Merge branch 'fbdev-3.10-fixes' of git://gitorious.org/linux-omap-dss2/linux into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
50
51 #include <asm/uaccess.h>
52
53 #include <trace/events/timer.h>
54
55 /*
56 * The timer bases:
57 *
58 * There are more clockids then hrtimer bases. Thus, we index
59 * into the timer bases by the hrtimer_base_type enum. When trying
60 * to reach a base using a clockid, hrtimer_clockid_to_base()
61 * is used to convert from clockid to the proper hrtimer_base_type.
62 */
63 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
64 {
65
66 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
67 .clock_base =
68 {
69 {
70 .index = HRTIMER_BASE_MONOTONIC,
71 .clockid = CLOCK_MONOTONIC,
72 .get_time = &ktime_get,
73 .resolution = KTIME_LOW_RES,
74 },
75 {
76 .index = HRTIMER_BASE_REALTIME,
77 .clockid = CLOCK_REALTIME,
78 .get_time = &ktime_get_real,
79 .resolution = KTIME_LOW_RES,
80 },
81 {
82 .index = HRTIMER_BASE_BOOTTIME,
83 .clockid = CLOCK_BOOTTIME,
84 .get_time = &ktime_get_boottime,
85 .resolution = KTIME_LOW_RES,
86 },
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
91 .resolution = KTIME_LOW_RES,
92 },
93 }
94 };
95
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
101 };
102
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 return hrtimer_clock_to_base_table[clock_id];
106 }
107
108
109 /*
110 * Get the coarse grained time at the softirq based on xtime and
111 * wall_to_monotonic.
112 */
113 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
114 {
115 ktime_t xtim, mono, boot;
116 struct timespec xts, tom, slp;
117 s32 tai_offset;
118
119 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
120 tai_offset = timekeeping_get_tai_offset();
121
122 xtim = timespec_to_ktime(xts);
123 mono = ktime_add(xtim, timespec_to_ktime(tom));
124 boot = ktime_add(mono, timespec_to_ktime(slp));
125 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
126 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
127 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
128 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
129 ktime_add(xtim, ktime_set(tai_offset, 0));
130 }
131
132 /*
133 * Functions and macros which are different for UP/SMP systems are kept in a
134 * single place
135 */
136 #ifdef CONFIG_SMP
137
138 /*
139 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
140 * means that all timers which are tied to this base via timer->base are
141 * locked, and the base itself is locked too.
142 *
143 * So __run_timers/migrate_timers can safely modify all timers which could
144 * be found on the lists/queues.
145 *
146 * When the timer's base is locked, and the timer removed from list, it is
147 * possible to set timer->base = NULL and drop the lock: the timer remains
148 * locked.
149 */
150 static
151 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
152 unsigned long *flags)
153 {
154 struct hrtimer_clock_base *base;
155
156 for (;;) {
157 base = timer->base;
158 if (likely(base != NULL)) {
159 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
160 if (likely(base == timer->base))
161 return base;
162 /* The timer has migrated to another CPU: */
163 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
164 }
165 cpu_relax();
166 }
167 }
168
169
170 /*
171 * Get the preferred target CPU for NOHZ
172 */
173 static int hrtimer_get_target(int this_cpu, int pinned)
174 {
175 #ifdef CONFIG_NO_HZ_COMMON
176 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
177 return get_nohz_timer_target();
178 #endif
179 return this_cpu;
180 }
181
182 /*
183 * With HIGHRES=y we do not migrate the timer when it is expiring
184 * before the next event on the target cpu because we cannot reprogram
185 * the target cpu hardware and we would cause it to fire late.
186 *
187 * Called with cpu_base->lock of target cpu held.
188 */
189 static int
190 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
191 {
192 #ifdef CONFIG_HIGH_RES_TIMERS
193 ktime_t expires;
194
195 if (!new_base->cpu_base->hres_active)
196 return 0;
197
198 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
199 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
200 #else
201 return 0;
202 #endif
203 }
204
205 /*
206 * Switch the timer base to the current CPU when possible.
207 */
208 static inline struct hrtimer_clock_base *
209 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
210 int pinned)
211 {
212 struct hrtimer_clock_base *new_base;
213 struct hrtimer_cpu_base *new_cpu_base;
214 int this_cpu = smp_processor_id();
215 int cpu = hrtimer_get_target(this_cpu, pinned);
216 int basenum = base->index;
217
218 again:
219 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
220 new_base = &new_cpu_base->clock_base[basenum];
221
222 if (base != new_base) {
223 /*
224 * We are trying to move timer to new_base.
225 * However we can't change timer's base while it is running,
226 * so we keep it on the same CPU. No hassle vs. reprogramming
227 * the event source in the high resolution case. The softirq
228 * code will take care of this when the timer function has
229 * completed. There is no conflict as we hold the lock until
230 * the timer is enqueued.
