Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/stop_machine.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <asm/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
53 #include <linux/license.h>
54 #include <asm/sections.h>
55 #include <linux/tracepoint.h>
56 #include <linux/ftrace.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/fips.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /*
86 * Given BASE and SIZE this macro calculates the number of pages the
87 * memory regions occupies
88 */
89 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
90 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
91 PFN_DOWN((unsigned long)BASE) + 1) \
92 : (0UL))
93
94 /* If this is set, the section belongs in the init part of the module */
95 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96
97 /*
98 * Mutex protects:
99 * 1) List of modules (also safely readable with preempt_disable),
100 * 2) module_use links,
101 * 3) module_addr_min/module_addr_max.
102 * (delete uses stop_machine/add uses RCU list operations). */
103 DEFINE_MUTEX(module_mutex);
104 EXPORT_SYMBOL_GPL(module_mutex);
105 static LIST_HEAD(modules);
106 #ifdef CONFIG_KGDB_KDB
107 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108 #endif /* CONFIG_KGDB_KDB */
109
110 #ifdef CONFIG_MODULE_SIG
111 #ifdef CONFIG_MODULE_SIG_FORCE
112 static bool sig_enforce = true;
113 #else
114 static bool sig_enforce = false;
115
116 static int param_set_bool_enable_only(const char *val,
117 const struct kernel_param *kp)
118 {
119 int err;
120 bool test;
121 struct kernel_param dummy_kp = *kp;
122
123 dummy_kp.arg = &test;
124
125 err = param_set_bool(val, &dummy_kp);
126 if (err)
127 return err;
128
129 /* Don't let them unset it once it's set! */
130 if (!test && sig_enforce)
131 return -EROFS;
132
133 if (test)
134 sig_enforce = true;
135 return 0;
136 }
137
138 static const struct kernel_param_ops param_ops_bool_enable_only = {
139 .set = param_set_bool_enable_only,
140 .get = param_get_bool,
141 };
142 #define param_check_bool_enable_only param_check_bool
143
144 module_param(sig_enforce, bool_enable_only, 0644);
145 #endif /* !CONFIG_MODULE_SIG_FORCE */
146 #endif /* CONFIG_MODULE_SIG */
147
148 /* Block module loading/unloading? */
149 int modules_disabled = 0;
150 core_param(nomodule, modules_disabled, bint, 0);
151
152 /* Waiting for a module to finish initializing? */
153 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
154
155 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
156
157 /* Bounds of module allocation, for speeding __module_address.
158 * Protected by module_mutex. */
159 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
160
161 int register_module_notifier(struct notifier_block * nb)
162 {
163 return blocking_notifier_chain_register(&module_notify_list, nb);
164 }
165 EXPORT_SYMBOL(register_module_notifier);
166
167 int unregister_module_notifier(struct notifier_block * nb)
168 {
169 return blocking_notifier_chain_unregister(&module_notify_list, nb);
170 }
171 EXPORT_SYMBOL(unregister_module_notifier);
172
173 struct load_info {
174 Elf_Ehdr *hdr;
175 unsigned long len;
176 Elf_Shdr *sechdrs;
177 char *secstrings, *strtab;
178 unsigned long symoffs, stroffs;
179 struct _ddebug *debug;
180 unsigned int num_debug;
181 bool sig_ok;
182 struct {
183 unsigned int sym, str, mod, vers, info, pcpu;
184 } index;
185 };
186
187 /* We require a truly strong try_module_get(): 0 means failure due to
188 ongoing or failed initialization etc. */
189 static inline int strong_try_module_get(struct module *mod)
190 {
191 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
192 if (mod && mod->state == MODULE_STATE_COMING)
193 return -EBUSY;
194 if (try_module_get(mod))
195 return 0;
196 else
197 return -ENOENT;
198 }
199
200 static inline void add_taint_module(struct module *mod, unsigned flag,
201 enum lockdep_ok lockdep_ok)
202 {
203 add_taint(flag, lockdep_ok);
204 mod->taints |= (1U << flag);
205 }
206
207 /*
208 * A thread that wants to hold a reference to a module only while it
209 * is running can call this to safely exit. nfsd and lockd use this.
210 */
211 void __module_put_and_exit(struct module *mod, long code)
212 {
213 module_put(mod);
214 do_exit(code);
215 }
216 EXPORT_SYMBOL(__module_put_and_exit);
217
218 /* Find a module section: 0 means not found. */
219 static unsigned int find_sec(const struct load_info *info, const char *name)
220 {
221 unsigned int i;
222
223 for (i = 1; i < info->hdr->e_shnum; i++) {
224 Elf_Shdr *shdr = &info->sechdrs[i];
225 /* Alloc bit cleared means "ignore it." */
226 if ((shdr->sh_flags & SHF_ALLOC)
227 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
228 return i;
229 }
230 return 0;
231 }
232
233 /* Find a module section, or NULL. */
234 static void *section_addr(const struct load_info *info, const char *name)
235 {
236 /* Section 0 has sh_addr 0. */
237 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
238 }
239
240 /* Find a module section, or NULL. Fill in number of "objects" in section. */
241 static void *section_objs(const struct load_info *info,
242 const char *name,
243 size_t object_size,
244 unsigned int *num)
245 {
246 unsigned int sec = find_sec(info, name);
247
248 /* Section 0 has sh_addr 0 and sh_size 0. */
249 *num = info->sechdrs[sec].sh_size / object_size;
250 return (void *)info->sechdrs[sec].sh_addr;
251 }
252
253 /* Provided by the linker */
254 extern const struct kernel_symbol __start___ksymtab[];
255 extern const struct kernel_symbol __stop___ksymtab[];
256 extern const struct kernel_symbol __start___ksymtab_gpl[];
257 extern const struct kernel_symbol __stop___ksymtab_gpl[];
258 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
259 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
260 extern const unsigned long __start___kcrctab[];
261 extern const unsigned long __start___kcrctab_gpl[];
262 extern const unsigned long __start___kcrctab_gpl_future[];
263 #ifdef CONFIG_UNUSED_SYMBOLS
264 extern const struct kernel_symbol __start___ksymtab_unused[];
265 extern const struct kernel_symbol __stop___ksymtab_unused[];
266 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
267 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
268 extern const unsigned long __start___kcrctab_unused[];
269 extern const unsigned long __start___kcrctab_unused_gpl[];
270 #endif
271
272 #ifndef CONFIG_MODVERSIONS
273 #define symversion(base, idx) NULL
274 #else
275 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
276 #endif
277
278 static bool each_symbol_in_section(const struct symsearch *arr,
279 unsigned int arrsize,
280 struct module *owner,
281 bool (*fn)(const struct symsearch *syms,
282 struct module *owner,
283 void *data),
284 void *data)
285 {
286 unsigned int j;
287
288 for (j = 0; j < arrsize; j++) {
289 if (fn(&arr[j], owner, data))
290 return true;
291 }
292
293 return false;
294 }
295
296 /* Returns true as soon as fn returns true, otherwise false. */
297 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
298 struct module *owner,
299 void *data),
300 void *data)
301 {
302 struct module *mod;
303 static const struct symsearch arr[] = {
304 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
305 NOT_GPL_ONLY, false },
306 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
307 __start___kcrctab_gpl,
308 GPL_ONLY, false },
309 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
310 __start___kcrctab_gpl_future,
311 WILL_BE_GPL_ONLY, false },
312 #ifdef CONFIG_UNUSED_SYMBOLS
313 { __start___ksymtab_unused, __stop___ksymtab_unused,
314 __start___kcrctab_unused,
315 NOT_GPL_ONLY, true },
316 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
317 __start___kcrctab_unused_gpl,
318 GPL_ONLY, true },
319 #endif
320 };
321
322 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
323 return true;
324
325 list_for_each_entry_rcu(mod, &modules, list) {
326 struct symsearch arr[] = {
327 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
328 NOT_GPL_ONLY, false },
329 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
330 mod->gpl_crcs,
331 GPL_ONLY, false },
332 { mod->gpl_future_syms,
333 mod->gpl_future_syms + mod->num_gpl_future_syms,
334 mod->gpl_future_crcs,
335 WILL_BE_GPL_ONLY, false },
336 #ifdef CONFIG_UNUSED_SYMBOLS
337 { mod->unused_syms,
338 mod->unused_syms + mod->num_unused_syms,
339 mod->unused_crcs,
340 NOT_GPL_ONLY, true },
341 { mod->unused_gpl_syms,
342 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
343 mod->unused_gpl_crcs,
344 GPL_ONLY, true },
345 #endif
346 };
347
348 if (mod->state == MODULE_STATE_UNFORMED)
349 continue;
350
351 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
352 return true;
353 }
354 return false;
355 }
356 EXPORT_SYMBOL_GPL(each_symbol_section);
357
358 struct find_symbol_arg {
359 /* Input */
360 const char *name;
361 bool gplok;
362 bool warn;
363
364 /* Output */
365 struct module *owner;
366 const unsigned long *crc;
367 const struct kernel_symbol *sym;
368 };
369
370 static bool check_symbol(const struct symsearch *syms,
371 struct module *owner,
372 unsigned int symnum, void *data)
373 {
374 struct find_symbol_arg *fsa = data;
375
376 if (!fsa->gplok) {
377 if (syms->licence == GPL_ONLY)
378 return false;
379 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
380 printk(KERN_WARNING "Symbol %s is being used "
381 "by a non-GPL module, which will not "
382 "be allowed in the future\n", fsa->name);
383 }
384 }
385
386 #ifdef CONFIG_UNUSED_SYMBOLS
387 if (syms->unused && fsa->warn) {
388 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
389 "however this module is using it.\n", fsa->name);
390 printk(KERN_WARNING
391 "This symbol will go away in the future.\n");
392 printk(KERN_WARNING
393 "Please evalute if this is the right api to use and if "
394 "it really is, submit a report the linux kernel "
395 "mailinglist together with submitting your code for "
396 "inclusion.\n");
397 }
398 #endif
399
400 fsa->owner = owner;
401 fsa->crc = symversion(syms->crcs, symnum);
402 fsa->sym = &syms->start[symnum];
403 return true;
404 }
405
406 static int cmp_name(const void *va, const void *vb)
407 {
408 const char *a;
409 const struct kernel_symbol *b;
410 a = va; b = vb;
411 return strcmp(a, b->name);
412 }
413
414 static bool find_symbol_in_section(const struct symsearch *syms,
415 struct module *owner,
416 void *data)
417 {
418 struct find_symbol_arg *fsa = data;
419 struct kernel_symbol *sym;
420
421 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
422 sizeof(struct kernel_symbol), cmp_name);
423
424 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
425 return true;
426
427 return false;
428 }
429
430 /* Find a symbol and return it, along with, (optional) crc and
431 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
432 const struct kernel_symbol *find_symbol(const char *name,
433 struct module **owner,
434 const unsigned long **crc,
435 bool gplok,
436 bool warn)
437 {
438 struct find_symbol_arg fsa;
439
440 fsa.name = name;
441 fsa.gplok = gplok;
442 fsa.warn = warn;
443
444 if (each_symbol_section(find_symbol_in_section, &fsa)) {
445 if (owner)
446 *owner = fsa.owner;
447 if (crc)
448 *crc = fsa.crc;
449 return fsa.sym;
450 }
451
452 pr_debug("Failed to find symbol %s\n", name);
453 return NULL;
454 }
455 EXPORT_SYMBOL_GPL(find_symbol);
456
457 /* Search for module by name: must hold module_mutex. */
458 static struct module *find_module_all(const char *name,
459 bool even_unformed)
460 {
461 struct module *mod;
462
463 list_for_each_entry(mod, &modules, list) {
464 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
465 continue;
466 if (strcmp(mod->name, name) == 0)
467 return mod;
468 }
469 return NULL;
470 }
471
472 struct module *find_module(const char *name)
473 {
474 return find_module_all(name, false);
475 }
476 EXPORT_SYMBOL_GPL(find_module);
477
478 #ifdef CONFIG_SMP
479
480 static inline void __percpu *mod_percpu(struct module *mod)
481 {
482 return mod->percpu;
483 }
484
485 static int percpu_modalloc(struct module *mod,
486 unsigned long size, unsigned long align)
487 {
488 if (align > PAGE_SIZE) {
489 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
490 mod->name, align, PAGE_SIZE);
491 align = PAGE_SIZE;
492 }
493
494 mod->percpu = __alloc_reserved_percpu(size, align);
495 if (!mod->percpu) {
496 printk(KERN_WARNING
497 "%s: Could not allocate %lu bytes percpu data\n",
498 mod->name, size);
499 return -ENOMEM;
500 }
501 mod->percpu_size = size;
502 return 0;
503 }
504
505 static void percpu_modfree(struct module *mod)
506 {
507 free_percpu(mod->percpu);
508 }
509
510 static unsigned int find_pcpusec(struct load_info *info)
511 {
512 return find_sec(info, ".data..percpu");
513 }
514
515 static void percpu_modcopy(struct module *mod,
516 const void *from, unsigned long size)
517 {
518 int cpu;
519
520 for_each_possible_cpu(cpu)
521 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
522 }
523
524 /**
525 * is_module_percpu_address - test whether address is from module static percpu
526 * @addr: address to test
527 *
528 * Test whether @addr belongs to module static percpu area.
