printk: do cond_resched() between lines while outputting to consoles
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65
66 #include <asm/futex.h>
67
68 #include "rtmutex_common.h"
69
70 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
71 int __read_mostly futex_cmpxchg_enabled;
72 #endif
73
74 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
75
76 /*
77 * Futex flags used to encode options to functions and preserve them across
78 * restarts.
79 */
80 #define FLAGS_SHARED 0x01
81 #define FLAGS_CLOCKRT 0x02
82 #define FLAGS_HAS_TIMEOUT 0x04
83
84 /*
85 * Priority Inheritance state:
86 */
87 struct futex_pi_state {
88 /*
89 * list of 'owned' pi_state instances - these have to be
90 * cleaned up in do_exit() if the task exits prematurely:
91 */
92 struct list_head list;
93
94 /*
95 * The PI object:
96 */
97 struct rt_mutex pi_mutex;
98
99 struct task_struct *owner;
100 atomic_t refcount;
101
102 union futex_key key;
103 };
104
105 /**
106 * struct futex_q - The hashed futex queue entry, one per waiting task
107 * @list: priority-sorted list of tasks waiting on this futex
108 * @task: the task waiting on the futex
109 * @lock_ptr: the hash bucket lock
110 * @key: the key the futex is hashed on
111 * @pi_state: optional priority inheritance state
112 * @rt_waiter: rt_waiter storage for use with requeue_pi
113 * @requeue_pi_key: the requeue_pi target futex key
114 * @bitset: bitset for the optional bitmasked wakeup
115 *
116 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
117 * we can wake only the relevant ones (hashed queues may be shared).
118 *
119 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
120 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
121 * The order of wakeup is always to make the first condition true, then
122 * the second.
123 *
124 * PI futexes are typically woken before they are removed from the hash list via
125 * the rt_mutex code. See unqueue_me_pi().
126 */
127 struct futex_q {
128 struct plist_node list;
129
130 struct task_struct *task;
131 spinlock_t *lock_ptr;
132 union futex_key key;
133 struct futex_pi_state *pi_state;
134 struct rt_mutex_waiter *rt_waiter;
135 union futex_key *requeue_pi_key;
136 u32 bitset;
137 };
138
139 static const struct futex_q futex_q_init = {
140 /* list gets initialized in queue_me()*/
141 .key = FUTEX_KEY_INIT,
142 .bitset = FUTEX_BITSET_MATCH_ANY
143 };
144
145 /*
146 * Hash buckets are shared by all the futex_keys that hash to the same
147 * location. Each key may have multiple futex_q structures, one for each task
148 * waiting on a futex.
149 */
150 struct futex_hash_bucket {
151 spinlock_t lock;
152 struct plist_head chain;
153 };
154
155 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
156
157 /*
158 * We hash on the keys returned from get_futex_key (see below).
159 */
160 static struct futex_hash_bucket *hash_futex(union futex_key *key)
161 {
162 u32 hash = jhash2((u32*)&key->both.word,
163 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
164 key->both.offset);
165 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
166 }
167
168 /*
169 * Return 1 if two futex_keys are equal, 0 otherwise.
170 */
171 static inline int match_futex(union futex_key *key1, union futex_key *key2)
172 {
173 return (key1 && key2
174 && key1->both.word == key2->both.word
175 && key1->both.ptr == key2->both.ptr
176 && key1->both.offset == key2->both.offset);
177 }
178
179 /*
180 * Take a reference to the resource addressed by a key.
181 * Can be called while holding spinlocks.
182 *
183 */
184 static void get_futex_key_refs(union futex_key *key)
185 {
186 if (!key->both.ptr)
187 return;
188
189 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
190 case FUT_OFF_INODE:
191 ihold(key->shared.inode);
192 break;
193 case FUT_OFF_MMSHARED:
194 atomic_inc(&key->private.mm->mm_count);
195 break;
196 }
197 }
198
199 /*
200 * Drop a reference to the resource addressed by a key.
201 * The hash bucket spinlock must not be held.
202 */
203 static void drop_futex_key_refs(union futex_key *key)
204 {
205 if (!key->both.ptr) {
206 /* If we're here then we tried to put a key we failed to get */
207 WARN_ON_ONCE(1);
208 return;
209 }
210
211 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
212 case FUT_OFF_INODE:
213 iput(key->shared.inode);
214 break;
215 case FUT_OFF_MMSHARED:
216 mmdrop(key->private.mm);
217 break;
218 }
219 }
220
221 /**
222 * get_futex_key() - Get parameters which are the keys for a futex
223 * @uaddr: virtual address of the futex
224 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
225 * @key: address where result is stored.
226 * @rw: mapping needs to be read/write (values: VERIFY_READ,
227 * VERIFY_WRITE)
228 *
229 * Return: a negative error code or 0
230 *
231 * The key words are stored in *key on success.
232 *
233 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
234 * offset_within_page). For private mappings, it's (uaddr, current->mm).
235 * We can usually work out the index without swapping in the page.
236 *
237 * lock_page() might sleep, the caller should not hold a spinlock.
238 */
239 static int
240 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
241 {
242 unsigned long address = (unsigned long)uaddr;
243 struct mm_struct *mm = current->mm;
244 struct page *page, *page_head;
245 int err, ro = 0;
246
247 /*
248 * The futex address must be "naturally" aligned.
249 */
250 key->both.offset = address % PAGE_SIZE;
251 if (unlikely((address % sizeof(u32)) != 0))
252 return -EINVAL;
253 address -= key->both.offset;
254
255 /*
256 * PROCESS_PRIVATE futexes are fast.
257 * As the mm cannot disappear under us and the 'key' only needs
258 * virtual address, we dont even have to find the underlying vma.
259 * Note : We do have to check 'uaddr' is a valid user address,
260 * but access_ok() should be faster than find_vma()
261 */
262 if (!fshared) {
263 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
264 return -EFAULT;
265 key->private.mm = mm;
266 key->private.address = address;
267 get_futex_key_refs(key);
268 return 0;
269 }
270
271 again:
272 err = get_user_pages_fast(address, 1, 1, &page);
273 /*
274 * If write access is not required (eg. FUTEX_WAIT), try
275 * and get read-only access.
276 */
277 if (err == -EFAULT && rw == VERIFY_READ) {
278 err = get_user_pages_fast(address, 1, 0, &page);
279 ro = 1;
280 }
281 if (err < 0)
282 return err;
283 else
284 err = 0;
285
286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
287 page_head = page;
288 if (unlikely(PageTail(page))) {
289 put_page(page);
290 /* serialize against __split_huge_page_splitting() */
291 local_irq_disable();
292 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
293 page_head = compound_head(page);
294 /*
295 * page_head is valid pointer but we must pin
296 * it before taking the PG_lock and/or
297 * PG_compound_lock. The moment we re-enable
298 * irqs __split_huge_page_splitting() can
299 * return and the head page can be freed from
300 * under us. We can't take the PG_lock and/or
301 * PG_compound_lock on a page that could be
302 * freed from under us.
303 */
304 if (page != page_head) {
305 get_page(page_head);
306 put_page(page);
307 }
308 local_irq_enable();
309 } else {
310 local_irq_enable();
311 goto again;
312 }
313 }
314 #else
315 page_head = compound_head(page);
316 if (page != page_head) {
317 get_page(page_head);
318 put_page(page);
319 }
320 #endif
321
322 lock_page(page_head);
323
324 /*
325 * If page_head->mapping is NULL, then it cannot be a PageAnon
326 * page; but it might be the ZERO_PAGE or in the gate area or
327 * in a special mapping (all cases which we are happy to fail);
328 * or it may have been a good file page when get_user_pages_fast
329 * found it, but truncated or holepunched or subjected to
330 * invalidate_complete_page2 before we got the page lock (also
331 * cases which we are happy to fail). And we hold a reference,
332 * so refcount care in invalidate_complete_page's remove_mapping
333 * prevents drop_caches from setting mapping to NULL beneath us.
334 *
335 * The case we do have to guard against is when memory pressure made
336 * shmem_writepage move it from filecache to swapcache beneath us:
337 * an unlikely race, but we do need to retry for page_head->mapping.
338 */
339 if (!page_head->mapping) {
340 int shmem_swizzled = PageSwapCache(page_head);
341 unlock_page(page_head);
342 put_page(page_head);
343 if (shmem_swizzled)
344 goto again;
345 return -EFAULT;
346 }
347
348 /*
349 * Private mappings are handled in a simple way.
350 *
351 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
352 * it's a read-only handle, it's expected that futexes attach to
353 * the object not the particular process.
354 */
355 if (PageAnon(page_head)) {
356 /*
357 * A RO anonymous page will never change and thus doesn't make
358 * sense for futex operations.
359 */
360 if (ro) {
361 err = -EFAULT;
362 goto out;
363 }
364
365 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
366 key->private.mm = mm;
367 key->private.address = address;
368 } else {
369 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
370 key->shared.inode = page_head->mapping->host;
371 key->shared.pgoff = basepage_index(page);
372 }
373
374 get_futex_key_refs(key);
375
376 out:
377 unlock_page(page_head);
378 put_page(page_head);
379 return err;
380 }
381
382 static inline void put_futex_key(union futex_key *key)
383 {
384 drop_futex_key_refs(key);
385 }
386
387 /**
388 * fault_in_user_writeable() - Fault in user address and verify RW access
389 * @uaddr: pointer to faulting user space address
390 *
391 * Slow path to fixup the fault we just took in the atomic write
392 * access to @uaddr.
393 *
394 * We have no generic implementation of a non-destructive write to the
395 * user address. We know that we faulted in the atomic pagefault
396 * disabled section so we can as well avoid the #PF overhead by
397 * calling get_user_pages() right away.
398 */
399 static int fault_in_user_writeable(u32 __user *uaddr)
400 {
401 struct mm_struct *mm = current->mm;
402 int ret;
403
404 down_read(&mm->mmap_sem);
405 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
406 FAULT_FLAG_WRITE);
407 up_read(&mm->mmap_sem);
408
409 return ret < 0 ? ret : 0;
410 }
411
412 /**
413 * futex_top_waiter() - Return the highest priority waiter on a futex
414 * @hb: the hash bucket the futex_q's reside in
415 * @key: the futex key (to distinguish it from other futex futex_q's)
416 *
417 * Must be called with the hb lock held.