231 */
232 if (unlikely(hrtimer_callback_running(timer)))
233 return base;
234
235 /* See the comment in lock_timer_base() */
236 timer->base = NULL;
237 raw_spin_unlock(&base->cpu_base->lock);
238 raw_spin_lock(&new_base->cpu_base->lock);
239
240 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
241 cpu = this_cpu;
242 raw_spin_unlock(&new_base->cpu_base->lock);
243 raw_spin_lock(&base->cpu_base->lock);
244 timer->base = base;
245 goto again;
246 }
247 timer->base = new_base;
248 }
249 return new_base;
250 }
251
252 #else /* CONFIG_SMP */
253
254 static inline struct hrtimer_clock_base *
255 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
256 {
257 struct hrtimer_clock_base *base = timer->base;
258
259 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
260
261 return base;
262 }
263
264 # define switch_hrtimer_base(t, b, p) (b)
265
266 #endif /* !CONFIG_SMP */
267
268 /*
269 * Functions for the union type storage format of ktime_t which are
270 * too large for inlining:
271 */
272 #if BITS_PER_LONG < 64
273 # ifndef CONFIG_KTIME_SCALAR
274 /**
275 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
276 * @kt: addend
277 * @nsec: the scalar nsec value to add
278 *
279 * Returns the sum of kt and nsec in ktime_t format
280 */
281 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
282 {
283 ktime_t tmp;
284
285 if (likely(nsec < NSEC_PER_SEC)) {
286 tmp.tv64 = nsec;
287 } else {
288 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
289
290 /* Make sure nsec fits into long */
291 if (unlikely(nsec > KTIME_SEC_MAX))
292 return (ktime_t){ .tv64 = KTIME_MAX };
293
294 tmp = ktime_set((long)nsec, rem);
295 }
296
297 return ktime_add(kt, tmp);
298 }
299
300 EXPORT_SYMBOL_GPL(ktime_add_ns);
301
302 /**
303 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
304 * @kt: minuend
305 * @nsec: the scalar nsec value to subtract
306 *
307 * Returns the subtraction of @nsec from @kt in ktime_t format
308 */
309 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
310 {
311 ktime_t tmp;
312
313 if (likely(nsec < NSEC_PER_SEC)) {
314 tmp.tv64 = nsec;
315 } else {
316 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
317
318 tmp = ktime_set((long)nsec, rem);
319 }
320
321 return ktime_sub(kt, tmp);
322 }
323
324 EXPORT_SYMBOL_GPL(ktime_sub_ns);
325 # endif /* !CONFIG_KTIME_SCALAR */
326
327 /*
328 * Divide a ktime value by a nanosecond value
329 */
330 u64 ktime_divns(const ktime_t kt, s64 div)
331 {
332 u64 dclc;
333 int sft = 0;
334
335 dclc = ktime_to_ns(kt);
336 /* Make sure the divisor is less than 2^32: */
337 while (div >> 32) {
338 sft++;
339 div >>= 1;
340 }
341 dclc >>= sft;
342 do_div(dclc, (unsigned long) div);
343
344 return dclc;
345 }
346 #endif /* BITS_PER_LONG >= 64 */
347
348 /*
349 * Add two ktime values and do a safety check for overflow:
350 */
351 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
352 {
353 ktime_t res = ktime_add(lhs, rhs);
354
355 /*
356 * We use KTIME_SEC_MAX here, the maximum timeout which we can
357 * return to user space in a timespec:
358 */
359 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
360 res = ktime_set(KTIME_SEC_MAX, 0);
361
362 return res;
363 }
364
365 EXPORT_SYMBOL_GPL(ktime_add_safe);
366
367 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
368
369 static struct debug_obj_descr hrtimer_debug_descr;
370
371 static void *hrtimer_debug_hint(void *addr)
372 {
373 return ((struct hrtimer *) addr)->function;
374 }
375
376 /*
377 * fixup_init is called when:
378 * - an active object is initialized
379 */
380 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
381 {
382 struct hrtimer *timer = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_init(timer, &hrtimer_debug_descr);
388 return 1;
389 default:
390 return 0;
391 }
392 }
393
394 /*
395 * fixup_activate is called when:
396 * - an active object is activated
397 * - an unknown object is activated (might be a statically initialized object)
398 */
399 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
400 {
401 switch (state) {
402
403 case ODEBUG_STATE_NOTAVAILABLE:
404 WARN_ON_ONCE(1);
405 return 0;
406
407 case ODEBUG_STATE_ACTIVE:
408 WARN_ON(1);
409
410 default:
411 return 0;
412 }
413 }
414
415 /*
416 * fixup_free is called when:
417 * - an active object is freed
418 */
419 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
420 {
421 struct hrtimer *timer = addr;
422
423 switch (state) {
424 case ODEBUG_STATE_ACTIVE:
425 hrtimer_cancel(timer);
426 debug_object_free(timer, &hrtimer_debug_descr);
427 return 1;
428 default:
429 return 0;
430 }
431 }
432
433 static struct debug_obj_descr hrtimer_debug_descr = {
434 .name = "hrtimer",
435 .debug_hint = hrtimer_debug_hint,
436 .fixup_init = hrtimer_fixup_init,
437 .fixup_activate = hrtimer_fixup_activate,
438 .fixup_free = hrtimer_fixup_free,
439 };
440
441 static inline void debug_hrtimer_init(struct hrtimer *timer)
442 {
443 debug_object_init(timer, &hrtimer_debug_descr);
444 }
445
446 static inline void debug_hrtimer_activate(struct hrtimer *timer)
447 {
448 debug_object_activate(timer, &hrtimer_debug_descr);
449 }
450
451 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
452 {
453 debug_object_deactivate(timer, &hrtimer_debug_descr);
454 }
455
456 static inline void debug_hrtimer_free(struct hrtimer *timer)
457 {
458 debug_object_free(timer, &hrtimer_debug_descr);
459 }
460
461 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
462 enum hrtimer_mode mode);
463
464 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
465 enum hrtimer_mode mode)
466 {
467 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
468 __hrtimer_init(timer, clock_id, mode);
469 }
470 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
471
472 void destroy_hrtimer_on_stack(struct hrtimer *timer)
473 {
474 debug_object_free(timer, &hrtimer_debug_descr);
475 }
476
477 #else
478 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
479 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
480 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
481 #endif
482
483 static inline void
484 debug_init(struct hrtimer *timer, clockid_t clockid,
485 enum hrtimer_mode mode)
486 {
487 debug_hrtimer_init(timer);
488 trace_hrtimer_init(timer, clockid, mode);
489 }
490
491 static inline void debug_activate(struct hrtimer *timer)
492 {
493 debug_hrtimer_activate(timer);
494 trace_hrtimer_start(timer);
495 }
496
497 static inline void debug_deactivate(struct hrtimer *timer)
498 {
499 debug_hrtimer_deactivate(timer);
500 trace_hrtimer_cancel(timer);
501 }
502
503 /* High resolution timer related functions */
504 #ifdef CONFIG_HIGH_RES_TIMERS
505
506 /*
507 * High resolution timer enabled ?
508 */
509 static int hrtimer_hres_enabled __read_mostly = 1;
510
511 /*
512 * Enable / Disable high resolution mode
513 */
514 static int __init setup_hrtimer_hres(char *str)
515 {
516 if (!strcmp(str, "off"))
517 hrtimer_hres_enabled = 0;
518 else if (!strcmp(str, "on"))
519 hrtimer_hres_enabled = 1;
520 else
521 return 0;
522 return 1;
523 }
524
525 __setup("highres=", setup_hrtimer_hres);
526
527 /*
528 * hrtimer_high_res_enabled - query, if the highres mode is enabled
529 */
530 static inline int hrtimer_is_hres_enabled(void)
531 {
532 return hrtimer_hres_enabled;
533 }
534
535 /*
536 * Is the high resolution mode active ?