529 *
530 * RETURNS:
531 * %true if @addr is from module static percpu area
532 */
533 bool is_module_percpu_address(unsigned long addr)
534 {
535 struct module *mod;
536 unsigned int cpu;
537
538 preempt_disable();
539
540 list_for_each_entry_rcu(mod, &modules, list) {
541 if (mod->state == MODULE_STATE_UNFORMED)
542 continue;
543 if (!mod->percpu_size)
544 continue;
545 for_each_possible_cpu(cpu) {
546 void *start = per_cpu_ptr(mod->percpu, cpu);
547
548 if ((void *)addr >= start &&
549 (void *)addr < start + mod->percpu_size) {
550 preempt_enable();
551 return true;
552 }
553 }
554 }
555
556 preempt_enable();
557 return false;
558 }
559
560 #else /* ... !CONFIG_SMP */
561
562 static inline void __percpu *mod_percpu(struct module *mod)
563 {
564 return NULL;
565 }
566 static inline int percpu_modalloc(struct module *mod,
567 unsigned long size, unsigned long align)
568 {
569 return -ENOMEM;
570 }
571 static inline void percpu_modfree(struct module *mod)
572 {
573 }
574 static unsigned int find_pcpusec(struct load_info *info)
575 {
576 return 0;
577 }
578 static inline void percpu_modcopy(struct module *mod,
579 const void *from, unsigned long size)
580 {
581 /* pcpusec should be 0, and size of that section should be 0. */
582 BUG_ON(size != 0);
583 }
584 bool is_module_percpu_address(unsigned long addr)
585 {
586 return false;
587 }
588
589 #endif /* CONFIG_SMP */
590
591 #define MODINFO_ATTR(field) \
592 static void setup_modinfo_##field(struct module *mod, const char *s) \
593 { \
594 mod->field = kstrdup(s, GFP_KERNEL); \
595 } \
596 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
597 struct module_kobject *mk, char *buffer) \
598 { \
599 return sprintf(buffer, "%s\n", mk->mod->field); \
600 } \
601 static int modinfo_##field##_exists(struct module *mod) \
602 { \
603 return mod->field != NULL; \
604 } \
605 static void free_modinfo_##field(struct module *mod) \
606 { \
607 kfree(mod->field); \
608 mod->field = NULL; \
609 } \
610 static struct module_attribute modinfo_##field = { \
611 .attr = { .name = __stringify(field), .mode = 0444 }, \
612 .show = show_modinfo_##field, \
613 .setup = setup_modinfo_##field, \
614 .test = modinfo_##field##_exists, \
615 .free = free_modinfo_##field, \
616 };
617
618 MODINFO_ATTR(version);
619 MODINFO_ATTR(srcversion);
620
621 static char last_unloaded_module[MODULE_NAME_LEN+1];
622
623 #ifdef CONFIG_MODULE_UNLOAD
624
625 EXPORT_TRACEPOINT_SYMBOL(module_get);
626
627 /* Init the unload section of the module. */
628 static int module_unload_init(struct module *mod)
629 {
630 mod->refptr = alloc_percpu(struct module_ref);
631 if (!mod->refptr)
632 return -ENOMEM;
633
634 INIT_LIST_HEAD(&mod->source_list);
635 INIT_LIST_HEAD(&mod->target_list);
636
637 /* Hold reference count during initialization. */
638 __this_cpu_write(mod->refptr->incs, 1);
639 /* Backwards compatibility macros put refcount during init. */
640 mod->waiter = current;
641
642 return 0;
643 }
644
645 /* Does a already use b? */
646 static int already_uses(struct module *a, struct module *b)
647 {
648 struct module_use *use;
649
650 list_for_each_entry(use, &b->source_list, source_list) {
651 if (use->source == a) {
652 pr_debug("%s uses %s!\n", a->name, b->name);
653 return 1;
654 }
655 }
656 pr_debug("%s does not use %s!\n", a->name, b->name);
657 return 0;
658 }
659
660 /*
661 * Module a uses b
662 * - we add 'a' as a "source", 'b' as a "target" of module use
663 * - the module_use is added to the list of 'b' sources (so
664 * 'b' can walk the list to see who sourced them), and of 'a'
665 * targets (so 'a' can see what modules it targets).
666 */
667 static int add_module_usage(struct module *a, struct module *b)
668 {
669 struct module_use *use;
670
671 pr_debug("Allocating new usage for %s.\n", a->name);
672 use = kmalloc(sizeof(*use), GFP_ATOMIC);
673 if (!use) {
674 printk(KERN_WARNING "%s: out of memory loading\n", a->name);
675 return -ENOMEM;
676 }
677
678 use->source = a;
679 use->target = b;
680 list_add(&use->source_list, &b->source_list);
681 list_add(&use->target_list, &a->target_list);
682 return 0;
683 }
684
685 /* Module a uses b: caller needs module_mutex() */
686 int ref_module(struct module *a, struct module *b)
687 {
688 int err;
689
690 if (b == NULL || already_uses(a, b))
691 return 0;
692
693 /* If module isn't available, we fail. */
694 err = strong_try_module_get(b);
695 if (err)
696 return err;
697
698 err = add_module_usage(a, b);
699 if (err) {
700 module_put(b);
701 return err;
702 }
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(ref_module);
706
707 /* Clear the unload stuff of the module. */
708 static void module_unload_free(struct module *mod)
709 {
710 struct module_use *use, *tmp;
711
712 mutex_lock(&module_mutex);
713 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
714 struct module *i = use->target;
715 pr_debug("%s unusing %s\n", mod->name, i->name);
716 module_put(i);
717 list_del(&use->source_list);
718 list_del(&use->target_list);
719 kfree(use);
720 }
721 mutex_unlock(&module_mutex);
722
723 free_percpu(mod->refptr);
724 }
725
726 #ifdef CONFIG_MODULE_FORCE_UNLOAD
727 static inline int try_force_unload(unsigned int flags)
728 {
729 int ret = (flags & O_TRUNC);
730 if (ret)
731 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
732 return ret;
733 }
734 #else
735 static inline int try_force_unload(unsigned int flags)
736 {
737 return 0;
738 }
739 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
740
741 struct stopref
742 {
743 struct module *mod;
744 int flags;
745 int *forced;
746 };
747
748 /* Whole machine is stopped with interrupts off when this runs. */
749 static int __try_stop_module(void *_sref)
750 {
751 struct stopref *sref = _sref;
752
753 /* If it's not unused, quit unless we're forcing. */
754 if (module_refcount(sref->mod) != 0) {
755 if (!(*sref->forced = try_force_unload(sref->flags)))
756 return -EWOULDBLOCK;
757 }
758
759 /* Mark it as dying. */
760 sref->mod->state = MODULE_STATE_GOING;
761 return 0;
762 }
763
764 static int try_stop_module(struct module *mod, int flags, int *forced)
765 {
766 if (flags & O_NONBLOCK) {
767 struct stopref sref = { mod, flags, forced };
768
769 return stop_machine(__try_stop_module, &sref, NULL);
770 } else {
771 /* We don't need to stop the machine for this. */
772 mod->state = MODULE_STATE_GOING;
773 synchronize_sched();
774 return 0;
775 }
776 }
777
778 unsigned long module_refcount(struct module *mod)
779 {
780 unsigned long incs = 0, decs = 0;
781 int cpu;
782
783 for_each_possible_cpu(cpu)
784 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
785 /*
786 * ensure the incs are added up after the decs.
787 * module_put ensures incs are visible before decs with smp_wmb.
788 *
789 * This 2-count scheme avoids the situation where the refcount
790 * for CPU0 is read, then CPU0 increments the module refcount,
791 * then CPU1 drops that refcount, then the refcount for CPU1 is
792 * read. We would record a decrement but not its corresponding
793 * increment so we would see a low count (disaster).
794 *
795 * Rare situation? But module_refcount can be preempted, and we
796 * might be tallying up 4096+ CPUs. So it is not impossible.
797 */
798 smp_rmb();
799 for_each_possible_cpu(cpu)
800 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
801 return incs - decs;
802 }
803 EXPORT_SYMBOL(module_refcount);
804
805 /* This exists whether we can unload or not */
806 static void free_module(struct module *mod);
807
808 static void wait_for_zero_refcount(struct module *mod)
809 {
810 /* Since we might sleep for some time, release the mutex first */
811 mutex_unlock(&module_mutex);
812 for (;;) {
813 pr_debug("Looking at refcount...\n");
814 set_current_state(TASK_UNINTERRUPTIBLE);
815 if (module_refcount(mod) == 0)
816 break;
817 schedule();
818 }
819 current->state = TASK_RUNNING;
820 mutex_lock(&module_mutex);
821 }
822
823 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
824 unsigned int, flags)
825 {
826 struct module *mod;
827 char name[MODULE_NAME_LEN];
828 int ret, forced = 0;
829
830 if (!capable(CAP_SYS_MODULE) || modules_disabled)
831 return -EPERM;
832
833 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
834 return -EFAULT;
835 name[MODULE_NAME_LEN-1] = '\0';
836
837 if (mutex_lock_interruptible(&module_mutex) != 0)
838 return -EINTR;
839
840 mod = find_module(name);
841 if (!mod) {
842 ret = -ENOENT;
843 goto out;
844 }
845
846 if (!list_empty(&mod->source_list)) {
847 /* Other modules depend on us: get rid of them first. */
848 ret = -EWOULDBLOCK;
849 goto out;
850 }
851
852 /* Doing init or already dying? */
853 if (mod->state != MODULE_STATE_LIVE) {
854 /* FIXME: if (force), slam module count and wake up
855 waiter --RR */
856 pr_debug("%s already dying\n", mod->name);
857 ret = -EBUSY;
858 goto out;
859 }
860
861 /* If it has an init func, it must have an exit func to unload */
862 if (mod->init && !mod->exit) {
863 forced = try_force_unload(flags);
864 if (!forced) {
865 /* This module can't be removed */
866 ret = -EBUSY;
867 goto out;
868 }
869 }
870
871 /* Set this up before setting mod->state */
872 mod->waiter = current;
873
874 /* Stop the machine so refcounts can't move and disable module. */
875 ret = try_stop_module(mod, flags, &forced);
876 if (ret != 0)
877 goto out;
878
879 /* Never wait if forced. */
880 if (!forced && module_refcount(mod) != 0)
881 wait_for_zero_refcount(mod);
882
883 mutex_unlock(&module_mutex);
884 /* Final destruction now no one is using it. */
885 if (mod->exit != NULL)
886 mod->exit();
887 blocking_notifier_call_chain(&module_notify_list,
888 MODULE_STATE_GOING, mod);
889 async_synchronize_full();
890
891 /* Store the name of the last unloaded module for diagnostic purposes */
892 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
893
894 free_module(mod);
895 return 0;
896 out:
897 mutex_unlock(&module_mutex);
898 return ret;
899 }
900
901 static inline void print_unload_info(struct seq_file *m, struct module *mod)
902 {
903 struct module_use *use;
904 int printed_something = 0;
905
906 seq_printf(m, " %lu ", module_refcount(mod));
907
908 /* Always include a trailing , so userspace can differentiate
909 between this and the old multi-field proc format. */
910 list_for_each_entry(use, &mod->source_list, source_list) {
911 printed_something = 1;
912 seq_printf(m, "%s,", use->source->name);
913 }
914
915 if (mod->init != NULL && mod->exit == NULL) {
916 printed_something = 1;
917 seq_printf(m, "[permanent],");
918 }
919
920 if (!printed_something)
921 seq_printf(m, "-");
922 }
923
924 void __symbol_put(const char *symbol)
925 {
926 struct module *owner;
927
928 preempt_disable();
929 if (!find_symbol(symbol, &owner, NULL, true, false))
930 BUG();
931 module_put(owner);
932 preempt_enable();
933 }
934 EXPORT_SYMBOL(__symbol_put);
935
936 /* Note this assumes addr is a function, which it currently always is. */
937 void symbol_put_addr(void *addr)
938 {
939 struct module *modaddr;
940 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
941
942 if (core_kernel_text(a))
943 return;
944
945 /* module_text_address is safe here: we're supposed to have reference
946 * to module from symbol_get, so it can't go away. */
947 modaddr = __module_text_address(a);
948 BUG_ON(!modaddr);
949 module_put(modaddr);
950 }
951 EXPORT_SYMBOL_GPL(symbol_put_addr);
952
953 static ssize_t show_refcnt(struct module_attribute *mattr,
954 struct module_kobject *mk, char *buffer)
955 {
956 return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
957 }
958
959 static struct module_attribute modinfo_refcnt =
960 __ATTR(refcnt, 0444, show_refcnt, NULL);
961
962 void __module_get(struct module *module)
963 {
964 if (module) {
965 preempt_disable();
966 __this_cpu_inc(module->refptr->incs);
967 trace_module_get(module, _RET_IP_);
968 preempt_enable();
969 }
970 }
971 EXPORT_SYMBOL(__module_get);
972
973 bool try_module_get(struct module *module)
974 {
975 bool ret = true;
976
977 if (module) {
978 preempt_disable();
979
980 if (likely(module_is_live(module))) {
981 __this_cpu_inc(module->refptr->incs);
982 trace_module_get(module, _RET_IP_);
983 } else
984 ret = false;
985
986 preempt_enable();
987 }
988 return ret;
989 }
990 EXPORT_SYMBOL(try_module_get);
991
992 void module_put(struct module *module)
993 {
994 if (module) {
995 preempt_disable();
996 smp_wmb(); /* see comment in module_refcount */
997 __this_cpu_inc(module->refptr->decs);
998
999 trace_module_put(module, _RET_IP_);
1000 /* Maybe they're waiting for us to drop reference? */
1001 if (unlikely(!module_is_live(module)))
1002 wake_up_process(module->waiter);
1003 preempt_enable();
1004 }
1005 }
1006 EXPORT_SYMBOL(module_put);
1007
1008 #else /* !CONFIG_MODULE_UNLOAD */
1009 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1010 {
1011 /* We don't know the usage count, or what modules are using. */
1012 seq_printf(m, " - -");
1013 }
1014
1015 static inline void module_unload_free(struct module *mod)
1016 {
1017 }
1018
1019 int ref_module(struct module *a, struct module *b)
1020 {
1021 return strong_try_module_get(b);
1022 }
1023 EXPORT_SYMBOL_GPL(ref_module);
1024
1025 static inline int module_unload_init(struct module *mod)
1026 {
1027 return 0;
1028 }
1029 #endif /* CONFIG_MODULE_UNLOAD */
1030
1031 static size_t module_flags_taint(struct module *mod, char *buf)
1032 {
1033 size_t l = 0;
1034
1035 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1036 buf[l++] = 'P';
1037 if (mod->taints & (1 << TAINT_OOT_MODULE))
1038 buf[l++] = 'O';
1039 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1040 buf[l++] = 'F';
1041 if (mod->taints & (1 << TAINT_CRAP))
1042 buf[l++] = 'C';
1043 /*
1044 * TAINT_FORCED_RMMOD: could be added.
1045 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1046 * apply to modules.
