kbuild: migrate all arch to the kconfig mainmenu upgrade
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50
51 #include <asm-generic/sections.h>
52 #include <asm/cacheflush.h>
53 #include <asm/errno.h>
54 #include <asm/uaccess.h>
55
56 #define KPROBE_HASH_BITS 6
57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58
59
60 /*
61 * Some oddball architectures like 64bit powerpc have function descriptors
62 * so this must be overridable.
63 */
64 #ifndef kprobe_lookup_name
65 #define kprobe_lookup_name(name, addr) \
66 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
67 #endif
68
69 static int kprobes_initialized;
70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
72
73 /* NOTE: change this value only with kprobe_mutex held */
74 static bool kprobes_all_disarmed;
75
76 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
78 static struct {
79 spinlock_t lock ____cacheline_aligned_in_smp;
80 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
81
82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 {
84 return &(kretprobe_table_locks[hash].lock);
85 }
86
87 /*
88 * Normally, functions that we'd want to prohibit kprobes in, are marked
89 * __kprobes. But, there are cases where such functions already belong to
90 * a different section (__sched for preempt_schedule)
91 *
92 * For such cases, we now have a blacklist
93 */
94 static struct kprobe_blackpoint kprobe_blacklist[] = {
95 {"preempt_schedule",},
96 {"native_get_debugreg",},
97 {"irq_entries_start",},
98 {"common_interrupt",},
99 {"mcount",}, /* mcount can be called from everywhere */
100 {NULL} /* Terminator */
101 };
102
103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
104 /*
105 * kprobe->ainsn.insn points to the copy of the instruction to be
106 * single-stepped. x86_64, POWER4 and above have no-exec support and
107 * stepping on the instruction on a vmalloced/kmalloced/data page
108 * is a recipe for disaster
109 */
110 struct kprobe_insn_page {
111 struct list_head list;
112 kprobe_opcode_t *insns; /* Page of instruction slots */
113 int nused;
114 int ngarbage;
115 char slot_used[];
116 };
117
118 #define KPROBE_INSN_PAGE_SIZE(slots) \
119 (offsetof(struct kprobe_insn_page, slot_used) + \
120 (sizeof(char) * (slots)))
121
122 struct kprobe_insn_cache {
123 struct list_head pages; /* list of kprobe_insn_page */
124 size_t insn_size; /* size of instruction slot */
125 int nr_garbage;
126 };
127
128 static int slots_per_page(struct kprobe_insn_cache *c)
129 {
130 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
131 }
132
133 enum kprobe_slot_state {
134 SLOT_CLEAN = 0,
135 SLOT_DIRTY = 1,
136 SLOT_USED = 2,
137 };
138
139 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
140 static struct kprobe_insn_cache kprobe_insn_slots = {
141 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
142 .insn_size = MAX_INSN_SIZE,
143 .nr_garbage = 0,
144 };
145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
146
147 /**
148 * __get_insn_slot() - Find a slot on an executable page for an instruction.
149 * We allocate an executable page if there's no room on existing ones.
150 */
151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
152 {
153 struct kprobe_insn_page *kip;
154
155 retry:
156 list_for_each_entry(kip, &c->pages, list) {
157 if (kip->nused < slots_per_page(c)) {
158 int i;
159 for (i = 0; i < slots_per_page(c); i++) {
160 if (kip->slot_used[i] == SLOT_CLEAN) {
161 kip->slot_used[i] = SLOT_USED;
162 kip->nused++;
163 return kip->insns + (i * c->insn_size);
164 }
165 }
166 /* kip->nused is broken. Fix it. */
167 kip->nused = slots_per_page(c);
168 WARN_ON(1);
169 }
170 }
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 return NULL;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = module_alloc(PAGE_SIZE);
187 if (!kip->insns) {
188 kfree(kip);
189 return NULL;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 list_add(&kip->list, &c->pages);
197 return kip->insns;
198 }
199
200
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 {
203 kprobe_opcode_t *ret = NULL;
204
205 mutex_lock(&kprobe_insn_mutex);
206 ret = __get_insn_slot(&kprobe_insn_slots);
207 mutex_unlock(&kprobe_insn_mutex);
208
209 return ret;
210 }
211
212 /* Return 1 if all garbages are collected, otherwise 0. */
213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214 {
215 kip->slot_used[idx] = SLOT_CLEAN;
216 kip->nused--;
217 if (kip->nused == 0) {
218 /*
219 * Page is no longer in use. Free it unless
220 * it's the last one. We keep the last one
221 * so as not to have to set it up again the
222 * next time somebody inserts a probe.
223 */
224 if (!list_is_singular(&kip->list)) {
225 list_del(&kip->list);
226 module_free(NULL, kip->insns);
227 kfree(kip);
228 }
229 return 1;
230 }
231 return 0;
232 }
233
234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 struct kprobe_insn_page *kip, *next;
237
238 /* Ensure no-one is interrupted on the garbages */
239 synchronize_sched();
240
241 list_for_each_entry_safe(kip, next, &c->pages, list) {
242 int i;
243 if (kip->ngarbage == 0)
244 continue;
245 kip->ngarbage = 0; /* we will collect all garbages */
246 for (i = 0; i < slots_per_page(c); i++) {
247 if (kip->slot_used[i] == SLOT_DIRTY &&
248 collect_one_slot(kip, i))
249 break;
250 }
251 }
252 c->nr_garbage = 0;
253 return 0;
254 }
255
256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
257 kprobe_opcode_t *slot, int dirty)
258 {
259 struct kprobe_insn_page *kip;
260
261 list_for_each_entry(kip, &c->pages, list) {
262 long idx = ((long)slot - (long)kip->insns) /
263 (c->insn_size * sizeof(kprobe_opcode_t));
264 if (idx >= 0 && idx < slots_per_page(c)) {
265 WARN_ON(kip->slot_used[idx] != SLOT_USED);
266 if (dirty) {
267 kip->slot_used[idx] = SLOT_DIRTY;
268 kip->ngarbage++;
269 if (++c->nr_garbage > slots_per_page(c))
270 collect_garbage_slots(c);
271 } else
272 collect_one_slot(kip, idx);
273 return;
274 }
275 }
276 /* Could not free this slot. */
277 WARN_ON(1);
278 }
279
280 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
281 {
282 mutex_lock(&kprobe_insn_mutex);
283 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
284 mutex_unlock(&kprobe_insn_mutex);
285 }
286 #ifdef CONFIG_OPTPROBES
287 /* For optimized_kprobe buffer */
288 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
289 static struct kprobe_insn_cache kprobe_optinsn_slots = {
290 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
291 /* .insn_size is initialized later */
292 .nr_garbage = 0,
293 };
294 /* Get a slot for optimized_kprobe buffer */
295 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
296 {
297 kprobe_opcode_t *ret = NULL;
298
299 mutex_lock(&kprobe_optinsn_mutex);
300 ret = __get_insn_slot(&kprobe_optinsn_slots);
301 mutex_unlock(&kprobe_optinsn_mutex);
302
303 return ret;
304 }
305
306 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
307 {
308 mutex_lock(&kprobe_optinsn_mutex);
309 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
310 mutex_unlock(&kprobe_optinsn_mutex);
311 }
312 #endif
313 #endif
314
315 /* We have preemption disabled.. so it is safe to use __ versions */
316 static inline void set_kprobe_instance(struct kprobe *kp)
317 {
318 __get_cpu_var(kprobe_instance) = kp;
319 }
320
321 static inline void reset_kprobe_instance(void)
322 {
323 __get_cpu_var(kprobe_instance) = NULL;
324 }
325
326 /*
327 * This routine is called either:
328 * - under the kprobe_mutex - during kprobe_[un]register()
329 * OR
330 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
331 */
332 struct kprobe __kprobes *get_kprobe(void *addr)
333 {
334 struct hlist_head *head;
335 struct hlist_node *node;
336 struct kprobe *p;
337
338 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
339 hlist_for_each_entry_rcu(p, node, head, hlist) {
340 if (p->addr == addr)
341 return p;
342 }
343
344 return NULL;
345 }
346
347 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
348
349 /* Return true if the kprobe is an aggregator */
350 static inline int kprobe_aggrprobe(struct kprobe *p)
351 {
352 return p->pre_handler == aggr_pre_handler;
353 }
354
355 /*
356 * Keep all fields in the kprobe consistent
357 */
358 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
359 {
360 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
361 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
362 }
363
364 #ifdef CONFIG_OPTPROBES
365 /* NOTE: change this value only with kprobe_mutex held */
366 static bool kprobes_allow_optimization;
367
368 /*
369 * Call all pre_handler on the list, but ignores its return value.