418 */
419 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
420 union futex_key *key)
421 {
422 struct futex_q *this;
423
424 plist_for_each_entry(this, &hb->chain, list) {
425 if (match_futex(&this->key, key))
426 return this;
427 }
428 return NULL;
429 }
430
431 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
432 u32 uval, u32 newval)
433 {
434 int ret;
435
436 pagefault_disable();
437 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
438 pagefault_enable();
439
440 return ret;
441 }
442
443 static int get_futex_value_locked(u32 *dest, u32 __user *from)
444 {
445 int ret;
446
447 pagefault_disable();
448 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
449 pagefault_enable();
450
451 return ret ? -EFAULT : 0;
452 }
453
454
455 /*
456 * PI code:
457 */
458 static int refill_pi_state_cache(void)
459 {
460 struct futex_pi_state *pi_state;
461
462 if (likely(current->pi_state_cache))
463 return 0;
464
465 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
466
467 if (!pi_state)
468 return -ENOMEM;
469
470 INIT_LIST_HEAD(&pi_state->list);
471 /* pi_mutex gets initialized later */
472 pi_state->owner = NULL;
473 atomic_set(&pi_state->refcount, 1);
474 pi_state->key = FUTEX_KEY_INIT;
475
476 current->pi_state_cache = pi_state;
477
478 return 0;
479 }
480
481 static struct futex_pi_state * alloc_pi_state(void)
482 {
483 struct futex_pi_state *pi_state = current->pi_state_cache;
484
485 WARN_ON(!pi_state);
486 current->pi_state_cache = NULL;
487
488 return pi_state;
489 }
490
491 static void free_pi_state(struct futex_pi_state *pi_state)
492 {
493 if (!atomic_dec_and_test(&pi_state->refcount))
494 return;
495
496 /*
497 * If pi_state->owner is NULL, the owner is most probably dying
498 * and has cleaned up the pi_state already
499 */
500 if (pi_state->owner) {
501 raw_spin_lock_irq(&pi_state->owner->pi_lock);
502 list_del_init(&pi_state->list);
503 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
504
505 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
506 }
507
508 if (current->pi_state_cache)
509 kfree(pi_state);
510 else {
511 /*
512 * pi_state->list is already empty.
513 * clear pi_state->owner.
514 * refcount is at 0 - put it back to 1.
515 */
516 pi_state->owner = NULL;
517 atomic_set(&pi_state->refcount, 1);
518 current->pi_state_cache = pi_state;
519 }
520 }
521
522 /*
523 * Look up the task based on what TID userspace gave us.
524 * We dont trust it.
525 */
526 static struct task_struct * futex_find_get_task(pid_t pid)
527 {
528 struct task_struct *p;
529
530 rcu_read_lock();
531 p = find_task_by_vpid(pid);
532 if (p)
533 get_task_struct(p);
534
535 rcu_read_unlock();
536
537 return p;
538 }
539
540 /*
541 * This task is holding PI mutexes at exit time => bad.
542 * Kernel cleans up PI-state, but userspace is likely hosed.
543 * (Robust-futex cleanup is separate and might save the day for userspace.)
544 */
545 void exit_pi_state_list(struct task_struct *curr)
546 {
547 struct list_head *next, *head = &curr->pi_state_list;
548 struct futex_pi_state *pi_state;
549 struct futex_hash_bucket *hb;
550 union futex_key key = FUTEX_KEY_INIT;
551
552 if (!futex_cmpxchg_enabled)
553 return;
554 /*
555 * We are a ZOMBIE and nobody can enqueue itself on
556 * pi_state_list anymore, but we have to be careful
557 * versus waiters unqueueing themselves:
558 */
559 raw_spin_lock_irq(&curr->pi_lock);
560 while (!list_empty(head)) {
561
562 next = head->next;
563 pi_state = list_entry(next, struct futex_pi_state, list);
564 key = pi_state->key;
565 hb = hash_futex(&key);
566 raw_spin_unlock_irq(&curr->pi_lock);
567
568 spin_lock(&hb->lock);
569
570 raw_spin_lock_irq(&curr->pi_lock);
571 /*
572 * We dropped the pi-lock, so re-check whether this
573 * task still owns the PI-state:
574 */
575 if (head->next != next) {
576 spin_unlock(&hb->lock);
577 continue;
578 }
579
580 WARN_ON(pi_state->owner != curr);
581 WARN_ON(list_empty(&pi_state->list));
582 list_del_init(&pi_state->list);
583 pi_state->owner = NULL;
584 raw_spin_unlock_irq(&curr->pi_lock);
585
586 rt_mutex_unlock(&pi_state->pi_mutex);
587
588 spin_unlock(&hb->lock);
589
590 raw_spin_lock_irq(&curr->pi_lock);
591 }
592 raw_spin_unlock_irq(&curr->pi_lock);
593 }
594
595 /*
596 * We need to check the following states:
597 *
598 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
599 *
600 * [1] NULL | --- | --- | 0 | 0/1 | Valid
601 * [2] NULL | --- | --- | >0 | 0/1 | Valid
602 *
603 * [3] Found | NULL | -- | Any | 0/1 | Invalid
604 *
605 * [4] Found | Found | NULL | 0 | 1 | Valid
606 * [5] Found | Found | NULL | >0 | 1 | Invalid
607 *
608 * [6] Found | Found | task | 0 | 1 | Valid
609 *
610 * [7] Found | Found | NULL | Any | 0 | Invalid
611 *
612 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
613 * [9] Found | Found | task | 0 | 0 | Invalid
614 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
615 *
616 * [1] Indicates that the kernel can acquire the futex atomically. We
617 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
618 *
619 * [2] Valid, if TID does not belong to a kernel thread. If no matching
620 * thread is found then it indicates that the owner TID has died.
621 *
622 * [3] Invalid. The waiter is queued on a non PI futex
623 *
624 * [4] Valid state after exit_robust_list(), which sets the user space
625 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
626 *
627 * [5] The user space value got manipulated between exit_robust_list()
628 * and exit_pi_state_list()
629 *
630 * [6] Valid state after exit_pi_state_list() which sets the new owner in
631 * the pi_state but cannot access the user space value.
632 *
633 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
634 *
635 * [8] Owner and user space value match
636 *
637 * [9] There is no transient state which sets the user space TID to 0
638 * except exit_robust_list(), but this is indicated by the
639 * FUTEX_OWNER_DIED bit. See [4]
640 *
641 * [10] There is no transient state which leaves owner and user space
642 * TID out of sync.
643 */
644 static int
645 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
646 union futex_key *key, struct futex_pi_state **ps)
647 {
648 struct futex_pi_state *pi_state = NULL;
649 struct futex_q *this, *next;
650 struct plist_head *head;
651 struct task_struct *p;
652 pid_t pid = uval & FUTEX_TID_MASK;
653
654 head = &hb->chain;
655
656 plist_for_each_entry_safe(this, next, head, list) {
657 if (match_futex(&this->key, key)) {
658 /*
659 * Sanity check the waiter before increasing
660 * the refcount and attaching to it.
661 */
662 pi_state = this->pi_state;
663 /*
664 * Userspace might have messed up non-PI and
665 * PI futexes [3]
666 */
667 if (unlikely(!pi_state))
668 return -EINVAL;
669
670 WARN_ON(!atomic_read(&pi_state->refcount));
671
672 /*
673 * Handle the owner died case:
674 */
675 if (uval & FUTEX_OWNER_DIED) {
676 /*
677 * exit_pi_state_list sets owner to NULL and
678 * wakes the topmost waiter. The task which
679 * acquires the pi_state->rt_mutex will fixup
680 * owner.
681 */
682 if (!pi_state->owner) {
683 /*
684 * No pi state owner, but the user
685 * space TID is not 0. Inconsistent
686 * state. [5]
687 */
688 if (pid)
689 return -EINVAL;
690 /*
691 * Take a ref on the state and
692 * return. [4]
693 */
694 goto out_state;
695 }
696
697 /*
698 * If TID is 0, then either the dying owner
699 * has not yet executed exit_pi_state_list()
700 * or some waiter acquired the rtmutex in the
701 * pi state, but did not yet fixup the TID in
702 * user space.
703 *
704 * Take a ref on the state and return. [6]
705 */
706 if (!pid)
707 goto out_state;
708 } else {
709 /*
710 * If the owner died bit is not set,
711 * then the pi_state must have an
712 * owner. [7]
713 */
714 if (!pi_state->owner)
715 return -EINVAL;
716 }
717
718 /*
719 * Bail out if user space manipulated the
720 * futex value. If pi state exists then the
721 * owner TID must be the same as the user
722 * space TID. [9/10]
723 */
724 if (pid != task_pid_vnr(pi_state->owner))
725 return -EINVAL;
726
727 out_state:
728 atomic_inc(&pi_state->refcount);
729 *ps = pi_state;
730 return 0;
731 }
732 }
733
734 /*
735 * We are the first waiter - try to look up the real owner and attach
736 * the new pi_state to it, but bail out when TID = 0 [1]
737 */
738 if (!pid)
739 return -ESRCH;
740 p = futex_find_get_task(pid);
741 if (!p)
742 return -ESRCH;
743
744 if (!p->mm) {
745 put_task_struct(p);
746 return -EPERM;
747 }
748
749 /*
750 * We need to look at the task state flags to figure out,
751 * whether the task is exiting. To protect against the do_exit
752 * change of the task flags, we do this protected by
753 * p->pi_lock:
754 */
755 raw_spin_lock_irq(&p->pi_lock);
756 if (unlikely(p->flags & PF_EXITING)) {
757 /*
758 * The task is on the way out. When PF_EXITPIDONE is
759 * set, we know that the task has finished the
760 * cleanup:
761 */
762 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
763
764 raw_spin_unlock_irq(&p->pi_lock);
765 put_task_struct(p);
766 return ret;
767 }
768
769 /*
770 * No existing pi state. First waiter. [2]
771 */
772 pi_state = alloc_pi_state();
773
774 /*
775 * Initialize the pi_mutex in locked state and make 'p'
776 * the owner of it:
777 */
778 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
779
780 /* Store the key for possible exit cleanups: */
781 pi_state->key = *key;
782
783 WARN_ON(!list_empty(&pi_state->list));
784 list_add(&pi_state->list, &p->pi_state_list);
785 pi_state->owner = p;
786 raw_spin_unlock_irq(&p->pi_lock);
787
788 put_task_struct(p);
789
790 *ps = pi_state;
791
792 return 0;
793 }
794
795 /**
796 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
797 * @uaddr: the pi futex user address
798 * @hb: the pi futex hash bucket
799 * @key: the futex key associated with uaddr and hb
800 * @ps: the pi_state pointer where we store the result of the
801 * lookup
802 * @task: the task to perform the atomic lock work for. This will
803 * be "current" except in the case of requeue pi.
