futex: Fix potential use-after-free in FUTEX_REQUEUE_PI
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
50
51 #include <asm/uaccess.h>
52
53 #include <trace/events/timer.h>
54
55 /*
56 * The timer bases:
57 *
58 * There are more clockids then hrtimer bases. Thus, we index
59 * into the timer bases by the hrtimer_base_type enum. When trying
60 * to reach a base using a clockid, hrtimer_clockid_to_base()
61 * is used to convert from clockid to the proper hrtimer_base_type.
62 */
63 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
64 {
65
66 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
67 .clock_base =
68 {
69 {
70 .index = HRTIMER_BASE_MONOTONIC,
71 .clockid = CLOCK_MONOTONIC,
72 .get_time = &ktime_get,
73 .resolution = KTIME_LOW_RES,
74 },
75 {
76 .index = HRTIMER_BASE_REALTIME,
77 .clockid = CLOCK_REALTIME,
78 .get_time = &ktime_get_real,
79 .resolution = KTIME_LOW_RES,
80 },
81 {
82 .index = HRTIMER_BASE_BOOTTIME,
83 .clockid = CLOCK_BOOTTIME,
84 .get_time = &ktime_get_boottime,
85 .resolution = KTIME_LOW_RES,
86 },
87 {
88 .index = HRTIMER_BASE_TAI,
89 .clockid = CLOCK_TAI,
90 .get_time = &ktime_get_clocktai,
91 .resolution = KTIME_LOW_RES,
92 },
93 }
94 };
95
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
101 };
102
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 return hrtimer_clock_to_base_table[clock_id];
106 }
107
108
109 /*
110 * Get the coarse grained time at the softirq based on xtime and
111 * wall_to_monotonic.
112 */
113 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
114 {
115 ktime_t xtim, mono, boot;
116 struct timespec xts, tom, slp;
117 s32 tai_offset;
118
119 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
120 tai_offset = timekeeping_get_tai_offset();
121
122 xtim = timespec_to_ktime(xts);
123 mono = ktime_add(xtim, timespec_to_ktime(tom));
124 boot = ktime_add(mono, timespec_to_ktime(slp));
125 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
126 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
127 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
128 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
129 ktime_add(xtim, ktime_set(tai_offset, 0));
130 }
131
132 /*
133 * Functions and macros which are different for UP/SMP systems are kept in a
134 * single place
135 */
136 #ifdef CONFIG_SMP
137
138 /*
139 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
140 * means that all timers which are tied to this base via timer->base are
141 * locked, and the base itself is locked too.
142 *
143 * So __run_timers/migrate_timers can safely modify all timers which could
144 * be found on the lists/queues.
145 *
146 * When the timer's base is locked, and the timer removed from list, it is
147 * possible to set timer->base = NULL and drop the lock: the timer remains
148 * locked.
149 */
150 static
151 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
152 unsigned long *flags)
153 {
154 struct hrtimer_clock_base *base;
155
156 for (;;) {
157 base = timer->base;
158 if (likely(base != NULL)) {
159 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
160 if (likely(base == timer->base))
161 return base;
162 /* The timer has migrated to another CPU: */
163 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
164 }
165 cpu_relax();
166 }
167 }
168
169
170 /*
171 * Get the preferred target CPU for NOHZ
172 */
173 static int hrtimer_get_target(int this_cpu, int pinned)
174 {
175 #ifdef CONFIG_NO_HZ_COMMON
176 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
177 return get_nohz_timer_target();
178 #endif
179 return this_cpu;
180 }
181
182 /*
183 * With HIGHRES=y we do not migrate the timer when it is expiring
184 * before the next event on the target cpu because we cannot reprogram
185 * the target cpu hardware and we would cause it to fire late.
186 *
187 * Called with cpu_base->lock of target cpu held.
188 */
189 static int
190 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
191 {
192 #ifdef CONFIG_HIGH_RES_TIMERS
193 ktime_t expires;
194
195 if (!new_base->cpu_base->hres_active)
196 return 0;
197
198 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
199 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
200 #else
201 return 0;
202 #endif
203 }
204
205 /*
206 * Switch the timer base to the current CPU when possible.
207 */
208 static inline struct hrtimer_clock_base *
209 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
210 int pinned)
211 {
212 struct hrtimer_clock_base *new_base;
213 struct hrtimer_cpu_base *new_cpu_base;
214 int this_cpu = smp_processor_id();
215 int cpu = hrtimer_get_target(this_cpu, pinned);
216 int basenum = base->index;
217
218 again:
219 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
220 new_base = &new_cpu_base->clock_base[basenum];
221
222 if (base != new_base) {
223 /*
224 * We are trying to move timer to new_base.
225 * However we can't change timer's base while it is running,
226 * so we keep it on the same CPU. No hassle vs. reprogramming
227 * the event source in the high resolution case. The softirq
228 * code will take care of this when the timer function has
229 * completed. There is no conflict as we hold the lock until
230 * the timer is enqueued.
