Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66
67 #include <asm/futex.h>
68
69 #include "rtmutex_common.h"
70
71 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
72 int __read_mostly futex_cmpxchg_enabled;
73 #endif
74
75 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
76
77 /*
78 * Futex flags used to encode options to functions and preserve them across
79 * restarts.
80 */
81 #define FLAGS_SHARED 0x01
82 #define FLAGS_CLOCKRT 0x02
83 #define FLAGS_HAS_TIMEOUT 0x04
84
85 /*
86 * Priority Inheritance state:
87 */
88 struct futex_pi_state {
89 /*
90 * list of 'owned' pi_state instances - these have to be
91 * cleaned up in do_exit() if the task exits prematurely:
92 */
93 struct list_head list;
94
95 /*
96 * The PI object:
97 */
98 struct rt_mutex pi_mutex;
99
100 struct task_struct *owner;
101 atomic_t refcount;
102
103 union futex_key key;
104 };
105
106 /**
107 * struct futex_q - The hashed futex queue entry, one per waiting task
108 * @list: priority-sorted list of tasks waiting on this futex
109 * @task: the task waiting on the futex
110 * @lock_ptr: the hash bucket lock
111 * @key: the key the futex is hashed on
112 * @pi_state: optional priority inheritance state
113 * @rt_waiter: rt_waiter storage for use with requeue_pi
114 * @requeue_pi_key: the requeue_pi target futex key
115 * @bitset: bitset for the optional bitmasked wakeup
116 *
117 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
118 * we can wake only the relevant ones (hashed queues may be shared).
119 *
120 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
121 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
122 * The order of wakeup is always to make the first condition true, then
123 * the second.
124 *
125 * PI futexes are typically woken before they are removed from the hash list via
126 * the rt_mutex code. See unqueue_me_pi().
127 */
128 struct futex_q {
129 struct plist_node list;
130
131 struct task_struct *task;
132 spinlock_t *lock_ptr;
133 union futex_key key;
134 struct futex_pi_state *pi_state;
135 struct rt_mutex_waiter *rt_waiter;
136 union futex_key *requeue_pi_key;
137 u32 bitset;
138 };
139
140 static const struct futex_q futex_q_init = {
141 /* list gets initialized in queue_me()*/
142 .key = FUTEX_KEY_INIT,
143 .bitset = FUTEX_BITSET_MATCH_ANY
144 };
145
146 /*
147 * Hash buckets are shared by all the futex_keys that hash to the same
148 * location. Each key may have multiple futex_q structures, one for each task
149 * waiting on a futex.
150 */
151 struct futex_hash_bucket {
152 spinlock_t lock;
153 struct plist_head chain;
154 };
155
156 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
157
158 /*
159 * We hash on the keys returned from get_futex_key (see below).
160 */
161 static struct futex_hash_bucket *hash_futex(union futex_key *key)
162 {
163 u32 hash = jhash2((u32*)&key->both.word,
164 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
165 key->both.offset);
166 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
167 }
168
169 /*
170 * Return 1 if two futex_keys are equal, 0 otherwise.
171 */
172 static inline int match_futex(union futex_key *key1, union futex_key *key2)
173 {
174 return (key1 && key2
175 && key1->both.word == key2->both.word
176 && key1->both.ptr == key2->both.ptr
177 && key1->both.offset == key2->both.offset);
178 }
179
180 /*
181 * Take a reference to the resource addressed by a key.
182 * Can be called while holding spinlocks.
183 *
184 */
185 static void get_futex_key_refs(union futex_key *key)
186 {
187 if (!key->both.ptr)
188 return;
189
190 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
191 case FUT_OFF_INODE:
192 ihold(key->shared.inode);
193 break;
194 case FUT_OFF_MMSHARED:
195 atomic_inc(&key->private.mm->mm_count);
196 break;
197 }
198 }
199
200 /*
201 * Drop a reference to the resource addressed by a key.
202 * The hash bucket spinlock must not be held.
203 */
204 static void drop_futex_key_refs(union futex_key *key)
205 {
206 if (!key->both.ptr) {
207 /* If we're here then we tried to put a key we failed to get */
208 WARN_ON_ONCE(1);
209 return;
210 }
211
212 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
213 case FUT_OFF_INODE:
214 iput(key->shared.inode);
215 break;
216 case FUT_OFF_MMSHARED:
217 mmdrop(key->private.mm);
218 break;
219 }
220 }
221
222 /**
223 * get_futex_key() - Get parameters which are the keys for a futex
224 * @uaddr: virtual address of the futex
225 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
226 * @key: address where result is stored.
227 * @rw: mapping needs to be read/write (values: VERIFY_READ,
228 * VERIFY_WRITE)
229 *
230 * Return: a negative error code or 0
231 *
232 * The key words are stored in *key on success.
233 *
234 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
235 * offset_within_page). For private mappings, it's (uaddr, current->mm).
236 * We can usually work out the index without swapping in the page.
237 *
238 * lock_page() might sleep, the caller should not hold a spinlock.
239 */
240 static int
241 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
242 {
243 unsigned long address = (unsigned long)uaddr;
244 struct mm_struct *mm = current->mm;
245 struct page *page, *page_head;
246 int err, ro = 0;
247
248 /*
249 * The futex address must be "naturally" aligned.
250 */
251 key->both.offset = address % PAGE_SIZE;
252 if (unlikely((address % sizeof(u32)) != 0))
253 return -EINVAL;
254 address -= key->both.offset;
255
256 /*
257 * PROCESS_PRIVATE futexes are fast.
258 * As the mm cannot disappear under us and the 'key' only needs
259 * virtual address, we dont even have to find the underlying vma.
260 * Note : We do have to check 'uaddr' is a valid user address,
261 * but access_ok() should be faster than find_vma()
262 */
263 if (!fshared) {
264 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
265 return -EFAULT;
266 key->private.mm = mm;
267 key->private.address = address;
268 get_futex_key_refs(key);
269 return 0;
270 }
271
272 again:
273 err = get_user_pages_fast(address, 1, 1, &page);
274 /*
275 * If write access is not required (eg. FUTEX_WAIT), try
276 * and get read-only access.
277 */
278 if (err == -EFAULT && rw == VERIFY_READ) {
279 err = get_user_pages_fast(address, 1, 0, &page);
280 ro = 1;
281 }
282 if (err < 0)
283 return err;
284 else
285 err = 0;
286
287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
288 page_head = page;
289 if (unlikely(PageTail(page))) {
290 put_page(page);
291 /* serialize against __split_huge_page_splitting() */
292 local_irq_disable();
293 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
294 page_head = compound_head(page);
295 /*
296 * page_head is valid pointer but we must pin
297 * it before taking the PG_lock and/or
298 * PG_compound_lock. The moment we re-enable
299 * irqs __split_huge_page_splitting() can
300 * return and the head page can be freed from
301 * under us. We can't take the PG_lock and/or
302 * PG_compound_lock on a page that could be
303 * freed from under us.
304 */
305 if (page != page_head) {
306 get_page(page_head);
307 put_page(page);
308 }
309 local_irq_enable();
310 } else {
311 local_irq_enable();
312 goto again;
313 }
314 }
315 #else
316 page_head = compound_head(page);
317 if (page != page_head) {
318 get_page(page_head);
319 put_page(page);
320 }
321 #endif
322
323 lock_page(page_head);
324
325 /*
326 * If page_head->mapping is NULL, then it cannot be a PageAnon
327 * page; but it might be the ZERO_PAGE or in the gate area or
328 * in a special mapping (all cases which we are happy to fail);
329 * or it may have been a good file page when get_user_pages_fast
330 * found it, but truncated or holepunched or subjected to
331 * invalidate_complete_page2 before we got the page lock (also
332 * cases which we are happy to fail). And we hold a reference,
333 * so refcount care in invalidate_complete_page's remove_mapping
334 * prevents drop_caches from setting mapping to NULL beneath us.
335 *
336 * The case we do have to guard against is when memory pressure made
337 * shmem_writepage move it from filecache to swapcache beneath us:
338 * an unlikely race, but we do need to retry for page_head->mapping.
339 */
340 if (!page_head->mapping) {
341 int shmem_swizzled = PageSwapCache(page_head);
342 unlock_page(page_head);
343 put_page(page_head);
344 if (shmem_swizzled)
345 goto again;
346 return -EFAULT;
347 }
348
349 /*
350 * Private mappings are handled in a simple way.
351 *
352 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
353 * it's a read-only handle, it's expected that futexes attach to
354 * the object not the particular process.
355 */
356 if (PageAnon(page_head)) {
357 /*
358 * A RO anonymous page will never change and thus doesn't make
359 * sense for futex operations.
360 */
361 if (ro) {
362 err = -EFAULT;
363 goto out;
364 }
365
366 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
367 key->private.mm = mm;
368 key->private.address = address;
369 } else {
370 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
371 key->shared.inode = page_head->mapping->host;
372 key->shared.pgoff = basepage_index(page);
373 }
374
375 get_futex_key_refs(key);
376
377 out:
378 unlock_page(page_head);
379 put_page(page_head);
380 return err;
381 }
382
383 static inline void put_futex_key(union futex_key *key)
384 {
385 drop_futex_key_refs(key);
386 }
387
388 /**
389 * fault_in_user_writeable() - Fault in user address and verify RW access
390 * @uaddr: pointer to faulting user space address
391 *
392 * Slow path to fixup the fault we just took in the atomic write
393 * access to @uaddr.
394 *
395 * We have no generic implementation of a non-destructive write to the
396 * user address. We know that we faulted in the atomic pagefault
397 * disabled section so we can as well avoid the #PF overhead by
398 * calling get_user_pages() right away.
399 */
400 static int fault_in_user_writeable(u32 __user *uaddr)
401 {
402 struct mm_struct *mm = current->mm;
403 int ret;
404
405 down_read(&mm->mmap_sem);
406 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
407 FAULT_FLAG_WRITE);
408 up_read(&mm->mmap_sem);
409
410 return ret < 0 ? ret : 0;
411 }
412
413 /**
414 * futex_top_waiter() - Return the highest priority waiter on a futex
415 * @hb: the hash bucket the futex_q's reside in
416 * @key: the futex key (to distinguish it from other futex futex_q's)
417 *
418 * Must be called with the hb lock held.