1047 */
1048 return l;
1049 }
1050
1051 static ssize_t show_initstate(struct module_attribute *mattr,
1052 struct module_kobject *mk, char *buffer)
1053 {
1054 const char *state = "unknown";
1055
1056 switch (mk->mod->state) {
1057 case MODULE_STATE_LIVE:
1058 state = "live";
1059 break;
1060 case MODULE_STATE_COMING:
1061 state = "coming";
1062 break;
1063 case MODULE_STATE_GOING:
1064 state = "going";
1065 break;
1066 default:
1067 BUG();
1068 }
1069 return sprintf(buffer, "%s\n", state);
1070 }
1071
1072 static struct module_attribute modinfo_initstate =
1073 __ATTR(initstate, 0444, show_initstate, NULL);
1074
1075 static ssize_t store_uevent(struct module_attribute *mattr,
1076 struct module_kobject *mk,
1077 const char *buffer, size_t count)
1078 {
1079 enum kobject_action action;
1080
1081 if (kobject_action_type(buffer, count, &action) == 0)
1082 kobject_uevent(&mk->kobj, action);
1083 return count;
1084 }
1085
1086 struct module_attribute module_uevent =
1087 __ATTR(uevent, 0200, NULL, store_uevent);
1088
1089 static ssize_t show_coresize(struct module_attribute *mattr,
1090 struct module_kobject *mk, char *buffer)
1091 {
1092 return sprintf(buffer, "%u\n", mk->mod->core_size);
1093 }
1094
1095 static struct module_attribute modinfo_coresize =
1096 __ATTR(coresize, 0444, show_coresize, NULL);
1097
1098 static ssize_t show_initsize(struct module_attribute *mattr,
1099 struct module_kobject *mk, char *buffer)
1100 {
1101 return sprintf(buffer, "%u\n", mk->mod->init_size);
1102 }
1103
1104 static struct module_attribute modinfo_initsize =
1105 __ATTR(initsize, 0444, show_initsize, NULL);
1106
1107 static ssize_t show_taint(struct module_attribute *mattr,
1108 struct module_kobject *mk, char *buffer)
1109 {
1110 size_t l;
1111
1112 l = module_flags_taint(mk->mod, buffer);
1113 buffer[l++] = '\n';
1114 return l;
1115 }
1116
1117 static struct module_attribute modinfo_taint =
1118 __ATTR(taint, 0444, show_taint, NULL);
1119
1120 static struct module_attribute *modinfo_attrs[] = {
1121 &module_uevent,
1122 &modinfo_version,
1123 &modinfo_srcversion,
1124 &modinfo_initstate,
1125 &modinfo_coresize,
1126 &modinfo_initsize,
1127 &modinfo_taint,
1128 #ifdef CONFIG_MODULE_UNLOAD
1129 &modinfo_refcnt,
1130 #endif
1131 NULL,
1132 };
1133
1134 static const char vermagic[] = VERMAGIC_STRING;
1135
1136 static int try_to_force_load(struct module *mod, const char *reason)
1137 {
1138 #ifdef CONFIG_MODULE_FORCE_LOAD
1139 if (!test_taint(TAINT_FORCED_MODULE))
1140 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1141 mod->name, reason);
1142 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1143 return 0;
1144 #else
1145 return -ENOEXEC;
1146 #endif
1147 }
1148
1149 #ifdef CONFIG_MODVERSIONS
1150 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1151 static unsigned long maybe_relocated(unsigned long crc,
1152 const struct module *crc_owner)
1153 {
1154 #ifdef ARCH_RELOCATES_KCRCTAB
1155 if (crc_owner == NULL)
1156 return crc - (unsigned long)reloc_start;
1157 #endif
1158 return crc;
1159 }
1160
1161 static int check_version(Elf_Shdr *sechdrs,
1162 unsigned int versindex,
1163 const char *symname,
1164 struct module *mod,
1165 const unsigned long *crc,
1166 const struct module *crc_owner)
1167 {
1168 unsigned int i, num_versions;
1169 struct modversion_info *versions;
1170
1171 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1172 if (!crc)
1173 return 1;
1174
1175 /* No versions at all? modprobe --force does this. */
1176 if (versindex == 0)
1177 return try_to_force_load(mod, symname) == 0;
1178
1179 versions = (void *) sechdrs[versindex].sh_addr;
1180 num_versions = sechdrs[versindex].sh_size
1181 / sizeof(struct modversion_info);
1182
1183 for (i = 0; i < num_versions; i++) {
1184 if (strcmp(versions[i].name, symname) != 0)
1185 continue;
1186
1187 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1188 return 1;
1189 pr_debug("Found checksum %lX vs module %lX\n",
1190 maybe_relocated(*crc, crc_owner), versions[i].crc);
1191 goto bad_version;
1192 }
1193
1194 printk(KERN_WARNING "%s: no symbol version for %s\n",
1195 mod->name, symname);
1196 return 0;
1197
1198 bad_version:
1199 printk("%s: disagrees about version of symbol %s\n",
1200 mod->name, symname);
1201 return 0;
1202 }
1203
1204 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1205 unsigned int versindex,
1206 struct module *mod)
1207 {
1208 const unsigned long *crc;
1209
1210 /* Since this should be found in kernel (which can't be removed),
1211 * no locking is necessary. */
1212 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1213 &crc, true, false))
1214 BUG();
1215 return check_version(sechdrs, versindex,
1216 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1217 NULL);
1218 }
1219
1220 /* First part is kernel version, which we ignore if module has crcs. */
1221 static inline int same_magic(const char *amagic, const char *bmagic,
1222 bool has_crcs)
1223 {
1224 if (has_crcs) {
1225 amagic += strcspn(amagic, " ");
1226 bmagic += strcspn(bmagic, " ");
1227 }
1228 return strcmp(amagic, bmagic) == 0;
1229 }
1230 #else
1231 static inline int check_version(Elf_Shdr *sechdrs,
1232 unsigned int versindex,
1233 const char *symname,
1234 struct module *mod,
1235 const unsigned long *crc,
1236 const struct module *crc_owner)
1237 {
1238 return 1;
1239 }
1240
1241 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1242 unsigned int versindex,
1243 struct module *mod)
1244 {
1245 return 1;
1246 }
1247
1248 static inline int same_magic(const char *amagic, const char *bmagic,
1249 bool has_crcs)
1250 {
1251 return strcmp(amagic, bmagic) == 0;
1252 }
1253 #endif /* CONFIG_MODVERSIONS */
1254
1255 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1256 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1257 const struct load_info *info,
1258 const char *name,
1259 char ownername[])
1260 {
1261 struct module *owner;
1262 const struct kernel_symbol *sym;
1263 const unsigned long *crc;
1264 int err;
1265
1266 mutex_lock(&module_mutex);
1267 sym = find_symbol(name, &owner, &crc,
1268 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1269 if (!sym)
1270 goto unlock;
1271
1272 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1273 owner)) {
1274 sym = ERR_PTR(-EINVAL);
1275 goto getname;
1276 }
1277
1278 err = ref_module(mod, owner);
1279 if (err) {
1280 sym = ERR_PTR(err);
1281 goto getname;
1282 }
1283
1284 getname:
1285 /* We must make copy under the lock if we failed to get ref. */
1286 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1287 unlock:
1288 mutex_unlock(&module_mutex);
1289 return sym;
1290 }
1291
1292 static const struct kernel_symbol *
1293 resolve_symbol_wait(struct module *mod,
1294 const struct load_info *info,
1295 const char *name)
1296 {
1297 const struct kernel_symbol *ksym;
1298 char owner[MODULE_NAME_LEN];
1299
1300 if (wait_event_interruptible_timeout(module_wq,
1301 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1302 || PTR_ERR(ksym) != -EBUSY,
1303 30 * HZ) <= 0) {
1304 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1305 mod->name, owner);
1306 }
1307 return ksym;
1308 }
1309
1310 /*
1311 * /sys/module/foo/sections stuff
1312 * J. Corbet <corbet@lwn.net>
1313 */
1314 #ifdef CONFIG_SYSFS
1315
1316 #ifdef CONFIG_KALLSYMS
1317 static inline bool sect_empty(const Elf_Shdr *sect)
1318 {
1319 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1320 }
1321
1322 struct module_sect_attr
1323 {
1324 struct module_attribute mattr;
1325 char *name;
1326 unsigned long address;
1327 };
1328
1329 struct module_sect_attrs
1330 {
1331 struct attribute_group grp;
1332 unsigned int nsections;
1333 struct module_sect_attr attrs[0];
1334 };
1335
1336 static ssize_t module_sect_show(struct module_attribute *mattr,
1337 struct module_kobject *mk, char *buf)
1338 {
1339 struct module_sect_attr *sattr =
1340 container_of(mattr, struct module_sect_attr, mattr);
1341 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1342 }
1343
1344 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1345 {
1346 unsigned int section;
1347
1348 for (section = 0; section < sect_attrs->nsections; section++)
1349 kfree(sect_attrs->attrs[section].name);
1350 kfree(sect_attrs);
1351 }
1352
1353 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1354 {
1355 unsigned int nloaded = 0, i, size[2];
1356 struct module_sect_attrs *sect_attrs;
1357 struct module_sect_attr *sattr;
1358 struct attribute **gattr;
1359
1360 /* Count loaded sections and allocate structures */
1361 for (i = 0; i < info->hdr->e_shnum; i++)
1362 if (!sect_empty(&info->sechdrs[i]))
1363 nloaded++;
1364 size[0] = ALIGN(sizeof(*sect_attrs)
1365 + nloaded * sizeof(sect_attrs->attrs[0]),
1366 sizeof(sect_attrs->grp.attrs[0]));
1367 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1368 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1369 if (sect_attrs == NULL)
1370 return;
1371
1372 /* Setup section attributes. */
1373 sect_attrs->grp.name = "sections";
1374 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1375
1376 sect_attrs->nsections = 0;
1377 sattr = &sect_attrs->attrs[0];
1378 gattr = &sect_attrs->grp.attrs[0];
1379 for (i = 0; i < info->hdr->e_shnum; i++) {
1380 Elf_Shdr *sec = &info->sechdrs[i];
1381 if (sect_empty(sec))
1382 continue;
1383 sattr->address = sec->sh_addr;
1384 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1385 GFP_KERNEL);
1386 if (sattr->name == NULL)
1387 goto out;
1388 sect_attrs->nsections++;
1389 sysfs_attr_init(&sattr->mattr.attr);
1390 sattr->mattr.show = module_sect_show;
1391 sattr->mattr.store = NULL;
1392 sattr->mattr.attr.name = sattr->name;
1393 sattr->mattr.attr.mode = S_IRUGO;
1394 *(gattr++) = &(sattr++)->mattr.attr;
1395 }
1396 *gattr = NULL;
1397
1398 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1399 goto out;
1400
1401 mod->sect_attrs = sect_attrs;
1402 return;
1403 out:
1404 free_sect_attrs(sect_attrs);
1405 }
1406
1407 static void remove_sect_attrs(struct module *mod)
1408 {
1409 if (mod->sect_attrs) {
1410 sysfs_remove_group(&mod->mkobj.kobj,
1411 &mod->sect_attrs->grp);
1412 /* We are positive that no one is using any sect attrs
1413 * at this point. Deallocate immediately. */
1414 free_sect_attrs(mod->sect_attrs);
1415 mod->sect_attrs = NULL;
1416 }
1417 }
1418
1419 /*
1420 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1421 */
1422
1423 struct module_notes_attrs {
1424 struct kobject *dir;
1425 unsigned int notes;
1426 struct bin_attribute attrs[0];
1427 };
1428
1429 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1430 struct bin_attribute *bin_attr,
1431 char *buf, loff_t pos, size_t count)
1432 {
1433 /*
1434 * The caller checked the pos and count against our size.
