tracing: Fix syscall_*regfunc() vs copy_process() race
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88 * Protected counters by write_lock_irq(&tasklist_lock)
89 */
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
92
93 int max_threads; /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109 int cpu;
110 int total = 0;
111
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
114
115 return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
145 */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
149 {
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
152
153 return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
165 {
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171 kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 struct zone *zone = page_zone(virt_to_page(ti));
204
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
239
240 security_task_free(tsk);
241 exit_creds(tsk);
242 delayacct_tsk_free(tsk);
243 put_signal_struct(tsk->signal);
244
245 if (!profile_handoff_task(tsk))
246 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 #endif
258 /* create a slab on which task_structs can be allocated */
259 task_struct_cachep =
260 kmem_cache_create("task_struct", sizeof(struct task_struct),
261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264 /* do the arch specific task caches init */
265 arch_task_cache_init();
266
267 /*
268 * The default maximum number of threads is set to a safe
269 * value: the thread structures can take up at most half
270 * of memory.
271 */
272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274 /*
275 * we need to allow at least 20 threads to boot a system
276 */
277 if (max_threads < 20)
278 max_threads = 20;
279
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 struct task_struct *src)
288 {
289 *dst = *src;
290 return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 struct task_struct *tsk;
296 struct thread_info *ti;
297 unsigned long *stackend;
298 int node = tsk_fork_get_node(orig);
299 int err;
300
301 tsk = alloc_task_struct_node(node);
302 if (!tsk)
303 return NULL;
304
305 ti = alloc_thread_info_node(tsk, node);
306 if (!ti)
307 goto free_tsk;
308
309 err = arch_dup_task_struct(tsk, orig);
310 if (err)
311 goto free_ti;
312
313 tsk->stack = ti;
314
315 setup_thread_stack(tsk, orig);
316 clear_user_return_notifier(tsk);
317 clear_tsk_need_resched(tsk);
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 tsk->stack_canary = get_random_int();
323 #endif
324
325 /*
326 * One for us, one for whoever does the "release_task()" (usually
327 * parent)
328 */
329 atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 tsk->btrace_seq = 0;
332 #endif
333 tsk->splice_pipe = NULL;
334 tsk->task_frag.page = NULL;
335
336 account_kernel_stack(ti, 1);
337
338 return tsk;
339
340 free_ti:
341 free_thread_info(ti);
342 free_tsk:
343 free_task_struct(tsk);
344 return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
354 struct mempolicy *pol;
355
356 uprobe_start_dup_mmap();
357 down_write(&oldmm->mmap_sem);
358 flush_cache_dup_mm(oldmm);
359 uprobe_dup_mmap(oldmm, mm);
360 /*
361 * Not linked in yet - no deadlock potential:
362 */
363 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364
365 mm->locked_vm = 0;
366 mm->mmap = NULL;
367 mm->mmap_cache = NULL;
368 mm->free_area_cache = oldmm->mmap_base;
369 mm->cached_hole_size = ~0UL;
370 mm->map_count = 0;
371 cpumask_clear(mm_cpumask(mm));
372 mm->mm_rb = RB_ROOT;
373 rb_link = &mm->mm_rb.rb_node;
374 rb_parent = NULL;
375 pprev = &mm->mmap;
376 retval = ksm_fork(mm, oldmm);
377 if (retval)
378 goto out;
379 retval = khugepaged_fork(mm, oldmm);
380 if (retval)
381 goto out;
382
383 prev = NULL;
384 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
385 struct file *file;
386
387 if (mpnt->vm_flags & VM_DONTCOPY) {
388 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
389 -vma_pages(mpnt));
390 continue;
391 }
392 charge = 0;
393 if (mpnt->vm_flags & VM_ACCOUNT) {
394 unsigned long len = vma_pages(mpnt);
395
396 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
397 goto fail_nomem;
398 charge = len;
399 }
400 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
401 if (!tmp)
402 goto fail_nomem;
403 *tmp = *mpnt;
404 INIT_LIST_HEAD(&tmp->anon_vma_chain);
405 pol = mpol_dup(vma_policy(mpnt));
406 retval = PTR_ERR(pol);
407 if (IS_ERR(pol))
408 goto fail_nomem_policy;
409 vma_set_policy(tmp, pol);
410 tmp->vm_mm = mm;
411 if (anon_vma_fork(tmp, mpnt))
412 goto fail_nomem_anon_vma_fork;
413 tmp->vm_flags &= ~VM_LOCKED;
414 tmp->vm_next = tmp->vm_prev = NULL;
415 file = tmp->vm_file;
416 if (file) {
417 struct inode *inode = file_inode(file);
418 struct address_space *mapping = file->f_mapping;
419
420 get_file(file);
421 if (tmp->vm_flags & VM_DENYWRITE)
422 atomic_dec(&inode->i_writecount);
423 mutex_lock(&mapping->i_mmap_mutex);
424 if (tmp->vm_flags & VM_SHARED)
425 mapping->i_mmap_writable++;
426 flush_dcache_mmap_lock(mapping);
427 /* insert tmp into the share list, just after mpnt */
428 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
429 vma_nonlinear_insert(tmp,
430 &mapping->i_mmap_nonlinear);
431 else
432 vma_interval_tree_insert_after(tmp, mpnt,
433 &mapping->i_mmap);
434 flush_dcache_mmap_unlock(mapping);
435 mutex_unlock(&mapping->i_mmap_mutex);
436 }
437
438 /*
439 * Clear hugetlb-related page reserves for children. This only
440 * affects MAP_PRIVATE mappings. Faults generated by the child
441 * are not guaranteed to succeed, even if read-only
442 */
443 if (is_vm_hugetlb_page(tmp))
444 reset_vma_resv_huge_pages(tmp);
445
446 /*
447 * Link in the new vma and copy the page table entries.
