CRED: Separate task security context from task_struct
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68 * Priority Inheritance state:
69 */
70 struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86 };
87
88 /*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
96 */
97 struct futex_q {
98 struct plist_node list;
99 wait_queue_head_t waiters;
100
101 /* Which hash list lock to use: */
102 spinlock_t *lock_ptr;
103
104 /* Key which the futex is hashed on: */
105 union futex_key key;
106
107 /* Optional priority inheritance state: */
108 struct futex_pi_state *pi_state;
109 struct task_struct *task;
110
111 /* Bitset for the optional bitmasked wakeup */
112 u32 bitset;
113 };
114
115 /*
116 * Split the global futex_lock into every hash list lock.
117 */
118 struct futex_hash_bucket {
119 spinlock_t lock;
120 struct plist_head chain;
121 };
122
123 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
124
125 /*
126 * Take mm->mmap_sem, when futex is shared
127 */
128 static inline void futex_lock_mm(struct rw_semaphore *fshared)
129 {
130 if (fshared)
131 down_read(fshared);
132 }
133
134 /*
135 * Release mm->mmap_sem, when the futex is shared
136 */
137 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
138 {
139 if (fshared)
140 up_read(fshared);
141 }
142
143 /*
144 * We hash on the keys returned from get_futex_key (see below).
145 */
146 static struct futex_hash_bucket *hash_futex(union futex_key *key)
147 {
148 u32 hash = jhash2((u32*)&key->both.word,
149 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
150 key->both.offset);
151 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
152 }
153
154 /*
155 * Return 1 if two futex_keys are equal, 0 otherwise.
156 */
157 static inline int match_futex(union futex_key *key1, union futex_key *key2)
158 {
159 return (key1->both.word == key2->both.word
160 && key1->both.ptr == key2->both.ptr
161 && key1->both.offset == key2->both.offset);
162 }
163
164 /**
165 * get_futex_key - Get parameters which are the keys for a futex.
166 * @uaddr: virtual address of the futex
167 * @shared: NULL for a PROCESS_PRIVATE futex,
168 * &current->mm->mmap_sem for a PROCESS_SHARED futex
169 * @key: address where result is stored.
170 *
171 * Returns a negative error code or 0
172 * The key words are stored in *key on success.
173 *
174 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
175 * offset_within_page). For private mappings, it's (uaddr, current->mm).
176 * We can usually work out the index without swapping in the page.
177 *
178 * fshared is NULL for PROCESS_PRIVATE futexes
179 * For other futexes, it points to &current->mm->mmap_sem and
180 * caller must have taken the reader lock. but NOT any spinlocks.
181 */
182 static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
183 union futex_key *key)
184 {
185 unsigned long address = (unsigned long)uaddr;
186 struct mm_struct *mm = current->mm;
187 struct vm_area_struct *vma;
188 struct page *page;
189 int err;
190
191 /*
192 * The futex address must be "naturally" aligned.
193 */
194 key->both.offset = address % PAGE_SIZE;
195 if (unlikely((address % sizeof(u32)) != 0))
196 return -EINVAL;
197 address -= key->both.offset;
198
199 /*
200 * PROCESS_PRIVATE futexes are fast.
201 * As the mm cannot disappear under us and the 'key' only needs
202 * virtual address, we dont even have to find the underlying vma.
203 * Note : We do have to check 'uaddr' is a valid user address,
204 * but access_ok() should be faster than find_vma()
205 */
206 if (!fshared) {
207 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
208 return -EFAULT;
209 key->private.mm = mm;
210 key->private.address = address;
211 return 0;
212 }
213 /*
214 * The futex is hashed differently depending on whether
215 * it's in a shared or private mapping. So check vma first.
216 */
217 vma = find_extend_vma(mm, address);
218 if (unlikely(!vma))
219 return -EFAULT;
220
221 /*
222 * Permissions.
223 */
224 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
225 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
226
227 /*
228 * Private mappings are handled in a simple way.
229 *
230 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
231 * it's a read-only handle, it's expected that futexes attach to
232 * the object not the particular process. Therefore we use
233 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
234 * mappings of _writable_ handles.
235 */
236 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
237 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
238 key->private.mm = mm;
239 key->private.address = address;
240 return 0;
241 }
242
243 /*
244 * Linear file mappings are also simple.
245 */
246 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
247 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
248 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
249 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
250 + vma->vm_pgoff);
251 return 0;
252 }
253
254 /*
255 * We could walk the page table to read the non-linear
256 * pte, and get the page index without fetching the page
257 * from swap. But that's a lot of code to duplicate here
258 * for a rare case, so we simply fetch the page.
259 */
260 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
261 if (err >= 0) {
262 key->shared.pgoff =
263 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
264 put_page(page);
265 return 0;
266 }
267 return err;
268 }
269
270 /*
271 * Take a reference to the resource addressed by a key.
272 * Can be called while holding spinlocks.
273 *
274 */
275 static void get_futex_key_refs(union futex_key *key)
276 {
277 if (key->both.ptr == NULL)
278 return;
279 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
280 case FUT_OFF_INODE:
281 atomic_inc(&key->shared.inode->i_count);
282 break;
283 case FUT_OFF_MMSHARED:
284 atomic_inc(&key->private.mm->mm_count);
285 break;
286 }
287 }
288
289 /*
290 * Drop a reference to the resource addressed by a key.
291 * The hash bucket spinlock must not be held.
292 */
293 static void drop_futex_key_refs(union futex_key *key)
294 {
295 if (!key->both.ptr)
296 return;
297 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
298 case FUT_OFF_INODE:
299 iput(key->shared.inode);
300 break;
301 case FUT_OFF_MMSHARED:
302 mmdrop(key->private.mm);
303 break;
304 }
305 }
306
307 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
308 {
309 u32 curval;
310
311 pagefault_disable();
312 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
313 pagefault_enable();
314
315 return curval;
316 }
317
318 static int get_futex_value_locked(u32 *dest, u32 __user *from)
319 {
320 int ret;
321
322 pagefault_disable();
323 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
324 pagefault_enable();
325
326 return ret ? -EFAULT : 0;
327 }
328
329 /*
330 * Fault handling.
