /*
341 * The cpu_relax() call is a compiler barrier which forces
342 * everything in this loop to be re-loaded. We don't need
343 * memory barriers as we'll eventually observe the right
344 * values at the cost of a few extra spins.
345 */
346 arch_mutex_cpu_relax();
347 }
348 slowpath:
349 #endif
350 spin_lock_mutex(&lock->wait_lock, flags);
351
352 debug_mutex_lock_common(lock, &waiter);
353 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
354
355 /* add waiting tasks to the end of the waitqueue (FIFO): */
356 list_add_tail(&waiter.list, &lock->wait_list);
357 waiter.task = task;
358
359 if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, -1) == 1))
360 goto done;
361
362 lock_contended(&lock->dep_map, ip);
363 #ifdef CONFIG_DEBUG_MUTEXES
364 trace_mutex_contended(lock, ip);
365 __mutex_contended = 1; // to pair mutex_contended & mutex_acquired
366 #endif
367
368 for (;;) {
369 /*
370 * Lets try to take the lock again - this is needed even if
371 * we get here for the first time (shortly after failing to
372 * acquire the lock), to make sure that we get a wakeup once
373 * it's unlocked. Later on, if we sleep, this is the
374 * operation that gives us the lock. We xchg it to -1, so
375 * that when we release the lock, we properly wake up the
376 * other waiters:
377 */
378 if (MUTEX_SHOW_NO_WAITER(lock) &&
379 (atomic_xchg(&lock->count, -1) == 1))
380 break;
381
382 /*
383 * got a signal? (This code gets eliminated in the
384 * TASK_UNINTERRUPTIBLE case.)
385 */
386 if (unlikely(signal_pending_state(state, task))) {
387 mutex_remove_waiter(lock, &waiter,
388 task_thread_info(task));
389 mutex_release(&lock->dep_map, 1, ip);
390 spin_unlock_mutex(&lock->wait_lock, flags);
391
392 debug_mutex_free_waiter(&waiter);
393 preempt_enable();
394 return -EINTR;
395 }
396 __set_task_state(task, state);
397
398 /* didn't get the lock, go to sleep: */
399 spin_unlock_mutex(&lock->wait_lock, flags);
400 schedule_preempt_disabled();
401 spin_lock_mutex(&lock->wait_lock, flags);
402 }
403
404 done:
405 #ifdef CONFIG_DEBUG_MUTEXES
406 if(unlikely(__mutex_contended > 0))
407 trace_mutex_acquired(lock, ip);
408 #endif
409 lock_acquired(&lock->dep_map, ip);
410 /* got the lock - rejoice! */
411 mutex_remove_waiter(lock, &waiter, current_thread_info());
412 mutex_set_owner(lock);
413
414 /* set it to 0 if there are no waiters left: */
415 if (likely(list_empty(&lock->wait_list)))
416 atomic_set(&lock->count, 0);
417
418 spin_unlock_mutex(&lock->wait_lock, flags);
419
420 debug_mutex_free_waiter(&waiter);
421 preempt_enable();
422
423 return 0;
424 }
425
426 #ifdef CONFIG_DEBUG_LOCK_ALLOC
427 void __sched
428 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
429 {
430 might_sleep();
431 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
432 }
433
434 EXPORT_SYMBOL_GPL(mutex_lock_nested);
435
436 void __sched
437 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
438 {
439 might_sleep();
440 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
441 }
442
443 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
444
445 int __sched
446 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
447 {
448 might_sleep();
449 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
450 }
451 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
452
453 int __sched
454 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
455 {
456 might_sleep();
457 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
458 subclass, NULL, _RET_IP_);
459 }
460
461 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
462 #endif
463
464 /*
465 * Release the lock, slowpath:
466 */
467 static inline void
468 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
469 {
470 struct mutex *lock = container_of(lock_count, struct mutex, count);
471 unsigned long flags;
472
473 spin_lock_mutex(&lock->wait_lock, flags);
474 mutex_release(&lock->dep_map, nested, _RET_IP_);
475 debug_mutex_unlock(lock);
476
477 /*
478 * some architectures leave the lock unlocked in the fastpath failure
479 * case, others need to leave it locked. In the later case we have to
480 * unlock it here
481 */
482 if (__mutex_slowpath_needs_to_unlock())
483 atomic_set(&lock->count, 1);
484
485 if (!list_empty(&lock->wait_list)) {
486 /* get the first entry from the wait-list: */
487 struct mutex_waiter *waiter =
488 list_entry(lock->wait_list.next,
489 struct mutex_waiter, list);
490
491 debug_mutex_wake_waiter(lock, waiter);
492
493 wake_up_process(waiter->task);
494 }
495
496 spin_unlock_mutex(&lock->wait_lock, flags);
497 }
498
499 /*
500 * Release the lock, slowpath:
501 */
502 static __used noinline void
503 __mutex_unlock_slowpath(atomic_t *lock_count)
504 {
505 __mutex_unlock_common_slowpath(lock_count, 1);
506 }
507
508 #ifndef CONFIG_DEBUG_LOCK_ALLOC
509 /*
510 * Here come the less common (and hence less performance-critical) APIs:
511 * mutex_lock_interruptible() and mutex_trylock().
