Merge branch 'drm-radeon-sun-hainan' of git://people.freedesktop.org/~airlied/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
103 };
104
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112 struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 int nused;
116 int ngarbage;
117 char slot_used[];
118 };
119
120 #define KPROBE_INSN_PAGE_SIZE(slots) \
121 (offsetof(struct kprobe_insn_page, slot_used) + \
122 (sizeof(char) * (slots)))
123
124 struct kprobe_insn_cache {
125 struct list_head pages; /* list of kprobe_insn_page */
126 size_t insn_size; /* size of instruction slot */
127 int nr_garbage;
128 };
129
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134
135 enum kprobe_slot_state {
136 SLOT_CLEAN = 0,
137 SLOT_DIRTY = 1,
138 SLOT_USED = 2,
139 };
140
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 .insn_size = MAX_INSN_SIZE,
145 .nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149 /**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155 struct kprobe_insn_page *kip;
156
157 retry:
158 list_for_each_entry(kip, &c->pages, list) {
159 if (kip->nused < slots_per_page(c)) {
160 int i;
161 for (i = 0; i < slots_per_page(c); i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * c->insn_size);
166 }
167 }
168 /* kip->nused is broken. Fix it. */
169 kip->nused = slots_per_page(c);
170 WARN_ON(1);
171 }
172 }
173
174 /* If there are any garbage slots, collect it and try again. */
175 if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 goto retry;
177
178 /* All out of space. Need to allocate a new page. */
179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 if (!kip)
181 return NULL;
182
183 /*
184 * Use module_alloc so this page is within +/- 2GB of where the
185 * kernel image and loaded module images reside. This is required
186 * so x86_64 can correctly handle the %rip-relative fixups.
187 */
188 kip->insns = module_alloc(PAGE_SIZE);
189 if (!kip->insns) {
190 kfree(kip);
191 return NULL;
192 }
193 INIT_LIST_HEAD(&kip->list);
194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 list_add(&kip->list, &c->pages);
199 return kip->insns;
200 }
201
202
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 kprobe_opcode_t *ret = NULL;
206
207 mutex_lock(&kprobe_insn_mutex);
208 ret = __get_insn_slot(&kprobe_insn_slots);
209 mutex_unlock(&kprobe_insn_mutex);
210
211 return ret;
212 }
213
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217 kip->slot_used[idx] = SLOT_CLEAN;
218 kip->nused--;
219 if (kip->nused == 0) {
220 /*
221 * Page is no longer in use. Free it unless
222 * it's the last one. We keep the last one
223 * so as not to have to set it up again the
224 * next time somebody inserts a probe.
225 */
226 if (!list_is_singular(&kip->list)) {
227 list_del(&kip->list);
228 module_free(NULL, kip->insns);
229 kfree(kip);
230 }
231 return 1;
232 }
233 return 0;
234 }
235
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238 struct kprobe_insn_page *kip, *next;
239
240 /* Ensure no-one is interrupted on the garbages */
241 synchronize_sched();
242
243 list_for_each_entry_safe(kip, next, &c->pages, list) {
244 int i;
245 if (kip->ngarbage == 0)
246 continue;
247 kip->ngarbage = 0; /* we will collect all garbages */
248 for (i = 0; i < slots_per_page(c); i++) {
249 if (kip->slot_used[i] == SLOT_DIRTY &&
250 collect_one_slot(kip, i))
251 break;
252 }
253 }
254 c->nr_garbage = 0;
255 return 0;
256 }
257
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 kprobe_opcode_t *slot, int dirty)
260 {
261 struct kprobe_insn_page *kip;
262
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else
274 collect_one_slot(kip, idx);
275 return;
276 }
277 }
278 /* Could not free this slot. */
279 WARN_ON(1);
280 }
281
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284 mutex_lock(&kprobe_insn_mutex);
285 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 /* .insn_size is initialized later */
294 .nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299 kprobe_opcode_t *ret = NULL;
300
301 mutex_lock(&kprobe_optinsn_mutex);
302 ret = __get_insn_slot(&kprobe_optinsn_slots);
303 mutex_unlock(&kprobe_optinsn_mutex);
304
305 return ret;
306 }
307
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310 mutex_lock(&kprobe_optinsn_mutex);
311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320 __this_cpu_write(kprobe_instance, kp);
321 }
322
323 static inline void reset_kprobe_instance(void)
324 {
325 __this_cpu_write(kprobe_instance, NULL);
326 }
327
328 /*
329 * This routine is called either:
330 * - under the kprobe_mutex - during kprobe_[un]register()
331 * OR
332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336 struct hlist_head *head;
337 struct kprobe *p;
338
339 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
340 hlist_for_each_entry_rcu(p, head, hlist) {
341 if (p->addr == addr)
342 return p;
343 }
344
345 return NULL;
346 }
347
348 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
349
350 /* Return true if the kprobe is an aggregator */
351 static inline int kprobe_aggrprobe(struct kprobe *p)
352 {
353 return p->pre_handler == aggr_pre_handler;
354 }
355
356 /* Return true(!0) if the kprobe is unused */
357 static inline int kprobe_unused(struct kprobe *p)
358 {
359 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
360 list_empty(&p->list);
361 }
362
363 /*
364 * Keep all fields in the kprobe consistent
365 */
366 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
367 {
368 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
369 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
370 }
371
372 #ifdef CONFIG_OPTPROBES
373 /* NOTE: change this value only with kprobe_mutex held */
374 static bool kprobes_allow_optimization;
375
376 /*
377 * Call all pre_handler on the list, but ignores its return value.
378 * This must be called from arch-dep optimized caller.
379 */
380 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
381 {
382 struct kprobe *kp;
383
384 list_for_each_entry_rcu(kp, &p->list, list) {
385 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
386 set_kprobe_instance(kp);
387 kp->pre_handler(kp, regs);
388 }
389 reset_kprobe_instance();
390 }
391 }
392
393 /* Free optimized instructions and optimized_kprobe */
394 static __kprobes void free_aggr_kprobe(struct kprobe *p)
395 {
396 struct optimized_kprobe *op;
397
398 op = container_of(p, struct optimized_kprobe, kp);
399 arch_remove_optimized_kprobe(op);
400 arch_remove_kprobe(p);
401 kfree(op);
402 }
403
404 /* Return true(!0) if the kprobe is ready for optimization. */
405 static inline int kprobe_optready(struct kprobe *p)
406 {
407 struct optimized_kprobe *op;
408
409 if (kprobe_aggrprobe(p)) {
410 op = container_of(p, struct optimized_kprobe, kp);
411 return arch_prepared_optinsn(&op->optinsn);
412 }
413
414 return 0;
415 }
416
417 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
418 static inline int kprobe_disarmed(struct kprobe *p)
419 {
420 struct optimized_kprobe *op;
421
422 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
423 if (!kprobe_aggrprobe(p))
424 return kprobe_disabled(p);
425
426 op = container_of(p, struct optimized_kprobe, kp);
427
428 return kprobe_disabled(p) && list_empty(&op->list);
429 }
430
431 /* Return true(!0) if the probe is queued on (un)optimizing lists */
432 static int __kprobes kprobe_queued(struct kprobe *p)
433 {
434 struct optimized_kprobe *op;
435
436 if (kprobe_aggrprobe(p)) {
437 op = container_of(p, struct optimized_kprobe, kp);
438 if (!list_empty(&op->list))
439 return 1;
440 }
441 return 0;
442 }
443
444 /*
445 * Return an optimized kprobe whose optimizing code replaces
446 * instructions including addr (exclude breakpoint).
447 */
448 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
449 {
450 int i;
451 struct kprobe *p = NULL;
452 struct optimized_kprobe *op;
453
454 /* Don't check i == 0, since that is a breakpoint case. */
455 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
456 p = get_kprobe((void *)(addr - i));
457
458 if (p && kprobe_optready(p)) {
459 op = container_of(p, struct optimized_kprobe, kp);
460 if (arch_within_optimized_kprobe(op, addr))
461 return p;
462 }
463
464 return NULL;
465 }
466
467 /* Optimization staging list, protected by kprobe_mutex */
468 static LIST_HEAD(optimizing_list);
469 static LIST_HEAD(unoptimizing_list);
470
471 static void kprobe_optimizer(struct work_struct *work);
472 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
473 #define OPTIMIZE_DELAY 5
474
475 /*
476 * Optimize (replace a breakpoint with a jump) kprobes listed on
477 * optimizing_list.