231 */
232 if (unlikely(hrtimer_callback_running(timer)))
233 return base;
234
235 /* See the comment in lock_timer_base() */
236 timer->base = NULL;
237 raw_spin_unlock(&base->cpu_base->lock);
238 raw_spin_lock(&new_base->cpu_base->lock);
239
240 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
241 cpu = this_cpu;
242 raw_spin_unlock(&new_base->cpu_base->lock);
243 raw_spin_lock(&base->cpu_base->lock);
244 timer->base = base;
245 goto again;
246 }
247 timer->base = new_base;
248 } else {
249 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
250 cpu = this_cpu;
251 goto again;
252 }
253 }
254 return new_base;
255 }
256
257 #else /* CONFIG_SMP */
258
259 static inline struct hrtimer_clock_base *
260 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
261 {
262 struct hrtimer_clock_base *base = timer->base;
263
264 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
265
266 return base;
267 }
268
269 # define switch_hrtimer_base(t, b, p) (b)
270
271 #endif /* !CONFIG_SMP */
272
273 /*
274 * Functions for the union type storage format of ktime_t which are
275 * too large for inlining:
276 */
277 #if BITS_PER_LONG < 64
278 # ifndef CONFIG_KTIME_SCALAR
279 /**
280 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
281 * @kt: addend
282 * @nsec: the scalar nsec value to add
283 *
284 * Returns the sum of kt and nsec in ktime_t format
285 */
286 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
287 {
288 ktime_t tmp;
289
290 if (likely(nsec < NSEC_PER_SEC)) {
291 tmp.tv64 = nsec;
292 } else {
293 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
294
295 /* Make sure nsec fits into long */
296 if (unlikely(nsec > KTIME_SEC_MAX))
297 return (ktime_t){ .tv64 = KTIME_MAX };
298
299 tmp = ktime_set((long)nsec, rem);
300 }
301
302 return ktime_add(kt, tmp);
303 }
304
305 EXPORT_SYMBOL_GPL(ktime_add_ns);
306
307 /**
308 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
309 * @kt: minuend
310 * @nsec: the scalar nsec value to subtract
311 *
312 * Returns the subtraction of @nsec from @kt in ktime_t format
313 */
314 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
315 {
316 ktime_t tmp;
317
318 if (likely(nsec < NSEC_PER_SEC)) {
319 tmp.tv64 = nsec;
320 } else {
321 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
322
323 tmp = ktime_set((long)nsec, rem);
324 }
325
326 return ktime_sub(kt, tmp);
327 }
328
329 EXPORT_SYMBOL_GPL(ktime_sub_ns);
330 # endif /* !CONFIG_KTIME_SCALAR */
331
332 /*
333 * Divide a ktime value by a nanosecond value
334 */
335 u64 ktime_divns(const ktime_t kt, s64 div)
336 {
337 u64 dclc;
338 int sft = 0;
339
340 dclc = ktime_to_ns(kt);
341 /* Make sure the divisor is less than 2^32: */
342 while (div >> 32) {
343 sft++;
344 div >>= 1;
345 }
346 dclc >>= sft;
347 do_div(dclc, (unsigned long) div);
348
349 return dclc;
350 }
351 #endif /* BITS_PER_LONG >= 64 */
352
353 /*
354 * Add two ktime values and do a safety check for overflow:
355 */
356 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
357 {
358 ktime_t res = ktime_add(lhs, rhs);
359
360 /*
361 * We use KTIME_SEC_MAX here, the maximum timeout which we can
362 * return to user space in a timespec:
363 */
364 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
365 res = ktime_set(KTIME_SEC_MAX, 0);
366
367 return res;
368 }
369
370 EXPORT_SYMBOL_GPL(ktime_add_safe);
371
372 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
373
374 static struct debug_obj_descr hrtimer_debug_descr;
375
376 static void *hrtimer_debug_hint(void *addr)
377 {
378 return ((struct hrtimer *) addr)->function;
379 }
380
381 /*
382 * fixup_init is called when:
383 * - an active object is initialized
384 */
385 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
386 {
387 struct hrtimer *timer = addr;
388
389 switch (state) {
390 case ODEBUG_STATE_ACTIVE:
391 hrtimer_cancel(timer);
392 debug_object_init(timer, &hrtimer_debug_descr);
393 return 1;
394 default:
395 return 0;
396 }
397 }
398
399 /*
400 * fixup_activate is called when:
401 * - an active object is activated
402 * - an unknown object is activated (might be a statically initialized object)
403 */
404 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
405 {
406 switch (state) {
407
408 case ODEBUG_STATE_NOTAVAILABLE:
409 WARN_ON_ONCE(1);
410 return 0;
411
412 case ODEBUG_STATE_ACTIVE:
413 WARN_ON(1);
414
415 default:
416 return 0;
417 }
418 }
419
420 /*
421 * fixup_free is called when:
422 * - an active object is freed
423 */
424 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
425 {
426 struct hrtimer *timer = addr;
427
428 switch (state) {
429 case ODEBUG_STATE_ACTIVE:
430 hrtimer_cancel(timer);
431 debug_object_free(timer, &hrtimer_debug_descr);
432 return 1;
433 default:
434 return 0;
435 }
436 }
437
438 static struct debug_obj_descr hrtimer_debug_descr = {
439 .name = "hrtimer",
440 .debug_hint = hrtimer_debug_hint,
441 .fixup_init = hrtimer_fixup_init,
442 .fixup_activate = hrtimer_fixup_activate,
443 .fixup_free = hrtimer_fixup_free,
444 };
445
446 static inline void debug_hrtimer_init(struct hrtimer *timer)
447 {
448 debug_object_init(timer, &hrtimer_debug_descr);
449 }
450
451 static inline void debug_hrtimer_activate(struct hrtimer *timer)
452 {
453 debug_object_activate(timer, &hrtimer_debug_descr);
454 }
455
456 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
457 {
458 debug_object_deactivate(timer, &hrtimer_debug_descr);
459 }
460
461 static inline void debug_hrtimer_free(struct hrtimer *timer)
462 {
463 debug_object_free(timer, &hrtimer_debug_descr);
464 }
465
466 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
467 enum hrtimer_mode mode);
468
469 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
470 enum hrtimer_mode mode)
471 {
472 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
473 __hrtimer_init(timer, clock_id, mode);
474 }
475 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
476
477 void destroy_hrtimer_on_stack(struct hrtimer *timer)
478 {
479 debug_object_free(timer, &hrtimer_debug_descr);
480 }
481
482 #else
483 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
484 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
485 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
486 #endif
487
488 static inline void
489 debug_init(struct hrtimer *timer, clockid_t clockid,
490 enum hrtimer_mode mode)
491 {
492 debug_hrtimer_init(timer);
493 trace_hrtimer_init(timer, clockid, mode);
494 }
495
496 static inline void debug_activate(struct hrtimer *timer)
497 {
498 debug_hrtimer_activate(timer);
499 trace_hrtimer_start(timer);
500 }
501
502 static inline void debug_deactivate(struct hrtimer *timer)
503 {
504 debug_hrtimer_deactivate(timer);
505 trace_hrtimer_cancel(timer);
506 }
507
508 /* High resolution timer related functions */
509 #ifdef CONFIG_HIGH_RES_TIMERS
510
511 /*
512 * High resolution timer enabled ?
513 */
514 static int hrtimer_hres_enabled __read_mostly = 1;
515
516 /*
517 * Enable / Disable high resolution mode
518 */
519 static int __init setup_hrtimer_hres(char *str)
520 {
521 if (!strcmp(str, "off"))
522 hrtimer_hres_enabled = 0;
523 else if (!strcmp(str, "on"))
524 hrtimer_hres_enabled = 1;
525 else
526 return 0;
527 return 1;
528 }
529
530 __setup("highres=", setup_hrtimer_hres);
531
532 /*
533 * hrtimer_high_res_enabled - query, if the highres mode is enabled
534 */
535 static inline int hrtimer_is_hres_enabled(void)
536 {
537 return hrtimer_hres_enabled;
538 }
539
540 /*
541 * Is the high resolution mode active ?