537 */
538 static inline int hrtimer_hres_active(void)
539 {
540 return __this_cpu_read(hrtimer_bases.hres_active);
541 }
542
543 /*
544 * Reprogram the event source with checking both queues for the
545 * next event
546 * Called with interrupts disabled and base->lock held
547 */
548 static void
549 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
550 {
551 int i;
552 struct hrtimer_clock_base *base = cpu_base->clock_base;
553 ktime_t expires, expires_next;
554
555 expires_next.tv64 = KTIME_MAX;
556
557 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
558 struct hrtimer *timer;
559 struct timerqueue_node *next;
560
561 next = timerqueue_getnext(&base->active);
562 if (!next)
563 continue;
564 timer = container_of(next, struct hrtimer, node);
565
566 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
567 /*
568 * clock_was_set() has changed base->offset so the
569 * result might be negative. Fix it up to prevent a
570 * false positive in clockevents_program_event()
571 */
572 if (expires.tv64 < 0)
573 expires.tv64 = 0;
574 if (expires.tv64 < expires_next.tv64)
575 expires_next = expires;
576 }
577
578 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
579 return;
580
581 cpu_base->expires_next.tv64 = expires_next.tv64;
582
583 if (cpu_base->expires_next.tv64 != KTIME_MAX)
584 tick_program_event(cpu_base->expires_next, 1);
585 }
586
587 /*
588 * Shared reprogramming for clock_realtime and clock_monotonic
589 *
590 * When a timer is enqueued and expires earlier than the already enqueued
591 * timers, we have to check, whether it expires earlier than the timer for
592 * which the clock event device was armed.
593 *
594 * Called with interrupts disabled and base->cpu_base.lock held
595 */
596 static int hrtimer_reprogram(struct hrtimer *timer,
597 struct hrtimer_clock_base *base)
598 {
599 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
600 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
601 int res;
602
603 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604
605 /*
606 * When the callback is running, we do not reprogram the clock event
607 * device. The timer callback is either running on a different CPU or
608 * the callback is executed in the hrtimer_interrupt context. The
609 * reprogramming is handled either by the softirq, which called the
610 * callback or at the end of the hrtimer_interrupt.
611 */
612 if (hrtimer_callback_running(timer))
613 return 0;
614
615 /*
616 * CLOCK_REALTIME timer might be requested with an absolute
617 * expiry time which is less than base->offset. Nothing wrong
618 * about that, just avoid to call into the tick code, which
619 * has now objections against negative expiry values.
620 */
621 if (expires.tv64 < 0)
622 return -ETIME;
623
624 if (expires.tv64 >= cpu_base->expires_next.tv64)
625 return 0;
626
627 /*
628 * If a hang was detected in the last timer interrupt then we
629 * do not schedule a timer which is earlier than the expiry
630 * which we enforced in the hang detection. We want the system
631 * to make progress.
632 */
633 if (cpu_base->hang_detected)
634 return 0;
635
636 /*
637 * Clockevents returns -ETIME, when the event was in the past.
638 */
639 res = tick_program_event(expires, 0);
640 if (!IS_ERR_VALUE(res))
641 cpu_base->expires_next = expires;
642 return res;
643 }
644
645 /*
646 * Initialize the high resolution related parts of cpu_base
647 */
648 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
649 {
650 base->expires_next.tv64 = KTIME_MAX;
651 base->hres_active = 0;
652 }
653
654 /*
655 * When High resolution timers are active, try to reprogram. Note, that in case
656 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
657 * check happens. The timer gets enqueued into the rbtree. The reprogramming
658 * and expiry check is done in the hrtimer_interrupt or in the softirq.
659 */
660 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
661 struct hrtimer_clock_base *base)
662 {
663 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
664 }
665
666 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
667 {
668 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
669 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
670 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
671
672 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
673 }
674
675 /*
676 * Retrigger next event is called after clock was set
677 *
678 * Called with interrupts disabled via on_each_cpu()
679 */
680 static void retrigger_next_event(void *arg)
681 {
682 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
683
684 if (!hrtimer_hres_active())
685 return;
686
687 raw_spin_lock(&base->lock);
688 hrtimer_update_base(base);
689 hrtimer_force_reprogram(base, 0);
690 raw_spin_unlock(&base->lock);
691 }
692
693 /*
694 * Switch to high resolution mode
695 */
696 static int hrtimer_switch_to_hres(void)
697 {
698 int i, cpu = smp_processor_id();
699 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
700 unsigned long flags;
701
702 if (base->hres_active)
703 return 1;
704
705 local_irq_save(flags);
706
707 if (tick_init_highres()) {
708 local_irq_restore(flags);
709 printk(KERN_WARNING "Could not switch to high resolution "
710 "mode on CPU %d\n", cpu);
711 return 0;
712 }
713 base->hres_active = 1;
714 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
715 base->clock_base[i].resolution = KTIME_HIGH_RES;
716
717 tick_setup_sched_timer();
718 /* "Retrigger" the interrupt to get things going */
719 retrigger_next_event(NULL);
720 local_irq_restore(flags);
721 return 1;
722 }
723
724 /*
725 * Called from timekeeping code to reprogramm the hrtimer interrupt
726 * device. If called from the timer interrupt context we defer it to
727 * softirq context.
728 */
729 void clock_was_set_delayed(void)
730 {
731 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
732
733 cpu_base->clock_was_set = 1;
734 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
735 }
736
737 #else
738
739 static inline int hrtimer_hres_active(void) { return 0; }
740 static inline int hrtimer_is_hres_enabled(void) { return 0; }
741 static inline int hrtimer_switch_to_hres(void) { return 0; }
742 static inline void
743 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
744 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
745 struct hrtimer_clock_base *base)
746 {
747 return 0;
748 }
749 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
750 static inline void retrigger_next_event(void *arg) { }
751
752 #endif /* CONFIG_HIGH_RES_TIMERS */
753
754 /*
755 * Clock realtime was set
756 *
757 * Change the offset of the realtime clock vs. the monotonic
758 * clock.
759 *
760 * We might have to reprogram the high resolution timer interrupt. On
761 * SMP we call the architecture specific code to retrigger _all_ high
762 * resolution timer interrupts. On UP we just disable interrupts and
763 * call the high resolution interrupt code.
764 */
765 void clock_was_set(void)
766 {
767 #ifdef CONFIG_HIGH_RES_TIMERS
768 /* Retrigger the CPU local events everywhere */
769 on_each_cpu(retrigger_next_event, NULL, 1);
770 #endif
771 timerfd_clock_was_set();
772 }
773
774 /*
775 * During resume we might have to reprogram the high resolution timer
776 * interrupt (on the local CPU):
777 */
778 void hrtimers_resume(void)
779 {
780 WARN_ONCE(!irqs_disabled(),
781 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
782
783 retrigger_next_event(NULL);
784 timerfd_clock_was_set();
785 }
786
787 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
788 {
789 #ifdef CONFIG_TIMER_STATS
790 if (timer->start_site)
791 return;
792 timer->start_site = __builtin_return_address(0);
793 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
794 timer->start_pid = current->pid;
795 #endif
796 }
797
798 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
799 {
800 #ifdef CONFIG_TIMER_STATS
801 timer->start_site = NULL;
802 #endif
803 }
804
805 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
806 {
807 #ifdef CONFIG_TIMER_STATS
808 if (likely(!timer_stats_active))
809 return;
810 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
811 timer->function, timer->start_comm, 0);
812 #endif
813 }
814
815 /*
816 * Counterpart to lock_hrtimer_base above:
817 */
818 static inline
819 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
820 {
821 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
822 }
823
824 /**
825 * hrtimer_forward - forward the timer expiry
826 * @timer: hrtimer to forward
827 * @now: forward past this time
828 * @interval: the interval to forward
829 *
830 * Forward the timer expiry so it will expire in the future.