804 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
805 *
806 * Return:
807 * 0 - ready to wait;
808 * 1 - acquired the lock;
809 * <0 - error
810 *
811 * The hb->lock and futex_key refs shall be held by the caller.
812 */
813 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
814 union futex_key *key,
815 struct futex_pi_state **ps,
816 struct task_struct *task, int set_waiters)
817 {
818 int lock_taken, ret, force_take = 0;
819 u32 uval, newval, curval, vpid = task_pid_vnr(task);
820
821 retry:
822 ret = lock_taken = 0;
823
824 /*
825 * To avoid races, we attempt to take the lock here again
826 * (by doing a 0 -> TID atomic cmpxchg), while holding all
827 * the locks. It will most likely not succeed.
828 */
829 newval = vpid;
830 if (set_waiters)
831 newval |= FUTEX_WAITERS;
832
833 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
834 return -EFAULT;
835
836 /*
837 * Detect deadlocks.
838 */
839 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
840 return -EDEADLK;
841
842 /*
843 * Surprise - we got the lock, but we do not trust user space at all.
844 */
845 if (unlikely(!curval)) {
846 /*
847 * We verify whether there is kernel state for this
848 * futex. If not, we can safely assume, that the 0 ->
849 * TID transition is correct. If state exists, we do
850 * not bother to fixup the user space state as it was
851 * corrupted already.
852 */
853 return futex_top_waiter(hb, key) ? -EINVAL : 1;
854 }
855
856 uval = curval;
857
858 /*
859 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
860 * to wake at the next unlock.
861 */
862 newval = curval | FUTEX_WAITERS;
863
864 /*
865 * Should we force take the futex? See below.
866 */
867 if (unlikely(force_take)) {
868 /*
869 * Keep the OWNER_DIED and the WAITERS bit and set the
870 * new TID value.
871 */
872 newval = (curval & ~FUTEX_TID_MASK) | vpid;
873 force_take = 0;
874 lock_taken = 1;
875 }
876
877 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
878 return -EFAULT;
879 if (unlikely(curval != uval))
880 goto retry;
881
882 /*
883 * We took the lock due to forced take over.
884 */
885 if (unlikely(lock_taken))
886 return 1;
887
888 /*
889 * We dont have the lock. Look up the PI state (or create it if
890 * we are the first waiter):
891 */
892 ret = lookup_pi_state(uval, hb, key, ps);
893
894 if (unlikely(ret)) {
895 switch (ret) {
896 case -ESRCH:
897 /*
898 * We failed to find an owner for this
899 * futex. So we have no pi_state to block
900 * on. This can happen in two cases:
901 *
902 * 1) The owner died
903 * 2) A stale FUTEX_WAITERS bit
904 *
905 * Re-read the futex value.
906 */
907 if (get_futex_value_locked(&curval, uaddr))
908 return -EFAULT;
909
910 /*
911 * If the owner died or we have a stale
912 * WAITERS bit the owner TID in the user space
913 * futex is 0.
914 */
915 if (!(curval & FUTEX_TID_MASK)) {
916 force_take = 1;
917 goto retry;
918 }
919 default:
920 break;
921 }
922 }
923
924 return ret;
925 }
926
927 /**
928 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
929 * @q: The futex_q to unqueue
930 *
931 * The q->lock_ptr must not be NULL and must be held by the caller.
932 */
933 static void __unqueue_futex(struct futex_q *q)
934 {
935 struct futex_hash_bucket *hb;
936
937 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
938 || WARN_ON(plist_node_empty(&q->list)))
939 return;
940
941 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
942 plist_del(&q->list, &hb->chain);
943 }
944
945 /*
946 * The hash bucket lock must be held when this is called.
947 * Afterwards, the futex_q must not be accessed.
948 */
949 static void wake_futex(struct futex_q *q)
950 {
951 struct task_struct *p = q->task;
952
953 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
954 return;
955
956 /*
957 * We set q->lock_ptr = NULL _before_ we wake up the task. If
958 * a non-futex wake up happens on another CPU then the task
959 * might exit and p would dereference a non-existing task
960 * struct. Prevent this by holding a reference on p across the
961 * wake up.
962 */
963 get_task_struct(p);
964
965 __unqueue_futex(q);
966 /*
967 * The waiting task can free the futex_q as soon as
968 * q->lock_ptr = NULL is written, without taking any locks. A
969 * memory barrier is required here to prevent the following
970 * store to lock_ptr from getting ahead of the plist_del.
971 */
972 smp_wmb();
973 q->lock_ptr = NULL;
974
975 wake_up_state(p, TASK_NORMAL);
976 put_task_struct(p);
977 }
978
979 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
980 {
981 struct task_struct *new_owner;
982 struct futex_pi_state *pi_state = this->pi_state;
983 u32 uninitialized_var(curval), newval;
984 int ret = 0;
985
986 if (!pi_state)
987 return -EINVAL;
988
989 /*
990 * If current does not own the pi_state then the futex is
991 * inconsistent and user space fiddled with the futex value.
992 */
993 if (pi_state->owner != current)
994 return -EINVAL;
995
996 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
997 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
998
999 /*
1000 * It is possible that the next waiter (the one that brought
1001 * this owner to the kernel) timed out and is no longer
1002 * waiting on the lock.
1003 */
1004 if (!new_owner)
1005 new_owner = this->task;
1006
1007 /*
1008 * We pass it to the next owner. The WAITERS bit is always
1009 * kept enabled while there is PI state around. We cleanup the
1010 * owner died bit, because we are the owner.
1011 */
1012 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1013
1014 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1015 ret = -EFAULT;
1016 else if (curval != uval)
1017 ret = -EINVAL;
1018 if (ret) {
1019 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1020 return ret;
1021 }
1022
1023 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1024 WARN_ON(list_empty(&pi_state->list));
1025 list_del_init(&pi_state->list);
1026 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1027
1028 raw_spin_lock_irq(&new_owner->pi_lock);
1029 WARN_ON(!list_empty(&pi_state->list));
1030 list_add(&pi_state->list, &new_owner->pi_state_list);
1031 pi_state->owner = new_owner;
1032 raw_spin_unlock_irq(&new_owner->pi_lock);
1033
1034 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1035 rt_mutex_unlock(&pi_state->pi_mutex);
1036
1037 return 0;
1038 }
1039
1040 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1041 {
1042 u32 uninitialized_var(oldval);
1043
1044 /*
1045 * There is no waiter, so we unlock the futex. The owner died
1046 * bit has not to be preserved here. We are the owner:
1047 */
1048 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1049 return -EFAULT;
1050 if (oldval != uval)
1051 return -EAGAIN;
1052
1053 return 0;
1054 }
1055
1056 /*
1057 * Express the locking dependencies for lockdep:
1058 */
1059 static inline void
1060 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1061 {
1062 if (hb1 <= hb2) {
1063 spin_lock(&hb1->lock);
1064 if (hb1 < hb2)
1065 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1066 } else { /* hb1 > hb2 */
1067 spin_lock(&hb2->lock);
1068 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1069 }
1070 }
1071
1072 static inline void
1073 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1074 {
1075 spin_unlock(&hb1->lock);
1076 if (hb1 != hb2)
1077 spin_unlock(&hb2->lock);
1078 }
1079
1080 /*
1081 * Wake up waiters matching bitset queued on this futex (uaddr).
1082 */
1083 static int
1084 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1085 {
1086 struct futex_hash_bucket *hb;
1087 struct futex_q *this, *next;
1088 struct plist_head *head;
1089 union futex_key key = FUTEX_KEY_INIT;
1090 int ret;
1091
1092 if (!bitset)
1093 return -EINVAL;
1094
1095 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1096 if (unlikely(ret != 0))
1097 goto out;
1098
1099 hb = hash_futex(&key);
1100 spin_lock(&hb->lock);
1101 head = &hb->chain;
1102
1103 plist_for_each_entry_safe(this, next, head, list) {
1104 if (match_futex (&this->key, &key)) {
1105 if (this->pi_state || this->rt_waiter) {
1106 ret = -EINVAL;
1107 break;
1108 }
1109
1110 /* Check if one of the bits is set in both bitsets */
1111 if (!(this->bitset & bitset))
1112 continue;
1113
1114 wake_futex(this);
1115 if (++ret >= nr_wake)
1116 break;
1117 }
1118 }
1119
1120 spin_unlock(&hb->lock);
1121 put_futex_key(&key);
1122 out:
1123 return ret;
1124 }
1125
1126 /*
1127 * Wake up all waiters hashed on the physical page that is mapped
1128 * to this virtual address:
1129 */
1130 static int
1131 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1132 int nr_wake, int nr_wake2, int op)
1133 {
1134 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1135 struct futex_hash_bucket *hb1, *hb2;
1136 struct plist_head *head;
1137 struct futex_q *this, *next;
1138 int ret, op_ret;
1139
1140 retry:
1141 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1142 if (unlikely(ret != 0))
1143 goto out;
1144 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1145 if (unlikely(ret != 0))
1146 goto out_put_key1;
1147
1148 hb1 = hash_futex(&key1);
1149 hb2 = hash_futex(&key2);
1150
1151 retry_private:
1152 double_lock_hb(hb1, hb2);
1153 op_ret = futex_atomic_op_inuser(op, uaddr2);
1154 if (unlikely(op_ret < 0)) {
1155
1156 double_unlock_hb(hb1, hb2);
1157
1158 #ifndef CONFIG_MMU
1159 /*
1160 * we don't get EFAULT from MMU faults if we don't have an MMU,
1161 * but we might get them from range checking
1162 */
1163 ret = op_ret;
1164 goto out_put_keys;
1165 #endif
1166
1167 if (unlikely(op_ret != -EFAULT)) {
1168 ret = op_ret;
1169 goto out_put_keys;
1170 }
1171
1172 ret = fault_in_user_writeable(uaddr2);
1173 if (ret)
1174 goto out_put_keys;
1175
1176 if (!(flags & FLAGS_SHARED))
1177 goto retry_private;
1178
1179 put_futex_key(&key2);
1180 put_futex_key(&key1);
1181 goto retry;
1182 }
1183
1184 head = &hb1->chain;
1185
1186 plist_for_each_entry_safe(this, next, head, list) {
1187 if (match_futex (&this->key, &key1)) {
1188 if (this->pi_state || this->rt_waiter) {
1189 ret = -EINVAL;
1190 goto out_unlock;
1191 }
1192 wake_futex(this);
1193 if (++ret >= nr_wake)
1194 break;
1195 }
1196 }
1197
1198 if (op_ret > 0) {
1199 head = &hb2->chain;
1200
1201 op_ret = 0;
1202 plist_for_each_entry_safe(this, next, head, list) {
1203 if (match_futex (&this->key, &key2)) {
1204 if (this->pi_state || this->rt_waiter) {
1205 ret = -EINVAL;
1206 goto out_unlock;
1207 }
1208 wake_futex(this);
1209 if (++op_ret >= nr_wake2)
1210 break;
1211 }
1212 }
1213 ret += op_ret;
1214 }
1215
1216 out_unlock:
1217 double_unlock_hb(hb1, hb2);
1218 out_put_keys:
1219 put_futex_key(&key2);
1220 out_put_key1:
1221 put_futex_key(&key1);
1222 out:
1223 return ret;
1224 }
1225
1226 /**
1227 * requeue_futex() - Requeue a futex_q from one hb to another
1228 * @q: the futex_q to requeue
1229 * @hb1: the source hash_bucket
1230 * @hb2: the target hash_bucket
1231 * @key2: the new key for the requeued futex_q
1232 */
1233 static inline
1234 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1235 struct futex_hash_bucket *hb2, union futex_key *key2)
1236 {
1237
1238 /*
1239 * If key1 and key2 hash to the same bucket, no need to
1240 * requeue.