331 * if fshared is non NULL, current->mm->mmap_sem is already held
332 */
333 static int futex_handle_fault(unsigned long address,
334 struct rw_semaphore *fshared, int attempt)
335 {
336 struct vm_area_struct * vma;
337 struct mm_struct *mm = current->mm;
338 int ret = -EFAULT;
339
340 if (attempt > 2)
341 return ret;
342
343 if (!fshared)
344 down_read(&mm->mmap_sem);
345 vma = find_vma(mm, address);
346 if (vma && address >= vma->vm_start &&
347 (vma->vm_flags & VM_WRITE)) {
348 int fault;
349 fault = handle_mm_fault(mm, vma, address, 1);
350 if (unlikely((fault & VM_FAULT_ERROR))) {
351 #if 0
352 /* XXX: let's do this when we verify it is OK */
353 if (ret & VM_FAULT_OOM)
354 ret = -ENOMEM;
355 #endif
356 } else {
357 ret = 0;
358 if (fault & VM_FAULT_MAJOR)
359 current->maj_flt++;
360 else
361 current->min_flt++;
362 }
363 }
364 if (!fshared)
365 up_read(&mm->mmap_sem);
366 return ret;
367 }
368
369 /*
370 * PI code:
371 */
372 static int refill_pi_state_cache(void)
373 {
374 struct futex_pi_state *pi_state;
375
376 if (likely(current->pi_state_cache))
377 return 0;
378
379 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
380
381 if (!pi_state)
382 return -ENOMEM;
383
384 INIT_LIST_HEAD(&pi_state->list);
385 /* pi_mutex gets initialized later */
386 pi_state->owner = NULL;
387 atomic_set(&pi_state->refcount, 1);
388
389 current->pi_state_cache = pi_state;
390
391 return 0;
392 }
393
394 static struct futex_pi_state * alloc_pi_state(void)
395 {
396 struct futex_pi_state *pi_state = current->pi_state_cache;
397
398 WARN_ON(!pi_state);
399 current->pi_state_cache = NULL;
400
401 return pi_state;
402 }
403
404 static void free_pi_state(struct futex_pi_state *pi_state)
405 {
406 if (!atomic_dec_and_test(&pi_state->refcount))
407 return;
408
409 /*
410 * If pi_state->owner is NULL, the owner is most probably dying
411 * and has cleaned up the pi_state already
412 */
413 if (pi_state->owner) {
414 spin_lock_irq(&pi_state->owner->pi_lock);
415 list_del_init(&pi_state->list);
416 spin_unlock_irq(&pi_state->owner->pi_lock);
417
418 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
419 }
420
421 if (current->pi_state_cache)
422 kfree(pi_state);
423 else {
424 /*
425 * pi_state->list is already empty.
426 * clear pi_state->owner.
427 * refcount is at 0 - put it back to 1.
428 */
429 pi_state->owner = NULL;
430 atomic_set(&pi_state->refcount, 1);
431 current->pi_state_cache = pi_state;
432 }
433 }
434
435 /*
436 * Look up the task based on what TID userspace gave us.
437 * We dont trust it.
438 */
439 static struct task_struct * futex_find_get_task(pid_t pid)
440 {
441 struct task_struct *p;
442 uid_t euid = current_euid();
443
444 rcu_read_lock();
445 p = find_task_by_vpid(pid);
446 if (!p || (euid != p->cred->euid &&
447 euid != p->cred->uid))
448 p = ERR_PTR(-ESRCH);
449 else
450 get_task_struct(p);
451
452 rcu_read_unlock();
453
454 return p;
455 }
456
457 /*
458 * This task is holding PI mutexes at exit time => bad.
459 * Kernel cleans up PI-state, but userspace is likely hosed.
460 * (Robust-futex cleanup is separate and might save the day for userspace.)
461 */
462 void exit_pi_state_list(struct task_struct *curr)
463 {
464 struct list_head *next, *head = &curr->pi_state_list;
465 struct futex_pi_state *pi_state;
466 struct futex_hash_bucket *hb;
467 union futex_key key;
468
469 if (!futex_cmpxchg_enabled)
470 return;
471 /*
472 * We are a ZOMBIE and nobody can enqueue itself on
473 * pi_state_list anymore, but we have to be careful
474 * versus waiters unqueueing themselves:
475 */
476 spin_lock_irq(&curr->pi_lock);
477 while (!list_empty(head)) {
478
479 next = head->next;
480 pi_state = list_entry(next, struct futex_pi_state, list);
481 key = pi_state->key;
482 hb = hash_futex(&key);
483 spin_unlock_irq(&curr->pi_lock);
484
485 spin_lock(&hb->lock);
486
487 spin_lock_irq(&curr->pi_lock);
488 /*
489 * We dropped the pi-lock, so re-check whether this
490 * task still owns the PI-state:
491 */
492 if (head->next != next) {
493 spin_unlock(&hb->lock);
494 continue;
495 }
496
497 WARN_ON(pi_state->owner != curr);
498 WARN_ON(list_empty(&pi_state->list));
499 list_del_init(&pi_state->list);
500 pi_state->owner = NULL;
501 spin_unlock_irq(&curr->pi_lock);
502
503 rt_mutex_unlock(&pi_state->pi_mutex);
504
505 spin_unlock(&hb->lock);
506
507 spin_lock_irq(&curr->pi_lock);
508 }
509 spin_unlock_irq(&curr->pi_lock);
510 }
511
512 static int
513 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
514 union futex_key *key, struct futex_pi_state **ps)
515 {
516 struct futex_pi_state *pi_state = NULL;
517 struct futex_q *this, *next;
518 struct plist_head *head;
519 struct task_struct *p;
520 pid_t pid = uval & FUTEX_TID_MASK;
521
522 head = &hb->chain;
523
524 plist_for_each_entry_safe(this, next, head, list) {
525 if (match_futex(&this->key, key)) {
526 /*
527 * Another waiter already exists - bump up
528 * the refcount and return its pi_state:
529 */
530 pi_state = this->pi_state;
531 /*
532 * Userspace might have messed up non PI and PI futexes
533 */
534 if (unlikely(!pi_state))
535 return -EINVAL;
536
537 WARN_ON(!atomic_read(&pi_state->refcount));
538 WARN_ON(pid && pi_state->owner &&
539 pi_state->owner->pid != pid);
540
541 atomic_inc(&pi_state->refcount);
542 *ps = pi_state;
543
544 return 0;
545 }
546 }
547
548 /*
549 * We are the first waiter - try to look up the real owner and attach
550 * the new pi_state to it, but bail out when TID = 0
551 */
552 if (!pid)
553 return -ESRCH;
554 p = futex_find_get_task(pid);
555 if (IS_ERR(p))
556 return PTR_ERR(p);
557
558 /*
559 * We need to look at the task state flags to figure out,
560 * whether the task is exiting. To protect against the do_exit
561 * change of the task flags, we do this protected by
562 * p->pi_lock:
563 */
564 spin_lock_irq(&p->pi_lock);
565 if (unlikely(p->flags & PF_EXITING)) {
566 /*
567 * The task is on the way out. When PF_EXITPIDONE is
568 * set, we know that the task has finished the
569 * cleanup:
570 */
571 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
572
573 spin_unlock_irq(&p->pi_lock);
574 put_task_struct(p);
575 return ret;
576 }
577
578 pi_state = alloc_pi_state();
579
580 /*
581 * Initialize the pi_mutex in locked state and make 'p'
582 * the owner of it:
583 */
584 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
585
586 /* Store the key for possible exit cleanups: */
587 pi_state->key = *key;
588
589 WARN_ON(!list_empty(&pi_state->list));
590 list_add(&pi_state->list, &p->pi_state_list);
591 pi_state->owner = p;
592 spin_unlock_irq(&p->pi_lock);
593
594 put_task_struct(p);
595
596 *ps = pi_state;
597
598 return 0;
599 }
600
601 /*
602 * The hash bucket lock must be held when this is called.
603 * Afterwards, the futex_q must not be accessed.
604 */
605 static void wake_futex(struct futex_q *q)
606 {
607 plist_del(&q->list, &q->list.plist);
608 /*
609 * The lock in wake_up_all() is a crucial memory barrier after the
610 * plist_del() and also before assigning to q->lock_ptr.
611 */
612 wake_up_all(&q->waiters);
613 /*
614 * The waiting task can free the futex_q as soon as this is written,
615 * without taking any locks. This must come last.
616 *
617 * A memory barrier is required here to prevent the following store
618 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
619 * at the end of wake_up_all() does not prevent this store from
620 * moving.