542 */
543 static inline int hrtimer_hres_active(void)
544 {
545 return __this_cpu_read(hrtimer_bases.hres_active);
546 }
547
548 /*
549 * Reprogram the event source with checking both queues for the
550 * next event
551 * Called with interrupts disabled and base->lock held
552 */
553 static void
554 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
555 {
556 int i;
557 struct hrtimer_clock_base *base = cpu_base->clock_base;
558 ktime_t expires, expires_next;
559
560 expires_next.tv64 = KTIME_MAX;
561
562 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
563 struct hrtimer *timer;
564 struct timerqueue_node *next;
565
566 next = timerqueue_getnext(&base->active);
567 if (!next)
568 continue;
569 timer = container_of(next, struct hrtimer, node);
570
571 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
572 /*
573 * clock_was_set() has changed base->offset so the
574 * result might be negative. Fix it up to prevent a
575 * false positive in clockevents_program_event()
576 */
577 if (expires.tv64 < 0)
578 expires.tv64 = 0;
579 if (expires.tv64 < expires_next.tv64)
580 expires_next = expires;
581 }
582
583 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
584 return;
585
586 cpu_base->expires_next.tv64 = expires_next.tv64;
587
588 /*
589 * If a hang was detected in the last timer interrupt then we
590 * leave the hang delay active in the hardware. We want the
591 * system to make progress. That also prevents the following
592 * scenario:
593 * T1 expires 50ms from now
594 * T2 expires 5s from now
595 *
596 * T1 is removed, so this code is called and would reprogram
597 * the hardware to 5s from now. Any hrtimer_start after that
598 * will not reprogram the hardware due to hang_detected being
599 * set. So we'd effectivly block all timers until the T2 event
600 * fires.
601 */
602 if (cpu_base->hang_detected)
603 return;
604
605 if (cpu_base->expires_next.tv64 != KTIME_MAX)
606 tick_program_event(cpu_base->expires_next, 1);
607 }
608
609 /*
610 * Shared reprogramming for clock_realtime and clock_monotonic
611 *
612 * When a timer is enqueued and expires earlier than the already enqueued
613 * timers, we have to check, whether it expires earlier than the timer for
614 * which the clock event device was armed.
615 *
616 * Called with interrupts disabled and base->cpu_base.lock held
617 */
618 static int hrtimer_reprogram(struct hrtimer *timer,
619 struct hrtimer_clock_base *base)
620 {
621 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
622 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
623 int res;
624
625 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
626
627 /*
628 * When the callback is running, we do not reprogram the clock event
629 * device. The timer callback is either running on a different CPU or
630 * the callback is executed in the hrtimer_interrupt context. The
631 * reprogramming is handled either by the softirq, which called the
632 * callback or at the end of the hrtimer_interrupt.
633 */
634 if (hrtimer_callback_running(timer))
635 return 0;
636
637 /*
638 * CLOCK_REALTIME timer might be requested with an absolute
639 * expiry time which is less than base->offset. Nothing wrong
640 * about that, just avoid to call into the tick code, which
641 * has now objections against negative expiry values.
642 */
643 if (expires.tv64 < 0)
644 return -ETIME;
645
646 if (expires.tv64 >= cpu_base->expires_next.tv64)
647 return 0;
648
649 /*
650 * If a hang was detected in the last timer interrupt then we
651 * do not schedule a timer which is earlier than the expiry
652 * which we enforced in the hang detection. We want the system
653 * to make progress.
654 */
655 if (cpu_base->hang_detected)
656 return 0;
657
658 /*
659 * Clockevents returns -ETIME, when the event was in the past.
660 */
661 res = tick_program_event(expires, 0);
662 if (!IS_ERR_VALUE(res))
663 cpu_base->expires_next = expires;
664 return res;
665 }
666
667 /*
668 * Initialize the high resolution related parts of cpu_base
669 */
670 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
671 {
672 base->expires_next.tv64 = KTIME_MAX;
673 base->hres_active = 0;
674 }
675
676 /*
677 * When High resolution timers are active, try to reprogram. Note, that in case
678 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
679 * check happens. The timer gets enqueued into the rbtree. The reprogramming
680 * and expiry check is done in the hrtimer_interrupt or in the softirq.
681 */
682 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
683 struct hrtimer_clock_base *base)
684 {
685 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
686 }
687
688 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
689 {
690 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
691 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
692 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
693
694 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
695 }
696
697 /*
698 * Retrigger next event is called after clock was set
699 *
700 * Called with interrupts disabled via on_each_cpu()
701 */
702 static void retrigger_next_event(void *arg)
703 {
704 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
705
706 if (!hrtimer_hres_active())
707 return;
708
709 raw_spin_lock(&base->lock);
710 hrtimer_update_base(base);
711 hrtimer_force_reprogram(base, 0);
712 raw_spin_unlock(&base->lock);
713 }
714
715 /*
716 * Switch to high resolution mode
717 */
718 static int hrtimer_switch_to_hres(void)
719 {
720 int i, cpu = smp_processor_id();
721 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
722 unsigned long flags;
723
724 if (base->hres_active)
725 return 1;
726
727 local_irq_save(flags);
728
729 if (tick_init_highres()) {
730 local_irq_restore(flags);
731 printk(KERN_WARNING "Could not switch to high resolution "
732 "mode on CPU %d\n", cpu);
733 return 0;
734 }
735 base->hres_active = 1;
736 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
737 base->clock_base[i].resolution = KTIME_HIGH_RES;
738
739 tick_setup_sched_timer();
740 /* "Retrigger" the interrupt to get things going */
741 retrigger_next_event(NULL);
742 local_irq_restore(flags);
743 return 1;
744 }
745
746 static void clock_was_set_work(struct work_struct *work)
747 {
748 clock_was_set();
749 }
750
751 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
752
753 /*
754 * Called from timekeeping and resume code to reprogramm the hrtimer
755 * interrupt device on all cpus.
756 */
757 void clock_was_set_delayed(void)
758 {
759 schedule_work(&hrtimer_work);
760 }
761
762 #else
763
764 static inline int hrtimer_hres_active(void) { return 0; }
765 static inline int hrtimer_is_hres_enabled(void) { return 0; }
766 static inline int hrtimer_switch_to_hres(void) { return 0; }
767 static inline void
768 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
769 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
770 struct hrtimer_clock_base *base)
771 {
772 return 0;
773 }
774 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
775 static inline void retrigger_next_event(void *arg) { }
776
777 #endif /* CONFIG_HIGH_RES_TIMERS */
778
779 /*
780 * Clock realtime was set
781 *
782 * Change the offset of the realtime clock vs. the monotonic
783 * clock.
784 *
785 * We might have to reprogram the high resolution timer interrupt. On
786 * SMP we call the architecture specific code to retrigger _all_ high
787 * resolution timer interrupts. On UP we just disable interrupts and
788 * call the high resolution interrupt code.