512 */
513 static noinline int __sched
514 __mutex_lock_killable_slowpath(atomic_t *lock_count);
515
516 static noinline int __sched
517 __mutex_lock_interruptible_slowpath(atomic_t *lock_count);
518
519 /**
520 * mutex_lock_interruptible - acquire the mutex, interruptible
521 * @lock: the mutex to be acquired
522 *
523 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
524 * been acquired or sleep until the mutex becomes available. If a
525 * signal arrives while waiting for the lock then this function
526 * returns -EINTR.
527 *
528 * This function is similar to (but not equivalent to) down_interruptible().
529 */
530 int __sched mutex_lock_interruptible(struct mutex *lock)
531 {
532 int ret;
533
534 might_sleep();
535 ret = __mutex_fastpath_lock_retval
536 (&lock->count, __mutex_lock_interruptible_slowpath);
537 if (!ret)
538 mutex_set_owner(lock);
539
540 return ret;
541 }
542
543 EXPORT_SYMBOL(mutex_lock_interruptible);
544
545 int __sched mutex_lock_killable(struct mutex *lock)
546 {
547 int ret;
548
549 might_sleep();
550 ret = __mutex_fastpath_lock_retval
551 (&lock->count, __mutex_lock_killable_slowpath);
552 if (!ret)
553 mutex_set_owner(lock);
554
555 return ret;
556 }
557 EXPORT_SYMBOL(mutex_lock_killable);
558
559 static __used noinline void __sched
560 __mutex_lock_slowpath(atomic_t *lock_count)
561 {
562 struct mutex *lock = container_of(lock_count, struct mutex, count);
563
564 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
565 }
566
567 static noinline int __sched
568 __mutex_lock_killable_slowpath(atomic_t *lock_count)
569 {
570 struct mutex *lock = container_of(lock_count, struct mutex, count);
571
572 return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
573 }
574
575 static noinline int __sched
576 __mutex_lock_interruptible_slowpath(atomic_t *lock_count)
577 {
578 struct mutex *lock = container_of(lock_count, struct mutex, count);
579
580 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
581 }
582 #endif
583
584 /*
585 * Spinlock based trylock, we take the spinlock and check whether we
586 * can get the lock:
587 */
588 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
589 {
590 struct mutex *lock = container_of(lock_count, struct mutex, count);
591 unsigned long flags;
592 int prev;
593
594 spin_lock_mutex(&lock->wait_lock, flags);
595
596 prev = atomic_xchg(&lock->count, -1);
597 if (likely(prev == 1)) {
598 mutex_set_owner(lock);
599 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
600 }
601
602 /* Set it back to 0 if there are no waiters: */
603 if (likely(list_empty(&lock->wait_list)))
604 atomic_set(&lock->count, 0);
605
606 spin_unlock_mutex(&lock->wait_lock, flags);
607
608 return prev == 1;
609 }
610
611 /**
612 * mutex_trylock - try to acquire the mutex, without waiting
613 * @lock: the mutex to be acquired
614 *
615 * Try to acquire the mutex atomically. Returns 1 if the mutex
616 * has been acquired successfully, and 0 on contention.
617 *
618 * NOTE: this function follows the spin_trylock() convention, so
619 * it is negated from the down_trylock() return values! Be careful
620 * about this when converting semaphore users to mutexes.
621 *
622 * This function must not be used in interrupt context. The
623 * mutex must be released by the same task that acquired it.
624 */
625 int __sched mutex_trylock(struct mutex *lock)
626 {
627 int ret;
628
629 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
630 if (ret)
631 mutex_set_owner(lock);
632
633 return ret;
634 }
635 EXPORT_SYMBOL(mutex_trylock);
636
637 /**
638 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
639 * @cnt: the atomic which we are to dec
640 * @lock: the mutex to return holding if we dec to 0
641 *
642 * return true and hold lock if we dec to 0, return false otherwise
643 */
644 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
645 {
646 /* dec if we can't possibly hit 0 */
647 if (atomic_add_unless(cnt, -1, 1))
648 return 0;
649 /* we might hit 0, so take the lock */
650 mutex_lock(lock);
651 if (!atomic_dec_and_test(cnt)) {
652 /* when we actually did the dec, we didn't hit 0 */
653 mutex_unlock(lock);
654 return 0;
655 }
656 /* we hit 0, and we hold the lock */
657 return 1;
658 }
659 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);