370 * This must be called from arch-dep optimized caller.
371 */
372 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
373 {
374 struct kprobe *kp;
375
376 list_for_each_entry_rcu(kp, &p->list, list) {
377 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
378 set_kprobe_instance(kp);
379 kp->pre_handler(kp, regs);
380 }
381 reset_kprobe_instance();
382 }
383 }
384
385 /* Return true(!0) if the kprobe is ready for optimization. */
386 static inline int kprobe_optready(struct kprobe *p)
387 {
388 struct optimized_kprobe *op;
389
390 if (kprobe_aggrprobe(p)) {
391 op = container_of(p, struct optimized_kprobe, kp);
392 return arch_prepared_optinsn(&op->optinsn);
393 }
394
395 return 0;
396 }
397
398 /*
399 * Return an optimized kprobe whose optimizing code replaces
400 * instructions including addr (exclude breakpoint).
401 */
402 struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
403 {
404 int i;
405 struct kprobe *p = NULL;
406 struct optimized_kprobe *op;
407
408 /* Don't check i == 0, since that is a breakpoint case. */
409 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
410 p = get_kprobe((void *)(addr - i));
411
412 if (p && kprobe_optready(p)) {
413 op = container_of(p, struct optimized_kprobe, kp);
414 if (arch_within_optimized_kprobe(op, addr))
415 return p;
416 }
417
418 return NULL;
419 }
420
421 /* Optimization staging list, protected by kprobe_mutex */
422 static LIST_HEAD(optimizing_list);
423
424 static void kprobe_optimizer(struct work_struct *work);
425 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
426 #define OPTIMIZE_DELAY 5
427
428 /* Kprobe jump optimizer */
429 static __kprobes void kprobe_optimizer(struct work_struct *work)
430 {
431 struct optimized_kprobe *op, *tmp;
432
433 /* Lock modules while optimizing kprobes */
434 mutex_lock(&module_mutex);
435 mutex_lock(&kprobe_mutex);
436 if (kprobes_all_disarmed || !kprobes_allow_optimization)
437 goto end;
438
439 /*
440 * Wait for quiesence period to ensure all running interrupts
441 * are done. Because optprobe may modify multiple instructions
442 * there is a chance that Nth instruction is interrupted. In that
443 * case, running interrupt can return to 2nd-Nth byte of jump
444 * instruction. This wait is for avoiding it.
445 */
446 synchronize_sched();
447
448 /*
449 * The optimization/unoptimization refers online_cpus via
450 * stop_machine() and cpu-hotplug modifies online_cpus.
451 * And same time, text_mutex will be held in cpu-hotplug and here.
452 * This combination can cause a deadlock (cpu-hotplug try to lock
453 * text_mutex but stop_machine can not be done because online_cpus
454 * has been changed)
455 * To avoid this deadlock, we need to call get_online_cpus()
456 * for preventing cpu-hotplug outside of text_mutex locking.
457 */
458 get_online_cpus();
459 mutex_lock(&text_mutex);
460 list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
461 WARN_ON(kprobe_disabled(&op->kp));
462 if (arch_optimize_kprobe(op) < 0)
463 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
464 list_del_init(&op->list);
465 }
466 mutex_unlock(&text_mutex);
467 put_online_cpus();
468 end:
469 mutex_unlock(&kprobe_mutex);
470 mutex_unlock(&module_mutex);
471 }
472
473 /* Optimize kprobe if p is ready to be optimized */
474 static __kprobes void optimize_kprobe(struct kprobe *p)
475 {
476 struct optimized_kprobe *op;
477
478 /* Check if the kprobe is disabled or not ready for optimization. */
479 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
480 (kprobe_disabled(p) || kprobes_all_disarmed))
481 return;
482
483 /* Both of break_handler and post_handler are not supported. */
484 if (p->break_handler || p->post_handler)
485 return;
486
487 op = container_of(p, struct optimized_kprobe, kp);
488
489 /* Check there is no other kprobes at the optimized instructions */
490 if (arch_check_optimized_kprobe(op) < 0)
491 return;
492
493 /* Check if it is already optimized. */
494 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
495 return;
496
497 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
498 list_add(&op->list, &optimizing_list);
499 if (!delayed_work_pending(&optimizing_work))
500 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
501 }
502
503 /* Unoptimize a kprobe if p is optimized */
504 static __kprobes void unoptimize_kprobe(struct kprobe *p)
505 {
506 struct optimized_kprobe *op;
507
508 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
509 op = container_of(p, struct optimized_kprobe, kp);
510 if (!list_empty(&op->list))
511 /* Dequeue from the optimization queue */
512 list_del_init(&op->list);
513 else
514 /* Replace jump with break */
515 arch_unoptimize_kprobe(op);
516 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
517 }
518 }
519
520 /* Remove optimized instructions */
521 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
522 {
523 struct optimized_kprobe *op;
524
525 op = container_of(p, struct optimized_kprobe, kp);
526 if (!list_empty(&op->list)) {
527 /* Dequeue from the optimization queue */
528 list_del_init(&op->list);
529 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
530 }
531 /* Don't unoptimize, because the target code will be freed. */
532 arch_remove_optimized_kprobe(op);
533 }
534
535 /* Try to prepare optimized instructions */
536 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
537 {
538 struct optimized_kprobe *op;
539
540 op = container_of(p, struct optimized_kprobe, kp);
541 arch_prepare_optimized_kprobe(op);
542 }
543
544 /* Free optimized instructions and optimized_kprobe */
545 static __kprobes void free_aggr_kprobe(struct kprobe *p)
546 {
547 struct optimized_kprobe *op;
548
549 op = container_of(p, struct optimized_kprobe, kp);
550 arch_remove_optimized_kprobe(op);
551 kfree(op);
552 }
553
554 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
555 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
556 {
557 struct optimized_kprobe *op;
558
559 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
560 if (!op)
561 return NULL;
562
563 INIT_LIST_HEAD(&op->list);
564 op->kp.addr = p->addr;
565 arch_prepare_optimized_kprobe(op);
566
567 return &op->kp;
568 }
569
570 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
571
572 /*
573 * Prepare an optimized_kprobe and optimize it
574 * NOTE: p must be a normal registered kprobe
575 */
576 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
577 {
578 struct kprobe *ap;
579 struct optimized_kprobe *op;
580
581 ap = alloc_aggr_kprobe(p);
582 if (!ap)
583 return;
584
585 op = container_of(ap, struct optimized_kprobe, kp);
586 if (!arch_prepared_optinsn(&op->optinsn)) {
587 /* If failed to setup optimizing, fallback to kprobe */
588 free_aggr_kprobe(ap);
589 return;
590 }
591
592 init_aggr_kprobe(ap, p);
593 optimize_kprobe(ap);
594 }
595
596 #ifdef CONFIG_SYSCTL
597 static void __kprobes optimize_all_kprobes(void)
598 {
599 struct hlist_head *head;
600 struct hlist_node *node;
601 struct kprobe *p;
602 unsigned int i;
603
604 /* If optimization is already allowed, just return */
605 if (kprobes_allow_optimization)
606 return;
607
608 kprobes_allow_optimization = true;
609 mutex_lock(&text_mutex);
610 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
611 head = &kprobe_table[i];