419 */
420 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
421 union futex_key *key)
422 {
423 struct futex_q *this;
424
425 plist_for_each_entry(this, &hb->chain, list) {
426 if (match_futex(&this->key, key))
427 return this;
428 }
429 return NULL;
430 }
431
432 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
433 u32 uval, u32 newval)
434 {
435 int ret;
436
437 pagefault_disable();
438 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
439 pagefault_enable();
440
441 return ret;
442 }
443
444 static int get_futex_value_locked(u32 *dest, u32 __user *from)
445 {
446 int ret;
447
448 pagefault_disable();
449 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
450 pagefault_enable();
451
452 return ret ? -EFAULT : 0;
453 }
454
455
456 /*
457 * PI code:
458 */
459 static int refill_pi_state_cache(void)
460 {
461 struct futex_pi_state *pi_state;
462
463 if (likely(current->pi_state_cache))
464 return 0;
465
466 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
467
468 if (!pi_state)
469 return -ENOMEM;
470
471 INIT_LIST_HEAD(&pi_state->list);
472 /* pi_mutex gets initialized later */
473 pi_state->owner = NULL;
474 atomic_set(&pi_state->refcount, 1);
475 pi_state->key = FUTEX_KEY_INIT;
476
477 current->pi_state_cache = pi_state;
478
479 return 0;
480 }
481
482 static struct futex_pi_state * alloc_pi_state(void)
483 {
484 struct futex_pi_state *pi_state = current->pi_state_cache;
485
486 WARN_ON(!pi_state);
487 current->pi_state_cache = NULL;
488
489 return pi_state;
490 }
491
492 static void free_pi_state(struct futex_pi_state *pi_state)
493 {
494 if (!atomic_dec_and_test(&pi_state->refcount))
495 return;
496
497 /*
498 * If pi_state->owner is NULL, the owner is most probably dying
499 * and has cleaned up the pi_state already
500 */
501 if (pi_state->owner) {
502 raw_spin_lock_irq(&pi_state->owner->pi_lock);
503 list_del_init(&pi_state->list);
504 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
505
506 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
507 }
508
509 if (current->pi_state_cache)
510 kfree(pi_state);
511 else {
512 /*
513 * pi_state->list is already empty.
514 * clear pi_state->owner.
515 * refcount is at 0 - put it back to 1.
516 */
517 pi_state->owner = NULL;
518 atomic_set(&pi_state->refcount, 1);
519 current->pi_state_cache = pi_state;
520 }
521 }
522
523 /*
524 * Look up the task based on what TID userspace gave us.
525 * We dont trust it.
526 */
527 static struct task_struct * futex_find_get_task(pid_t pid)
528 {
529 struct task_struct *p;
530
531 rcu_read_lock();
532 p = find_task_by_vpid(pid);
533 if (p)
534 get_task_struct(p);
535
536 rcu_read_unlock();
537
538 return p;
539 }
540
541 /*
542 * This task is holding PI mutexes at exit time => bad.
543 * Kernel cleans up PI-state, but userspace is likely hosed.
544 * (Robust-futex cleanup is separate and might save the day for userspace.)
545 */
546 void exit_pi_state_list(struct task_struct *curr)
547 {
548 struct list_head *next, *head = &curr->pi_state_list;
549 struct futex_pi_state *pi_state;
550 struct futex_hash_bucket *hb;
551 union futex_key key = FUTEX_KEY_INIT;
552
553 if (!futex_cmpxchg_enabled)
554 return;
555 /*
556 * We are a ZOMBIE and nobody can enqueue itself on
557 * pi_state_list anymore, but we have to be careful
558 * versus waiters unqueueing themselves:
559 */
560 raw_spin_lock_irq(&curr->pi_lock);
561 while (!list_empty(head)) {
562
563 next = head->next;
564 pi_state = list_entry(next, struct futex_pi_state, list);
565 key = pi_state->key;
566 hb = hash_futex(&key);
567 raw_spin_unlock_irq(&curr->pi_lock);
568
569 spin_lock(&hb->lock);
570
571 raw_spin_lock_irq(&curr->pi_lock);
572 /*
573 * We dropped the pi-lock, so re-check whether this
574 * task still owns the PI-state:
575 */
576 if (head->next != next) {
577 spin_unlock(&hb->lock);
578 continue;
579 }
580
581 WARN_ON(pi_state->owner != curr);
582 WARN_ON(list_empty(&pi_state->list));
583 list_del_init(&pi_state->list);
584 pi_state->owner = NULL;
585 raw_spin_unlock_irq(&curr->pi_lock);
586
587 rt_mutex_unlock(&pi_state->pi_mutex);
588
589 spin_unlock(&hb->lock);
590
591 raw_spin_lock_irq(&curr->pi_lock);
592 }
593 raw_spin_unlock_irq(&curr->pi_lock);
594 }
595
596 /*
597 * We need to check the following states:
598 *
599 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
600 *
601 * [1] NULL | --- | --- | 0 | 0/1 | Valid
602 * [2] NULL | --- | --- | >0 | 0/1 | Valid
603 *
604 * [3] Found | NULL | -- | Any | 0/1 | Invalid
605 *
606 * [4] Found | Found | NULL | 0 | 1 | Valid
607 * [5] Found | Found | NULL | >0 | 1 | Invalid
608 *
609 * [6] Found | Found | task | 0 | 1 | Valid
610 *
611 * [7] Found | Found | NULL | Any | 0 | Invalid
612 *
613 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
614 * [9] Found | Found | task | 0 | 0 | Invalid
615 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
616 *
617 * [1] Indicates that the kernel can acquire the futex atomically. We
618 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
619 *
620 * [2] Valid, if TID does not belong to a kernel thread. If no matching
621 * thread is found then it indicates that the owner TID has died.
622 *
623 * [3] Invalid. The waiter is queued on a non PI futex
624 *
625 * [4] Valid state after exit_robust_list(), which sets the user space
626 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
627 *
628 * [5] The user space value got manipulated between exit_robust_list()
629 * and exit_pi_state_list()
630 *
631 * [6] Valid state after exit_pi_state_list() which sets the new owner in
632 * the pi_state but cannot access the user space value.
633 *
634 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
635 *
636 * [8] Owner and user space value match
637 *
638 * [9] There is no transient state which sets the user space TID to 0
639 * except exit_robust_list(), but this is indicated by the
640 * FUTEX_OWNER_DIED bit. See [4]
641 *
642 * [10] There is no transient state which leaves owner and user space
643 * TID out of sync.
644 */
645 static int
646 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
647 union futex_key *key, struct futex_pi_state **ps)
648 {
649 struct futex_pi_state *pi_state = NULL;
650 struct futex_q *this, *next;
651 struct plist_head *head;
652 struct task_struct *p;
653 pid_t pid = uval & FUTEX_TID_MASK;
654
655 head = &hb->chain;
656
657 plist_for_each_entry_safe(this, next, head, list) {
658 if (match_futex(&this->key, key)) {
659 /*
660 * Sanity check the waiter before increasing
661 * the refcount and attaching to it.
662 */
663 pi_state = this->pi_state;
664 /*
665 * Userspace might have messed up non-PI and
666 * PI futexes [3]
667 */
668 if (unlikely(!pi_state))
669 return -EINVAL;
670
671 WARN_ON(!atomic_read(&pi_state->refcount));
672
673 /*
674 * Handle the owner died case:
675 */
676 if (uval & FUTEX_OWNER_DIED) {
677 /*
678 * exit_pi_state_list sets owner to NULL and
679 * wakes the topmost waiter. The task which
680 * acquires the pi_state->rt_mutex will fixup
681 * owner.
682 */
683 if (!pi_state->owner) {
684 /*
685 * No pi state owner, but the user
686 * space TID is not 0. Inconsistent
687 * state. [5]
688 */
689 if (pid)
690 return -EINVAL;
691 /*
692 * Take a ref on the state and
693 * return. [4]
694 */
695 goto out_state;
696 }
697
698 /*
699 * If TID is 0, then either the dying owner
700 * has not yet executed exit_pi_state_list()
701 * or some waiter acquired the rtmutex in the
702 * pi state, but did not yet fixup the TID in
703 * user space.
704 *
705 * Take a ref on the state and return. [6]
706 */
707 if (!pid)
708 goto out_state;
709 } else {
710 /*
711 * If the owner died bit is not set,
712 * then the pi_state must have an
713 * owner. [7]
714 */
715 if (!pi_state->owner)
716 return -EINVAL;
717 }
718
719 /*
720 * Bail out if user space manipulated the
721 * futex value. If pi state exists then the
722 * owner TID must be the same as the user
723 * space TID. [9/10]
724 */
725 if (pid != task_pid_vnr(pi_state->owner))
726 return -EINVAL;
727
728 out_state:
729 atomic_inc(&pi_state->refcount);
730 *ps = pi_state;
731 return 0;
732 }
733 }
734
735 /*
736 * We are the first waiter - try to look up the real owner and attach
737 * the new pi_state to it, but bail out when TID = 0 [1]
738 */
739 if (!pid)
740 return -ESRCH;
741 p = futex_find_get_task(pid);
742 if (!p)
743 return -ESRCH;
744
745 if (!p->mm) {
746 put_task_struct(p);
747 return -EPERM;
748 }
749
750 /*
751 * We need to look at the task state flags to figure out,
752 * whether the task is exiting. To protect against the do_exit
753 * change of the task flags, we do this protected by
754 * p->pi_lock:
755 */
756 raw_spin_lock_irq(&p->pi_lock);
757 if (unlikely(p->flags & PF_EXITING)) {
758 /*
759 * The task is on the way out. When PF_EXITPIDONE is
760 * set, we know that the task has finished the
761 * cleanup:
762 */
763 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
764
765 raw_spin_unlock_irq(&p->pi_lock);
766 put_task_struct(p);
767 return ret;
768 }
769
770 /*
771 * No existing pi state. First waiter. [2]
772 */
773 pi_state = alloc_pi_state();
774
775 /*
776 * Initialize the pi_mutex in locked state and make 'p'
777 * the owner of it:
778 */
779 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
780
781 /* Store the key for possible exit cleanups: */
782 pi_state->key = *key;
783
784 WARN_ON(!list_empty(&pi_state->list));
785 list_add(&pi_state->list, &p->pi_state_list);
786 pi_state->owner = p;
787 raw_spin_unlock_irq(&p->pi_lock);
788
789 put_task_struct(p);
790
791 *ps = pi_state;
792
793 return 0;
794 }
795
796 /**
797 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
798 * @uaddr: the pi futex user address
799 * @hb: the pi futex hash bucket
800 * @key: the futex key associated with uaddr and hb
801 * @ps: the pi_state pointer where we store the result of the
802 * lookup
803 * @task: the task to perform the atomic lock work for. This will
804 * be "current" except in the case of requeue pi.