789 */
790 void clock_was_set(void)
791 {
792 #ifdef CONFIG_HIGH_RES_TIMERS
793 /* Retrigger the CPU local events everywhere */
794 on_each_cpu(retrigger_next_event, NULL, 1);
795 #endif
796 timerfd_clock_was_set();
797 }
798
799 /*
800 * During resume we might have to reprogram the high resolution timer
801 * interrupt (on the local CPU):
802 */
803 void hrtimers_resume(void)
804 {
805 WARN_ONCE(!irqs_disabled(),
806 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
807
808 /* Retrigger on the local CPU */
809 retrigger_next_event(NULL);
810 /* And schedule a retrigger for all others */
811 clock_was_set_delayed();
812 }
813
814 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
815 {
816 #ifdef CONFIG_TIMER_STATS
817 if (timer->start_site)
818 return;
819 timer->start_site = __builtin_return_address(0);
820 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
821 timer->start_pid = current->pid;
822 #endif
823 }
824
825 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
826 {
827 #ifdef CONFIG_TIMER_STATS
828 timer->start_site = NULL;
829 #endif
830 }
831
832 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
833 {
834 #ifdef CONFIG_TIMER_STATS
835 if (likely(!timer_stats_active))
836 return;
837 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
838 timer->function, timer->start_comm, 0);
839 #endif
840 }
841
842 /*
843 * Counterpart to lock_hrtimer_base above:
844 */
845 static inline
846 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
847 {
848 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
849 }
850
851 /**
852 * hrtimer_forward - forward the timer expiry
853 * @timer: hrtimer to forward
854 * @now: forward past this time
855 * @interval: the interval to forward
856 *
857 * Forward the timer expiry so it will expire in the future.
858 * Returns the number of overruns.
859 */
860 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
861 {
862 u64 orun = 1;
863 ktime_t delta;
864
865 delta = ktime_sub(now, hrtimer_get_expires(timer));
866
867 if (delta.tv64 < 0)
868 return 0;
869
870 if (interval.tv64 < timer->base->resolution.tv64)
871 interval.tv64 = timer->base->resolution.tv64;
872
873 if (unlikely(delta.tv64 >= interval.tv64)) {
874 s64 incr = ktime_to_ns(interval);
875
876 orun = ktime_divns(delta, incr);
877 hrtimer_add_expires_ns(timer, incr * orun);
878 if (hrtimer_get_expires_tv64(timer) > now.tv64)
879 return orun;
880 /*
881 * This (and the ktime_add() below) is the
882 * correction for exact:
883 */
884 orun++;
885 }
886 hrtimer_add_expires(timer, interval);
887
888 return orun;
889 }
890 EXPORT_SYMBOL_GPL(hrtimer_forward);
891
892 /*
893 * enqueue_hrtimer - internal function to (re)start a timer
894 *
895 * The timer is inserted in expiry order. Insertion into the
896 * red black tree is O(log(n)). Must hold the base lock.
897 *
898 * Returns 1 when the new timer is the leftmost timer in the tree.
899 */
900 static int enqueue_hrtimer(struct hrtimer *timer,
901 struct hrtimer_clock_base *base)
902 {
903 debug_activate(timer);
904
905 timerqueue_add(&base->active, &timer->node);
906 base->cpu_base->active_bases |= 1 << base->index;
907
908 /*
909 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
910 * state of a possibly running callback.
911 */
912 timer->state |= HRTIMER_STATE_ENQUEUED;
913
914 return (&timer->node == base->active.next);
915 }
916
917 /*
918 * __remove_hrtimer - internal function to remove a timer
919 *
920 * Caller must hold the base lock.
921 *
922 * High resolution timer mode reprograms the clock event device when the
923 * timer is the one which expires next. The caller can disable this by setting
924 * reprogram to zero. This is useful, when the context does a reprogramming
925 * anyway (e.g. timer interrupt)
926 */
927 static void __remove_hrtimer(struct hrtimer *timer,
928 struct hrtimer_clock_base *base,
929 unsigned long newstate, int reprogram)
930 {
931 struct timerqueue_node *next_timer;
932 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
933 goto out;
934
935 next_timer = timerqueue_getnext(&base->active);
936 timerqueue_del(&base->active, &timer->node);
937 if (&timer->node == next_timer) {
938 #ifdef CONFIG_HIGH_RES_TIMERS
939 /* Reprogram the clock event device. if enabled */
940 if (reprogram && hrtimer_hres_active()) {
941 ktime_t expires;
942
943 expires = ktime_sub(hrtimer_get_expires(timer),
944 base->offset);
945 if (base->cpu_base->expires_next.tv64 == expires.tv64)
946 hrtimer_force_reprogram(base->cpu_base, 1);
947 }
948 #endif
949 }
950 if (!timerqueue_getnext(&base->active))
951 base->cpu_base->active_bases &= ~(1 << base->index);
952 out:
953 timer->state = newstate;
954 }
955
956 /*
957 * remove hrtimer, called with base lock held
958 */
959 static inline int
960 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
961 {
962 if (hrtimer_is_queued(timer)) {
963 unsigned long state;
964 int reprogram;
965
966 /*
967 * Remove the timer and force reprogramming when high
968 * resolution mode is active and the timer is on the current
969 * CPU. If we remove a timer on another CPU, reprogramming is
970 * skipped. The interrupt event on this CPU is fired and
971 * reprogramming happens in the interrupt handler. This is a
972 * rare case and less expensive than a smp call.
973 */
974 debug_deactivate(timer);
975 timer_stats_hrtimer_clear_start_info(timer);
976 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
977 /*
978 * We must preserve the CALLBACK state flag here,
979 * otherwise we could move the timer base in
980 * switch_hrtimer_base.
981 */
982 state = timer->state & HRTIMER_STATE_CALLBACK;
983 __remove_hrtimer(timer, base, state, reprogram);
984 return 1;
985 }
986 return 0;
987 }
988
989 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
990 unsigned long delta_ns, const enum hrtimer_mode mode,
991 int wakeup)
992 {
993 struct hrtimer_clock_base *base, *new_base;
994 unsigned long flags;
995 int ret, leftmost;
996
997 base = lock_hrtimer_base(timer, &flags);
998
999 /* Remove an active timer from the queue: */
1000 ret = remove_hrtimer(timer, base);
1001
1002 if (mode & HRTIMER_MODE_REL) {
1003 tim = ktime_add_safe(tim, base->get_time());
1004 /*
1005 * CONFIG_TIME_LOW_RES is a temporary way for architectures
1006 * to signal that they simply return xtime in
1007 * do_gettimeoffset(). In this case we want to round up by
1008 * resolution when starting a relative timer, to avoid short
1009 * timeouts. This will go away with the GTOD framework.
1010 */
1011 #ifdef CONFIG_TIME_LOW_RES
1012 tim = ktime_add_safe(tim, base->resolution);
1013 #endif
1014 }
1015
1016 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1017
1018 /* Switch the timer base, if necessary: */
1019 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1020
1021 timer_stats_hrtimer_set_start_info(timer);
1022
1023 leftmost = enqueue_hrtimer(timer, new_base);
1024
1025 /*
1026 * Only allow reprogramming if the new base is on this CPU.