612 hlist_for_each_entry_rcu(p, node, head, hlist)
613 if (!kprobe_disabled(p))
614 optimize_kprobe(p);
615 }
616 mutex_unlock(&text_mutex);
617 printk(KERN_INFO "Kprobes globally optimized\n");
618 }
619
620 static void __kprobes unoptimize_all_kprobes(void)
621 {
622 struct hlist_head *head;
623 struct hlist_node *node;
624 struct kprobe *p;
625 unsigned int i;
626
627 /* If optimization is already prohibited, just return */
628 if (!kprobes_allow_optimization)
629 return;
630
631 kprobes_allow_optimization = false;
632 printk(KERN_INFO "Kprobes globally unoptimized\n");
633 get_online_cpus(); /* For avoiding text_mutex deadlock */
634 mutex_lock(&text_mutex);
635 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
636 head = &kprobe_table[i];
637 hlist_for_each_entry_rcu(p, node, head, hlist) {
638 if (!kprobe_disabled(p))
639 unoptimize_kprobe(p);
640 }
641 }
642
643 mutex_unlock(&text_mutex);
644 put_online_cpus();
645 /* Allow all currently running kprobes to complete */
646 synchronize_sched();
647 }
648
649 int sysctl_kprobes_optimization;
650 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
651 void __user *buffer, size_t *length,
652 loff_t *ppos)
653 {
654 int ret;
655
656 mutex_lock(&kprobe_mutex);
657 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
658 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
659
660 if (sysctl_kprobes_optimization)
661 optimize_all_kprobes();
662 else
663 unoptimize_all_kprobes();
664 mutex_unlock(&kprobe_mutex);
665
666 return ret;
667 }
668 #endif /* CONFIG_SYSCTL */
669
670 static void __kprobes __arm_kprobe(struct kprobe *p)
671 {
672 struct kprobe *old_p;
673
674 /* Check collision with other optimized kprobes */
675 old_p = get_optimized_kprobe((unsigned long)p->addr);
676 if (unlikely(old_p))
677 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
678
679 arch_arm_kprobe(p);
680 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
681 }
682
683 static void __kprobes __disarm_kprobe(struct kprobe *p)
684 {
685 struct kprobe *old_p;
686
687 unoptimize_kprobe(p); /* Try to unoptimize */
688 arch_disarm_kprobe(p);
689
690 /* If another kprobe was blocked, optimize it. */
691 old_p = get_optimized_kprobe((unsigned long)p->addr);
692 if (unlikely(old_p))
693 optimize_kprobe(old_p);
694 }
695
696 #else /* !CONFIG_OPTPROBES */
697
698 #define optimize_kprobe(p) do {} while (0)
699 #define unoptimize_kprobe(p) do {} while (0)
700 #define kill_optimized_kprobe(p) do {} while (0)
701 #define prepare_optimized_kprobe(p) do {} while (0)
702 #define try_to_optimize_kprobe(p) do {} while (0)
703 #define __arm_kprobe(p) arch_arm_kprobe(p)
704 #define __disarm_kprobe(p) arch_disarm_kprobe(p)
705
706 static __kprobes void free_aggr_kprobe(struct kprobe *p)
707 {
708 kfree(p);
709 }
710
711 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
712 {
713 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
714 }
715 #endif /* CONFIG_OPTPROBES */
716
717 /* Arm a kprobe with text_mutex */
718 static void __kprobes arm_kprobe(struct kprobe *kp)
719 {
720 /*
721 * Here, since __arm_kprobe() doesn't use stop_machine(),
722 * this doesn't cause deadlock on text_mutex. So, we don't
723 * need get_online_cpus().
724 */
725 mutex_lock(&text_mutex);
726 __arm_kprobe(kp);
727 mutex_unlock(&text_mutex);
728 }
729
730 /* Disarm a kprobe with text_mutex */
731 static void __kprobes disarm_kprobe(struct kprobe *kp)
732 {
733 get_online_cpus(); /* For avoiding text_mutex deadlock */
734 mutex_lock(&text_mutex);
735 __disarm_kprobe(kp);
736 mutex_unlock(&text_mutex);
737 put_online_cpus();
738 }
739
740 /*
741 * Aggregate handlers for multiple kprobes support - these handlers
742 * take care of invoking the individual kprobe handlers on p->list
743 */
744 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
745 {
746 struct kprobe *kp;
747
748 list_for_each_entry_rcu(kp, &p->list, list) {
749 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
750 set_kprobe_instance(kp);
751 if (kp->pre_handler(kp, regs))
752 return 1;
753 }
754 reset_kprobe_instance();
755 }
756 return 0;
757 }
758
759 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
760 unsigned long flags)
761 {
762 struct kprobe *kp;
763
764 list_for_each_entry_rcu(kp, &p->list, list) {
765 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
766 set_kprobe_instance(kp);
767 kp->post_handler(kp, regs, flags);
768 reset_kprobe_instance();
769 }
770 }
771 }
772
773 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
774 int trapnr)
775 {
776 struct kprobe *cur = __get_cpu_var(kprobe_instance);
777
778 /*
779 * if we faulted "during" the execution of a user specified
780 * probe handler, invoke just that probe's fault handler
781 */
782 if (cur && cur->fault_handler) {
783 if (cur->fault_handler(cur, regs, trapnr))
784 return 1;
785 }
786 return 0;
787 }
788
789 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
790 {
791 struct kprobe *cur = __get_cpu_var(kprobe_instance);
792 int ret = 0;
793
794 if (cur && cur->break_handler) {
795 if (cur->break_handler(cur, regs))
796 ret = 1;
797 }
798 reset_kprobe_instance();
799 return ret;
800 }
801
802 /* Walks the list and increments nmissed count for multiprobe case */
803 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
804 {
805 struct kprobe *kp;
806 if (!kprobe_aggrprobe(p)) {
807 p->nmissed++;
808 } else {
809 list_for_each_entry_rcu(kp, &p->list, list)
810 kp->nmissed++;
811 }
812 return;
813 }
814
815 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
816 struct hlist_head *head)
817 {
818 struct kretprobe *rp = ri->rp;
819
820 /* remove rp inst off the rprobe_inst_table */
821 hlist_del(&ri->hlist);
822 INIT_HLIST_NODE(&ri->hlist);
823 if (likely(rp)) {
824 spin_lock(&rp->lock);
825 hlist_add_head(&ri->hlist, &rp->free_instances);
826 spin_unlock(&rp->lock);
827 } else
828 /* Unregistering */
829 hlist_add_head(&ri->hlist, head);
830 }
831
832 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
833 struct hlist_head **head, unsigned long *flags)
834 {
835 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
836 spinlock_t *hlist_lock;
837
838 *head = &kretprobe_inst_table[hash];
839 hlist_lock = kretprobe_table_lock_ptr(hash);
840 spin_lock_irqsave(hlist_lock, *flags);
841 }
842
843 static void __kprobes kretprobe_table_lock(unsigned long hash,
844 unsigned long *flags)
845 {
846 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
847 spin_lock_irqsave(hlist_lock, *flags);
848 }
849
850 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
851 unsigned long *flags)
852 {
853 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
854 spinlock_t *hlist_lock;
855
856 hlist_lock = kretprobe_table_lock_ptr(hash);
857 spin_unlock_irqrestore(hlist_lock, *flags);
858 }
859
860 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
861 {
862 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
863 spin_unlock_irqrestore(hlist_lock, *flags);
864 }
865
866 /*
867 * This function is called from finish_task_switch when task tk becomes dead,
868 * so that we can recycle any function-return probe instances associated
869 * with this task. These left over instances represent probed functions
870 * that have been called but will never return.