831 * Returns the number of overruns.
832 */
833 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
834 {
835 u64 orun = 1;
836 ktime_t delta;
837
838 delta = ktime_sub(now, hrtimer_get_expires(timer));
839
840 if (delta.tv64 < 0)
841 return 0;
842
843 if (interval.tv64 < timer->base->resolution.tv64)
844 interval.tv64 = timer->base->resolution.tv64;
845
846 if (unlikely(delta.tv64 >= interval.tv64)) {
847 s64 incr = ktime_to_ns(interval);
848
849 orun = ktime_divns(delta, incr);
850 hrtimer_add_expires_ns(timer, incr * orun);
851 if (hrtimer_get_expires_tv64(timer) > now.tv64)
852 return orun;
853 /*
854 * This (and the ktime_add() below) is the
855 * correction for exact:
856 */
857 orun++;
858 }
859 hrtimer_add_expires(timer, interval);
860
861 return orun;
862 }
863 EXPORT_SYMBOL_GPL(hrtimer_forward);
864
865 /*
866 * enqueue_hrtimer - internal function to (re)start a timer
867 *
868 * The timer is inserted in expiry order. Insertion into the
869 * red black tree is O(log(n)). Must hold the base lock.
870 *
871 * Returns 1 when the new timer is the leftmost timer in the tree.
872 */
873 static int enqueue_hrtimer(struct hrtimer *timer,
874 struct hrtimer_clock_base *base)
875 {
876 debug_activate(timer);
877
878 timerqueue_add(&base->active, &timer->node);
879 base->cpu_base->active_bases |= 1 << base->index;
880
881 /*
882 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
883 * state of a possibly running callback.
884 */
885 timer->state |= HRTIMER_STATE_ENQUEUED;
886
887 return (&timer->node == base->active.next);
888 }
889
890 /*
891 * __remove_hrtimer - internal function to remove a timer
892 *
893 * Caller must hold the base lock.
894 *
895 * High resolution timer mode reprograms the clock event device when the
896 * timer is the one which expires next. The caller can disable this by setting
897 * reprogram to zero. This is useful, when the context does a reprogramming
898 * anyway (e.g. timer interrupt)
899 */
900 static void __remove_hrtimer(struct hrtimer *timer,
901 struct hrtimer_clock_base *base,
902 unsigned long newstate, int reprogram)
903 {
904 struct timerqueue_node *next_timer;
905 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
906 goto out;
907
908 next_timer = timerqueue_getnext(&base->active);
909 timerqueue_del(&base->active, &timer->node);
910 if (&timer->node == next_timer) {
911 #ifdef CONFIG_HIGH_RES_TIMERS
912 /* Reprogram the clock event device. if enabled */
913 if (reprogram && hrtimer_hres_active()) {
914 ktime_t expires;
915
916 expires = ktime_sub(hrtimer_get_expires(timer),
917 base->offset);
918 if (base->cpu_base->expires_next.tv64 == expires.tv64)
919 hrtimer_force_reprogram(base->cpu_base, 1);
920 }
921 #endif
922 }
923 if (!timerqueue_getnext(&base->active))
924 base->cpu_base->active_bases &= ~(1 << base->index);
925 out:
926 timer->state = newstate;
927 }
928
929 /*
930 * remove hrtimer, called with base lock held
931 */
932 static inline int
933 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
934 {
935 if (hrtimer_is_queued(timer)) {
936 unsigned long state;
937 int reprogram;
938
939 /*
940 * Remove the timer and force reprogramming when high
941 * resolution mode is active and the timer is on the current
942 * CPU. If we remove a timer on another CPU, reprogramming is
943 * skipped. The interrupt event on this CPU is fired and
944 * reprogramming happens in the interrupt handler. This is a
945 * rare case and less expensive than a smp call.
946 */
947 debug_deactivate(timer);
948 timer_stats_hrtimer_clear_start_info(timer);
949 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
950 /*
951 * We must preserve the CALLBACK state flag here,
952 * otherwise we could move the timer base in
953 * switch_hrtimer_base.
954 */
955 state = timer->state & HRTIMER_STATE_CALLBACK;
956 __remove_hrtimer(timer, base, state, reprogram);
957 return 1;
958 }
959 return 0;
960 }
961
962 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
963 unsigned long delta_ns, const enum hrtimer_mode mode,
964 int wakeup)
965 {
966 struct hrtimer_clock_base *base, *new_base;
967 unsigned long flags;
968 int ret, leftmost;
969
970 base = lock_hrtimer_base(timer, &flags);
971
972 /* Remove an active timer from the queue: */
973 ret = remove_hrtimer(timer, base);
974
975 /* Switch the timer base, if necessary: */
976 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
977
978 if (mode & HRTIMER_MODE_REL) {
979 tim = ktime_add_safe(tim, new_base->get_time());
980 /*
981 * CONFIG_TIME_LOW_RES is a temporary way for architectures
982 * to signal that they simply return xtime in
983 * do_gettimeoffset(). In this case we want to round up by
984 * resolution when starting a relative timer, to avoid short
985 * timeouts. This will go away with the GTOD framework.
986 */
987 #ifdef CONFIG_TIME_LOW_RES
988 tim = ktime_add_safe(tim, base->resolution);
989 #endif
990 }
991
992 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
993
994 timer_stats_hrtimer_set_start_info(timer);
995
996 leftmost = enqueue_hrtimer(timer, new_base);
997
998 /*
999 * Only allow reprogramming if the new base is on this CPU.
1000 * (it might still be on another CPU if the timer was pending)
1001 *
1002 * XXX send_remote_softirq() ?
1003 */
1004 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1005 && hrtimer_enqueue_reprogram(timer, new_base)) {
1006 if (wakeup) {
1007 /*
1008 * We need to drop cpu_base->lock to avoid a
1009 * lock ordering issue vs. rq->lock.