805 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
806 *
807 * Return:
808 * 0 - ready to wait;
809 * 1 - acquired the lock;
810 * <0 - error
811 *
812 * The hb->lock and futex_key refs shall be held by the caller.
813 */
814 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
815 union futex_key *key,
816 struct futex_pi_state **ps,
817 struct task_struct *task, int set_waiters)
818 {
819 int lock_taken, ret, force_take = 0;
820 u32 uval, newval, curval, vpid = task_pid_vnr(task);
821
822 retry:
823 ret = lock_taken = 0;
824
825 /*
826 * To avoid races, we attempt to take the lock here again
827 * (by doing a 0 -> TID atomic cmpxchg), while holding all
828 * the locks. It will most likely not succeed.
829 */
830 newval = vpid;
831 if (set_waiters)
832 newval |= FUTEX_WAITERS;
833
834 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
835 return -EFAULT;
836
837 /*
838 * Detect deadlocks.
839 */
840 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
841 return -EDEADLK;
842
843 /*
844 * Surprise - we got the lock, but we do not trust user space at all.
845 */
846 if (unlikely(!curval)) {
847 /*
848 * We verify whether there is kernel state for this
849 * futex. If not, we can safely assume, that the 0 ->
850 * TID transition is correct. If state exists, we do
851 * not bother to fixup the user space state as it was
852 * corrupted already.
853 */
854 return futex_top_waiter(hb, key) ? -EINVAL : 1;
855 }
856
857 uval = curval;
858
859 /*
860 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
861 * to wake at the next unlock.
862 */
863 newval = curval | FUTEX_WAITERS;
864
865 /*
866 * Should we force take the futex? See below.
867 */
868 if (unlikely(force_take)) {
869 /*
870 * Keep the OWNER_DIED and the WAITERS bit and set the
871 * new TID value.
872 */
873 newval = (curval & ~FUTEX_TID_MASK) | vpid;
874 force_take = 0;
875 lock_taken = 1;
876 }
877
878 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
879 return -EFAULT;
880 if (unlikely(curval != uval))
881 goto retry;
882
883 /*
884 * We took the lock due to forced take over.
885 */
886 if (unlikely(lock_taken))
887 return 1;
888
889 /*
890 * We dont have the lock. Look up the PI state (or create it if
891 * we are the first waiter):
892 */
893 ret = lookup_pi_state(uval, hb, key, ps);
894
895 if (unlikely(ret)) {
896 switch (ret) {
897 case -ESRCH:
898 /*
899 * We failed to find an owner for this
900 * futex. So we have no pi_state to block
901 * on. This can happen in two cases:
902 *
903 * 1) The owner died
904 * 2) A stale FUTEX_WAITERS bit
905 *
906 * Re-read the futex value.
907 */
908 if (get_futex_value_locked(&curval, uaddr))
909 return -EFAULT;
910
911 /*
912 * If the owner died or we have a stale
913 * WAITERS bit the owner TID in the user space
914 * futex is 0.
915 */
916 if (!(curval & FUTEX_TID_MASK)) {
917 force_take = 1;
918 goto retry;
919 }
920 default:
921 break;
922 }
923 }
924
925 return ret;
926 }
927
928 /**
929 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
930 * @q: The futex_q to unqueue
931 *
932 * The q->lock_ptr must not be NULL and must be held by the caller.
933 */
934 static void __unqueue_futex(struct futex_q *q)
935 {
936 struct futex_hash_bucket *hb;
937
938 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
939 || WARN_ON(plist_node_empty(&q->list)))
940 return;
941
942 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
943 plist_del(&q->list, &hb->chain);
944 }
945
946 /*
947 * The hash bucket lock must be held when this is called.
948 * Afterwards, the futex_q must not be accessed.
949 */
950 static void wake_futex(struct futex_q *q)
951 {
952 struct task_struct *p = q->task;
953
954 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
955 return;
956
957 /*
958 * We set q->lock_ptr = NULL _before_ we wake up the task. If
959 * a non-futex wake up happens on another CPU then the task
960 * might exit and p would dereference a non-existing task
961 * struct. Prevent this by holding a reference on p across the
962 * wake up.
963 */
964 get_task_struct(p);
965
966 __unqueue_futex(q);
967 /*
968 * The waiting task can free the futex_q as soon as
969 * q->lock_ptr = NULL is written, without taking any locks. A
970 * memory barrier is required here to prevent the following
971 * store to lock_ptr from getting ahead of the plist_del.
972 */
973 smp_wmb();
974 q->lock_ptr = NULL;
975
976 wake_up_state(p, TASK_NORMAL);
977 put_task_struct(p);
978 }
979
980 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
981 {
982 struct task_struct *new_owner;
983 struct futex_pi_state *pi_state = this->pi_state;
984 u32 uninitialized_var(curval), newval;
985 int ret = 0;
986
987 if (!pi_state)
988 return -EINVAL;
989
990 /*
991 * If current does not own the pi_state then the futex is
992 * inconsistent and user space fiddled with the futex value.
993 */
994 if (pi_state->owner != current)
995 return -EINVAL;
996
997 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
998 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
999
1000 /*
1001 * It is possible that the next waiter (the one that brought
1002 * this owner to the kernel) timed out and is no longer
1003 * waiting on the lock.
1004 */
1005 if (!new_owner)
1006 new_owner = this->task;
1007
1008 /*
1009 * We pass it to the next owner. The WAITERS bit is always
1010 * kept enabled while there is PI state around. We cleanup the
1011 * owner died bit, because we are the owner.
1012 */
1013 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1014
1015 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1016 ret = -EFAULT;
1017 else if (curval != uval)
1018 ret = -EINVAL;
1019 if (ret) {
1020 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1021 return ret;
1022 }
1023
1024 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1025 WARN_ON(list_empty(&pi_state->list));
1026 list_del_init(&pi_state->list);
1027 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1028
1029 raw_spin_lock_irq(&new_owner->pi_lock);
1030 WARN_ON(!list_empty(&pi_state->list));
1031 list_add(&pi_state->list, &new_owner->pi_state_list);
1032 pi_state->owner = new_owner;
1033 raw_spin_unlock_irq(&new_owner->pi_lock);
1034
1035 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1036 rt_mutex_unlock(&pi_state->pi_mutex);
1037
1038 return 0;
1039 }
1040
1041 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1042 {
1043 u32 uninitialized_var(oldval);
1044
1045 /*
1046 * There is no waiter, so we unlock the futex. The owner died
1047 * bit has not to be preserved here. We are the owner:
1048 */
1049 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1050 return -EFAULT;
1051 if (oldval != uval)
1052 return -EAGAIN;
1053
1054 return 0;
1055 }
1056
1057 /*
1058 * Express the locking dependencies for lockdep:
1059 */
1060 static inline void
1061 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1062 {
1063 if (hb1 <= hb2) {
1064 spin_lock(&hb1->lock);
1065 if (hb1 < hb2)
1066 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1067 } else { /* hb1 > hb2 */
1068 spin_lock(&hb2->lock);
1069 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1070 }
1071 }
1072
1073 static inline void
1074 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1075 {
1076 spin_unlock(&hb1->lock);
1077 if (hb1 != hb2)
1078 spin_unlock(&hb2->lock);
1079 }
1080
1081 /*
1082 * Wake up waiters matching bitset queued on this futex (uaddr).
1083 */
1084 static int
1085 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1086 {
1087 struct futex_hash_bucket *hb;
1088 struct futex_q *this, *next;
1089 struct plist_head *head;
1090 union futex_key key = FUTEX_KEY_INIT;
1091 int ret;
1092
1093 if (!bitset)
1094 return -EINVAL;
1095
1096 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1097 if (unlikely(ret != 0))
1098 goto out;
1099
1100 hb = hash_futex(&key);
1101 spin_lock(&hb->lock);
1102 head = &hb->chain;
1103
1104 plist_for_each_entry_safe(this, next, head, list) {
1105 if (match_futex (&this->key, &key)) {
1106 if (this->pi_state || this->rt_waiter) {
1107 ret = -EINVAL;
1108 break;
1109 }
1110
1111 /* Check if one of the bits is set in both bitsets */
1112 if (!(this->bitset & bitset))
1113 continue;
1114
1115 wake_futex(this);
1116 if (++ret >= nr_wake)
1117 break;
1118 }
1119 }
1120
1121 spin_unlock(&hb->lock);
1122 put_futex_key(&key);
1123 out:
1124 return ret;
1125 }
1126
1127 /*
1128 * Wake up all waiters hashed on the physical page that is mapped
1129 * to this virtual address:
1130 */
1131 static int
1132 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1133 int nr_wake, int nr_wake2, int op)
1134 {
1135 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1136 struct futex_hash_bucket *hb1, *hb2;
1137 struct plist_head *head;
1138 struct futex_q *this, *next;
1139 int ret, op_ret;
1140
1141 retry:
1142 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1143 if (unlikely(ret != 0))
1144 goto out;
1145 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1146 if (unlikely(ret != 0))
1147 goto out_put_key1;
1148
1149 hb1 = hash_futex(&key1);
1150 hb2 = hash_futex(&key2);
1151
1152 retry_private:
1153 double_lock_hb(hb1, hb2);
1154 op_ret = futex_atomic_op_inuser(op, uaddr2);
1155 if (unlikely(op_ret < 0)) {
1156
1157 double_unlock_hb(hb1, hb2);
1158
1159 #ifndef CONFIG_MMU
1160 /*
1161 * we don't get EFAULT from MMU faults if we don't have an MMU,
1162 * but we might get them from range checking
1163 */
1164 ret = op_ret;
1165 goto out_put_keys;
1166 #endif
1167
1168 if (unlikely(op_ret != -EFAULT)) {
1169 ret = op_ret;
1170 goto out_put_keys;
1171 }
1172
1173 ret = fault_in_user_writeable(uaddr2);
1174 if (ret)
1175 goto out_put_keys;
1176
1177 if (!(flags & FLAGS_SHARED))
1178 goto retry_private;
1179
1180 put_futex_key(&key2);
1181 put_futex_key(&key1);
1182 goto retry;
1183 }
1184
1185 head = &hb1->chain;
1186
1187 plist_for_each_entry_safe(this, next, head, list) {
1188 if (match_futex (&this->key, &key1)) {
1189 if (this->pi_state || this->rt_waiter) {
1190 ret = -EINVAL;
1191 goto out_unlock;
1192 }
1193 wake_futex(this);
1194 if (++ret >= nr_wake)
1195 break;
1196 }
1197 }
1198
1199 if (op_ret > 0) {
1200 head = &hb2->chain;
1201
1202 op_ret = 0;
1203 plist_for_each_entry_safe(this, next, head, list) {
1204 if (match_futex (&this->key, &key2)) {
1205 if (this->pi_state || this->rt_waiter) {
1206 ret = -EINVAL;
1207 goto out_unlock;
1208 }
1209 wake_futex(this);
1210 if (++op_ret >= nr_wake2)
1211 break;
1212 }
1213 }
1214 ret += op_ret;
1215 }
1216
1217 out_unlock:
1218 double_unlock_hb(hb1, hb2);
1219 out_put_keys:
1220 put_futex_key(&key2);
1221 out_put_key1:
1222 put_futex_key(&key1);
1223 out:
1224 return ret;
1225 }
1226
1227 /**
1228 * requeue_futex() - Requeue a futex_q from one hb to another
1229 * @q: the futex_q to requeue
1230 * @hb1: the source hash_bucket
1231 * @hb2: the target hash_bucket
1232 * @key2: the new key for the requeued futex_q
1233 */
1234 static inline
1235 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1236 struct futex_hash_bucket *hb2, union futex_key *key2)
1237 {
1238
1239 /*
1240 * If key1 and key2 hash to the same bucket, no need to
1241 * requeue.
