Merge tag 'v3.10.97' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/stop_machine.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <asm/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
53 #include <linux/license.h>
54 #include <asm/sections.h>
55 #include <linux/tracepoint.h>
56 #include <linux/ftrace.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/fips.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /*
86 * Given BASE and SIZE this macro calculates the number of pages the
87 * memory regions occupies
88 */
89 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
90 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
91 PFN_DOWN((unsigned long)BASE) + 1) \
92 : (0UL))
93
94 /* If this is set, the section belongs in the init part of the module */
95 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96
97 /*
98 * Mutex protects:
99 * 1) List of modules (also safely readable with preempt_disable),
100 * 2) module_use links,
101 * 3) module_addr_min/module_addr_max.
102 * (delete uses stop_machine/add uses RCU list operations). */
103 DEFINE_MUTEX(module_mutex);
104 EXPORT_SYMBOL_GPL(module_mutex);
105 static LIST_HEAD(modules);
106 #ifdef CONFIG_KGDB_KDB
107 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108 #endif /* CONFIG_KGDB_KDB */
109
110 #ifdef CONFIG_MODULE_SIG
111 #ifdef CONFIG_MODULE_SIG_FORCE
112 static bool sig_enforce = true;
113 #else
114 static bool sig_enforce = false;
115
116 static int param_set_bool_enable_only(const char *val,
117 const struct kernel_param *kp)
118 {
119 int err;
120 bool test;
121 struct kernel_param dummy_kp = *kp;
122
123 dummy_kp.arg = &test;
124
125 err = param_set_bool(val, &dummy_kp);
126 if (err)
127 return err;
128
129 /* Don't let them unset it once it's set! */
130 if (!test && sig_enforce)
131 return -EROFS;
132
133 if (test)
134 sig_enforce = true;
135 return 0;
136 }
137
138 static const struct kernel_param_ops param_ops_bool_enable_only = {
139 .set = param_set_bool_enable_only,
140 .get = param_get_bool,
141 };
142 #define param_check_bool_enable_only param_check_bool
143
144 module_param(sig_enforce, bool_enable_only, 0644);
145 #endif /* !CONFIG_MODULE_SIG_FORCE */
146 #endif /* CONFIG_MODULE_SIG */
147
148 /* Block module loading/unloading? */
149 int modules_disabled = 0;
150 core_param(nomodule, modules_disabled, bint, 0);
151
152 /* Waiting for a module to finish initializing? */
153 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
154
155 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
156
157 /* Bounds of module allocation, for speeding __module_address.
158 * Protected by module_mutex. */
159 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
160
161 int register_module_notifier(struct notifier_block * nb)
162 {
163 return blocking_notifier_chain_register(&module_notify_list, nb);
164 }
165 EXPORT_SYMBOL(register_module_notifier);
166
167 int unregister_module_notifier(struct notifier_block * nb)
168 {
169 return blocking_notifier_chain_unregister(&module_notify_list, nb);
170 }
171 EXPORT_SYMBOL(unregister_module_notifier);
172
173 struct load_info {
174 Elf_Ehdr *hdr;
175 unsigned long len;
176 Elf_Shdr *sechdrs;
177 char *secstrings, *strtab;
178 unsigned long symoffs, stroffs;
179 struct _ddebug *debug;
180 unsigned int num_debug;
181 bool sig_ok;
182 struct {
183 unsigned int sym, str, mod, vers, info, pcpu;
184 } index;
185 };
186
187 /* We require a truly strong try_module_get(): 0 means failure due to
188 ongoing or failed initialization etc. */
189 static inline int strong_try_module_get(struct module *mod)
190 {
191 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
192 if (mod && mod->state == MODULE_STATE_COMING)
193 return -EBUSY;
194 if (try_module_get(mod))
195 return 0;
196 else
197 return -ENOENT;
198 }
199
200 static inline void add_taint_module(struct module *mod, unsigned flag,
201 enum lockdep_ok lockdep_ok)
202 {
203 add_taint(flag, lockdep_ok);
204 mod->taints |= (1U << flag);
205 }
206
207 /*
208 * A thread that wants to hold a reference to a module only while it
209 * is running can call this to safely exit. nfsd and lockd use this.
210 */
211 void __module_put_and_exit(struct module *mod, long code)
212 {
213 module_put(mod);
214 do_exit(code);
215 }
216 EXPORT_SYMBOL(__module_put_and_exit);
217
218 /* Find a module section: 0 means not found. */
219 static unsigned int find_sec(const struct load_info *info, const char *name)
220 {
221 unsigned int i;
222
223 for (i = 1; i < info->hdr->e_shnum; i++) {
224 Elf_Shdr *shdr = &info->sechdrs[i];
225 /* Alloc bit cleared means "ignore it." */
226 if ((shdr->sh_flags & SHF_ALLOC)
227 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
228 return i;
229 }
230 return 0;
231 }
232
233 /* Find a module section, or NULL. */
234 static void *section_addr(const struct load_info *info, const char *name)
235 {
236 /* Section 0 has sh_addr 0. */
237 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
238 }
239
240 /* Find a module section, or NULL. Fill in number of "objects" in section. */
241 static void *section_objs(const struct load_info *info,
242 const char *name,
243 size_t object_size,
244 unsigned int *num)
245 {
246 unsigned int sec = find_sec(info, name);
247
248 /* Section 0 has sh_addr 0 and sh_size 0. */
249 *num = info->sechdrs[sec].sh_size / object_size;
250 return (void *)info->sechdrs[sec].sh_addr;
251 }
252
253 /* Provided by the linker */
254 extern const struct kernel_symbol __start___ksymtab[];
255 extern const struct kernel_symbol __stop___ksymtab[];
256 extern const struct kernel_symbol __start___ksymtab_gpl[];
257 extern const struct kernel_symbol __stop___ksymtab_gpl[];
258 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
259 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
260 extern const unsigned long __start___kcrctab[];
261 extern const unsigned long __start___kcrctab_gpl[];
262 extern const unsigned long __start___kcrctab_gpl_future[];
263 #ifdef CONFIG_UNUSED_SYMBOLS
264 extern const struct kernel_symbol __start___ksymtab_unused[];
265 extern const struct kernel_symbol __stop___ksymtab_unused[];
266 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
267 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
268 extern const unsigned long __start___kcrctab_unused[];
269 extern const unsigned long __start___kcrctab_unused_gpl[];
270 #endif
271
272 #ifndef CONFIG_MODVERSIONS
273 #define symversion(base, idx) NULL
274 #else
275 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
276 #endif
277
278 static bool each_symbol_in_section(const struct symsearch *arr,
279 unsigned int arrsize,
280 struct module *owner,
281 bool (*fn)(const struct symsearch *syms,
282 struct module *owner,
283 void *data),
284 void *data)
285 {
286 unsigned int j;
287
288 for (j = 0; j < arrsize; j++) {
289 if (fn(&arr[j], owner, data))
290 return true;
291 }
292
293 return false;
294 }
295
296 /* Returns true as soon as fn returns true, otherwise false. */
297 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
298 struct module *owner,
299 void *data),
300 void *data)
301 {
302 struct module *mod;
303 static const struct symsearch arr[] = {
304 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
305 NOT_GPL_ONLY, false },
306 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
307 __start___kcrctab_gpl,
308 GPL_ONLY, false },
309 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
310 __start___kcrctab_gpl_future,
311 WILL_BE_GPL_ONLY, false },
312 #ifdef CONFIG_UNUSED_SYMBOLS
313 { __start___ksymtab_unused, __stop___ksymtab_unused,
314 __start___kcrctab_unused,
315 NOT_GPL_ONLY, true },
316 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
317 __start___kcrctab_unused_gpl,
318 GPL_ONLY, true },
319 #endif
320 };
321
322 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
323 return true;
324
325 list_for_each_entry_rcu(mod, &modules, list) {
326 struct symsearch arr[] = {
327 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
328 NOT_GPL_ONLY, false },
329 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
330 mod->gpl_crcs,
331 GPL_ONLY, false },
332 { mod->gpl_future_syms,
333 mod->gpl_future_syms + mod->num_gpl_future_syms,
334 mod->gpl_future_crcs,
335 WILL_BE_GPL_ONLY, false },
336 #ifdef CONFIG_UNUSED_SYMBOLS
337 { mod->unused_syms,
338 mod->unused_syms + mod->num_unused_syms,
339 mod->unused_crcs,
340 NOT_GPL_ONLY, true },
341 { mod->unused_gpl_syms,
342 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
343 mod->unused_gpl_crcs,
344 GPL_ONLY, true },
345 #endif
346 };
347
348 if (mod->state == MODULE_STATE_UNFORMED)
349 continue;
350
351 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
352 return true;
353 }
354 return false;
355 }
356 EXPORT_SYMBOL_GPL(each_symbol_section);
357
358 struct find_symbol_arg {
359 /* Input */
360 const char *name;
361 bool gplok;
362 bool warn;
363
364 /* Output */
365 struct module *owner;
366 const unsigned long *crc;
367 const struct kernel_symbol *sym;
368 };
369
370 static bool check_symbol(const struct symsearch *syms,
371 struct module *owner,
372 unsigned int symnum, void *data)
373 {
374 struct find_symbol_arg *fsa = data;
375
376 if (!fsa->gplok) {
377 if (syms->licence == GPL_ONLY)
378 return false;
379 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
380 printk(KERN_WARNING "Symbol %s is being used "
381 "by a non-GPL module, which will not "
382 "be allowed in the future\n", fsa->name);
383 }
384 }
385
386 #ifdef CONFIG_UNUSED_SYMBOLS
387 if (syms->unused && fsa->warn) {
388 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
389 "however this module is using it.\n", fsa->name);
390 printk(KERN_WARNING
391 "This symbol will go away in the future.\n");
392 printk(KERN_WARNING
393 "Please evalute if this is the right api to use and if "
394 "it really is, submit a report the linux kernel "
395 "mailinglist together with submitting your code for "
396 "inclusion.\n");
397 }
398 #endif
399
400 fsa->owner = owner;
401 fsa->crc = symversion(syms->crcs, symnum);
402 fsa->sym = &syms->start[symnum];
403 return true;
404 }
405
406 static int cmp_name(const void *va, const void *vb)
407 {
408 const char *a;
409 const struct kernel_symbol *b;
410 a = va; b = vb;
411 return strcmp(a, b->name);
412 }
413
414 static bool find_symbol_in_section(const struct symsearch *syms,
415 struct module *owner,
416 void *data)
417 {
418 struct find_symbol_arg *fsa = data;
419 struct kernel_symbol *sym;
420
421 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
422 sizeof(struct kernel_symbol), cmp_name);
423
424 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
425 return true;
426
427 return false;
428 }
429
430 /* Find a symbol and return it, along with, (optional) crc and
431 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
432 const struct kernel_symbol *find_symbol(const char *name,
433 struct module **owner,
434 const unsigned long **crc,
435 bool gplok,
436 bool warn)
437 {
438 struct find_symbol_arg fsa;
439
440 fsa.name = name;
441 fsa.gplok = gplok;
442 fsa.warn = warn;
443
444 if (each_symbol_section(find_symbol_in_section, &fsa)) {
445 if (owner)
446 *owner = fsa.owner;
447 if (crc)
448 *crc = fsa.crc;
449 return fsa.sym;
450 }
451
452 pr_debug("Failed to find symbol %s\n", name);
453 return NULL;
454 }
455 EXPORT_SYMBOL_GPL(find_symbol);
456
457 /* Search for module by name: must hold module_mutex. */
458 static struct module *find_module_all(const char *name,
459 bool even_unformed)
460 {
461 struct module *mod;
462
463 list_for_each_entry(mod, &modules, list) {
464 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
465 continue;
466 if (strcmp(mod->name, name) == 0)
467 return mod;
468 }
469 return NULL;
470 }
471
472 struct module *find_module(const char *name)
473 {
474 return find_module_all(name, false);
475 }
476 EXPORT_SYMBOL_GPL(find_module);
477
478 #ifdef CONFIG_SMP
479
480 static inline void __percpu *mod_percpu(struct module *mod)
481 {
482 return mod->percpu;
483 }
484
485 static int percpu_modalloc(struct module *mod,
486 unsigned long size, unsigned long align)
487 {
488 if (align > PAGE_SIZE) {
489 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
490 mod->name, align, PAGE_SIZE);
491 align = PAGE_SIZE;
492 }
493
494 mod->percpu = __alloc_reserved_percpu(size, align);
495 if (!mod->percpu) {
496 printk(KERN_WARNING
497 "%s: Could not allocate %lu bytes percpu data\n",
498 mod->name, size);
499 return -ENOMEM;
500 }
501 mod->percpu_size = size;
502 return 0;
503 }
504
505 static void percpu_modfree(struct module *mod)
506 {
507 free_percpu(mod->percpu);
508 }
509
510 static unsigned int find_pcpusec(struct load_info *info)
511 {
512 return find_sec(info, ".data..percpu");
513 }
514
515 static void percpu_modcopy(struct module *mod,
516 const void *from, unsigned long size)
517 {
518 int cpu;
519
520 for_each_possible_cpu(cpu)
521 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
522 }
523
524 /**
525 * is_module_percpu_address - test whether address is from module static percpu
526 * @addr: address to test
527 *
528 * Test whether @addr belongs to module static percpu area.