448 */
449 *pprev = tmp;
450 pprev = &tmp->vm_next;
451 tmp->vm_prev = prev;
452 prev = tmp;
453
454 __vma_link_rb(mm, tmp, rb_link, rb_parent);
455 rb_link = &tmp->vm_rb.rb_right;
456 rb_parent = &tmp->vm_rb;
457
458 mm->map_count++;
459 retval = copy_page_range(mm, oldmm, mpnt);
460
461 if (tmp->vm_ops && tmp->vm_ops->open)
462 tmp->vm_ops->open(tmp);
463
464 if (retval)
465 goto out;
466 }
467 /* a new mm has just been created */
468 arch_dup_mmap(oldmm, mm);
469 retval = 0;
470 out:
471 up_write(&mm->mmap_sem);
472 flush_tlb_mm(oldmm);
473 up_write(&oldmm->mmap_sem);
474 uprobe_end_dup_mmap();
475 return retval;
476 fail_nomem_anon_vma_fork:
477 mpol_put(pol);
478 fail_nomem_policy:
479 kmem_cache_free(vm_area_cachep, tmp);
480 fail_nomem:
481 retval = -ENOMEM;
482 vm_unacct_memory(charge);
483 goto out;
484 }
485
486 static inline int mm_alloc_pgd(struct mm_struct *mm)
487 {
488 mm->pgd = pgd_alloc(mm);
489 if (unlikely(!mm->pgd))
490 return -ENOMEM;
491 return 0;
492 }
493
494 static inline void mm_free_pgd(struct mm_struct *mm)
495 {
496 pgd_free(mm, mm->pgd);
497 }
498 #else
499 #define dup_mmap(mm, oldmm) (0)
500 #define mm_alloc_pgd(mm) (0)
501 #define mm_free_pgd(mm)
502 #endif /* CONFIG_MMU */
503
504 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
505
506 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
507 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
508
509 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
510
511 static int __init coredump_filter_setup(char *s)
512 {
513 default_dump_filter =
514 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
515 MMF_DUMP_FILTER_MASK;
516 return 1;
517 }
518
519 __setup("coredump_filter=", coredump_filter_setup);
520
521 #include <linux/init_task.h>
522
523 static void mm_init_aio(struct mm_struct *mm)
524 {
525 #ifdef CONFIG_AIO
526 spin_lock_init(&mm->ioctx_lock);
527 INIT_HLIST_HEAD(&mm->ioctx_list);
528 #endif
529 }
530
531 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
532 {
533 atomic_set(&mm->mm_users, 1);
534 atomic_set(&mm->mm_count, 1);
535 init_rwsem(&mm->mmap_sem);
536 INIT_LIST_HEAD(&mm->mmlist);
537 mm->flags = (current->mm) ?
538 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
539 mm->core_state = NULL;
540 mm->nr_ptes = 0;
541 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
542 spin_lock_init(&mm->page_table_lock);
543 mm->free_area_cache = TASK_UNMAPPED_BASE;
544 mm->cached_hole_size = ~0UL;
545 mm_init_aio(mm);
546 mm_init_owner(mm, p);
547 clear_tlb_flush_pending(mm);
548
549 if (likely(!mm_alloc_pgd(mm))) {
550 mm->def_flags = 0;
551 mmu_notifier_mm_init(mm);
552 return mm;
553 }
554
555 free_mm(mm);
556 return NULL;
557 }
558
559 static void check_mm(struct mm_struct *mm)
560 {
561 int i;
562
563 for (i = 0; i < NR_MM_COUNTERS; i++) {
564 long x = atomic_long_read(&mm->rss_stat.count[i]);
565
566 if (unlikely(x))
567 printk(KERN_ALERT "BUG: Bad rss-counter state "
568 "mm:%p idx:%d val:%ld\n", mm, i, x);
569 }
570
571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
572 VM_BUG_ON(mm->pmd_huge_pte);
573 #endif
574 }
575
576 /*
577 * Allocate and initialize an mm_struct.
578 */
579 struct mm_struct *mm_alloc(void)
580 {
581 struct mm_struct *mm;
582
583 mm = allocate_mm();
584 if (!mm)
585 return NULL;
586
587 memset(mm, 0, sizeof(*mm));
588 mm_init_cpumask(mm);
589 return mm_init(mm, current);
590 }
591
592 /*
593 * Called when the last reference to the mm
594 * is dropped: either by a lazy thread or by
595 * mmput. Free the page directory and the mm.