1241 */
1242 if (likely(&hb1->chain != &hb2->chain)) {
1243 plist_del(&q->list, &hb1->chain);
1244 plist_add(&q->list, &hb2->chain);
1245 q->lock_ptr = &hb2->lock;
1246 }
1247 get_futex_key_refs(key2);
1248 q->key = *key2;
1249 }
1250
1251 /**
1252 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1253 * @q: the futex_q
1254 * @key: the key of the requeue target futex
1255 * @hb: the hash_bucket of the requeue target futex
1256 *
1257 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1258 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1259 * to the requeue target futex so the waiter can detect the wakeup on the right
1260 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1261 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1262 * to protect access to the pi_state to fixup the owner later. Must be called
1263 * with both q->lock_ptr and hb->lock held.
1264 */
1265 static inline
1266 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1267 struct futex_hash_bucket *hb)
1268 {
1269 get_futex_key_refs(key);
1270 q->key = *key;
1271
1272 __unqueue_futex(q);
1273
1274 WARN_ON(!q->rt_waiter);
1275 q->rt_waiter = NULL;
1276
1277 q->lock_ptr = &hb->lock;
1278
1279 wake_up_state(q->task, TASK_NORMAL);
1280 }
1281
1282 /**
1283 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1284 * @pifutex: the user address of the to futex
1285 * @hb1: the from futex hash bucket, must be locked by the caller
1286 * @hb2: the to futex hash bucket, must be locked by the caller
1287 * @key1: the from futex key
1288 * @key2: the to futex key
1289 * @ps: address to store the pi_state pointer
1290 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1291 *
1292 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1293 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1294 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1295 * hb1 and hb2 must be held by the caller.
1296 *
1297 * Return:
1298 * 0 - failed to acquire the lock atomically;
1299 * >0 - acquired the lock, return value is vpid of the top_waiter
1300 * <0 - error
1301 */
1302 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1303 struct futex_hash_bucket *hb1,
1304 struct futex_hash_bucket *hb2,
1305 union futex_key *key1, union futex_key *key2,
1306 struct futex_pi_state **ps, int set_waiters)
1307 {
1308 struct futex_q *top_waiter = NULL;
1309 u32 curval;
1310 int ret, vpid;
1311
1312 if (get_futex_value_locked(&curval, pifutex))
1313 return -EFAULT;
1314
1315 /*
1316 * Find the top_waiter and determine if there are additional waiters.
1317 * If the caller intends to requeue more than 1 waiter to pifutex,
1318 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1319 * as we have means to handle the possible fault. If not, don't set
1320 * the bit unecessarily as it will force the subsequent unlock to enter
1321 * the kernel.
1322 */
1323 top_waiter = futex_top_waiter(hb1, key1);
1324
1325 /* There are no waiters, nothing for us to do. */
1326 if (!top_waiter)
1327 return 0;
1328
1329 /* Ensure we requeue to the expected futex. */
1330 if (!match_futex(top_waiter->requeue_pi_key, key2))
1331 return -EINVAL;
1332
1333 /*
1334 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1335 * the contended case or if set_waiters is 1. The pi_state is returned
1336 * in ps in contended cases.
1337 */
1338 vpid = task_pid_vnr(top_waiter->task);
1339 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1340 set_waiters);
1341 if (ret == 1) {
1342 requeue_pi_wake_futex(top_waiter, key2, hb2);
1343 return vpid;
1344 }
1345 return ret;
1346 }
1347
1348 /**
1349 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1350 * @uaddr1: source futex user address
1351 * @flags: futex flags (FLAGS_SHARED, etc.)
1352 * @uaddr2: target futex user address
1353 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1354 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1355 * @cmpval: @uaddr1 expected value (or %NULL)
1356 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1357 * pi futex (pi to pi requeue is not supported)
1358 *
1359 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1360 * uaddr2 atomically on behalf of the top waiter.
1361 *
1362 * Return:
1363 * >=0 - on success, the number of tasks requeued or woken;
1364 * <0 - on error
1365 */
1366 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1367 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1368 u32 *cmpval, int requeue_pi)
1369 {
1370 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1371 int drop_count = 0, task_count = 0, ret;
1372 struct futex_pi_state *pi_state = NULL;
1373 struct futex_hash_bucket *hb1, *hb2;
1374 struct plist_head *head1;
1375 struct futex_q *this, *next;
1376
1377 if (requeue_pi) {
1378 /*
1379 * Requeue PI only works on two distinct uaddrs. This
1380 * check is only valid for private futexes. See below.
1381 */
1382 if (uaddr1 == uaddr2)
1383 return -EINVAL;
1384
1385 /*
1386 * requeue_pi requires a pi_state, try to allocate it now
1387 * without any locks in case it fails.
1388 */
1389 if (refill_pi_state_cache())
1390 return -ENOMEM;
1391 /*
1392 * requeue_pi must wake as many tasks as it can, up to nr_wake
1393 * + nr_requeue, since it acquires the rt_mutex prior to
1394 * returning to userspace, so as to not leave the rt_mutex with
1395 * waiters and no owner. However, second and third wake-ups
1396 * cannot be predicted as they involve race conditions with the
1397 * first wake and a fault while looking up the pi_state. Both
1398 * pthread_cond_signal() and pthread_cond_broadcast() should
1399 * use nr_wake=1.
1400 */
1401 if (nr_wake != 1)
1402 return -EINVAL;
1403 }
1404
1405 retry:
1406 if (pi_state != NULL) {
1407 /*
1408 * We will have to lookup the pi_state again, so free this one
1409 * to keep the accounting correct.
1410 */
1411 free_pi_state(pi_state);
1412 pi_state = NULL;
1413 }
1414
1415 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1416 if (unlikely(ret != 0))
1417 goto out;
1418 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1419 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1420 if (unlikely(ret != 0))
1421 goto out_put_key1;
1422
1423 /*
1424 * The check above which compares uaddrs is not sufficient for
1425 * shared futexes. We need to compare the keys:
1426 */
1427 if (requeue_pi && match_futex(&key1, &key2)) {
1428 ret = -EINVAL;
1429 goto out_put_keys;
1430 }
1431
1432 hb1 = hash_futex(&key1);
1433 hb2 = hash_futex(&key2);
1434
1435 retry_private:
1436 double_lock_hb(hb1, hb2);
1437
1438 if (likely(cmpval != NULL)) {
1439 u32 curval;
1440
1441 ret = get_futex_value_locked(&curval, uaddr1);
1442
1443 if (unlikely(ret)) {
1444 double_unlock_hb(hb1, hb2);
1445
1446 ret = get_user(curval, uaddr1);
1447 if (ret)
1448 goto out_put_keys;
1449
1450 if (!(flags & FLAGS_SHARED))
1451 goto retry_private;
1452
1453 put_futex_key(&key2);
1454 put_futex_key(&key1);
1455 goto retry;
1456 }
1457 if (curval != *cmpval) {
1458 ret = -EAGAIN;
1459 goto out_unlock;
1460 }
1461 }
1462
1463 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1464 /*
1465 * Attempt to acquire uaddr2 and wake the top waiter. If we
1466 * intend to requeue waiters, force setting the FUTEX_WAITERS
1467 * bit. We force this here where we are able to easily handle
1468 * faults rather in the requeue loop below.
1469 */
1470 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1471 &key2, &pi_state, nr_requeue);
1472
1473 /*
1474 * At this point the top_waiter has either taken uaddr2 or is
1475 * waiting on it. If the former, then the pi_state will not
1476 * exist yet, look it up one more time to ensure we have a
1477 * reference to it. If the lock was taken, ret contains the
1478 * vpid of the top waiter task.
1479 */
1480 if (ret > 0) {
1481 WARN_ON(pi_state);
1482 drop_count++;
1483 task_count++;
1484 /*
1485 * If we acquired the lock, then the user
1486 * space value of uaddr2 should be vpid. It
1487 * cannot be changed by the top waiter as it
1488 * is blocked on hb2 lock if it tries to do
1489 * so. If something fiddled with it behind our
1490 * back the pi state lookup might unearth
1491 * it. So we rather use the known value than
1492 * rereading and handing potential crap to
1493 * lookup_pi_state.
1494 */
1495 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1496 }
1497
1498 switch (ret) {
1499 case 0:
1500 break;
1501 case -EFAULT:
1502 double_unlock_hb(hb1, hb2);
1503 put_futex_key(&key2);
1504 put_futex_key(&key1);
1505 ret = fault_in_user_writeable(uaddr2);
1506 if (!ret)
1507 goto retry;
1508 goto out;
1509 case -EAGAIN:
1510 /* The owner was exiting, try again. */
1511 double_unlock_hb(hb1, hb2);
1512 put_futex_key(&key2);
1513 put_futex_key(&key1);
1514 cond_resched();
1515 goto retry;
1516 default:
1517 goto out_unlock;
1518 }
1519 }
1520
1521 head1 = &hb1->chain;
1522 plist_for_each_entry_safe(this, next, head1, list) {
1523 if (task_count - nr_wake >= nr_requeue)
1524 break;
1525
1526 if (!match_futex(&this->key, &key1))
1527 continue;
1528
1529 /*
1530 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1531 * be paired with each other and no other futex ops.