529 *
530 * RETURNS:
531 * %true if @addr is from module static percpu area
532 */
533 bool is_module_percpu_address(unsigned long addr)
534 {
535 struct module *mod;
536 unsigned int cpu;
537
538 preempt_disable();
539
540 list_for_each_entry_rcu(mod, &modules, list) {
541 if (mod->state == MODULE_STATE_UNFORMED)
542 continue;
543 if (!mod->percpu_size)
544 continue;
545 for_each_possible_cpu(cpu) {
546 void *start = per_cpu_ptr(mod->percpu, cpu);
547
548 if ((void *)addr >= start &&
549 (void *)addr < start + mod->percpu_size) {
550 preempt_enable();
551 return true;
552 }
553 }
554 }
555
556 preempt_enable();
557 return false;
558 }
559
560 #else /* ... !CONFIG_SMP */
561
562 static inline void __percpu *mod_percpu(struct module *mod)
563 {
564 return NULL;
565 }
566 static inline int percpu_modalloc(struct module *mod,
567 unsigned long size, unsigned long align)
568 {
569 return -ENOMEM;
570 }
571 static inline void percpu_modfree(struct module *mod)
572 {
573 }
574 static unsigned int find_pcpusec(struct load_info *info)
575 {
576 return 0;
577 }
578 static inline void percpu_modcopy(struct module *mod,
579 const void *from, unsigned long size)
580 {
581 /* pcpusec should be 0, and size of that section should be 0. */
582 BUG_ON(size != 0);
583 }
584 bool is_module_percpu_address(unsigned long addr)
585 {
586 return false;
587 }
588
589 #endif /* CONFIG_SMP */
590
591 #define MODINFO_ATTR(field) \
592 static void setup_modinfo_##field(struct module *mod, const char *s) \
593 { \
594 mod->field = kstrdup(s, GFP_KERNEL); \
595 } \
596 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
597 struct module_kobject *mk, char *buffer) \
598 { \
599 return sprintf(buffer, "%s\n", mk->mod->field); \
600 } \
601 static int modinfo_##field##_exists(struct module *mod) \
602 { \
603 return mod->field != NULL; \
604 } \
605 static void free_modinfo_##field(struct module *mod) \
606 { \
607 kfree(mod->field); \
608 mod->field = NULL; \
609 } \
610 static struct module_attribute modinfo_##field = { \
611 .attr = { .name = __stringify(field), .mode = 0444 }, \
612 .show = show_modinfo_##field, \
613 .setup = setup_modinfo_##field, \
614 .test = modinfo_##field##_exists, \
615 .free = free_modinfo_##field, \
616 };
617
618 MODINFO_ATTR(version);
619 MODINFO_ATTR(srcversion);
620
621 static char last_unloaded_module[MODULE_NAME_LEN+1];
622
623 #ifdef CONFIG_MODULE_UNLOAD
624
625 EXPORT_TRACEPOINT_SYMBOL(module_get);
626
627 /* Init the unload section of the module. */
628 static int module_unload_init(struct module *mod)
629 {
630 mod->refptr = alloc_percpu(struct module_ref);
631 if (!mod->refptr)
632 return -ENOMEM;
633
634 INIT_LIST_HEAD(&mod->source_list);
635 INIT_LIST_HEAD(&mod->target_list);
636
637 /* Hold reference count during initialization. */
638 __this_cpu_write(mod->refptr->incs, 1);
639 /* Backwards compatibility macros put refcount during init. */
640 mod->waiter = current;
641
642 return 0;
643 }
644
645 /* Does a already use b? */
646 static int already_uses(struct module *a, struct module *b)
647 {
648 struct module_use *use;
649
650 list_for_each_entry(use, &b->source_list, source_list) {
651 if (use->source == a) {
652 pr_debug("%s uses %s!\n", a->name, b->name);
653 return 1;
654 }
655 }
656 pr_debug("%s does not use %s!\n", a->name, b->name);
657 return 0;
658 }
659
660 /*
661 * Module a uses b
662 * - we add 'a' as a "source", 'b' as a "target" of module use
663 * - the module_use is added to the list of 'b' sources (so
664 * 'b' can walk the list to see who sourced them), and of 'a'
665 * targets (so 'a' can see what modules it targets).
666 */
667 static int add_module_usage(struct module *a, struct module *b)
668 {
669 struct module_use *use;
670
671 pr_debug("Allocating new usage for %s.\n", a->name);
672 use = kmalloc(sizeof(*use), GFP_ATOMIC);
673 if (!use) {
674 printk(KERN_WARNING "%s: out of memory loading\n", a->name);
675 return -ENOMEM;
676 }
677
678 use->source = a;
679 use->target = b;
680 list_add(&use->source_list, &b->source_list);
681 list_add(&use->target_list, &a->target_list);
682 return 0;
683 }
684
685 /* Module a uses b: caller needs module_mutex() */
686 int ref_module(struct module *a, struct module *b)
687 {
688 int err;
689
690 if (b == NULL || already_uses(a, b))
691 return 0;
692
693 /* If module isn't available, we fail. */
694 err = strong_try_module_get(b);
695 if (err)
696 return err;
697
698 err = add_module_usage(a, b);
699 if (err) {
700 module_put(b);
701 return err;
702 }
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(ref_module);
706
707 /* Clear the unload stuff of the module. */
708 static void module_unload_free(struct module *mod)
709 {
710 struct module_use *use, *tmp;
711
712 mutex_lock(&module_mutex);
713 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
714 struct module *i = use->target;
715 pr_debug("%s unusing %s\n", mod->name, i->name);
716 module_put(i);
717 list_del(&use->source_list);
718 list_del(&use->target_list);
719 kfree(use);
720 }
721 mutex_unlock(&module_mutex);
722
723 free_percpu(mod->refptr);
724 }
725
726 #ifdef CONFIG_MODULE_FORCE_UNLOAD
727 static inline int try_force_unload(unsigned int flags)
728 {
729 int ret = (flags & O_TRUNC);
730 if (ret)
731 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
732 return ret;
733 }
734 #else
735 static inline int try_force_unload(unsigned int flags)
736 {
737 return 0;
738 }
739 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
740
741 struct stopref
742 {
743 struct module *mod;
744 int flags;
745 int *forced;
746 };
747
748 /* Whole machine is stopped with interrupts off when this runs. */
749 static int __try_stop_module(void *_sref)
750 {
751 struct stopref *sref = _sref;
752
753 /* If it's not unused, quit unless we're forcing. */
754 if (module_refcount(sref->mod) != 0) {
755 if (!(*sref->forced = try_force_unload(sref->flags)))
756 return -EWOULDBLOCK;
757 }
758
759 /* Mark it as dying. */
760 sref->mod->state = MODULE_STATE_GOING;
761 return 0;
762 }
763
764 static int try_stop_module(struct module *mod, int flags, int *forced)
765 {
766 if (flags & O_NONBLOCK) {
767 struct stopref sref = { mod, flags, forced };
768
769 return stop_machine(__try_stop_module, &sref, NULL);
770 } else {
771 /* We don't need to stop the machine for this. */
772 mod->state = MODULE_STATE_GOING;
773 synchronize_sched();
774 return 0;
775 }
776 }
777
778 unsigned long module_refcount(struct module *mod)
779 {
780 unsigned long incs = 0, decs = 0;
781 int cpu;
782
783 for_each_possible_cpu(cpu)
784 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
785 /*
786 * ensure the incs are added up after the decs.
787 * module_put ensures incs are visible before decs with smp_wmb.
788 *
789 * This 2-count scheme avoids the situation where the refcount
790 * for CPU0 is read, then CPU0 increments the module refcount,
791 * then CPU1 drops that refcount, then the refcount for CPU1 is
792 * read. We would record a decrement but not its corresponding
793 * increment so we would see a low count (disaster).
794 *
795 * Rare situation? But module_refcount can be preempted, and we
796 * might be tallying up 4096+ CPUs. So it is not impossible.
797 */
798 smp_rmb();
799 for_each_possible_cpu(cpu)
800 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
801 return incs - decs;
802 }
803 EXPORT_SYMBOL(module_refcount);
804
805 /* This exists whether we can unload or not */
806 static void free_module(struct module *mod);
807
808 static void wait_for_zero_refcount(struct module *mod)
809 {
810 /* Since we might sleep for some time, release the mutex first */
811 mutex_unlock(&module_mutex);
812 for (;;) {
813 pr_debug("Looking at refcount...\n");
814 set_current_state(TASK_UNINTERRUPTIBLE);
815 if (module_refcount(mod) == 0)
816 break;
817 schedule();
818 }
819 current->state = TASK_RUNNING;
820 mutex_lock(&module_mutex);
821 }
822
823 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
824 unsigned int, flags)
825 {
826 struct module *mod;
827 char name[MODULE_NAME_LEN];
828 int ret, forced = 0;
829
830 if (!capable(CAP_SYS_MODULE) || modules_disabled)
831 return -EPERM;
832
833 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
834 return -EFAULT;
835 name[MODULE_NAME_LEN-1] = '\0';
836
837 if (mutex_lock_interruptible(&module_mutex) != 0)
838 return -EINTR;
839
840 mod = find_module(name);
841 if (!mod) {
842 ret = -ENOENT;
843 goto out;
844 }
845
846 if (!list_empty(&mod->source_list)) {
847 /* Other modules depend on us: get rid of them first. */
848 ret = -EWOULDBLOCK;
849 goto out;
850 }
851
852 /* Doing init or already dying? */
853 if (mod->state != MODULE_STATE_LIVE) {
854 /* FIXME: if (force), slam module count and wake up
855 waiter --RR */
856 pr_debug("%s already dying\n", mod->name);
857 ret = -EBUSY;
858 goto out;
859 }
860
861 /* If it has an init func, it must have an exit func to unload */
862 if (mod->init && !mod->exit) {
863 forced = try_force_unload(flags);
864 if (!forced) {
865 /* This module can't be removed */
866 ret = -EBUSY;
867 goto out;
868 }
869 }
870
871 /* Set this up before setting mod->state */
872 mod->waiter = current;
873
874 /* Stop the machine so refcounts can't move and disable module. */
875 ret = try_stop_module(mod, flags, &forced);
876 if (ret != 0)
877 goto out;
878
879 /* Never wait if forced. */
880 if (!forced && module_refcount(mod) != 0)
881 wait_for_zero_refcount(mod);
882
883 mutex_unlock(&module_mutex);
884 /* Final destruction now no one is using it. */
885 if (mod->exit != NULL)
886 mod->exit();
887 blocking_notifier_call_chain(&module_notify_list,
888 MODULE_STATE_GOING, mod);
889 async_synchronize_full();
890
891 /* Store the name of the last unloaded module for diagnostic purposes */
892 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
893
894 free_module(mod);
895 return 0;
896 out:
897 mutex_unlock(&module_mutex);
898 return ret;
899 }
900
901 static inline void print_unload_info(struct seq_file *m, struct module *mod)
902 {
903 struct module_use *use;
904 int printed_something = 0;
905
906 seq_printf(m, " %lu ", module_refcount(mod));
907
908 /* Always include a trailing , so userspace can differentiate
909 between this and the old multi-field proc format. */
910 list_for_each_entry(use, &mod->source_list, source_list) {
911 printed_something = 1;
912 seq_printf(m, "%s,", use->source->name);
913 }
914
915 if (mod->init != NULL && mod->exit == NULL) {
916 printed_something = 1;
917 seq_printf(m, "[permanent],");
918 }
919
920 if (!printed_something)
921 seq_printf(m, "-");
922 }
923
924 void __symbol_put(const char *symbol)
925 {
926 struct module *owner;
927
928 preempt_disable();
929 if (!find_symbol(symbol, &owner, NULL, true, false))
930 BUG();
931 module_put(owner);
932 preempt_enable();
933 }
934 EXPORT_SYMBOL(__symbol_put);
935
936 /* Note this assumes addr is a function, which it currently always is. */
937 void symbol_put_addr(void *addr)
938 {
939 struct module *modaddr;
940 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
941
942 if (core_kernel_text(a))
943 return;
944
945 /*
946 * Even though we hold a reference on the module; we still need to
947 * disable preemption in order to safely traverse the data structure.
948 */
949 preempt_disable();
950 modaddr = __module_text_address(a);
951 BUG_ON(!modaddr);
952 module_put(modaddr);
953 preempt_enable();
954 }
955 EXPORT_SYMBOL_GPL(symbol_put_addr);
956
957 static ssize_t show_refcnt(struct module_attribute *mattr,
958 struct module_kobject *mk, char *buffer)
959 {
960 return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
961 }
962
963 static struct module_attribute modinfo_refcnt =
964 __ATTR(refcnt, 0444, show_refcnt, NULL);
965
966 void __module_get(struct module *module)
967 {
968 if (module) {
969 preempt_disable();
970 __this_cpu_inc(module->refptr->incs);
971 trace_module_get(module, _RET_IP_);
972 preempt_enable();
973 }
974 }
975 EXPORT_SYMBOL(__module_get);
976
977 bool try_module_get(struct module *module)
978 {
979 bool ret = true;
980
981 if (module) {
982 preempt_disable();
983
984 if (likely(module_is_live(module))) {
985 __this_cpu_inc(module->refptr->incs);
986 trace_module_get(module, _RET_IP_);
987 } else
988 ret = false;
989
990 preempt_enable();
991 }
992 return ret;
993 }
994 EXPORT_SYMBOL(try_module_get);
995
996 void module_put(struct module *module)
997 {
998 if (module) {
999 preempt_disable();
1000 smp_wmb(); /* see comment in module_refcount */
1001 __this_cpu_inc(module->refptr->decs);
1002
1003 trace_module_put(module, _RET_IP_);
1004 /* Maybe they're waiting for us to drop reference? */
1005 if (unlikely(!module_is_live(module)))
1006 wake_up_process(module->waiter);
1007 preempt_enable();
1008 }
1009 }
1010 EXPORT_SYMBOL(module_put);
1011
1012 #else /* !CONFIG_MODULE_UNLOAD */
1013 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1014 {
1015 /* We don't know the usage count, or what modules are using. */
1016 seq_printf(m, " - -");
1017 }
1018
1019 static inline void module_unload_free(struct module *mod)
1020 {
1021 }
1022
1023 int ref_module(struct module *a, struct module *b)
1024 {
1025 return strong_try_module_get(b);
1026 }
1027 EXPORT_SYMBOL_GPL(ref_module);
1028
1029 static inline int module_unload_init(struct module *mod)
1030 {
1031 return 0;
1032 }
1033 #endif /* CONFIG_MODULE_UNLOAD */
1034
1035 static size_t module_flags_taint(struct module *mod, char *buf)
1036 {
1037 size_t l = 0;
1038
1039 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1040 buf[l++] = 'P';
1041 if (mod->taints & (1 << TAINT_OOT_MODULE))
1042 buf[l++] = 'O';
1043 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1044 buf[l++] = 'F';
1045 if (mod->taints & (1 << TAINT_CRAP))
1046 buf[l++] = 'C';
1047 /*
1048 * TAINT_FORCED_RMMOD: could be added.
1049 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1050 * apply to modules.