871 */
872 void __kprobes kprobe_flush_task(struct task_struct *tk)
873 {
874 struct kretprobe_instance *ri;
875 struct hlist_head *head, empty_rp;
876 struct hlist_node *node, *tmp;
877 unsigned long hash, flags = 0;
878
879 if (unlikely(!kprobes_initialized))
880 /* Early boot. kretprobe_table_locks not yet initialized. */
881 return;
882
883 hash = hash_ptr(tk, KPROBE_HASH_BITS);
884 head = &kretprobe_inst_table[hash];
885 kretprobe_table_lock(hash, &flags);
886 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
887 if (ri->task == tk)
888 recycle_rp_inst(ri, &empty_rp);
889 }
890 kretprobe_table_unlock(hash, &flags);
891 INIT_HLIST_HEAD(&empty_rp);
892 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
893 hlist_del(&ri->hlist);
894 kfree(ri);
895 }
896 }
897
898 static inline void free_rp_inst(struct kretprobe *rp)
899 {
900 struct kretprobe_instance *ri;
901 struct hlist_node *pos, *next;
902
903 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
904 hlist_del(&ri->hlist);
905 kfree(ri);
906 }
907 }
908
909 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
910 {
911 unsigned long flags, hash;
912 struct kretprobe_instance *ri;
913 struct hlist_node *pos, *next;
914 struct hlist_head *head;
915
916 /* No race here */
917 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
918 kretprobe_table_lock(hash, &flags);
919 head = &kretprobe_inst_table[hash];
920 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
921 if (ri->rp == rp)
922 ri->rp = NULL;
923 }
924 kretprobe_table_unlock(hash, &flags);
925 }
926 free_rp_inst(rp);
927 }
928
929 /*
930 * Add the new probe to ap->list. Fail if this is the
931 * second jprobe at the address - two jprobes can't coexist
932 */
933 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
934 {
935 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
936
937 if (p->break_handler || p->post_handler)
938 unoptimize_kprobe(ap); /* Fall back to normal kprobe */
939
940 if (p->break_handler) {
941 if (ap->break_handler)
942 return -EEXIST;
943 list_add_tail_rcu(&p->list, &ap->list);
944 ap->break_handler = aggr_break_handler;
945 } else
946 list_add_rcu(&p->list, &ap->list);
947 if (p->post_handler && !ap->post_handler)
948 ap->post_handler = aggr_post_handler;
949
950 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
951 ap->flags &= ~KPROBE_FLAG_DISABLED;
952 if (!kprobes_all_disarmed)
953 /* Arm the breakpoint again. */
954 __arm_kprobe(ap);
955 }
956 return 0;
957 }
958
959 /*
960 * Fill in the required fields of the "manager kprobe". Replace the
961 * earlier kprobe in the hlist with the manager kprobe
962 */
963 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
964 {
965 /* Copy p's insn slot to ap */
966 copy_kprobe(p, ap);
967 flush_insn_slot(ap);
968 ap->addr = p->addr;
969 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
970 ap->pre_handler = aggr_pre_handler;
971 ap->fault_handler = aggr_fault_handler;
972 /* We don't care the kprobe which has gone. */
973 if (p->post_handler && !kprobe_gone(p))
974 ap->post_handler = aggr_post_handler;
975 if (p->break_handler && !kprobe_gone(p))
976 ap->break_handler = aggr_break_handler;
977
978 INIT_LIST_HEAD(&ap->list);
979 INIT_HLIST_NODE(&ap->hlist);
980
981 list_add_rcu(&p->list, &ap->list);
982 hlist_replace_rcu(&p->hlist, &ap->hlist);
983 }
984
985 /*
986 * This is the second or subsequent kprobe at the address - handle
987 * the intricacies
988 */
989 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
990 struct kprobe *p)
991 {
992 int ret = 0;
993 struct kprobe *ap = old_p;
994
995 if (!kprobe_aggrprobe(old_p)) {
996 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
997 ap = alloc_aggr_kprobe(old_p);
998 if (!ap)
999 return -ENOMEM;
1000 init_aggr_kprobe(ap, old_p);
1001 }
1002
1003 if (kprobe_gone(ap)) {
1004 /*
1005 * Attempting to insert new probe at the same location that
1006 * had a probe in the module vaddr area which already
1007 * freed. So, the instruction slot has already been
1008 * released. We need a new slot for the new probe.
1009 */
1010 ret = arch_prepare_kprobe(ap);
1011 if (ret)
1012 /*
1013 * Even if fail to allocate new slot, don't need to
1014 * free aggr_probe. It will be used next time, or
1015 * freed by unregister_kprobe.
1016 */
1017 return ret;
1018
1019 /* Prepare optimized instructions if possible. */
1020 prepare_optimized_kprobe(ap);
1021
1022 /*
1023 * Clear gone flag to prevent allocating new slot again, and
1024 * set disabled flag because it is not armed yet.
1025 */
1026 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1027 | KPROBE_FLAG_DISABLED;
1028 }
1029
1030 /* Copy ap's insn slot to p */
1031 copy_kprobe(ap, p);
1032 return add_new_kprobe(ap, p);
1033 }
1034
1035 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1036 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1037 {
1038 struct kprobe *kp;
1039
1040 list_for_each_entry_rcu(kp, &p->list, list) {
1041 if (!kprobe_disabled(kp))
1042 /*
1043 * There is an active probe on the list.
1044 * We can't disable aggr_kprobe.
1045 */
1046 return 0;
1047 }
1048 p->flags |= KPROBE_FLAG_DISABLED;
1049 return 1;
1050 }
1051
1052 static int __kprobes in_kprobes_functions(unsigned long addr)
1053 {
1054 struct kprobe_blackpoint *kb;
1055
1056 if (addr >= (unsigned long)__kprobes_text_start &&
1057 addr < (unsigned long)__kprobes_text_end)
1058 return -EINVAL;
1059 /*
1060 * If there exists a kprobe_blacklist, verify and
1061 * fail any probe registration in the prohibited area
1062 */
1063 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1064 if (kb->start_addr) {
1065 if (addr >= kb->start_addr &&
1066 addr < (kb->start_addr + kb->range))
1067 return -EINVAL;
1068 }
1069 }
1070 return 0;
1071 }
1072
1073 /*
1074 * If we have a symbol_name argument, look it up and add the offset field
1075 * to it. This way, we can specify a relative address to a symbol.