621 */
622 smp_wmb();
623 q->lock_ptr = NULL;
624 }
625
626 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
627 {
628 struct task_struct *new_owner;
629 struct futex_pi_state *pi_state = this->pi_state;
630 u32 curval, newval;
631
632 if (!pi_state)
633 return -EINVAL;
634
635 spin_lock(&pi_state->pi_mutex.wait_lock);
636 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
637
638 /*
639 * This happens when we have stolen the lock and the original
640 * pending owner did not enqueue itself back on the rt_mutex.
641 * Thats not a tragedy. We know that way, that a lock waiter
642 * is on the fly. We make the futex_q waiter the pending owner.
643 */
644 if (!new_owner)
645 new_owner = this->task;
646
647 /*
648 * We pass it to the next owner. (The WAITERS bit is always
649 * kept enabled while there is PI state around. We must also
650 * preserve the owner died bit.)
651 */
652 if (!(uval & FUTEX_OWNER_DIED)) {
653 int ret = 0;
654
655 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
656
657 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
658
659 if (curval == -EFAULT)
660 ret = -EFAULT;
661 else if (curval != uval)
662 ret = -EINVAL;
663 if (ret) {
664 spin_unlock(&pi_state->pi_mutex.wait_lock);
665 return ret;
666 }
667 }
668
669 spin_lock_irq(&pi_state->owner->pi_lock);
670 WARN_ON(list_empty(&pi_state->list));
671 list_del_init(&pi_state->list);
672 spin_unlock_irq(&pi_state->owner->pi_lock);
673
674 spin_lock_irq(&new_owner->pi_lock);
675 WARN_ON(!list_empty(&pi_state->list));
676 list_add(&pi_state->list, &new_owner->pi_state_list);
677 pi_state->owner = new_owner;
678 spin_unlock_irq(&new_owner->pi_lock);
679
680 spin_unlock(&pi_state->pi_mutex.wait_lock);
681 rt_mutex_unlock(&pi_state->pi_mutex);
682
683 return 0;
684 }
685
686 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
687 {
688 u32 oldval;
689
690 /*
691 * There is no waiter, so we unlock the futex. The owner died
692 * bit has not to be preserved here. We are the owner:
693 */
694 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
695
696 if (oldval == -EFAULT)
697 return oldval;
698 if (oldval != uval)
699 return -EAGAIN;
700
701 return 0;
702 }
703
704 /*
705 * Express the locking dependencies for lockdep:
706 */
707 static inline void
708 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
709 {
710 if (hb1 <= hb2) {
711 spin_lock(&hb1->lock);
712 if (hb1 < hb2)
713 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
714 } else { /* hb1 > hb2 */
715 spin_lock(&hb2->lock);
716 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
717 }
718 }
719
720 /*
721 * Wake up all waiters hashed on the physical page that is mapped
722 * to this virtual address:
723 */
724 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
725 int nr_wake, u32 bitset)
726 {
727 struct futex_hash_bucket *hb;
728 struct futex_q *this, *next;
729 struct plist_head *head;
730 union futex_key key;
731 int ret;
732
733 if (!bitset)
734 return -EINVAL;
735
736 futex_lock_mm(fshared);
737
738 ret = get_futex_key(uaddr, fshared, &key);
739 if (unlikely(ret != 0))
740 goto out;
741
742 hb = hash_futex(&key);
743 spin_lock(&hb->lock);
744 head = &hb->chain;
745
746 plist_for_each_entry_safe(this, next, head, list) {
747 if (match_futex (&this->key, &key)) {
748 if (this->pi_state) {
749 ret = -EINVAL;
750 break;
751 }
752
753 /* Check if one of the bits is set in both bitsets */
754 if (!(this->bitset & bitset))
755 continue;
756
757 wake_futex(this);
758 if (++ret >= nr_wake)
759 break;
760 }
761 }
762
763 spin_unlock(&hb->lock);
764 out:
765 futex_unlock_mm(fshared);
766 return ret;
767 }
768
769 /*
770 * Wake up all waiters hashed on the physical page that is mapped
771 * to this virtual address:
772 */
773 static int
774 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
775 u32 __user *uaddr2,
776 int nr_wake, int nr_wake2, int op)
777 {
778 union futex_key key1, key2;
779 struct futex_hash_bucket *hb1, *hb2;
780 struct plist_head *head;
781 struct futex_q *this, *next;
782 int ret, op_ret, attempt = 0;
783
784 retryfull:
785 futex_lock_mm(fshared);
786
787 ret = get_futex_key(uaddr1, fshared, &key1);
788 if (unlikely(ret != 0))
789 goto out;
790 ret = get_futex_key(uaddr2, fshared, &key2);
791 if (unlikely(ret != 0))
792 goto out;
793
794 hb1 = hash_futex(&key1);
795 hb2 = hash_futex(&key2);
796
797 retry:
798 double_lock_hb(hb1, hb2);
799
800 op_ret = futex_atomic_op_inuser(op, uaddr2);
801 if (unlikely(op_ret < 0)) {
802 u32 dummy;
803
804 spin_unlock(&hb1->lock);
805 if (hb1 != hb2)
806 spin_unlock(&hb2->lock);
807
808 #ifndef CONFIG_MMU
809 /*
810 * we don't get EFAULT from MMU faults if we don't have an MMU,
811 * but we might get them from range checking
812 */
813 ret = op_ret;
814 goto out;
815 #endif
816
817 if (unlikely(op_ret != -EFAULT)) {
818 ret = op_ret;
819 goto out;
820 }
821
822 /*
823 * futex_atomic_op_inuser needs to both read and write
824 * *(int __user *)uaddr2, but we can't modify it
825 * non-atomically. Therefore, if get_user below is not
826 * enough, we need to handle the fault ourselves, while
827 * still holding the mmap_sem.
828 */
829 if (attempt++) {
830 ret = futex_handle_fault((unsigned long)uaddr2,
831 fshared, attempt);
832 if (ret)
833 goto out;
834 goto retry;
835 }
836
837 /*
838 * If we would have faulted, release mmap_sem,
839 * fault it in and start all over again.
840 */
841 futex_unlock_mm(fshared);
842
843 ret = get_user(dummy, uaddr2);
844 if (ret)
845 return ret;
846
847 goto retryfull;
848 }
849
850 head = &hb1->chain;
851
852 plist_for_each_entry_safe(this, next, head, list) {
853 if (match_futex (&this->key, &key1)) {
854 wake_futex(this);
855 if (++ret >= nr_wake)
856 break;
857 }
858 }
859
860 if (op_ret > 0) {
861 head = &hb2->chain;
862
863 op_ret = 0;
864 plist_for_each_entry_safe(this, next, head, list) {
865 if (match_futex (&this->key, &key2)) {
866 wake_futex(this);
867 if (++op_ret >= nr_wake2)
868 break;
869 }
870 }
871 ret += op_ret;
872 }
873
874 spin_unlock(&hb1->lock);
875 if (hb1 != hb2)
876 spin_unlock(&hb2->lock);
877 out:
878 futex_unlock_mm(fshared);
879
880 return ret;
881 }
882
883 /*
884 * Requeue all waiters hashed on one physical page to another
885 * physical page.