596 */
597 void __mmdrop(struct mm_struct *mm)
598 {
599 BUG_ON(mm == &init_mm);
600 mm_free_pgd(mm);
601 destroy_context(mm);
602 mmu_notifier_mm_destroy(mm);
603 check_mm(mm);
604 free_mm(mm);
605 }
606 EXPORT_SYMBOL_GPL(__mmdrop);
607
608 /*
609 * Decrement the use count and release all resources for an mm.
610 */
611 void mmput(struct mm_struct *mm)
612 {
613 might_sleep();
614
615 if (atomic_dec_and_test(&mm->mm_users)) {
616 uprobe_clear_state(mm);
617 exit_aio(mm);
618 ksm_exit(mm);
619 khugepaged_exit(mm); /* must run before exit_mmap */
620 exit_mmap(mm);
621 set_mm_exe_file(mm, NULL);
622 if (!list_empty(&mm->mmlist)) {
623 spin_lock(&mmlist_lock);
624 list_del(&mm->mmlist);
625 spin_unlock(&mmlist_lock);
626 }
627 if (mm->binfmt)
628 module_put(mm->binfmt->module);
629 mmdrop(mm);
630 }
631 }
632 EXPORT_SYMBOL_GPL(mmput);
633
634 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
635 {
636 if (new_exe_file)
637 get_file(new_exe_file);
638 if (mm->exe_file)
639 fput(mm->exe_file);
640 mm->exe_file = new_exe_file;
641 }
642
643 struct file *get_mm_exe_file(struct mm_struct *mm)
644 {
645 struct file *exe_file;
646
647 /* We need mmap_sem to protect against races with removal of exe_file */
648 down_read(&mm->mmap_sem);
649 exe_file = mm->exe_file;
650 if (exe_file)
651 get_file(exe_file);
652 up_read(&mm->mmap_sem);
653 return exe_file;
654 }
655
656 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
657 {
658 /* It's safe to write the exe_file pointer without exe_file_lock because
659 * this is called during fork when the task is not yet in /proc */
660 newmm->exe_file = get_mm_exe_file(oldmm);
661 }
662
663 /**
664 * get_task_mm - acquire a reference to the task's mm
665 *
666 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
667 * this kernel workthread has transiently adopted a user mm with use_mm,
668 * to do its AIO) is not set and if so returns a reference to it, after
669 * bumping up the use count. User must release the mm via mmput()
670 * after use. Typically used by /proc and ptrace.
671 */
672 struct mm_struct *get_task_mm(struct task_struct *task)
673 {
674 struct mm_struct *mm;
675
676 task_lock(task);
677 mm = task->mm;
678 if (mm) {
679 if (task->flags & PF_KTHREAD)
680 mm = NULL;
681 else
682 atomic_inc(&mm->mm_users);
683 }
684 task_unlock(task);
685 return mm;
686 }
687 EXPORT_SYMBOL_GPL(get_task_mm);
688
689 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
690 {
691 struct mm_struct *mm;
692 int err;
693
694 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
695 if (err)
696 return ERR_PTR(err);
697
698 mm = get_task_mm(task);
699 if (mm && mm != current->mm &&
700 !ptrace_may_access(task, mode)) {
701 mmput(mm);
702 mm = ERR_PTR(-EACCES);
703 }
704 mutex_unlock(&task->signal->cred_guard_mutex);
705
706 return mm;
707 }
708
709 static void complete_vfork_done(struct task_struct *tsk)
710 {
711 struct completion *vfork;
712
713 task_lock(tsk);
714 vfork = tsk->vfork_done;
715 if (likely(vfork)) {
716 tsk->vfork_done = NULL;
717 complete(vfork);
718 }
719 task_unlock(tsk);
720 }
721
722 static int wait_for_vfork_done(struct task_struct *child,
723 struct completion *vfork)
724 {
725 int killed;
726
727 freezer_do_not_count();
728 killed = wait_for_completion_killable(vfork);
729 freezer_count();
730
731 if (killed) {
732 task_lock(child);
733 child->vfork_done = NULL;
734 task_unlock(child);
735 }
736
737 put_task_struct(child);
738 return killed;
739 }
740
741 /* Please note the differences between mmput and mm_release.
742 * mmput is called whenever we stop holding onto a mm_struct,
743 * error success whatever.
744 *
745 * mm_release is called after a mm_struct has been removed
746 * from the current process.
747 *
748 * This difference is important for error handling, when we
749 * only half set up a mm_struct for a new process and need to restore
750 * the old one. Because we mmput the new mm_struct before
751 * restoring the old one. . .