1242 */
1243 if (likely(&hb1->chain != &hb2->chain)) {
1244 plist_del(&q->list, &hb1->chain);
1245 plist_add(&q->list, &hb2->chain);
1246 q->lock_ptr = &hb2->lock;
1247 }
1248 get_futex_key_refs(key2);
1249 q->key = *key2;
1250 }
1251
1252 /**
1253 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1254 * @q: the futex_q
1255 * @key: the key of the requeue target futex
1256 * @hb: the hash_bucket of the requeue target futex
1257 *
1258 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1259 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1260 * to the requeue target futex so the waiter can detect the wakeup on the right
1261 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1262 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1263 * to protect access to the pi_state to fixup the owner later. Must be called
1264 * with both q->lock_ptr and hb->lock held.
1265 */
1266 static inline
1267 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1268 struct futex_hash_bucket *hb)
1269 {
1270 get_futex_key_refs(key);
1271 q->key = *key;
1272
1273 __unqueue_futex(q);
1274
1275 WARN_ON(!q->rt_waiter);
1276 q->rt_waiter = NULL;
1277
1278 q->lock_ptr = &hb->lock;
1279
1280 wake_up_state(q->task, TASK_NORMAL);
1281 }
1282
1283 /**
1284 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1285 * @pifutex: the user address of the to futex
1286 * @hb1: the from futex hash bucket, must be locked by the caller
1287 * @hb2: the to futex hash bucket, must be locked by the caller
1288 * @key1: the from futex key
1289 * @key2: the to futex key
1290 * @ps: address to store the pi_state pointer
1291 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1292 *
1293 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1294 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1295 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1296 * hb1 and hb2 must be held by the caller.
1297 *
1298 * Return:
1299 * 0 - failed to acquire the lock atomically;
1300 * >0 - acquired the lock, return value is vpid of the top_waiter
1301 * <0 - error
1302 */
1303 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1304 struct futex_hash_bucket *hb1,
1305 struct futex_hash_bucket *hb2,
1306 union futex_key *key1, union futex_key *key2,
1307 struct futex_pi_state **ps, int set_waiters)
1308 {
1309 struct futex_q *top_waiter = NULL;
1310 u32 curval;
1311 int ret, vpid;
1312
1313 if (get_futex_value_locked(&curval, pifutex))
1314 return -EFAULT;
1315
1316 /*
1317 * Find the top_waiter and determine if there are additional waiters.
1318 * If the caller intends to requeue more than 1 waiter to pifutex,
1319 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1320 * as we have means to handle the possible fault. If not, don't set
1321 * the bit unecessarily as it will force the subsequent unlock to enter
1322 * the kernel.
1323 */
1324 top_waiter = futex_top_waiter(hb1, key1);
1325
1326 /* There are no waiters, nothing for us to do. */
1327 if (!top_waiter)
1328 return 0;
1329
1330 /* Ensure we requeue to the expected futex. */
1331 if (!match_futex(top_waiter->requeue_pi_key, key2))
1332 return -EINVAL;
1333
1334 /*
1335 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1336 * the contended case or if set_waiters is 1. The pi_state is returned
1337 * in ps in contended cases.
1338 */
1339 vpid = task_pid_vnr(top_waiter->task);
1340 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1341 set_waiters);
1342 if (ret == 1) {
1343 requeue_pi_wake_futex(top_waiter, key2, hb2);
1344 return vpid;
1345 }
1346 return ret;
1347 }
1348
1349 /**
1350 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1351 * @uaddr1: source futex user address
1352 * @flags: futex flags (FLAGS_SHARED, etc.)
1353 * @uaddr2: target futex user address
1354 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1355 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1356 * @cmpval: @uaddr1 expected value (or %NULL)
1357 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1358 * pi futex (pi to pi requeue is not supported)
1359 *
1360 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1361 * uaddr2 atomically on behalf of the top waiter.
1362 *
1363 * Return:
1364 * >=0 - on success, the number of tasks requeued or woken;
1365 * <0 - on error
1366 */
1367 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1368 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1369 u32 *cmpval, int requeue_pi)
1370 {
1371 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1372 int drop_count = 0, task_count = 0, ret;
1373 struct futex_pi_state *pi_state = NULL;
1374 struct futex_hash_bucket *hb1, *hb2;
1375 struct plist_head *head1;
1376 struct futex_q *this, *next;
1377
1378 if (requeue_pi) {
1379 /*
1380 * Requeue PI only works on two distinct uaddrs. This
1381 * check is only valid for private futexes. See below.
1382 */
1383 if (uaddr1 == uaddr2)
1384 return -EINVAL;
1385
1386 /*
1387 * requeue_pi requires a pi_state, try to allocate it now
1388 * without any locks in case it fails.
1389 */
1390 if (refill_pi_state_cache())
1391 return -ENOMEM;
1392 /*
1393 * requeue_pi must wake as many tasks as it can, up to nr_wake
1394 * + nr_requeue, since it acquires the rt_mutex prior to
1395 * returning to userspace, so as to not leave the rt_mutex with
1396 * waiters and no owner. However, second and third wake-ups
1397 * cannot be predicted as they involve race conditions with the
1398 * first wake and a fault while looking up the pi_state. Both
1399 * pthread_cond_signal() and pthread_cond_broadcast() should
1400 * use nr_wake=1.
1401 */
1402 if (nr_wake != 1)
1403 return -EINVAL;
1404 }
1405
1406 retry:
1407 if (pi_state != NULL) {
1408 /*
1409 * We will have to lookup the pi_state again, so free this one
1410 * to keep the accounting correct.
1411 */
1412 free_pi_state(pi_state);
1413 pi_state = NULL;
1414 }
1415
1416 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1417 if (unlikely(ret != 0))
1418 goto out;
1419 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1420 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1421 if (unlikely(ret != 0))
1422 goto out_put_key1;
1423
1424 /*
1425 * The check above which compares uaddrs is not sufficient for
1426 * shared futexes. We need to compare the keys:
1427 */
1428 if (requeue_pi && match_futex(&key1, &key2)) {
1429 ret = -EINVAL;
1430 goto out_put_keys;
1431 }
1432
1433 hb1 = hash_futex(&key1);
1434 hb2 = hash_futex(&key2);
1435
1436 retry_private:
1437 double_lock_hb(hb1, hb2);
1438
1439 if (likely(cmpval != NULL)) {
1440 u32 curval;
1441
1442 ret = get_futex_value_locked(&curval, uaddr1);
1443
1444 if (unlikely(ret)) {
1445 double_unlock_hb(hb1, hb2);
1446
1447 ret = get_user(curval, uaddr1);
1448 if (ret)
1449 goto out_put_keys;
1450
1451 if (!(flags & FLAGS_SHARED))
1452 goto retry_private;
1453
1454 put_futex_key(&key2);
1455 put_futex_key(&key1);
1456 goto retry;
1457 }
1458 if (curval != *cmpval) {
1459 ret = -EAGAIN;
1460 goto out_unlock;
1461 }
1462 }
1463
1464 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1465 /*
1466 * Attempt to acquire uaddr2 and wake the top waiter. If we
1467 * intend to requeue waiters, force setting the FUTEX_WAITERS
1468 * bit. We force this here where we are able to easily handle
1469 * faults rather in the requeue loop below.
1470 */
1471 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1472 &key2, &pi_state, nr_requeue);
1473
1474 /*
1475 * At this point the top_waiter has either taken uaddr2 or is
1476 * waiting on it. If the former, then the pi_state will not
1477 * exist yet, look it up one more time to ensure we have a
1478 * reference to it. If the lock was taken, ret contains the
1479 * vpid of the top waiter task.
1480 */
1481 if (ret > 0) {
1482 WARN_ON(pi_state);
1483 drop_count++;
1484 task_count++;
1485 /*
1486 * If we acquired the lock, then the user
1487 * space value of uaddr2 should be vpid. It
1488 * cannot be changed by the top waiter as it
1489 * is blocked on hb2 lock if it tries to do
1490 * so. If something fiddled with it behind our
1491 * back the pi state lookup might unearth
1492 * it. So we rather use the known value than
1493 * rereading and handing potential crap to
1494 * lookup_pi_state.
1495 */
1496 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1497 }
1498
1499 switch (ret) {
1500 case 0:
1501 break;
1502 case -EFAULT:
1503 double_unlock_hb(hb1, hb2);
1504 put_futex_key(&key2);
1505 put_futex_key(&key1);
1506 ret = fault_in_user_writeable(uaddr2);
1507 if (!ret)
1508 goto retry;
1509 goto out;
1510 case -EAGAIN:
1511 /* The owner was exiting, try again. */
1512 double_unlock_hb(hb1, hb2);
1513 put_futex_key(&key2);
1514 put_futex_key(&key1);
1515 cond_resched();
1516 goto retry;
1517 default:
1518 goto out_unlock;
1519 }
1520 }
1521
1522 head1 = &hb1->chain;
1523 plist_for_each_entry_safe(this, next, head1, list) {
1524 if (task_count - nr_wake >= nr_requeue)
1525 break;
1526
1527 if (!match_futex(&this->key, &key1))
1528 continue;
1529
1530 /*
1531 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1532 * be paired with each other and no other futex ops.