1532 *
1533 * We should never be requeueing a futex_q with a pi_state,
1534 * which is awaiting a futex_unlock_pi().
1535 */
1536 if ((requeue_pi && !this->rt_waiter) ||
1537 (!requeue_pi && this->rt_waiter) ||
1538 this->pi_state) {
1539 ret = -EINVAL;
1540 break;
1541 }
1542
1543 /*
1544 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1545 * lock, we already woke the top_waiter. If not, it will be
1546 * woken by futex_unlock_pi().
1547 */
1548 if (++task_count <= nr_wake && !requeue_pi) {
1549 wake_futex(this);
1550 continue;
1551 }
1552
1553 /* Ensure we requeue to the expected futex for requeue_pi. */
1554 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1555 ret = -EINVAL;
1556 break;
1557 }
1558
1559 /*
1560 * Requeue nr_requeue waiters and possibly one more in the case
1561 * of requeue_pi if we couldn't acquire the lock atomically.
1562 */
1563 if (requeue_pi) {
1564 /* Prepare the waiter to take the rt_mutex. */
1565 atomic_inc(&pi_state->refcount);
1566 this->pi_state = pi_state;
1567 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1568 this->rt_waiter,
1569 this->task, 1);
1570 if (ret == 1) {
1571 /* We got the lock. */
1572 requeue_pi_wake_futex(this, &key2, hb2);
1573 drop_count++;
1574 continue;
1575 } else if (ret) {
1576 /* -EDEADLK */
1577 this->pi_state = NULL;
1578 free_pi_state(pi_state);
1579 goto out_unlock;
1580 }
1581 }
1582 requeue_futex(this, hb1, hb2, &key2);
1583 drop_count++;
1584 }
1585
1586 out_unlock:
1587 double_unlock_hb(hb1, hb2);
1588
1589 /*
1590 * drop_futex_key_refs() must be called outside the spinlocks. During
1591 * the requeue we moved futex_q's from the hash bucket at key1 to the
1592 * one at key2 and updated their key pointer. We no longer need to
1593 * hold the references to key1.
1594 */
1595 while (--drop_count >= 0)
1596 drop_futex_key_refs(&key1);
1597
1598 out_put_keys:
1599 put_futex_key(&key2);
1600 out_put_key1:
1601 put_futex_key(&key1);
1602 out:
1603 if (pi_state != NULL)
1604 free_pi_state(pi_state);
1605 return ret ? ret : task_count;
1606 }
1607
1608 /* The key must be already stored in q->key. */
1609 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1610 __acquires(&hb->lock)
1611 {
1612 struct futex_hash_bucket *hb;
1613
1614 hb = hash_futex(&q->key);
1615 q->lock_ptr = &hb->lock;
1616
1617 spin_lock(&hb->lock);
1618 return hb;
1619 }
1620
1621 static inline void
1622 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1623 __releases(&hb->lock)
1624 {
1625 spin_unlock(&hb->lock);
1626 }
1627
1628 /**
1629 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1630 * @q: The futex_q to enqueue
1631 * @hb: The destination hash bucket
1632 *
1633 * The hb->lock must be held by the caller, and is released here. A call to
1634 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1635 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1636 * or nothing if the unqueue is done as part of the wake process and the unqueue
1637 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1638 * an example).
1639 */
1640 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1641 __releases(&hb->lock)
1642 {
1643 int prio;
1644
1645 /*
1646 * The priority used to register this element is
1647 * - either the real thread-priority for the real-time threads
1648 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1649 * - or MAX_RT_PRIO for non-RT threads.
1650 * Thus, all RT-threads are woken first in priority order, and
1651 * the others are woken last, in FIFO order.
1652 */
1653 prio = min(current->normal_prio, MAX_RT_PRIO);
1654
1655 plist_node_init(&q->list, prio);
1656 plist_add(&q->list, &hb->chain);
1657 q->task = current;
1658 spin_unlock(&hb->lock);
1659 }
1660
1661 /**
1662 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1663 * @q: The futex_q to unqueue
1664 *
1665 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1666 * be paired with exactly one earlier call to queue_me().
1667 *
1668 * Return:
1669 * 1 - if the futex_q was still queued (and we removed unqueued it);
1670 * 0 - if the futex_q was already removed by the waking thread
1671 */
1672 static int unqueue_me(struct futex_q *q)
1673 {
1674 spinlock_t *lock_ptr;
1675 int ret = 0;
1676
1677 /* In the common case we don't take the spinlock, which is nice. */
1678 retry:
1679 lock_ptr = q->lock_ptr;
1680 barrier();
1681 if (lock_ptr != NULL) {
1682 spin_lock(lock_ptr);
1683 /*
1684 * q->lock_ptr can change between reading it and
1685 * spin_lock(), causing us to take the wrong lock. This
1686 * corrects the race condition.
1687 *
1688 * Reasoning goes like this: if we have the wrong lock,
1689 * q->lock_ptr must have changed (maybe several times)
1690 * between reading it and the spin_lock(). It can
1691 * change again after the spin_lock() but only if it was
1692 * already changed before the spin_lock(). It cannot,
1693 * however, change back to the original value. Therefore
1694 * we can detect whether we acquired the correct lock.
1695 */
1696 if (unlikely(lock_ptr != q->lock_ptr)) {
1697 spin_unlock(lock_ptr);
1698 goto retry;
1699 }
1700 __unqueue_futex(q);
1701
1702 BUG_ON(q->pi_state);
1703
1704 spin_unlock(lock_ptr);
1705 ret = 1;
1706 }
1707
1708 drop_futex_key_refs(&q->key);
1709 return ret;
1710 }
1711
1712 /*
1713 * PI futexes can not be requeued and must remove themself from the
1714 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1715 * and dropped here.
1716 */
1717 static void unqueue_me_pi(struct futex_q *q)
1718 __releases(q->lock_ptr)
1719 {
1720 __unqueue_futex(q);
1721
1722 BUG_ON(!q->pi_state);
1723 free_pi_state(q->pi_state);
1724 q->pi_state = NULL;
1725
1726 spin_unlock(q->lock_ptr);
1727 }
1728
1729 /*
1730 * Fixup the pi_state owner with the new owner.
1731 *
1732 * Must be called with hash bucket lock held and mm->sem held for non
1733 * private futexes.
1734 */
1735 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1736 struct task_struct *newowner)
1737 {
1738 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1739 struct futex_pi_state *pi_state = q->pi_state;
1740 struct task_struct *oldowner = pi_state->owner;
1741 u32 uval, uninitialized_var(curval), newval;
1742 int ret;
1743
1744 /* Owner died? */
1745 if (!pi_state->owner)
1746 newtid |= FUTEX_OWNER_DIED;
1747
1748 /*
1749 * We are here either because we stole the rtmutex from the
1750 * previous highest priority waiter or we are the highest priority
1751 * waiter but failed to get the rtmutex the first time.
1752 * We have to replace the newowner TID in the user space variable.
1753 * This must be atomic as we have to preserve the owner died bit here.
1754 *
1755 * Note: We write the user space value _before_ changing the pi_state
1756 * because we can fault here. Imagine swapped out pages or a fork
1757 * that marked all the anonymous memory readonly for cow.
1758 *
1759 * Modifying pi_state _before_ the user space value would
1760 * leave the pi_state in an inconsistent state when we fault
1761 * here, because we need to drop the hash bucket lock to
1762 * handle the fault. This might be observed in the PID check
1763 * in lookup_pi_state.
1764 */
1765 retry:
1766 if (get_futex_value_locked(&uval, uaddr))
1767 goto handle_fault;
1768
1769 while (1) {
1770 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1771
1772 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1773 goto handle_fault;
1774 if (curval == uval)
1775 break;
1776 uval = curval;
1777 }
1778
1779 /*
1780 * We fixed up user space. Now we need to fix the pi_state
1781 * itself.
1782 */
1783 if (pi_state->owner != NULL) {
1784 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1785 WARN_ON(list_empty(&pi_state->list));
1786 list_del_init(&pi_state->list);
1787 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1788 }
1789
1790 pi_state->owner = newowner;
1791
1792 raw_spin_lock_irq(&newowner->pi_lock);
1793 WARN_ON(!list_empty(&pi_state->list));
1794 list_add(&pi_state->list, &newowner->pi_state_list);
1795 raw_spin_unlock_irq(&newowner->pi_lock);
1796 return 0;
1797
1798 /*
1799 * To handle the page fault we need to drop the hash bucket
1800 * lock here. That gives the other task (either the highest priority
1801 * waiter itself or the task which stole the rtmutex) the
1802 * chance to try the fixup of the pi_state. So once we are
1803 * back from handling the fault we need to check the pi_state
1804 * after reacquiring the hash bucket lock and before trying to
1805 * do another fixup. When the fixup has been done already we
1806 * simply return.
1807 */
1808 handle_fault:
1809 spin_unlock(q->lock_ptr);
1810
1811 ret = fault_in_user_writeable(uaddr);
1812
1813 spin_lock(q->lock_ptr);
1814
1815 /*
1816 * Check if someone else fixed it for us:
1817 */
1818 if (pi_state->owner != oldowner)
1819 return 0;
1820
1821 if (ret)
1822 return ret;
1823
1824 goto retry;
1825 }
1826
1827 static long futex_wait_restart(struct restart_block *restart);
1828
1829 /**
1830 * fixup_owner() - Post lock pi_state and corner case management
1831 * @uaddr: user address of the futex
1832 * @q: futex_q (contains pi_state and access to the rt_mutex)
1833 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1834 *
1835 * After attempting to lock an rt_mutex, this function is called to cleanup
1836 * the pi_state owner as well as handle race conditions that may allow us to
1837 * acquire the lock. Must be called with the hb lock held.
1838 *
1839 * Return:
1840 * 1 - success, lock taken;
1841 * 0 - success, lock not taken;
1842 * <0 - on error (-EFAULT)
1843 */
1844 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1845 {
1846 struct task_struct *owner;
1847 int ret = 0;
1848
1849 if (locked) {
1850 /*
1851 * Got the lock. We might not be the anticipated owner if we
1852 * did a lock-steal - fix up the PI-state in that case:
1853 */
1854 if (q->pi_state->owner != current)
1855 ret = fixup_pi_state_owner(uaddr, q, current);
1856 goto out;
1857 }
1858
1859 /*
1860 * Catch the rare case, where the lock was released when we were on the
1861 * way back before we locked the hash bucket.
1862 */
1863 if (q->pi_state->owner == current) {
1864 /*
1865 * Try to get the rt_mutex now. This might fail as some other
1866 * task acquired the rt_mutex after we removed ourself from the
1867 * rt_mutex waiters list.