752 * Eric Biederman 10 January 1998
753 */
754 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
755 {
756 /* Get rid of any futexes when releasing the mm */
757 #ifdef CONFIG_FUTEX
758 if (unlikely(tsk->robust_list)) {
759 exit_robust_list(tsk);
760 tsk->robust_list = NULL;
761 }
762 #ifdef CONFIG_COMPAT
763 if (unlikely(tsk->compat_robust_list)) {
764 compat_exit_robust_list(tsk);
765 tsk->compat_robust_list = NULL;
766 }
767 #endif
768 if (unlikely(!list_empty(&tsk->pi_state_list)))
769 exit_pi_state_list(tsk);
770 #endif
771
772 uprobe_free_utask(tsk);
773
774 /* Get rid of any cached register state */
775 deactivate_mm(tsk, mm);
776
777 /*
778 * If we're exiting normally, clear a user-space tid field if
779 * requested. We leave this alone when dying by signal, to leave
780 * the value intact in a core dump, and to save the unnecessary
781 * trouble, say, a killed vfork parent shouldn't touch this mm.
782 * Userland only wants this done for a sys_exit.
783 */
784 if (tsk->clear_child_tid) {
785 if (!(tsk->flags & PF_SIGNALED) &&
786 atomic_read(&mm->mm_users) > 1) {
787 /*
788 * We don't check the error code - if userspace has
789 * not set up a proper pointer then tough luck.
790 */
791 put_user(0, tsk->clear_child_tid);
792 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
793 1, NULL, NULL, 0);
794 }
795 tsk->clear_child_tid = NULL;
796 }
797
798 /*
799 * All done, finally we can wake up parent and return this mm to him.
800 * Also kthread_stop() uses this completion for synchronization.
801 */
802 if (tsk->vfork_done)
803 complete_vfork_done(tsk);
804 }
805
806 /*
807 * Allocate a new mm structure and copy contents from the
808 * mm structure of the passed in task structure.
809 */
810 struct mm_struct *dup_mm(struct task_struct *tsk)
811 {
812 struct mm_struct *mm, *oldmm = current->mm;
813 int err;
814
815 if (!oldmm)
816 return NULL;
817
818 mm = allocate_mm();
819 if (!mm)
820 goto fail_nomem;
821
822 memcpy(mm, oldmm, sizeof(*mm));
823 mm_init_cpumask(mm);
824
825 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
826 mm->pmd_huge_pte = NULL;
827 #endif
828 #ifdef CONFIG_NUMA_BALANCING
829 mm->first_nid = NUMA_PTE_SCAN_INIT;
830 #endif
831 if (!mm_init(mm, tsk))
832 goto fail_nomem;
833
834 if (init_new_context(tsk, mm))
835 goto fail_nocontext;
836
837 dup_mm_exe_file(oldmm, mm);
838
839 err = dup_mmap(mm, oldmm);
840 if (err)
841 goto free_pt;
842
843 mm->hiwater_rss = get_mm_rss(mm);
844 mm->hiwater_vm = mm->total_vm;
845
846 if (mm->binfmt && !try_module_get(mm->binfmt->module))
847 goto free_pt;
848
849 return mm;
850
851 free_pt:
852 /* don't put binfmt in mmput, we haven't got module yet */
853 mm->binfmt = NULL;
854 mmput(mm);
855
856 fail_nomem:
857 return NULL;
858
859 fail_nocontext:
860 /*
861 * If init_new_context() failed, we cannot use mmput() to free the mm
862 * because it calls destroy_context()
863 */
864 mm_free_pgd(mm);
865 free_mm(mm);
866 return NULL;
867 }
868
869 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
870 {
871 struct mm_struct *mm, *oldmm;
872 int retval;
873
874 tsk->min_flt = tsk->maj_flt = 0;
875 tsk->nvcsw = tsk->nivcsw = 0;
876 #ifdef CONFIG_DETECT_HUNG_TASK
877 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
878 #endif
879
880 tsk->mm = NULL;
881 tsk->active_mm = NULL;
882
883 /*
884 * Are we cloning a kernel thread?
885 *
886 * We need to steal a active VM for that..
887 */
888 oldmm = current->mm;
889 if (!oldmm)
890 return 0;
891
892 if (clone_flags & CLONE_VM) {
893 atomic_inc(&oldmm->mm_users);
894 mm = oldmm;
895 goto good_mm;
896 }
897
898 retval = -ENOMEM;
899 mm = dup_mm(tsk);
900 if (!mm)
901 goto fail_nomem;
902
903 good_mm:
904 tsk->mm = mm;
905 tsk->active_mm = mm;
906 return 0;
907
908 fail_nomem:
909 return retval;
910 }
911
912 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
913 {
914 struct fs_struct *fs = current->fs;
915 if (clone_flags & CLONE_FS) {
916 /* tsk->fs is already what we want */
917 spin_lock(&fs->lock);
918 if (fs->in_exec) {
919 spin_unlock(&fs->lock);
920 return -EAGAIN;
921 }
922 fs->users++;
923 spin_unlock(&fs->lock);
924 return 0;
925 }
926 tsk->fs = copy_fs_struct(fs);
927 if (!tsk->fs)
928 return -ENOMEM;
929 return 0;
930 }
931
932 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
933 {
934 struct files_struct *oldf, *newf;
935 int error = 0;
936
937 /*
938 * A background process may not have any files ...