1076 */
1077 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1078 {
1079 kprobe_opcode_t *addr = p->addr;
1080 if (p->symbol_name) {
1081 if (addr)
1082 return NULL;
1083 kprobe_lookup_name(p->symbol_name, addr);
1084 }
1085
1086 if (!addr)
1087 return NULL;
1088 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1089 }
1090
1091 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1092 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1093 {
1094 struct kprobe *old_p, *list_p;
1095
1096 old_p = get_kprobe(p->addr);
1097 if (unlikely(!old_p))
1098 return NULL;
1099
1100 if (p != old_p) {
1101 list_for_each_entry_rcu(list_p, &old_p->list, list)
1102 if (list_p == p)
1103 /* kprobe p is a valid probe */
1104 goto valid;
1105 return NULL;
1106 }
1107 valid:
1108 return old_p;
1109 }
1110
1111 /* Return error if the kprobe is being re-registered */
1112 static inline int check_kprobe_rereg(struct kprobe *p)
1113 {
1114 int ret = 0;
1115 struct kprobe *old_p;
1116
1117 mutex_lock(&kprobe_mutex);
1118 old_p = __get_valid_kprobe(p);
1119 if (old_p)
1120 ret = -EINVAL;
1121 mutex_unlock(&kprobe_mutex);
1122 return ret;
1123 }
1124
1125 int __kprobes register_kprobe(struct kprobe *p)
1126 {
1127 int ret = 0;
1128 struct kprobe *old_p;
1129 struct module *probed_mod;
1130 kprobe_opcode_t *addr;
1131
1132 addr = kprobe_addr(p);
1133 if (!addr)
1134 return -EINVAL;
1135 p->addr = addr;
1136
1137 ret = check_kprobe_rereg(p);
1138 if (ret)
1139 return ret;
1140
1141 preempt_disable();
1142 if (!kernel_text_address((unsigned long) p->addr) ||
1143 in_kprobes_functions((unsigned long) p->addr) ||
1144 ftrace_text_reserved(p->addr, p->addr)) {
1145 preempt_enable();
1146 return -EINVAL;
1147 }
1148
1149 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1150 p->flags &= KPROBE_FLAG_DISABLED;
1151
1152 /*
1153 * Check if are we probing a module.
1154 */
1155 probed_mod = __module_text_address((unsigned long) p->addr);
1156 if (probed_mod) {
1157 /*
1158 * We must hold a refcount of the probed module while updating
1159 * its code to prohibit unexpected unloading.
1160 */
1161 if (unlikely(!try_module_get(probed_mod))) {
1162 preempt_enable();
1163 return -EINVAL;
1164 }
1165 /*
1166 * If the module freed .init.text, we couldn't insert
1167 * kprobes in there.
1168 */
1169 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1170 probed_mod->state != MODULE_STATE_COMING) {
1171 module_put(probed_mod);
1172 preempt_enable();
1173 return -EINVAL;
1174 }
1175 }
1176 preempt_enable();
1177
1178 p->nmissed = 0;
1179 INIT_LIST_HEAD(&p->list);
1180 mutex_lock(&kprobe_mutex);
1181
1182 get_online_cpus(); /* For avoiding text_mutex deadlock. */
1183 mutex_lock(&text_mutex);
1184
1185 old_p = get_kprobe(p->addr);
1186 if (old_p) {
1187 /* Since this may unoptimize old_p, locking text_mutex. */
1188 ret = register_aggr_kprobe(old_p, p);
1189 goto out;
1190 }
1191
1192 ret = arch_prepare_kprobe(p);
1193 if (ret)
1194 goto out;
1195
1196 INIT_HLIST_NODE(&p->hlist);
1197 hlist_add_head_rcu(&p->hlist,
1198 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1199
1200 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1201 __arm_kprobe(p);
1202
1203 /* Try to optimize kprobe */
1204 try_to_optimize_kprobe(p);
1205
1206 out:
1207 mutex_unlock(&text_mutex);
1208 put_online_cpus();
1209 mutex_unlock(&kprobe_mutex);
1210
1211 if (probed_mod)
1212 module_put(probed_mod);
1213
1214 return ret;
1215 }
1216 EXPORT_SYMBOL_GPL(register_kprobe);
1217
1218 /*
1219 * Unregister a kprobe without a scheduler synchronization.
1220 */
1221 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1222 {
1223 struct kprobe *old_p, *list_p;
1224
1225 old_p = __get_valid_kprobe(p);
1226 if (old_p == NULL)
1227 return -EINVAL;
1228
1229 if (old_p == p ||
1230 (kprobe_aggrprobe(old_p) &&
1231 list_is_singular(&old_p->list))) {
1232 /*
1233 * Only probe on the hash list. Disarm only if kprobes are
1234 * enabled and not gone - otherwise, the breakpoint would
1235 * already have been removed. We save on flushing icache.
1236 */
1237 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1238 disarm_kprobe(old_p);
1239 hlist_del_rcu(&old_p->hlist);
1240 } else {
1241 if (p->break_handler && !kprobe_gone(p))
1242 old_p->break_handler = NULL;
1243 if (p->post_handler && !kprobe_gone(p)) {
1244 list_for_each_entry_rcu(list_p, &old_p->list, list) {
1245 if ((list_p != p) && (list_p->post_handler))
1246 goto noclean;
1247 }
1248 old_p->post_handler = NULL;
1249 }
1250 noclean:
1251 list_del_rcu(&p->list);
1252 if (!kprobe_disabled(old_p)) {
1253 try_to_disable_aggr_kprobe(old_p);
1254 if (!kprobes_all_disarmed) {
1255 if (kprobe_disabled(old_p))
1256 disarm_kprobe(old_p);
1257 else
1258 /* Try to optimize this probe again */
1259 optimize_kprobe(old_p);
1260 }
1261 }
1262 }
1263 return 0;
1264 }
1265
1266 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1267 {
1268 struct kprobe *old_p;
1269
1270 if (list_empty(&p->list))
1271 arch_remove_kprobe(p);
1272 else if (list_is_singular(&p->list)) {
1273 /* "p" is the last child of an aggr_kprobe */
1274 old_p = list_entry(p->list.next, struct kprobe, list);
1275 list_del(&p->list);
1276 arch_remove_kprobe(old_p);
1277 free_aggr_kprobe(old_p);
1278 }
1279 }
1280
1281 int __kprobes register_kprobes(struct kprobe **kps, int num)
1282 {
1283 int i, ret = 0;
1284
1285 if (num <= 0)
1286 return -EINVAL;
1287 for (i = 0; i < num; i++) {
1288 ret = register_kprobe(kps[i]);
1289 if (ret < 0) {
1290 if (i > 0)
1291 unregister_kprobes(kps, i);
1292 break;
1293 }
1294 }
1295 return ret;
1296 }
1297 EXPORT_SYMBOL_GPL(register_kprobes);
1298
1299 void __kprobes unregister_kprobe(struct kprobe *p)
1300 {
1301 unregister_kprobes(&p, 1);
1302 }
1303 EXPORT_SYMBOL_GPL(unregister_kprobe);
1304
1305 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1306 {
1307 int i;
1308
1309 if (num <= 0)
1310 return;
1311 mutex_lock(&kprobe_mutex);
1312 for (i = 0; i < num; i++)
1313 if (__unregister_kprobe_top(kps[i]) < 0)
1314 kps[i]->addr = NULL;
1315 mutex_unlock(&kprobe_mutex);
1316
1317 synchronize_sched();
1318 for (i = 0; i < num; i++)
1319 if (kps[i]->addr)
1320 __unregister_kprobe_bottom(kps[i]);
1321 }
1322 EXPORT_SYMBOL_GPL(unregister_kprobes);
1323
1324 static struct notifier_block kprobe_exceptions_nb = {
1325 .notifier_call = kprobe_exceptions_notify,
1326 .priority = 0x7fffffff /* we need to be notified first */
1327 };
1328
1329 unsigned long __weak arch_deref_entry_point(void *entry)