1010 */
1011 raw_spin_unlock(&new_base->cpu_base->lock);
1012 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1013 local_irq_restore(flags);
1014 return ret;
1015 } else {
1016 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1017 }
1018 }
1019
1020 unlock_hrtimer_base(timer, &flags);
1021
1022 return ret;
1023 }
1024
1025 /**
1026 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1027 * @timer: the timer to be added
1028 * @tim: expiry time
1029 * @delta_ns: "slack" range for the timer
1030 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1031 * relative (HRTIMER_MODE_REL)
1032 *
1033 * Returns:
1034 * 0 on success
1035 * 1 when the timer was active
1036 */
1037 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1038 unsigned long delta_ns, const enum hrtimer_mode mode)
1039 {
1040 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1041 }
1042 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1043
1044 /**
1045 * hrtimer_start - (re)start an hrtimer on the current CPU
1046 * @timer: the timer to be added
1047 * @tim: expiry time
1048 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1049 * relative (HRTIMER_MODE_REL)
1050 *
1051 * Returns:
1052 * 0 on success
1053 * 1 when the timer was active
1054 */
1055 int
1056 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1057 {
1058 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1059 }
1060 EXPORT_SYMBOL_GPL(hrtimer_start);
1061
1062
1063 /**
1064 * hrtimer_try_to_cancel - try to deactivate a timer
1065 * @timer: hrtimer to stop
1066 *
1067 * Returns:
1068 * 0 when the timer was not active
1069 * 1 when the timer was active
1070 * -1 when the timer is currently excuting the callback function and
1071 * cannot be stopped
1072 */
1073 int hrtimer_try_to_cancel(struct hrtimer *timer)
1074 {
1075 struct hrtimer_clock_base *base;
1076 unsigned long flags;
1077 int ret = -1;
1078
1079 base = lock_hrtimer_base(timer, &flags);
1080
1081 if (!hrtimer_callback_running(timer))
1082 ret = remove_hrtimer(timer, base);
1083
1084 unlock_hrtimer_base(timer, &flags);
1085
1086 return ret;
1087
1088 }
1089 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1090
1091 /**
1092 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1093 * @timer: the timer to be cancelled
1094 *
1095 * Returns:
1096 * 0 when the timer was not active
1097 * 1 when the timer was active
1098 */
1099 int hrtimer_cancel(struct hrtimer *timer)
1100 {
1101 for (;;) {
1102 int ret = hrtimer_try_to_cancel(timer);
1103
1104 if (ret >= 0)
1105 return ret;
1106 cpu_relax();
1107 }
1108 }
1109 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1110
1111 /**
1112 * hrtimer_get_remaining - get remaining time for the timer
1113 * @timer: the timer to read
1114 */
1115 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1116 {
1117 unsigned long flags;
1118 ktime_t rem;
1119
1120 lock_hrtimer_base(timer, &flags);
1121 rem = hrtimer_expires_remaining(timer);
1122 unlock_hrtimer_base(timer, &flags);
1123
1124 return rem;
1125 }
1126 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1127
1128 #ifdef CONFIG_NO_HZ_COMMON
1129 /**
1130 * hrtimer_get_next_event - get the time until next expiry event
1131 *
1132 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1133 * is pending.
1134 */
1135 ktime_t hrtimer_get_next_event(void)
1136 {
1137 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1138 struct hrtimer_clock_base *base = cpu_base->clock_base;
1139 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1140 unsigned long flags;
1141 int i;
1142
1143 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1144
1145 if (!hrtimer_hres_active()) {
1146 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1147 struct hrtimer *timer;
1148 struct timerqueue_node *next;
1149
1150 next = timerqueue_getnext(&base->active);
1151 if (!next)
1152 continue;
1153
1154 timer = container_of(next, struct hrtimer, node);
1155 delta.tv64 = hrtimer_get_expires_tv64(timer);
1156 delta = ktime_sub(delta, base->get_time());
1157 if (delta.tv64 < mindelta.tv64)
1158 mindelta.tv64 = delta.tv64;
1159 }
1160 }
1161
1162 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1163
1164 if (mindelta.tv64 < 0)
1165 mindelta.tv64 = 0;
1166 return mindelta;
1167 }
1168 #endif
1169
1170 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1171 enum hrtimer_mode mode)
1172 {
1173 struct hrtimer_cpu_base *cpu_base;
1174 int base;
1175
1176 memset(timer, 0, sizeof(struct hrtimer));
1177
1178 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1179
1180 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1181 clock_id = CLOCK_MONOTONIC;
1182
1183 base = hrtimer_clockid_to_base(clock_id);
1184 timer->base = &cpu_base->clock_base[base];
1185 timerqueue_init(&timer->node);
1186
1187 #ifdef CONFIG_TIMER_STATS
1188 timer->start_site = NULL;
1189 timer->start_pid = -1;
1190 memset(timer->start_comm, 0, TASK_COMM_LEN);
1191 #endif
1192 }
1193
1194 /**
1195 * hrtimer_init - initialize a timer to the given clock
1196 * @timer: the timer to be initialized
1197 * @clock_id: the clock to be used
1198 * @mode: timer mode abs/rel
1199 */
1200 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1201 enum hrtimer_mode mode)
1202 {
1203 debug_init(timer, clock_id, mode);
1204 __hrtimer_init(timer, clock_id, mode);
1205 }
1206 EXPORT_SYMBOL_GPL(hrtimer_init);
1207
1208 /**
1209 * hrtimer_get_res - get the timer resolution for a clock
1210 * @which_clock: which clock to query
1211 * @tp: pointer to timespec variable to store the resolution
1212 *
1213 * Store the resolution of the clock selected by @which_clock in the
1214 * variable pointed to by @tp.
1215 */
1216 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1217 {
1218 struct hrtimer_cpu_base *cpu_base;
1219 int base = hrtimer_clockid_to_base(which_clock);
1220
1221 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1222 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1223
1224 return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1227
1228 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1229 {
1230 struct hrtimer_clock_base *base = timer->base;
1231 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1232 enum hrtimer_restart (*fn)(struct hrtimer *);
1233 int restart;
1234
1235 WARN_ON(!irqs_disabled());
1236
1237 debug_deactivate(timer);
1238 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1239 timer_stats_account_hrtimer(timer);
1240 fn = timer->function;
1241
1242 /*
1243 * Because we run timers from hardirq context, there is no chance
1244 * they get migrated to another cpu, therefore its safe to unlock
1245 * the timer base.