1051 */
1052 return l;
1053 }
1054
1055 static ssize_t show_initstate(struct module_attribute *mattr,
1056 struct module_kobject *mk, char *buffer)
1057 {
1058 const char *state = "unknown";
1059
1060 switch (mk->mod->state) {
1061 case MODULE_STATE_LIVE:
1062 state = "live";
1063 break;
1064 case MODULE_STATE_COMING:
1065 state = "coming";
1066 break;
1067 case MODULE_STATE_GOING:
1068 state = "going";
1069 break;
1070 default:
1071 BUG();
1072 }
1073 return sprintf(buffer, "%s\n", state);
1074 }
1075
1076 static struct module_attribute modinfo_initstate =
1077 __ATTR(initstate, 0444, show_initstate, NULL);
1078
1079 static ssize_t store_uevent(struct module_attribute *mattr,
1080 struct module_kobject *mk,
1081 const char *buffer, size_t count)
1082 {
1083 enum kobject_action action;
1084
1085 if (kobject_action_type(buffer, count, &action) == 0)
1086 kobject_uevent(&mk->kobj, action);
1087 return count;
1088 }
1089
1090 struct module_attribute module_uevent =
1091 __ATTR(uevent, 0200, NULL, store_uevent);
1092
1093 static ssize_t show_coresize(struct module_attribute *mattr,
1094 struct module_kobject *mk, char *buffer)
1095 {
1096 return sprintf(buffer, "%u\n", mk->mod->core_size);
1097 }
1098
1099 static struct module_attribute modinfo_coresize =
1100 __ATTR(coresize, 0444, show_coresize, NULL);
1101
1102 static ssize_t show_initsize(struct module_attribute *mattr,
1103 struct module_kobject *mk, char *buffer)
1104 {
1105 return sprintf(buffer, "%u\n", mk->mod->init_size);
1106 }
1107
1108 static struct module_attribute modinfo_initsize =
1109 __ATTR(initsize, 0444, show_initsize, NULL);
1110
1111 static ssize_t show_taint(struct module_attribute *mattr,
1112 struct module_kobject *mk, char *buffer)
1113 {
1114 size_t l;
1115
1116 l = module_flags_taint(mk->mod, buffer);
1117 buffer[l++] = '\n';
1118 return l;
1119 }
1120
1121 static struct module_attribute modinfo_taint =
1122 __ATTR(taint, 0444, show_taint, NULL);
1123
1124 static struct module_attribute *modinfo_attrs[] = {
1125 &module_uevent,
1126 &modinfo_version,
1127 &modinfo_srcversion,
1128 &modinfo_initstate,
1129 &modinfo_coresize,
1130 &modinfo_initsize,
1131 &modinfo_taint,
1132 #ifdef CONFIG_MODULE_UNLOAD
1133 &modinfo_refcnt,
1134 #endif
1135 NULL,
1136 };
1137
1138 static const char vermagic[] = VERMAGIC_STRING;
1139
1140 static int try_to_force_load(struct module *mod, const char *reason)
1141 {
1142 #ifdef CONFIG_MODULE_FORCE_LOAD
1143 if (!test_taint(TAINT_FORCED_MODULE))
1144 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1145 mod->name, reason);
1146 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1147 return 0;
1148 #else
1149 return -ENOEXEC;
1150 #endif
1151 }
1152
1153 #ifdef CONFIG_MODVERSIONS
1154 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1155 static unsigned long maybe_relocated(unsigned long crc,
1156 const struct module *crc_owner)
1157 {
1158 #ifdef ARCH_RELOCATES_KCRCTAB
1159 if (crc_owner == NULL)
1160 return crc - (unsigned long)reloc_start;
1161 #endif
1162 return crc;
1163 }
1164
1165 static int check_version(Elf_Shdr *sechdrs,
1166 unsigned int versindex,
1167 const char *symname,
1168 struct module *mod,
1169 const unsigned long *crc,
1170 const struct module *crc_owner)
1171 {
1172 unsigned int i, num_versions;
1173 struct modversion_info *versions;
1174
1175 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1176 if (!crc)
1177 return 1;
1178
1179 /* No versions at all? modprobe --force does this. */
1180 if (versindex == 0)
1181 return try_to_force_load(mod, symname) == 0;
1182
1183 versions = (void *) sechdrs[versindex].sh_addr;
1184 num_versions = sechdrs[versindex].sh_size
1185 / sizeof(struct modversion_info);
1186
1187 for (i = 0; i < num_versions; i++) {
1188 if (strcmp(versions[i].name, symname) != 0)
1189 continue;
1190
1191 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1192 return 1;
1193 pr_debug("Found checksum %lX vs module %lX\n",
1194 maybe_relocated(*crc, crc_owner), versions[i].crc);
1195 goto bad_version;
1196 }
1197
1198 printk(KERN_WARNING "%s: no symbol version for %s\n",
1199 mod->name, symname);
1200 return 0;
1201
1202 bad_version:
1203 printk("%s: disagrees about version of symbol %s\n",
1204 mod->name, symname);
1205 return 0;
1206 }
1207
1208 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1209 unsigned int versindex,
1210 struct module *mod)
1211 {
1212 const unsigned long *crc;
1213
1214 /* Since this should be found in kernel (which can't be removed),
1215 * no locking is necessary. */
1216 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1217 &crc, true, false))
1218 BUG();
1219 return check_version(sechdrs, versindex,
1220 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1221 NULL);
1222 }
1223
1224 /* First part is kernel version, which we ignore if module has crcs. */
1225 static inline int same_magic(const char *amagic, const char *bmagic,
1226 bool has_crcs)
1227 {
1228 if (has_crcs) {
1229 amagic += strcspn(amagic, " ");
1230 bmagic += strcspn(bmagic, " ");
1231 }
1232 return strcmp(amagic, bmagic) == 0;
1233 }
1234 #else
1235 static inline int check_version(Elf_Shdr *sechdrs,
1236 unsigned int versindex,
1237 const char *symname,
1238 struct module *mod,
1239 const unsigned long *crc,
1240 const struct module *crc_owner)
1241 {
1242 return 1;
1243 }
1244
1245 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1246 unsigned int versindex,
1247 struct module *mod)
1248 {
1249 return 1;
1250 }
1251
1252 static inline int same_magic(const char *amagic, const char *bmagic,
1253 bool has_crcs)
1254 {
1255 return strcmp(amagic, bmagic) == 0;
1256 }
1257 #endif /* CONFIG_MODVERSIONS */
1258
1259 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1260 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1261 const struct load_info *info,
1262 const char *name,
1263 char ownername[])
1264 {
1265 struct module *owner;
1266 const struct kernel_symbol *sym;
1267 const unsigned long *crc;
1268 int err;
1269
1270 mutex_lock(&module_mutex);
1271 sym = find_symbol(name, &owner, &crc,
1272 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1273 if (!sym)
1274 goto unlock;
1275
1276 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1277 owner)) {
1278 sym = ERR_PTR(-EINVAL);
1279 goto getname;
1280 }
1281
1282 err = ref_module(mod, owner);
1283 if (err) {
1284 sym = ERR_PTR(err);
1285 goto getname;
1286 }
1287
1288 getname:
1289 /* We must make copy under the lock if we failed to get ref. */
1290 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1291 unlock:
1292 mutex_unlock(&module_mutex);
1293 return sym;
1294 }
1295
1296 static const struct kernel_symbol *
1297 resolve_symbol_wait(struct module *mod,
1298 const struct load_info *info,
1299 const char *name)
1300 {
1301 const struct kernel_symbol *ksym;
1302 char owner[MODULE_NAME_LEN];
1303
1304 if (wait_event_interruptible_timeout(module_wq,
1305 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1306 || PTR_ERR(ksym) != -EBUSY,
1307 30 * HZ) <= 0) {
1308 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1309 mod->name, owner);
1310 }
1311 return ksym;
1312 }
1313
1314 /*
1315 * /sys/module/foo/sections stuff
1316 * J. Corbet <corbet@lwn.net>
1317 */
1318 #ifdef CONFIG_SYSFS
1319
1320 #ifdef CONFIG_KALLSYMS
1321 static inline bool sect_empty(const Elf_Shdr *sect)
1322 {
1323 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1324 }
1325
1326 struct module_sect_attr
1327 {
1328 struct module_attribute mattr;
1329 char *name;
1330 unsigned long address;
1331 };
1332
1333 struct module_sect_attrs
1334 {
1335 struct attribute_group grp;
1336 unsigned int nsections;
1337 struct module_sect_attr attrs[0];
1338 };
1339
1340 static ssize_t module_sect_show(struct module_attribute *mattr,
1341 struct module_kobject *mk, char *buf)
1342 {
1343 struct module_sect_attr *sattr =
1344 container_of(mattr, struct module_sect_attr, mattr);
1345 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1346 }
1347
1348 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1349 {
1350 unsigned int section;
1351
1352 for (section = 0; section < sect_attrs->nsections; section++)
1353 kfree(sect_attrs->attrs[section].name);
1354 kfree(sect_attrs);
1355 }
1356
1357 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1358 {
1359 unsigned int nloaded = 0, i, size[2];
1360 struct module_sect_attrs *sect_attrs;
1361 struct module_sect_attr *sattr;
1362 struct attribute **gattr;
1363
1364 /* Count loaded sections and allocate structures */
1365 for (i = 0; i < info->hdr->e_shnum; i++)
1366 if (!sect_empty(&info->sechdrs[i]))
1367 nloaded++;
1368 size[0] = ALIGN(sizeof(*sect_attrs)
1369 + nloaded * sizeof(sect_attrs->attrs[0]),
1370 sizeof(sect_attrs->grp.attrs[0]));
1371 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1372 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1373 if (sect_attrs == NULL)
1374 return;
1375
1376 /* Setup section attributes. */
1377 sect_attrs->grp.name = "sections";
1378 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1379
1380 sect_attrs->nsections = 0;
1381 sattr = &sect_attrs->attrs[0];
1382 gattr = &sect_attrs->grp.attrs[0];
1383 for (i = 0; i < info->hdr->e_shnum; i++) {
1384 Elf_Shdr *sec = &info->sechdrs[i];
1385 if (sect_empty(sec))
1386 continue;
1387 sattr->address = sec->sh_addr;
1388 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1389 GFP_KERNEL);
1390 if (sattr->name == NULL)
1391 goto out;
1392 sect_attrs->nsections++;
1393 sysfs_attr_init(&sattr->mattr.attr);
1394 sattr->mattr.show = module_sect_show;
1395 sattr->mattr.store = NULL;
1396 sattr->mattr.attr.name = sattr->name;
1397 sattr->mattr.attr.mode = S_IRUGO;
1398 *(gattr++) = &(sattr++)->mattr.attr;
1399 }
1400 *gattr = NULL;
1401
1402 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1403 goto out;
1404
1405 mod->sect_attrs = sect_attrs;
1406 return;
1407 out:
1408 free_sect_attrs(sect_attrs);
1409 }
1410
1411 static void remove_sect_attrs(struct module *mod)
1412 {
1413 if (mod->sect_attrs) {
1414 sysfs_remove_group(&mod->mkobj.kobj,
1415 &mod->sect_attrs->grp);
1416 /* We are positive that no one is using any sect attrs
1417 * at this point. Deallocate immediately. */
1418 free_sect_attrs(mod->sect_attrs);
1419 mod->sect_attrs = NULL;
1420 }
1421 }
1422
1423 /*
1424 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1425 */
1426
1427 struct module_notes_attrs {
1428 struct kobject *dir;
1429 unsigned int notes;
1430 struct bin_attribute attrs[0];
1431 };
1432
1433 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1434 struct bin_attribute *bin_attr,
1435 char *buf, loff_t pos, size_t count)
1436 {
1437 /*
1438 * The caller checked the pos and count against our size.