939 */
940 oldf = current->files;
941 if (!oldf)
942 goto out;
943
944 if (clone_flags & CLONE_FILES) {
945 atomic_inc(&oldf->count);
946 goto out;
947 }
948
949 newf = dup_fd(oldf, &error);
950 if (!newf)
951 goto out;
952
953 tsk->files = newf;
954 error = 0;
955 out:
956 return error;
957 }
958
959 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
960 {
961 #ifdef CONFIG_BLOCK
962 struct io_context *ioc = current->io_context;
963 struct io_context *new_ioc;
964
965 if (!ioc)
966 return 0;
967 /*
968 * Share io context with parent, if CLONE_IO is set
969 */
970 if (clone_flags & CLONE_IO) {
971 ioc_task_link(ioc);
972 tsk->io_context = ioc;
973 } else if (ioprio_valid(ioc->ioprio)) {
974 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
975 if (unlikely(!new_ioc))
976 return -ENOMEM;
977
978 new_ioc->ioprio = ioc->ioprio;
979 put_io_context(new_ioc);
980 }
981 #endif
982 return 0;
983 }
984
985 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
986 {
987 struct sighand_struct *sig;
988
989 if (clone_flags & CLONE_SIGHAND) {
990 atomic_inc(&current->sighand->count);
991 return 0;
992 }
993 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
994 rcu_assign_pointer(tsk->sighand, sig);
995 if (!sig)
996 return -ENOMEM;
997 atomic_set(&sig->count, 1);
998 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
999 return 0;
1000 }
1001
1002 void __cleanup_sighand(struct sighand_struct *sighand)
1003 {
1004 if (atomic_dec_and_test(&sighand->count)) {
1005 signalfd_cleanup(sighand);
1006 kmem_cache_free(sighand_cachep, sighand);
1007 }
1008 }
1009
1010
1011 /*
1012 * Initialize POSIX timer handling for a thread group.
1013 */
1014 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1015 {
1016 unsigned long cpu_limit;
1017
1018 /* Thread group counters. */
1019 thread_group_cputime_init(sig);
1020
1021 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1022 if (cpu_limit != RLIM_INFINITY) {
1023 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1024 sig->cputimer.running = 1;
1025 }
1026
1027 /* The timer lists. */
1028 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1029 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1030 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1031 }
1032
1033 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1034 {
1035 struct signal_struct *sig;
1036
1037 if (clone_flags & CLONE_THREAD)
1038 return 0;
1039
1040 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1041 tsk->signal = sig;
1042 if (!sig)
1043 return -ENOMEM;
1044
1045 sig->nr_threads = 1;
1046 atomic_set(&sig->live, 1);
1047 atomic_set(&sig->sigcnt, 1);
1048 init_waitqueue_head(&sig->wait_chldexit);
1049 sig->curr_target = tsk;
1050 init_sigpending(&sig->shared_pending);
1051 INIT_LIST_HEAD(&sig->posix_timers);
1052
1053 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1054 sig->real_timer.function = it_real_fn;
1055
1056 task_lock(current->group_leader);
1057 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1058 task_unlock(current->group_leader);
1059
1060 posix_cpu_timers_init_group(sig);
1061
1062 tty_audit_fork(sig);
1063 sched_autogroup_fork(sig);
1064
1065 #ifdef CONFIG_CGROUPS
1066 init_rwsem(&sig->group_rwsem);
1067 #endif
1068
1069 sig->oom_score_adj = current->signal->oom_score_adj;
1070 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1071
1072 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1073 current->signal->is_child_subreaper;
1074
1075 mutex_init(&sig->cred_guard_mutex);
1076
1077 return 0;
1078 }
1079
1080 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1081 {
1082 unsigned long new_flags = p->flags;
1083
1084 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1085 new_flags |= PF_FORKNOEXEC;
1086 p->flags = new_flags;
1087 }
1088
1089 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1090 {
1091 current->clear_child_tid = tidptr;
1092
1093 return task_pid_vnr(current);
1094 }
1095
1096 static void rt_mutex_init_task(struct task_struct *p)
1097 {
1098 raw_spin_lock_init(&p->pi_lock);
1099 #ifdef CONFIG_RT_MUTEXES
1100 plist_head_init(&p->pi_waiters);
1101 p->pi_blocked_on = NULL;
1102 #endif
1103 }
1104
1105 #ifdef CONFIG_MM_OWNER
1106 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1107 {
1108 mm->owner = p;
1109 }
1110 #endif /* CONFIG_MM_OWNER */
1111
1112 /*
1113 * Initialize POSIX timer handling for a single task.
1114 */
1115 static void posix_cpu_timers_init(struct task_struct *tsk)
1116 {
1117 tsk->cputime_expires.prof_exp = 0;
1118 tsk->cputime_expires.virt_exp = 0;
1119 tsk->cputime_expires.sched_exp = 0;
1120 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1121 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1122 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1123 }
1124
1125 /*
1126 * This creates a new process as a copy of the old one,
1127 * but does not actually start it yet.
1128 *
1129 * It copies the registers, and all the appropriate
1130 * parts of the process environment (as per the clone
1131 * flags). The actual kick-off is left to the caller.