1435 */
1436 memcpy(buf, bin_attr->private + pos, count);
1437 return count;
1438 }
1439
1440 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1441 unsigned int i)
1442 {
1443 if (notes_attrs->dir) {
1444 while (i-- > 0)
1445 sysfs_remove_bin_file(notes_attrs->dir,
1446 &notes_attrs->attrs[i]);
1447 kobject_put(notes_attrs->dir);
1448 }
1449 kfree(notes_attrs);
1450 }
1451
1452 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1453 {
1454 unsigned int notes, loaded, i;
1455 struct module_notes_attrs *notes_attrs;
1456 struct bin_attribute *nattr;
1457
1458 /* failed to create section attributes, so can't create notes */
1459 if (!mod->sect_attrs)
1460 return;
1461
1462 /* Count notes sections and allocate structures. */
1463 notes = 0;
1464 for (i = 0; i < info->hdr->e_shnum; i++)
1465 if (!sect_empty(&info->sechdrs[i]) &&
1466 (info->sechdrs[i].sh_type == SHT_NOTE))
1467 ++notes;
1468
1469 if (notes == 0)
1470 return;
1471
1472 notes_attrs = kzalloc(sizeof(*notes_attrs)
1473 + notes * sizeof(notes_attrs->attrs[0]),
1474 GFP_KERNEL);
1475 if (notes_attrs == NULL)
1476 return;
1477
1478 notes_attrs->notes = notes;
1479 nattr = &notes_attrs->attrs[0];
1480 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1481 if (sect_empty(&info->sechdrs[i]))
1482 continue;
1483 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1484 sysfs_bin_attr_init(nattr);
1485 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1486 nattr->attr.mode = S_IRUGO;
1487 nattr->size = info->sechdrs[i].sh_size;
1488 nattr->private = (void *) info->sechdrs[i].sh_addr;
1489 nattr->read = module_notes_read;
1490 ++nattr;
1491 }
1492 ++loaded;
1493 }
1494
1495 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1496 if (!notes_attrs->dir)
1497 goto out;
1498
1499 for (i = 0; i < notes; ++i)
1500 if (sysfs_create_bin_file(notes_attrs->dir,
1501 &notes_attrs->attrs[i]))
1502 goto out;
1503
1504 mod->notes_attrs = notes_attrs;
1505 return;
1506
1507 out:
1508 free_notes_attrs(notes_attrs, i);
1509 }
1510
1511 static void remove_notes_attrs(struct module *mod)
1512 {
1513 if (mod->notes_attrs)
1514 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1515 }
1516
1517 #else
1518
1519 static inline void add_sect_attrs(struct module *mod,
1520 const struct load_info *info)
1521 {
1522 }
1523
1524 static inline void remove_sect_attrs(struct module *mod)
1525 {
1526 }
1527
1528 static inline void add_notes_attrs(struct module *mod,
1529 const struct load_info *info)
1530 {
1531 }
1532
1533 static inline void remove_notes_attrs(struct module *mod)
1534 {
1535 }
1536 #endif /* CONFIG_KALLSYMS */
1537
1538 static void add_usage_links(struct module *mod)
1539 {
1540 #ifdef CONFIG_MODULE_UNLOAD
1541 struct module_use *use;
1542 int nowarn;
1543
1544 mutex_lock(&module_mutex);
1545 list_for_each_entry(use, &mod->target_list, target_list) {
1546 nowarn = sysfs_create_link(use->target->holders_dir,
1547 &mod->mkobj.kobj, mod->name);
1548 }
1549 mutex_unlock(&module_mutex);
1550 #endif
1551 }
1552
1553 static void del_usage_links(struct module *mod)
1554 {
1555 #ifdef CONFIG_MODULE_UNLOAD
1556 struct module_use *use;
1557
1558 mutex_lock(&module_mutex);
1559 list_for_each_entry(use, &mod->target_list, target_list)
1560 sysfs_remove_link(use->target->holders_dir, mod->name);
1561 mutex_unlock(&module_mutex);
1562 #endif
1563 }
1564
1565 static int module_add_modinfo_attrs(struct module *mod)
1566 {
1567 struct module_attribute *attr;
1568 struct module_attribute *temp_attr;
1569 int error = 0;
1570 int i;
1571
1572 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1573 (ARRAY_SIZE(modinfo_attrs) + 1)),
1574 GFP_KERNEL);
1575 if (!mod->modinfo_attrs)
1576 return -ENOMEM;
1577
1578 temp_attr = mod->modinfo_attrs;
1579 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1580 if (!attr->test ||
1581 (attr->test && attr->test(mod))) {
1582 memcpy(temp_attr, attr, sizeof(*temp_attr));
1583 sysfs_attr_init(&temp_attr->attr);
1584 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1585 ++temp_attr;
1586 }
1587 }
1588 return error;
1589 }
1590
1591 static void module_remove_modinfo_attrs(struct module *mod)
1592 {
1593 struct module_attribute *attr;
1594 int i;
1595
1596 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1597 /* pick a field to test for end of list */
1598 if (!attr->attr.name)
1599 break;
1600 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1601 if (attr->free)
1602 attr->free(mod);
1603 }
1604 kfree(mod->modinfo_attrs);
1605 }
1606
1607 static int mod_sysfs_init(struct module *mod)
1608 {
1609 int err;
1610 struct kobject *kobj;
1611
1612 if (!module_sysfs_initialized) {
1613 printk(KERN_ERR "%s: module sysfs not initialized\n",
1614 mod->name);
1615 err = -EINVAL;
1616 goto out;
1617 }
1618
1619 kobj = kset_find_obj(module_kset, mod->name);
1620 if (kobj) {
1621 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1622 kobject_put(kobj);
1623 err = -EINVAL;
1624 goto out;
1625 }
1626
1627 mod->mkobj.mod = mod;
1628
1629 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1630 mod->mkobj.kobj.kset = module_kset;
1631 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1632 "%s", mod->name);
1633 if (err)
1634 kobject_put(&mod->mkobj.kobj);
1635
1636 /* delay uevent until full sysfs population */
1637 out:
1638 return err;
1639 }
1640
1641 static int mod_sysfs_setup(struct module *mod,
1642 const struct load_info *info,
1643 struct kernel_param *kparam,
1644 unsigned int num_params)
1645 {
1646 int err;
1647
1648 err = mod_sysfs_init(mod);
1649 if (err)
1650 goto out;
1651
1652 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1653 if (!mod->holders_dir) {
1654 err = -ENOMEM;
1655 goto out_unreg;
1656 }
1657
1658 err = module_param_sysfs_setup(mod, kparam, num_params);
1659 if (err)
1660 goto out_unreg_holders;
1661
1662 err = module_add_modinfo_attrs(mod);
1663 if (err)
1664 goto out_unreg_param;
1665
1666 add_usage_links(mod);
1667 add_sect_attrs(mod, info);
1668 add_notes_attrs(mod, info);
1669
1670 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1671 return 0;
1672
1673 out_unreg_param:
1674 module_param_sysfs_remove(mod);
1675 out_unreg_holders:
1676 kobject_put(mod->holders_dir);
1677 out_unreg:
1678 kobject_put(&mod->mkobj.kobj);
1679 out:
1680 return err;
1681 }
1682
1683 static void mod_sysfs_fini(struct module *mod)
1684 {
1685 remove_notes_attrs(mod);
1686 remove_sect_attrs(mod);
1687 kobject_put(&mod->mkobj.kobj);
1688 }
1689
1690 #else /* !CONFIG_SYSFS */
1691
1692 static int mod_sysfs_setup(struct module *mod,
1693 const struct load_info *info,
1694 struct kernel_param *kparam,
1695 unsigned int num_params)
1696 {
1697 return 0;
1698 }
1699
1700 static void mod_sysfs_fini(struct module *mod)
1701 {
1702 }
1703
1704 static void module_remove_modinfo_attrs(struct module *mod)
1705 {
1706 }
1707
1708 static void del_usage_links(struct module *mod)
1709 {
1710 }
1711
1712 #endif /* CONFIG_SYSFS */
1713
1714 static void mod_sysfs_teardown(struct module *mod)
1715 {
1716 del_usage_links(mod);
1717 module_remove_modinfo_attrs(mod);
1718 module_param_sysfs_remove(mod);
1719 kobject_put(mod->mkobj.drivers_dir);
1720 kobject_put(mod->holders_dir);
1721 mod_sysfs_fini(mod);
1722 }
1723
1724 /*
1725 * unlink the module with the whole machine is stopped with interrupts off
1726 * - this defends against kallsyms not taking locks
1727 */
1728 static int __unlink_module(void *_mod)
1729 {
1730 struct module *mod = _mod;
1731 list_del(&mod->list);
1732 module_bug_cleanup(mod);
1733 return 0;
1734 }
1735
1736 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1737 /*
1738 * LKM RO/NX protection: protect module's text/ro-data
1739 * from modification and any data from execution.
1740 */
1741 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1742 {
1743 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1744 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1745
1746 if (end_pfn > begin_pfn)
1747 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1748 }
1749
1750 static void set_section_ro_nx(void *base,
1751 unsigned long text_size,
1752 unsigned long ro_size,
1753 unsigned long total_size)
1754 {
1755 /* begin and end PFNs of the current subsection */
1756 unsigned long begin_pfn;
1757 unsigned long end_pfn;
1758
1759 /*
1760 * Set RO for module text and RO-data:
1761 * - Always protect first page.
1762 * - Do not protect last partial page.
1763 */
1764 if (ro_size > 0)
1765 set_page_attributes(base, base + ro_size, set_memory_ro);
1766
1767 /*
1768 * Set NX permissions for module data:
1769 * - Do not protect first partial page.
1770 * - Always protect last page.
1771 */
1772 if (total_size > text_size) {
1773 begin_pfn = PFN_UP((unsigned long)base + text_size);
1774 end_pfn = PFN_UP((unsigned long)base + total_size);
1775 if (end_pfn > begin_pfn)
1776 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1777 }
1778 }
1779
1780 static void unset_module_core_ro_nx(struct module *mod)
1781 {
1782 set_page_attributes(mod->module_core + mod->core_text_size,
1783 mod->module_core + mod->core_size,
1784 set_memory_x);
1785 set_page_attributes(mod->module_core,
1786 mod->module_core + mod->core_ro_size,
1787 set_memory_rw);
1788 }
1789
1790 static void unset_module_init_ro_nx(struct module *mod)
1791 {
1792 set_page_attributes(mod->module_init + mod->init_text_size,
1793 mod->module_init + mod->init_size,
1794 set_memory_x);
1795 set_page_attributes(mod->module_init,
1796 mod->module_init + mod->init_ro_size,
1797 set_memory_rw);
1798 }
1799
1800 /* Iterate through all modules and set each module's text as RW */
1801 void set_all_modules_text_rw(void)
1802 {
1803 struct module *mod;
1804
1805 mutex_lock(&module_mutex);
1806 list_for_each_entry_rcu(mod, &modules, list) {
1807 if (mod->state == MODULE_STATE_UNFORMED)
1808 continue;
1809 if ((mod->module_core) && (mod->core_text_size)) {
1810 set_page_attributes(mod->module_core,
1811 mod->module_core + mod->core_text_size,
1812 set_memory_rw);
1813 }
1814 if ((mod->module_init) && (mod->init_text_size)) {
1815 set_page_attributes(mod->module_init,
1816 mod->module_init + mod->init_text_size,
1817 set_memory_rw);
1818 }
1819 }
1820 mutex_unlock(&module_mutex);
1821 }
1822
1823 /* Iterate through all modules and set each module's text as RO */
1824 void set_all_modules_text_ro(void)
1825 {
1826 struct module *mod;
1827
1828 mutex_lock(&module_mutex);
1829 list_for_each_entry_rcu(mod, &modules, list) {
1830 if (mod->state == MODULE_STATE_UNFORMED)
1831 continue;
1832 if ((mod->module_core) && (mod->core_text_size)) {
1833 set_page_attributes(mod->module_core,
1834 mod->module_core + mod->core_text_size,
1835 set_memory_ro);
1836 }
1837 if ((mod->module_init) && (mod->init_text_size)) {
1838 set_page_attributes(mod->module_init,
1839 mod->module_init + mod->init_text_size,
1840 set_memory_ro);
1841 }
1842 }
1843 mutex_unlock(&module_mutex);
1844 }
1845 #else
1846 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1847 static void unset_module_core_ro_nx(struct module *mod) { }
1848 static void unset_module_init_ro_nx(struct module *mod) { }
1849 #endif
1850
1851 void __weak module_free(struct module *mod, void *module_region)
1852 {
1853 vfree(module_region);
1854 }
1855
1856 void __weak module_arch_cleanup(struct module *mod)
1857 {
1858 }
1859
1860 /* Free a module, remove from lists, etc. */
1861 static void free_module(struct module *mod)
1862 {
1863 trace_module_free(mod);
1864
1865 mod_sysfs_teardown(mod);
1866
1867 /* We leave it in list to prevent duplicate loads, but make sure
1868 * that noone uses it while it's being deconstructed. */
1869 mod->state = MODULE_STATE_UNFORMED;
1870
1871 /* Remove dynamic debug info */
1872 ddebug_remove_module(mod->name);
1873
1874 /* Arch-specific cleanup. */
1875 module_arch_cleanup(mod);
1876
1877 /* Module unload stuff */
1878 module_unload_free(mod);
1879
1880 /* Free any allocated parameters. */
1881 destroy_params(mod->kp, mod->num_kp);
1882
1883 /* Now we can delete it from the lists */
1884 mutex_lock(&module_mutex);
1885 stop_machine(__unlink_module, mod, NULL);
1886 mutex_unlock(&module_mutex);
1887
1888 /* This may be NULL, but that's OK */
1889 unset_module_init_ro_nx(mod);
1890 module_free(mod, mod->module_init);
1891 kfree(mod->args);
1892 percpu_modfree(mod);
1893
1894 /* Free lock-classes: */
1895 lockdep_free_key_range(mod->module_core, mod->core_size);
1896
1897 /* Finally, free the core (containing the module structure) */
1898 unset_module_core_ro_nx(mod);
1899 module_free(mod, mod->module_core);
1900
1901 #ifdef CONFIG_MPU
1902 update_protections(current->mm);
1903 #endif
1904 }
1905
1906 void *__symbol_get(const char *symbol)
1907 {
1908 struct module *owner;
1909 const struct kernel_symbol *sym;
1910
1911 preempt_disable();
1912 sym = find_symbol(symbol, &owner, NULL, true, true);
1913 if (sym && strong_try_module_get(owner))
1914 sym = NULL;
1915 preempt_enable();
1916
1917 return sym ? (void *)sym->value : NULL;
1918 }
1919 EXPORT_SYMBOL_GPL(__symbol_get);
1920
1921 /*
1922 * Ensure that an exported symbol [global namespace] does not already exist
1923 * in the kernel or in some other module's exported symbol table.
1924 *
1925 * You must hold the module_mutex.