1439 */
1440 memcpy(buf, bin_attr->private + pos, count);
1441 return count;
1442 }
1443
1444 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1445 unsigned int i)
1446 {
1447 if (notes_attrs->dir) {
1448 while (i-- > 0)
1449 sysfs_remove_bin_file(notes_attrs->dir,
1450 &notes_attrs->attrs[i]);
1451 kobject_put(notes_attrs->dir);
1452 }
1453 kfree(notes_attrs);
1454 }
1455
1456 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1457 {
1458 unsigned int notes, loaded, i;
1459 struct module_notes_attrs *notes_attrs;
1460 struct bin_attribute *nattr;
1461
1462 /* failed to create section attributes, so can't create notes */
1463 if (!mod->sect_attrs)
1464 return;
1465
1466 /* Count notes sections and allocate structures. */
1467 notes = 0;
1468 for (i = 0; i < info->hdr->e_shnum; i++)
1469 if (!sect_empty(&info->sechdrs[i]) &&
1470 (info->sechdrs[i].sh_type == SHT_NOTE))
1471 ++notes;
1472
1473 if (notes == 0)
1474 return;
1475
1476 notes_attrs = kzalloc(sizeof(*notes_attrs)
1477 + notes * sizeof(notes_attrs->attrs[0]),
1478 GFP_KERNEL);
1479 if (notes_attrs == NULL)
1480 return;
1481
1482 notes_attrs->notes = notes;
1483 nattr = &notes_attrs->attrs[0];
1484 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1485 if (sect_empty(&info->sechdrs[i]))
1486 continue;
1487 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1488 sysfs_bin_attr_init(nattr);
1489 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1490 nattr->attr.mode = S_IRUGO;
1491 nattr->size = info->sechdrs[i].sh_size;
1492 nattr->private = (void *) info->sechdrs[i].sh_addr;
1493 nattr->read = module_notes_read;
1494 ++nattr;
1495 }
1496 ++loaded;
1497 }
1498
1499 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1500 if (!notes_attrs->dir)
1501 goto out;
1502
1503 for (i = 0; i < notes; ++i)
1504 if (sysfs_create_bin_file(notes_attrs->dir,
1505 &notes_attrs->attrs[i]))
1506 goto out;
1507
1508 mod->notes_attrs = notes_attrs;
1509 return;
1510
1511 out:
1512 free_notes_attrs(notes_attrs, i);
1513 }
1514
1515 static void remove_notes_attrs(struct module *mod)
1516 {
1517 if (mod->notes_attrs)
1518 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1519 }
1520
1521 #else
1522
1523 static inline void add_sect_attrs(struct module *mod,
1524 const struct load_info *info)
1525 {
1526 }
1527
1528 static inline void remove_sect_attrs(struct module *mod)
1529 {
1530 }
1531
1532 static inline void add_notes_attrs(struct module *mod,
1533 const struct load_info *info)
1534 {
1535 }
1536
1537 static inline void remove_notes_attrs(struct module *mod)
1538 {
1539 }
1540 #endif /* CONFIG_KALLSYMS */
1541
1542 static void add_usage_links(struct module *mod)
1543 {
1544 #ifdef CONFIG_MODULE_UNLOAD
1545 struct module_use *use;
1546 int nowarn;
1547
1548 mutex_lock(&module_mutex);
1549 list_for_each_entry(use, &mod->target_list, target_list) {
1550 nowarn = sysfs_create_link(use->target->holders_dir,
1551 &mod->mkobj.kobj, mod->name);
1552 }
1553 mutex_unlock(&module_mutex);
1554 #endif
1555 }
1556
1557 static void del_usage_links(struct module *mod)
1558 {
1559 #ifdef CONFIG_MODULE_UNLOAD
1560 struct module_use *use;
1561
1562 mutex_lock(&module_mutex);
1563 list_for_each_entry(use, &mod->target_list, target_list)
1564 sysfs_remove_link(use->target->holders_dir, mod->name);
1565 mutex_unlock(&module_mutex);
1566 #endif
1567 }
1568
1569 static int module_add_modinfo_attrs(struct module *mod)
1570 {
1571 struct module_attribute *attr;
1572 struct module_attribute *temp_attr;
1573 int error = 0;
1574 int i;
1575
1576 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1577 (ARRAY_SIZE(modinfo_attrs) + 1)),
1578 GFP_KERNEL);
1579 if (!mod->modinfo_attrs)
1580 return -ENOMEM;
1581
1582 temp_attr = mod->modinfo_attrs;
1583 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1584 if (!attr->test ||
1585 (attr->test && attr->test(mod))) {
1586 memcpy(temp_attr, attr, sizeof(*temp_attr));
1587 sysfs_attr_init(&temp_attr->attr);
1588 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1589 ++temp_attr;
1590 }
1591 }
1592 return error;
1593 }
1594
1595 static void module_remove_modinfo_attrs(struct module *mod)
1596 {
1597 struct module_attribute *attr;
1598 int i;
1599
1600 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1601 /* pick a field to test for end of list */
1602 if (!attr->attr.name)
1603 break;
1604 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1605 if (attr->free)
1606 attr->free(mod);
1607 }
1608 kfree(mod->modinfo_attrs);
1609 }
1610
1611 static int mod_sysfs_init(struct module *mod)
1612 {
1613 int err;
1614 struct kobject *kobj;
1615
1616 if (!module_sysfs_initialized) {
1617 printk(KERN_ERR "%s: module sysfs not initialized\n",
1618 mod->name);
1619 err = -EINVAL;
1620 goto out;
1621 }
1622
1623 kobj = kset_find_obj(module_kset, mod->name);
1624 if (kobj) {
1625 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1626 kobject_put(kobj);
1627 err = -EINVAL;
1628 goto out;
1629 }
1630
1631 mod->mkobj.mod = mod;
1632
1633 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1634 mod->mkobj.kobj.kset = module_kset;
1635 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1636 "%s", mod->name);
1637 if (err)
1638 kobject_put(&mod->mkobj.kobj);
1639
1640 /* delay uevent until full sysfs population */
1641 out:
1642 return err;
1643 }
1644
1645 static int mod_sysfs_setup(struct module *mod,
1646 const struct load_info *info,
1647 struct kernel_param *kparam,
1648 unsigned int num_params)
1649 {
1650 int err;
1651
1652 err = mod_sysfs_init(mod);
1653 if (err)
1654 goto out;
1655
1656 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1657 if (!mod->holders_dir) {
1658 err = -ENOMEM;
1659 goto out_unreg;
1660 }
1661
1662 err = module_param_sysfs_setup(mod, kparam, num_params);
1663 if (err)
1664 goto out_unreg_holders;
1665
1666 err = module_add_modinfo_attrs(mod);
1667 if (err)
1668 goto out_unreg_param;
1669
1670 add_usage_links(mod);
1671 add_sect_attrs(mod, info);
1672 add_notes_attrs(mod, info);
1673
1674 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1675 return 0;
1676
1677 out_unreg_param:
1678 module_param_sysfs_remove(mod);
1679 out_unreg_holders:
1680 kobject_put(mod->holders_dir);
1681 out_unreg:
1682 kobject_put(&mod->mkobj.kobj);
1683 out:
1684 return err;
1685 }
1686
1687 static void mod_sysfs_fini(struct module *mod)
1688 {
1689 remove_notes_attrs(mod);
1690 remove_sect_attrs(mod);
1691 kobject_put(&mod->mkobj.kobj);
1692 }
1693
1694 #else /* !CONFIG_SYSFS */
1695
1696 static int mod_sysfs_setup(struct module *mod,
1697 const struct load_info *info,
1698 struct kernel_param *kparam,
1699 unsigned int num_params)
1700 {
1701 return 0;
1702 }
1703
1704 static void mod_sysfs_fini(struct module *mod)
1705 {
1706 }
1707
1708 static void module_remove_modinfo_attrs(struct module *mod)
1709 {
1710 }
1711
1712 static void del_usage_links(struct module *mod)
1713 {
1714 }
1715
1716 #endif /* CONFIG_SYSFS */
1717
1718 static void mod_sysfs_teardown(struct module *mod)
1719 {
1720 del_usage_links(mod);
1721 module_remove_modinfo_attrs(mod);
1722 module_param_sysfs_remove(mod);
1723 kobject_put(mod->mkobj.drivers_dir);
1724 kobject_put(mod->holders_dir);
1725 mod_sysfs_fini(mod);
1726 }
1727
1728 /*
1729 * unlink the module with the whole machine is stopped with interrupts off
1730 * - this defends against kallsyms not taking locks
1731 */
1732 static int __unlink_module(void *_mod)
1733 {
1734 struct module *mod = _mod;
1735 list_del(&mod->list);
1736 module_bug_cleanup(mod);
1737 return 0;
1738 }
1739
1740 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1741 /*
1742 * LKM RO/NX protection: protect module's text/ro-data
1743 * from modification and any data from execution.
1744 */
1745 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1746 {
1747 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1748 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1749
1750 if (end_pfn > begin_pfn)
1751 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1752 }
1753
1754 static void set_section_ro_nx(void *base,
1755 unsigned long text_size,
1756 unsigned long ro_size,
1757 unsigned long total_size)
1758 {
1759 /* begin and end PFNs of the current subsection */
1760 unsigned long begin_pfn;
1761 unsigned long end_pfn;
1762
1763 /*
1764 * Set RO for module text and RO-data:
1765 * - Always protect first page.
1766 * - Do not protect last partial page.
1767 */
1768 if (ro_size > 0)
1769 set_page_attributes(base, base + ro_size, set_memory_ro);
1770
1771 /*
1772 * Set NX permissions for module data:
1773 * - Do not protect first partial page.
1774 * - Always protect last page.
1775 */
1776 if (total_size > text_size) {
1777 begin_pfn = PFN_UP((unsigned long)base + text_size);
1778 end_pfn = PFN_UP((unsigned long)base + total_size);
1779 if (end_pfn > begin_pfn)
1780 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1781 }
1782 }
1783
1784 static void unset_module_core_ro_nx(struct module *mod)
1785 {
1786 set_page_attributes(mod->module_core + mod->core_text_size,
1787 mod->module_core + mod->core_size,
1788 set_memory_x);
1789 set_page_attributes(mod->module_core,
1790 mod->module_core + mod->core_ro_size,
1791 set_memory_rw);
1792 }
1793
1794 static void unset_module_init_ro_nx(struct module *mod)
1795 {
1796 set_page_attributes(mod->module_init + mod->init_text_size,
1797 mod->module_init + mod->init_size,
1798 set_memory_x);
1799 set_page_attributes(mod->module_init,
1800 mod->module_init + mod->init_ro_size,
1801 set_memory_rw);
1802 }
1803
1804 /* Iterate through all modules and set each module's text as RW */
1805 void set_all_modules_text_rw(void)
1806 {
1807 struct module *mod;
1808
1809 mutex_lock(&module_mutex);
1810 list_for_each_entry_rcu(mod, &modules, list) {
1811 if (mod->state == MODULE_STATE_UNFORMED)
1812 continue;
1813 if ((mod->module_core) && (mod->core_text_size)) {
1814 set_page_attributes(mod->module_core,
1815 mod->module_core + mod->core_text_size,
1816 set_memory_rw);
1817 }
1818 if ((mod->module_init) && (mod->init_text_size)) {
1819 set_page_attributes(mod->module_init,
1820 mod->module_init + mod->init_text_size,
1821 set_memory_rw);
1822 }
1823 }
1824 mutex_unlock(&module_mutex);
1825 }
1826
1827 /* Iterate through all modules and set each module's text as RO */
1828 void set_all_modules_text_ro(void)
1829 {
1830 struct module *mod;
1831
1832 mutex_lock(&module_mutex);
1833 list_for_each_entry_rcu(mod, &modules, list) {
1834 if (mod->state == MODULE_STATE_UNFORMED)
1835 continue;
1836 if ((mod->module_core) && (mod->core_text_size)) {
1837 set_page_attributes(mod->module_core,
1838 mod->module_core + mod->core_text_size,
1839 set_memory_ro);
1840 }
1841 if ((mod->module_init) && (mod->init_text_size)) {
1842 set_page_attributes(mod->module_init,
1843 mod->module_init + mod->init_text_size,
1844 set_memory_ro);
1845 }
1846 }
1847 mutex_unlock(&module_mutex);
1848 }
1849 #else
1850 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1851 static void unset_module_core_ro_nx(struct module *mod) { }
1852 static void unset_module_init_ro_nx(struct module *mod) { }
1853 #endif
1854
1855 void __weak module_free(struct module *mod, void *module_region)
1856 {
1857 vfree(module_region);
1858 }
1859
1860 void __weak module_arch_cleanup(struct module *mod)
1861 {
1862 }
1863
1864 /* Free a module, remove from lists, etc. */
1865 static void free_module(struct module *mod)
1866 {
1867 trace_module_free(mod);
1868
1869 mod_sysfs_teardown(mod);
1870
1871 /* We leave it in list to prevent duplicate loads, but make sure
1872 * that noone uses it while it's being deconstructed. */
1873 mutex_lock(&module_mutex);
1874 mod->state = MODULE_STATE_UNFORMED;
1875 mutex_unlock(&module_mutex);
1876
1877 /* Remove dynamic debug info */
1878 ddebug_remove_module(mod->name);
1879
1880 /* Arch-specific cleanup. */
1881 module_arch_cleanup(mod);
1882
1883 /* Module unload stuff */
1884 module_unload_free(mod);
1885
1886 /* Free any allocated parameters. */
1887 destroy_params(mod->kp, mod->num_kp);
1888
1889 /* Now we can delete it from the lists */
1890 mutex_lock(&module_mutex);
1891 stop_machine(__unlink_module, mod, NULL);
1892 mutex_unlock(&module_mutex);
1893
1894 /* This may be NULL, but that's OK */
1895 unset_module_init_ro_nx(mod);
1896 module_free(mod, mod->module_init);
1897 kfree(mod->args);
1898 percpu_modfree(mod);
1899
1900 /* Free lock-classes: */
1901 lockdep_free_key_range(mod->module_core, mod->core_size);
1902
1903 /* Finally, free the core (containing the module structure) */
1904 unset_module_core_ro_nx(mod);
1905 module_free(mod, mod->module_core);
1906
1907 #ifdef CONFIG_MPU
1908 update_protections(current->mm);
1909 #endif
1910 }
1911
1912 void *__symbol_get(const char *symbol)
1913 {
1914 struct module *owner;
1915 const struct kernel_symbol *sym;
1916
1917 preempt_disable();
1918 sym = find_symbol(symbol, &owner, NULL, true, true);
1919 if (sym && strong_try_module_get(owner))
1920 sym = NULL;
1921 preempt_enable();
1922
1923 return sym ? (void *)sym->value : NULL;
1924 }
1925 EXPORT_SYMBOL_GPL(__symbol_get);
1926
1927 /*
1928 * Ensure that an exported symbol [global namespace] does not already exist
1929 * in the kernel or in some other module's exported symbol table.
1930 *
1931 * You must hold the module_mutex.