1132 */
1133 static struct task_struct *copy_process(unsigned long clone_flags,
1134 unsigned long stack_start,
1135 unsigned long stack_size,
1136 int __user *child_tidptr,
1137 struct pid *pid,
1138 int trace)
1139 {
1140 int retval;
1141 struct task_struct *p;
1142
1143 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1144 return ERR_PTR(-EINVAL);
1145
1146 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1147 return ERR_PTR(-EINVAL);
1148
1149 /*
1150 * Thread groups must share signals as well, and detached threads
1151 * can only be started up within the thread group.
1152 */
1153 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1154 return ERR_PTR(-EINVAL);
1155
1156 /*
1157 * Shared signal handlers imply shared VM. By way of the above,
1158 * thread groups also imply shared VM. Blocking this case allows
1159 * for various simplifications in other code.
1160 */
1161 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1162 return ERR_PTR(-EINVAL);
1163
1164 /*
1165 * Siblings of global init remain as zombies on exit since they are
1166 * not reaped by their parent (swapper). To solve this and to avoid
1167 * multi-rooted process trees, prevent global and container-inits
1168 * from creating siblings.
1169 */
1170 if ((clone_flags & CLONE_PARENT) &&
1171 current->signal->flags & SIGNAL_UNKILLABLE)
1172 return ERR_PTR(-EINVAL);
1173
1174 /*
1175 * If the new process will be in a different pid namespace don't
1176 * allow it to share a thread group or signal handlers with the
1177 * forking task.
1178 */
1179 if ((clone_flags & (CLONE_SIGHAND | CLONE_NEWPID)) &&
1180 (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1181 return ERR_PTR(-EINVAL);
1182
1183 retval = security_task_create(clone_flags);
1184 if (retval)
1185 goto fork_out;
1186
1187 retval = -ENOMEM;
1188 p = dup_task_struct(current);
1189 if (!p)
1190 goto fork_out;
1191
1192 ftrace_graph_init_task(p);
1193 get_seccomp_filter(p);
1194
1195 rt_mutex_init_task(p);
1196
1197 #ifdef CONFIG_PROVE_LOCKING
1198 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1199 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1200 #endif
1201 retval = -EAGAIN;
1202 if (atomic_read(&p->real_cred->user->processes) >=
1203 task_rlimit(p, RLIMIT_NPROC)) {
1204 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1205 p->real_cred->user != INIT_USER)
1206 goto bad_fork_free;
1207 }
1208 current->flags &= ~PF_NPROC_EXCEEDED;
1209
1210 retval = copy_creds(p, clone_flags);
1211 if (retval < 0)
1212 goto bad_fork_free;
1213
1214 /*
1215 * If multiple threads are within copy_process(), then this check
1216 * triggers too late. This doesn't hurt, the check is only there
1217 * to stop root fork bombs.
1218 */
1219 retval = -EAGAIN;
1220 if (nr_threads >= max_threads)
1221 goto bad_fork_cleanup_count;
1222
1223 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1224 goto bad_fork_cleanup_count;
1225
1226 p->did_exec = 0;
1227 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1228 copy_flags(clone_flags, p);
1229 INIT_LIST_HEAD(&p->children);
1230 INIT_LIST_HEAD(&p->sibling);
1231 rcu_copy_process(p);
1232 p->vfork_done = NULL;
1233 spin_lock_init(&p->alloc_lock);
1234
1235 init_sigpending(&p->pending);
1236
1237 p->utime = p->stime = p->gtime = 0;
1238 p->utimescaled = p->stimescaled = 0;
1239 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1240 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1241 #endif
1242 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1243 seqlock_init(&p->vtime_seqlock);
1244 p->vtime_snap = 0;
1245 p->vtime_snap_whence = VTIME_SLEEPING;
1246 #endif
1247
1248 #if defined(SPLIT_RSS_COUNTING)
1249 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1250 #endif
1251
1252 p->default_timer_slack_ns = current->timer_slack_ns;
1253
1254 task_io_accounting_init(&p->ioac);
1255 acct_clear_integrals(p);
1256
1257 posix_cpu_timers_init(p);
1258
1259 do_posix_clock_monotonic_gettime(&p->start_time);
1260 p->real_start_time = p->start_time;
1261 monotonic_to_bootbased(&p->real_start_time);
1262 p->io_context = NULL;
1263 p->audit_context = NULL;
1264 if (clone_flags & CLONE_THREAD)
1265 threadgroup_change_begin(current);
1266 cgroup_fork(p);
1267 #ifdef CONFIG_NUMA
1268 p->mempolicy = mpol_dup(p->mempolicy);