886 */
887 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
888 u32 __user *uaddr2,
889 int nr_wake, int nr_requeue, u32 *cmpval)
890 {
891 union futex_key key1, key2;
892 struct futex_hash_bucket *hb1, *hb2;
893 struct plist_head *head1;
894 struct futex_q *this, *next;
895 int ret, drop_count = 0;
896
897 retry:
898 futex_lock_mm(fshared);
899
900 ret = get_futex_key(uaddr1, fshared, &key1);
901 if (unlikely(ret != 0))
902 goto out;
903 ret = get_futex_key(uaddr2, fshared, &key2);
904 if (unlikely(ret != 0))
905 goto out;
906
907 hb1 = hash_futex(&key1);
908 hb2 = hash_futex(&key2);
909
910 double_lock_hb(hb1, hb2);
911
912 if (likely(cmpval != NULL)) {
913 u32 curval;
914
915 ret = get_futex_value_locked(&curval, uaddr1);
916
917 if (unlikely(ret)) {
918 spin_unlock(&hb1->lock);
919 if (hb1 != hb2)
920 spin_unlock(&hb2->lock);
921
922 /*
923 * If we would have faulted, release mmap_sem, fault
924 * it in and start all over again.
925 */
926 futex_unlock_mm(fshared);
927
928 ret = get_user(curval, uaddr1);
929
930 if (!ret)
931 goto retry;
932
933 return ret;
934 }
935 if (curval != *cmpval) {
936 ret = -EAGAIN;
937 goto out_unlock;
938 }
939 }
940
941 head1 = &hb1->chain;
942 plist_for_each_entry_safe(this, next, head1, list) {
943 if (!match_futex (&this->key, &key1))
944 continue;
945 if (++ret <= nr_wake) {
946 wake_futex(this);
947 } else {
948 /*
949 * If key1 and key2 hash to the same bucket, no need to
950 * requeue.
951 */
952 if (likely(head1 != &hb2->chain)) {
953 plist_del(&this->list, &hb1->chain);
954 plist_add(&this->list, &hb2->chain);
955 this->lock_ptr = &hb2->lock;
956 #ifdef CONFIG_DEBUG_PI_LIST
957 this->list.plist.lock = &hb2->lock;
958 #endif
959 }
960 this->key = key2;
961 get_futex_key_refs(&key2);
962 drop_count++;
963
964 if (ret - nr_wake >= nr_requeue)
965 break;
966 }
967 }
968
969 out_unlock:
970 spin_unlock(&hb1->lock);
971 if (hb1 != hb2)
972 spin_unlock(&hb2->lock);
973
974 /* drop_futex_key_refs() must be called outside the spinlocks. */
975 while (--drop_count >= 0)
976 drop_futex_key_refs(&key1);
977
978 out:
979 futex_unlock_mm(fshared);
980 return ret;
981 }
982
983 /* The key must be already stored in q->key. */
984 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
985 {
986 struct futex_hash_bucket *hb;
987
988 init_waitqueue_head(&q->waiters);
989
990 get_futex_key_refs(&q->key);
991 hb = hash_futex(&q->key);
992 q->lock_ptr = &hb->lock;
993
994 spin_lock(&hb->lock);
995 return hb;
996 }
997
998 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
999 {
1000 int prio;
1001
1002 /*
1003 * The priority used to register this element is
1004 * - either the real thread-priority for the real-time threads
1005 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1006 * - or MAX_RT_PRIO for non-RT threads.
1007 * Thus, all RT-threads are woken first in priority order, and
1008 * the others are woken last, in FIFO order.
1009 */
1010 prio = min(current->normal_prio, MAX_RT_PRIO);
1011
1012 plist_node_init(&q->list, prio);
1013 #ifdef CONFIG_DEBUG_PI_LIST
1014 q->list.plist.lock = &hb->lock;
1015 #endif
1016 plist_add(&q->list, &hb->chain);
1017 q->task = current;
1018 spin_unlock(&hb->lock);
1019 }
1020
1021 static inline void
1022 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1023 {
1024 spin_unlock(&hb->lock);
1025 drop_futex_key_refs(&q->key);
1026 }
1027
1028 /*
1029 * queue_me and unqueue_me must be called as a pair, each
1030 * exactly once. They are called with the hashed spinlock held.
1031 */
1032
1033 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1034 static int unqueue_me(struct futex_q *q)
1035 {
1036 spinlock_t *lock_ptr;
1037 int ret = 0;
1038
1039 /* In the common case we don't take the spinlock, which is nice. */
1040 retry:
1041 lock_ptr = q->lock_ptr;
1042 barrier();
1043 if (lock_ptr != NULL) {
1044 spin_lock(lock_ptr);
1045 /*
1046 * q->lock_ptr can change between reading it and
1047 * spin_lock(), causing us to take the wrong lock. This
1048 * corrects the race condition.
1049 *
1050 * Reasoning goes like this: if we have the wrong lock,
1051 * q->lock_ptr must have changed (maybe several times)
1052 * between reading it and the spin_lock(). It can
1053 * change again after the spin_lock() but only if it was
1054 * already changed before the spin_lock(). It cannot,
1055 * however, change back to the original value. Therefore
1056 * we can detect whether we acquired the correct lock.
1057 */
1058 if (unlikely(lock_ptr != q->lock_ptr)) {
1059 spin_unlock(lock_ptr);
1060 goto retry;
1061 }
1062 WARN_ON(plist_node_empty(&q->list));
1063 plist_del(&q->list, &q->list.plist);
1064
1065 BUG_ON(q->pi_state);
1066
1067 spin_unlock(lock_ptr);
1068 ret = 1;
1069 }
1070
1071 drop_futex_key_refs(&q->key);
1072 return ret;
1073 }
1074
1075 /*
1076 * PI futexes can not be requeued and must remove themself from the
1077 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1078 * and dropped here.
1079 */
1080 static void unqueue_me_pi(struct futex_q *q)
1081 {
1082 WARN_ON(plist_node_empty(&q->list));
1083 plist_del(&q->list, &q->list.plist);
1084
1085 BUG_ON(!q->pi_state);
1086 free_pi_state(q->pi_state);
1087 q->pi_state = NULL;
1088
1089 spin_unlock(q->lock_ptr);
1090
1091 drop_futex_key_refs(&q->key);
1092 }
1093
1094 /*
1095 * Fixup the pi_state owner with the new owner.
1096 *
1097 * Must be called with hash bucket lock held and mm->sem held for non
1098 * private futexes.
1099 */
1100 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1101 struct task_struct *newowner,
1102 struct rw_semaphore *fshared)
1103 {
1104 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1105 struct futex_pi_state *pi_state = q->pi_state;
1106 struct task_struct *oldowner = pi_state->owner;
1107 u32 uval, curval, newval;
1108 int ret, attempt = 0;
1109
1110 /* Owner died? */
1111 if (!pi_state->owner)
1112 newtid |= FUTEX_OWNER_DIED;
1113
1114 /*
1115 * We are here either because we stole the rtmutex from the
1116 * pending owner or we are the pending owner which failed to
1117 * get the rtmutex. We have to replace the pending owner TID
1118 * in the user space variable. This must be atomic as we have
1119 * to preserve the owner died bit here.
1120 *
1121 * Note: We write the user space value _before_ changing the
1122 * pi_state because we can fault here. Imagine swapped out
1123 * pages or a fork, which was running right before we acquired
1124 * mmap_sem, that marked all the anonymous memory readonly for
1125 * cow.