1027 * (it might still be on another CPU if the timer was pending)
1028 *
1029 * XXX send_remote_softirq() ?
1030 */
1031 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1032 && hrtimer_enqueue_reprogram(timer, new_base)) {
1033 if (wakeup) {
1034 /*
1035 * We need to drop cpu_base->lock to avoid a
1036 * lock ordering issue vs. rq->lock.
1037 */
1038 raw_spin_unlock(&new_base->cpu_base->lock);
1039 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1040 local_irq_restore(flags);
1041 return ret;
1042 } else {
1043 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1044 }
1045 }
1046
1047 unlock_hrtimer_base(timer, &flags);
1048
1049 return ret;
1050 }
1051
1052 /**
1053 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1054 * @timer: the timer to be added
1055 * @tim: expiry time
1056 * @delta_ns: "slack" range for the timer
1057 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1058 * relative (HRTIMER_MODE_REL)
1059 *
1060 * Returns:
1061 * 0 on success
1062 * 1 when the timer was active
1063 */
1064 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1065 unsigned long delta_ns, const enum hrtimer_mode mode)
1066 {
1067 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1068 }
1069 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1070
1071 /**
1072 * hrtimer_start - (re)start an hrtimer on the current CPU
1073 * @timer: the timer to be added
1074 * @tim: expiry time
1075 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1076 * relative (HRTIMER_MODE_REL)
1077 *
1078 * Returns:
1079 * 0 on success
1080 * 1 when the timer was active
1081 */
1082 int
1083 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1084 {
1085 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1086 }
1087 EXPORT_SYMBOL_GPL(hrtimer_start);
1088
1089
1090 /**
1091 * hrtimer_try_to_cancel - try to deactivate a timer
1092 * @timer: hrtimer to stop
1093 *
1094 * Returns:
1095 * 0 when the timer was not active
1096 * 1 when the timer was active
1097 * -1 when the timer is currently excuting the callback function and
1098 * cannot be stopped
1099 */
1100 int hrtimer_try_to_cancel(struct hrtimer *timer)
1101 {
1102 struct hrtimer_clock_base *base;
1103 unsigned long flags;
1104 int ret = -1;
1105
1106 base = lock_hrtimer_base(timer, &flags);
1107
1108 if (!hrtimer_callback_running(timer))
1109 ret = remove_hrtimer(timer, base);
1110
1111 unlock_hrtimer_base(timer, &flags);
1112
1113 return ret;
1114
1115 }
1116 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1117
1118 /**
1119 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1120 * @timer: the timer to be cancelled
1121 *
1122 * Returns:
1123 * 0 when the timer was not active
1124 * 1 when the timer was active
1125 */
1126 int hrtimer_cancel(struct hrtimer *timer)
1127 {
1128 for (;;) {
1129 int ret = hrtimer_try_to_cancel(timer);
1130
1131 if (ret >= 0)
1132 return ret;
1133 cpu_relax();
1134 }
1135 }
1136 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1137
1138 /**
1139 * hrtimer_get_remaining - get remaining time for the timer
1140 * @timer: the timer to read
1141 */
1142 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1143 {
1144 unsigned long flags;
1145 ktime_t rem;
1146
1147 lock_hrtimer_base(timer, &flags);
1148 rem = hrtimer_expires_remaining(timer);
1149 unlock_hrtimer_base(timer, &flags);
1150
1151 return rem;
1152 }
1153 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1154
1155 #ifdef CONFIG_NO_HZ_COMMON
1156 /**
1157 * hrtimer_get_next_event - get the time until next expiry event
1158 *
1159 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1160 * is pending.
1161 */
1162 ktime_t hrtimer_get_next_event(void)
1163 {
1164 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1165 struct hrtimer_clock_base *base = cpu_base->clock_base;
1166 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1167 unsigned long flags;
1168 int i;
1169
1170 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1171
1172 if (!hrtimer_hres_active()) {
1173 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1174 struct hrtimer *timer;
1175 struct timerqueue_node *next;
1176
1177 next = timerqueue_getnext(&base->active);
1178 if (!next)
1179 continue;
1180
1181 timer = container_of(next, struct hrtimer, node);
1182 delta.tv64 = hrtimer_get_expires_tv64(timer);
1183 delta = ktime_sub(delta, base->get_time());
1184 if (delta.tv64 < mindelta.tv64)
1185 mindelta.tv64 = delta.tv64;
1186 }
1187 }
1188
1189 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1190
1191 if (mindelta.tv64 < 0)
1192 mindelta.tv64 = 0;
1193 return mindelta;
1194 }
1195 #endif
1196
1197 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1198 enum hrtimer_mode mode)
1199 {
1200 struct hrtimer_cpu_base *cpu_base;
1201 int base;
1202
1203 memset(timer, 0, sizeof(struct hrtimer));
1204
1205 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1206
1207 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1208 clock_id = CLOCK_MONOTONIC;
1209
1210 base = hrtimer_clockid_to_base(clock_id);
1211 timer->base = &cpu_base->clock_base[base];
1212 timerqueue_init(&timer->node);
1213
1214 #ifdef CONFIG_TIMER_STATS
1215 timer->start_site = NULL;
1216 timer->start_pid = -1;
1217 memset(timer->start_comm, 0, TASK_COMM_LEN);
1218 #endif
1219 }
1220
1221 /**
1222 * hrtimer_init - initialize a timer to the given clock
1223 * @timer: the timer to be initialized
1224 * @clock_id: the clock to be used
1225 * @mode: timer mode abs/rel
1226 */
1227 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1228 enum hrtimer_mode mode)
1229 {
1230 debug_init(timer, clock_id, mode);
1231 __hrtimer_init(timer, clock_id, mode);
1232 }
1233 EXPORT_SYMBOL_GPL(hrtimer_init);
1234
1235 /**
1236 * hrtimer_get_res - get the timer resolution for a clock
1237 * @which_clock: which clock to query
1238 * @tp: pointer to timespec variable to store the resolution
1239 *
1240 * Store the resolution of the clock selected by @which_clock in the
1241 * variable pointed to by @tp.
1242 */
1243 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1244 {
1245 struct hrtimer_cpu_base *cpu_base;
1246 int base = hrtimer_clockid_to_base(which_clock);
1247
1248 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1249 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1250
1251 return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1254
1255 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1256 {
1257 struct hrtimer_clock_base *base = timer->base;
1258 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1259 enum hrtimer_restart (*fn)(struct hrtimer *);
1260 int restart;
1261
1262 WARN_ON(!irqs_disabled());
1263
1264 debug_deactivate(timer);
1265 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1266 timer_stats_account_hrtimer(timer);
1267 fn = timer->function;
1268
1269 /*
1270 * Because we run timers from hardirq context, there is no chance
1271 * they get migrated to another cpu, therefore its safe to unlock
1272 * the timer base.