1533 *
1534 * We should never be requeueing a futex_q with a pi_state,
1535 * which is awaiting a futex_unlock_pi().
1536 */
1537 if ((requeue_pi && !this->rt_waiter) ||
1538 (!requeue_pi && this->rt_waiter) ||
1539 this->pi_state) {
1540 ret = -EINVAL;
1541 break;
1542 }
1543
1544 /*
1545 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1546 * lock, we already woke the top_waiter. If not, it will be
1547 * woken by futex_unlock_pi().
1548 */
1549 if (++task_count <= nr_wake && !requeue_pi) {
1550 wake_futex(this);
1551 continue;
1552 }
1553
1554 /* Ensure we requeue to the expected futex for requeue_pi. */
1555 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1556 ret = -EINVAL;
1557 break;
1558 }
1559
1560 /*
1561 * Requeue nr_requeue waiters and possibly one more in the case
1562 * of requeue_pi if we couldn't acquire the lock atomically.
1563 */
1564 if (requeue_pi) {
1565 /* Prepare the waiter to take the rt_mutex. */
1566 atomic_inc(&pi_state->refcount);
1567 this->pi_state = pi_state;
1568 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1569 this->rt_waiter,
1570 this->task, 1);
1571 if (ret == 1) {
1572 /* We got the lock. */
1573 requeue_pi_wake_futex(this, &key2, hb2);
1574 drop_count++;
1575 continue;
1576 } else if (ret) {
1577 /* -EDEADLK */
1578 this->pi_state = NULL;
1579 free_pi_state(pi_state);
1580 goto out_unlock;
1581 }
1582 }
1583 requeue_futex(this, hb1, hb2, &key2);
1584 drop_count++;
1585 }
1586
1587 out_unlock:
1588 double_unlock_hb(hb1, hb2);
1589
1590 /*
1591 * drop_futex_key_refs() must be called outside the spinlocks. During
1592 * the requeue we moved futex_q's from the hash bucket at key1 to the
1593 * one at key2 and updated their key pointer. We no longer need to
1594 * hold the references to key1.
1595 */
1596 while (--drop_count >= 0)
1597 drop_futex_key_refs(&key1);
1598
1599 out_put_keys:
1600 put_futex_key(&key2);
1601 out_put_key1:
1602 put_futex_key(&key1);
1603 out:
1604 if (pi_state != NULL)
1605 free_pi_state(pi_state);
1606 return ret ? ret : task_count;
1607 }
1608
1609 /* The key must be already stored in q->key. */
1610 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1611 __acquires(&hb->lock)
1612 {
1613 struct futex_hash_bucket *hb;
1614
1615 hb = hash_futex(&q->key);
1616 q->lock_ptr = &hb->lock;
1617
1618 spin_lock(&hb->lock);
1619 return hb;
1620 }
1621
1622 static inline void
1623 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1624 __releases(&hb->lock)
1625 {
1626 spin_unlock(&hb->lock);
1627 }
1628
1629 /**
1630 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1631 * @q: The futex_q to enqueue
1632 * @hb: The destination hash bucket
1633 *
1634 * The hb->lock must be held by the caller, and is released here. A call to
1635 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1636 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1637 * or nothing if the unqueue is done as part of the wake process and the unqueue
1638 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1639 * an example).
1640 */
1641 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1642 __releases(&hb->lock)
1643 {
1644 int prio;
1645
1646 /*
1647 * The priority used to register this element is
1648 * - either the real thread-priority for the real-time threads
1649 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1650 * - or MAX_RT_PRIO for non-RT threads.
1651 * Thus, all RT-threads are woken first in priority order, and
1652 * the others are woken last, in FIFO order.
1653 */
1654 prio = min(current->normal_prio, MAX_RT_PRIO);
1655
1656 plist_node_init(&q->list, prio);
1657 plist_add(&q->list, &hb->chain);
1658 q->task = current;
1659 spin_unlock(&hb->lock);
1660 }
1661
1662 /**
1663 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1664 * @q: The futex_q to unqueue
1665 *
1666 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1667 * be paired with exactly one earlier call to queue_me().
1668 *
1669 * Return:
1670 * 1 - if the futex_q was still queued (and we removed unqueued it);
1671 * 0 - if the futex_q was already removed by the waking thread
1672 */
1673 static int unqueue_me(struct futex_q *q)
1674 {
1675 spinlock_t *lock_ptr;
1676 int ret = 0;
1677
1678 /* In the common case we don't take the spinlock, which is nice. */
1679 retry:
1680 lock_ptr = q->lock_ptr;
1681 barrier();
1682 if (lock_ptr != NULL) {
1683 spin_lock(lock_ptr);
1684 /*
1685 * q->lock_ptr can change between reading it and
1686 * spin_lock(), causing us to take the wrong lock. This
1687 * corrects the race condition.
1688 *
1689 * Reasoning goes like this: if we have the wrong lock,
1690 * q->lock_ptr must have changed (maybe several times)
1691 * between reading it and the spin_lock(). It can
1692 * change again after the spin_lock() but only if it was
1693 * already changed before the spin_lock(). It cannot,
1694 * however, change back to the original value. Therefore
1695 * we can detect whether we acquired the correct lock.
1696 */
1697 if (unlikely(lock_ptr != q->lock_ptr)) {
1698 spin_unlock(lock_ptr);
1699 goto retry;
1700 }
1701 __unqueue_futex(q);
1702
1703 BUG_ON(q->pi_state);
1704
1705 spin_unlock(lock_ptr);
1706 ret = 1;
1707 }
1708
1709 drop_futex_key_refs(&q->key);
1710 return ret;
1711 }
1712
1713 /*
1714 * PI futexes can not be requeued and must remove themself from the
1715 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1716 * and dropped here.
1717 */
1718 static void unqueue_me_pi(struct futex_q *q)
1719 __releases(q->lock_ptr)
1720 {
1721 __unqueue_futex(q);
1722
1723 BUG_ON(!q->pi_state);
1724 free_pi_state(q->pi_state);
1725 q->pi_state = NULL;
1726
1727 spin_unlock(q->lock_ptr);
1728 }
1729
1730 /*
1731 * Fixup the pi_state owner with the new owner.
1732 *
1733 * Must be called with hash bucket lock held and mm->sem held for non
1734 * private futexes.
1735 */
1736 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1737 struct task_struct *newowner)
1738 {
1739 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1740 struct futex_pi_state *pi_state = q->pi_state;
1741 struct task_struct *oldowner = pi_state->owner;
1742 u32 uval, uninitialized_var(curval), newval;
1743 int ret;
1744
1745 /* Owner died? */
1746 if (!pi_state->owner)
1747 newtid |= FUTEX_OWNER_DIED;
1748
1749 /*
1750 * We are here either because we stole the rtmutex from the
1751 * previous highest priority waiter or we are the highest priority
1752 * waiter but failed to get the rtmutex the first time.
1753 * We have to replace the newowner TID in the user space variable.
1754 * This must be atomic as we have to preserve the owner died bit here.
1755 *
1756 * Note: We write the user space value _before_ changing the pi_state
1757 * because we can fault here. Imagine swapped out pages or a fork
1758 * that marked all the anonymous memory readonly for cow.
1759 *
1760 * Modifying pi_state _before_ the user space value would
1761 * leave the pi_state in an inconsistent state when we fault
1762 * here, because we need to drop the hash bucket lock to
1763 * handle the fault. This might be observed in the PID check
1764 * in lookup_pi_state.
1765 */
1766 retry:
1767 if (get_futex_value_locked(&uval, uaddr))
1768 goto handle_fault;
1769
1770 while (1) {
1771 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1772
1773 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1774 goto handle_fault;
1775 if (curval == uval)
1776 break;
1777 uval = curval;
1778 }
1779
1780 /*
1781 * We fixed up user space. Now we need to fix the pi_state
1782 * itself.
1783 */
1784 if (pi_state->owner != NULL) {
1785 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1786 WARN_ON(list_empty(&pi_state->list));
1787 list_del_init(&pi_state->list);
1788 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1789 }
1790
1791 pi_state->owner = newowner;
1792
1793 raw_spin_lock_irq(&newowner->pi_lock);
1794 WARN_ON(!list_empty(&pi_state->list));
1795 list_add(&pi_state->list, &newowner->pi_state_list);
1796 raw_spin_unlock_irq(&newowner->pi_lock);
1797 return 0;
1798
1799 /*
1800 * To handle the page fault we need to drop the hash bucket
1801 * lock here. That gives the other task (either the highest priority
1802 * waiter itself or the task which stole the rtmutex) the
1803 * chance to try the fixup of the pi_state. So once we are
1804 * back from handling the fault we need to check the pi_state
1805 * after reacquiring the hash bucket lock and before trying to
1806 * do another fixup. When the fixup has been done already we
1807 * simply return.
1808 */
1809 handle_fault:
1810 spin_unlock(q->lock_ptr);
1811
1812 ret = fault_in_user_writeable(uaddr);
1813
1814 spin_lock(q->lock_ptr);
1815
1816 /*
1817 * Check if someone else fixed it for us:
1818 */
1819 if (pi_state->owner != oldowner)
1820 return 0;
1821
1822 if (ret)
1823 return ret;
1824
1825 goto retry;
1826 }
1827
1828 static long futex_wait_restart(struct restart_block *restart);
1829
1830 /**
1831 * fixup_owner() - Post lock pi_state and corner case management
1832 * @uaddr: user address of the futex
1833 * @q: futex_q (contains pi_state and access to the rt_mutex)
1834 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1835 *
1836 * After attempting to lock an rt_mutex, this function is called to cleanup
1837 * the pi_state owner as well as handle race conditions that may allow us to
1838 * acquire the lock. Must be called with the hb lock held.
1839 *
1840 * Return:
1841 * 1 - success, lock taken;
1842 * 0 - success, lock not taken;
1843 * <0 - on error (-EFAULT)
1844 */
1845 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1846 {
1847 struct task_struct *owner;
1848 int ret = 0;
1849
1850 if (locked) {
1851 /*
1852 * Got the lock. We might not be the anticipated owner if we
1853 * did a lock-steal - fix up the PI-state in that case:
1854 */
1855 if (q->pi_state->owner != current)
1856 ret = fixup_pi_state_owner(uaddr, q, current);
1857 goto out;
1858 }
1859
1860 /*
1861 * Catch the rare case, where the lock was released when we were on the
1862 * way back before we locked the hash bucket.