478 */
479 static __kprobes void do_optimize_kprobes(void)
480 {
481 /* Optimization never be done when disarmed */
482 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
483 list_empty(&optimizing_list))
484 return;
485
486 /*
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, we need to call get_online_cpus()
494 * for preventing cpu-hotplug outside of text_mutex locking.
495 */
496 get_online_cpus();
497 mutex_lock(&text_mutex);
498 arch_optimize_kprobes(&optimizing_list);
499 mutex_unlock(&text_mutex);
500 put_online_cpus();
501 }
502
503 /*
504 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
505 * if need) kprobes listed on unoptimizing_list.
506 */
507 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
508 {
509 struct optimized_kprobe *op, *tmp;
510
511 /* Unoptimization must be done anytime */
512 if (list_empty(&unoptimizing_list))
513 return;
514
515 /* Ditto to do_optimize_kprobes */
516 get_online_cpus();
517 mutex_lock(&text_mutex);
518 arch_unoptimize_kprobes(&unoptimizing_list, free_list);
519 /* Loop free_list for disarming */
520 list_for_each_entry_safe(op, tmp, free_list, list) {
521 /* Disarm probes if marked disabled */
522 if (kprobe_disabled(&op->kp))
523 arch_disarm_kprobe(&op->kp);
524 if (kprobe_unused(&op->kp)) {
525 /*
526 * Remove unused probes from hash list. After waiting
527 * for synchronization, these probes are reclaimed.
528 * (reclaiming is done by do_free_cleaned_kprobes.)
529 */
530 hlist_del_rcu(&op->kp.hlist);
531 } else
532 list_del_init(&op->list);
533 }
534 mutex_unlock(&text_mutex);
535 put_online_cpus();
536 }
537
538 /* Reclaim all kprobes on the free_list */
539 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
540 {
541 struct optimized_kprobe *op, *tmp;
542
543 list_for_each_entry_safe(op, tmp, free_list, list) {
544 BUG_ON(!kprobe_unused(&op->kp));
545 list_del_init(&op->list);
546 free_aggr_kprobe(&op->kp);
547 }
548 }
549
550 /* Start optimizer after OPTIMIZE_DELAY passed */
551 static __kprobes void kick_kprobe_optimizer(void)
552 {
553 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
554 }
555
556 /* Kprobe jump optimizer */
557 static __kprobes void kprobe_optimizer(struct work_struct *work)
558 {
559 LIST_HEAD(free_list);
560
561 mutex_lock(&kprobe_mutex);
562 /* Lock modules while optimizing kprobes */
563 mutex_lock(&module_mutex);
564
565 /*
566 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
567 * kprobes before waiting for quiesence period.
568 */
569 do_unoptimize_kprobes(&free_list);
570
571 /*
572 * Step 2: Wait for quiesence period to ensure all running interrupts
573 * are done. Because optprobe may modify multiple instructions
574 * there is a chance that Nth instruction is interrupted. In that
575 * case, running interrupt can return to 2nd-Nth byte of jump
576 * instruction. This wait is for avoiding it.
577 */
578 synchronize_sched();
579
580 /* Step 3: Optimize kprobes after quiesence period */
581 do_optimize_kprobes();
582
583 /* Step 4: Free cleaned kprobes after quiesence period */
584 do_free_cleaned_kprobes(&free_list);
585
586 mutex_unlock(&module_mutex);
587 mutex_unlock(&kprobe_mutex);
588
589 /* Step 5: Kick optimizer again if needed */
590 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591 kick_kprobe_optimizer();
592 }
593
594 /* Wait for completing optimization and unoptimization */
595 static __kprobes void wait_for_kprobe_optimizer(void)
596 {
597 mutex_lock(&kprobe_mutex);
598
599 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600 mutex_unlock(&kprobe_mutex);
601
602 /* this will also make optimizing_work execute immmediately */
603 flush_delayed_work(&optimizing_work);
604 /* @optimizing_work might not have been queued yet, relax */
605 cpu_relax();
606
607 mutex_lock(&kprobe_mutex);
608 }
609
610 mutex_unlock(&kprobe_mutex);
611 }
612
613 /* Optimize kprobe if p is ready to be optimized */
614 static __kprobes void optimize_kprobe(struct kprobe *p)
615 {
616 struct optimized_kprobe *op;
617
618 /* Check if the kprobe is disabled or not ready for optimization. */
619 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620 (kprobe_disabled(p) || kprobes_all_disarmed))
621 return;
622
623 /* Both of break_handler and post_handler are not supported. */
624 if (p->break_handler || p->post_handler)
625 return;
626
627 op = container_of(p, struct optimized_kprobe, kp);
628
629 /* Check there is no other kprobes at the optimized instructions */
630 if (arch_check_optimized_kprobe(op) < 0)
631 return;
632
633 /* Check if it is already optimized. */
634 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635 return;
636 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637
638 if (!list_empty(&op->list))
639 /* This is under unoptimizing. Just dequeue the probe */
640 list_del_init(&op->list);
641 else {
642 list_add(&op->list, &optimizing_list);
643 kick_kprobe_optimizer();
644 }
645 }
646
647 /* Short cut to direct unoptimizing */
648 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
649 {
650 get_online_cpus();
651 arch_unoptimize_kprobe(op);
652 put_online_cpus();
653 if (kprobe_disabled(&op->kp))
654 arch_disarm_kprobe(&op->kp);
655 }
656
657 /* Unoptimize a kprobe if p is optimized */
658 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
659 {
660 struct optimized_kprobe *op;
661
662 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
663 return; /* This is not an optprobe nor optimized */
664
665 op = container_of(p, struct optimized_kprobe, kp);
666 if (!kprobe_optimized(p)) {
667 /* Unoptimized or unoptimizing case */
668 if (force && !list_empty(&op->list)) {
669 /*
670 * Only if this is unoptimizing kprobe and forced,
671 * forcibly unoptimize it. (No need to unoptimize
672 * unoptimized kprobe again :)
673 */
674 list_del_init(&op->list);
675 force_unoptimize_kprobe(op);
676 }
677 return;
678 }
679
680 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
681 if (!list_empty(&op->list)) {
682 /* Dequeue from the optimization queue */
683 list_del_init(&op->list);
684 return;
685 }
686 /* Optimized kprobe case */
687 if (force)
688 /* Forcibly update the code: this is a special case */
689 force_unoptimize_kprobe(op);
690 else {
691 list_add(&op->list, &unoptimizing_list);
692 kick_kprobe_optimizer();
693 }
694 }
695
696 /* Cancel unoptimizing for reusing */
697 static void reuse_unused_kprobe(struct kprobe *ap)
698 {
699 struct optimized_kprobe *op;
700
701 BUG_ON(!kprobe_unused(ap));
702 /*
703 * Unused kprobe MUST be on the way of delayed unoptimizing (means
704 * there is still a relative jump) and disabled.