1273 */
1274 raw_spin_unlock(&cpu_base->lock);
1275 trace_hrtimer_expire_entry(timer, now);
1276 restart = fn(timer);
1277 trace_hrtimer_expire_exit(timer);
1278 raw_spin_lock(&cpu_base->lock);
1279
1280 /*
1281 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1282 * we do not reprogramm the event hardware. Happens either in
1283 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1284 */
1285 if (restart != HRTIMER_NORESTART) {
1286 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1287 enqueue_hrtimer(timer, base);
1288 }
1289
1290 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1291
1292 timer->state &= ~HRTIMER_STATE_CALLBACK;
1293 }
1294
1295 #ifdef CONFIG_HIGH_RES_TIMERS
1296
1297 /*
1298 * High resolution timer interrupt
1299 * Called with interrupts disabled
1300 */
1301 void hrtimer_interrupt(struct clock_event_device *dev)
1302 {
1303 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1304 ktime_t expires_next, now, entry_time, delta;
1305 int i, retries = 0;
1306
1307 BUG_ON(!cpu_base->hres_active);
1308 cpu_base->nr_events++;
1309 dev->next_event.tv64 = KTIME_MAX;
1310
1311 raw_spin_lock(&cpu_base->lock);
1312 entry_time = now = hrtimer_update_base(cpu_base);
1313 retry:
1314 expires_next.tv64 = KTIME_MAX;
1315 /*
1316 * We set expires_next to KTIME_MAX here with cpu_base->lock
1317 * held to prevent that a timer is enqueued in our queue via
1318 * the migration code. This does not affect enqueueing of
1319 * timers which run their callback and need to be requeued on
1320 * this CPU.
1321 */
1322 cpu_base->expires_next.tv64 = KTIME_MAX;
1323
1324 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1325 struct hrtimer_clock_base *base;
1326 struct timerqueue_node *node;
1327 ktime_t basenow;
1328
1329 if (!(cpu_base->active_bases & (1 << i)))
1330 continue;
1331
1332 base = cpu_base->clock_base + i;
1333 basenow = ktime_add(now, base->offset);
1334
1335 while ((node = timerqueue_getnext(&base->active))) {
1336 struct hrtimer *timer;
1337
1338 timer = container_of(node, struct hrtimer, node);
1339
1340 /*
1341 * The immediate goal for using the softexpires is
1342 * minimizing wakeups, not running timers at the
1343 * earliest interrupt after their soft expiration.
1344 * This allows us to avoid using a Priority Search
1345 * Tree, which can answer a stabbing querry for
1346 * overlapping intervals and instead use the simple
1347 * BST we already have.
1348 * We don't add extra wakeups by delaying timers that
1349 * are right-of a not yet expired timer, because that
1350 * timer will have to trigger a wakeup anyway.
1351 */
1352
1353 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1354 ktime_t expires;
1355
1356 expires = ktime_sub(hrtimer_get_expires(timer),
1357 base->offset);
1358 if (expires.tv64 < 0)
1359 expires.tv64 = KTIME_MAX;
1360 if (expires.tv64 < expires_next.tv64)
1361 expires_next = expires;
1362 break;
1363 }
1364
1365 __run_hrtimer(timer, &basenow);
1366 }
1367 }
1368
1369 /*
1370 * Store the new expiry value so the migration code can verify
1371 * against it.
1372 */
1373 cpu_base->expires_next = expires_next;
1374 raw_spin_unlock(&cpu_base->lock);
1375
1376 /* Reprogramming necessary ? */
1377 if (expires_next.tv64 == KTIME_MAX ||
1378 !tick_program_event(expires_next, 0)) {
1379 cpu_base->hang_detected = 0;
1380 return;
1381 }
1382
1383 /*
1384 * The next timer was already expired due to:
1385 * - tracing
1386 * - long lasting callbacks
1387 * - being scheduled away when running in a VM
1388 *
1389 * We need to prevent that we loop forever in the hrtimer
1390 * interrupt routine. We give it 3 attempts to avoid
1391 * overreacting on some spurious event.
1392 *
1393 * Acquire base lock for updating the offsets and retrieving
1394 * the current time.
1395 */
1396 raw_spin_lock(&cpu_base->lock);
1397 now = hrtimer_update_base(cpu_base);
1398 cpu_base->nr_retries++;
1399 if (++retries < 3)
1400 goto retry;
1401 /*
1402 * Give the system a chance to do something else than looping
1403 * here. We stored the entry time, so we know exactly how long
1404 * we spent here. We schedule the next event this amount of
1405 * time away.
1406 */
1407 cpu_base->nr_hangs++;
1408 cpu_base->hang_detected = 1;
1409 raw_spin_unlock(&cpu_base->lock);
1410 delta = ktime_sub(now, entry_time);
1411 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1412 cpu_base->max_hang_time = delta;
1413 /*
1414 * Limit it to a sensible value as we enforce a longer
1415 * delay. Give the CPU at least 100ms to catch up.
1416 */
1417 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1418 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1419 else
1420 expires_next = ktime_add(now, delta);
1421 tick_program_event(expires_next, 1);
1422 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1423 ktime_to_ns(delta));
1424 }
1425
1426 /*
1427 * local version of hrtimer_peek_ahead_timers() called with interrupts
1428 * disabled.
1429 */
1430 static void __hrtimer_peek_ahead_timers(void)
1431 {
1432 struct tick_device *td;
1433
1434 if (!hrtimer_hres_active())
1435 return;
1436
1437 td = &__get_cpu_var(tick_cpu_device);
1438 if (td && td->evtdev)
1439 hrtimer_interrupt(td->evtdev);
1440 }
1441
1442 /**
1443 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1444 *
1445 * hrtimer_peek_ahead_timers will peek at the timer queue of
1446 * the current cpu and check if there are any timers for which
1447 * the soft expires time has passed. If any such timers exist,
1448 * they are run immediately and then removed from the timer queue.
1449 *
1450 */
1451 void hrtimer_peek_ahead_timers(void)
1452 {
1453 unsigned long flags;
1454
1455 local_irq_save(flags);
1456 __hrtimer_peek_ahead_timers();
1457 local_irq_restore(flags);
1458 }
1459
1460 static void run_hrtimer_softirq(struct softirq_action *h)
1461 {
1462 hrtimer_peek_ahead_timers();
1463 }
1464
1465 #else /* CONFIG_HIGH_RES_TIMERS */
1466
1467 static inline void __hrtimer_peek_ahead_timers(void) { }
1468
1469 #endif /* !CONFIG_HIGH_RES_TIMERS */
1470
1471 /*
1472 * Called from timer softirq every jiffy, expire hrtimers:
1473 *
1474 * For HRT its the fall back code to run the softirq in the timer
1475 * softirq context in case the hrtimer initialization failed or has
1476 * not been done yet.