1863 */
1864 if (q->pi_state->owner == current) {
1865 /*
1866 * Try to get the rt_mutex now. This might fail as some other
1867 * task acquired the rt_mutex after we removed ourself from the
1868 * rt_mutex waiters list.
1869 */
1870 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1871 locked = 1;
1872 goto out;
1873 }
1874
1875 /*
1876 * pi_state is incorrect, some other task did a lock steal and
1877 * we returned due to timeout or signal without taking the
1878 * rt_mutex. Too late.
1879 */
1880 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1881 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1882 if (!owner)
1883 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1884 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1885 ret = fixup_pi_state_owner(uaddr, q, owner);
1886 goto out;
1887 }
1888
1889 /*
1890 * Paranoia check. If we did not take the lock, then we should not be
1891 * the owner of the rt_mutex.
1892 */
1893 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1894 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1895 "pi-state %p\n", ret,
1896 q->pi_state->pi_mutex.owner,
1897 q->pi_state->owner);
1898
1899 out:
1900 return ret ? ret : locked;
1901 }
1902
1903 /**
1904 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1905 * @hb: the futex hash bucket, must be locked by the caller
1906 * @q: the futex_q to queue up on
1907 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1908 */
1909 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1910 struct hrtimer_sleeper *timeout)
1911 {
1912 /*
1913 * The task state is guaranteed to be set before another task can
1914 * wake it. set_current_state() is implemented using set_mb() and
1915 * queue_me() calls spin_unlock() upon completion, both serializing
1916 * access to the hash list and forcing another memory barrier.
1917 */
1918 set_current_state(TASK_INTERRUPTIBLE);
1919 queue_me(q, hb);
1920
1921 /* Arm the timer */
1922 if (timeout) {
1923 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1924 if (!hrtimer_active(&timeout->timer))
1925 timeout->task = NULL;
1926 }
1927
1928 /*
1929 * If we have been removed from the hash list, then another task
1930 * has tried to wake us, and we can skip the call to schedule().
1931 */
1932 if (likely(!plist_node_empty(&q->list))) {
1933 /*
1934 * If the timer has already expired, current will already be
1935 * flagged for rescheduling. Only call schedule if there
1936 * is no timeout, or if it has yet to expire.
1937 */
1938 if (!timeout || timeout->task)
1939 freezable_schedule();
1940 }
1941 __set_current_state(TASK_RUNNING);
1942 }
1943
1944 /**
1945 * futex_wait_setup() - Prepare to wait on a futex
1946 * @uaddr: the futex userspace address
1947 * @val: the expected value
1948 * @flags: futex flags (FLAGS_SHARED, etc.)
1949 * @q: the associated futex_q
1950 * @hb: storage for hash_bucket pointer to be returned to caller
1951 *
1952 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1953 * compare it with the expected value. Handle atomic faults internally.
1954 * Return with the hb lock held and a q.key reference on success, and unlocked
1955 * with no q.key reference on failure.
1956 *
1957 * Return:
1958 * 0 - uaddr contains val and hb has been locked;
1959 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1960 */
1961 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1962 struct futex_q *q, struct futex_hash_bucket **hb)
1963 {
1964 u32 uval;
1965 int ret;
1966
1967 /*
1968 * Access the page AFTER the hash-bucket is locked.
1969 * Order is important:
1970 *
1971 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1972 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1973 *
1974 * The basic logical guarantee of a futex is that it blocks ONLY
1975 * if cond(var) is known to be true at the time of blocking, for
1976 * any cond. If we locked the hash-bucket after testing *uaddr, that
1977 * would open a race condition where we could block indefinitely with
1978 * cond(var) false, which would violate the guarantee.
1979 *
1980 * On the other hand, we insert q and release the hash-bucket only
1981 * after testing *uaddr. This guarantees that futex_wait() will NOT
1982 * absorb a wakeup if *uaddr does not match the desired values
1983 * while the syscall executes.
1984 */
1985 retry:
1986 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1987 if (unlikely(ret != 0))
1988 return ret;
1989
1990 retry_private:
1991 *hb = queue_lock(q);
1992
1993 ret = get_futex_value_locked(&uval, uaddr);
1994
1995 if (ret) {
1996 queue_unlock(q, *hb);
1997
1998 ret = get_user(uval, uaddr);
1999 if (ret)
2000 goto out;
2001
2002 if (!(flags & FLAGS_SHARED))
2003 goto retry_private;
2004
2005 put_futex_key(&q->key);
2006 goto retry;
2007 }
2008
2009 if (uval != val) {
2010 queue_unlock(q, *hb);
2011 ret = -EWOULDBLOCK;
2012 }
2013
2014 out:
2015 if (ret)
2016 put_futex_key(&q->key);
2017 return ret;
2018 }
2019
2020 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2021 ktime_t *abs_time, u32 bitset)
2022 {
2023 struct hrtimer_sleeper timeout, *to = NULL;
2024 struct restart_block *restart;
2025 struct futex_hash_bucket *hb;
2026 struct futex_q q = futex_q_init;
2027 int ret;
2028
2029 if (!bitset)
2030 return -EINVAL;
2031 q.bitset = bitset;
2032
2033 if (abs_time) {
2034 to = &timeout;
2035
2036 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2037 CLOCK_REALTIME : CLOCK_MONOTONIC,
2038 HRTIMER_MODE_ABS);
2039 hrtimer_init_sleeper(to, current);
2040 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2041 current->timer_slack_ns);
2042 }
2043
2044 retry:
2045 /*
2046 * Prepare to wait on uaddr. On success, holds hb lock and increments
2047 * q.key refs.
2048 */
2049 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2050 if (ret)
2051 goto out;
2052
2053 /* queue_me and wait for wakeup, timeout, or a signal. */
2054 futex_wait_queue_me(hb, &q, to);
2055
2056 /* If we were woken (and unqueued), we succeeded, whatever. */
2057 ret = 0;
2058 /* unqueue_me() drops q.key ref */
2059 if (!unqueue_me(&q))
2060 goto out;
2061 ret = -ETIMEDOUT;
2062 if (to && !to->task)
2063 goto out;
2064
2065 /*
2066 * We expect signal_pending(current), but we might be the
2067 * victim of a spurious wakeup as well.
2068 */
2069 if (!signal_pending(current))
2070 goto retry;
2071
2072 ret = -ERESTARTSYS;
2073 if (!abs_time)
2074 goto out;
2075
2076 restart = &current_thread_info()->restart_block;
2077 restart->fn = futex_wait_restart;
2078 restart->futex.uaddr = uaddr;
2079 restart->futex.val = val;
2080 restart->futex.time = abs_time->tv64;
2081 restart->futex.bitset = bitset;
2082 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2083
2084 ret = -ERESTART_RESTARTBLOCK;
2085
2086 out:
2087 if (to) {
2088 hrtimer_cancel(&to->timer);
2089 destroy_hrtimer_on_stack(&to->timer);
2090 }
2091 return ret;
2092 }
2093
2094
2095 static long futex_wait_restart(struct restart_block *restart)
2096 {
2097 u32 __user *uaddr = restart->futex.uaddr;
2098 ktime_t t, *tp = NULL;
2099
2100 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2101 t.tv64 = restart->futex.time;
2102 tp = &t;
2103 }
2104 restart->fn = do_no_restart_syscall;
2105
2106 return (long)futex_wait(uaddr, restart->futex.flags,
2107 restart->futex.val, tp, restart->futex.bitset);
2108 }
2109
2110
2111 /*
2112 * Userspace tried a 0 -> TID atomic transition of the futex value
2113 * and failed. The kernel side here does the whole locking operation:
2114 * if there are waiters then it will block, it does PI, etc. (Due to
2115 * races the kernel might see a 0 value of the futex too.)
2116 */
2117 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2118 ktime_t *time, int trylock)
2119 {
2120 struct hrtimer_sleeper timeout, *to = NULL;
2121 struct futex_hash_bucket *hb;
2122 struct futex_q q = futex_q_init;
2123 int res, ret;
2124
2125 if (refill_pi_state_cache())
2126 return -ENOMEM;
2127
2128 if (time) {
2129 to = &timeout;
2130 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2131 HRTIMER_MODE_ABS);
2132 hrtimer_init_sleeper(to, current);
2133 hrtimer_set_expires(&to->timer, *time);
2134 }
2135
2136 retry:
2137 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2138 if (unlikely(ret != 0))
2139 goto out;
2140
2141 retry_private:
2142 hb = queue_lock(&q);
2143
2144 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2145 if (unlikely(ret)) {
2146 switch (ret) {
2147 case 1:
2148 /* We got the lock. */
2149 ret = 0;
2150 goto out_unlock_put_key;
2151 case -EFAULT:
2152 goto uaddr_faulted;
2153 case -EAGAIN:
2154 /*
2155 * Task is exiting and we just wait for the
2156 * exit to complete.
2157 */
2158 queue_unlock(&q, hb);
2159 put_futex_key(&q.key);
2160 cond_resched();
2161 goto retry;
2162 default:
2163 goto out_unlock_put_key;
2164 }
2165 }
2166
2167 /*
2168 * Only actually queue now that the atomic ops are done:
2169 */
2170 queue_me(&q, hb);
2171
2172 WARN_ON(!q.pi_state);
2173 /*
2174 * Block on the PI mutex:
2175 */
2176 if (!trylock)
2177 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2178 else {
2179 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2180 /* Fixup the trylock return value: */
2181 ret = ret ? 0 : -EWOULDBLOCK;
2182 }
2183
2184 spin_lock(q.lock_ptr);
2185 /*
2186 * Fixup the pi_state owner and possibly acquire the lock if we
2187 * haven't already.
2188 */
2189 res = fixup_owner(uaddr, &q, !ret);
2190 /*
2191 * If fixup_owner() returned an error, proprogate that. If it acquired
2192 * the lock, clear our -ETIMEDOUT or -EINTR.
2193 */
2194 if (res)
2195 ret = (res < 0) ? res : 0;
2196
2197 /*
2198 * If fixup_owner() faulted and was unable to handle the fault, unlock
2199 * it and return the fault to userspace.
2200 */
2201 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2202 rt_mutex_unlock(&q.pi_state->pi_mutex);
2203
2204 /* Unqueue and drop the lock */
2205 unqueue_me_pi(&q);
2206
2207 goto out_put_key;
2208
2209 out_unlock_put_key:
2210 queue_unlock(&q, hb);
2211
2212 out_put_key:
2213 put_futex_key(&q.key);
2214 out:
2215 if (to)
2216 destroy_hrtimer_on_stack(&to->timer);
2217 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2218
2219 uaddr_faulted:
2220 queue_unlock(&q, hb);
2221
2222 ret = fault_in_user_writeable(uaddr);
2223 if (ret)
2224 goto out_put_key;
2225
2226 if (!(flags & FLAGS_SHARED))
2227 goto retry_private;
2228
2229 put_futex_key(&q.key);
2230 goto retry;
2231 }
2232
2233 /*
2234 * Userspace attempted a TID -> 0 atomic transition, and failed.