705 */
706 op = container_of(ap, struct optimized_kprobe, kp);
707 if (unlikely(list_empty(&op->list)))
708 printk(KERN_WARNING "Warning: found a stray unused "
709 "aggrprobe@%p\n", ap->addr);
710 /* Enable the probe again */
711 ap->flags &= ~KPROBE_FLAG_DISABLED;
712 /* Optimize it again (remove from op->list) */
713 BUG_ON(!kprobe_optready(ap));
714 optimize_kprobe(ap);
715 }
716
717 /* Remove optimized instructions */
718 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
719 {
720 struct optimized_kprobe *op;
721
722 op = container_of(p, struct optimized_kprobe, kp);
723 if (!list_empty(&op->list))
724 /* Dequeue from the (un)optimization queue */
725 list_del_init(&op->list);
726
727 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
728 /* Don't touch the code, because it is already freed. */
729 arch_remove_optimized_kprobe(op);
730 }
731
732 /* Try to prepare optimized instructions */
733 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
734 {
735 struct optimized_kprobe *op;
736
737 op = container_of(p, struct optimized_kprobe, kp);
738 arch_prepare_optimized_kprobe(op);
739 }
740
741 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
742 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
743 {
744 struct optimized_kprobe *op;
745
746 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
747 if (!op)
748 return NULL;
749
750 INIT_LIST_HEAD(&op->list);
751 op->kp.addr = p->addr;
752 arch_prepare_optimized_kprobe(op);
753
754 return &op->kp;
755 }
756
757 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
758
759 /*
760 * Prepare an optimized_kprobe and optimize it
761 * NOTE: p must be a normal registered kprobe
762 */
763 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
764 {
765 struct kprobe *ap;
766 struct optimized_kprobe *op;
767
768 /* Impossible to optimize ftrace-based kprobe */
769 if (kprobe_ftrace(p))
770 return;
771
772 /* For preparing optimization, jump_label_text_reserved() is called */
773 jump_label_lock();
774 mutex_lock(&text_mutex);
775
776 ap = alloc_aggr_kprobe(p);
777 if (!ap)
778 goto out;
779
780 op = container_of(ap, struct optimized_kprobe, kp);
781 if (!arch_prepared_optinsn(&op->optinsn)) {
782 /* If failed to setup optimizing, fallback to kprobe */
783 arch_remove_optimized_kprobe(op);
784 kfree(op);
785 goto out;
786 }
787
788 init_aggr_kprobe(ap, p);
789 optimize_kprobe(ap); /* This just kicks optimizer thread */
790
791 out:
792 mutex_unlock(&text_mutex);
793 jump_label_unlock();
794 }
795
796 #ifdef CONFIG_SYSCTL
797 static void __kprobes optimize_all_kprobes(void)
798 {
799 struct hlist_head *head;
800 struct kprobe *p;
801 unsigned int i;
802
803 mutex_lock(&kprobe_mutex);
804 /* If optimization is already allowed, just return */
805 if (kprobes_allow_optimization)
806 goto out;
807
808 kprobes_allow_optimization = true;
809 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
810 head = &kprobe_table[i];
811 hlist_for_each_entry_rcu(p, head, hlist)
812 if (!kprobe_disabled(p))
813 optimize_kprobe(p);
814 }
815 printk(KERN_INFO "Kprobes globally optimized\n");
816 out:
817 mutex_unlock(&kprobe_mutex);
818 }
819
820 static void __kprobes unoptimize_all_kprobes(void)
821 {
822 struct hlist_head *head;
823 struct kprobe *p;
824 unsigned int i;
825
826 mutex_lock(&kprobe_mutex);
827 /* If optimization is already prohibited, just return */
828 if (!kprobes_allow_optimization) {
829 mutex_unlock(&kprobe_mutex);
830 return;
831 }
832
833 kprobes_allow_optimization = false;
834 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
835 head = &kprobe_table[i];
836 hlist_for_each_entry_rcu(p, head, hlist) {
837 if (!kprobe_disabled(p))
838 unoptimize_kprobe(p, false);
839 }
840 }
841 mutex_unlock(&kprobe_mutex);
842
843 /* Wait for unoptimizing completion */
844 wait_for_kprobe_optimizer();
845 printk(KERN_INFO "Kprobes globally unoptimized\n");
846 }
847
848 static DEFINE_MUTEX(kprobe_sysctl_mutex);
849 int sysctl_kprobes_optimization;
850 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
851 void __user *buffer, size_t *length,
852 loff_t *ppos)
853 {
854 int ret;
855
856 mutex_lock(&kprobe_sysctl_mutex);
857 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
858 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
859
860 if (sysctl_kprobes_optimization)
861 optimize_all_kprobes();
862 else
863 unoptimize_all_kprobes();
864 mutex_unlock(&kprobe_sysctl_mutex);
865
866 return ret;
867 }
868 #endif /* CONFIG_SYSCTL */
869
870 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
871 static void __kprobes __arm_kprobe(struct kprobe *p)
872 {
873 struct kprobe *_p;
874
875 /* Check collision with other optimized kprobes */
876 _p = get_optimized_kprobe((unsigned long)p->addr);
877 if (unlikely(_p))
878 /* Fallback to unoptimized kprobe */
879 unoptimize_kprobe(_p, true);
880
881 arch_arm_kprobe(p);
882 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
883 }
884
885 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
886 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
887 {
888 struct kprobe *_p;
889
890 unoptimize_kprobe(p, false); /* Try to unoptimize */
891
892 if (!kprobe_queued(p)) {
893 arch_disarm_kprobe(p);
894 /* If another kprobe was blocked, optimize it. */
895 _p = get_optimized_kprobe((unsigned long)p->addr);
896 if (unlikely(_p) && reopt)
897 optimize_kprobe(_p);
898 }
899 /* TODO: reoptimize others after unoptimized this probe */
900 }
901
902 #else /* !CONFIG_OPTPROBES */
903
904 #define optimize_kprobe(p) do {} while (0)
905 #define unoptimize_kprobe(p, f) do {} while (0)
906 #define kill_optimized_kprobe(p) do {} while (0)
907 #define prepare_optimized_kprobe(p) do {} while (0)
908 #define try_to_optimize_kprobe(p) do {} while (0)
909 #define __arm_kprobe(p) arch_arm_kprobe(p)
910 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
911 #define kprobe_disarmed(p) kprobe_disabled(p)
912 #define wait_for_kprobe_optimizer() do {} while (0)
913
914 /* There should be no unused kprobes can be reused without optimization */
915 static void reuse_unused_kprobe(struct kprobe *ap)
916 {
917 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
918 BUG_ON(kprobe_unused(ap));
919 }
920
921 static __kprobes void free_aggr_kprobe(struct kprobe *p)
922 {
923 arch_remove_kprobe(p);
924 kfree(p);
925 }
926
927 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
928 {
929 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
930 }
931 #endif /* CONFIG_OPTPROBES */
932
933 #ifdef CONFIG_KPROBES_ON_FTRACE
934 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
935 .func = kprobe_ftrace_handler,
936 .flags = FTRACE_OPS_FL_SAVE_REGS,
937 };
938 static int kprobe_ftrace_enabled;
939
940 /* Must ensure p->addr is really on ftrace */
941 static int __kprobes prepare_kprobe(struct kprobe *p)
942 {
943 if (!kprobe_ftrace(p))
944 return arch_prepare_kprobe(p);
945
946 return arch_prepare_kprobe_ftrace(p);
947 }
948
949 /* Caller must lock kprobe_mutex */
950 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
951 {
952 int ret;
953
954 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
955 (unsigned long)p->addr, 0, 0);
956 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
957 kprobe_ftrace_enabled++;
958 if (kprobe_ftrace_enabled == 1) {
959 ret = register_ftrace_function(&kprobe_ftrace_ops);
960 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
961 }
962 }
963
964 /* Caller must lock kprobe_mutex */
965 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
966 {
967 int ret;
968
969 kprobe_ftrace_enabled--;
970 if (kprobe_ftrace_enabled == 0) {
971 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
972 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
973 }
974 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
975 (unsigned long)p->addr, 1, 0);
976 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
977 }
978 #else /* !CONFIG_KPROBES_ON_FTRACE */
979 #define prepare_kprobe(p) arch_prepare_kprobe(p)
980 #define arm_kprobe_ftrace(p) do {} while (0)
981 #define disarm_kprobe_ftrace(p) do {} while (0)
982 #endif
983
984 /* Arm a kprobe with text_mutex */
985 static void __kprobes arm_kprobe(struct kprobe *kp)
986 {
987 if (unlikely(kprobe_ftrace(kp))) {
988 arm_kprobe_ftrace(kp);
989 return;
990 }
991 /*
992 * Here, since __arm_kprobe() doesn't use stop_machine(),
993 * this doesn't cause deadlock on text_mutex. So, we don't
994 * need get_online_cpus().