1246 */
1247 raw_spin_unlock(&cpu_base->lock);
1248 trace_hrtimer_expire_entry(timer, now);
1249 restart = fn(timer);
1250 trace_hrtimer_expire_exit(timer);
1251 raw_spin_lock(&cpu_base->lock);
1252
1253 /*
1254 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1255 * we do not reprogramm the event hardware. Happens either in
1256 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1257 */
1258 if (restart != HRTIMER_NORESTART) {
1259 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1260 enqueue_hrtimer(timer, base);
1261 }
1262
1263 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1264
1265 timer->state &= ~HRTIMER_STATE_CALLBACK;
1266 }
1267
1268 #ifdef CONFIG_HIGH_RES_TIMERS
1269
1270 /*
1271 * High resolution timer interrupt
1272 * Called with interrupts disabled
1273 */
1274 void hrtimer_interrupt(struct clock_event_device *dev)
1275 {
1276 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1277 ktime_t expires_next, now, entry_time, delta;
1278 int i, retries = 0;
1279
1280 BUG_ON(!cpu_base->hres_active);
1281 cpu_base->nr_events++;
1282 dev->next_event.tv64 = KTIME_MAX;
1283
1284 raw_spin_lock(&cpu_base->lock);
1285 entry_time = now = hrtimer_update_base(cpu_base);
1286 retry:
1287 expires_next.tv64 = KTIME_MAX;
1288 /*
1289 * We set expires_next to KTIME_MAX here with cpu_base->lock
1290 * held to prevent that a timer is enqueued in our queue via
1291 * the migration code. This does not affect enqueueing of
1292 * timers which run their callback and need to be requeued on
1293 * this CPU.
1294 */
1295 cpu_base->expires_next.tv64 = KTIME_MAX;
1296
1297 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1298 struct hrtimer_clock_base *base;
1299 struct timerqueue_node *node;
1300 ktime_t basenow;
1301
1302 if (!(cpu_base->active_bases & (1 << i)))
1303 continue;
1304
1305 base = cpu_base->clock_base + i;
1306 basenow = ktime_add(now, base->offset);
1307
1308 while ((node = timerqueue_getnext(&base->active))) {
1309 struct hrtimer *timer;
1310
1311 timer = container_of(node, struct hrtimer, node);
1312
1313 /*
1314 * The immediate goal for using the softexpires is
1315 * minimizing wakeups, not running timers at the
1316 * earliest interrupt after their soft expiration.
1317 * This allows us to avoid using a Priority Search
1318 * Tree, which can answer a stabbing querry for
1319 * overlapping intervals and instead use the simple
1320 * BST we already have.
1321 * We don't add extra wakeups by delaying timers that
1322 * are right-of a not yet expired timer, because that
1323 * timer will have to trigger a wakeup anyway.
1324 */
1325
1326 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1327 ktime_t expires;
1328
1329 expires = ktime_sub(hrtimer_get_expires(timer),
1330 base->offset);
1331 if (expires.tv64 < 0)
1332 expires.tv64 = KTIME_MAX;
1333 if (expires.tv64 < expires_next.tv64)
1334 expires_next = expires;
1335 break;
1336 }
1337
1338 __run_hrtimer(timer, &basenow);
1339 }
1340 }
1341
1342 /*
1343 * Store the new expiry value so the migration code can verify
1344 * against it.
1345 */
1346 cpu_base->expires_next = expires_next;
1347 raw_spin_unlock(&cpu_base->lock);
1348
1349 /* Reprogramming necessary ? */
1350 if (expires_next.tv64 == KTIME_MAX ||
1351 !tick_program_event(expires_next, 0)) {
1352 cpu_base->hang_detected = 0;
1353 return;
1354 }
1355
1356 /*
1357 * The next timer was already expired due to:
1358 * - tracing
1359 * - long lasting callbacks
1360 * - being scheduled away when running in a VM
1361 *
1362 * We need to prevent that we loop forever in the hrtimer
1363 * interrupt routine. We give it 3 attempts to avoid
1364 * overreacting on some spurious event.
1365 *
1366 * Acquire base lock for updating the offsets and retrieving
1367 * the current time.
1368 */
1369 raw_spin_lock(&cpu_base->lock);
1370 now = hrtimer_update_base(cpu_base);
1371 cpu_base->nr_retries++;
1372 if (++retries < 3)
1373 goto retry;
1374 /*
1375 * Give the system a chance to do something else than looping
1376 * here. We stored the entry time, so we know exactly how long
1377 * we spent here. We schedule the next event this amount of
1378 * time away.
1379 */
1380 cpu_base->nr_hangs++;
1381 cpu_base->hang_detected = 1;
1382 raw_spin_unlock(&cpu_base->lock);
1383 delta = ktime_sub(now, entry_time);
1384 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1385 cpu_base->max_hang_time = delta;
1386 /*
1387 * Limit it to a sensible value as we enforce a longer
1388 * delay. Give the CPU at least 100ms to catch up.
1389 */
1390 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1391 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1392 else
1393 expires_next = ktime_add(now, delta);
1394 tick_program_event(expires_next, 1);
1395 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1396 ktime_to_ns(delta));
1397 }
1398
1399 /*
1400 * local version of hrtimer_peek_ahead_timers() called with interrupts
1401 * disabled.
1402 */
1403 static void __hrtimer_peek_ahead_timers(void)
1404 {
1405 struct tick_device *td;
1406
1407 if (!hrtimer_hres_active())
1408 return;
1409
1410 td = &__get_cpu_var(tick_cpu_device);
1411 if (td && td->evtdev)
1412 hrtimer_interrupt(td->evtdev);
1413 }
1414
1415 /**
1416 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1417 *
1418 * hrtimer_peek_ahead_timers will peek at the timer queue of
1419 * the current cpu and check if there are any timers for which
1420 * the soft expires time has passed. If any such timers exist,
1421 * they are run immediately and then removed from the timer queue.
1422 *
1423 */
1424 void hrtimer_peek_ahead_timers(void)
1425 {
1426 unsigned long flags;
1427
1428 local_irq_save(flags);
1429 __hrtimer_peek_ahead_timers();
1430 local_irq_restore(flags);
1431 }
1432
1433 static void run_hrtimer_softirq(struct softirq_action *h)
1434 {
1435 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1436
1437 if (cpu_base->clock_was_set) {
1438 cpu_base->clock_was_set = 0;
1439 clock_was_set();
1440 }
1441
1442 hrtimer_peek_ahead_timers();
1443 }
1444
1445 #else /* CONFIG_HIGH_RES_TIMERS */
1446
1447 static inline void __hrtimer_peek_ahead_timers(void) { }
1448
1449 #endif /* !CONFIG_HIGH_RES_TIMERS */
1450
1451 /*
1452 * Called from timer softirq every jiffy, expire hrtimers:
1453 *
1454 * For HRT its the fall back code to run the softirq in the timer
1455 * softirq context in case the hrtimer initialization failed or has
1456 * not been done yet.