1932 */
1933 static int verify_export_symbols(struct module *mod)
1934 {
1935 unsigned int i;
1936 struct module *owner;
1937 const struct kernel_symbol *s;
1938 struct {
1939 const struct kernel_symbol *sym;
1940 unsigned int num;
1941 } arr[] = {
1942 { mod->syms, mod->num_syms },
1943 { mod->gpl_syms, mod->num_gpl_syms },
1944 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1945 #ifdef CONFIG_UNUSED_SYMBOLS
1946 { mod->unused_syms, mod->num_unused_syms },
1947 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1948 #endif
1949 };
1950
1951 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1952 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1953 if (find_symbol(s->name, &owner, NULL, true, false)) {
1954 printk(KERN_ERR
1955 "%s: exports duplicate symbol %s"
1956 " (owned by %s)\n",
1957 mod->name, s->name, module_name(owner));
1958 return -ENOEXEC;
1959 }
1960 }
1961 }
1962 return 0;
1963 }
1964
1965 /* Change all symbols so that st_value encodes the pointer directly. */
1966 static int simplify_symbols(struct module *mod, const struct load_info *info)
1967 {
1968 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1969 Elf_Sym *sym = (void *)symsec->sh_addr;
1970 unsigned long secbase;
1971 unsigned int i;
1972 int ret = 0;
1973 const struct kernel_symbol *ksym;
1974
1975 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1976 const char *name = info->strtab + sym[i].st_name;
1977
1978 switch (sym[i].st_shndx) {
1979 case SHN_COMMON:
1980 /* We compiled with -fno-common. These are not
1981 supposed to happen. */
1982 pr_debug("Common symbol: %s\n", name);
1983 printk("%s: please compile with -fno-common\n",
1984 mod->name);
1985 ret = -ENOEXEC;
1986 break;
1987
1988 case SHN_ABS:
1989 /* Don't need to do anything */
1990 pr_debug("Absolute symbol: 0x%08lx\n",
1991 (long)sym[i].st_value);
1992 break;
1993
1994 case SHN_UNDEF:
1995 ksym = resolve_symbol_wait(mod, info, name);
1996 /* Ok if resolved. */
1997 if (ksym && !IS_ERR(ksym)) {
1998 sym[i].st_value = ksym->value;
1999 break;
2000 }
2001
2002 /* Ok if weak. */
2003 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2004 break;
2005
2006 printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
2007 mod->name, name, PTR_ERR(ksym));
2008 ret = PTR_ERR(ksym) ?: -ENOENT;
2009 break;
2010
2011 default:
2012 /* Divert to percpu allocation if a percpu var. */
2013 if (sym[i].st_shndx == info->index.pcpu)
2014 secbase = (unsigned long)mod_percpu(mod);
2015 else
2016 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2017 sym[i].st_value += secbase;
2018 break;
2019 }
2020 }
2021
2022 return ret;
2023 }
2024
2025 static int apply_relocations(struct module *mod, const struct load_info *info)
2026 {
2027 unsigned int i;
2028 int err = 0;
2029
2030 /* Now do relocations. */
2031 for (i = 1; i < info->hdr->e_shnum; i++) {
2032 unsigned int infosec = info->sechdrs[i].sh_info;
2033
2034 /* Not a valid relocation section? */
2035 if (infosec >= info->hdr->e_shnum)
2036 continue;
2037
2038 /* Don't bother with non-allocated sections */
2039 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2040 continue;
2041
2042 if (info->sechdrs[i].sh_type == SHT_REL)
2043 err = apply_relocate(info->sechdrs, info->strtab,
2044 info->index.sym, i, mod);
2045 else if (info->sechdrs[i].sh_type == SHT_RELA)
2046 err = apply_relocate_add(info->sechdrs, info->strtab,
2047 info->index.sym, i, mod);
2048 if (err < 0)
2049 break;
2050 }
2051 return err;
2052 }
2053
2054 /* Additional bytes needed by arch in front of individual sections */
2055 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2056 unsigned int section)
2057 {
2058 /* default implementation just returns zero */
2059 return 0;
2060 }
2061
2062 /* Update size with this section: return offset. */
2063 static long get_offset(struct module *mod, unsigned int *size,
2064 Elf_Shdr *sechdr, unsigned int section)
2065 {
2066 long ret;
2067
2068 *size += arch_mod_section_prepend(mod, section);
2069 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2070 *size = ret + sechdr->sh_size;
2071 return ret;
2072 }
2073
2074 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2075 might -- code, read-only data, read-write data, small data. Tally
2076 sizes, and place the offsets into sh_entsize fields: high bit means it
2077 belongs in init. */
2078 static void layout_sections(struct module *mod, struct load_info *info)
2079 {
2080 static unsigned long const masks[][2] = {
2081 /* NOTE: all executable code must be the first section
2082 * in this array; otherwise modify the text_size
2083 * finder in the two loops below */
2084 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2085 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2086 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2087 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2088 };
2089 unsigned int m, i;
2090
2091 for (i = 0; i < info->hdr->e_shnum; i++)
2092 info->sechdrs[i].sh_entsize = ~0UL;
2093
2094 pr_debug("Core section allocation order:\n");
2095 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2096 for (i = 0; i < info->hdr->e_shnum; ++i) {
2097 Elf_Shdr *s = &info->sechdrs[i];
2098 const char *sname = info->secstrings + s->sh_name;
2099
2100 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2101 || (s->sh_flags & masks[m][1])
2102 || s->sh_entsize != ~0UL
2103 || strstarts(sname, ".init"))
2104 continue;
2105 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2106 pr_debug("\t%s\n", sname);
2107 }
2108 switch (m) {
2109 case 0: /* executable */
2110 mod->core_size = debug_align(mod->core_size);
2111 mod->core_text_size = mod->core_size;
2112 break;
2113 case 1: /* RO: text and ro-data */
2114 mod->core_size = debug_align(mod->core_size);
2115 mod->core_ro_size = mod->core_size;
2116 break;
2117 case 3: /* whole core */
2118 mod->core_size = debug_align(mod->core_size);
2119 break;
2120 }
2121 }
2122
2123 pr_debug("Init section allocation order:\n");
2124 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2125 for (i = 0; i < info->hdr->e_shnum; ++i) {
2126 Elf_Shdr *s = &info->sechdrs[i];
2127 const char *sname = info->secstrings + s->sh_name;
2128
2129 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2130 || (s->sh_flags & masks[m][1])
2131 || s->sh_entsize != ~0UL
2132 || !strstarts(sname, ".init"))
2133 continue;
2134 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2135 | INIT_OFFSET_MASK);
2136 pr_debug("\t%s\n", sname);
2137 }
2138 switch (m) {
2139 case 0: /* executable */
2140 mod->init_size = debug_align(mod->init_size);
2141 mod->init_text_size = mod->init_size;
2142 break;
2143 case 1: /* RO: text and ro-data */
2144 mod->init_size = debug_align(mod->init_size);
2145 mod->init_ro_size = mod->init_size;
2146 break;
2147 case 3: /* whole init */
2148 mod->init_size = debug_align(mod->init_size);
2149 break;
2150 }
2151 }
2152 }
2153
2154 static void set_license(struct module *mod, const char *license)
2155 {
2156 if (!license)
2157 license = "unspecified";
2158
2159 if (!license_is_gpl_compatible(license)) {
2160 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2161 printk(KERN_WARNING "%s: module license '%s' taints "
2162 "kernel.\n", mod->name, license);
2163 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2164 LOCKDEP_NOW_UNRELIABLE);
2165 }
2166 }
2167
2168 /* Parse tag=value strings from .modinfo section */
2169 static char *next_string(char *string, unsigned long *secsize)
2170 {
2171 /* Skip non-zero chars */
2172 while (string[0]) {
2173 string++;
2174 if ((*secsize)-- <= 1)
2175 return NULL;
2176 }
2177
2178 /* Skip any zero padding. */
2179 while (!string[0]) {
2180 string++;
2181 if ((*secsize)-- <= 1)
2182 return NULL;
2183 }
2184 return string;
2185 }
2186
2187 static char *get_modinfo(struct load_info *info, const char *tag)
2188 {
2189 char *p;
2190 unsigned int taglen = strlen(tag);
2191 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2192 unsigned long size = infosec->sh_size;
2193
2194 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2195 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2196 return p + taglen + 1;
2197 }
2198 return NULL;
2199 }
2200
2201 static void setup_modinfo(struct module *mod, struct load_info *info)
2202 {
2203 struct module_attribute *attr;
2204 int i;
2205
2206 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2207 if (attr->setup)
2208 attr->setup(mod, get_modinfo(info, attr->attr.name));
2209 }
2210 }
2211
2212 static void free_modinfo(struct module *mod)
2213 {
2214 struct module_attribute *attr;
2215 int i;
2216
2217 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2218 if (attr->free)
2219 attr->free(mod);
2220 }
2221 }
2222
2223 #ifdef CONFIG_KALLSYMS
2224
2225 /* lookup symbol in given range of kernel_symbols */
2226 static const struct kernel_symbol *lookup_symbol(const char *name,
2227 const struct kernel_symbol *start,
2228 const struct kernel_symbol *stop)
2229 {
2230 return bsearch(name, start, stop - start,
2231 sizeof(struct kernel_symbol), cmp_name);
2232 }
2233
2234 static int is_exported(const char *name, unsigned long value,
2235 const struct module *mod)
2236 {
2237 const struct kernel_symbol *ks;
2238 if (!mod)
2239 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2240 else
2241 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2242 return ks != NULL && ks->value == value;
2243 }
2244
2245 /* As per nm */
2246 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2247 {
2248 const Elf_Shdr *sechdrs = info->sechdrs;
2249
2250 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2251 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2252 return 'v';
2253 else
2254 return 'w';
2255 }
2256 if (sym->st_shndx == SHN_UNDEF)
2257 return 'U';
2258 if (sym->st_shndx == SHN_ABS)
2259 return 'a';
2260 if (sym->st_shndx >= SHN_LORESERVE)
2261 return '?';
2262 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2263 return 't';
2264 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2265 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2266 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2267 return 'r';
2268 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2269 return 'g';
2270 else
2271 return 'd';
2272 }
2273 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2274 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2275 return 's';
2276 else
2277 return 'b';
2278 }
2279 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2280 ".debug")) {
2281 return 'n';
2282 }
2283 return '?';
2284 }
2285
2286 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2287 unsigned int shnum)
2288 {
2289 const Elf_Shdr *sec;
2290
2291 if (src->st_shndx == SHN_UNDEF
2292 || src->st_shndx >= shnum
2293 || !src->st_name)
2294 return false;
2295
2296 sec = sechdrs + src->st_shndx;
2297 if (!(sec->sh_flags & SHF_ALLOC)
2298 #ifndef CONFIG_KALLSYMS_ALL
2299 || !(sec->sh_flags & SHF_EXECINSTR)
2300 #endif
2301 || (sec->sh_entsize & INIT_OFFSET_MASK))
2302 return false;
2303
2304 return true;
2305 }
2306
2307 /*
2308 * We only allocate and copy the strings needed by the parts of symtab
2309 * we keep. This is simple, but has the effect of making multiple
2310 * copies of duplicates. We could be more sophisticated, see
2311 * linux-kernel thread starting with
2312 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2313 */
2314 static void layout_symtab(struct module *mod, struct load_info *info)
2315 {
2316 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2317 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2318 const Elf_Sym *src;
2319 unsigned int i, nsrc, ndst, strtab_size = 0;
2320
2321 /* Put symbol section at end of init part of module. */
2322 symsect->sh_flags |= SHF_ALLOC;
2323 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2324 info->index.sym) | INIT_OFFSET_MASK;
2325 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2326
2327 src = (void *)info->hdr + symsect->sh_offset;
2328 nsrc = symsect->sh_size / sizeof(*src);
2329
2330 /* Compute total space required for the core symbols' strtab. */
2331 for (ndst = i = 0; i < nsrc; i++) {
2332 if (i == 0 ||
2333 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2334 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2335 ndst++;
2336 }
2337 }
2338
2339 /* Append room for core symbols at end of core part. */
2340 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2341 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2342 mod->core_size += strtab_size;
2343
2344 /* Put string table section at end of init part of module. */
2345 strsect->sh_flags |= SHF_ALLOC;
2346 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2347 info->index.str) | INIT_OFFSET_MASK;
2348 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2349 }
2350
2351 static void add_kallsyms(struct module *mod, const struct load_info *info)
2352 {
2353 unsigned int i, ndst;
2354 const Elf_Sym *src;
2355 Elf_Sym *dst;
2356 char *s;
2357 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2358
2359 mod->symtab = (void *)symsec->sh_addr;
2360 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2361 /* Make sure we get permanent strtab: don't use info->strtab. */
2362 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2363
2364 /* Set types up while we still have access to sections. */
2365 for (i = 0; i < mod->num_symtab; i++)
2366 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2367
2368 mod->core_symtab = dst = mod->module_core + info->symoffs;
2369 mod->core_strtab = s = mod->module_core + info->stroffs;
2370 src = mod->symtab;
2371 for (ndst = i = 0; i < mod->num_symtab; i++) {
2372 if (i == 0 ||
2373 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2374 dst[ndst] = src[i];
2375 dst[ndst++].st_name = s - mod->core_strtab;
2376 s += strlcpy(s, &mod->strtab[src[i].st_name],
2377 KSYM_NAME_LEN) + 1;
2378 }
2379 }
2380 mod->core_num_syms = ndst;
2381 }
2382 #else
2383 static inline void layout_symtab(struct module *mod, struct load_info *info)
2384 {
2385 }
2386
2387 static void add_kallsyms(struct module *mod, const struct load_info *info)
2388 {
2389 }
2390 #endif /* CONFIG_KALLSYMS */
2391
2392 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2393 {
2394 if (!debug)
2395 return;
2396 #ifdef CONFIG_DYNAMIC_DEBUG
2397 if (ddebug_add_module(debug, num, debug->modname))
2398 printk(KERN_ERR "dynamic debug error adding module: %s\n",
2399 debug->modname);
2400 #endif
2401 }
2402
2403 static void dynamic_debug_remove(struct _ddebug *debug)
2404 {
2405 if (debug)
2406 ddebug_remove_module(debug->modname);
2407 }
2408
2409 void * __weak module_alloc(unsigned long size)
2410 {
2411 return vmalloc_exec(size);
2412 }
2413
2414 static void *module_alloc_update_bounds(unsigned long size)
2415 {
2416 void *ret = module_alloc(size);
2417