995 */
996 mutex_lock(&text_mutex);
997 __arm_kprobe(kp);
998 mutex_unlock(&text_mutex);
999 }
1000
1001 /* Disarm a kprobe with text_mutex */
1002 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
1003 {
1004 if (unlikely(kprobe_ftrace(kp))) {
1005 disarm_kprobe_ftrace(kp);
1006 return;
1007 }
1008 /* Ditto */
1009 mutex_lock(&text_mutex);
1010 __disarm_kprobe(kp, reopt);
1011 mutex_unlock(&text_mutex);
1012 }
1013
1014 /*
1015 * Aggregate handlers for multiple kprobes support - these handlers
1016 * take care of invoking the individual kprobe handlers on p->list
1017 */
1018 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1019 {
1020 struct kprobe *kp;
1021
1022 list_for_each_entry_rcu(kp, &p->list, list) {
1023 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1024 set_kprobe_instance(kp);
1025 if (kp->pre_handler(kp, regs))
1026 return 1;
1027 }
1028 reset_kprobe_instance();
1029 }
1030 return 0;
1031 }
1032
1033 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1034 unsigned long flags)
1035 {
1036 struct kprobe *kp;
1037
1038 list_for_each_entry_rcu(kp, &p->list, list) {
1039 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1040 set_kprobe_instance(kp);
1041 kp->post_handler(kp, regs, flags);
1042 reset_kprobe_instance();
1043 }
1044 }
1045 }
1046
1047 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1048 int trapnr)
1049 {
1050 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1051
1052 /*
1053 * if we faulted "during" the execution of a user specified
1054 * probe handler, invoke just that probe's fault handler
1055 */
1056 if (cur && cur->fault_handler) {
1057 if (cur->fault_handler(cur, regs, trapnr))
1058 return 1;
1059 }
1060 return 0;
1061 }
1062
1063 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1064 {
1065 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1066 int ret = 0;
1067
1068 if (cur && cur->break_handler) {
1069 if (cur->break_handler(cur, regs))
1070 ret = 1;
1071 }
1072 reset_kprobe_instance();
1073 return ret;
1074 }
1075
1076 /* Walks the list and increments nmissed count for multiprobe case */
1077 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1078 {
1079 struct kprobe *kp;
1080 if (!kprobe_aggrprobe(p)) {
1081 p->nmissed++;
1082 } else {
1083 list_for_each_entry_rcu(kp, &p->list, list)
1084 kp->nmissed++;
1085 }
1086 return;
1087 }
1088
1089 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1090 struct hlist_head *head)
1091 {
1092 struct kretprobe *rp = ri->rp;
1093
1094 /* remove rp inst off the rprobe_inst_table */
1095 hlist_del(&ri->hlist);
1096 INIT_HLIST_NODE(&ri->hlist);
1097 if (likely(rp)) {
1098 raw_spin_lock(&rp->lock);
1099 hlist_add_head(&ri->hlist, &rp->free_instances);
1100 raw_spin_unlock(&rp->lock);
1101 } else
1102 /* Unregistering */
1103 hlist_add_head(&ri->hlist, head);
1104 }
1105
1106 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1107 struct hlist_head **head, unsigned long *flags)
1108 __acquires(hlist_lock)
1109 {
1110 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1111 raw_spinlock_t *hlist_lock;
1112
1113 *head = &kretprobe_inst_table[hash];
1114 hlist_lock = kretprobe_table_lock_ptr(hash);
1115 raw_spin_lock_irqsave(hlist_lock, *flags);
1116 }
1117
1118 static void __kprobes kretprobe_table_lock(unsigned long hash,
1119 unsigned long *flags)
1120 __acquires(hlist_lock)
1121 {
1122 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1123 raw_spin_lock_irqsave(hlist_lock, *flags);
1124 }
1125
1126 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1127 unsigned long *flags)
1128 __releases(hlist_lock)
1129 {
1130 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1131 raw_spinlock_t *hlist_lock;
1132
1133 hlist_lock = kretprobe_table_lock_ptr(hash);
1134 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1135 }
1136
1137 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1138 unsigned long *flags)
1139 __releases(hlist_lock)
1140 {
1141 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1142 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1143 }
1144
1145 /*
1146 * This function is called from finish_task_switch when task tk becomes dead,
1147 * so that we can recycle any function-return probe instances associated
1148 * with this task. These left over instances represent probed functions
1149 * that have been called but will never return.
1150 */
1151 void __kprobes kprobe_flush_task(struct task_struct *tk)
1152 {
1153 struct kretprobe_instance *ri;
1154 struct hlist_head *head, empty_rp;
1155 struct hlist_node *tmp;
1156 unsigned long hash, flags = 0;
1157
1158 if (unlikely(!kprobes_initialized))
1159 /* Early boot. kretprobe_table_locks not yet initialized. */
1160 return;
1161
1162 INIT_HLIST_HEAD(&empty_rp);
1163 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1164 head = &kretprobe_inst_table[hash];
1165 kretprobe_table_lock(hash, &flags);
1166 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1167 if (ri->task == tk)
1168 recycle_rp_inst(ri, &empty_rp);
1169 }
1170 kretprobe_table_unlock(hash, &flags);
1171 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1172 hlist_del(&ri->hlist);
1173 kfree(ri);
1174 }
1175 }
1176
1177 static inline void free_rp_inst(struct kretprobe *rp)
1178 {
1179 struct kretprobe_instance *ri;
1180 struct hlist_node *next;
1181
1182 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1183 hlist_del(&ri->hlist);
1184 kfree(ri);
1185 }
1186 }
1187
1188 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1189 {
1190 unsigned long flags, hash;
1191 struct kretprobe_instance *ri;
1192 struct hlist_node *next;
1193 struct hlist_head *head;
1194
1195 /* No race here */
1196 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1197 kretprobe_table_lock(hash, &flags);
1198 head = &kretprobe_inst_table[hash];
1199 hlist_for_each_entry_safe(ri, next, head, hlist) {
1200 if (ri->rp == rp)
1201 ri->rp = NULL;
1202 }
1203 kretprobe_table_unlock(hash, &flags);
1204 }
1205 free_rp_inst(rp);
1206 }
1207
1208 /*
1209 * Add the new probe to ap->list. Fail if this is the
1210 * second jprobe at the address - two jprobes can't coexist
1211 */
1212 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1213 {
1214 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1215
1216 if (p->break_handler || p->post_handler)
1217 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1218
1219 if (p->break_handler) {
1220 if (ap->break_handler)
1221 return -EEXIST;
1222 list_add_tail_rcu(&p->list, &ap->list);
1223 ap->break_handler = aggr_break_handler;
1224 } else
1225 list_add_rcu(&p->list, &ap->list);
1226 if (p->post_handler && !ap->post_handler)
1227 ap->post_handler = aggr_post_handler;
1228
1229 return 0;
1230 }
1231
1232 /*
1233 * Fill in the required fields of the "manager kprobe". Replace the
1234 * earlier kprobe in the hlist with the manager kprobe
1235 */
1236 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1237 {
1238 /* Copy p's insn slot to ap */
1239 copy_kprobe(p, ap);
1240 flush_insn_slot(ap);
1241 ap->addr = p->addr;
1242 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1243 ap->pre_handler = aggr_pre_handler;
1244 ap->fault_handler = aggr_fault_handler;
1245 /* We don't care the kprobe which has gone. */
1246 if (p->post_handler && !kprobe_gone(p))
1247 ap->post_handler = aggr_post_handler;
1248 if (p->break_handler && !kprobe_gone(p))
1249 ap->break_handler = aggr_break_handler;
1250
1251 INIT_LIST_HEAD(&ap->list);
1252 INIT_HLIST_NODE(&ap->hlist);
1253
1254 list_add_rcu(&p->list, &ap->list);
1255 hlist_replace_rcu(&p->hlist, &ap->hlist);
1256 }
1257
1258 /*
1259 * This is the second or subsequent kprobe at the address - handle
1260 * the intricacies
1261 */
1262 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1263 struct kprobe *p)
1264 {
1265 int ret = 0;
1266 struct kprobe *ap = orig_p;
1267
1268 /* For preparing optimization, jump_label_text_reserved() is called */
1269 jump_label_lock();
1270 /*
1271 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1272 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1273 */
1274 get_online_cpus();
1275 mutex_lock(&text_mutex);
1276
1277 if (!kprobe_aggrprobe(orig_p)) {
1278 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1279 ap = alloc_aggr_kprobe(orig_p);
1280 if (!ap) {
1281 ret = -ENOMEM;
1282 goto out;
1283 }
1284 init_aggr_kprobe(ap, orig_p);
1285 } else if (kprobe_unused(ap))
1286 /* This probe is going to die. Rescue it */
1287 reuse_unused_kprobe(ap);
1288
1289 if (kprobe_gone(ap)) {
1290 /*
1291 * Attempting to insert new probe at the same location that
1292 * had a probe in the module vaddr area which already
1293 * freed. So, the instruction slot has already been
1294 * released. We need a new slot for the new probe.
1295 */
1296 ret = arch_prepare_kprobe(ap);
1297 if (ret)
1298 /*
1299 * Even if fail to allocate new slot, don't need to
1300 * free aggr_probe. It will be used next time, or
1301 * freed by unregister_kprobe.