1457 */
1458 void hrtimer_run_pending(void)
1459 {
1460 if (hrtimer_hres_active())
1461 return;
1462
1463 /*
1464 * This _is_ ugly: We have to check in the softirq context,
1465 * whether we can switch to highres and / or nohz mode. The
1466 * clocksource switch happens in the timer interrupt with
1467 * xtime_lock held. Notification from there only sets the
1468 * check bit in the tick_oneshot code, otherwise we might
1469 * deadlock vs. xtime_lock.
1470 */
1471 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1472 hrtimer_switch_to_hres();
1473 }
1474
1475 /*
1476 * Called from hardirq context every jiffy
1477 */
1478 void hrtimer_run_queues(void)
1479 {
1480 struct timerqueue_node *node;
1481 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1482 struct hrtimer_clock_base *base;
1483 int index, gettime = 1;
1484
1485 if (hrtimer_hres_active())
1486 return;
1487
1488 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1489 base = &cpu_base->clock_base[index];
1490 if (!timerqueue_getnext(&base->active))
1491 continue;
1492
1493 if (gettime) {
1494 hrtimer_get_softirq_time(cpu_base);
1495 gettime = 0;
1496 }
1497
1498 raw_spin_lock(&cpu_base->lock);
1499
1500 while ((node = timerqueue_getnext(&base->active))) {
1501 struct hrtimer *timer;
1502
1503 timer = container_of(node, struct hrtimer, node);
1504 if (base->softirq_time.tv64 <=
1505 hrtimer_get_expires_tv64(timer))
1506 break;
1507
1508 __run_hrtimer(timer, &base->softirq_time);
1509 }
1510 raw_spin_unlock(&cpu_base->lock);
1511 }
1512 }
1513
1514 /*
1515 * Sleep related functions:
1516 */
1517 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1518 {
1519 struct hrtimer_sleeper *t =
1520 container_of(timer, struct hrtimer_sleeper, timer);
1521 struct task_struct *task = t->task;
1522
1523 t->task = NULL;
1524 if (task)
1525 wake_up_process(task);
1526
1527 return HRTIMER_NORESTART;
1528 }
1529
1530 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1531 {
1532 sl->timer.function = hrtimer_wakeup;
1533 sl->task = task;
1534 }
1535 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1536
1537 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1538 {
1539 hrtimer_init_sleeper(t, current);
1540
1541 do {
1542 set_current_state(TASK_INTERRUPTIBLE);
1543 hrtimer_start_expires(&t->timer, mode);
1544 if (!hrtimer_active(&t->timer))
1545 t->task = NULL;
1546
1547 if (likely(t->task))
1548 schedule();
1549
1550 hrtimer_cancel(&t->timer);
1551 mode = HRTIMER_MODE_ABS;
1552
1553 } while (t->task && !signal_pending(current));
1554
1555 __set_current_state(TASK_RUNNING);
1556
1557 return t->task == NULL;
1558 }
1559
1560 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1561 {
1562 struct timespec rmt;
1563 ktime_t rem;
1564
1565 rem = hrtimer_expires_remaining(timer);
1566 if (rem.tv64 <= 0)
1567 return 0;
1568 rmt = ktime_to_timespec(rem);
1569
1570 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1571 return -EFAULT;
1572
1573 return 1;
1574 }
1575
1576 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1577 {
1578 struct hrtimer_sleeper t;
1579 struct timespec __user *rmtp;
1580 int ret = 0;
1581
1582 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1583 HRTIMER_MODE_ABS);
1584 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1585
1586 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1587 goto out;
1588
1589 rmtp = restart->nanosleep.rmtp;
1590 if (rmtp) {
1591 ret = update_rmtp(&t.timer, rmtp);
1592 if (ret <= 0)
1593 goto out;
1594 }
1595
1596 /* The other values in restart are already filled in */
1597 ret = -ERESTART_RESTARTBLOCK;
1598 out:
1599 destroy_hrtimer_on_stack(&t.timer);
1600 return ret;
1601 }
1602
1603 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1604 const enum hrtimer_mode mode, const clockid_t clockid)
1605 {
1606 struct restart_block *restart;
1607 struct hrtimer_sleeper t;
1608 int ret = 0;
1609 unsigned long slack;
1610
1611 slack = current->timer_slack_ns;
1612 if (rt_task(current))
1613 slack = 0;
1614
1615 hrtimer_init_on_stack(&t.timer, clockid, mode);
1616 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1617 if (do_nanosleep(&t, mode))
1618 goto out;
1619
1620 /* Absolute timers do not update the rmtp value and restart: */
1621 if (mode == HRTIMER_MODE_ABS) {
1622 ret = -ERESTARTNOHAND;
1623 goto out;
1624 }
1625
1626 if (rmtp) {
1627 ret = update_rmtp(&t.timer, rmtp);
1628 if (ret <= 0)
1629 goto out;
1630 }
1631
1632 restart = &current_thread_info()->restart_block;
1633 restart->fn = hrtimer_nanosleep_restart;
1634 restart->nanosleep.clockid = t.timer.base->clockid;
1635 restart->nanosleep.rmtp = rmtp;
1636 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1637
1638 ret = -ERESTART_RESTARTBLOCK;
1639 out:
1640 destroy_hrtimer_on_stack(&t.timer);
1641 return ret;
1642 }
1643
1644 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1645 struct timespec __user *, rmtp)
1646 {
1647 struct timespec tu;
1648
1649 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1650 return -EFAULT;
1651
1652 if (!timespec_valid(&tu))
1653 return -EINVAL;
1654
1655 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1656 }
1657
1658 /*
1659 * Functions related to boot-time initialization:
1660 */
1661 static void __cpuinit init_hrtimers_cpu(int cpu)
1662 {
1663 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1664 int i;
1665
1666 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1667 cpu_base->clock_base[i].cpu_base = cpu_base;
1668 timerqueue_init_head(&cpu_base->clock_base[i].active);
1669 }
1670
1671 hrtimer_init_hres(cpu_base);
1672 }
1673
1674 #ifdef CONFIG_HOTPLUG_CPU
1675
1676 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1677 struct hrtimer_clock_base *new_base)
1678 {
1679 struct hrtimer *timer;
1680 struct timerqueue_node *node;
1681
1682 while ((node = timerqueue_getnext(&old_base->active))) {
1683 timer = container_of(node, struct hrtimer, node);
1684 BUG_ON(hrtimer_callback_running(timer));
1685 debug_deactivate(timer);
1686
1687 /*
1688 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1689 * timer could be seen as !active and just vanish away
1690 * under us on another CPU
1691 */
1692 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1693 timer->base = new_base;
1694 /*
1695 * Enqueue the timers on the new cpu. This does not
1696 * reprogram the event device in case the timer
1697 * expires before the earliest on this CPU, but we run
1698 * hrtimer_interrupt after we migrated everything to
1699 * sort out already expired timers and reprogram the
1700 * event device.