1126 *
1127 * Modifying pi_state _before_ the user space value would
1128 * leave the pi_state in an inconsistent state when we fault
1129 * here, because we need to drop the hash bucket lock to
1130 * handle the fault. This might be observed in the PID check
1131 * in lookup_pi_state.
1132 */
1133 retry:
1134 if (get_futex_value_locked(&uval, uaddr))
1135 goto handle_fault;
1136
1137 while (1) {
1138 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1139
1140 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1141
1142 if (curval == -EFAULT)
1143 goto handle_fault;
1144 if (curval == uval)
1145 break;
1146 uval = curval;
1147 }
1148
1149 /*
1150 * We fixed up user space. Now we need to fix the pi_state
1151 * itself.
1152 */
1153 if (pi_state->owner != NULL) {
1154 spin_lock_irq(&pi_state->owner->pi_lock);
1155 WARN_ON(list_empty(&pi_state->list));
1156 list_del_init(&pi_state->list);
1157 spin_unlock_irq(&pi_state->owner->pi_lock);
1158 }
1159
1160 pi_state->owner = newowner;
1161
1162 spin_lock_irq(&newowner->pi_lock);
1163 WARN_ON(!list_empty(&pi_state->list));
1164 list_add(&pi_state->list, &newowner->pi_state_list);
1165 spin_unlock_irq(&newowner->pi_lock);
1166 return 0;
1167
1168 /*
1169 * To handle the page fault we need to drop the hash bucket
1170 * lock here. That gives the other task (either the pending
1171 * owner itself or the task which stole the rtmutex) the
1172 * chance to try the fixup of the pi_state. So once we are
1173 * back from handling the fault we need to check the pi_state
1174 * after reacquiring the hash bucket lock and before trying to
1175 * do another fixup. When the fixup has been done already we
1176 * simply return.
1177 */
1178 handle_fault:
1179 spin_unlock(q->lock_ptr);
1180
1181 ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++);
1182
1183 spin_lock(q->lock_ptr);
1184
1185 /*
1186 * Check if someone else fixed it for us:
1187 */
1188 if (pi_state->owner != oldowner)
1189 return 0;
1190
1191 if (ret)
1192 return ret;
1193
1194 goto retry;
1195 }
1196
1197 /*
1198 * In case we must use restart_block to restart a futex_wait,
1199 * we encode in the 'flags' shared capability
1200 */
1201 #define FLAGS_SHARED 1
1202
1203 static long futex_wait_restart(struct restart_block *restart);
1204
1205 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1206 u32 val, ktime_t *abs_time, u32 bitset)
1207 {
1208 struct task_struct *curr = current;
1209 DECLARE_WAITQUEUE(wait, curr);
1210 struct futex_hash_bucket *hb;
1211 struct futex_q q;
1212 u32 uval;
1213 int ret;
1214 struct hrtimer_sleeper t;
1215 int rem = 0;
1216
1217 if (!bitset)
1218 return -EINVAL;
1219
1220 q.pi_state = NULL;
1221 q.bitset = bitset;
1222 retry:
1223 futex_lock_mm(fshared);
1224
1225 ret = get_futex_key(uaddr, fshared, &q.key);
1226 if (unlikely(ret != 0))
1227 goto out_release_sem;
1228
1229 hb = queue_lock(&q);
1230
1231 /*
1232 * Access the page AFTER the futex is queued.
1233 * Order is important:
1234 *
1235 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1236 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1237 *
1238 * The basic logical guarantee of a futex is that it blocks ONLY
1239 * if cond(var) is known to be true at the time of blocking, for
1240 * any cond. If we queued after testing *uaddr, that would open
1241 * a race condition where we could block indefinitely with
1242 * cond(var) false, which would violate the guarantee.
1243 *
1244 * A consequence is that futex_wait() can return zero and absorb
1245 * a wakeup when *uaddr != val on entry to the syscall. This is
1246 * rare, but normal.
1247 *
1248 * for shared futexes, we hold the mmap semaphore, so the mapping
1249 * cannot have changed since we looked it up in get_futex_key.
1250 */
1251 ret = get_futex_value_locked(&uval, uaddr);
1252
1253 if (unlikely(ret)) {
1254 queue_unlock(&q, hb);
1255
1256 /*
1257 * If we would have faulted, release mmap_sem, fault it in and
1258 * start all over again.
1259 */
1260 futex_unlock_mm(fshared);
1261
1262 ret = get_user(uval, uaddr);
1263
1264 if (!ret)
1265 goto retry;
1266 return ret;
1267 }
1268 ret = -EWOULDBLOCK;
1269 if (uval != val)
1270 goto out_unlock_release_sem;
1271
1272 /* Only actually queue if *uaddr contained val. */
1273 queue_me(&q, hb);
1274
1275 /*
1276 * Now the futex is queued and we have checked the data, we
1277 * don't want to hold mmap_sem while we sleep.
1278 */
1279 futex_unlock_mm(fshared);
1280
1281 /*
1282 * There might have been scheduling since the queue_me(), as we
1283 * cannot hold a spinlock across the get_user() in case it
1284 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1285 * queueing ourselves into the futex hash. This code thus has to
1286 * rely on the futex_wake() code removing us from hash when it
1287 * wakes us up.
1288 */
1289
1290 /* add_wait_queue is the barrier after __set_current_state. */
1291 __set_current_state(TASK_INTERRUPTIBLE);
1292 add_wait_queue(&q.waiters, &wait);
1293 /*
1294 * !plist_node_empty() is safe here without any lock.
1295 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1296 */
1297 if (likely(!plist_node_empty(&q.list))) {
1298 if (!abs_time)
1299 schedule();
1300 else {
1301 unsigned long slack;
1302 slack = current->timer_slack_ns;
1303 if (rt_task(current))
1304 slack = 0;
1305 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1306 HRTIMER_MODE_ABS);
1307 hrtimer_init_sleeper(&t, current);
1308 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1309
1310 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1311 if (!hrtimer_active(&t.timer))
1312 t.task = NULL;
1313
1314 /*
1315 * the timer could have already expired, in which
1316 * case current would be flagged for rescheduling.
1317 * Don't bother calling schedule.
1318 */
1319 if (likely(t.task))
1320 schedule();
1321
1322 hrtimer_cancel(&t.timer);
1323
1324 /* Flag if a timeout occured */
1325 rem = (t.task == NULL);
1326
1327 destroy_hrtimer_on_stack(&t.timer);
1328 }
1329 }
1330 __set_current_state(TASK_RUNNING);
1331
1332 /*
1333 * NOTE: we don't remove ourselves from the waitqueue because
1334 * we are the only user of it.
1335 */
1336
1337 /* If we were woken (and unqueued), we succeeded, whatever. */
1338 if (!unqueue_me(&q))
1339 return 0;
1340 if (rem)
1341 return -ETIMEDOUT;
1342
1343 /*
1344 * We expect signal_pending(current), but another thread may
1345 * have handled it for us already.