1330 {
1331 return (unsigned long)entry;
1332 }
1333
1334 int __kprobes register_jprobes(struct jprobe **jps, int num)
1335 {
1336 struct jprobe *jp;
1337 int ret = 0, i;
1338
1339 if (num <= 0)
1340 return -EINVAL;
1341 for (i = 0; i < num; i++) {
1342 unsigned long addr;
1343 jp = jps[i];
1344 addr = arch_deref_entry_point(jp->entry);
1345
1346 if (!kernel_text_address(addr))
1347 ret = -EINVAL;
1348 else {
1349 /* Todo: Verify probepoint is a function entry point */
1350 jp->kp.pre_handler = setjmp_pre_handler;
1351 jp->kp.break_handler = longjmp_break_handler;
1352 ret = register_kprobe(&jp->kp);
1353 }
1354 if (ret < 0) {
1355 if (i > 0)
1356 unregister_jprobes(jps, i);
1357 break;
1358 }
1359 }
1360 return ret;
1361 }
1362 EXPORT_SYMBOL_GPL(register_jprobes);
1363
1364 int __kprobes register_jprobe(struct jprobe *jp)
1365 {
1366 return register_jprobes(&jp, 1);
1367 }
1368 EXPORT_SYMBOL_GPL(register_jprobe);
1369
1370 void __kprobes unregister_jprobe(struct jprobe *jp)
1371 {
1372 unregister_jprobes(&jp, 1);
1373 }
1374 EXPORT_SYMBOL_GPL(unregister_jprobe);
1375
1376 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1377 {
1378 int i;
1379
1380 if (num <= 0)
1381 return;
1382 mutex_lock(&kprobe_mutex);
1383 for (i = 0; i < num; i++)
1384 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1385 jps[i]->kp.addr = NULL;
1386 mutex_unlock(&kprobe_mutex);
1387
1388 synchronize_sched();
1389 for (i = 0; i < num; i++) {
1390 if (jps[i]->kp.addr)
1391 __unregister_kprobe_bottom(&jps[i]->kp);
1392 }
1393 }
1394 EXPORT_SYMBOL_GPL(unregister_jprobes);
1395
1396 #ifdef CONFIG_KRETPROBES
1397 /*
1398 * This kprobe pre_handler is registered with every kretprobe. When probe
1399 * hits it will set up the return probe.
1400 */
1401 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1402 struct pt_regs *regs)
1403 {
1404 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1405 unsigned long hash, flags = 0;
1406 struct kretprobe_instance *ri;
1407
1408 /*TODO: consider to only swap the RA after the last pre_handler fired */
1409 hash = hash_ptr(current, KPROBE_HASH_BITS);
1410 spin_lock_irqsave(&rp->lock, flags);
1411 if (!hlist_empty(&rp->free_instances)) {
1412 ri = hlist_entry(rp->free_instances.first,
1413 struct kretprobe_instance, hlist);
1414 hlist_del(&ri->hlist);
1415 spin_unlock_irqrestore(&rp->lock, flags);
1416
1417 ri->rp = rp;
1418 ri->task = current;
1419
1420 if (rp->entry_handler && rp->entry_handler(ri, regs))
1421 return 0;
1422
1423 arch_prepare_kretprobe(ri, regs);
1424
1425 /* XXX(hch): why is there no hlist_move_head? */
1426 INIT_HLIST_NODE(&ri->hlist);
1427 kretprobe_table_lock(hash, &flags);
1428 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1429 kretprobe_table_unlock(hash, &flags);
1430 } else {
1431 rp->nmissed++;
1432 spin_unlock_irqrestore(&rp->lock, flags);
1433 }
1434 return 0;
1435 }
1436
1437 int __kprobes register_kretprobe(struct kretprobe *rp)
1438 {
1439 int ret = 0;
1440 struct kretprobe_instance *inst;
1441 int i;
1442 void *addr;
1443
1444 if (kretprobe_blacklist_size) {
1445 addr = kprobe_addr(&rp->kp);
1446 if (!addr)
1447 return -EINVAL;
1448
1449 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1450 if (kretprobe_blacklist[i].addr == addr)
1451 return -EINVAL;
1452 }
1453 }
1454
1455 rp->kp.pre_handler = pre_handler_kretprobe;
1456 rp->kp.post_handler = NULL;
1457 rp->kp.fault_handler = NULL;
1458 rp->kp.break_handler = NULL;
1459
1460 /* Pre-allocate memory for max kretprobe instances */
1461 if (rp->maxactive <= 0) {
1462 #ifdef CONFIG_PREEMPT
1463 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1464 #else
1465 rp->maxactive = num_possible_cpus();
1466 #endif
1467 }
1468 spin_lock_init(&rp->lock);
1469 INIT_HLIST_HEAD(&rp->free_instances);
1470 for (i = 0; i < rp->maxactive; i++) {
1471 inst = kmalloc(sizeof(struct kretprobe_instance) +
1472 rp->data_size, GFP_KERNEL);
1473 if (inst == NULL) {
1474 free_rp_inst(rp);
1475 return -ENOMEM;
1476 }
1477 INIT_HLIST_NODE(&inst->hlist);
1478 hlist_add_head(&inst->hlist, &rp->free_instances);
1479 }
1480
1481 rp->nmissed = 0;
1482 /* Establish function entry probe point */
1483 ret = register_kprobe(&rp->kp);
1484 if (ret != 0)
1485 free_rp_inst(rp);
1486 return ret;
1487 }
1488 EXPORT_SYMBOL_GPL(register_kretprobe);
1489
1490 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1491 {
1492 int ret = 0, i;
1493
1494 if (num <= 0)
1495 return -EINVAL;
1496 for (i = 0; i < num; i++) {
1497 ret = register_kretprobe(rps[i]);
1498 if (ret < 0) {
1499 if (i > 0)
1500 unregister_kretprobes(rps, i);
1501 break;
1502 }
1503 }
1504 return ret;
1505 }
1506 EXPORT_SYMBOL_GPL(register_kretprobes);
1507
1508 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1509 {
1510 unregister_kretprobes(&rp, 1);
1511 }
1512 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1513
1514 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1515 {
1516 int i;
1517
1518 if (num <= 0)
1519 return;
1520 mutex_lock(&kprobe_mutex);
1521 for (i = 0; i < num; i++)
1522 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1523 rps[i]->kp.addr = NULL;
1524 mutex_unlock(&kprobe_mutex);
1525
1526 synchronize_sched();
1527 for (i = 0; i < num; i++) {
1528 if (rps[i]->kp.addr) {
1529 __unregister_kprobe_bottom(&rps[i]->kp);
1530 cleanup_rp_inst(rps[i]);
1531 }
1532 }
1533 }
1534 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1535
1536 #else /* CONFIG_KRETPROBES */
1537 int __kprobes register_kretprobe(struct kretprobe *rp)
1538 {
1539 return -ENOSYS;
1540 }
1541 EXPORT_SYMBOL_GPL(register_kretprobe);
1542
1543 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1544 {
1545 return -ENOSYS;
1546 }
1547 EXPORT_SYMBOL_GPL(register_kretprobes);
1548
1549 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1550 {
1551 }
1552 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1553
1554 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1555 {
1556 }
1557 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1558
1559 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1560 struct pt_regs *regs)
1561 {
1562 return 0;
1563 }
1564
1565 #endif /* CONFIG_KRETPROBES */
1566
1567 /* Set the kprobe gone and remove its instruction buffer. */
1568 static void __kprobes kill_kprobe(struct kprobe *p)
1569 {
1570 struct kprobe *kp;
1571
1572 p->flags |= KPROBE_FLAG_GONE;
1573 if (kprobe_aggrprobe(p)) {
1574 /*
1575 * If this is an aggr_kprobe, we have to list all the
1576 * chained probes and mark them GONE.