1701 */
1702 enqueue_hrtimer(timer, new_base);
1703
1704 /* Clear the migration state bit */
1705 timer->state &= ~HRTIMER_STATE_MIGRATE;
1706 }
1707 }
1708
1709 static void migrate_hrtimers(int scpu)
1710 {
1711 struct hrtimer_cpu_base *old_base, *new_base;
1712 int i;
1713
1714 BUG_ON(cpu_online(scpu));
1715 tick_cancel_sched_timer(scpu);
1716
1717 local_irq_disable();
1718 old_base = &per_cpu(hrtimer_bases, scpu);
1719 new_base = &__get_cpu_var(hrtimer_bases);
1720 /*
1721 * The caller is globally serialized and nobody else
1722 * takes two locks at once, deadlock is not possible.
1723 */
1724 raw_spin_lock(&new_base->lock);
1725 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1726
1727 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1728 migrate_hrtimer_list(&old_base->clock_base[i],
1729 &new_base->clock_base[i]);
1730 }
1731
1732 raw_spin_unlock(&old_base->lock);
1733 raw_spin_unlock(&new_base->lock);
1734
1735 /* Check, if we got expired work to do */
1736 __hrtimer_peek_ahead_timers();
1737 local_irq_enable();
1738 }
1739
1740 #endif /* CONFIG_HOTPLUG_CPU */
1741
1742 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1743 unsigned long action, void *hcpu)
1744 {
1745 int scpu = (long)hcpu;
1746
1747 switch (action) {
1748
1749 case CPU_UP_PREPARE:
1750 case CPU_UP_PREPARE_FROZEN:
1751 init_hrtimers_cpu(scpu);
1752 break;
1753
1754 #ifdef CONFIG_HOTPLUG_CPU
1755 case CPU_DYING:
1756 case CPU_DYING_FROZEN:
1757 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1758 break;
1759 case CPU_DEAD:
1760 case CPU_DEAD_FROZEN:
1761 {
1762 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1763 migrate_hrtimers(scpu);
1764 break;
1765 }
1766 #endif
1767
1768 default:
1769 break;
1770 }
1771
1772 return NOTIFY_OK;
1773 }
1774
1775 static struct notifier_block __cpuinitdata hrtimers_nb = {
1776 .notifier_call = hrtimer_cpu_notify,
1777 };
1778
1779 void __init hrtimers_init(void)
1780 {
1781 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1782 (void *)(long)smp_processor_id());
1783 register_cpu_notifier(&hrtimers_nb);
1784 #ifdef CONFIG_HIGH_RES_TIMERS
1785 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1786 #endif
1787 }
1788
1789 /**
1790 * schedule_hrtimeout_range_clock - sleep until timeout
1791 * @expires: timeout value (ktime_t)
1792 * @delta: slack in expires timeout (ktime_t)
1793 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1794 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1795 */
1796 int __sched
1797 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1798 const enum hrtimer_mode mode, int clock)
1799 {
1800 struct hrtimer_sleeper t;
1801
1802 /*
1803 * Optimize when a zero timeout value is given. It does not
1804 * matter whether this is an absolute or a relative time.
1805 */
1806 if (expires && !expires->tv64) {
1807 __set_current_state(TASK_RUNNING);
1808 return 0;
1809 }
1810
1811 /*
1812 * A NULL parameter means "infinite"
1813 */
1814 if (!expires) {
1815 schedule();
1816 __set_current_state(TASK_RUNNING);
1817 return -EINTR;
1818 }
1819
1820 hrtimer_init_on_stack(&t.timer, clock, mode);
1821 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1822
1823 hrtimer_init_sleeper(&t, current);
1824
1825 hrtimer_start_expires(&t.timer, mode);
1826 if (!hrtimer_active(&t.timer))
1827 t.task = NULL;
1828
1829 if (likely(t.task))
1830 schedule();
1831
1832 hrtimer_cancel(&t.timer);
1833 destroy_hrtimer_on_stack(&t.timer);
1834
1835 __set_current_state(TASK_RUNNING);
1836
1837 return !t.task ? 0 : -EINTR;
1838 }
1839
1840 /**
1841 * schedule_hrtimeout_range - sleep until timeout
1842 * @expires: timeout value (ktime_t)
1843 * @delta: slack in expires timeout (ktime_t)
1844 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1845 *
1846 * Make the current task sleep until the given expiry time has
1847 * elapsed. The routine will return immediately unless
1848 * the current task state has been set (see set_current_state()).
1849 *
1850 * The @delta argument gives the kernel the freedom to schedule the
1851 * actual wakeup to a time that is both power and performance friendly.
1852 * The kernel give the normal best effort behavior for "@expires+@delta",
1853 * but may decide to fire the timer earlier, but no earlier than @expires.
1854 *
1855 * You can set the task state as follows -
1856 *
1857 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1858 * pass before the routine returns.
1859 *
1860 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1861 * delivered to the current task.
1862 *
1863 * The current task state is guaranteed to be TASK_RUNNING when this
1864 * routine returns.
1865 *
1866 * Returns 0 when the timer has expired otherwise -EINTR
1867 */
1868 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1869 const enum hrtimer_mode mode)
1870 {
1871 return schedule_hrtimeout_range_clock(expires, delta, mode,
1872 CLOCK_MONOTONIC);
1873 }
1874 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1875
1876 /**
1877 * schedule_hrtimeout - sleep until timeout
1878 * @expires: timeout value (ktime_t)
1879 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1880 *
1881 * Make the current task sleep until the given expiry time has
1882 * elapsed. The routine will return immediately unless
1883 * the current task state has been set (see set_current_state()).
1884 *
1885 * You can set the task state as follows -
1886 *
1887 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1888 * pass before the routine returns.
1889 *
1890 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1891 * delivered to the current task.
1892 *
1893 * The current task state is guaranteed to be TASK_RUNNING when this
1894 * routine returns.
1895 *
1896 * Returns 0 when the timer has expired otherwise -EINTR
1897 */
1898 int __sched schedule_hrtimeout(ktime_t *expires,
1899 const enum hrtimer_mode mode)
1900 {
1901 return schedule_hrtimeout_range(expires, 0, mode);
1902 }
1903 EXPORT_SYMBOL_GPL(schedule_hrtimeout);