2418 if (ret) {
2419 mutex_lock(&module_mutex);
2420 /* Update module bounds. */
2421 if ((unsigned long)ret < module_addr_min)
2422 module_addr_min = (unsigned long)ret;
2423 if ((unsigned long)ret + size > module_addr_max)
2424 module_addr_max = (unsigned long)ret + size;
2425 mutex_unlock(&module_mutex);
2426 }
2427 return ret;
2428 }
2429
2430 #ifdef CONFIG_DEBUG_KMEMLEAK
2431 static void kmemleak_load_module(const struct module *mod,
2432 const struct load_info *info)
2433 {
2434 unsigned int i;
2435
2436 /* only scan the sections containing data */
2437 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2438
2439 for (i = 1; i < info->hdr->e_shnum; i++) {
2440 /* Scan all writable sections that's not executable */
2441 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2442 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2443 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2444 continue;
2445
2446 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2447 info->sechdrs[i].sh_size, GFP_KERNEL);
2448 }
2449 }
2450 #else
2451 static inline void kmemleak_load_module(const struct module *mod,
2452 const struct load_info *info)
2453 {
2454 }
2455 #endif
2456
2457 #ifdef CONFIG_MODULE_SIG
2458 static int module_sig_check(struct load_info *info)
2459 {
2460 int err = -ENOKEY;
2461 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2462 const void *mod = info->hdr;
2463
2464 if (info->len > markerlen &&
2465 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2466 /* We truncate the module to discard the signature */
2467 info->len -= markerlen;
2468 err = mod_verify_sig(mod, &info->len);
2469 }
2470
2471 if (!err) {
2472 info->sig_ok = true;
2473 return 0;
2474 }
2475
2476 /* Not having a signature is only an error if we're strict. */
2477 if (err < 0 && fips_enabled)
2478 panic("Module verification failed with error %d in FIPS mode\n",
2479 err);
2480 if (err == -ENOKEY && !sig_enforce)
2481 err = 0;
2482
2483 return err;
2484 }
2485 #else /* !CONFIG_MODULE_SIG */
2486 static int module_sig_check(struct load_info *info)
2487 {
2488 return 0;
2489 }
2490 #endif /* !CONFIG_MODULE_SIG */
2491
2492 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2493 static int elf_header_check(struct load_info *info)
2494 {
2495 if (info->len < sizeof(*(info->hdr)))
2496 return -ENOEXEC;
2497
2498 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2499 || info->hdr->e_type != ET_REL
2500 || !elf_check_arch(info->hdr)
2501 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2502 return -ENOEXEC;
2503
2504 if (info->hdr->e_shoff >= info->len
2505 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2506 info->len - info->hdr->e_shoff))
2507 return -ENOEXEC;
2508
2509 return 0;
2510 }
2511
2512 /* Sets info->hdr and info->len. */
2513 static int copy_module_from_user(const void __user *umod, unsigned long len,
2514 struct load_info *info)
2515 {
2516 int err;
2517
2518 info->len = len;
2519 if (info->len < sizeof(*(info->hdr)))
2520 return -ENOEXEC;
2521
2522 err = security_kernel_module_from_file(NULL);
2523 if (err)
2524 return err;
2525
2526 /* Suck in entire file: we'll want most of it. */
2527 info->hdr = vmalloc(info->len);
2528 if (!info->hdr)
2529 return -ENOMEM;
2530
2531 if (copy_from_user(info->hdr, umod, info->len) != 0) {
2532 vfree(info->hdr);
2533 return -EFAULT;
2534 }
2535
2536 return 0;
2537 }
2538
2539 /* Sets info->hdr and info->len. */
2540 static int copy_module_from_fd(int fd, struct load_info *info)
2541 {
2542 struct file *file;
2543 int err;
2544 struct kstat stat;
2545 loff_t pos;
2546 ssize_t bytes = 0;
2547
2548 file = fget(fd);
2549 if (!file)
2550 return -ENOEXEC;
2551
2552 err = security_kernel_module_from_file(file);
2553 if (err)
2554 goto out;
2555
2556 err = vfs_getattr(&file->f_path, &stat);
2557 if (err)
2558 goto out;
2559
2560 if (stat.size > INT_MAX) {
2561 err = -EFBIG;
2562 goto out;
2563 }
2564
2565 /* Don't hand 0 to vmalloc, it whines. */
2566 if (stat.size == 0) {
2567 err = -EINVAL;
2568 goto out;
2569 }
2570
2571 info->hdr = vmalloc(stat.size);
2572 if (!info->hdr) {
2573 err = -ENOMEM;
2574 goto out;
2575 }
2576
2577 pos = 0;
2578 while (pos < stat.size) {
2579 bytes = kernel_read(file, pos, (char *)(info->hdr) + pos,
2580 stat.size - pos);
2581 if (bytes < 0) {
2582 vfree(info->hdr);
2583 err = bytes;
2584 goto out;
2585 }
2586 if (bytes == 0)
2587 break;
2588 pos += bytes;
2589 }
2590 info->len = pos;
2591
2592 out:
2593 fput(file);
2594 return err;
2595 }
2596
2597 static void free_copy(struct load_info *info)
2598 {
2599 vfree(info->hdr);
2600 }
2601
2602 static int rewrite_section_headers(struct load_info *info, int flags)
2603 {
2604 unsigned int i;
2605
2606 /* This should always be true, but let's be sure. */
2607 info->sechdrs[0].sh_addr = 0;
2608
2609 for (i = 1; i < info->hdr->e_shnum; i++) {
2610 Elf_Shdr *shdr = &info->sechdrs[i];
2611 if (shdr->sh_type != SHT_NOBITS
2612 && info->len < shdr->sh_offset + shdr->sh_size) {
2613 printk(KERN_ERR "Module len %lu truncated\n",
2614 info->len);
2615 return -ENOEXEC;
2616 }
2617
2618 /* Mark all sections sh_addr with their address in the
2619 temporary image. */
2620 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2621
2622 #ifndef CONFIG_MODULE_UNLOAD
2623 /* Don't load .exit sections */
2624 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2625 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2626 #endif
2627 }
2628
2629 /* Track but don't keep modinfo and version sections. */
2630 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2631 info->index.vers = 0; /* Pretend no __versions section! */
2632 else
2633 info->index.vers = find_sec(info, "__versions");
2634 info->index.info = find_sec(info, ".modinfo");
2635 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2636 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2637 return 0;
2638 }
2639
2640 /*
2641 * Set up our basic convenience variables (pointers to section headers,
2642 * search for module section index etc), and do some basic section
2643 * verification.
2644 *
2645 * Return the temporary module pointer (we'll replace it with the final
2646 * one when we move the module sections around).
2647 */
2648 static struct module *setup_load_info(struct load_info *info, int flags)
2649 {
2650 unsigned int i;
2651 int err;
2652 struct module *mod;
2653
2654 /* Set up the convenience variables */
2655 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2656 info->secstrings = (void *)info->hdr
2657 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2658
2659 err = rewrite_section_headers(info, flags);
2660 if (err)
2661 return ERR_PTR(err);
2662
2663 /* Find internal symbols and strings. */
2664 for (i = 1; i < info->hdr->e_shnum; i++) {
2665 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2666 info->index.sym = i;
2667 info->index.str = info->sechdrs[i].sh_link;
2668 info->strtab = (char *)info->hdr
2669 + info->sechdrs[info->index.str].sh_offset;
2670 break;
2671 }
2672 }
2673
2674 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2675 if (!info->index.mod) {
2676 printk(KERN_WARNING "No module found in object\n");
2677 return ERR_PTR(-ENOEXEC);
2678 }
2679 /* This is temporary: point mod into copy of data. */
2680 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2681
2682 if (info->index.sym == 0) {
2683 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2684 mod->name);
2685 return ERR_PTR(-ENOEXEC);
2686 }
2687
2688 info->index.pcpu = find_pcpusec(info);
2689
2690 /* Check module struct version now, before we try to use module. */
2691 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2692 return ERR_PTR(-ENOEXEC);
2693
2694 return mod;
2695 }
2696
2697 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2698 {
2699 const char *modmagic = get_modinfo(info, "vermagic");
2700 int err;
2701
2702 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2703 modmagic = NULL;
2704
2705 /* This is allowed: modprobe --force will invalidate it. */
2706 if (!modmagic) {
2707 err = try_to_force_load(mod, "bad vermagic");
2708 if (err)
2709 return err;
2710 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2711 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2712 mod->name, modmagic, vermagic);
2713 return -ENOEXEC;
2714 }
2715
2716 if (!get_modinfo(info, "intree"))
2717 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2718
2719 if (get_modinfo(info, "staging")) {
2720 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2721 printk(KERN_WARNING "%s: module is from the staging directory,"
2722 " the quality is unknown, you have been warned.\n",
2723 mod->name);
2724 }
2725
2726 /* Set up license info based on the info section */
2727 set_license(mod, get_modinfo(info, "license"));
2728
2729 return 0;
2730 }
2731
2732 static void find_module_sections(struct module *mod, struct load_info *info)
2733 {
2734 mod->kp = section_objs(info, "__param",
2735 sizeof(*mod->kp), &mod->num_kp);
2736 mod->syms = section_objs(info, "__ksymtab",
2737 sizeof(*mod->syms), &mod->num_syms);
2738 mod->crcs = section_addr(info, "__kcrctab");
2739 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2740 sizeof(*mod->gpl_syms),
2741 &mod->num_gpl_syms);
2742 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2743 mod->gpl_future_syms = section_objs(info,
2744 "__ksymtab_gpl_future",
2745 sizeof(*mod->gpl_future_syms),
2746 &mod->num_gpl_future_syms);
2747 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2748
2749 #ifdef CONFIG_UNUSED_SYMBOLS
2750 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2751 sizeof(*mod->unused_syms),
2752 &mod->num_unused_syms);
2753 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2754 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2755 sizeof(*mod->unused_gpl_syms),
2756 &mod->num_unused_gpl_syms);
2757 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2758 #endif
2759 #ifdef CONFIG_CONSTRUCTORS
2760 mod->ctors = section_objs(info, ".ctors",
2761 sizeof(*mod->ctors), &mod->num_ctors);
2762 #endif
2763
2764 #ifdef CONFIG_TRACEPOINTS
2765 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2766 sizeof(*mod->tracepoints_ptrs),
2767 &mod->num_tracepoints);
2768 #endif
2769 #ifdef HAVE_JUMP_LABEL
2770 mod->jump_entries = section_objs(info, "__jump_table",
2771 sizeof(*mod->jump_entries),
2772 &mod->num_jump_entries);
2773 #endif
2774 #ifdef CONFIG_EVENT_TRACING
2775 mod->trace_events = section_objs(info, "_ftrace_events",
2776 sizeof(*mod->trace_events),
2777 &mod->num_trace_events);
2778 #endif
2779 #ifdef CONFIG_TRACING
2780 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2781 sizeof(*mod->trace_bprintk_fmt_start),
2782 &mod->num_trace_bprintk_fmt);
2783 #endif
2784 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2785 /* sechdrs[0].sh_size is always zero */
2786 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2787 sizeof(*mod->ftrace_callsites),
2788 &mod->num_ftrace_callsites);
2789 #endif
2790
2791 mod->extable = section_objs(info, "__ex_table",
2792 sizeof(*mod->extable), &mod->num_exentries);
2793
2794 if (section_addr(info, "__obsparm"))
2795 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2796 mod->name);
2797
2798 info->debug = section_objs(info, "__verbose",
2799 sizeof(*info->debug), &info->num_debug);
2800 }
2801
2802 static int move_module(struct module *mod, struct load_info *info)
2803 {
2804 int i;
2805 void *ptr;
2806
2807 /* Do the allocs. */
2808 ptr = module_alloc_update_bounds(mod->core_size);
2809 /*
2810 * The pointer to this block is stored in the module structure
2811 * which is inside the block. Just mark it as not being a
2812 * leak.
2813 */
2814 kmemleak_not_leak(ptr);
2815 if (!ptr)
2816 return -ENOMEM;
2817
2818 memset(ptr, 0, mod->core_size);
2819 mod->module_core = ptr;
2820
2821 if (mod->init_size) {
2822 ptr = module_alloc_update_bounds(mod->init_size);
2823 /*
2824 * The pointer to this block is stored in the module structure
2825 * which is inside the block. This block doesn't need to be
2826 * scanned as it contains data and code that will be freed
2827 * after the module is initialized.
2828 */
2829 kmemleak_ignore(ptr);
2830 if (!ptr) {
2831 module_free(mod, mod->module_core);
2832 return -ENOMEM;
2833 }
2834 memset(ptr, 0, mod->init_size);
2835 mod->module_init = ptr;
2836 } else
2837 mod->module_init = NULL;
2838
2839 /* Transfer each section which specifies SHF_ALLOC */
2840 pr_debug("final section addresses:\n");
2841 for (i = 0; i < info->hdr->e_shnum; i++) {
2842 void *dest;
2843 Elf_Shdr *shdr = &info->sechdrs[i];
2844
2845 if (!(shdr->sh_flags & SHF_ALLOC))
2846 continue;
2847
2848 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2849 dest = mod->module_init
2850 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2851 else
2852 dest = mod->module_core + shdr->sh_entsize;
2853
2854 if (shdr->sh_type != SHT_NOBITS)
2855 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2856 /* Update sh_addr to point to copy in image. */
2857 shdr->sh_addr = (unsigned long)dest;
2858 pr_debug("\t0x%lx %s\n",
2859 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2860 }
2861
2862 return 0;
2863 }
2864
2865 static int check_module_license_and_versions(struct module *mod)
2866 {
2867 /*
2868 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2869 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2870 * using GPL-only symbols it needs.
2871 */
2872 if (strcmp(mod->name, "ndiswrapper") == 0)
2873 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2874
2875 /* driverloader was caught wrongly pretending to be under GPL */
2876 if (strcmp(mod->name, "driverloader") == 0)
2877 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2878 LOCKDEP_NOW_UNRELIABLE);
2879
2880 /* lve claims to be GPL but upstream won't provide source */
2881 if (strcmp(mod->name, "lve") == 0)
2882 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2883 LOCKDEP_NOW_UNRELIABLE);
2884
2885 #ifdef CONFIG_MODVERSIONS
2886 if ((mod->num_syms && !mod->crcs)
2887 || (mod->num_gpl_syms && !mod->gpl_crcs)
2888 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2889 #ifdef CONFIG_UNUSED_SYMBOLS
2890 || (mod->num_unused_syms && !mod->unused_crcs)
2891 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2892 #endif
2893 ) {
2894 return try_to_force_load(mod,
2895 "no versions for exported symbols");
2896 }
2897 #endif
2898 return 0;
2899 }
2900
2901 static void flush_module_icache(const struct module *mod)
2902 {
2903 mm_segment_t old_fs;
2904
2905 /* flush the icache in correct context */
2906 old_fs = get_fs();
2907 set_fs(KERNEL_DS);
2908
2909 /*
2910 * Flush the instruction cache, since we've played with text.
2911 * Do it before processing of module parameters, so the module
2912 * can provide parameter accessor functions of its own.