1269 if (IS_ERR(p->mempolicy)) {
1270 retval = PTR_ERR(p->mempolicy);
1271 p->mempolicy = NULL;
1272 goto bad_fork_cleanup_cgroup;
1273 }
1274 mpol_fix_fork_child_flag(p);
1275 #endif
1276 #ifdef CONFIG_CPUSETS
1277 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1278 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1279 seqcount_init(&p->mems_allowed_seq);
1280 #endif
1281 #ifdef CONFIG_TRACE_IRQFLAGS
1282 p->irq_events = 0;
1283 p->hardirqs_enabled = 0;
1284 p->hardirq_enable_ip = 0;
1285 p->hardirq_enable_event = 0;
1286 p->hardirq_disable_ip = _THIS_IP_;
1287 p->hardirq_disable_event = 0;
1288 p->softirqs_enabled = 1;
1289 p->softirq_enable_ip = _THIS_IP_;
1290 p->softirq_enable_event = 0;
1291 p->softirq_disable_ip = 0;
1292 p->softirq_disable_event = 0;
1293 p->hardirq_context = 0;
1294 p->softirq_context = 0;
1295 #endif
1296 #ifdef CONFIG_LOCKDEP
1297 p->lockdep_depth = 0; /* no locks held yet */
1298 p->curr_chain_key = 0;
1299 p->lockdep_recursion = 0;
1300 #endif
1301
1302 #ifdef CONFIG_DEBUG_MUTEXES
1303 p->blocked_on = NULL; /* not blocked yet */
1304 #endif
1305 #ifdef CONFIG_MEMCG
1306 p->memcg_batch.do_batch = 0;
1307 p->memcg_batch.memcg = NULL;
1308 #endif
1309 #ifdef CONFIG_BCACHE
1310 p->sequential_io = 0;
1311 p->sequential_io_avg = 0;
1312 #endif
1313
1314 /* Perform scheduler related setup. Assign this task to a CPU. */
1315 sched_fork(p);
1316
1317 retval = perf_event_init_task(p);
1318 if (retval)
1319 goto bad_fork_cleanup_policy;
1320 retval = audit_alloc(p);
1321 if (retval)
1322 goto bad_fork_cleanup_policy;
1323 /* copy all the process information */
1324 retval = copy_semundo(clone_flags, p);
1325 if (retval)
1326 goto bad_fork_cleanup_audit;
1327 retval = copy_files(clone_flags, p);
1328 if (retval)
1329 goto bad_fork_cleanup_semundo;
1330 retval = copy_fs(clone_flags, p);
1331 if (retval)
1332 goto bad_fork_cleanup_files;
1333 retval = copy_sighand(clone_flags, p);
1334 if (retval)
1335 goto bad_fork_cleanup_fs;
1336 retval = copy_signal(clone_flags, p);
1337 if (retval)
1338 goto bad_fork_cleanup_sighand;
1339 retval = copy_mm(clone_flags, p);
1340 if (retval)
1341 goto bad_fork_cleanup_signal;
1342 retval = copy_namespaces(clone_flags, p);
1343 if (retval)
1344 goto bad_fork_cleanup_mm;
1345 retval = copy_io(clone_flags, p);
1346 if (retval)
1347 goto bad_fork_cleanup_namespaces;
1348 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1349 if (retval)
1350 goto bad_fork_cleanup_io;
1351
1352 if (pid != &init_struct_pid) {
1353 retval = -ENOMEM;
1354 pid = alloc_pid(p->nsproxy->pid_ns);
1355 if (!pid)
1356 goto bad_fork_cleanup_io;
1357 }
1358
1359 p->pid = pid_nr(pid);
1360 p->tgid = p->pid;
1361 if (clone_flags & CLONE_THREAD)
1362 p->tgid = current->tgid;
1363
1364 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1365 /*
1366 * Clear TID on mm_release()?
1367 */
1368 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1369 #ifdef CONFIG_BLOCK
1370 p->plug = NULL;
1371 #endif
1372 #ifdef CONFIG_FUTEX
1373 p->robust_list = NULL;
1374 #ifdef CONFIG_COMPAT
1375 p->compat_robust_list = NULL;
1376 #endif
1377 INIT_LIST_HEAD(&p->pi_state_list);
1378 p->pi_state_cache = NULL;
1379 #endif
1380 uprobe_copy_process(p);
1381 /*
1382 * sigaltstack should be cleared when sharing the same VM
1383 */
1384 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1385 p->sas_ss_sp = p->sas_ss_size = 0;
1386
1387 /*
1388 * Syscall tracing and stepping should be turned off in the
1389 * child regardless of CLONE_PTRACE.
1390 */
1391 user_disable_single_step(p);
1392 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1393 #ifdef TIF_SYSCALL_EMU
1394 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1395 #endif
1396 clear_all_latency_tracing(p);
1397
1398 /* ok, now we should be set up.. */
1399 if (clone_flags & CLONE_THREAD)
1400 p->exit_signal = -1;
1401 else if (clone_flags & CLONE_PARENT)
1402 p->exit_signal = current->group_leader->exit_signal;
1403 else
1404 p->exit_signal = (clone_flags & CSIGNAL);
1405
1406 p->pdeath_signal = 0;
1407 p->exit_state = 0;
1408
1409 p->nr_dirtied = 0;
1410 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1411 p->dirty_paused_when = 0;
1412
1413 /*
1414 * Ok, make it visible to the rest of the system.
1415 * We dont wake it up yet.