1926 */
1927 static int verify_export_symbols(struct module *mod)
1928 {
1929 unsigned int i;
1930 struct module *owner;
1931 const struct kernel_symbol *s;
1932 struct {
1933 const struct kernel_symbol *sym;
1934 unsigned int num;
1935 } arr[] = {
1936 { mod->syms, mod->num_syms },
1937 { mod->gpl_syms, mod->num_gpl_syms },
1938 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1939 #ifdef CONFIG_UNUSED_SYMBOLS
1940 { mod->unused_syms, mod->num_unused_syms },
1941 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1942 #endif
1943 };
1944
1945 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1946 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1947 if (find_symbol(s->name, &owner, NULL, true, false)) {
1948 printk(KERN_ERR
1949 "%s: exports duplicate symbol %s"
1950 " (owned by %s)\n",
1951 mod->name, s->name, module_name(owner));
1952 return -ENOEXEC;
1953 }
1954 }
1955 }
1956 return 0;
1957 }
1958
1959 /* Change all symbols so that st_value encodes the pointer directly. */
1960 static int simplify_symbols(struct module *mod, const struct load_info *info)
1961 {
1962 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1963 Elf_Sym *sym = (void *)symsec->sh_addr;
1964 unsigned long secbase;
1965 unsigned int i;
1966 int ret = 0;
1967 const struct kernel_symbol *ksym;
1968
1969 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1970 const char *name = info->strtab + sym[i].st_name;
1971
1972 switch (sym[i].st_shndx) {
1973 case SHN_COMMON:
1974 /* We compiled with -fno-common. These are not
1975 supposed to happen. */
1976 pr_debug("Common symbol: %s\n", name);
1977 printk("%s: please compile with -fno-common\n",
1978 mod->name);
1979 ret = -ENOEXEC;
1980 break;
1981
1982 case SHN_ABS:
1983 /* Don't need to do anything */
1984 pr_debug("Absolute symbol: 0x%08lx\n",
1985 (long)sym[i].st_value);
1986 break;
1987
1988 case SHN_UNDEF:
1989 ksym = resolve_symbol_wait(mod, info, name);
1990 /* Ok if resolved. */
1991 if (ksym && !IS_ERR(ksym)) {
1992 sym[i].st_value = ksym->value;
1993 break;
1994 }
1995
1996 /* Ok if weak. */
1997 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1998 break;
1999
2000 printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
2001 mod->name, name, PTR_ERR(ksym));
2002 ret = PTR_ERR(ksym) ?: -ENOENT;
2003 break;
2004
2005 default:
2006 /* Divert to percpu allocation if a percpu var. */
2007 if (sym[i].st_shndx == info->index.pcpu)
2008 secbase = (unsigned long)mod_percpu(mod);
2009 else
2010 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2011 sym[i].st_value += secbase;
2012 break;
2013 }
2014 }
2015
2016 return ret;
2017 }
2018
2019 static int apply_relocations(struct module *mod, const struct load_info *info)
2020 {
2021 unsigned int i;
2022 int err = 0;
2023
2024 /* Now do relocations. */
2025 for (i = 1; i < info->hdr->e_shnum; i++) {
2026 unsigned int infosec = info->sechdrs[i].sh_info;
2027
2028 /* Not a valid relocation section? */
2029 if (infosec >= info->hdr->e_shnum)
2030 continue;
2031
2032 /* Don't bother with non-allocated sections */
2033 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2034 continue;
2035
2036 if (info->sechdrs[i].sh_type == SHT_REL)
2037 err = apply_relocate(info->sechdrs, info->strtab,
2038 info->index.sym, i, mod);
2039 else if (info->sechdrs[i].sh_type == SHT_RELA)
2040 err = apply_relocate_add(info->sechdrs, info->strtab,
2041 info->index.sym, i, mod);
2042 if (err < 0)
2043 break;
2044 }
2045 return err;
2046 }
2047
2048 /* Additional bytes needed by arch in front of individual sections */
2049 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2050 unsigned int section)
2051 {
2052 /* default implementation just returns zero */
2053 return 0;
2054 }
2055
2056 /* Update size with this section: return offset. */
2057 static long get_offset(struct module *mod, unsigned int *size,
2058 Elf_Shdr *sechdr, unsigned int section)
2059 {
2060 long ret;
2061
2062 *size += arch_mod_section_prepend(mod, section);
2063 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2064 *size = ret + sechdr->sh_size;
2065 return ret;
2066 }
2067
2068 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2069 might -- code, read-only data, read-write data, small data. Tally
2070 sizes, and place the offsets into sh_entsize fields: high bit means it
2071 belongs in init. */
2072 static void layout_sections(struct module *mod, struct load_info *info)
2073 {
2074 static unsigned long const masks[][2] = {
2075 /* NOTE: all executable code must be the first section
2076 * in this array; otherwise modify the text_size
2077 * finder in the two loops below */
2078 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2079 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2080 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2081 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2082 };
2083 unsigned int m, i;
2084
2085 for (i = 0; i < info->hdr->e_shnum; i++)
2086 info->sechdrs[i].sh_entsize = ~0UL;
2087
2088 pr_debug("Core section allocation order:\n");
2089 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2090 for (i = 0; i < info->hdr->e_shnum; ++i) {
2091 Elf_Shdr *s = &info->sechdrs[i];
2092 const char *sname = info->secstrings + s->sh_name;
2093
2094 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2095 || (s->sh_flags & masks[m][1])
2096 || s->sh_entsize != ~0UL
2097 || strstarts(sname, ".init"))
2098 continue;
2099 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2100 pr_debug("\t%s\n", sname);
2101 }
2102 switch (m) {
2103 case 0: /* executable */
2104 mod->core_size = debug_align(mod->core_size);
2105 mod->core_text_size = mod->core_size;
2106 break;
2107 case 1: /* RO: text and ro-data */
2108 mod->core_size = debug_align(mod->core_size);
2109 mod->core_ro_size = mod->core_size;
2110 break;
2111 case 3: /* whole core */
2112 mod->core_size = debug_align(mod->core_size);
2113 break;
2114 }
2115 }
2116
2117 pr_debug("Init section allocation order:\n");
2118 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2119 for (i = 0; i < info->hdr->e_shnum; ++i) {
2120 Elf_Shdr *s = &info->sechdrs[i];
2121 const char *sname = info->secstrings + s->sh_name;
2122
2123 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2124 || (s->sh_flags & masks[m][1])
2125 || s->sh_entsize != ~0UL
2126 || !strstarts(sname, ".init"))
2127 continue;
2128 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2129 | INIT_OFFSET_MASK);
2130 pr_debug("\t%s\n", sname);
2131 }
2132 switch (m) {
2133 case 0: /* executable */
2134 mod->init_size = debug_align(mod->init_size);
2135 mod->init_text_size = mod->init_size;
2136 break;
2137 case 1: /* RO: text and ro-data */
2138 mod->init_size = debug_align(mod->init_size);
2139 mod->init_ro_size = mod->init_size;
2140 break;
2141 case 3: /* whole init */
2142 mod->init_size = debug_align(mod->init_size);
2143 break;
2144 }
2145 }
2146 }
2147
2148 static void set_license(struct module *mod, const char *license)
2149 {
2150 if (!license)
2151 license = "unspecified";
2152
2153 if (!license_is_gpl_compatible(license)) {
2154 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2155 printk(KERN_WARNING "%s: module license '%s' taints "
2156 "kernel.\n", mod->name, license);
2157 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2158 LOCKDEP_NOW_UNRELIABLE);
2159 }
2160 }
2161
2162 /* Parse tag=value strings from .modinfo section */
2163 static char *next_string(char *string, unsigned long *secsize)
2164 {
2165 /* Skip non-zero chars */
2166 while (string[0]) {
2167 string++;
2168 if ((*secsize)-- <= 1)
2169 return NULL;
2170 }
2171
2172 /* Skip any zero padding. */
2173 while (!string[0]) {
2174 string++;
2175 if ((*secsize)-- <= 1)
2176 return NULL;
2177 }
2178 return string;
2179 }
2180
2181 static char *get_modinfo(struct load_info *info, const char *tag)
2182 {
2183 char *p;
2184 unsigned int taglen = strlen(tag);
2185 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2186 unsigned long size = infosec->sh_size;
2187
2188 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2189 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2190 return p + taglen + 1;
2191 }
2192 return NULL;
2193 }
2194
2195 static void setup_modinfo(struct module *mod, struct load_info *info)
2196 {
2197 struct module_attribute *attr;
2198 int i;
2199
2200 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2201 if (attr->setup)
2202 attr->setup(mod, get_modinfo(info, attr->attr.name));
2203 }
2204 }
2205
2206 static void free_modinfo(struct module *mod)
2207 {
2208 struct module_attribute *attr;
2209 int i;
2210
2211 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2212 if (attr->free)
2213 attr->free(mod);
2214 }
2215 }
2216
2217 #ifdef CONFIG_KALLSYMS
2218
2219 /* lookup symbol in given range of kernel_symbols */
2220 static const struct kernel_symbol *lookup_symbol(const char *name,
2221 const struct kernel_symbol *start,
2222 const struct kernel_symbol *stop)
2223 {
2224 return bsearch(name, start, stop - start,
2225 sizeof(struct kernel_symbol), cmp_name);
2226 }
2227
2228 static int is_exported(const char *name, unsigned long value,
2229 const struct module *mod)
2230 {
2231 const struct kernel_symbol *ks;
2232 if (!mod)
2233 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2234 else
2235 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2236 return ks != NULL && ks->value == value;
2237 }
2238
2239 /* As per nm */
2240 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2241 {
2242 const Elf_Shdr *sechdrs = info->sechdrs;
2243
2244 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2245 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2246 return 'v';
2247 else
2248 return 'w';
2249 }
2250 if (sym->st_shndx == SHN_UNDEF)
2251 return 'U';
2252 if (sym->st_shndx == SHN_ABS)
2253 return 'a';
2254 if (sym->st_shndx >= SHN_LORESERVE)
2255 return '?';
2256 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2257 return 't';
2258 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2259 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2260 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2261 return 'r';
2262 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2263 return 'g';
2264 else
2265 return 'd';
2266 }
2267 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2268 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2269 return 's';
2270 else
2271 return 'b';
2272 }
2273 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2274 ".debug")) {
2275 return 'n';
2276 }
2277 return '?';
2278 }
2279
2280 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2281 unsigned int shnum)
2282 {
2283 const Elf_Shdr *sec;
2284
2285 if (src->st_shndx == SHN_UNDEF
2286 || src->st_shndx >= shnum
2287 || !src->st_name)
2288 return false;
2289
2290 sec = sechdrs + src->st_shndx;
2291 if (!(sec->sh_flags & SHF_ALLOC)
2292 #ifndef CONFIG_KALLSYMS_ALL
2293 || !(sec->sh_flags & SHF_EXECINSTR)
2294 #endif
2295 || (sec->sh_entsize & INIT_OFFSET_MASK))
2296 return false;
2297
2298 return true;
2299 }
2300
2301 /*
2302 * We only allocate and copy the strings needed by the parts of symtab
2303 * we keep. This is simple, but has the effect of making multiple
2304 * copies of duplicates. We could be more sophisticated, see
2305 * linux-kernel thread starting with
2306 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2307 */
2308 static void layout_symtab(struct module *mod, struct load_info *info)
2309 {
2310 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2311 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2312 const Elf_Sym *src;
2313 unsigned int i, nsrc, ndst, strtab_size = 0;
2314
2315 /* Put symbol section at end of init part of module. */
2316 symsect->sh_flags |= SHF_ALLOC;
2317 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2318 info->index.sym) | INIT_OFFSET_MASK;
2319 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2320
2321 src = (void *)info->hdr + symsect->sh_offset;
2322 nsrc = symsect->sh_size / sizeof(*src);
2323
2324 /* Compute total space required for the core symbols' strtab. */
2325 for (ndst = i = 0; i < nsrc; i++) {
2326 if (i == 0 ||
2327 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2328 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2329 ndst++;
2330 }
2331 }
2332
2333 /* Append room for core symbols at end of core part. */
2334 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2335 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2336 mod->core_size += strtab_size;
2337
2338 /* Put string table section at end of init part of module. */
2339 strsect->sh_flags |= SHF_ALLOC;
2340 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2341 info->index.str) | INIT_OFFSET_MASK;
2342 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2343 }
2344
2345 static void add_kallsyms(struct module *mod, const struct load_info *info)
2346 {
2347 unsigned int i, ndst;
2348 const Elf_Sym *src;
2349 Elf_Sym *dst;
2350 char *s;
2351 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2352
2353 mod->symtab = (void *)symsec->sh_addr;
2354 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2355 /* Make sure we get permanent strtab: don't use info->strtab. */
2356 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2357
2358 /* Set types up while we still have access to sections. */
2359 for (i = 0; i < mod->num_symtab; i++)
2360 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2361
2362 mod->core_symtab = dst = mod->module_core + info->symoffs;
2363 mod->core_strtab = s = mod->module_core + info->stroffs;
2364 src = mod->symtab;
2365 for (ndst = i = 0; i < mod->num_symtab; i++) {
2366 if (i == 0 ||
2367 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2368 dst[ndst] = src[i];
2369 dst[ndst++].st_name = s - mod->core_strtab;
2370 s += strlcpy(s, &mod->strtab[src[i].st_name],
2371 KSYM_NAME_LEN) + 1;
2372 }
2373 }
2374 mod->core_num_syms = ndst;
2375 }
2376 #else
2377 static inline void layout_symtab(struct module *mod, struct load_info *info)
2378 {
2379 }
2380
2381 static void add_kallsyms(struct module *mod, const struct load_info *info)
2382 {
2383 }
2384 #endif /* CONFIG_KALLSYMS */
2385
2386 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2387 {
2388 if (!debug)
2389 return;
2390 #ifdef CONFIG_DYNAMIC_DEBUG
2391 if (ddebug_add_module(debug, num, debug->modname))
2392 printk(KERN_ERR "dynamic debug error adding module: %s\n",
2393 debug->modname);
2394 #endif
2395 }
2396
2397 static void dynamic_debug_remove(struct _ddebug *debug)
2398 {
2399 if (debug)
2400 ddebug_remove_module(debug->modname);
2401 }
2402
2403 void * __weak module_alloc(unsigned long size)
2404 {
2405 return vmalloc_exec(size);
2406 }
2407
2408 static void *module_alloc_update_bounds(unsigned long size)
2409 {
2410 void *ret = module_alloc(size);
2411