2235 * This is the in-kernel slowpath: we look up the PI state (if any),
2236 * and do the rt-mutex unlock.
2237 */
2238 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2239 {
2240 struct futex_hash_bucket *hb;
2241 struct futex_q *this, *next;
2242 struct plist_head *head;
2243 union futex_key key = FUTEX_KEY_INIT;
2244 u32 uval, vpid = task_pid_vnr(current);
2245 int ret;
2246
2247 retry:
2248 if (get_user(uval, uaddr))
2249 return -EFAULT;
2250 /*
2251 * We release only a lock we actually own:
2252 */
2253 if ((uval & FUTEX_TID_MASK) != vpid)
2254 return -EPERM;
2255
2256 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2257 if (unlikely(ret != 0))
2258 goto out;
2259
2260 hb = hash_futex(&key);
2261 spin_lock(&hb->lock);
2262
2263 /*
2264 * To avoid races, try to do the TID -> 0 atomic transition
2265 * again. If it succeeds then we can return without waking
2266 * anyone else up. We only try this if neither the waiters nor
2267 * the owner died bit are set.
2268 */
2269 if (!(uval & ~FUTEX_TID_MASK) &&
2270 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2271 goto pi_faulted;
2272 /*
2273 * Rare case: we managed to release the lock atomically,
2274 * no need to wake anyone else up:
2275 */
2276 if (unlikely(uval == vpid))
2277 goto out_unlock;
2278
2279 /*
2280 * Ok, other tasks may need to be woken up - check waiters
2281 * and do the wakeup if necessary:
2282 */
2283 head = &hb->chain;
2284
2285 plist_for_each_entry_safe(this, next, head, list) {
2286 if (!match_futex (&this->key, &key))
2287 continue;
2288 ret = wake_futex_pi(uaddr, uval, this);
2289 /*
2290 * The atomic access to the futex value
2291 * generated a pagefault, so retry the
2292 * user-access and the wakeup:
2293 */
2294 if (ret == -EFAULT)
2295 goto pi_faulted;
2296 goto out_unlock;
2297 }
2298 /*
2299 * No waiters - kernel unlocks the futex:
2300 */
2301 ret = unlock_futex_pi(uaddr, uval);
2302 if (ret == -EFAULT)
2303 goto pi_faulted;
2304
2305 out_unlock:
2306 spin_unlock(&hb->lock);
2307 put_futex_key(&key);
2308
2309 out:
2310 return ret;
2311
2312 pi_faulted:
2313 spin_unlock(&hb->lock);
2314 put_futex_key(&key);
2315
2316 ret = fault_in_user_writeable(uaddr);
2317 if (!ret)
2318 goto retry;
2319
2320 return ret;
2321 }
2322
2323 /**
2324 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2325 * @hb: the hash_bucket futex_q was original enqueued on
2326 * @q: the futex_q woken while waiting to be requeued
2327 * @key2: the futex_key of the requeue target futex
2328 * @timeout: the timeout associated with the wait (NULL if none)
2329 *
2330 * Detect if the task was woken on the initial futex as opposed to the requeue
2331 * target futex. If so, determine if it was a timeout or a signal that caused
2332 * the wakeup and return the appropriate error code to the caller. Must be
2333 * called with the hb lock held.
2334 *
2335 * Return:
2336 * 0 = no early wakeup detected;
2337 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2338 */
2339 static inline
2340 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2341 struct futex_q *q, union futex_key *key2,
2342 struct hrtimer_sleeper *timeout)
2343 {
2344 int ret = 0;
2345
2346 /*
2347 * With the hb lock held, we avoid races while we process the wakeup.
2348 * We only need to hold hb (and not hb2) to ensure atomicity as the
2349 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2350 * It can't be requeued from uaddr2 to something else since we don't
2351 * support a PI aware source futex for requeue.
2352 */
2353 if (!match_futex(&q->key, key2)) {
2354 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2355 /*
2356 * We were woken prior to requeue by a timeout or a signal.
2357 * Unqueue the futex_q and determine which it was.
2358 */
2359 plist_del(&q->list, &hb->chain);
2360
2361 /* Handle spurious wakeups gracefully */
2362 ret = -EWOULDBLOCK;
2363 if (timeout && !timeout->task)
2364 ret = -ETIMEDOUT;
2365 else if (signal_pending(current))
2366 ret = -ERESTARTNOINTR;
2367 }
2368 return ret;
2369 }
2370
2371 /**
2372 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2373 * @uaddr: the futex we initially wait on (non-pi)
2374 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2375 * the same type, no requeueing from private to shared, etc.
2376 * @val: the expected value of uaddr
2377 * @abs_time: absolute timeout
2378 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2379 * @uaddr2: the pi futex we will take prior to returning to user-space
2380 *
2381 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2382 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2383 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2384 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2385 * without one, the pi logic would not know which task to boost/deboost, if
2386 * there was a need to.
2387 *
2388 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2389 * via the following--
2390 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2391 * 2) wakeup on uaddr2 after a requeue
2392 * 3) signal
2393 * 4) timeout
2394 *
2395 * If 3, cleanup and return -ERESTARTNOINTR.
2396 *
2397 * If 2, we may then block on trying to take the rt_mutex and return via:
2398 * 5) successful lock
2399 * 6) signal
2400 * 7) timeout
2401 * 8) other lock acquisition failure
2402 *
2403 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2404 *
2405 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2406 *
2407 * Return:
2408 * 0 - On success;
2409 * <0 - On error
2410 */
2411 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2412 u32 val, ktime_t *abs_time, u32 bitset,
2413 u32 __user *uaddr2)
2414 {
2415 struct hrtimer_sleeper timeout, *to = NULL;
2416 struct rt_mutex_waiter rt_waiter;
2417 struct rt_mutex *pi_mutex = NULL;
2418 struct futex_hash_bucket *hb;
2419 union futex_key key2 = FUTEX_KEY_INIT;
2420 struct futex_q q = futex_q_init;
2421 int res, ret;
2422
2423 if (uaddr == uaddr2)
2424 return -EINVAL;
2425
2426 if (!bitset)
2427 return -EINVAL;
2428
2429 if (abs_time) {
2430 to = &timeout;
2431 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2432 CLOCK_REALTIME : CLOCK_MONOTONIC,
2433 HRTIMER_MODE_ABS);
2434 hrtimer_init_sleeper(to, current);
2435 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2436 current->timer_slack_ns);
2437 }
2438
2439 /*
2440 * The waiter is allocated on our stack, manipulated by the requeue
2441 * code while we sleep on uaddr.
2442 */
2443 debug_rt_mutex_init_waiter(&rt_waiter);
2444 rt_waiter.task = NULL;
2445
2446 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2447 if (unlikely(ret != 0))
2448 goto out;
2449
2450 q.bitset = bitset;
2451 q.rt_waiter = &rt_waiter;
2452 q.requeue_pi_key = &key2;
2453
2454 /*
2455 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2456 * count.
2457 */
2458 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2459 if (ret)
2460 goto out_key2;
2461
2462 /*
2463 * The check above which compares uaddrs is not sufficient for
2464 * shared futexes. We need to compare the keys:
2465 */
2466 if (match_futex(&q.key, &key2)) {
2467 ret = -EINVAL;
2468 goto out_put_keys;
2469 }
2470
2471 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2472 futex_wait_queue_me(hb, &q, to);
2473
2474 spin_lock(&hb->lock);
2475 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2476 spin_unlock(&hb->lock);
2477 if (ret)
2478 goto out_put_keys;
2479
2480 /*
2481 * In order for us to be here, we know our q.key == key2, and since
2482 * we took the hb->lock above, we also know that futex_requeue() has
2483 * completed and we no longer have to concern ourselves with a wakeup
2484 * race with the atomic proxy lock acquisition by the requeue code. The
2485 * futex_requeue dropped our key1 reference and incremented our key2
2486 * reference count.
2487 */
2488
2489 /* Check if the requeue code acquired the second futex for us. */
2490 if (!q.rt_waiter) {
2491 /*
2492 * Got the lock. We might not be the anticipated owner if we
2493 * did a lock-steal - fix up the PI-state in that case.
2494 */
2495 if (q.pi_state && (q.pi_state->owner != current)) {
2496 spin_lock(q.lock_ptr);
2497 ret = fixup_pi_state_owner(uaddr2, &q, current);
2498 spin_unlock(q.lock_ptr);
2499 }
2500 } else {
2501 /*
2502 * We have been woken up by futex_unlock_pi(), a timeout, or a
2503 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2504 * the pi_state.
2505 */
2506 WARN_ON(!q.pi_state);
2507 pi_mutex = &q.pi_state->pi_mutex;
2508 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2509 debug_rt_mutex_free_waiter(&rt_waiter);
2510
2511 spin_lock(q.lock_ptr);
2512 /*
2513 * Fixup the pi_state owner and possibly acquire the lock if we
2514 * haven't already.
2515 */
2516 res = fixup_owner(uaddr2, &q, !ret);
2517 /*
2518 * If fixup_owner() returned an error, proprogate that. If it
2519 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2520 */
2521 if (res)
2522 ret = (res < 0) ? res : 0;
2523
2524 /* Unqueue and drop the lock. */
2525 unqueue_me_pi(&q);
2526 }
2527
2528 /*
2529 * If fixup_pi_state_owner() faulted and was unable to handle the
2530 * fault, unlock the rt_mutex and return the fault to userspace.
2531 */
2532 if (ret == -EFAULT) {
2533 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2534 rt_mutex_unlock(pi_mutex);
2535 } else if (ret == -EINTR) {
2536 /*
2537 * We've already been requeued, but cannot restart by calling
2538 * futex_lock_pi() directly. We could restart this syscall, but
2539 * it would detect that the user space "val" changed and return
2540 * -EWOULDBLOCK. Save the overhead of the restart and return
2541 * -EWOULDBLOCK directly.