1577 */
1578 list_for_each_entry_rcu(kp, &p->list, list)
1579 kp->flags |= KPROBE_FLAG_GONE;
1580 p->post_handler = NULL;
1581 p->break_handler = NULL;
1582 kill_optimized_kprobe(p);
1583 }
1584 /*
1585 * Here, we can remove insn_slot safely, because no thread calls
1586 * the original probed function (which will be freed soon) any more.
1587 */
1588 arch_remove_kprobe(p);
1589 }
1590
1591 /* Disable one kprobe */
1592 int __kprobes disable_kprobe(struct kprobe *kp)
1593 {
1594 int ret = 0;
1595 struct kprobe *p;
1596
1597 mutex_lock(&kprobe_mutex);
1598
1599 /* Check whether specified probe is valid. */
1600 p = __get_valid_kprobe(kp);
1601 if (unlikely(p == NULL)) {
1602 ret = -EINVAL;
1603 goto out;
1604 }
1605
1606 /* If the probe is already disabled (or gone), just return */
1607 if (kprobe_disabled(kp))
1608 goto out;
1609
1610 kp->flags |= KPROBE_FLAG_DISABLED;
1611 if (p != kp)
1612 /* When kp != p, p is always enabled. */
1613 try_to_disable_aggr_kprobe(p);
1614
1615 if (!kprobes_all_disarmed && kprobe_disabled(p))
1616 disarm_kprobe(p);
1617 out:
1618 mutex_unlock(&kprobe_mutex);
1619 return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(disable_kprobe);
1622
1623 /* Enable one kprobe */
1624 int __kprobes enable_kprobe(struct kprobe *kp)
1625 {
1626 int ret = 0;
1627 struct kprobe *p;
1628
1629 mutex_lock(&kprobe_mutex);
1630
1631 /* Check whether specified probe is valid. */
1632 p = __get_valid_kprobe(kp);
1633 if (unlikely(p == NULL)) {
1634 ret = -EINVAL;
1635 goto out;
1636 }
1637
1638 if (kprobe_gone(kp)) {
1639 /* This kprobe has gone, we couldn't enable it. */
1640 ret = -EINVAL;
1641 goto out;
1642 }
1643
1644 if (p != kp)
1645 kp->flags &= ~KPROBE_FLAG_DISABLED;
1646
1647 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1648 p->flags &= ~KPROBE_FLAG_DISABLED;
1649 arm_kprobe(p);
1650 }
1651 out:
1652 mutex_unlock(&kprobe_mutex);
1653 return ret;
1654 }
1655 EXPORT_SYMBOL_GPL(enable_kprobe);
1656
1657 void __kprobes dump_kprobe(struct kprobe *kp)
1658 {
1659 printk(KERN_WARNING "Dumping kprobe:\n");
1660 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1661 kp->symbol_name, kp->addr, kp->offset);
1662 }
1663
1664 /* Module notifier call back, checking kprobes on the module */
1665 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1666 unsigned long val, void *data)
1667 {
1668 struct module *mod = data;
1669 struct hlist_head *head;
1670 struct hlist_node *node;
1671 struct kprobe *p;
1672 unsigned int i;
1673 int checkcore = (val == MODULE_STATE_GOING);
1674
1675 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1676 return NOTIFY_DONE;
1677
1678 /*
1679 * When MODULE_STATE_GOING was notified, both of module .text and
1680 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1681 * notified, only .init.text section would be freed. We need to
1682 * disable kprobes which have been inserted in the sections.
1683 */
1684 mutex_lock(&kprobe_mutex);
1685 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1686 head = &kprobe_table[i];
1687 hlist_for_each_entry_rcu(p, node, head, hlist)
1688 if (within_module_init((unsigned long)p->addr, mod) ||
1689 (checkcore &&
1690 within_module_core((unsigned long)p->addr, mod))) {
1691 /*
1692 * The vaddr this probe is installed will soon
1693 * be vfreed buy not synced to disk. Hence,
1694 * disarming the breakpoint isn't needed.
1695 */
1696 kill_kprobe(p);
1697 }
1698 }
1699 mutex_unlock(&kprobe_mutex);
1700 return NOTIFY_DONE;
1701 }
1702
1703 static struct notifier_block kprobe_module_nb = {
1704 .notifier_call = kprobes_module_callback,
1705 .priority = 0
1706 };
1707
1708 static int __init init_kprobes(void)
1709 {
1710 int i, err = 0;
1711 unsigned long offset = 0, size = 0;
1712 char *modname, namebuf[128];
1713 const char *symbol_name;
1714 void *addr;
1715 struct kprobe_blackpoint *kb;
1716
1717 /* FIXME allocate the probe table, currently defined statically */
1718 /* initialize all list heads */
1719 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1720 INIT_HLIST_HEAD(&kprobe_table[i]);
1721 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1722 spin_lock_init(&(kretprobe_table_locks[i].lock));
1723 }
1724
1725 /*
1726 * Lookup and populate the kprobe_blacklist.
1727 *
1728 * Unlike the kretprobe blacklist, we'll need to determine
1729 * the range of addresses that belong to the said functions,
1730 * since a kprobe need not necessarily be at the beginning
1731 * of a function.