2412 if (ret) {
2413 mutex_lock(&module_mutex);
2414 /* Update module bounds. */
2415 if ((unsigned long)ret < module_addr_min)
2416 module_addr_min = (unsigned long)ret;
2417 if ((unsigned long)ret + size > module_addr_max)
2418 module_addr_max = (unsigned long)ret + size;
2419 mutex_unlock(&module_mutex);
2420 }
2421 return ret;
2422 }
2423
2424 #ifdef CONFIG_DEBUG_KMEMLEAK
2425 static void kmemleak_load_module(const struct module *mod,
2426 const struct load_info *info)
2427 {
2428 unsigned int i;
2429
2430 /* only scan the sections containing data */
2431 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2432
2433 for (i = 1; i < info->hdr->e_shnum; i++) {
2434 /* Scan all writable sections that's not executable */
2435 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2436 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2437 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2438 continue;
2439
2440 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2441 info->sechdrs[i].sh_size, GFP_KERNEL);
2442 }
2443 }
2444 #else
2445 static inline void kmemleak_load_module(const struct module *mod,
2446 const struct load_info *info)
2447 {
2448 }
2449 #endif
2450
2451 #ifdef CONFIG_MODULE_SIG
2452 static int module_sig_check(struct load_info *info)
2453 {
2454 int err = -ENOKEY;
2455 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2456 const void *mod = info->hdr;
2457
2458 if (info->len > markerlen &&
2459 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2460 /* We truncate the module to discard the signature */
2461 info->len -= markerlen;
2462 err = mod_verify_sig(mod, &info->len);
2463 }
2464
2465 if (!err) {
2466 info->sig_ok = true;
2467 return 0;
2468 }
2469
2470 /* Not having a signature is only an error if we're strict. */
2471 if (err < 0 && fips_enabled)
2472 panic("Module verification failed with error %d in FIPS mode\n",
2473 err);
2474 if (err == -ENOKEY && !sig_enforce)
2475 err = 0;
2476
2477 return err;
2478 }
2479 #else /* !CONFIG_MODULE_SIG */
2480 static int module_sig_check(struct load_info *info)
2481 {
2482 return 0;
2483 }
2484 #endif /* !CONFIG_MODULE_SIG */
2485
2486 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2487 static int elf_header_check(struct load_info *info)
2488 {
2489 if (info->len < sizeof(*(info->hdr)))
2490 return -ENOEXEC;
2491
2492 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2493 || info->hdr->e_type != ET_REL
2494 || !elf_check_arch(info->hdr)
2495 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2496 return -ENOEXEC;
2497
2498 if (info->hdr->e_shoff >= info->len
2499 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2500 info->len - info->hdr->e_shoff))
2501 return -ENOEXEC;
2502
2503 return 0;
2504 }
2505
2506 /* Sets info->hdr and info->len. */
2507 static int copy_module_from_user(const void __user *umod, unsigned long len,
2508 struct load_info *info)
2509 {
2510 int err;
2511
2512 info->len = len;
2513 if (info->len < sizeof(*(info->hdr)))
2514 return -ENOEXEC;
2515
2516 err = security_kernel_module_from_file(NULL);
2517 if (err)
2518 return err;
2519
2520 /* Suck in entire file: we'll want most of it. */
2521 info->hdr = vmalloc(info->len);
2522 if (!info->hdr)
2523 return -ENOMEM;
2524
2525 if (copy_from_user(info->hdr, umod, info->len) != 0) {
2526 vfree(info->hdr);
2527 return -EFAULT;
2528 }
2529
2530 return 0;
2531 }
2532
2533 /* Sets info->hdr and info->len. */
2534 static int copy_module_from_fd(int fd, struct load_info *info)
2535 {
2536 struct file *file;
2537 int err;
2538 struct kstat stat;
2539 loff_t pos;
2540 ssize_t bytes = 0;
2541
2542 file = fget(fd);
2543 if (!file)
2544 return -ENOEXEC;
2545
2546 err = security_kernel_module_from_file(file);
2547 if (err)
2548 goto out;
2549
2550 err = vfs_getattr(&file->f_path, &stat);
2551 if (err)
2552 goto out;
2553
2554 if (stat.size > INT_MAX) {
2555 err = -EFBIG;
2556 goto out;
2557 }
2558
2559 /* Don't hand 0 to vmalloc, it whines. */
2560 if (stat.size == 0) {
2561 err = -EINVAL;
2562 goto out;
2563 }
2564
2565 info->hdr = vmalloc(stat.size);
2566 if (!info->hdr) {
2567 err = -ENOMEM;
2568 goto out;
2569 }
2570
2571 pos = 0;
2572 while (pos < stat.size) {
2573 bytes = kernel_read(file, pos, (char *)(info->hdr) + pos,
2574 stat.size - pos);
2575 if (bytes < 0) {
2576 vfree(info->hdr);
2577 err = bytes;
2578 goto out;
2579 }
2580 if (bytes == 0)
2581 break;
2582 pos += bytes;
2583 }
2584 info->len = pos;
2585
2586 out:
2587 fput(file);
2588 return err;
2589 }
2590
2591 static void free_copy(struct load_info *info)
2592 {
2593 vfree(info->hdr);
2594 }
2595
2596 static int rewrite_section_headers(struct load_info *info, int flags)
2597 {
2598 unsigned int i;
2599
2600 /* This should always be true, but let's be sure. */
2601 info->sechdrs[0].sh_addr = 0;
2602
2603 for (i = 1; i < info->hdr->e_shnum; i++) {
2604 Elf_Shdr *shdr = &info->sechdrs[i];
2605 if (shdr->sh_type != SHT_NOBITS
2606 && info->len < shdr->sh_offset + shdr->sh_size) {
2607 printk(KERN_ERR "Module len %lu truncated\n",
2608 info->len);
2609 return -ENOEXEC;
2610 }
2611
2612 /* Mark all sections sh_addr with their address in the
2613 temporary image. */
2614 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2615
2616 #ifndef CONFIG_MODULE_UNLOAD
2617 /* Don't load .exit sections */
2618 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2619 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2620 #endif
2621 }
2622
2623 /* Track but don't keep modinfo and version sections. */
2624 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2625 info->index.vers = 0; /* Pretend no __versions section! */
2626 else
2627 info->index.vers = find_sec(info, "__versions");
2628 info->index.info = find_sec(info, ".modinfo");
2629 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2630 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2631 return 0;
2632 }
2633
2634 /*
2635 * Set up our basic convenience variables (pointers to section headers,
2636 * search for module section index etc), and do some basic section
2637 * verification.
2638 *
2639 * Return the temporary module pointer (we'll replace it with the final
2640 * one when we move the module sections around).
2641 */
2642 static struct module *setup_load_info(struct load_info *info, int flags)
2643 {
2644 unsigned int i;
2645 int err;
2646 struct module *mod;
2647
2648 /* Set up the convenience variables */
2649 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2650 info->secstrings = (void *)info->hdr
2651 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2652
2653 err = rewrite_section_headers(info, flags);
2654 if (err)
2655 return ERR_PTR(err);
2656
2657 /* Find internal symbols and strings. */
2658 for (i = 1; i < info->hdr->e_shnum; i++) {
2659 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2660 info->index.sym = i;
2661 info->index.str = info->sechdrs[i].sh_link;
2662 info->strtab = (char *)info->hdr
2663 + info->sechdrs[info->index.str].sh_offset;
2664 break;
2665 }
2666 }
2667
2668 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2669 if (!info->index.mod) {
2670 printk(KERN_WARNING "No module found in object\n");
2671 return ERR_PTR(-ENOEXEC);
2672 }
2673 /* This is temporary: point mod into copy of data. */
2674 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2675
2676 if (info->index.sym == 0) {
2677 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2678 mod->name);
2679 return ERR_PTR(-ENOEXEC);
2680 }
2681
2682 info->index.pcpu = find_pcpusec(info);
2683
2684 /* Check module struct version now, before we try to use module. */
2685 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2686 return ERR_PTR(-ENOEXEC);
2687
2688 return mod;
2689 }
2690
2691 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2692 {
2693 const char *modmagic = get_modinfo(info, "vermagic");
2694 int err;
2695
2696 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2697 modmagic = NULL;
2698
2699 /* This is allowed: modprobe --force will invalidate it. */
2700 if (!modmagic) {
2701 err = try_to_force_load(mod, "bad vermagic");
2702 if (err)
2703 return err;
2704 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2705 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2706 mod->name, modmagic, vermagic);
2707 return -ENOEXEC;
2708 }
2709
2710 if (!get_modinfo(info, "intree"))
2711 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2712
2713 if (get_modinfo(info, "staging")) {
2714 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2715 printk(KERN_WARNING "%s: module is from the staging directory,"
2716 " the quality is unknown, you have been warned.\n",
2717 mod->name);
2718 }
2719
2720 /* Set up license info based on the info section */
2721 set_license(mod, get_modinfo(info, "license"));
2722
2723 return 0;
2724 }
2725
2726 static void find_module_sections(struct module *mod, struct load_info *info)
2727 {
2728 mod->kp = section_objs(info, "__param",
2729 sizeof(*mod->kp), &mod->num_kp);
2730 mod->syms = section_objs(info, "__ksymtab",
2731 sizeof(*mod->syms), &mod->num_syms);
2732 mod->crcs = section_addr(info, "__kcrctab");
2733 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2734 sizeof(*mod->gpl_syms),
2735 &mod->num_gpl_syms);
2736 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2737 mod->gpl_future_syms = section_objs(info,
2738 "__ksymtab_gpl_future",
2739 sizeof(*mod->gpl_future_syms),
2740 &mod->num_gpl_future_syms);
2741 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2742
2743 #ifdef CONFIG_UNUSED_SYMBOLS
2744 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2745 sizeof(*mod->unused_syms),
2746 &mod->num_unused_syms);
2747 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2748 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2749 sizeof(*mod->unused_gpl_syms),
2750 &mod->num_unused_gpl_syms);
2751 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2752 #endif
2753 #ifdef CONFIG_CONSTRUCTORS
2754 mod->ctors = section_objs(info, ".ctors",
2755 sizeof(*mod->ctors), &mod->num_ctors);
2756 #endif
2757
2758 #ifdef CONFIG_TRACEPOINTS
2759 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2760 sizeof(*mod->tracepoints_ptrs),
2761 &mod->num_tracepoints);
2762 #endif
2763 #ifdef HAVE_JUMP_LABEL
2764 mod->jump_entries = section_objs(info, "__jump_table",
2765 sizeof(*mod->jump_entries),
2766 &mod->num_jump_entries);
2767 #endif
2768 #ifdef CONFIG_EVENT_TRACING
2769 mod->trace_events = section_objs(info, "_ftrace_events",
2770 sizeof(*mod->trace_events),
2771 &mod->num_trace_events);
2772 #endif
2773 #ifdef CONFIG_TRACING
2774 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2775 sizeof(*mod->trace_bprintk_fmt_start),
2776 &mod->num_trace_bprintk_fmt);
2777 #endif
2778 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2779 /* sechdrs[0].sh_size is always zero */
2780 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2781 sizeof(*mod->ftrace_callsites),
2782 &mod->num_ftrace_callsites);
2783 #endif
2784
2785 mod->extable = section_objs(info, "__ex_table",
2786 sizeof(*mod->extable), &mod->num_exentries);
2787
2788 if (section_addr(info, "__obsparm"))
2789 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2790 mod->name);
2791
2792 info->debug = section_objs(info, "__verbose",
2793 sizeof(*info->debug), &info->num_debug);
2794 }
2795
2796 static int move_module(struct module *mod, struct load_info *info)
2797 {
2798 int i;
2799 void *ptr;
2800
2801 /* Do the allocs. */
2802 ptr = module_alloc_update_bounds(mod->core_size);
2803 /*
2804 * The pointer to this block is stored in the module structure
2805 * which is inside the block. Just mark it as not being a
2806 * leak.
2807 */
2808 kmemleak_not_leak(ptr);
2809 if (!ptr)
2810 return -ENOMEM;
2811
2812 memset(ptr, 0, mod->core_size);
2813 mod->module_core = ptr;
2814
2815 if (mod->init_size) {
2816 ptr = module_alloc_update_bounds(mod->init_size);
2817 /*
2818 * The pointer to this block is stored in the module structure
2819 * which is inside the block. This block doesn't need to be
2820 * scanned as it contains data and code that will be freed
2821 * after the module is initialized.
2822 */
2823 kmemleak_ignore(ptr);
2824 if (!ptr) {
2825 module_free(mod, mod->module_core);
2826 return -ENOMEM;
2827 }
2828 memset(ptr, 0, mod->init_size);
2829 mod->module_init = ptr;
2830 } else
2831 mod->module_init = NULL;
2832
2833 /* Transfer each section which specifies SHF_ALLOC */
2834 pr_debug("final section addresses:\n");
2835 for (i = 0; i < info->hdr->e_shnum; i++) {
2836 void *dest;
2837 Elf_Shdr *shdr = &info->sechdrs[i];
2838
2839 if (!(shdr->sh_flags & SHF_ALLOC))
2840 continue;
2841
2842 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2843 dest = mod->module_init
2844 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2845 else
2846 dest = mod->module_core + shdr->sh_entsize;
2847
2848 if (shdr->sh_type != SHT_NOBITS)
2849 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2850 /* Update sh_addr to point to copy in image. */
2851 shdr->sh_addr = (unsigned long)dest;
2852 pr_debug("\t0x%lx %s\n",
2853 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2854 }
2855
2856 return 0;
2857 }
2858
2859 static int check_module_license_and_versions(struct module *mod)
2860 {
2861 /*
2862 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2863 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2864 * using GPL-only symbols it needs.
2865 */
2866 if (strcmp(mod->name, "ndiswrapper") == 0)
2867 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2868
2869 /* driverloader was caught wrongly pretending to be under GPL */
2870 if (strcmp(mod->name, "driverloader") == 0)
2871 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2872 LOCKDEP_NOW_UNRELIABLE);
2873
2874 /* lve claims to be GPL but upstream won't provide source */
2875 if (strcmp(mod->name, "lve") == 0)
2876 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2877 LOCKDEP_NOW_UNRELIABLE);
2878
2879 #ifdef CONFIG_MODVERSIONS
2880 if ((mod->num_syms && !mod->crcs)
2881 || (mod->num_gpl_syms && !mod->gpl_crcs)
2882 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2883 #ifdef CONFIG_UNUSED_SYMBOLS
2884 || (mod->num_unused_syms && !mod->unused_crcs)
2885 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2886 #endif
2887 ) {
2888 return try_to_force_load(mod,
2889 "no versions for exported symbols");
2890 }
2891 #endif
2892 return 0;
2893 }
2894
2895 static void flush_module_icache(const struct module *mod)
2896 {
2897 mm_segment_t old_fs;
2898
2899 /* flush the icache in correct context */
2900 old_fs = get_fs();
2901 set_fs(KERNEL_DS);
2902
2903 /*
2904 * Flush the instruction cache, since we've played with text.
2905 * Do it before processing of module parameters, so the module
2906 * can provide parameter accessor functions of its own.