1477 */
1478 void hrtimer_run_pending(void)
1479 {
1480 if (hrtimer_hres_active())
1481 return;
1482
1483 /*
1484 * This _is_ ugly: We have to check in the softirq context,
1485 * whether we can switch to highres and / or nohz mode. The
1486 * clocksource switch happens in the timer interrupt with
1487 * xtime_lock held. Notification from there only sets the
1488 * check bit in the tick_oneshot code, otherwise we might
1489 * deadlock vs. xtime_lock.
1490 */
1491 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1492 hrtimer_switch_to_hres();
1493 }
1494
1495 /*
1496 * Called from hardirq context every jiffy
1497 */
1498 void hrtimer_run_queues(void)
1499 {
1500 struct timerqueue_node *node;
1501 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1502 struct hrtimer_clock_base *base;
1503 int index, gettime = 1;
1504
1505 if (hrtimer_hres_active())
1506 return;
1507
1508 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1509 base = &cpu_base->clock_base[index];
1510 if (!timerqueue_getnext(&base->active))
1511 continue;
1512
1513 if (gettime) {
1514 hrtimer_get_softirq_time(cpu_base);
1515 gettime = 0;
1516 }
1517
1518 raw_spin_lock(&cpu_base->lock);
1519
1520 while ((node = timerqueue_getnext(&base->active))) {
1521 struct hrtimer *timer;
1522
1523 timer = container_of(node, struct hrtimer, node);
1524 if (base->softirq_time.tv64 <=
1525 hrtimer_get_expires_tv64(timer))
1526 break;
1527
1528 __run_hrtimer(timer, &base->softirq_time);
1529 }
1530 raw_spin_unlock(&cpu_base->lock);
1531 }
1532 }
1533
1534 /*
1535 * Sleep related functions:
1536 */
1537 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1538 {
1539 struct hrtimer_sleeper *t =
1540 container_of(timer, struct hrtimer_sleeper, timer);
1541 struct task_struct *task = t->task;
1542
1543 t->task = NULL;
1544 if (task)
1545 wake_up_process(task);
1546
1547 return HRTIMER_NORESTART;
1548 }
1549
1550 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1551 {
1552 sl->timer.function = hrtimer_wakeup;
1553 sl->task = task;
1554 }
1555 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1556
1557 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1558 {
1559 hrtimer_init_sleeper(t, current);
1560
1561 do {
1562 set_current_state(TASK_INTERRUPTIBLE);
1563 hrtimer_start_expires(&t->timer, mode);
1564 if (!hrtimer_active(&t->timer))
1565 t->task = NULL;
1566
1567 if (likely(t->task))
1568 schedule();
1569
1570 hrtimer_cancel(&t->timer);
1571 mode = HRTIMER_MODE_ABS;
1572
1573 } while (t->task && !signal_pending(current));
1574
1575 __set_current_state(TASK_RUNNING);
1576
1577 return t->task == NULL;
1578 }
1579
1580 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1581 {
1582 struct timespec rmt;
1583 ktime_t rem;
1584
1585 rem = hrtimer_expires_remaining(timer);
1586 if (rem.tv64 <= 0)
1587 return 0;
1588 rmt = ktime_to_timespec(rem);
1589
1590 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1591 return -EFAULT;
1592
1593 return 1;
1594 }
1595
1596 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1597 {
1598 struct hrtimer_sleeper t;
1599 struct timespec __user *rmtp;
1600 int ret = 0;
1601
1602 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1603 HRTIMER_MODE_ABS);
1604 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1605
1606 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1607 goto out;
1608
1609 rmtp = restart->nanosleep.rmtp;
1610 if (rmtp) {
1611 ret = update_rmtp(&t.timer, rmtp);
1612 if (ret <= 0)
1613 goto out;
1614 }
1615
1616 /* The other values in restart are already filled in */
1617 ret = -ERESTART_RESTARTBLOCK;
1618 out:
1619 destroy_hrtimer_on_stack(&t.timer);
1620 return ret;
1621 }
1622
1623 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1624 const enum hrtimer_mode mode, const clockid_t clockid)
1625 {
1626 struct restart_block *restart;
1627 struct hrtimer_sleeper t;
1628 int ret = 0;
1629 unsigned long slack;
1630
1631 slack = current->timer_slack_ns;
1632 if (rt_task(current))
1633 slack = 0;
1634
1635 hrtimer_init_on_stack(&t.timer, clockid, mode);
1636 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1637 if (do_nanosleep(&t, mode))
1638 goto out;
1639
1640 /* Absolute timers do not update the rmtp value and restart: */
1641 if (mode == HRTIMER_MODE_ABS) {
1642 ret = -ERESTARTNOHAND;
1643 goto out;
1644 }
1645
1646 if (rmtp) {
1647 ret = update_rmtp(&t.timer, rmtp);
1648 if (ret <= 0)
1649 goto out;
1650 }
1651
1652 restart = &current_thread_info()->restart_block;
1653 restart->fn = hrtimer_nanosleep_restart;
1654 restart->nanosleep.clockid = t.timer.base->clockid;
1655 restart->nanosleep.rmtp = rmtp;
1656 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1657
1658 ret = -ERESTART_RESTARTBLOCK;
1659 out:
1660 destroy_hrtimer_on_stack(&t.timer);
1661 return ret;
1662 }
1663
1664 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1665 struct timespec __user *, rmtp)
1666 {
1667 struct timespec tu;
1668
1669 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1670 return -EFAULT;
1671
1672 if (!timespec_valid(&tu))
1673 return -EINVAL;
1674
1675 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1676 }
1677
1678 /*
1679 * Functions related to boot-time initialization:
1680 */
1681 static void __cpuinit init_hrtimers_cpu(int cpu)
1682 {
1683 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1684 int i;
1685
1686 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1687 cpu_base->clock_base[i].cpu_base = cpu_base;
1688 timerqueue_init_head(&cpu_base->clock_base[i].active);
1689 }
1690
1691 hrtimer_init_hres(cpu_base);
1692 }
1693
1694 #ifdef CONFIG_HOTPLUG_CPU
1695
1696 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1697 struct hrtimer_clock_base *new_base)
1698 {
1699 struct hrtimer *timer;
1700 struct timerqueue_node *node;
1701
1702 while ((node = timerqueue_getnext(&old_base->active))) {
1703 timer = container_of(node, struct hrtimer, node);
1704 BUG_ON(hrtimer_callback_running(timer));
1705 debug_deactivate(timer);
1706
1707 /*
1708 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1709 * timer could be seen as !active and just vanish away
1710 * under us on another CPU
1711 */
1712 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1713 timer->base = new_base;
1714 /*
1715 * Enqueue the timers on the new cpu. This does not
1716 * reprogram the event device in case the timer
1717 * expires before the earliest on this CPU, but we run
1718 * hrtimer_interrupt after we migrated everything to
1719 * sort out already expired timers and reprogram the
1720 * event device.