1346 */
1347 if (!abs_time)
1348 return -ERESTARTSYS;
1349 else {
1350 struct restart_block *restart;
1351 restart = &current_thread_info()->restart_block;
1352 restart->fn = futex_wait_restart;
1353 restart->futex.uaddr = (u32 *)uaddr;
1354 restart->futex.val = val;
1355 restart->futex.time = abs_time->tv64;
1356 restart->futex.bitset = bitset;
1357 restart->futex.flags = 0;
1358
1359 if (fshared)
1360 restart->futex.flags |= FLAGS_SHARED;
1361 return -ERESTART_RESTARTBLOCK;
1362 }
1363
1364 out_unlock_release_sem:
1365 queue_unlock(&q, hb);
1366
1367 out_release_sem:
1368 futex_unlock_mm(fshared);
1369 return ret;
1370 }
1371
1372
1373 static long futex_wait_restart(struct restart_block *restart)
1374 {
1375 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1376 struct rw_semaphore *fshared = NULL;
1377 ktime_t t;
1378
1379 t.tv64 = restart->futex.time;
1380 restart->fn = do_no_restart_syscall;
1381 if (restart->futex.flags & FLAGS_SHARED)
1382 fshared = &current->mm->mmap_sem;
1383 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1384 restart->futex.bitset);
1385 }
1386
1387
1388 /*
1389 * Userspace tried a 0 -> TID atomic transition of the futex value
1390 * and failed. The kernel side here does the whole locking operation:
1391 * if there are waiters then it will block, it does PI, etc. (Due to
1392 * races the kernel might see a 0 value of the futex too.)
1393 */
1394 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1395 int detect, ktime_t *time, int trylock)
1396 {
1397 struct hrtimer_sleeper timeout, *to = NULL;
1398 struct task_struct *curr = current;
1399 struct futex_hash_bucket *hb;
1400 u32 uval, newval, curval;
1401 struct futex_q q;
1402 int ret, lock_taken, ownerdied = 0, attempt = 0;
1403
1404 if (refill_pi_state_cache())
1405 return -ENOMEM;
1406
1407 if (time) {
1408 to = &timeout;
1409 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1410 HRTIMER_MODE_ABS);
1411 hrtimer_init_sleeper(to, current);
1412 hrtimer_set_expires(&to->timer, *time);
1413 }
1414
1415 q.pi_state = NULL;
1416 retry:
1417 futex_lock_mm(fshared);
1418
1419 ret = get_futex_key(uaddr, fshared, &q.key);
1420 if (unlikely(ret != 0))
1421 goto out_release_sem;
1422
1423 retry_unlocked:
1424 hb = queue_lock(&q);
1425
1426 retry_locked:
1427 ret = lock_taken = 0;
1428
1429 /*
1430 * To avoid races, we attempt to take the lock here again
1431 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1432 * the locks. It will most likely not succeed.
1433 */
1434 newval = task_pid_vnr(current);
1435
1436 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1437
1438 if (unlikely(curval == -EFAULT))
1439 goto uaddr_faulted;
1440
1441 /*
1442 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1443 * situation and we return success to user space.
1444 */
1445 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1446 ret = -EDEADLK;
1447 goto out_unlock_release_sem;
1448 }
1449
1450 /*
1451 * Surprise - we got the lock. Just return to userspace:
1452 */
1453 if (unlikely(!curval))
1454 goto out_unlock_release_sem;
1455
1456 uval = curval;
1457
1458 /*
1459 * Set the WAITERS flag, so the owner will know it has someone
1460 * to wake at next unlock
1461 */
1462 newval = curval | FUTEX_WAITERS;
1463
1464 /*
1465 * There are two cases, where a futex might have no owner (the
1466 * owner TID is 0): OWNER_DIED. We take over the futex in this
1467 * case. We also do an unconditional take over, when the owner
1468 * of the futex died.
1469 *
1470 * This is safe as we are protected by the hash bucket lock !
1471 */
1472 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1473 /* Keep the OWNER_DIED bit */
1474 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1475 ownerdied = 0;
1476 lock_taken = 1;
1477 }
1478
1479 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1480
1481 if (unlikely(curval == -EFAULT))
1482 goto uaddr_faulted;
1483 if (unlikely(curval != uval))
1484 goto retry_locked;
1485
1486 /*
1487 * We took the lock due to owner died take over.
1488 */
1489 if (unlikely(lock_taken))
1490 goto out_unlock_release_sem;
1491
1492 /*
1493 * We dont have the lock. Look up the PI state (or create it if
1494 * we are the first waiter):
1495 */
1496 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1497
1498 if (unlikely(ret)) {
1499 switch (ret) {
1500
1501 case -EAGAIN:
1502 /*
1503 * Task is exiting and we just wait for the
1504 * exit to complete.
1505 */
1506 queue_unlock(&q, hb);
1507 futex_unlock_mm(fshared);
1508 cond_resched();
1509 goto retry;
1510
1511 case -ESRCH:
1512 /*
1513 * No owner found for this futex. Check if the
1514 * OWNER_DIED bit is set to figure out whether
1515 * this is a robust futex or not.
1516 */
1517 if (get_futex_value_locked(&curval, uaddr))
1518 goto uaddr_faulted;
1519
1520 /*
1521 * We simply start over in case of a robust
1522 * futex. The code above will take the futex
1523 * and return happy.
1524 */
1525 if (curval & FUTEX_OWNER_DIED) {
1526 ownerdied = 1;
1527 goto retry_locked;
1528 }
1529 default:
1530 goto out_unlock_release_sem;
1531 }
1532 }
1533
1534 /*
1535 * Only actually queue now that the atomic ops are done:
1536 */
1537 queue_me(&q, hb);
1538
1539 /*
1540 * Now the futex is queued and we have checked the data, we
1541 * don't want to hold mmap_sem while we sleep.
1542 */
1543 futex_unlock_mm(fshared);
1544
1545 WARN_ON(!q.pi_state);
1546 /*
1547 * Block on the PI mutex:
1548 */
1549 if (!trylock)
1550 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1551 else {
1552 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1553 /* Fixup the trylock return value: */
1554 ret = ret ? 0 : -EWOULDBLOCK;
1555 }
1556
1557 futex_lock_mm(fshared);
1558 spin_lock(q.lock_ptr);
1559
1560 if (!ret) {
1561 /*
1562 * Got the lock. We might not be the anticipated owner
1563 * if we did a lock-steal - fix up the PI-state in
1564 * that case:
1565 */
1566 if (q.pi_state->owner != curr)
1567 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1568 } else {
1569 /*
1570 * Catch the rare case, where the lock was released
1571 * when we were on the way back before we locked the
1572 * hash bucket.
1573 */
1574 if (q.pi_state->owner == curr) {
1575 /*
1576 * Try to get the rt_mutex now. This might
1577 * fail as some other task acquired the
1578 * rt_mutex after we removed ourself from the
1579 * rt_mutex waiters list.
1580 */
1581 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1582 ret = 0;
1583 else {
1584 /*
1585 * pi_state is incorrect, some other
1586 * task did a lock steal and we
1587 * returned due to timeout or signal
1588 * without taking the rt_mutex. Too
1589 * late. We can access the
1590 * rt_mutex_owner without locking, as
1591 * the other task is now blocked on
1592 * the hash bucket lock. Fix the state
1593 * up.