1302 */
1303 goto out;
1304
1305 /* Prepare optimized instructions if possible. */
1306 prepare_optimized_kprobe(ap);
1307
1308 /*
1309 * Clear gone flag to prevent allocating new slot again, and
1310 * set disabled flag because it is not armed yet.
1311 */
1312 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1313 | KPROBE_FLAG_DISABLED;
1314 }
1315
1316 /* Copy ap's insn slot to p */
1317 copy_kprobe(ap, p);
1318 ret = add_new_kprobe(ap, p);
1319
1320 out:
1321 mutex_unlock(&text_mutex);
1322 put_online_cpus();
1323 jump_label_unlock();
1324
1325 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1326 ap->flags &= ~KPROBE_FLAG_DISABLED;
1327 if (!kprobes_all_disarmed)
1328 /* Arm the breakpoint again. */
1329 arm_kprobe(ap);
1330 }
1331 return ret;
1332 }
1333
1334 static int __kprobes in_kprobes_functions(unsigned long addr)
1335 {
1336 struct kprobe_blackpoint *kb;
1337
1338 if (addr >= (unsigned long)__kprobes_text_start &&
1339 addr < (unsigned long)__kprobes_text_end)
1340 return -EINVAL;
1341 /*
1342 * If there exists a kprobe_blacklist, verify and
1343 * fail any probe registration in the prohibited area
1344 */
1345 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1346 if (kb->start_addr) {
1347 if (addr >= kb->start_addr &&
1348 addr < (kb->start_addr + kb->range))
1349 return -EINVAL;
1350 }
1351 }
1352 return 0;
1353 }
1354
1355 /*
1356 * If we have a symbol_name argument, look it up and add the offset field
1357 * to it. This way, we can specify a relative address to a symbol.
1358 * This returns encoded errors if it fails to look up symbol or invalid
1359 * combination of parameters.
1360 */
1361 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1362 {
1363 kprobe_opcode_t *addr = p->addr;
1364
1365 if ((p->symbol_name && p->addr) ||
1366 (!p->symbol_name && !p->addr))
1367 goto invalid;
1368
1369 if (p->symbol_name) {
1370 kprobe_lookup_name(p->symbol_name, addr);
1371 if (!addr)
1372 return ERR_PTR(-ENOENT);
1373 }
1374
1375 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1376 if (addr)
1377 return addr;
1378
1379 invalid:
1380 return ERR_PTR(-EINVAL);
1381 }
1382
1383 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1384 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1385 {
1386 struct kprobe *ap, *list_p;
1387
1388 ap = get_kprobe(p->addr);
1389 if (unlikely(!ap))
1390 return NULL;
1391
1392 if (p != ap) {
1393 list_for_each_entry_rcu(list_p, &ap->list, list)
1394 if (list_p == p)
1395 /* kprobe p is a valid probe */
1396 goto valid;
1397 return NULL;
1398 }
1399 valid:
1400 return ap;
1401 }
1402
1403 /* Return error if the kprobe is being re-registered */
1404 static inline int check_kprobe_rereg(struct kprobe *p)
1405 {
1406 int ret = 0;
1407
1408 mutex_lock(&kprobe_mutex);
1409 if (__get_valid_kprobe(p))
1410 ret = -EINVAL;
1411 mutex_unlock(&kprobe_mutex);
1412
1413 return ret;
1414 }
1415
1416 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1417 struct module **probed_mod)
1418 {
1419 int ret = 0;
1420 unsigned long ftrace_addr;
1421
1422 /*
1423 * If the address is located on a ftrace nop, set the
1424 * breakpoint to the following instruction.
1425 */
1426 ftrace_addr = ftrace_location((unsigned long)p->addr);
1427 if (ftrace_addr) {
1428 #ifdef CONFIG_KPROBES_ON_FTRACE
1429 /* Given address is not on the instruction boundary */
1430 if ((unsigned long)p->addr != ftrace_addr)
1431 return -EILSEQ;
1432 p->flags |= KPROBE_FLAG_FTRACE;
1433 #else /* !CONFIG_KPROBES_ON_FTRACE */
1434 return -EINVAL;
1435 #endif
1436 }
1437
1438 jump_label_lock();
1439 preempt_disable();
1440
1441 /* Ensure it is not in reserved area nor out of text */
1442 if (!kernel_text_address((unsigned long) p->addr) ||
1443 in_kprobes_functions((unsigned long) p->addr) ||
1444 jump_label_text_reserved(p->addr, p->addr)) {
1445 ret = -EINVAL;
1446 goto out;
1447 }
1448
1449 /* Check if are we probing a module */
1450 *probed_mod = __module_text_address((unsigned long) p->addr);
1451 if (*probed_mod) {
1452 /*
1453 * We must hold a refcount of the probed module while updating
1454 * its code to prohibit unexpected unloading.
1455 */
1456 if (unlikely(!try_module_get(*probed_mod))) {
1457 ret = -ENOENT;
1458 goto out;
1459 }
1460
1461 /*
1462 * If the module freed .init.text, we couldn't insert
1463 * kprobes in there.
1464 */
1465 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1466 (*probed_mod)->state != MODULE_STATE_COMING) {
1467 module_put(*probed_mod);
1468 *probed_mod = NULL;
1469 ret = -ENOENT;
1470 }
1471 }
1472 out:
1473 preempt_enable();
1474 jump_label_unlock();
1475
1476 return ret;
1477 }
1478
1479 int __kprobes register_kprobe(struct kprobe *p)
1480 {
1481 int ret;
1482 struct kprobe *old_p;
1483 struct module *probed_mod;
1484 kprobe_opcode_t *addr;
1485
1486 /* Adjust probe address from symbol */
1487 addr = kprobe_addr(p);
1488 if (IS_ERR(addr))
1489 return PTR_ERR(addr);
1490 p->addr = addr;
1491
1492 ret = check_kprobe_rereg(p);
1493 if (ret)
1494 return ret;
1495
1496 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1497 p->flags &= KPROBE_FLAG_DISABLED;
1498 p->nmissed = 0;
1499 INIT_LIST_HEAD(&p->list);
1500
1501 ret = check_kprobe_address_safe(p, &probed_mod);
1502 if (ret)
1503 return ret;
1504
1505 mutex_lock(&kprobe_mutex);
1506
1507 old_p = get_kprobe(p->addr);
1508 if (old_p) {
1509 /* Since this may unoptimize old_p, locking text_mutex. */
1510 ret = register_aggr_kprobe(old_p, p);
1511 goto out;
1512 }
1513
1514 mutex_lock(&text_mutex); /* Avoiding text modification */
1515 ret = prepare_kprobe(p);
1516 mutex_unlock(&text_mutex);
1517 if (ret)
1518 goto out;
1519
1520 INIT_HLIST_NODE(&p->hlist);
1521 hlist_add_head_rcu(&p->hlist,
1522 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1523
1524 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1525 arm_kprobe(p);
1526
1527 /* Try to optimize kprobe */
1528 try_to_optimize_kprobe(p);
1529
1530 out:
1531 mutex_unlock(&kprobe_mutex);
1532
1533 if (probed_mod)
1534 module_put(probed_mod);
1535
1536 return ret;
1537 }
1538 EXPORT_SYMBOL_GPL(register_kprobe);
1539
1540 /* Check if all probes on the aggrprobe are disabled */
1541 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1542 {
1543 struct kprobe *kp;
1544
1545 list_for_each_entry_rcu(kp, &ap->list, list)
1546 if (!kprobe_disabled(kp))
1547 /*
1548 * There is an active probe on the list.
1549 * We can't disable this ap.
1550 */
1551 return 0;
1552
1553 return 1;
1554 }
1555
1556 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1557 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1558 {
1559 struct kprobe *orig_p;
1560
1561 /* Get an original kprobe for return */
1562 orig_p = __get_valid_kprobe(p);
1563 if (unlikely(orig_p == NULL))
1564 return NULL;
1565
1566 if (!kprobe_disabled(p)) {
1567 /* Disable probe if it is a child probe */
1568 if (p != orig_p)
1569 p->flags |= KPROBE_FLAG_DISABLED;
1570
1571 /* Try to disarm and disable this/parent probe */
1572 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1573 disarm_kprobe(orig_p, true);
1574 orig_p->flags |= KPROBE_FLAG_DISABLED;
1575 }
1576 }
1577
1578 return orig_p;
1579 }
1580
1581 /*
1582 * Unregister a kprobe without a scheduler synchronization.