1721 */
1722 enqueue_hrtimer(timer, new_base);
1723
1724 /* Clear the migration state bit */
1725 timer->state &= ~HRTIMER_STATE_MIGRATE;
1726 }
1727 }
1728
1729 static void migrate_hrtimers(int scpu)
1730 {
1731 struct hrtimer_cpu_base *old_base, *new_base;
1732 int i;
1733
1734 BUG_ON(cpu_online(scpu));
1735 tick_cancel_sched_timer(scpu);
1736
1737 local_irq_disable();
1738 old_base = &per_cpu(hrtimer_bases, scpu);
1739 new_base = &__get_cpu_var(hrtimer_bases);
1740 /*
1741 * The caller is globally serialized and nobody else
1742 * takes two locks at once, deadlock is not possible.
1743 */
1744 raw_spin_lock(&new_base->lock);
1745 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1746
1747 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1748 migrate_hrtimer_list(&old_base->clock_base[i],
1749 &new_base->clock_base[i]);
1750 }
1751
1752 raw_spin_unlock(&old_base->lock);
1753 raw_spin_unlock(&new_base->lock);
1754
1755 /* Check, if we got expired work to do */
1756 __hrtimer_peek_ahead_timers();
1757 local_irq_enable();
1758 }
1759
1760 #endif /* CONFIG_HOTPLUG_CPU */
1761
1762 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1763 unsigned long action, void *hcpu)
1764 {
1765 int scpu = (long)hcpu;
1766
1767 switch (action) {
1768
1769 case CPU_UP_PREPARE:
1770 case CPU_UP_PREPARE_FROZEN:
1771 init_hrtimers_cpu(scpu);
1772 break;
1773
1774 #ifdef CONFIG_HOTPLUG_CPU
1775 case CPU_DYING:
1776 case CPU_DYING_FROZEN:
1777 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1778 break;
1779 case CPU_DEAD:
1780 case CPU_DEAD_FROZEN:
1781 {
1782 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1783 migrate_hrtimers(scpu);
1784 break;
1785 }
1786 #endif
1787
1788 default:
1789 break;
1790 }
1791
1792 return NOTIFY_OK;
1793 }
1794
1795 static struct notifier_block __cpuinitdata hrtimers_nb = {
1796 .notifier_call = hrtimer_cpu_notify,
1797 };
1798
1799 void __init hrtimers_init(void)
1800 {
1801 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1802 (void *)(long)smp_processor_id());
1803 register_cpu_notifier(&hrtimers_nb);
1804 #ifdef CONFIG_HIGH_RES_TIMERS
1805 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1806 #endif
1807 }
1808
1809 /**
1810 * schedule_hrtimeout_range_clock - sleep until timeout
1811 * @expires: timeout value (ktime_t)
1812 * @delta: slack in expires timeout (ktime_t)
1813 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1814 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1815 */
1816 int __sched
1817 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1818 const enum hrtimer_mode mode, int clock)
1819 {
1820 struct hrtimer_sleeper t;
1821
1822 /*
1823 * Optimize when a zero timeout value is given. It does not
1824 * matter whether this is an absolute or a relative time.
1825 */
1826 if (expires && !expires->tv64) {
1827 __set_current_state(TASK_RUNNING);
1828 return 0;
1829 }
1830
1831 /*
1832 * A NULL parameter means "infinite"
1833 */
1834 if (!expires) {
1835 schedule();
1836 __set_current_state(TASK_RUNNING);
1837 return -EINTR;
1838 }
1839
1840 hrtimer_init_on_stack(&t.timer, clock, mode);
1841 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1842
1843 hrtimer_init_sleeper(&t, current);
1844
1845 hrtimer_start_expires(&t.timer, mode);
1846 if (!hrtimer_active(&t.timer))
1847 t.task = NULL;
1848
1849 if (likely(t.task))
1850 schedule();
1851
1852 hrtimer_cancel(&t.timer);
1853 destroy_hrtimer_on_stack(&t.timer);
1854
1855 __set_current_state(TASK_RUNNING);
1856
1857 return !t.task ? 0 : -EINTR;
1858 }
1859
1860 /**
1861 * schedule_hrtimeout_range - sleep until timeout
1862 * @expires: timeout value (ktime_t)
1863 * @delta: slack in expires timeout (ktime_t)
1864 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1865 *
1866 * Make the current task sleep until the given expiry time has
1867 * elapsed. The routine will return immediately unless
1868 * the current task state has been set (see set_current_state()).
1869 *
1870 * The @delta argument gives the kernel the freedom to schedule the
1871 * actual wakeup to a time that is both power and performance friendly.
1872 * The kernel give the normal best effort behavior for "@expires+@delta",
1873 * but may decide to fire the timer earlier, but no earlier than @expires.
1874 *
1875 * You can set the task state as follows -
1876 *
1877 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1878 * pass before the routine returns.
1879 *
1880 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1881 * delivered to the current task.
1882 *
1883 * The current task state is guaranteed to be TASK_RUNNING when this
1884 * routine returns.
1885 *
1886 * Returns 0 when the timer has expired otherwise -EINTR
1887 */
1888 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1889 const enum hrtimer_mode mode)
1890 {
1891 return schedule_hrtimeout_range_clock(expires, delta, mode,
1892 CLOCK_MONOTONIC);
1893 }
1894 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1895
1896 /**
1897 * schedule_hrtimeout - sleep until timeout
1898 * @expires: timeout value (ktime_t)
1899 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1900 *
1901 * Make the current task sleep until the given expiry time has
1902 * elapsed. The routine will return immediately unless
1903 * the current task state has been set (see set_current_state()).
1904 *
1905 * You can set the task state as follows -
1906 *
1907 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1908 * pass before the routine returns.
1909 *
1910 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1911 * delivered to the current task.
1912 *
1913 * The current task state is guaranteed to be TASK_RUNNING when this
1914 * routine returns.
1915 *
1916 * Returns 0 when the timer has expired otherwise -EINTR
1917 */
1918 int __sched schedule_hrtimeout(ktime_t *expires,
1919 const enum hrtimer_mode mode)
1920 {
1921 return schedule_hrtimeout_range(expires, 0, mode);
1922 }
1923 EXPORT_SYMBOL_GPL(schedule_hrtimeout);