1594 */
1595 struct task_struct *owner;
1596 int res;
1597
1598 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1599 res = fixup_pi_state_owner(uaddr, &q, owner,
1600 fshared);
1601
1602 /* propagate -EFAULT, if the fixup failed */
1603 if (res)
1604 ret = res;
1605 }
1606 } else {
1607 /*
1608 * Paranoia check. If we did not take the lock
1609 * in the trylock above, then we should not be
1610 * the owner of the rtmutex, neither the real
1611 * nor the pending one:
1612 */
1613 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1614 printk(KERN_ERR "futex_lock_pi: ret = %d "
1615 "pi-mutex: %p pi-state %p\n", ret,
1616 q.pi_state->pi_mutex.owner,
1617 q.pi_state->owner);
1618 }
1619 }
1620
1621 /* Unqueue and drop the lock */
1622 unqueue_me_pi(&q);
1623 futex_unlock_mm(fshared);
1624
1625 if (to)
1626 destroy_hrtimer_on_stack(&to->timer);
1627 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1628
1629 out_unlock_release_sem:
1630 queue_unlock(&q, hb);
1631
1632 out_release_sem:
1633 futex_unlock_mm(fshared);
1634 if (to)
1635 destroy_hrtimer_on_stack(&to->timer);
1636 return ret;
1637
1638 uaddr_faulted:
1639 /*
1640 * We have to r/w *(int __user *)uaddr, but we can't modify it
1641 * non-atomically. Therefore, if get_user below is not
1642 * enough, we need to handle the fault ourselves, while
1643 * still holding the mmap_sem.
1644 *
1645 * ... and hb->lock. :-) --ANK
1646 */
1647 queue_unlock(&q, hb);
1648
1649 if (attempt++) {
1650 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1651 attempt);
1652 if (ret)
1653 goto out_release_sem;
1654 goto retry_unlocked;
1655 }
1656
1657 futex_unlock_mm(fshared);
1658
1659 ret = get_user(uval, uaddr);
1660 if (!ret && (uval != -EFAULT))
1661 goto retry;
1662
1663 if (to)
1664 destroy_hrtimer_on_stack(&to->timer);
1665 return ret;
1666 }
1667
1668 /*
1669 * Userspace attempted a TID -> 0 atomic transition, and failed.
1670 * This is the in-kernel slowpath: we look up the PI state (if any),
1671 * and do the rt-mutex unlock.
1672 */
1673 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1674 {
1675 struct futex_hash_bucket *hb;
1676 struct futex_q *this, *next;
1677 u32 uval;
1678 struct plist_head *head;
1679 union futex_key key;
1680 int ret, attempt = 0;
1681
1682 retry:
1683 if (get_user(uval, uaddr))
1684 return -EFAULT;
1685 /*
1686 * We release only a lock we actually own:
1687 */
1688 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1689 return -EPERM;
1690 /*
1691 * First take all the futex related locks:
1692 */
1693 futex_lock_mm(fshared);
1694
1695 ret = get_futex_key(uaddr, fshared, &key);
1696 if (unlikely(ret != 0))
1697 goto out;
1698
1699 hb = hash_futex(&key);
1700 retry_unlocked:
1701 spin_lock(&hb->lock);
1702
1703 /*
1704 * To avoid races, try to do the TID -> 0 atomic transition
1705 * again. If it succeeds then we can return without waking
1706 * anyone else up:
1707 */
1708 if (!(uval & FUTEX_OWNER_DIED))
1709 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1710
1711
1712 if (unlikely(uval == -EFAULT))
1713 goto pi_faulted;
1714 /*
1715 * Rare case: we managed to release the lock atomically,
1716 * no need to wake anyone else up:
1717 */
1718 if (unlikely(uval == task_pid_vnr(current)))
1719 goto out_unlock;
1720
1721 /*
1722 * Ok, other tasks may need to be woken up - check waiters
1723 * and do the wakeup if necessary:
1724 */
1725 head = &hb->chain;
1726
1727 plist_for_each_entry_safe(this, next, head, list) {
1728 if (!match_futex (&this->key, &key))
1729 continue;
1730 ret = wake_futex_pi(uaddr, uval, this);
1731 /*
1732 * The atomic access to the futex value
1733 * generated a pagefault, so retry the
1734 * user-access and the wakeup:
1735 */
1736 if (ret == -EFAULT)
1737 goto pi_faulted;
1738 goto out_unlock;
1739 }
1740 /*
1741 * No waiters - kernel unlocks the futex:
1742 */
1743 if (!(uval & FUTEX_OWNER_DIED)) {
1744 ret = unlock_futex_pi(uaddr, uval);
1745 if (ret == -EFAULT)
1746 goto pi_faulted;
1747 }
1748
1749 out_unlock:
1750 spin_unlock(&hb->lock);
1751 out:
1752 futex_unlock_mm(fshared);
1753
1754 return ret;
1755
1756 pi_faulted:
1757 /*
1758 * We have to r/w *(int __user *)uaddr, but we can't modify it
1759 * non-atomically. Therefore, if get_user below is not
1760 * enough, we need to handle the fault ourselves, while
1761 * still holding the mmap_sem.
1762 *
1763 * ... and hb->lock. --ANK
1764 */
1765 spin_unlock(&hb->lock);
1766
1767 if (attempt++) {
1768 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1769 attempt);
1770 if (ret)
1771 goto out;
1772 uval = 0;
1773 goto retry_unlocked;
1774 }
1775
1776 futex_unlock_mm(fshared);
1777
1778 ret = get_user(uval, uaddr);
1779 if (!ret && (uval != -EFAULT))
1780 goto retry;
1781
1782 return ret;
1783 }
1784
1785 /*
1786 * Support for robust futexes: the kernel cleans up held futexes at
1787 * thread exit time.
1788 *
1789 * Implementation: user-space maintains a per-thread list of locks it
1790 * is holding. Upon do_exit(), the kernel carefully walks this list,
1791 * and marks all locks that are owned by this thread with the
1792 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1793 * always manipulated with the lock held, so the list is private and
1794 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1795 * field, to allow the kernel to clean up if the thread dies after
1796 * acquiring the lock, but just before it could have added itself to
1797 * the list. There can only be one such pending lock.
1798 */
1799
1800 /**
1801 * sys_set_robust_list - set the robust-futex list head of a task
1802 * @head: pointer to the list-head
1803 * @len: length of the list-head, as userspace expects
1804 */
1805 asmlinkage long
1806 sys_set_robust_list(struct robust_list_head __user *head,
1807 size_t len)
1808 {
1809 if (!futex_cmpxchg_enabled)
1810 return -ENOSYS;
1811 /*
1812 * The kernel knows only one size for now:
1813 */
1814 if (unlikely(len != sizeof(*head)))
1815 return -EINVAL;
1816
1817 current->robust_list = head;
1818
1819 return 0;
1820 }
1821
1822 /**
1823 * sys_get_robust_list - get the robust-futex list head of a task
1824 * @pid: pid of the process [zero for current task]
1825 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1826 * @len_ptr: pointer to a length field, the kernel fills in the header size
1827 */
1828 asmlinkage long
1829 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1830 size_t __user *len_ptr)
1831 {
1832 struct robust_list_head __user *head;
1833 unsigned long ret;
1834 uid_t euid = current_euid();
1835
1836 if (!futex_cmpxchg_enabled)
1837 return -ENOSYS;
1838
1839 if (!pid)
1840 head = current->robust_list;
1841 else {
1842 struct task_struct *p;
1843
1844 ret = -ESRCH;
1845 rcu_read_lock();
1846 p = find_task_by_vpid(pid);
1847 if (!p)
1848 goto err_unlock;
1849 ret = -EPERM;
1850 if (euid != p->cred->euid &&
1851 euid != p->cred->uid &&
1852 !capable(CAP_SYS_PTRACE))
1853 goto err_unlock;
1854 head = p->robust_list;
1855 rcu_read_unlock();
1856 }
1857
1858 if (put_user(sizeof(*head), len_ptr))
1859 return -EFAULT;
1860 return put_user(head, head_ptr);
1861
1862 err_unlock:
1863 rcu_read_unlock();
1864
1865 return ret;
1866 }
1867
1868 /*
1869 * Process a futex-list entry, check whether it's owned by the
1870 * dying task, and do notification if so:
1871 */
1872 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1873 {
1874 u32 uval, nval, mval;
1875
1876 retry:
1877 if (get_user(uval, uaddr))
1878 return -1;
1879
1880 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1881 /*
1882 * Ok, this dying thread is truly holding a futex
1883 * of interest. Set the OWNER_DIED bit atomically
1884 * via cmpxchg, and if the value had FUTEX_WAITERS
1885 * set, wake up a waiter (if any). (We have to do a
1886 * futex_wake() even if OWNER_DIED is already set -
1887 * to handle the rare but possible case of recursive
1888 * thread-death.) The rest of the cleanup is done in
1889 * userspace.