1583 */
1584 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1585 {
1586 struct kprobe *ap, *list_p;
1587
1588 /* Disable kprobe. This will disarm it if needed. */
1589 ap = __disable_kprobe(p);
1590 if (ap == NULL)
1591 return -EINVAL;
1592
1593 if (ap == p)
1594 /*
1595 * This probe is an independent(and non-optimized) kprobe
1596 * (not an aggrprobe). Remove from the hash list.
1597 */
1598 goto disarmed;
1599
1600 /* Following process expects this probe is an aggrprobe */
1601 WARN_ON(!kprobe_aggrprobe(ap));
1602
1603 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1604 /*
1605 * !disarmed could be happen if the probe is under delayed
1606 * unoptimizing.
1607 */
1608 goto disarmed;
1609 else {
1610 /* If disabling probe has special handlers, update aggrprobe */
1611 if (p->break_handler && !kprobe_gone(p))
1612 ap->break_handler = NULL;
1613 if (p->post_handler && !kprobe_gone(p)) {
1614 list_for_each_entry_rcu(list_p, &ap->list, list) {
1615 if ((list_p != p) && (list_p->post_handler))
1616 goto noclean;
1617 }
1618 ap->post_handler = NULL;
1619 }
1620 noclean:
1621 /*
1622 * Remove from the aggrprobe: this path will do nothing in
1623 * __unregister_kprobe_bottom().
1624 */
1625 list_del_rcu(&p->list);
1626 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1627 /*
1628 * Try to optimize this probe again, because post
1629 * handler may have been changed.
1630 */
1631 optimize_kprobe(ap);
1632 }
1633 return 0;
1634
1635 disarmed:
1636 BUG_ON(!kprobe_disarmed(ap));
1637 hlist_del_rcu(&ap->hlist);
1638 return 0;
1639 }
1640
1641 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1642 {
1643 struct kprobe *ap;
1644
1645 if (list_empty(&p->list))
1646 /* This is an independent kprobe */
1647 arch_remove_kprobe(p);
1648 else if (list_is_singular(&p->list)) {
1649 /* This is the last child of an aggrprobe */
1650 ap = list_entry(p->list.next, struct kprobe, list);
1651 list_del(&p->list);
1652 free_aggr_kprobe(ap);
1653 }
1654 /* Otherwise, do nothing. */
1655 }
1656
1657 int __kprobes register_kprobes(struct kprobe **kps, int num)
1658 {
1659 int i, ret = 0;
1660
1661 if (num <= 0)
1662 return -EINVAL;
1663 for (i = 0; i < num; i++) {
1664 ret = register_kprobe(kps[i]);
1665 if (ret < 0) {
1666 if (i > 0)
1667 unregister_kprobes(kps, i);
1668 break;
1669 }
1670 }
1671 return ret;
1672 }
1673 EXPORT_SYMBOL_GPL(register_kprobes);
1674
1675 void __kprobes unregister_kprobe(struct kprobe *p)
1676 {
1677 unregister_kprobes(&p, 1);
1678 }
1679 EXPORT_SYMBOL_GPL(unregister_kprobe);
1680
1681 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1682 {
1683 int i;
1684
1685 if (num <= 0)
1686 return;
1687 mutex_lock(&kprobe_mutex);
1688 for (i = 0; i < num; i++)
1689 if (__unregister_kprobe_top(kps[i]) < 0)
1690 kps[i]->addr = NULL;
1691 mutex_unlock(&kprobe_mutex);
1692
1693 synchronize_sched();
1694 for (i = 0; i < num; i++)
1695 if (kps[i]->addr)
1696 __unregister_kprobe_bottom(kps[i]);
1697 }
1698 EXPORT_SYMBOL_GPL(unregister_kprobes);
1699
1700 static struct notifier_block kprobe_exceptions_nb = {
1701 .notifier_call = kprobe_exceptions_notify,
1702 .priority = 0x7fffffff /* we need to be notified first */
1703 };
1704
1705 unsigned long __weak arch_deref_entry_point(void *entry)
1706 {
1707 return (unsigned long)entry;
1708 }
1709
1710 int __kprobes register_jprobes(struct jprobe **jps, int num)
1711 {
1712 struct jprobe *jp;
1713 int ret = 0, i;
1714
1715 if (num <= 0)
1716 return -EINVAL;
1717 for (i = 0; i < num; i++) {
1718 unsigned long addr, offset;
1719 jp = jps[i];
1720 addr = arch_deref_entry_point(jp->entry);
1721
1722 /* Verify probepoint is a function entry point */
1723 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1724 offset == 0) {
1725 jp->kp.pre_handler = setjmp_pre_handler;
1726 jp->kp.break_handler = longjmp_break_handler;
1727 ret = register_kprobe(&jp->kp);
1728 } else
1729 ret = -EINVAL;
1730
1731 if (ret < 0) {
1732 if (i > 0)
1733 unregister_jprobes(jps, i);
1734 break;
1735 }
1736 }
1737 return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(register_jprobes);
1740
1741 int __kprobes register_jprobe(struct jprobe *jp)
1742 {
1743 return register_jprobes(&jp, 1);
1744 }
1745 EXPORT_SYMBOL_GPL(register_jprobe);
1746
1747 void __kprobes unregister_jprobe(struct jprobe *jp)
1748 {
1749 unregister_jprobes(&jp, 1);
1750 }
1751 EXPORT_SYMBOL_GPL(unregister_jprobe);
1752
1753 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1754 {
1755 int i;
1756
1757 if (num <= 0)
1758 return;
1759 mutex_lock(&kprobe_mutex);
1760 for (i = 0; i < num; i++)
1761 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1762 jps[i]->kp.addr = NULL;
1763 mutex_unlock(&kprobe_mutex);
1764
1765 synchronize_sched();
1766 for (i = 0; i < num; i++) {
1767 if (jps[i]->kp.addr)
1768 __unregister_kprobe_bottom(&jps[i]->kp);
1769 }
1770 }
1771 EXPORT_SYMBOL_GPL(unregister_jprobes);
1772
1773 #ifdef CONFIG_KRETPROBES
1774 /*
1775 * This kprobe pre_handler is registered with every kretprobe. When probe
1776 * hits it will set up the return probe.