1732 */
1733 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1734 kprobe_lookup_name(kb->name, addr);
1735 if (!addr)
1736 continue;
1737
1738 kb->start_addr = (unsigned long)addr;
1739 symbol_name = kallsyms_lookup(kb->start_addr,
1740 &size, &offset, &modname, namebuf);
1741 if (!symbol_name)
1742 kb->range = 0;
1743 else
1744 kb->range = size;
1745 }
1746
1747 if (kretprobe_blacklist_size) {
1748 /* lookup the function address from its name */
1749 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1750 kprobe_lookup_name(kretprobe_blacklist[i].name,
1751 kretprobe_blacklist[i].addr);
1752 if (!kretprobe_blacklist[i].addr)
1753 printk("kretprobe: lookup failed: %s\n",
1754 kretprobe_blacklist[i].name);
1755 }
1756 }
1757
1758 #if defined(CONFIG_OPTPROBES)
1759 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1760 /* Init kprobe_optinsn_slots */
1761 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1762 #endif
1763 /* By default, kprobes can be optimized */
1764 kprobes_allow_optimization = true;
1765 #endif
1766
1767 /* By default, kprobes are armed */
1768 kprobes_all_disarmed = false;
1769
1770 err = arch_init_kprobes();
1771 if (!err)
1772 err = register_die_notifier(&kprobe_exceptions_nb);
1773 if (!err)
1774 err = register_module_notifier(&kprobe_module_nb);
1775
1776 kprobes_initialized = (err == 0);
1777
1778 if (!err)
1779 init_test_probes();
1780 return err;
1781 }
1782
1783 #ifdef CONFIG_DEBUG_FS
1784 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1785 const char *sym, int offset, char *modname, struct kprobe *pp)
1786 {
1787 char *kprobe_type;
1788
1789 if (p->pre_handler == pre_handler_kretprobe)
1790 kprobe_type = "r";
1791 else if (p->pre_handler == setjmp_pre_handler)
1792 kprobe_type = "j";
1793 else
1794 kprobe_type = "k";
1795
1796 if (sym)
1797 seq_printf(pi, "%p %s %s+0x%x %s ",
1798 p->addr, kprobe_type, sym, offset,
1799 (modname ? modname : " "));
1800 else
1801 seq_printf(pi, "%p %s %p ",
1802 p->addr, kprobe_type, p->addr);
1803
1804 if (!pp)
1805 pp = p;
1806 seq_printf(pi, "%s%s%s\n",
1807 (kprobe_gone(p) ? "[GONE]" : ""),
1808 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
1809 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1810 }
1811
1812 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1813 {
1814 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1815 }
1816
1817 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1818 {
1819 (*pos)++;
1820 if (*pos >= KPROBE_TABLE_SIZE)
1821 return NULL;
1822 return pos;
1823 }
1824
1825 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1826 {
1827 /* Nothing to do */
1828 }
1829
1830 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1831 {
1832 struct hlist_head *head;
1833 struct hlist_node *node;
1834 struct kprobe *p, *kp;
1835 const char *sym = NULL;
1836 unsigned int i = *(loff_t *) v;
1837 unsigned long offset = 0;
1838 char *modname, namebuf[128];
1839
1840 head = &kprobe_table[i];
1841 preempt_disable();
1842 hlist_for_each_entry_rcu(p, node, head, hlist) {
1843 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1844 &offset, &modname, namebuf);
1845 if (kprobe_aggrprobe(p)) {
1846 list_for_each_entry_rcu(kp, &p->list, list)
1847 report_probe(pi, kp, sym, offset, modname, p);
1848 } else
1849 report_probe(pi, p, sym, offset, modname, NULL);
1850 }
1851 preempt_enable();
1852 return 0;
1853 }
1854
1855 static const struct seq_operations kprobes_seq_ops = {
1856 .start = kprobe_seq_start,
1857 .next = kprobe_seq_next,
1858 .stop = kprobe_seq_stop,
1859 .show = show_kprobe_addr
1860 };
1861
1862 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1863 {
1864 return seq_open(filp, &kprobes_seq_ops);
1865 }
1866
1867 static const struct file_operations debugfs_kprobes_operations = {
1868 .open = kprobes_open,
1869 .read = seq_read,
1870 .llseek = seq_lseek,
1871 .release = seq_release,
1872 };
1873
1874 static void __kprobes arm_all_kprobes(void)
1875 {
1876 struct hlist_head *head;
1877 struct hlist_node *node;
1878 struct kprobe *p;
1879 unsigned int i;
1880
1881 mutex_lock(&kprobe_mutex);
1882
1883 /* If kprobes are armed, just return */
1884 if (!kprobes_all_disarmed)
1885 goto already_enabled;
1886
1887 /* Arming kprobes doesn't optimize kprobe itself */
1888 mutex_lock(&text_mutex);
1889 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1890 head = &kprobe_table[i];
1891 hlist_for_each_entry_rcu(p, node, head, hlist)
1892 if (!kprobe_disabled(p))
1893 __arm_kprobe(p);
1894 }
1895 mutex_unlock(&text_mutex);
1896
1897 kprobes_all_disarmed = false;
1898 printk(KERN_INFO "Kprobes globally enabled\n");
1899
1900 already_enabled:
1901 mutex_unlock(&kprobe_mutex);
1902 return;
1903 }
1904
1905 static void __kprobes disarm_all_kprobes(void)
1906 {
1907 struct hlist_head *head;
1908 struct hlist_node *node;
1909 struct kprobe *p;
1910 unsigned int i;
1911
1912 mutex_lock(&kprobe_mutex);
1913
1914 /* If kprobes are already disarmed, just return */
1915 if (kprobes_all_disarmed)
1916 goto already_disabled;
1917
1918 kprobes_all_disarmed = true;
1919 printk(KERN_INFO "Kprobes globally disabled\n");
1920
1921 /*
1922 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1923 * because disarming may also unoptimize kprobes.
1924 */
1925 get_online_cpus();
1926 mutex_lock(&text_mutex);
1927 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1928 head = &kprobe_table[i];
1929 hlist_for_each_entry_rcu(p, node, head, hlist) {
1930 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1931 __disarm_kprobe(p);
1932 }
1933 }
1934
1935 mutex_unlock(&text_mutex);
1936 put_online_cpus();
1937 mutex_unlock(&kprobe_mutex);
1938 /* Allow all currently running kprobes to complete */
1939 synchronize_sched();
1940 return;
1941
1942 already_disabled:
1943 mutex_unlock(&kprobe_mutex);
1944 return;
1945 }
1946
1947 /*
1948 * XXX: The debugfs bool file interface doesn't allow for callbacks
1949 * when the bool state is switched. We can reuse that facility when
1950 * available
1951 */
1952 static ssize_t read_enabled_file_bool(struct file *file,
1953 char __user *user_buf, size_t count, loff_t *ppos)
1954 {
1955 char buf[3];
1956
1957 if (!kprobes_all_disarmed)
1958 buf[0] = '1';
1959 else
1960 buf[0] = '0';
1961 buf[1] = '\n';
1962 buf[2] = 0x00;
1963 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1964 }
1965
1966 static ssize_t write_enabled_file_bool(struct file *file,
1967 const char __user *user_buf, size_t count, loff_t *ppos)
1968 {
1969 char buf[32];
1970 int buf_size;
1971
1972 buf_size = min(count, (sizeof(buf)-1));
1973 if (copy_from_user(buf, user_buf, buf_size))
1974 return -EFAULT;
1975
1976 switch (buf[0]) {
1977 case 'y':
1978 case 'Y':
1979 case '1':
1980 arm_all_kprobes();
1981 break;
1982 case 'n':
1983 case 'N':
1984 case '0':
1985 disarm_all_kprobes();
1986 break;
1987 }
1988
1989 return count;
1990 }
1991
1992 static const struct file_operations fops_kp = {
1993 .read = read_enabled_file_bool,
1994 .write = write_enabled_file_bool,
1995 };
1996
1997 static int __kprobes debugfs_kprobe_init(void)
1998 {
1999 struct dentry *dir, *file;
2000 unsigned int value = 1;
2001
2002 dir = debugfs_create_dir("kprobes", NULL);
2003 if (!dir)
2004 return -ENOMEM;
2005
2006 file = debugfs_create_file("list", 0444, dir, NULL,
2007 &debugfs_kprobes_operations);
2008 if (!file) {
2009 debugfs_remove(dir);
2010 return -ENOMEM;
2011 }
2012
2013 file = debugfs_create_file("enabled", 0600, dir,
2014 &value, &fops_kp);
2015 if (!file) {
2016 debugfs_remove(dir);
2017 return -ENOMEM;
2018 }
2019
2020 return 0;
2021 }
2022
2023 late_initcall(debugfs_kprobe_init);
2024 #endif /* CONFIG_DEBUG_FS */
2025
2026 module_init(init_kprobes);
2027
2028 /* defined in arch/.../kernel/kprobes.c */
2029 EXPORT_SYMBOL_GPL(jprobe_return);