2907 */
2908 if (mod->module_init)
2909 flush_icache_range((unsigned long)mod->module_init,
2910 (unsigned long)mod->module_init
2911 + mod->init_size);
2912 flush_icache_range((unsigned long)mod->module_core,
2913 (unsigned long)mod->module_core + mod->core_size);
2914
2915 set_fs(old_fs);
2916 }
2917
2918 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2919 Elf_Shdr *sechdrs,
2920 char *secstrings,
2921 struct module *mod)
2922 {
2923 return 0;
2924 }
2925
2926 static struct module *layout_and_allocate(struct load_info *info, int flags)
2927 {
2928 /* Module within temporary copy. */
2929 struct module *mod;
2930 int err;
2931
2932 mod = setup_load_info(info, flags);
2933 if (IS_ERR(mod))
2934 return mod;
2935
2936 err = check_modinfo(mod, info, flags);
2937 if (err)
2938 return ERR_PTR(err);
2939
2940 /* Allow arches to frob section contents and sizes. */
2941 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2942 info->secstrings, mod);
2943 if (err < 0)
2944 return ERR_PTR(err);
2945
2946 /* We will do a special allocation for per-cpu sections later. */
2947 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2948
2949 /* Determine total sizes, and put offsets in sh_entsize. For now
2950 this is done generically; there doesn't appear to be any
2951 special cases for the architectures. */
2952 layout_sections(mod, info);
2953 layout_symtab(mod, info);
2954
2955 /* Allocate and move to the final place */
2956 err = move_module(mod, info);
2957 if (err)
2958 return ERR_PTR(err);
2959
2960 /* Module has been copied to its final place now: return it. */
2961 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2962 kmemleak_load_module(mod, info);
2963 return mod;
2964 }
2965
2966 static int alloc_module_percpu(struct module *mod, struct load_info *info)
2967 {
2968 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
2969 if (!pcpusec->sh_size)
2970 return 0;
2971
2972 /* We have a special allocation for this section. */
2973 return percpu_modalloc(mod, pcpusec->sh_size, pcpusec->sh_addralign);
2974 }
2975
2976 /* mod is no longer valid after this! */
2977 static void module_deallocate(struct module *mod, struct load_info *info)
2978 {
2979 percpu_modfree(mod);
2980 module_free(mod, mod->module_init);
2981 module_free(mod, mod->module_core);
2982 }
2983
2984 int __weak module_finalize(const Elf_Ehdr *hdr,
2985 const Elf_Shdr *sechdrs,
2986 struct module *me)
2987 {
2988 return 0;
2989 }
2990
2991 static int post_relocation(struct module *mod, const struct load_info *info)
2992 {
2993 /* Sort exception table now relocations are done. */
2994 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2995
2996 /* Copy relocated percpu area over. */
2997 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2998 info->sechdrs[info->index.pcpu].sh_size);
2999
3000 /* Setup kallsyms-specific fields. */
3001 add_kallsyms(mod, info);
3002
3003 /* Arch-specific module finalizing. */
3004 return module_finalize(info->hdr, info->sechdrs, mod);
3005 }
3006
3007 /* Is this module of this name done loading? No locks held. */
3008 static bool finished_loading(const char *name)
3009 {
3010 struct module *mod;
3011 bool ret;
3012
3013 mutex_lock(&module_mutex);
3014 mod = find_module_all(name, true);
3015 ret = !mod || mod->state == MODULE_STATE_LIVE
3016 || mod->state == MODULE_STATE_GOING;
3017 mutex_unlock(&module_mutex);
3018
3019 return ret;
3020 }
3021
3022 /* Call module constructors. */
3023 static void do_mod_ctors(struct module *mod)
3024 {
3025 #ifdef CONFIG_CONSTRUCTORS
3026 unsigned long i;
3027
3028 for (i = 0; i < mod->num_ctors; i++)
3029 mod->ctors[i]();
3030 #endif
3031 }
3032
3033 /* This is where the real work happens */
3034 static int do_init_module(struct module *mod)
3035 {
3036 int ret = 0;
3037
3038 /*
3039 * We want to find out whether @mod uses async during init. Clear
3040 * PF_USED_ASYNC. async_schedule*() will set it.
3041 */
3042 current->flags &= ~PF_USED_ASYNC;
3043
3044 blocking_notifier_call_chain(&module_notify_list,
3045 MODULE_STATE_COMING, mod);
3046
3047 /* Set RO and NX regions for core */
3048 set_section_ro_nx(mod->module_core,
3049 mod->core_text_size,
3050 mod->core_ro_size,
3051 mod->core_size);
3052
3053 /* Set RO and NX regions for init */
3054 set_section_ro_nx(mod->module_init,
3055 mod->init_text_size,
3056 mod->init_ro_size,
3057 mod->init_size);
3058
3059 do_mod_ctors(mod);
3060 /* Start the module */
3061 if (mod->init != NULL)
3062 ret = do_one_initcall(mod->init);
3063 if (ret < 0) {
3064 /* Init routine failed: abort. Try to protect us from
3065 buggy refcounters. */
3066 mod->state = MODULE_STATE_GOING;
3067 synchronize_sched();
3068 module_put(mod);
3069 blocking_notifier_call_chain(&module_notify_list,
3070 MODULE_STATE_GOING, mod);
3071 free_module(mod);
3072 wake_up_all(&module_wq);
3073 return ret;
3074 }
3075 if (ret > 0) {
3076 printk(KERN_WARNING
3077 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3078 "%s: loading module anyway...\n",
3079 __func__, mod->name, ret,
3080 __func__);
3081 dump_stack();
3082 }
3083
3084 /* Now it's a first class citizen! */
3085 mod->state = MODULE_STATE_LIVE;
3086 blocking_notifier_call_chain(&module_notify_list,
3087 MODULE_STATE_LIVE, mod);
3088
3089 /*
3090 * We need to finish all async code before the module init sequence
3091 * is done. This has potential to deadlock. For example, a newly
3092 * detected block device can trigger request_module() of the
3093 * default iosched from async probing task. Once userland helper
3094 * reaches here, async_synchronize_full() will wait on the async
3095 * task waiting on request_module() and deadlock.
3096 *
3097 * This deadlock is avoided by perfomring async_synchronize_full()
3098 * iff module init queued any async jobs. This isn't a full
3099 * solution as it will deadlock the same if module loading from
3100 * async jobs nests more than once; however, due to the various
3101 * constraints, this hack seems to be the best option for now.
3102 * Please refer to the following thread for details.
3103 *
3104 * http://thread.gmane.org/gmane.linux.kernel/1420814
3105 */
3106 if (current->flags & PF_USED_ASYNC)
3107 async_synchronize_full();
3108
3109 mutex_lock(&module_mutex);
3110 /* Drop initial reference. */
3111 module_put(mod);
3112 trim_init_extable(mod);
3113 #ifdef CONFIG_KALLSYMS
3114 mod->num_symtab = mod->core_num_syms;
3115 mod->symtab = mod->core_symtab;
3116 mod->strtab = mod->core_strtab;
3117 #endif
3118 unset_module_init_ro_nx(mod);
3119 module_free(mod, mod->module_init);
3120 mod->module_init = NULL;
3121 mod->init_size = 0;
3122 mod->init_ro_size = 0;
3123 mod->init_text_size = 0;
3124 mutex_unlock(&module_mutex);
3125 wake_up_all(&module_wq);
3126
3127 return 0;
3128 }
3129
3130 static int may_init_module(void)
3131 {
3132 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3133 return -EPERM;
3134
3135 return 0;
3136 }
3137
3138 /*
3139 * We try to place it in the list now to make sure it's unique before
3140 * we dedicate too many resources. In particular, temporary percpu
3141 * memory exhaustion.
3142 */
3143 static int add_unformed_module(struct module *mod)
3144 {
3145 int err;
3146 struct module *old;
3147
3148 mod->state = MODULE_STATE_UNFORMED;
3149
3150 again:
3151 mutex_lock(&module_mutex);
3152 if ((old = find_module_all(mod->name, true)) != NULL) {
3153 if (old->state == MODULE_STATE_COMING
3154 || old->state == MODULE_STATE_UNFORMED) {
3155 /* Wait in case it fails to load. */
3156 mutex_unlock(&module_mutex);
3157 err = wait_event_interruptible(module_wq,
3158 finished_loading(mod->name));
3159 if (err)
3160 goto out_unlocked;
3161 goto again;
3162 }
3163 err = -EEXIST;
3164 goto out;
3165 }
3166 list_add_rcu(&mod->list, &modules);
3167 err = 0;
3168
3169 out:
3170 mutex_unlock(&module_mutex);
3171 out_unlocked:
3172 return err;
3173 }
3174
3175 static int complete_formation(struct module *mod, struct load_info *info)
3176 {
3177 int err;
3178
3179 mutex_lock(&module_mutex);
3180
3181 /* Find duplicate symbols (must be called under lock). */
3182 err = verify_export_symbols(mod);
3183 if (err < 0)
3184 goto out;
3185
3186 /* This relies on module_mutex for list integrity. */
3187 module_bug_finalize(info->hdr, info->sechdrs, mod);
3188
3189 /* Mark state as coming so strong_try_module_get() ignores us,
3190 * but kallsyms etc. can see us. */
3191 mod->state = MODULE_STATE_COMING;
3192
3193 out:
3194 mutex_unlock(&module_mutex);
3195 return err;
3196 }
3197
3198 /* Allocate and load the module: note that size of section 0 is always
3199 zero, and we rely on this for optional sections. */
3200 static int load_module(struct load_info *info, const char __user *uargs,
3201 int flags)
3202 {
3203 struct module *mod;
3204 long err;
3205
3206 err = module_sig_check(info);
3207 if (err)
3208 goto free_copy;
3209
3210 err = elf_header_check(info);
3211 if (err)
3212 goto free_copy;
3213
3214 /* Figure out module layout, and allocate all the memory. */
3215 mod = layout_and_allocate(info, flags);
3216 if (IS_ERR(mod)) {
3217 err = PTR_ERR(mod);
3218 goto free_copy;
3219 }
3220
3221 /* Reserve our place in the list. */
3222 err = add_unformed_module(mod);
3223 if (err)
3224 goto free_module;
3225
3226 #ifdef CONFIG_MODULE_SIG
3227 mod->sig_ok = info->sig_ok;
3228 if (!mod->sig_ok) {
3229 printk_once(KERN_NOTICE
3230 "%s: module verification failed: signature and/or"
3231 " required key missing - tainting kernel\n",
3232 mod->name);
3233 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_STILL_OK);
3234 }
3235 #endif
3236
3237 /* To avoid stressing percpu allocator, do this once we're unique. */
3238 err = alloc_module_percpu(mod, info);
3239 if (err)
3240 goto unlink_mod;
3241
3242 /* Now module is in final location, initialize linked lists, etc. */
3243 err = module_unload_init(mod);
3244 if (err)
3245 goto unlink_mod;
3246
3247 /* Now we've got everything in the final locations, we can
3248 * find optional sections. */
3249 find_module_sections(mod, info);
3250
3251 err = check_module_license_and_versions(mod);
3252 if (err)
3253 goto free_unload;
3254
3255 /* Set up MODINFO_ATTR fields */
3256 setup_modinfo(mod, info);
3257
3258 /* Fix up syms, so that st_value is a pointer to location. */
3259 err = simplify_symbols(mod, info);
3260 if (err < 0)
3261 goto free_modinfo;
3262
3263 err = apply_relocations(mod, info);
3264 if (err < 0)
3265 goto free_modinfo;
3266
3267 err = post_relocation(mod, info);
3268 if (err < 0)
3269 goto free_modinfo;
3270
3271 flush_module_icache(mod);
3272
3273 /* Now copy in args */
3274 mod->args = strndup_user(uargs, ~0UL >> 1);
3275 if (IS_ERR(mod->args)) {
3276 err = PTR_ERR(mod->args);
3277 goto free_arch_cleanup;
3278 }
3279
3280 dynamic_debug_setup(info->debug, info->num_debug);
3281
3282 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3283 ftrace_module_init(mod);
3284
3285 /* Finally it's fully formed, ready to start executing. */
3286 err = complete_formation(mod, info);
3287 if (err)
3288 goto ddebug_cleanup;
3289
3290 /* Module is ready to execute: parsing args may do that. */
3291 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3292 -32768, 32767, &ddebug_dyndbg_module_param_cb);
3293 if (err < 0)
3294 goto bug_cleanup;
3295
3296 /* Link in to syfs. */
3297 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3298 if (err < 0)
3299 goto bug_cleanup;
3300
3301 /* Get rid of temporary copy. */
3302 free_copy(info);
3303
3304 /* Done! */
3305 trace_module_load(mod);
3306
3307 return do_init_module(mod);
3308
3309 bug_cleanup:
3310 /* module_bug_cleanup needs module_mutex protection */
3311 mutex_lock(&module_mutex);
3312 module_bug_cleanup(mod);
3313 mutex_unlock(&module_mutex);
3314 ddebug_cleanup:
3315 dynamic_debug_remove(info->debug);
3316 synchronize_sched();
3317 kfree(mod->args);
3318 free_arch_cleanup:
3319 module_arch_cleanup(mod);
3320 free_modinfo:
3321 free_modinfo(mod);
3322 free_unload:
3323 module_unload_free(mod);
3324 unlink_mod:
3325 mutex_lock(&module_mutex);
3326 /* Unlink carefully: kallsyms could be walking list. */
3327 list_del_rcu(&mod->list);
3328 wake_up_all(&module_wq);
3329 mutex_unlock(&module_mutex);
3330 free_module:
3331 module_deallocate(mod, info);
3332 free_copy:
3333 free_copy(info);
3334 return err;
3335 }
3336
3337 SYSCALL_DEFINE3(init_module, void __user *, umod,
3338 unsigned long, len, const char __user *, uargs)
3339 {
3340 int err;
3341 struct load_info info = { };
3342
3343 err = may_init_module();
3344 if (err)
3345 return err;
3346
3347 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3348 umod, len, uargs);
3349
3350 err = copy_module_from_user(umod, len, &info);
3351 if (err)
3352 return err;
3353
3354 return load_module(&info, uargs, 0);
3355 }
3356
3357 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3358 {
3359 int err;
3360 struct load_info info = { };
3361
3362 err = may_init_module();
3363 if (err)
3364 return err;
3365
3366 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3367
3368 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3369 |MODULE_INIT_IGNORE_VERMAGIC))
3370 return -EINVAL;
3371
3372 err = copy_module_from_fd(fd, &info);
3373 if (err)
3374 return err;
3375
3376 return load_module(&info, uargs, flags);
3377 }
3378
3379 static inline int within(unsigned long addr, void *start, unsigned long size)
3380 {
3381 return ((void *)addr >= start && (void *)addr < start + size);
3382 }
3383
3384 #ifdef CONFIG_KALLSYMS
3385 /*
3386 * This ignores the intensely annoying "mapping symbols" found
3387 * in ARM ELF files: $a, $t and $d.