1890 */
1891 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1892 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1893
1894 if (nval == -EFAULT)
1895 return -1;
1896
1897 if (nval != uval)
1898 goto retry;
1899
1900 /*
1901 * Wake robust non-PI futexes here. The wakeup of
1902 * PI futexes happens in exit_pi_state():
1903 */
1904 if (!pi && (uval & FUTEX_WAITERS))
1905 futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1906 FUTEX_BITSET_MATCH_ANY);
1907 }
1908 return 0;
1909 }
1910
1911 /*
1912 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1913 */
1914 static inline int fetch_robust_entry(struct robust_list __user **entry,
1915 struct robust_list __user * __user *head,
1916 int *pi)
1917 {
1918 unsigned long uentry;
1919
1920 if (get_user(uentry, (unsigned long __user *)head))
1921 return -EFAULT;
1922
1923 *entry = (void __user *)(uentry & ~1UL);
1924 *pi = uentry & 1;
1925
1926 return 0;
1927 }
1928
1929 /*
1930 * Walk curr->robust_list (very carefully, it's a userspace list!)
1931 * and mark any locks found there dead, and notify any waiters.
1932 *
1933 * We silently return on any sign of list-walking problem.
1934 */
1935 void exit_robust_list(struct task_struct *curr)
1936 {
1937 struct robust_list_head __user *head = curr->robust_list;
1938 struct robust_list __user *entry, *next_entry, *pending;
1939 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1940 unsigned long futex_offset;
1941 int rc;
1942
1943 if (!futex_cmpxchg_enabled)
1944 return;
1945
1946 /*
1947 * Fetch the list head (which was registered earlier, via
1948 * sys_set_robust_list()):
1949 */
1950 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1951 return;
1952 /*
1953 * Fetch the relative futex offset:
1954 */
1955 if (get_user(futex_offset, &head->futex_offset))
1956 return;
1957 /*
1958 * Fetch any possibly pending lock-add first, and handle it
1959 * if it exists:
1960 */
1961 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1962 return;
1963
1964 next_entry = NULL; /* avoid warning with gcc */
1965 while (entry != &head->list) {
1966 /*
1967 * Fetch the next entry in the list before calling
1968 * handle_futex_death:
1969 */
1970 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1971 /*
1972 * A pending lock might already be on the list, so
1973 * don't process it twice:
1974 */
1975 if (entry != pending)
1976 if (handle_futex_death((void __user *)entry + futex_offset,
1977 curr, pi))
1978 return;
1979 if (rc)
1980 return;
1981 entry = next_entry;
1982 pi = next_pi;
1983 /*
1984 * Avoid excessively long or circular lists:
1985 */
1986 if (!--limit)
1987 break;
1988
1989 cond_resched();
1990 }
1991
1992 if (pending)
1993 handle_futex_death((void __user *)pending + futex_offset,
1994 curr, pip);
1995 }
1996
1997 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1998 u32 __user *uaddr2, u32 val2, u32 val3)
1999 {
2000 int ret = -ENOSYS;
2001 int cmd = op & FUTEX_CMD_MASK;
2002 struct rw_semaphore *fshared = NULL;
2003
2004 if (!(op & FUTEX_PRIVATE_FLAG))
2005 fshared = &current->mm->mmap_sem;
2006
2007 switch (cmd) {
2008 case FUTEX_WAIT:
2009 val3 = FUTEX_BITSET_MATCH_ANY;
2010 case FUTEX_WAIT_BITSET:
2011 ret = futex_wait(uaddr, fshared, val, timeout, val3);
2012 break;
2013 case FUTEX_WAKE:
2014 val3 = FUTEX_BITSET_MATCH_ANY;
2015 case FUTEX_WAKE_BITSET:
2016 ret = futex_wake(uaddr, fshared, val, val3);
2017 break;
2018 case FUTEX_REQUEUE:
2019 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2020 break;
2021 case FUTEX_CMP_REQUEUE:
2022 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2023 break;
2024 case FUTEX_WAKE_OP:
2025 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2026 break;
2027 case FUTEX_LOCK_PI:
2028 if (futex_cmpxchg_enabled)
2029 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2030 break;
2031 case FUTEX_UNLOCK_PI:
2032 if (futex_cmpxchg_enabled)
2033 ret = futex_unlock_pi(uaddr, fshared);
2034 break;
2035 case FUTEX_TRYLOCK_PI:
2036 if (futex_cmpxchg_enabled)
2037 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2038 break;
2039 default:
2040 ret = -ENOSYS;
2041 }
2042 return ret;
2043 }
2044
2045
2046 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2047 struct timespec __user *utime, u32 __user *uaddr2,
2048 u32 val3)
2049 {
2050 struct timespec ts;
2051 ktime_t t, *tp = NULL;
2052 u32 val2 = 0;
2053 int cmd = op & FUTEX_CMD_MASK;
2054
2055 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2056 cmd == FUTEX_WAIT_BITSET)) {
2057 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2058 return -EFAULT;
2059 if (!timespec_valid(&ts))
2060 return -EINVAL;
2061
2062 t = timespec_to_ktime(ts);
2063 if (cmd == FUTEX_WAIT)
2064 t = ktime_add_safe(ktime_get(), t);
2065 tp = &t;
2066 }
2067 /*
2068 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2069 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2070 */
2071 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2072 cmd == FUTEX_WAKE_OP)
2073 val2 = (u32) (unsigned long) utime;
2074
2075 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2076 }
2077
2078 static int __init futex_init(void)
2079 {
2080 u32 curval;
2081 int i;
2082
2083 /*
2084 * This will fail and we want it. Some arch implementations do
2085 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2086 * functionality. We want to know that before we call in any
2087 * of the complex code paths. Also we want to prevent
2088 * registration of robust lists in that case. NULL is
2089 * guaranteed to fault and we get -EFAULT on functional
2090 * implementation, the non functional ones will return
2091 * -ENOSYS.
2092 */
2093 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2094 if (curval == -EFAULT)
2095 futex_cmpxchg_enabled = 1;
2096
2097 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2098 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2099 spin_lock_init(&futex_queues[i].lock);
2100 }
2101
2102 return 0;
2103 }
2104 __initcall(futex_init);