2542 */
2543 ret = -EWOULDBLOCK;
2544 }
2545
2546 out_put_keys:
2547 put_futex_key(&q.key);
2548 out_key2:
2549 put_futex_key(&key2);
2550
2551 out:
2552 if (to) {
2553 hrtimer_cancel(&to->timer);
2554 destroy_hrtimer_on_stack(&to->timer);
2555 }
2556 return ret;
2557 }
2558
2559 /*
2560 * Support for robust futexes: the kernel cleans up held futexes at
2561 * thread exit time.
2562 *
2563 * Implementation: user-space maintains a per-thread list of locks it
2564 * is holding. Upon do_exit(), the kernel carefully walks this list,
2565 * and marks all locks that are owned by this thread with the
2566 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2567 * always manipulated with the lock held, so the list is private and
2568 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2569 * field, to allow the kernel to clean up if the thread dies after
2570 * acquiring the lock, but just before it could have added itself to
2571 * the list. There can only be one such pending lock.
2572 */
2573
2574 /**
2575 * sys_set_robust_list() - Set the robust-futex list head of a task
2576 * @head: pointer to the list-head
2577 * @len: length of the list-head, as userspace expects
2578 */
2579 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2580 size_t, len)
2581 {
2582 if (!futex_cmpxchg_enabled)
2583 return -ENOSYS;
2584 /*
2585 * The kernel knows only one size for now:
2586 */
2587 if (unlikely(len != sizeof(*head)))
2588 return -EINVAL;
2589
2590 current->robust_list = head;
2591
2592 return 0;
2593 }
2594
2595 /**
2596 * sys_get_robust_list() - Get the robust-futex list head of a task
2597 * @pid: pid of the process [zero for current task]
2598 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2599 * @len_ptr: pointer to a length field, the kernel fills in the header size
2600 */
2601 SYSCALL_DEFINE3(get_robust_list, int, pid,
2602 struct robust_list_head __user * __user *, head_ptr,
2603 size_t __user *, len_ptr)
2604 {
2605 struct robust_list_head __user *head;
2606 unsigned long ret;
2607 struct task_struct *p;
2608
2609 if (!futex_cmpxchg_enabled)
2610 return -ENOSYS;
2611
2612 rcu_read_lock();
2613
2614 ret = -ESRCH;
2615 if (!pid)
2616 p = current;
2617 else {
2618 p = find_task_by_vpid(pid);
2619 if (!p)
2620 goto err_unlock;
2621 }
2622
2623 ret = -EPERM;
2624 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2625 goto err_unlock;
2626
2627 head = p->robust_list;
2628 rcu_read_unlock();
2629
2630 if (put_user(sizeof(*head), len_ptr))
2631 return -EFAULT;
2632 return put_user(head, head_ptr);
2633
2634 err_unlock:
2635 rcu_read_unlock();
2636
2637 return ret;
2638 }
2639
2640 /*
2641 * Process a futex-list entry, check whether it's owned by the
2642 * dying task, and do notification if so:
2643 */
2644 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2645 {
2646 u32 uval, uninitialized_var(nval), mval;
2647
2648 retry:
2649 if (get_user(uval, uaddr))
2650 return -1;
2651
2652 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2653 /*
2654 * Ok, this dying thread is truly holding a futex
2655 * of interest. Set the OWNER_DIED bit atomically
2656 * via cmpxchg, and if the value had FUTEX_WAITERS
2657 * set, wake up a waiter (if any). (We have to do a
2658 * futex_wake() even if OWNER_DIED is already set -
2659 * to handle the rare but possible case of recursive
2660 * thread-death.) The rest of the cleanup is done in
2661 * userspace.
2662 */
2663 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2664 /*
2665 * We are not holding a lock here, but we want to have
2666 * the pagefault_disable/enable() protection because
2667 * we want to handle the fault gracefully. If the
2668 * access fails we try to fault in the futex with R/W
2669 * verification via get_user_pages. get_user() above
2670 * does not guarantee R/W access. If that fails we
2671 * give up and leave the futex locked.
2672 */
2673 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2674 if (fault_in_user_writeable(uaddr))
2675 return -1;
2676 goto retry;
2677 }
2678 if (nval != uval)
2679 goto retry;
2680
2681 /*
2682 * Wake robust non-PI futexes here. The wakeup of
2683 * PI futexes happens in exit_pi_state():
2684 */
2685 if (!pi && (uval & FUTEX_WAITERS))
2686 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2687 }
2688 return 0;
2689 }
2690
2691 /*
2692 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2693 */
2694 static inline int fetch_robust_entry(struct robust_list __user **entry,
2695 struct robust_list __user * __user *head,
2696 unsigned int *pi)
2697 {
2698 unsigned long uentry;
2699
2700 if (get_user(uentry, (unsigned long __user *)head))
2701 return -EFAULT;
2702
2703 *entry = (void __user *)(uentry & ~1UL);
2704 *pi = uentry & 1;
2705
2706 return 0;
2707 }
2708
2709 /*
2710 * Walk curr->robust_list (very carefully, it's a userspace list!)
2711 * and mark any locks found there dead, and notify any waiters.
2712 *
2713 * We silently return on any sign of list-walking problem.
2714 */
2715 void exit_robust_list(struct task_struct *curr)
2716 {
2717 struct robust_list_head __user *head = curr->robust_list;
2718 struct robust_list __user *entry, *next_entry, *pending;
2719 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2720 unsigned int uninitialized_var(next_pi);
2721 unsigned long futex_offset;
2722 int rc;
2723
2724 if (!futex_cmpxchg_enabled)
2725 return;
2726
2727 /*
2728 * Fetch the list head (which was registered earlier, via
2729 * sys_set_robust_list()):
2730 */
2731 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2732 return;
2733 /*
2734 * Fetch the relative futex offset:
2735 */
2736 if (get_user(futex_offset, &head->futex_offset))
2737 return;
2738 /*
2739 * Fetch any possibly pending lock-add first, and handle it
2740 * if it exists:
2741 */
2742 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2743 return;
2744
2745 next_entry = NULL; /* avoid warning with gcc */
2746 while (entry != &head->list) {
2747 /*
2748 * Fetch the next entry in the list before calling
2749 * handle_futex_death:
2750 */
2751 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2752 /*
2753 * A pending lock might already be on the list, so
2754 * don't process it twice:
2755 */
2756 if (entry != pending)
2757 if (handle_futex_death((void __user *)entry + futex_offset,
2758 curr, pi))
2759 return;
2760 if (rc)
2761 return;
2762 entry = next_entry;
2763 pi = next_pi;
2764 /*
2765 * Avoid excessively long or circular lists:
2766 */
2767 if (!--limit)
2768 break;
2769
2770 cond_resched();
2771 }
2772
2773 if (pending)
2774 handle_futex_death((void __user *)pending + futex_offset,
2775 curr, pip);
2776 }
2777
2778 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2779 u32 __user *uaddr2, u32 val2, u32 val3)
2780 {
2781 int cmd = op & FUTEX_CMD_MASK;
2782 unsigned int flags = 0;
2783
2784 if (!(op & FUTEX_PRIVATE_FLAG))
2785 flags |= FLAGS_SHARED;
2786
2787 if (op & FUTEX_CLOCK_REALTIME) {
2788 flags |= FLAGS_CLOCKRT;
2789 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2790 return -ENOSYS;
2791 }
2792
2793 switch (cmd) {
2794 case FUTEX_LOCK_PI:
2795 case FUTEX_UNLOCK_PI:
2796 case FUTEX_TRYLOCK_PI:
2797 case FUTEX_WAIT_REQUEUE_PI:
2798 case FUTEX_CMP_REQUEUE_PI:
2799 if (!futex_cmpxchg_enabled)
2800 return -ENOSYS;
2801 }
2802
2803 switch (cmd) {
2804 case FUTEX_WAIT:
2805 val3 = FUTEX_BITSET_MATCH_ANY;
2806 case FUTEX_WAIT_BITSET:
2807 return futex_wait(uaddr, flags, val, timeout, val3);
2808 case FUTEX_WAKE:
2809 val3 = FUTEX_BITSET_MATCH_ANY;
2810 case FUTEX_WAKE_BITSET:
2811 return futex_wake(uaddr, flags, val, val3);
2812 case FUTEX_REQUEUE:
2813 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2814 case FUTEX_CMP_REQUEUE:
2815 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2816 case FUTEX_WAKE_OP:
2817 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2818 case FUTEX_LOCK_PI:
2819 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2820 case FUTEX_UNLOCK_PI:
2821 return futex_unlock_pi(uaddr, flags);
2822 case FUTEX_TRYLOCK_PI:
2823 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2824 case FUTEX_WAIT_REQUEUE_PI:
2825 val3 = FUTEX_BITSET_MATCH_ANY;
2826 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2827 uaddr2);
2828 case FUTEX_CMP_REQUEUE_PI:
2829 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2830 }
2831 return -ENOSYS;
2832 }
2833
2834
2835 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2836 struct timespec __user *, utime, u32 __user *, uaddr2,
2837 u32, val3)
2838 {
2839 struct timespec ts;
2840 ktime_t t, *tp = NULL;
2841 u32 val2 = 0;
2842 int cmd = op & FUTEX_CMD_MASK;
2843
2844 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2845 cmd == FUTEX_WAIT_BITSET ||
2846 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2847 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2848 return -EFAULT;
2849 if (!timespec_valid(&ts))
2850 return -EINVAL;
2851
2852 t = timespec_to_ktime(ts);
2853 if (cmd == FUTEX_WAIT)
2854 t = ktime_add_safe(ktime_get(), t);
2855 tp = &t;
2856 }
2857 /*
2858 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2859 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2860 */
2861 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2862 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2863 val2 = (u32) (unsigned long) utime;
2864
2865 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2866 }
2867
2868 static void __init futex_detect_cmpxchg(void)
2869 {
2870 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2871 u32 curval;
2872
2873 /*
2874 * This will fail and we want it. Some arch implementations do
2875 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2876 * functionality. We want to know that before we call in any
2877 * of the complex code paths. Also we want to prevent
2878 * registration of robust lists in that case. NULL is
2879 * guaranteed to fault and we get -EFAULT on functional
2880 * implementation, the non-functional ones will return
2881 * -ENOSYS.
2882 */
2883 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2884 futex_cmpxchg_enabled = 1;
2885 #endif
2886 }
2887
2888 static int __init futex_init(void)
2889 {
2890 int i;
2891
2892 futex_detect_cmpxchg();
2893
2894 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2895 plist_head_init(&futex_queues[i].chain);
2896 spin_lock_init(&futex_queues[i].lock);
2897 }
2898
2899 return 0;
2900 }
2901 __initcall(futex_init);