1868 */
1869 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1870 locked = 1;
1871 goto out;
1872 }
1873
1874 /*
1875 * pi_state is incorrect, some other task did a lock steal and
1876 * we returned due to timeout or signal without taking the
1877 * rt_mutex. Too late.
1878 */
1879 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1880 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1881 if (!owner)
1882 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1883 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1884 ret = fixup_pi_state_owner(uaddr, q, owner);
1885 goto out;
1886 }
1887
1888 /*
1889 * Paranoia check. If we did not take the lock, then we should not be
1890 * the owner of the rt_mutex.
1891 */
1892 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1893 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1894 "pi-state %p\n", ret,
1895 q->pi_state->pi_mutex.owner,
1896 q->pi_state->owner);
1897
1898 out:
1899 return ret ? ret : locked;
1900 }
1901
1902 /**
1903 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1904 * @hb: the futex hash bucket, must be locked by the caller
1905 * @q: the futex_q to queue up on
1906 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1907 */
1908 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1909 struct hrtimer_sleeper *timeout)
1910 {
1911 /*
1912 * The task state is guaranteed to be set before another task can
1913 * wake it. set_current_state() is implemented using set_mb() and
1914 * queue_me() calls spin_unlock() upon completion, both serializing
1915 * access to the hash list and forcing another memory barrier.
1916 */
1917 set_current_state(TASK_INTERRUPTIBLE);
1918 queue_me(q, hb);
1919
1920 /* Arm the timer */
1921 if (timeout) {
1922 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1923 if (!hrtimer_active(&timeout->timer))
1924 timeout->task = NULL;
1925 }
1926
1927 /*
1928 * If we have been removed from the hash list, then another task
1929 * has tried to wake us, and we can skip the call to schedule().
1930 */
1931 if (likely(!plist_node_empty(&q->list))) {
1932 /*
1933 * If the timer has already expired, current will already be
1934 * flagged for rescheduling. Only call schedule if there
1935 * is no timeout, or if it has yet to expire.
1936 */
1937 if (!timeout || timeout->task)
1938 schedule();
1939 }
1940 __set_current_state(TASK_RUNNING);
1941 }
1942
1943 /**
1944 * futex_wait_setup() - Prepare to wait on a futex
1945 * @uaddr: the futex userspace address
1946 * @val: the expected value
1947 * @flags: futex flags (FLAGS_SHARED, etc.)
1948 * @q: the associated futex_q
1949 * @hb: storage for hash_bucket pointer to be returned to caller
1950 *
1951 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1952 * compare it with the expected value. Handle atomic faults internally.
1953 * Return with the hb lock held and a q.key reference on success, and unlocked
1954 * with no q.key reference on failure.
1955 *
1956 * Return:
1957 * 0 - uaddr contains val and hb has been locked;
1958 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1959 */
1960 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1961 struct futex_q *q, struct futex_hash_bucket **hb)
1962 {
1963 u32 uval;
1964 int ret;
1965
1966 /*
1967 * Access the page AFTER the hash-bucket is locked.
1968 * Order is important:
1969 *
1970 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1971 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1972 *
1973 * The basic logical guarantee of a futex is that it blocks ONLY
1974 * if cond(var) is known to be true at the time of blocking, for
1975 * any cond. If we locked the hash-bucket after testing *uaddr, that
1976 * would open a race condition where we could block indefinitely with
1977 * cond(var) false, which would violate the guarantee.
1978 *
1979 * On the other hand, we insert q and release the hash-bucket only
1980 * after testing *uaddr. This guarantees that futex_wait() will NOT
1981 * absorb a wakeup if *uaddr does not match the desired values
1982 * while the syscall executes.
1983 */
1984 retry:
1985 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1986 if (unlikely(ret != 0))
1987 return ret;
1988
1989 retry_private:
1990 *hb = queue_lock(q);
1991
1992 ret = get_futex_value_locked(&uval, uaddr);
1993
1994 if (ret) {
1995 queue_unlock(q, *hb);
1996
1997 ret = get_user(uval, uaddr);
1998 if (ret)
1999 goto out;
2000
2001 if (!(flags & FLAGS_SHARED))
2002 goto retry_private;
2003
2004 put_futex_key(&q->key);
2005 goto retry;
2006 }
2007
2008 if (uval != val) {
2009 queue_unlock(q, *hb);
2010 ret = -EWOULDBLOCK;
2011 }
2012
2013 out:
2014 if (ret)
2015 put_futex_key(&q->key);
2016 return ret;
2017 }
2018
2019 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2020 ktime_t *abs_time, u32 bitset)
2021 {
2022 struct hrtimer_sleeper timeout, *to = NULL;
2023 struct restart_block *restart;
2024 struct futex_hash_bucket *hb;
2025 struct futex_q q = futex_q_init;
2026 int ret;
2027
2028 if (!bitset)
2029 return -EINVAL;
2030 q.bitset = bitset;
2031
2032 if (abs_time) {
2033 to = &timeout;
2034
2035 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2036 CLOCK_REALTIME : CLOCK_MONOTONIC,
2037 HRTIMER_MODE_ABS);
2038 hrtimer_init_sleeper(to, current);
2039 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2040 current->timer_slack_ns);
2041 }
2042
2043 retry:
2044 /*
2045 * Prepare to wait on uaddr. On success, holds hb lock and increments
2046 * q.key refs.
2047 */
2048 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2049 if (ret)
2050 goto out;
2051
2052 /* queue_me and wait for wakeup, timeout, or a signal. */
2053 futex_wait_queue_me(hb, &q, to);
2054
2055 /* If we were woken (and unqueued), we succeeded, whatever. */
2056 ret = 0;
2057 /* unqueue_me() drops q.key ref */
2058 if (!unqueue_me(&q))
2059 goto out;
2060 ret = -ETIMEDOUT;
2061 if (to && !to->task)
2062 goto out;
2063
2064 /*
2065 * We expect signal_pending(current), but we might be the
2066 * victim of a spurious wakeup as well.
2067 */
2068 if (!signal_pending(current))
2069 goto retry;
2070
2071 ret = -ERESTARTSYS;
2072 if (!abs_time)
2073 goto out;
2074
2075 restart = &current_thread_info()->restart_block;
2076 restart->fn = futex_wait_restart;
2077 restart->futex.uaddr = uaddr;
2078 restart->futex.val = val;
2079 restart->futex.time = abs_time->tv64;
2080 restart->futex.bitset = bitset;
2081 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2082
2083 ret = -ERESTART_RESTARTBLOCK;
2084
2085 out:
2086 if (to) {
2087 hrtimer_cancel(&to->timer);
2088 destroy_hrtimer_on_stack(&to->timer);
2089 }
2090 return ret;
2091 }
2092
2093
2094 static long futex_wait_restart(struct restart_block *restart)
2095 {
2096 u32 __user *uaddr = restart->futex.uaddr;
2097 ktime_t t, *tp = NULL;
2098
2099 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2100 t.tv64 = restart->futex.time;
2101 tp = &t;
2102 }
2103 restart->fn = do_no_restart_syscall;
2104
2105 return (long)futex_wait(uaddr, restart->futex.flags,
2106 restart->futex.val, tp, restart->futex.bitset);
2107 }
2108
2109
2110 /*
2111 * Userspace tried a 0 -> TID atomic transition of the futex value
2112 * and failed. The kernel side here does the whole locking operation:
2113 * if there are waiters then it will block, it does PI, etc. (Due to
2114 * races the kernel might see a 0 value of the futex too.)
2115 */
2116 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2117 ktime_t *time, int trylock)
2118 {
2119 struct hrtimer_sleeper timeout, *to = NULL;
2120 struct futex_hash_bucket *hb;
2121 struct futex_q q = futex_q_init;
2122 int res, ret;
2123
2124 if (refill_pi_state_cache())
2125 return -ENOMEM;
2126
2127 if (time) {
2128 to = &timeout;
2129 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2130 HRTIMER_MODE_ABS);
2131 hrtimer_init_sleeper(to, current);
2132 hrtimer_set_expires(&to->timer, *time);
2133 }
2134
2135 retry:
2136 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2137 if (unlikely(ret != 0))
2138 goto out;
2139
2140 retry_private:
2141 hb = queue_lock(&q);
2142
2143 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2144 if (unlikely(ret)) {
2145 switch (ret) {
2146 case 1:
2147 /* We got the lock. */
2148 ret = 0;
2149 goto out_unlock_put_key;
2150 case -EFAULT:
2151 goto uaddr_faulted;
2152 case -EAGAIN:
2153 /*
2154 * Task is exiting and we just wait for the
2155 * exit to complete.
2156 */
2157 queue_unlock(&q, hb);
2158 put_futex_key(&q.key);
2159 cond_resched();
2160 goto retry;
2161 default:
2162 goto out_unlock_put_key;
2163 }
2164 }
2165
2166 /*
2167 * Only actually queue now that the atomic ops are done:
2168 */
2169 queue_me(&q, hb);
2170
2171 WARN_ON(!q.pi_state);
2172 /*
2173 * Block on the PI mutex:
2174 */
2175 if (!trylock)
2176 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2177 else {
2178 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2179 /* Fixup the trylock return value: */
2180 ret = ret ? 0 : -EWOULDBLOCK;
2181 }
2182
2183 spin_lock(q.lock_ptr);
2184 /*
2185 * Fixup the pi_state owner and possibly acquire the lock if we
2186 * haven't already.
2187 */
2188 res = fixup_owner(uaddr, &q, !ret);
2189 /*
2190 * If fixup_owner() returned an error, proprogate that. If it acquired
2191 * the lock, clear our -ETIMEDOUT or -EINTR.
2192 */
2193 if (res)
2194 ret = (res < 0) ? res : 0;
2195
2196 /*
2197 * If fixup_owner() faulted and was unable to handle the fault, unlock
2198 * it and return the fault to userspace.
2199 */
2200 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2201 rt_mutex_unlock(&q.pi_state->pi_mutex);
2202
2203 /* Unqueue and drop the lock */
2204 unqueue_me_pi(&q);
2205
2206 goto out_put_key;
2207
2208 out_unlock_put_key:
2209 queue_unlock(&q, hb);
2210
2211 out_put_key:
2212 put_futex_key(&q.key);
2213 out:
2214 if (to)
2215 destroy_hrtimer_on_stack(&to->timer);
2216 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2217
2218 uaddr_faulted:
2219 queue_unlock(&q, hb);
2220
2221 ret = fault_in_user_writeable(uaddr);
2222 if (ret)
2223 goto out_put_key;
2224
2225 if (!(flags & FLAGS_SHARED))
2226 goto retry_private;
2227
2228 put_futex_key(&q.key);
2229 goto retry;
2230 }
2231
2232 /*
2233 * Userspace attempted a TID -> 0 atomic transition, and failed.