2913 */
2914 if (mod->module_init)
2915 flush_icache_range((unsigned long)mod->module_init,
2916 (unsigned long)mod->module_init
2917 + mod->init_size);
2918 flush_icache_range((unsigned long)mod->module_core,
2919 (unsigned long)mod->module_core + mod->core_size);
2920
2921 set_fs(old_fs);
2922 }
2923
2924 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2925 Elf_Shdr *sechdrs,
2926 char *secstrings,
2927 struct module *mod)
2928 {
2929 return 0;
2930 }
2931
2932 static struct module *layout_and_allocate(struct load_info *info, int flags)
2933 {
2934 /* Module within temporary copy. */
2935 struct module *mod;
2936 int err;
2937
2938 mod = setup_load_info(info, flags);
2939 if (IS_ERR(mod))
2940 return mod;
2941
2942 err = check_modinfo(mod, info, flags);
2943 if (err)
2944 return ERR_PTR(err);
2945
2946 /* Allow arches to frob section contents and sizes. */
2947 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2948 info->secstrings, mod);
2949 if (err < 0)
2950 return ERR_PTR(err);
2951
2952 /* We will do a special allocation for per-cpu sections later. */
2953 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2954
2955 /* Determine total sizes, and put offsets in sh_entsize. For now
2956 this is done generically; there doesn't appear to be any
2957 special cases for the architectures. */
2958 layout_sections(mod, info);
2959 layout_symtab(mod, info);
2960
2961 /* Allocate and move to the final place */
2962 err = move_module(mod, info);
2963 if (err)
2964 return ERR_PTR(err);
2965
2966 /* Module has been copied to its final place now: return it. */
2967 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2968 kmemleak_load_module(mod, info);
2969 return mod;
2970 }
2971
2972 static int alloc_module_percpu(struct module *mod, struct load_info *info)
2973 {
2974 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
2975 if (!pcpusec->sh_size)
2976 return 0;
2977
2978 /* We have a special allocation for this section. */
2979 return percpu_modalloc(mod, pcpusec->sh_size, pcpusec->sh_addralign);
2980 }
2981
2982 /* mod is no longer valid after this! */
2983 static void module_deallocate(struct module *mod, struct load_info *info)
2984 {
2985 percpu_modfree(mod);
2986 module_free(mod, mod->module_init);
2987 module_free(mod, mod->module_core);
2988 }
2989
2990 int __weak module_finalize(const Elf_Ehdr *hdr,
2991 const Elf_Shdr *sechdrs,
2992 struct module *me)
2993 {
2994 return 0;
2995 }
2996
2997 static int post_relocation(struct module *mod, const struct load_info *info)
2998 {
2999 /* Sort exception table now relocations are done. */
3000 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3001
3002 /* Copy relocated percpu area over. */
3003 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3004 info->sechdrs[info->index.pcpu].sh_size);
3005
3006 /* Setup kallsyms-specific fields. */
3007 add_kallsyms(mod, info);
3008
3009 /* Arch-specific module finalizing. */
3010 return module_finalize(info->hdr, info->sechdrs, mod);
3011 }
3012
3013 /* Is this module of this name done loading? No locks held. */
3014 static bool finished_loading(const char *name)
3015 {
3016 struct module *mod;
3017 bool ret;
3018
3019 mutex_lock(&module_mutex);
3020 mod = find_module_all(name, true);
3021 ret = !mod || mod->state == MODULE_STATE_LIVE
3022 || mod->state == MODULE_STATE_GOING;
3023 mutex_unlock(&module_mutex);
3024
3025 return ret;
3026 }
3027
3028 /* Call module constructors. */
3029 static void do_mod_ctors(struct module *mod)
3030 {
3031 #ifdef CONFIG_CONSTRUCTORS
3032 unsigned long i;
3033
3034 for (i = 0; i < mod->num_ctors; i++)
3035 mod->ctors[i]();
3036 #endif
3037 }
3038
3039 /* This is where the real work happens */
3040 static int do_init_module(struct module *mod)
3041 {
3042 int ret = 0;
3043
3044 /*
3045 * We want to find out whether @mod uses async during init. Clear
3046 * PF_USED_ASYNC. async_schedule*() will set it.
3047 */
3048 current->flags &= ~PF_USED_ASYNC;
3049
3050 blocking_notifier_call_chain(&module_notify_list,
3051 MODULE_STATE_COMING, mod);
3052
3053 /* Set RO and NX regions for core */
3054 set_section_ro_nx(mod->module_core,
3055 mod->core_text_size,
3056 mod->core_ro_size,
3057 mod->core_size);
3058
3059 /* Set RO and NX regions for init */
3060 set_section_ro_nx(mod->module_init,
3061 mod->init_text_size,
3062 mod->init_ro_size,
3063 mod->init_size);
3064
3065 do_mod_ctors(mod);
3066 /* Start the module */
3067 if (mod->init != NULL)
3068 ret = do_one_initcall(mod->init);
3069 if (ret < 0) {
3070 /* Init routine failed: abort. Try to protect us from
3071 buggy refcounters. */
3072 mod->state = MODULE_STATE_GOING;
3073 synchronize_sched();
3074 module_put(mod);
3075 blocking_notifier_call_chain(&module_notify_list,
3076 MODULE_STATE_GOING, mod);
3077 free_module(mod);
3078 wake_up_all(&module_wq);
3079 return ret;
3080 }
3081 if (ret > 0) {
3082 printk(KERN_WARNING
3083 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3084 "%s: loading module anyway...\n",
3085 __func__, mod->name, ret,
3086 __func__);
3087 dump_stack();
3088 }
3089
3090 /* Now it's a first class citizen! */
3091 mod->state = MODULE_STATE_LIVE;
3092 blocking_notifier_call_chain(&module_notify_list,
3093 MODULE_STATE_LIVE, mod);
3094
3095 /*
3096 * We need to finish all async code before the module init sequence
3097 * is done. This has potential to deadlock. For example, a newly
3098 * detected block device can trigger request_module() of the
3099 * default iosched from async probing task. Once userland helper
3100 * reaches here, async_synchronize_full() will wait on the async
3101 * task waiting on request_module() and deadlock.
3102 *
3103 * This deadlock is avoided by perfomring async_synchronize_full()
3104 * iff module init queued any async jobs. This isn't a full
3105 * solution as it will deadlock the same if module loading from
3106 * async jobs nests more than once; however, due to the various
3107 * constraints, this hack seems to be the best option for now.
3108 * Please refer to the following thread for details.
3109 *
3110 * http://thread.gmane.org/gmane.linux.kernel/1420814
3111 */
3112 if (current->flags & PF_USED_ASYNC)
3113 async_synchronize_full();
3114
3115 mutex_lock(&module_mutex);
3116 /* Drop initial reference. */
3117 module_put(mod);
3118 trim_init_extable(mod);
3119 #ifdef CONFIG_KALLSYMS
3120 mod->num_symtab = mod->core_num_syms;
3121 mod->symtab = mod->core_symtab;
3122 mod->strtab = mod->core_strtab;
3123 #endif
3124 unset_module_init_ro_nx(mod);
3125 module_free(mod, mod->module_init);
3126 mod->module_init = NULL;
3127 mod->init_size = 0;
3128 mod->init_ro_size = 0;
3129 mod->init_text_size = 0;
3130 mutex_unlock(&module_mutex);
3131 wake_up_all(&module_wq);
3132
3133 return 0;
3134 }
3135
3136 static int may_init_module(void)
3137 {
3138 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3139 return -EPERM;
3140
3141 return 0;
3142 }
3143
3144 /*
3145 * We try to place it in the list now to make sure it's unique before
3146 * we dedicate too many resources. In particular, temporary percpu
3147 * memory exhaustion.
3148 */
3149 static int add_unformed_module(struct module *mod)
3150 {
3151 int err;
3152 struct module *old;
3153
3154 mod->state = MODULE_STATE_UNFORMED;
3155
3156 again:
3157 mutex_lock(&module_mutex);
3158 if ((old = find_module_all(mod->name, true)) != NULL) {
3159 if (old->state == MODULE_STATE_COMING
3160 || old->state == MODULE_STATE_UNFORMED) {
3161 /* Wait in case it fails to load. */
3162 mutex_unlock(&module_mutex);
3163 err = wait_event_interruptible(module_wq,
3164 finished_loading(mod->name));
3165 if (err)
3166 goto out_unlocked;
3167 goto again;
3168 }
3169 err = -EEXIST;
3170 goto out;
3171 }
3172 list_add_rcu(&mod->list, &modules);
3173 err = 0;
3174
3175 out:
3176 mutex_unlock(&module_mutex);
3177 out_unlocked:
3178 return err;
3179 }
3180
3181 static int complete_formation(struct module *mod, struct load_info *info)
3182 {
3183 int err;
3184
3185 mutex_lock(&module_mutex);
3186
3187 /* Find duplicate symbols (must be called under lock). */
3188 err = verify_export_symbols(mod);
3189 if (err < 0)
3190 goto out;
3191
3192 /* This relies on module_mutex for list integrity. */
3193 module_bug_finalize(info->hdr, info->sechdrs, mod);
3194
3195 /* Mark state as coming so strong_try_module_get() ignores us,
3196 * but kallsyms etc. can see us. */
3197 mod->state = MODULE_STATE_COMING;
3198
3199 out:
3200 mutex_unlock(&module_mutex);
3201 return err;
3202 }
3203
3204 /* Allocate and load the module: note that size of section 0 is always
3205 zero, and we rely on this for optional sections. */
3206 static int load_module(struct load_info *info, const char __user *uargs,
3207 int flags)
3208 {
3209 struct module *mod;
3210 long err;
3211
3212 err = module_sig_check(info);
3213 if (err)
3214 goto free_copy;
3215
3216 err = elf_header_check(info);
3217 if (err)
3218 goto free_copy;
3219
3220 /* Figure out module layout, and allocate all the memory. */
3221 mod = layout_and_allocate(info, flags);
3222 if (IS_ERR(mod)) {
3223 err = PTR_ERR(mod);
3224 goto free_copy;
3225 }
3226
3227 /* Reserve our place in the list. */
3228 err = add_unformed_module(mod);
3229 if (err)
3230 goto free_module;
3231
3232 #ifdef CONFIG_MODULE_SIG
3233 mod->sig_ok = info->sig_ok;
3234 if (!mod->sig_ok) {
3235 printk_once(KERN_NOTICE
3236 "%s: module verification failed: signature and/or"
3237 " required key missing - tainting kernel\n",
3238 mod->name);
3239 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_STILL_OK);
3240 }
3241 #endif
3242
3243 /* To avoid stressing percpu allocator, do this once we're unique. */
3244 err = alloc_module_percpu(mod, info);
3245 if (err)
3246 goto unlink_mod;
3247
3248 /* Now module is in final location, initialize linked lists, etc. */
3249 err = module_unload_init(mod);
3250 if (err)
3251 goto unlink_mod;
3252
3253 /* Now we've got everything in the final locations, we can
3254 * find optional sections. */
3255 find_module_sections(mod, info);
3256
3257 err = check_module_license_and_versions(mod);
3258 if (err)
3259 goto free_unload;
3260
3261 /* Set up MODINFO_ATTR fields */
3262 setup_modinfo(mod, info);
3263
3264 /* Fix up syms, so that st_value is a pointer to location. */
3265 err = simplify_symbols(mod, info);
3266 if (err < 0)
3267 goto free_modinfo;
3268
3269 err = apply_relocations(mod, info);
3270 if (err < 0)
3271 goto free_modinfo;
3272
3273 err = post_relocation(mod, info);
3274 if (err < 0)
3275 goto free_modinfo;
3276
3277 flush_module_icache(mod);
3278
3279 /* Now copy in args */
3280 mod->args = strndup_user(uargs, ~0UL >> 1);
3281 if (IS_ERR(mod->args)) {
3282 err = PTR_ERR(mod->args);
3283 goto free_arch_cleanup;
3284 }
3285
3286 dynamic_debug_setup(info->debug, info->num_debug);
3287
3288 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3289 ftrace_module_init(mod);
3290
3291 /* Finally it's fully formed, ready to start executing. */
3292 err = complete_formation(mod, info);
3293 if (err)
3294 goto ddebug_cleanup;
3295
3296 /* Module is ready to execute: parsing args may do that. */
3297 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3298 -32768, 32767, &ddebug_dyndbg_module_param_cb);
3299 if (err < 0)
3300 goto bug_cleanup;
3301
3302 /* Link in to syfs. */
3303 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3304 if (err < 0)
3305 goto bug_cleanup;
3306
3307 /* Get rid of temporary copy. */
3308 free_copy(info);
3309
3310 /* Done! */
3311 trace_module_load(mod);
3312
3313 return do_init_module(mod);
3314
3315 bug_cleanup:
3316 /* module_bug_cleanup needs module_mutex protection */
3317 mutex_lock(&module_mutex);
3318 module_bug_cleanup(mod);
3319 mutex_unlock(&module_mutex);
3320 ddebug_cleanup:
3321 dynamic_debug_remove(info->debug);
3322 synchronize_sched();
3323 kfree(mod->args);
3324 free_arch_cleanup:
3325 module_arch_cleanup(mod);
3326 free_modinfo:
3327 free_modinfo(mod);
3328 free_unload:
3329 module_unload_free(mod);
3330 unlink_mod:
3331 mutex_lock(&module_mutex);
3332 /* Unlink carefully: kallsyms could be walking list. */
3333 list_del_rcu(&mod->list);
3334 wake_up_all(&module_wq);
3335 mutex_unlock(&module_mutex);
3336 free_module:
3337 module_deallocate(mod, info);
3338 free_copy:
3339 free_copy(info);
3340 return err;
3341 }
3342
3343 SYSCALL_DEFINE3(init_module, void __user *, umod,
3344 unsigned long, len, const char __user *, uargs)
3345 {
3346 int err;
3347 struct load_info info = { };
3348
3349 err = may_init_module();
3350 if (err)
3351 return err;
3352
3353 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3354 umod, len, uargs);
3355
3356 err = copy_module_from_user(umod, len, &info);
3357 if (err)
3358 return err;
3359
3360 return load_module(&info, uargs, 0);
3361 }
3362
3363 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3364 {
3365 int err;
3366 struct load_info info = { };
3367
3368 err = may_init_module();
3369 if (err)
3370 return err;
3371
3372 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3373
3374 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3375 |MODULE_INIT_IGNORE_VERMAGIC))
3376 return -EINVAL;
3377
3378 err = copy_module_from_fd(fd, &info);
3379 if (err)
3380 return err;
3381
3382 return load_module(&info, uargs, flags);
3383 }
3384
3385 static inline int within(unsigned long addr, void *start, unsigned long size)
3386 {
3387 return ((void *)addr >= start && (void *)addr < start + size);
3388 }
3389
3390 #ifdef CONFIG_KALLSYMS
3391 /*
3392 * This ignores the intensely annoying "mapping symbols" found
3393 * in ARM ELF files: $a, $t and $d.