1777 */
1778 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1779 struct pt_regs *regs)
1780 {
1781 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1782 unsigned long hash, flags = 0;
1783 struct kretprobe_instance *ri;
1784
1785 /*TODO: consider to only swap the RA after the last pre_handler fired */
1786 hash = hash_ptr(current, KPROBE_HASH_BITS);
1787 raw_spin_lock_irqsave(&rp->lock, flags);
1788 if (!hlist_empty(&rp->free_instances)) {
1789 ri = hlist_entry(rp->free_instances.first,
1790 struct kretprobe_instance, hlist);
1791 hlist_del(&ri->hlist);
1792 raw_spin_unlock_irqrestore(&rp->lock, flags);
1793
1794 ri->rp = rp;
1795 ri->task = current;
1796
1797 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1798 raw_spin_lock_irqsave(&rp->lock, flags);
1799 hlist_add_head(&ri->hlist, &rp->free_instances);
1800 raw_spin_unlock_irqrestore(&rp->lock, flags);
1801 return 0;
1802 }
1803
1804 arch_prepare_kretprobe(ri, regs);
1805
1806 /* XXX(hch): why is there no hlist_move_head? */
1807 INIT_HLIST_NODE(&ri->hlist);
1808 kretprobe_table_lock(hash, &flags);
1809 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1810 kretprobe_table_unlock(hash, &flags);
1811 } else {
1812 rp->nmissed++;
1813 raw_spin_unlock_irqrestore(&rp->lock, flags);
1814 }
1815 return 0;
1816 }
1817
1818 int __kprobes register_kretprobe(struct kretprobe *rp)
1819 {
1820 int ret = 0;
1821 struct kretprobe_instance *inst;
1822 int i;
1823 void *addr;
1824
1825 if (kretprobe_blacklist_size) {
1826 addr = kprobe_addr(&rp->kp);
1827 if (IS_ERR(addr))
1828 return PTR_ERR(addr);
1829
1830 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1831 if (kretprobe_blacklist[i].addr == addr)
1832 return -EINVAL;
1833 }
1834 }
1835
1836 rp->kp.pre_handler = pre_handler_kretprobe;
1837 rp->kp.post_handler = NULL;
1838 rp->kp.fault_handler = NULL;
1839 rp->kp.break_handler = NULL;
1840
1841 /* Pre-allocate memory for max kretprobe instances */
1842 if (rp->maxactive <= 0) {
1843 #ifdef CONFIG_PREEMPT
1844 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1845 #else
1846 rp->maxactive = num_possible_cpus();
1847 #endif
1848 }
1849 raw_spin_lock_init(&rp->lock);
1850 INIT_HLIST_HEAD(&rp->free_instances);
1851 for (i = 0; i < rp->maxactive; i++) {
1852 inst = kmalloc(sizeof(struct kretprobe_instance) +
1853 rp->data_size, GFP_KERNEL);
1854 if (inst == NULL) {
1855 free_rp_inst(rp);
1856 return -ENOMEM;
1857 }
1858 INIT_HLIST_NODE(&inst->hlist);
1859 hlist_add_head(&inst->hlist, &rp->free_instances);
1860 }
1861
1862 rp->nmissed = 0;
1863 /* Establish function entry probe point */
1864 ret = register_kprobe(&rp->kp);
1865 if (ret != 0)
1866 free_rp_inst(rp);
1867 return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(register_kretprobe);
1870
1871 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1872 {
1873 int ret = 0, i;
1874
1875 if (num <= 0)
1876 return -EINVAL;
1877 for (i = 0; i < num; i++) {
1878 ret = register_kretprobe(rps[i]);
1879 if (ret < 0) {
1880 if (i > 0)
1881 unregister_kretprobes(rps, i);
1882 break;
1883 }
1884 }
1885 return ret;
1886 }
1887 EXPORT_SYMBOL_GPL(register_kretprobes);
1888
1889 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1890 {
1891 unregister_kretprobes(&rp, 1);
1892 }
1893 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1894
1895 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1896 {
1897 int i;
1898
1899 if (num <= 0)
1900 return;
1901 mutex_lock(&kprobe_mutex);
1902 for (i = 0; i < num; i++)
1903 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1904 rps[i]->kp.addr = NULL;
1905 mutex_unlock(&kprobe_mutex);
1906
1907 synchronize_sched();
1908 for (i = 0; i < num; i++) {
1909 if (rps[i]->kp.addr) {
1910 __unregister_kprobe_bottom(&rps[i]->kp);
1911 cleanup_rp_inst(rps[i]);
1912 }
1913 }
1914 }
1915 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1916
1917 #else /* CONFIG_KRETPROBES */
1918 int __kprobes register_kretprobe(struct kretprobe *rp)
1919 {
1920 return -ENOSYS;
1921 }
1922 EXPORT_SYMBOL_GPL(register_kretprobe);
1923
1924 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1925 {
1926 return -ENOSYS;
1927 }
1928 EXPORT_SYMBOL_GPL(register_kretprobes);
1929
1930 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1931 {
1932 }
1933 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1934
1935 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1936 {
1937 }
1938 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1939
1940 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1941 struct pt_regs *regs)
1942 {
1943 return 0;
1944 }
1945
1946 #endif /* CONFIG_KRETPROBES */
1947
1948 /* Set the kprobe gone and remove its instruction buffer. */
1949 static void __kprobes kill_kprobe(struct kprobe *p)
1950 {
1951 struct kprobe *kp;
1952
1953 p->flags |= KPROBE_FLAG_GONE;
1954 if (kprobe_aggrprobe(p)) {
1955 /*
1956 * If this is an aggr_kprobe, we have to list all the
1957 * chained probes and mark them GONE.
1958 */
1959 list_for_each_entry_rcu(kp, &p->list, list)
1960 kp->flags |= KPROBE_FLAG_GONE;
1961 p->post_handler = NULL;
1962 p->break_handler = NULL;
1963 kill_optimized_kprobe(p);
1964 }
1965 /*
1966 * Here, we can remove insn_slot safely, because no thread calls
1967 * the original probed function (which will be freed soon) any more.
1968 */
1969 arch_remove_kprobe(p);
1970 }
1971
1972 /* Disable one kprobe */
1973 int __kprobes disable_kprobe(struct kprobe *kp)
1974 {
1975 int ret = 0;
1976
1977 mutex_lock(&kprobe_mutex);
1978
1979 /* Disable this kprobe */
1980 if (__disable_kprobe(kp) == NULL)
1981 ret = -EINVAL;
1982
1983 mutex_unlock(&kprobe_mutex);
1984 return ret;
1985 }
1986 EXPORT_SYMBOL_GPL(disable_kprobe);
1987
1988 /* Enable one kprobe */
1989 int __kprobes enable_kprobe(struct kprobe *kp)
1990 {
1991 int ret = 0;
1992 struct kprobe *p;
1993
1994 mutex_lock(&kprobe_mutex);
1995
1996 /* Check whether specified probe is valid. */
1997 p = __get_valid_kprobe(kp);
1998 if (unlikely(p == NULL)) {
1999 ret = -EINVAL;
2000 goto out;
2001 }
2002
2003 if (kprobe_gone(kp)) {
2004 /* This kprobe has gone, we couldn't enable it. */
2005 ret = -EINVAL;
2006 goto out;
2007 }
2008
2009 if (p != kp)
2010 kp->flags &= ~KPROBE_FLAG_DISABLED;
2011
2012 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2013 p->flags &= ~KPROBE_FLAG_DISABLED;
2014 arm_kprobe(p);
2015 }
2016 out:
2017 mutex_unlock(&kprobe_mutex);
2018 return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(enable_kprobe);
2021
2022 void __kprobes dump_kprobe(struct kprobe *kp)
2023 {
2024 printk(KERN_WARNING "Dumping kprobe:\n");
2025 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2026 kp->symbol_name, kp->addr, kp->offset);
2027 }
2028
2029 /* Module notifier call back, checking kprobes on the module */
2030 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2031 unsigned long val, void *data)
2032 {
2033 struct module *mod = data;
2034 struct hlist_head *head;
2035 struct kprobe *p;
2036 unsigned int i;
2037 int checkcore = (val == MODULE_STATE_GOING);
2038
2039 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2040 return NOTIFY_DONE;
2041
2042 /*
2043 * When MODULE_STATE_GOING was notified, both of module .text and
2044 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2045 * notified, only .init.text section would be freed. We need to
2046 * disable kprobes which have been inserted in the sections.
2047 */
2048 mutex_lock(&kprobe_mutex);
2049 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2050 head = &kprobe_table[i];
2051 hlist_for_each_entry_rcu(p, head, hlist)
2052 if (within_module_init((unsigned long)p->addr, mod) ||
2053 (checkcore &&
2054 within_module_core((unsigned long)p->addr, mod))) {
2055 /*
2056 * The vaddr this probe is installed will soon
2057 * be vfreed buy not synced to disk. Hence,
2058 * disarming the breakpoint isn't needed.
2059 */
2060 kill_kprobe(p);
2061 }
2062 }
2063 mutex_unlock(&kprobe_mutex);
2064 return NOTIFY_DONE;
2065 }
2066
2067 static struct notifier_block kprobe_module_nb = {
2068 .notifier_call = kprobes_module_callback,
2069 .priority = 0
2070 };
2071
2072 static int __init init_kprobes(void)
2073 {
2074 int i, err = 0;
2075 unsigned long offset = 0, size = 0;
2076 char *modname, namebuf[128];
2077 const char *symbol_name;
2078 void *addr;
2079 struct kprobe_blackpoint *kb;
2080
2081 /* FIXME allocate the probe table, currently defined statically */
2082 /* initialize all list heads */
2083 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2084 INIT_HLIST_HEAD(&kprobe_table[i]);
2085 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2086 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2087 }
2088
2089 /*
2090 * Lookup and populate the kprobe_blacklist.
2091 *
2092 * Unlike the kretprobe blacklist, we'll need to determine
2093 * the range of addresses that belong to the said functions,
2094 * since a kprobe need not necessarily be at the beginning
2095 * of a function.