2234 * This is the in-kernel slowpath: we look up the PI state (if any),
2235 * and do the rt-mutex unlock.
2236 */
2237 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2238 {
2239 struct futex_hash_bucket *hb;
2240 struct futex_q *this, *next;
2241 struct plist_head *head;
2242 union futex_key key = FUTEX_KEY_INIT;
2243 u32 uval, vpid = task_pid_vnr(current);
2244 int ret;
2245
2246 retry:
2247 if (get_user(uval, uaddr))
2248 return -EFAULT;
2249 /*
2250 * We release only a lock we actually own:
2251 */
2252 if ((uval & FUTEX_TID_MASK) != vpid)
2253 return -EPERM;
2254
2255 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2256 if (unlikely(ret != 0))
2257 goto out;
2258
2259 hb = hash_futex(&key);
2260 spin_lock(&hb->lock);
2261
2262 /*
2263 * To avoid races, try to do the TID -> 0 atomic transition
2264 * again. If it succeeds then we can return without waking
2265 * anyone else up. We only try this if neither the waiters nor
2266 * the owner died bit are set.
2267 */
2268 if (!(uval & ~FUTEX_TID_MASK) &&
2269 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2270 goto pi_faulted;
2271 /*
2272 * Rare case: we managed to release the lock atomically,
2273 * no need to wake anyone else up:
2274 */
2275 if (unlikely(uval == vpid))
2276 goto out_unlock;
2277
2278 /*
2279 * Ok, other tasks may need to be woken up - check waiters
2280 * and do the wakeup if necessary:
2281 */
2282 head = &hb->chain;
2283
2284 plist_for_each_entry_safe(this, next, head, list) {
2285 if (!match_futex (&this->key, &key))
2286 continue;
2287 ret = wake_futex_pi(uaddr, uval, this);
2288 /*
2289 * The atomic access to the futex value
2290 * generated a pagefault, so retry the
2291 * user-access and the wakeup:
2292 */
2293 if (ret == -EFAULT)
2294 goto pi_faulted;
2295 goto out_unlock;
2296 }
2297 /*
2298 * No waiters - kernel unlocks the futex:
2299 */
2300 ret = unlock_futex_pi(uaddr, uval);
2301 if (ret == -EFAULT)
2302 goto pi_faulted;
2303
2304 out_unlock:
2305 spin_unlock(&hb->lock);
2306 put_futex_key(&key);
2307
2308 out:
2309 return ret;
2310
2311 pi_faulted:
2312 spin_unlock(&hb->lock);
2313 put_futex_key(&key);
2314
2315 ret = fault_in_user_writeable(uaddr);
2316 if (!ret)
2317 goto retry;
2318
2319 return ret;
2320 }
2321
2322 /**
2323 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2324 * @hb: the hash_bucket futex_q was original enqueued on
2325 * @q: the futex_q woken while waiting to be requeued
2326 * @key2: the futex_key of the requeue target futex
2327 * @timeout: the timeout associated with the wait (NULL if none)
2328 *
2329 * Detect if the task was woken on the initial futex as opposed to the requeue
2330 * target futex. If so, determine if it was a timeout or a signal that caused
2331 * the wakeup and return the appropriate error code to the caller. Must be
2332 * called with the hb lock held.
2333 *
2334 * Return:
2335 * 0 = no early wakeup detected;
2336 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2337 */
2338 static inline
2339 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2340 struct futex_q *q, union futex_key *key2,
2341 struct hrtimer_sleeper *timeout)
2342 {
2343 int ret = 0;
2344
2345 /*
2346 * With the hb lock held, we avoid races while we process the wakeup.
2347 * We only need to hold hb (and not hb2) to ensure atomicity as the
2348 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2349 * It can't be requeued from uaddr2 to something else since we don't
2350 * support a PI aware source futex for requeue.
2351 */
2352 if (!match_futex(&q->key, key2)) {
2353 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2354 /*
2355 * We were woken prior to requeue by a timeout or a signal.
2356 * Unqueue the futex_q and determine which it was.
2357 */
2358 plist_del(&q->list, &hb->chain);
2359
2360 /* Handle spurious wakeups gracefully */
2361 ret = -EWOULDBLOCK;
2362 if (timeout && !timeout->task)
2363 ret = -ETIMEDOUT;
2364 else if (signal_pending(current))
2365 ret = -ERESTARTNOINTR;
2366 }
2367 return ret;
2368 }
2369
2370 /**
2371 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2372 * @uaddr: the futex we initially wait on (non-pi)
2373 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2374 * the same type, no requeueing from private to shared, etc.
2375 * @val: the expected value of uaddr
2376 * @abs_time: absolute timeout
2377 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2378 * @uaddr2: the pi futex we will take prior to returning to user-space
2379 *
2380 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2381 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2382 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2383 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2384 * without one, the pi logic would not know which task to boost/deboost, if
2385 * there was a need to.
2386 *
2387 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2388 * via the following--
2389 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2390 * 2) wakeup on uaddr2 after a requeue
2391 * 3) signal
2392 * 4) timeout
2393 *
2394 * If 3, cleanup and return -ERESTARTNOINTR.
2395 *
2396 * If 2, we may then block on trying to take the rt_mutex and return via:
2397 * 5) successful lock
2398 * 6) signal
2399 * 7) timeout
2400 * 8) other lock acquisition failure
2401 *
2402 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2403 *
2404 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2405 *
2406 * Return:
2407 * 0 - On success;
2408 * <0 - On error
2409 */
2410 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2411 u32 val, ktime_t *abs_time, u32 bitset,
2412 u32 __user *uaddr2)
2413 {
2414 struct hrtimer_sleeper timeout, *to = NULL;
2415 struct rt_mutex_waiter rt_waiter;
2416 struct rt_mutex *pi_mutex = NULL;
2417 struct futex_hash_bucket *hb;
2418 union futex_key key2 = FUTEX_KEY_INIT;
2419 struct futex_q q = futex_q_init;
2420 int res, ret;
2421
2422 if (uaddr == uaddr2)
2423 return -EINVAL;
2424
2425 if (!bitset)
2426 return -EINVAL;
2427
2428 if (abs_time) {
2429 to = &timeout;
2430 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2431 CLOCK_REALTIME : CLOCK_MONOTONIC,
2432 HRTIMER_MODE_ABS);
2433 hrtimer_init_sleeper(to, current);
2434 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2435 current->timer_slack_ns);
2436 }
2437
2438 /*
2439 * The waiter is allocated on our stack, manipulated by the requeue
2440 * code while we sleep on uaddr.
2441 */
2442 debug_rt_mutex_init_waiter(&rt_waiter);
2443 rt_waiter.task = NULL;
2444
2445 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2446 if (unlikely(ret != 0))
2447 goto out;
2448
2449 q.bitset = bitset;
2450 q.rt_waiter = &rt_waiter;
2451 q.requeue_pi_key = &key2;
2452
2453 /*
2454 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2455 * count.
2456 */
2457 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2458 if (ret)
2459 goto out_key2;
2460
2461 /*
2462 * The check above which compares uaddrs is not sufficient for
2463 * shared futexes. We need to compare the keys:
2464 */
2465 if (match_futex(&q.key, &key2)) {
2466 ret = -EINVAL;
2467 goto out_put_keys;
2468 }
2469
2470 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2471 futex_wait_queue_me(hb, &q, to);
2472
2473 spin_lock(&hb->lock);
2474 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2475 spin_unlock(&hb->lock);
2476 if (ret)
2477 goto out_put_keys;
2478
2479 /*
2480 * In order for us to be here, we know our q.key == key2, and since
2481 * we took the hb->lock above, we also know that futex_requeue() has
2482 * completed and we no longer have to concern ourselves with a wakeup
2483 * race with the atomic proxy lock acquisition by the requeue code. The
2484 * futex_requeue dropped our key1 reference and incremented our key2
2485 * reference count.
2486 */
2487
2488 /* Check if the requeue code acquired the second futex for us. */
2489 if (!q.rt_waiter) {
2490 /*
2491 * Got the lock. We might not be the anticipated owner if we
2492 * did a lock-steal - fix up the PI-state in that case.
2493 */
2494 if (q.pi_state && (q.pi_state->owner != current)) {
2495 spin_lock(q.lock_ptr);
2496 ret = fixup_pi_state_owner(uaddr2, &q, current);
2497 /*
2498 * Drop the reference to the pi state which
2499 * the requeue_pi() code acquired for us.
2500 */
2501 free_pi_state(q.pi_state);
2502 spin_unlock(q.lock_ptr);
2503 }
2504 } else {
2505 /*
2506 * We have been woken up by futex_unlock_pi(), a timeout, or a
2507 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2508 * the pi_state.
2509 */
2510 WARN_ON(!q.pi_state);
2511 pi_mutex = &q.pi_state->pi_mutex;
2512 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2513 debug_rt_mutex_free_waiter(&rt_waiter);
2514
2515 spin_lock(q.lock_ptr);
2516 /*
2517 * Fixup the pi_state owner and possibly acquire the lock if we
2518 * haven't already.
2519 */
2520 res = fixup_owner(uaddr2, &q, !ret);
2521 /*
2522 * If fixup_owner() returned an error, proprogate that. If it
2523 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2524 */
2525 if (res)
2526 ret = (res < 0) ? res : 0;
2527
2528 /* Unqueue and drop the lock. */
2529 unqueue_me_pi(&q);
2530 }
2531
2532 /*
2533 * If fixup_pi_state_owner() faulted and was unable to handle the
2534 * fault, unlock the rt_mutex and return the fault to userspace.
2535 */
2536 if (ret == -EFAULT) {
2537 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2538 rt_mutex_unlock(pi_mutex);
2539 } else if (ret == -EINTR) {
2540 /*
2541 * We've already been requeued, but cannot restart by calling
2542 * futex_lock_pi() directly. We could restart this syscall, but
2543 * it would detect that the user space "val" changed and return
2544 * -EWOULDBLOCK. Save the overhead of the restart and return
2545 * -EWOULDBLOCK directly.