3388 */
3389 static inline int is_arm_mapping_symbol(const char *str)
3390 {
3391 return str[0] == '$' && strchr("atd", str[1])
3392 && (str[2] == '\0' || str[2] == '.');
3393 }
3394
3395 static const char *get_ksymbol(struct module *mod,
3396 unsigned long addr,
3397 unsigned long *size,
3398 unsigned long *offset)
3399 {
3400 unsigned int i, best = 0;
3401 unsigned long nextval;
3402
3403 /* At worse, next value is at end of module */
3404 if (within_module_init(addr, mod))
3405 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3406 else
3407 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3408
3409 /* Scan for closest preceding symbol, and next symbol. (ELF
3410 starts real symbols at 1). */
3411 for (i = 1; i < mod->num_symtab; i++) {
3412 if (mod->symtab[i].st_shndx == SHN_UNDEF)
3413 continue;
3414
3415 /* We ignore unnamed symbols: they're uninformative
3416 * and inserted at a whim. */
3417 if (mod->symtab[i].st_value <= addr
3418 && mod->symtab[i].st_value > mod->symtab[best].st_value
3419 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3420 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3421 best = i;
3422 if (mod->symtab[i].st_value > addr
3423 && mod->symtab[i].st_value < nextval
3424 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3425 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3426 nextval = mod->symtab[i].st_value;
3427 }
3428
3429 if (!best)
3430 return NULL;
3431
3432 if (size)
3433 *size = nextval - mod->symtab[best].st_value;
3434 if (offset)
3435 *offset = addr - mod->symtab[best].st_value;
3436 return mod->strtab + mod->symtab[best].st_name;
3437 }
3438
3439 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3440 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3441 const char *module_address_lookup(unsigned long addr,
3442 unsigned long *size,
3443 unsigned long *offset,
3444 char **modname,
3445 char *namebuf)
3446 {
3447 struct module *mod;
3448 const char *ret = NULL;
3449
3450 preempt_disable();
3451 list_for_each_entry_rcu(mod, &modules, list) {
3452 if (mod->state == MODULE_STATE_UNFORMED)
3453 continue;
3454 if (within_module_init(addr, mod) ||
3455 within_module_core(addr, mod)) {
3456 if (modname)
3457 *modname = mod->name;
3458 ret = get_ksymbol(mod, addr, size, offset);
3459 break;
3460 }
3461 }
3462 /* Make a copy in here where it's safe */
3463 if (ret) {
3464 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3465 ret = namebuf;
3466 }
3467 preempt_enable();
3468 return ret;
3469 }
3470
3471 int lookup_module_symbol_name(unsigned long addr, char *symname)
3472 {
3473 struct module *mod;
3474
3475 preempt_disable();
3476 list_for_each_entry_rcu(mod, &modules, list) {
3477 if (mod->state == MODULE_STATE_UNFORMED)
3478 continue;
3479 if (within_module_init(addr, mod) ||
3480 within_module_core(addr, mod)) {
3481 const char *sym;
3482
3483 sym = get_ksymbol(mod, addr, NULL, NULL);
3484 if (!sym)
3485 goto out;
3486 strlcpy(symname, sym, KSYM_NAME_LEN);
3487 preempt_enable();
3488 return 0;
3489 }
3490 }
3491 out:
3492 preempt_enable();
3493 return -ERANGE;
3494 }
3495
3496 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3497 unsigned long *offset, char *modname, char *name)
3498 {
3499 struct module *mod;
3500
3501 preempt_disable();
3502 list_for_each_entry_rcu(mod, &modules, list) {
3503 if (mod->state == MODULE_STATE_UNFORMED)
3504 continue;
3505 if (within_module_init(addr, mod) ||
3506 within_module_core(addr, mod)) {
3507 const char *sym;
3508
3509 sym = get_ksymbol(mod, addr, size, offset);
3510 if (!sym)
3511 goto out;
3512 if (modname)
3513 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3514 if (name)
3515 strlcpy(name, sym, KSYM_NAME_LEN);
3516 preempt_enable();
3517 return 0;
3518 }
3519 }
3520 out:
3521 preempt_enable();
3522 return -ERANGE;
3523 }
3524
3525 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3526 char *name, char *module_name, int *exported)
3527 {
3528 struct module *mod;
3529
3530 preempt_disable();
3531 list_for_each_entry_rcu(mod, &modules, list) {
3532 if (mod->state == MODULE_STATE_UNFORMED)
3533 continue;
3534 if (symnum < mod->num_symtab) {
3535 *value = mod->symtab[symnum].st_value;
3536 *type = mod->symtab[symnum].st_info;
3537 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3538 KSYM_NAME_LEN);
3539 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3540 *exported = is_exported(name, *value, mod);
3541 preempt_enable();
3542 return 0;
3543 }
3544 symnum -= mod->num_symtab;
3545 }
3546 preempt_enable();
3547 return -ERANGE;
3548 }
3549
3550 static unsigned long mod_find_symname(struct module *mod, const char *name)
3551 {
3552 unsigned int i;
3553
3554 for (i = 0; i < mod->num_symtab; i++)
3555 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3556 mod->symtab[i].st_info != 'U')
3557 return mod->symtab[i].st_value;
3558 return 0;
3559 }
3560
3561 /* Look for this name: can be of form module:name. */
3562 unsigned long module_kallsyms_lookup_name(const char *name)
3563 {
3564 struct module *mod;
3565 char *colon;
3566 unsigned long ret = 0;
3567
3568 /* Don't lock: we're in enough trouble already. */
3569 preempt_disable();
3570 if ((colon = strchr(name, ':')) != NULL) {
3571 *colon = '\0';
3572 if ((mod = find_module(name)) != NULL)
3573 ret = mod_find_symname(mod, colon+1);
3574 *colon = ':';
3575 } else {
3576 list_for_each_entry_rcu(mod, &modules, list) {
3577 if (mod->state == MODULE_STATE_UNFORMED)
3578 continue;
3579 if ((ret = mod_find_symname(mod, name)) != 0)
3580 break;
3581 }
3582 }
3583 preempt_enable();
3584 return ret;
3585 }
3586
3587 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3588 struct module *, unsigned long),
3589 void *data)
3590 {
3591 struct module *mod;
3592 unsigned int i;
3593 int ret;
3594
3595 list_for_each_entry(mod, &modules, list) {
3596 if (mod->state == MODULE_STATE_UNFORMED)
3597 continue;
3598 for (i = 0; i < mod->num_symtab; i++) {
3599 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3600 mod, mod->symtab[i].st_value);
3601 if (ret != 0)
3602 return ret;
3603 }
3604 }
3605 return 0;
3606 }
3607 #endif /* CONFIG_KALLSYMS */
3608
3609 static char *module_flags(struct module *mod, char *buf)
3610 {
3611 int bx = 0;
3612
3613 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3614 if (mod->taints ||
3615 mod->state == MODULE_STATE_GOING ||
3616 mod->state == MODULE_STATE_COMING) {
3617 buf[bx++] = '(';
3618 bx += module_flags_taint(mod, buf + bx);
3619 /* Show a - for module-is-being-unloaded */
3620 if (mod->state == MODULE_STATE_GOING)
3621 buf[bx++] = '-';
3622 /* Show a + for module-is-being-loaded */
3623 if (mod->state == MODULE_STATE_COMING)
3624 buf[bx++] = '+';
3625 buf[bx++] = ')';
3626 }
3627 buf[bx] = '\0';
3628
3629 return buf;
3630 }
3631
3632 #ifdef CONFIG_PROC_FS
3633 /* Called by the /proc file system to return a list of modules. */
3634 static void *m_start(struct seq_file *m, loff_t *pos)
3635 {
3636 mutex_lock(&module_mutex);
3637 return seq_list_start(&modules, *pos);
3638 }
3639
3640 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3641 {
3642 return seq_list_next(p, &modules, pos);
3643 }
3644
3645 static void m_stop(struct seq_file *m, void *p)
3646 {
3647 mutex_unlock(&module_mutex);
3648 }
3649
3650 static int m_show(struct seq_file *m, void *p)
3651 {
3652 struct module *mod = list_entry(p, struct module, list);
3653 char buf[8];
3654
3655 /* We always ignore unformed modules. */
3656 if (mod->state == MODULE_STATE_UNFORMED)
3657 return 0;
3658
3659 seq_printf(m, "%s %u",
3660 mod->name, mod->init_size + mod->core_size);
3661 print_unload_info(m, mod);
3662
3663 /* Informative for users. */
3664 seq_printf(m, " %s",
3665 mod->state == MODULE_STATE_GOING ? "Unloading":
3666 mod->state == MODULE_STATE_COMING ? "Loading":
3667 "Live");
3668 /* Used by oprofile and other similar tools. */
3669 seq_printf(m, " 0x%pK", mod->module_core);
3670
3671 /* Taints info */
3672 if (mod->taints)
3673 seq_printf(m, " %s", module_flags(mod, buf));
3674
3675 seq_printf(m, "\n");
3676 return 0;
3677 }
3678
3679 /* Format: modulename size refcount deps address
3680
3681 Where refcount is a number or -, and deps is a comma-separated list
3682 of depends or -.
3683 */
3684 static const struct seq_operations modules_op = {
3685 .start = m_start,
3686 .next = m_next,
3687 .stop = m_stop,
3688 .show = m_show
3689 };
3690
3691 static int modules_open(struct inode *inode, struct file *file)
3692 {
3693 return seq_open(file, &modules_op);
3694 }
3695
3696 static const struct file_operations proc_modules_operations = {
3697 .open = modules_open,
3698 .read = seq_read,
3699 .llseek = seq_lseek,
3700 .release = seq_release,
3701 };
3702
3703 static int __init proc_modules_init(void)
3704 {
3705 proc_create("modules", 0, NULL, &proc_modules_operations);
3706 return 0;
3707 }
3708 module_init(proc_modules_init);
3709 #endif
3710
3711 /* Given an address, look for it in the module exception tables. */
3712 const struct exception_table_entry *search_module_extables(unsigned long addr)
3713 {
3714 const struct exception_table_entry *e = NULL;
3715 struct module *mod;
3716
3717 preempt_disable();
3718 list_for_each_entry_rcu(mod, &modules, list) {
3719 if (mod->state == MODULE_STATE_UNFORMED)
3720 continue;
3721 if (mod->num_exentries == 0)
3722 continue;
3723
3724 e = search_extable(mod->extable,
3725 mod->extable + mod->num_exentries - 1,
3726 addr);
3727 if (e)
3728 break;
3729 }
3730 preempt_enable();
3731
3732 /* Now, if we found one, we are running inside it now, hence
3733 we cannot unload the module, hence no refcnt needed. */
3734 return e;
3735 }
3736
3737 /*
3738 * is_module_address - is this address inside a module?
3739 * @addr: the address to check.
3740 *
3741 * See is_module_text_address() if you simply want to see if the address
3742 * is code (not data).
3743 */
3744 bool is_module_address(unsigned long addr)
3745 {
3746 bool ret;
3747
3748 preempt_disable();
3749 ret = __module_address(addr) != NULL;
3750 preempt_enable();
3751
3752 return ret;
3753 }
3754
3755 /*
3756 * __module_address - get the module which contains an address.
3757 * @addr: the address.
3758 *
3759 * Must be called with preempt disabled or module mutex held so that
3760 * module doesn't get freed during this.
3761 */
3762 struct module *__module_address(unsigned long addr)
3763 {
3764 struct module *mod;
3765
3766 if (addr < module_addr_min || addr > module_addr_max)
3767 return NULL;
3768
3769 list_for_each_entry_rcu(mod, &modules, list) {
3770 if (mod->state == MODULE_STATE_UNFORMED)
3771 continue;
3772 if (within_module_core(addr, mod)
3773 || within_module_init(addr, mod))
3774 return mod;
3775 }
3776 return NULL;
3777 }
3778 EXPORT_SYMBOL_GPL(__module_address);
3779
3780 /*
3781 * is_module_text_address - is this address inside module code?
3782 * @addr: the address to check.
3783 *
3784 * See is_module_address() if you simply want to see if the address is
3785 * anywhere in a module. See kernel_text_address() for testing if an
3786 * address corresponds to kernel or module code.
3787 */
3788 bool is_module_text_address(unsigned long addr)
3789 {
3790 bool ret;
3791
3792 preempt_disable();
3793 ret = __module_text_address(addr) != NULL;
3794 preempt_enable();
3795
3796 return ret;
3797 }
3798
3799 /*
3800 * __module_text_address - get the module whose code contains an address.
3801 * @addr: the address.
3802 *
3803 * Must be called with preempt disabled or module mutex held so that
3804 * module doesn't get freed during this.
3805 */
3806 struct module *__module_text_address(unsigned long addr)
3807 {
3808 struct module *mod = __module_address(addr);
3809 if (mod) {
3810 /* Make sure it's within the text section. */
3811 if (!within(addr, mod->module_init, mod->init_text_size)
3812 && !within(addr, mod->module_core, mod->core_text_size))
3813 mod = NULL;
3814 }
3815 return mod;
3816 }
3817 EXPORT_SYMBOL_GPL(__module_text_address);
3818
3819 /* Don't grab lock, we're oopsing. */
3820 void print_modules(void)
3821 {
3822 struct module *mod;
3823 char buf[8];
3824
3825 printk(KERN_DEFAULT "Modules linked in:");
3826 /* Most callers should already have preempt disabled, but make sure */
3827 preempt_disable();
3828 list_for_each_entry_rcu(mod, &modules, list) {
3829 if (mod->state == MODULE_STATE_UNFORMED)
3830 continue;
3831 printk(" %s %p %s", mod->name, mod->module_core, module_flags(mod, buf));
3832 }
3833 preempt_enable();
3834 if (last_unloaded_module[0])
3835 printk(" [last unloaded: %s]", last_unloaded_module);
3836 printk("\n");
3837 }
3838
3839 #ifdef CONFIG_MODVERSIONS
3840 /* Generate the signature for all relevant module structures here.
3841 * If these change, we don't want to try to parse the module. */
3842 void module_layout(struct module *mod,
3843 struct modversion_info *ver,
3844 struct kernel_param *kp,
3845 struct kernel_symbol *ks,
3846 struct tracepoint * const *tp)
3847 {
3848 }
3849 EXPORT_SYMBOL(module_layout);
3850 #endif