3394 */
3395 static inline int is_arm_mapping_symbol(const char *str)
3396 {
3397 return str[0] == '$' && strchr("atd", str[1])
3398 && (str[2] == '\0' || str[2] == '.');
3399 }
3400
3401 static const char *get_ksymbol(struct module *mod,
3402 unsigned long addr,
3403 unsigned long *size,
3404 unsigned long *offset)
3405 {
3406 unsigned int i, best = 0;
3407 unsigned long nextval;
3408
3409 /* At worse, next value is at end of module */
3410 if (within_module_init(addr, mod))
3411 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3412 else
3413 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3414
3415 /* Scan for closest preceding symbol, and next symbol. (ELF
3416 starts real symbols at 1). */
3417 for (i = 1; i < mod->num_symtab; i++) {
3418 if (mod->symtab[i].st_shndx == SHN_UNDEF)
3419 continue;
3420
3421 /* We ignore unnamed symbols: they're uninformative
3422 * and inserted at a whim. */
3423 if (mod->symtab[i].st_value <= addr
3424 && mod->symtab[i].st_value > mod->symtab[best].st_value
3425 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3426 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3427 best = i;
3428 if (mod->symtab[i].st_value > addr
3429 && mod->symtab[i].st_value < nextval
3430 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3431 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3432 nextval = mod->symtab[i].st_value;
3433 }
3434
3435 if (!best)
3436 return NULL;
3437
3438 if (size)
3439 *size = nextval - mod->symtab[best].st_value;
3440 if (offset)
3441 *offset = addr - mod->symtab[best].st_value;
3442 return mod->strtab + mod->symtab[best].st_name;
3443 }
3444
3445 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3446 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3447 const char *module_address_lookup(unsigned long addr,
3448 unsigned long *size,
3449 unsigned long *offset,
3450 char **modname,
3451 char *namebuf)
3452 {
3453 struct module *mod;
3454 const char *ret = NULL;
3455
3456 preempt_disable();
3457 list_for_each_entry_rcu(mod, &modules, list) {
3458 if (mod->state == MODULE_STATE_UNFORMED)
3459 continue;
3460 if (within_module_init(addr, mod) ||
3461 within_module_core(addr, mod)) {
3462 if (modname)
3463 *modname = mod->name;
3464 ret = get_ksymbol(mod, addr, size, offset);
3465 break;
3466 }
3467 }
3468 /* Make a copy in here where it's safe */
3469 if (ret) {
3470 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3471 ret = namebuf;
3472 }
3473 preempt_enable();
3474 return ret;
3475 }
3476
3477 int lookup_module_symbol_name(unsigned long addr, char *symname)
3478 {
3479 struct module *mod;
3480
3481 preempt_disable();
3482 list_for_each_entry_rcu(mod, &modules, list) {
3483 if (mod->state == MODULE_STATE_UNFORMED)
3484 continue;
3485 if (within_module_init(addr, mod) ||
3486 within_module_core(addr, mod)) {
3487 const char *sym;
3488
3489 sym = get_ksymbol(mod, addr, NULL, NULL);
3490 if (!sym)
3491 goto out;
3492 strlcpy(symname, sym, KSYM_NAME_LEN);
3493 preempt_enable();
3494 return 0;
3495 }
3496 }
3497 out:
3498 preempt_enable();
3499 return -ERANGE;
3500 }
3501
3502 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3503 unsigned long *offset, char *modname, char *name)
3504 {
3505 struct module *mod;
3506
3507 preempt_disable();
3508 list_for_each_entry_rcu(mod, &modules, list) {
3509 if (mod->state == MODULE_STATE_UNFORMED)
3510 continue;
3511 if (within_module_init(addr, mod) ||
3512 within_module_core(addr, mod)) {
3513 const char *sym;
3514
3515 sym = get_ksymbol(mod, addr, size, offset);
3516 if (!sym)
3517 goto out;
3518 if (modname)
3519 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3520 if (name)
3521 strlcpy(name, sym, KSYM_NAME_LEN);
3522 preempt_enable();
3523 return 0;
3524 }
3525 }
3526 out:
3527 preempt_enable();
3528 return -ERANGE;
3529 }
3530
3531 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3532 char *name, char *module_name, int *exported)
3533 {
3534 struct module *mod;
3535
3536 preempt_disable();
3537 list_for_each_entry_rcu(mod, &modules, list) {
3538 if (mod->state == MODULE_STATE_UNFORMED)
3539 continue;
3540 if (symnum < mod->num_symtab) {
3541 *value = mod->symtab[symnum].st_value;
3542 *type = mod->symtab[symnum].st_info;
3543 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3544 KSYM_NAME_LEN);
3545 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3546 *exported = is_exported(name, *value, mod);
3547 preempt_enable();
3548 return 0;
3549 }
3550 symnum -= mod->num_symtab;
3551 }
3552 preempt_enable();
3553 return -ERANGE;
3554 }
3555
3556 static unsigned long mod_find_symname(struct module *mod, const char *name)
3557 {
3558 unsigned int i;
3559
3560 for (i = 0; i < mod->num_symtab; i++)
3561 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3562 mod->symtab[i].st_info != 'U')
3563 return mod->symtab[i].st_value;
3564 return 0;
3565 }
3566
3567 /* Look for this name: can be of form module:name. */
3568 unsigned long module_kallsyms_lookup_name(const char *name)
3569 {
3570 struct module *mod;
3571 char *colon;
3572 unsigned long ret = 0;
3573
3574 /* Don't lock: we're in enough trouble already. */
3575 preempt_disable();
3576 if ((colon = strchr(name, ':')) != NULL) {
3577 *colon = '\0';
3578 if ((mod = find_module(name)) != NULL)
3579 ret = mod_find_symname(mod, colon+1);
3580 *colon = ':';
3581 } else {
3582 list_for_each_entry_rcu(mod, &modules, list) {
3583 if (mod->state == MODULE_STATE_UNFORMED)
3584 continue;
3585 if ((ret = mod_find_symname(mod, name)) != 0)
3586 break;
3587 }
3588 }
3589 preempt_enable();
3590 return ret;
3591 }
3592
3593 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3594 struct module *, unsigned long),
3595 void *data)
3596 {
3597 struct module *mod;
3598 unsigned int i;
3599 int ret;
3600
3601 list_for_each_entry(mod, &modules, list) {
3602 if (mod->state == MODULE_STATE_UNFORMED)
3603 continue;
3604 for (i = 0; i < mod->num_symtab; i++) {
3605 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3606 mod, mod->symtab[i].st_value);
3607 if (ret != 0)
3608 return ret;
3609 }
3610 }
3611 return 0;
3612 }
3613 #endif /* CONFIG_KALLSYMS */
3614
3615 static char *module_flags(struct module *mod, char *buf)
3616 {
3617 int bx = 0;
3618
3619 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3620 if (mod->taints ||
3621 mod->state == MODULE_STATE_GOING ||
3622 mod->state == MODULE_STATE_COMING) {
3623 buf[bx++] = '(';
3624 bx += module_flags_taint(mod, buf + bx);
3625 /* Show a - for module-is-being-unloaded */
3626 if (mod->state == MODULE_STATE_GOING)
3627 buf[bx++] = '-';
3628 /* Show a + for module-is-being-loaded */
3629 if (mod->state == MODULE_STATE_COMING)
3630 buf[bx++] = '+';
3631 buf[bx++] = ')';
3632 }
3633 buf[bx] = '\0';
3634
3635 return buf;
3636 }
3637
3638 #ifdef CONFIG_PROC_FS
3639 /* Called by the /proc file system to return a list of modules. */
3640 static void *m_start(struct seq_file *m, loff_t *pos)
3641 {
3642 mutex_lock(&module_mutex);
3643 return seq_list_start(&modules, *pos);
3644 }
3645
3646 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3647 {
3648 return seq_list_next(p, &modules, pos);
3649 }
3650
3651 static void m_stop(struct seq_file *m, void *p)
3652 {
3653 mutex_unlock(&module_mutex);
3654 }
3655
3656 static int m_show(struct seq_file *m, void *p)
3657 {
3658 struct module *mod = list_entry(p, struct module, list);
3659 char buf[8];
3660
3661 /* We always ignore unformed modules. */
3662 if (mod->state == MODULE_STATE_UNFORMED)
3663 return 0;
3664
3665 seq_printf(m, "%s %u",
3666 mod->name, mod->init_size + mod->core_size);
3667 print_unload_info(m, mod);
3668
3669 /* Informative for users. */
3670 seq_printf(m, " %s",
3671 mod->state == MODULE_STATE_GOING ? "Unloading":
3672 mod->state == MODULE_STATE_COMING ? "Loading":
3673 "Live");
3674 /* Used by oprofile and other similar tools. */
3675 seq_printf(m, " 0x%pK", mod->module_core);
3676
3677 /* Taints info */
3678 if (mod->taints)
3679 seq_printf(m, " %s", module_flags(mod, buf));
3680
3681 seq_printf(m, "\n");
3682 return 0;
3683 }
3684
3685 /* Format: modulename size refcount deps address
3686
3687 Where refcount is a number or -, and deps is a comma-separated list
3688 of depends or -.
3689 */
3690 static const struct seq_operations modules_op = {
3691 .start = m_start,
3692 .next = m_next,
3693 .stop = m_stop,
3694 .show = m_show
3695 };
3696
3697 static int modules_open(struct inode *inode, struct file *file)
3698 {
3699 return seq_open(file, &modules_op);
3700 }
3701
3702 static const struct file_operations proc_modules_operations = {
3703 .open = modules_open,
3704 .read = seq_read,
3705 .llseek = seq_lseek,
3706 .release = seq_release,
3707 };
3708
3709 static int __init proc_modules_init(void)
3710 {
3711 proc_create("modules", 0, NULL, &proc_modules_operations);
3712 return 0;
3713 }
3714 module_init(proc_modules_init);
3715 #endif
3716
3717 /* Given an address, look for it in the module exception tables. */
3718 const struct exception_table_entry *search_module_extables(unsigned long addr)
3719 {
3720 const struct exception_table_entry *e = NULL;
3721 struct module *mod;
3722
3723 preempt_disable();
3724 list_for_each_entry_rcu(mod, &modules, list) {
3725 if (mod->state == MODULE_STATE_UNFORMED)
3726 continue;
3727 if (mod->num_exentries == 0)
3728 continue;
3729
3730 e = search_extable(mod->extable,
3731 mod->extable + mod->num_exentries - 1,
3732 addr);
3733 if (e)
3734 break;
3735 }
3736 preempt_enable();
3737
3738 /* Now, if we found one, we are running inside it now, hence
3739 we cannot unload the module, hence no refcnt needed. */
3740 return e;
3741 }
3742
3743 /*
3744 * is_module_address - is this address inside a module?
3745 * @addr: the address to check.
3746 *
3747 * See is_module_text_address() if you simply want to see if the address
3748 * is code (not data).
3749 */
3750 bool is_module_address(unsigned long addr)
3751 {
3752 bool ret;
3753
3754 preempt_disable();
3755 ret = __module_address(addr) != NULL;
3756 preempt_enable();
3757
3758 return ret;
3759 }
3760
3761 /*
3762 * __module_address - get the module which contains an address.
3763 * @addr: the address.
3764 *
3765 * Must be called with preempt disabled or module mutex held so that
3766 * module doesn't get freed during this.
3767 */
3768 struct module *__module_address(unsigned long addr)
3769 {
3770 struct module *mod;
3771
3772 if (addr < module_addr_min || addr > module_addr_max)
3773 return NULL;
3774
3775 list_for_each_entry_rcu(mod, &modules, list) {
3776 if (mod->state == MODULE_STATE_UNFORMED)
3777 continue;
3778 if (within_module_core(addr, mod)
3779 || within_module_init(addr, mod))
3780 return mod;
3781 }
3782 return NULL;
3783 }
3784 EXPORT_SYMBOL_GPL(__module_address);
3785
3786 /*
3787 * is_module_text_address - is this address inside module code?
3788 * @addr: the address to check.
3789 *
3790 * See is_module_address() if you simply want to see if the address is
3791 * anywhere in a module. See kernel_text_address() for testing if an
3792 * address corresponds to kernel or module code.
3793 */
3794 bool is_module_text_address(unsigned long addr)
3795 {
3796 bool ret;
3797
3798 preempt_disable();
3799 ret = __module_text_address(addr) != NULL;
3800 preempt_enable();
3801
3802 return ret;
3803 }
3804
3805 /*
3806 * __module_text_address - get the module whose code contains an address.
3807 * @addr: the address.
3808 *
3809 * Must be called with preempt disabled or module mutex held so that
3810 * module doesn't get freed during this.
3811 */
3812 struct module *__module_text_address(unsigned long addr)
3813 {
3814 struct module *mod = __module_address(addr);
3815 if (mod) {
3816 /* Make sure it's within the text section. */
3817 if (!within(addr, mod->module_init, mod->init_text_size)
3818 && !within(addr, mod->module_core, mod->core_text_size))
3819 mod = NULL;
3820 }
3821 return mod;
3822 }
3823 EXPORT_SYMBOL_GPL(__module_text_address);
3824
3825 /* Don't grab lock, we're oopsing. */
3826 void print_modules(void)
3827 {
3828 struct module *mod;
3829 char buf[8];
3830
3831 printk(KERN_DEFAULT "Modules linked in:");
3832 /* Most callers should already have preempt disabled, but make sure */
3833 preempt_disable();
3834 list_for_each_entry_rcu(mod, &modules, list) {
3835 if (mod->state == MODULE_STATE_UNFORMED)
3836 continue;
3837 printk(" %s %p %s", mod->name, mod->module_core, module_flags(mod, buf));
3838 }
3839 preempt_enable();
3840 if (last_unloaded_module[0])
3841 printk(" [last unloaded: %s]", last_unloaded_module);
3842 printk("\n");
3843 }
3844
3845 #ifdef CONFIG_MODVERSIONS
3846 /* Generate the signature for all relevant module structures here.
3847 * If these change, we don't want to try to parse the module. */
3848 void module_layout(struct module *mod,
3849 struct modversion_info *ver,
3850 struct kernel_param *kp,
3851 struct kernel_symbol *ks,
3852 struct tracepoint * const *tp)
3853 {
3854 }
3855 EXPORT_SYMBOL(module_layout);
3856 #endif