2546 */
2547 ret = -EWOULDBLOCK;
2548 }
2549
2550 out_put_keys:
2551 put_futex_key(&q.key);
2552 out_key2:
2553 put_futex_key(&key2);
2554
2555 out:
2556 if (to) {
2557 hrtimer_cancel(&to->timer);
2558 destroy_hrtimer_on_stack(&to->timer);
2559 }
2560 return ret;
2561 }
2562
2563 /*
2564 * Support for robust futexes: the kernel cleans up held futexes at
2565 * thread exit time.
2566 *
2567 * Implementation: user-space maintains a per-thread list of locks it
2568 * is holding. Upon do_exit(), the kernel carefully walks this list,
2569 * and marks all locks that are owned by this thread with the
2570 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2571 * always manipulated with the lock held, so the list is private and
2572 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2573 * field, to allow the kernel to clean up if the thread dies after
2574 * acquiring the lock, but just before it could have added itself to
2575 * the list. There can only be one such pending lock.
2576 */
2577
2578 /**
2579 * sys_set_robust_list() - Set the robust-futex list head of a task
2580 * @head: pointer to the list-head
2581 * @len: length of the list-head, as userspace expects
2582 */
2583 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2584 size_t, len)
2585 {
2586 if (!futex_cmpxchg_enabled)
2587 return -ENOSYS;
2588 /*
2589 * The kernel knows only one size for now:
2590 */
2591 if (unlikely(len != sizeof(*head)))
2592 return -EINVAL;
2593
2594 current->robust_list = head;
2595
2596 return 0;
2597 }
2598
2599 /**
2600 * sys_get_robust_list() - Get the robust-futex list head of a task
2601 * @pid: pid of the process [zero for current task]
2602 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2603 * @len_ptr: pointer to a length field, the kernel fills in the header size
2604 */
2605 SYSCALL_DEFINE3(get_robust_list, int, pid,
2606 struct robust_list_head __user * __user *, head_ptr,
2607 size_t __user *, len_ptr)
2608 {
2609 struct robust_list_head __user *head;
2610 unsigned long ret;
2611 struct task_struct *p;
2612
2613 if (!futex_cmpxchg_enabled)
2614 return -ENOSYS;
2615
2616 rcu_read_lock();
2617
2618 ret = -ESRCH;
2619 if (!pid)
2620 p = current;
2621 else {
2622 p = find_task_by_vpid(pid);
2623 if (!p)
2624 goto err_unlock;
2625 }
2626
2627 ret = -EPERM;
2628 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2629 goto err_unlock;
2630
2631 head = p->robust_list;
2632 rcu_read_unlock();
2633
2634 if (put_user(sizeof(*head), len_ptr))
2635 return -EFAULT;
2636 return put_user(head, head_ptr);
2637
2638 err_unlock:
2639 rcu_read_unlock();
2640
2641 return ret;
2642 }
2643
2644 /*
2645 * Process a futex-list entry, check whether it's owned by the
2646 * dying task, and do notification if so:
2647 */
2648 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2649 {
2650 u32 uval, uninitialized_var(nval), mval;
2651
2652 retry:
2653 if (get_user(uval, uaddr))
2654 return -1;
2655
2656 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2657 /*
2658 * Ok, this dying thread is truly holding a futex
2659 * of interest. Set the OWNER_DIED bit atomically
2660 * via cmpxchg, and if the value had FUTEX_WAITERS
2661 * set, wake up a waiter (if any). (We have to do a
2662 * futex_wake() even if OWNER_DIED is already set -
2663 * to handle the rare but possible case of recursive
2664 * thread-death.) The rest of the cleanup is done in
2665 * userspace.
2666 */
2667 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2668 /*
2669 * We are not holding a lock here, but we want to have
2670 * the pagefault_disable/enable() protection because
2671 * we want to handle the fault gracefully. If the
2672 * access fails we try to fault in the futex with R/W
2673 * verification via get_user_pages. get_user() above
2674 * does not guarantee R/W access. If that fails we
2675 * give up and leave the futex locked.
2676 */
2677 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2678 if (fault_in_user_writeable(uaddr))
2679 return -1;
2680 goto retry;
2681 }
2682 if (nval != uval)
2683 goto retry;
2684
2685 /*
2686 * Wake robust non-PI futexes here. The wakeup of
2687 * PI futexes happens in exit_pi_state():
2688 */
2689 if (!pi && (uval & FUTEX_WAITERS))
2690 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2691 }
2692 return 0;
2693 }
2694
2695 /*
2696 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2697 */
2698 static inline int fetch_robust_entry(struct robust_list __user **entry,
2699 struct robust_list __user * __user *head,
2700 unsigned int *pi)
2701 {
2702 unsigned long uentry;
2703
2704 if (get_user(uentry, (unsigned long __user *)head))
2705 return -EFAULT;
2706
2707 *entry = (void __user *)(uentry & ~1UL);
2708 *pi = uentry & 1;
2709
2710 return 0;
2711 }
2712
2713 /*
2714 * Walk curr->robust_list (very carefully, it's a userspace list!)
2715 * and mark any locks found there dead, and notify any waiters.
2716 *
2717 * We silently return on any sign of list-walking problem.
2718 */
2719 void exit_robust_list(struct task_struct *curr)
2720 {
2721 struct robust_list_head __user *head = curr->robust_list;
2722 struct robust_list __user *entry, *next_entry, *pending;
2723 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2724 unsigned int uninitialized_var(next_pi);
2725 unsigned long futex_offset;
2726 int rc;
2727
2728 if (!futex_cmpxchg_enabled)
2729 return;
2730
2731 /*
2732 * Fetch the list head (which was registered earlier, via
2733 * sys_set_robust_list()):
2734 */
2735 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2736 return;
2737 /*
2738 * Fetch the relative futex offset:
2739 */
2740 if (get_user(futex_offset, &head->futex_offset))
2741 return;
2742 /*
2743 * Fetch any possibly pending lock-add first, and handle it
2744 * if it exists:
2745 */
2746 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2747 return;
2748
2749 next_entry = NULL; /* avoid warning with gcc */
2750 while (entry != &head->list) {
2751 /*
2752 * Fetch the next entry in the list before calling
2753 * handle_futex_death:
2754 */
2755 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2756 /*
2757 * A pending lock might already be on the list, so
2758 * don't process it twice:
2759 */
2760 if (entry != pending)
2761 if (handle_futex_death((void __user *)entry + futex_offset,
2762 curr, pi))
2763 return;
2764 if (rc)
2765 return;
2766 entry = next_entry;
2767 pi = next_pi;
2768 /*
2769 * Avoid excessively long or circular lists:
2770 */
2771 if (!--limit)
2772 break;
2773
2774 cond_resched();
2775 }
2776
2777 if (pending)
2778 handle_futex_death((void __user *)pending + futex_offset,
2779 curr, pip);
2780 }
2781
2782 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2783 u32 __user *uaddr2, u32 val2, u32 val3)
2784 {
2785 int cmd = op & FUTEX_CMD_MASK;
2786 unsigned int flags = 0;
2787
2788 if (!(op & FUTEX_PRIVATE_FLAG))
2789 flags |= FLAGS_SHARED;
2790
2791 if (op & FUTEX_CLOCK_REALTIME) {
2792 flags |= FLAGS_CLOCKRT;
2793 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2794 return -ENOSYS;
2795 }
2796
2797 switch (cmd) {
2798 case FUTEX_LOCK_PI:
2799 case FUTEX_UNLOCK_PI:
2800 case FUTEX_TRYLOCK_PI:
2801 case FUTEX_WAIT_REQUEUE_PI:
2802 case FUTEX_CMP_REQUEUE_PI:
2803 if (!futex_cmpxchg_enabled)
2804 return -ENOSYS;
2805 }
2806
2807 switch (cmd) {
2808 case FUTEX_WAIT:
2809 val3 = FUTEX_BITSET_MATCH_ANY;
2810 case FUTEX_WAIT_BITSET:
2811 return futex_wait(uaddr, flags, val, timeout, val3);
2812 case FUTEX_WAKE:
2813 val3 = FUTEX_BITSET_MATCH_ANY;
2814 case FUTEX_WAKE_BITSET:
2815 return futex_wake(uaddr, flags, val, val3);
2816 case FUTEX_REQUEUE:
2817 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2818 case FUTEX_CMP_REQUEUE:
2819 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2820 case FUTEX_WAKE_OP:
2821 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2822 case FUTEX_LOCK_PI:
2823 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2824 case FUTEX_UNLOCK_PI:
2825 return futex_unlock_pi(uaddr, flags);
2826 case FUTEX_TRYLOCK_PI:
2827 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2828 case FUTEX_WAIT_REQUEUE_PI:
2829 val3 = FUTEX_BITSET_MATCH_ANY;
2830 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2831 uaddr2);
2832 case FUTEX_CMP_REQUEUE_PI:
2833 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2834 }
2835 return -ENOSYS;
2836 }
2837
2838
2839 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2840 struct timespec __user *, utime, u32 __user *, uaddr2,
2841 u32, val3)
2842 {
2843 struct timespec ts;
2844 ktime_t t, *tp = NULL;
2845 u32 val2 = 0;
2846 int cmd = op & FUTEX_CMD_MASK;
2847
2848 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2849 cmd == FUTEX_WAIT_BITSET ||
2850 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2851 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2852 return -EFAULT;
2853 if (!timespec_valid(&ts))
2854 return -EINVAL;
2855
2856 t = timespec_to_ktime(ts);
2857 if (cmd == FUTEX_WAIT)
2858 t = ktime_add_safe(ktime_get(), t);
2859 tp = &t;
2860 }
2861 /*
2862 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2863 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2864 */
2865 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2866 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2867 val2 = (u32) (unsigned long) utime;
2868
2869 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2870 }
2871
2872 static void __init futex_detect_cmpxchg(void)
2873 {
2874 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2875 u32 curval;
2876
2877 /*
2878 * This will fail and we want it. Some arch implementations do
2879 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2880 * functionality. We want to know that before we call in any
2881 * of the complex code paths. Also we want to prevent
2882 * registration of robust lists in that case. NULL is
2883 * guaranteed to fault and we get -EFAULT on functional
2884 * implementation, the non-functional ones will return
2885 * -ENOSYS.
2886 */
2887 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2888 futex_cmpxchg_enabled = 1;
2889 #endif
2890 }
2891
2892 static int __init futex_init(void)
2893 {
2894 int i;
2895
2896 futex_detect_cmpxchg();
2897
2898 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2899 plist_head_init(&futex_queues[i].chain);
2900 spin_lock_init(&futex_queues[i].lock);
2901 }
2902
2903 return 0;
2904 }
2905 __initcall(futex_init);