2096 */
2097 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2098 kprobe_lookup_name(kb->name, addr);
2099 if (!addr)
2100 continue;
2101
2102 kb->start_addr = (unsigned long)addr;
2103 symbol_name = kallsyms_lookup(kb->start_addr,
2104 &size, &offset, &modname, namebuf);
2105 if (!symbol_name)
2106 kb->range = 0;
2107 else
2108 kb->range = size;
2109 }
2110
2111 if (kretprobe_blacklist_size) {
2112 /* lookup the function address from its name */
2113 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2114 kprobe_lookup_name(kretprobe_blacklist[i].name,
2115 kretprobe_blacklist[i].addr);
2116 if (!kretprobe_blacklist[i].addr)
2117 printk("kretprobe: lookup failed: %s\n",
2118 kretprobe_blacklist[i].name);
2119 }
2120 }
2121
2122 #if defined(CONFIG_OPTPROBES)
2123 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2124 /* Init kprobe_optinsn_slots */
2125 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2126 #endif
2127 /* By default, kprobes can be optimized */
2128 kprobes_allow_optimization = true;
2129 #endif
2130
2131 /* By default, kprobes are armed */
2132 kprobes_all_disarmed = false;
2133
2134 err = arch_init_kprobes();
2135 if (!err)
2136 err = register_die_notifier(&kprobe_exceptions_nb);
2137 if (!err)
2138 err = register_module_notifier(&kprobe_module_nb);
2139
2140 kprobes_initialized = (err == 0);
2141
2142 if (!err)
2143 init_test_probes();
2144 return err;
2145 }
2146
2147 #ifdef CONFIG_DEBUG_FS
2148 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2149 const char *sym, int offset, char *modname, struct kprobe *pp)
2150 {
2151 char *kprobe_type;
2152
2153 if (p->pre_handler == pre_handler_kretprobe)
2154 kprobe_type = "r";
2155 else if (p->pre_handler == setjmp_pre_handler)
2156 kprobe_type = "j";
2157 else
2158 kprobe_type = "k";
2159
2160 if (sym)
2161 seq_printf(pi, "%p %s %s+0x%x %s ",
2162 p->addr, kprobe_type, sym, offset,
2163 (modname ? modname : " "));
2164 else
2165 seq_printf(pi, "%p %s %p ",
2166 p->addr, kprobe_type, p->addr);
2167
2168 if (!pp)
2169 pp = p;
2170 seq_printf(pi, "%s%s%s%s\n",
2171 (kprobe_gone(p) ? "[GONE]" : ""),
2172 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2173 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2174 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2175 }
2176
2177 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2178 {
2179 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2180 }
2181
2182 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2183 {
2184 (*pos)++;
2185 if (*pos >= KPROBE_TABLE_SIZE)
2186 return NULL;
2187 return pos;
2188 }
2189
2190 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2191 {
2192 /* Nothing to do */
2193 }
2194
2195 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2196 {
2197 struct hlist_head *head;
2198 struct kprobe *p, *kp;
2199 const char *sym = NULL;
2200 unsigned int i = *(loff_t *) v;
2201 unsigned long offset = 0;
2202 char *modname, namebuf[128];
2203
2204 head = &kprobe_table[i];
2205 preempt_disable();
2206 hlist_for_each_entry_rcu(p, head, hlist) {
2207 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2208 &offset, &modname, namebuf);
2209 if (kprobe_aggrprobe(p)) {
2210 list_for_each_entry_rcu(kp, &p->list, list)
2211 report_probe(pi, kp, sym, offset, modname, p);
2212 } else
2213 report_probe(pi, p, sym, offset, modname, NULL);
2214 }
2215 preempt_enable();
2216 return 0;
2217 }
2218
2219 static const struct seq_operations kprobes_seq_ops = {
2220 .start = kprobe_seq_start,
2221 .next = kprobe_seq_next,
2222 .stop = kprobe_seq_stop,
2223 .show = show_kprobe_addr
2224 };
2225
2226 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2227 {
2228 return seq_open(filp, &kprobes_seq_ops);
2229 }
2230
2231 static const struct file_operations debugfs_kprobes_operations = {
2232 .open = kprobes_open,
2233 .read = seq_read,
2234 .llseek = seq_lseek,
2235 .release = seq_release,
2236 };
2237
2238 static void __kprobes arm_all_kprobes(void)
2239 {
2240 struct hlist_head *head;
2241 struct kprobe *p;
2242 unsigned int i;
2243
2244 mutex_lock(&kprobe_mutex);
2245
2246 /* If kprobes are armed, just return */
2247 if (!kprobes_all_disarmed)
2248 goto already_enabled;
2249
2250 /* Arming kprobes doesn't optimize kprobe itself */
2251 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2252 head = &kprobe_table[i];
2253 hlist_for_each_entry_rcu(p, head, hlist)
2254 if (!kprobe_disabled(p))
2255 arm_kprobe(p);
2256 }
2257
2258 kprobes_all_disarmed = false;
2259 printk(KERN_INFO "Kprobes globally enabled\n");
2260
2261 already_enabled:
2262 mutex_unlock(&kprobe_mutex);
2263 return;
2264 }
2265
2266 static void __kprobes disarm_all_kprobes(void)
2267 {
2268 struct hlist_head *head;
2269 struct kprobe *p;
2270 unsigned int i;
2271
2272 mutex_lock(&kprobe_mutex);
2273
2274 /* If kprobes are already disarmed, just return */
2275 if (kprobes_all_disarmed) {
2276 mutex_unlock(&kprobe_mutex);
2277 return;
2278 }
2279
2280 kprobes_all_disarmed = true;
2281 printk(KERN_INFO "Kprobes globally disabled\n");
2282
2283 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2284 head = &kprobe_table[i];
2285 hlist_for_each_entry_rcu(p, head, hlist) {
2286 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2287 disarm_kprobe(p, false);
2288 }
2289 }
2290 mutex_unlock(&kprobe_mutex);
2291
2292 /* Wait for disarming all kprobes by optimizer */
2293 wait_for_kprobe_optimizer();
2294 }
2295
2296 /*
2297 * XXX: The debugfs bool file interface doesn't allow for callbacks
2298 * when the bool state is switched. We can reuse that facility when
2299 * available
2300 */
2301 static ssize_t read_enabled_file_bool(struct file *file,
2302 char __user *user_buf, size_t count, loff_t *ppos)
2303 {
2304 char buf[3];
2305
2306 if (!kprobes_all_disarmed)
2307 buf[0] = '1';
2308 else
2309 buf[0] = '0';
2310 buf[1] = '\n';
2311 buf[2] = 0x00;
2312 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2313 }
2314
2315 static ssize_t write_enabled_file_bool(struct file *file,
2316 const char __user *user_buf, size_t count, loff_t *ppos)
2317 {
2318 char buf[32];
2319 size_t buf_size;
2320
2321 buf_size = min(count, (sizeof(buf)-1));
2322 if (copy_from_user(buf, user_buf, buf_size))
2323 return -EFAULT;
2324
2325 switch (buf[0]) {
2326 case 'y':
2327 case 'Y':
2328 case '1':
2329 arm_all_kprobes();
2330 break;
2331 case 'n':
2332 case 'N':
2333 case '0':
2334 disarm_all_kprobes();
2335 break;
2336 }
2337
2338 return count;
2339 }
2340
2341 static const struct file_operations fops_kp = {
2342 .read = read_enabled_file_bool,
2343 .write = write_enabled_file_bool,
2344 .llseek = default_llseek,
2345 };
2346
2347 static int __kprobes debugfs_kprobe_init(void)
2348 {
2349 struct dentry *dir, *file;
2350 unsigned int value = 1;
2351
2352 dir = debugfs_create_dir("kprobes", NULL);
2353 if (!dir)
2354 return -ENOMEM;
2355
2356 file = debugfs_create_file("list", 0444, dir, NULL,
2357 &debugfs_kprobes_operations);
2358 if (!file) {
2359 debugfs_remove(dir);
2360 return -ENOMEM;
2361 }
2362
2363 file = debugfs_create_file("enabled", 0600, dir,
2364 &value, &fops_kp);
2365 if (!file) {
2366 debugfs_remove(dir);
2367 return -ENOMEM;
2368 }
2369
2370 return 0;
2371 }
2372
2373 late_initcall(debugfs_kprobe_init);
2374 #endif /* CONFIG_DEBUG_FS */
2375
2376 module_init(init_kprobes);
2377
2378 /* defined in arch/.../kernel/kprobes.c */
2379 EXPORT_SYMBOL_GPL(jprobe_return);