1416 */
1417 p->group_leader = p;
1418 INIT_LIST_HEAD(&p->thread_group);
1419 p->task_works = NULL;
1420
1421 /* Need tasklist lock for parent etc handling! */
1422 write_lock_irq(&tasklist_lock);
1423
1424 /* CLONE_PARENT re-uses the old parent */
1425 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1426 p->real_parent = current->real_parent;
1427 p->parent_exec_id = current->parent_exec_id;
1428 } else {
1429 p->real_parent = current;
1430 p->parent_exec_id = current->self_exec_id;
1431 }
1432
1433 spin_lock(&current->sighand->siglock);
1434
1435 /*
1436 * Process group and session signals need to be delivered to just the
1437 * parent before the fork or both the parent and the child after the
1438 * fork. Restart if a signal comes in before we add the new process to
1439 * it's process group.
1440 * A fatal signal pending means that current will exit, so the new
1441 * thread can't slip out of an OOM kill (or normal SIGKILL).
1442 */
1443 recalc_sigpending();
1444 if (signal_pending(current)) {
1445 spin_unlock(&current->sighand->siglock);
1446 write_unlock_irq(&tasklist_lock);
1447 retval = -ERESTARTNOINTR;
1448 goto bad_fork_free_pid;
1449 }
1450
1451 if (clone_flags & CLONE_THREAD) {
1452 current->signal->nr_threads++;
1453 atomic_inc(&current->signal->live);
1454 atomic_inc(&current->signal->sigcnt);
1455 p->group_leader = current->group_leader;
1456 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1457 }
1458
1459 if (likely(p->pid)) {
1460 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1461
1462 if (thread_group_leader(p)) {
1463 if (is_child_reaper(pid)) {
1464 ns_of_pid(pid)->child_reaper = p;
1465 p->signal->flags |= SIGNAL_UNKILLABLE;
1466 }
1467
1468 p->signal->leader_pid = pid;
1469 p->signal->tty = tty_kref_get(current->signal->tty);
1470 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1471 attach_pid(p, PIDTYPE_SID, task_session(current));
1472 list_add_tail(&p->sibling, &p->real_parent->children);
1473 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1474 __this_cpu_inc(process_counts);
1475 }
1476 attach_pid(p, PIDTYPE_PID, pid);
1477 nr_threads++;
1478 }
1479
1480 total_forks++;
1481 spin_unlock(&current->sighand->siglock);
1482 syscall_tracepoint_update(p);
1483 write_unlock_irq(&tasklist_lock);
1484
1485 proc_fork_connector(p);
1486 cgroup_post_fork(p);
1487 if (clone_flags & CLONE_THREAD)
1488 threadgroup_change_end(current);
1489 perf_event_fork(p);
1490
1491 trace_task_newtask(p, clone_flags);
1492
1493 return p;
1494
1495 bad_fork_free_pid:
1496 if (pid != &init_struct_pid)
1497 free_pid(pid);
1498 bad_fork_cleanup_io:
1499 if (p->io_context)
1500 exit_io_context(p);
1501 bad_fork_cleanup_namespaces:
1502 exit_task_namespaces(p);
1503 bad_fork_cleanup_mm:
1504 if (p->mm)
1505 mmput(p->mm);
1506 bad_fork_cleanup_signal:
1507 if (!(clone_flags & CLONE_THREAD))
1508 free_signal_struct(p->signal);
1509 bad_fork_cleanup_sighand:
1510 __cleanup_sighand(p->sighand);
1511 bad_fork_cleanup_fs:
1512 exit_fs(p); /* blocking */
1513 bad_fork_cleanup_files:
1514 exit_files(p); /* blocking */
1515 bad_fork_cleanup_semundo:
1516 exit_sem(p);
1517 bad_fork_cleanup_audit:
1518 audit_free(p);
1519 bad_fork_cleanup_policy:
1520 perf_event_free_task(p);
1521 #ifdef CONFIG_NUMA
1522 mpol_put(p->mempolicy);
1523 bad_fork_cleanup_cgroup:
1524 #endif
1525 if (clone_flags & CLONE_THREAD)
1526 threadgroup_change_end(current);
1527 cgroup_exit(p, 0);
1528 delayacct_tsk_free(p);
1529 module_put(task_thread_info(p)->exec_domain->module);
1530 bad_fork_cleanup_count:
1531 atomic_dec(&p->cred->user->processes);
1532 exit_creds(p);
1533 bad_fork_free:
1534 free_task(p);
1535 fork_out:
1536 return ERR_PTR(retval);
1537 }
1538
1539 static inline void init_idle_pids(struct pid_link *links)
1540 {
1541 enum pid_type type;
1542
1543 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1544 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1545 links[type].pid = &init_struct_pid;
1546 }
1547 }
1548
1549 struct task_struct * __cpuinit fork_idle(int cpu)
1550 {
1551 struct task_struct *task;
1552 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1553 if (!IS_ERR(task)) {
1554 init_idle_pids(task->pids);
1555 init_idle(task, cpu);
1556 }
1557
1558 return task;
1559 }
1560
1561 /*
1562 * Ok, this is the main fork-routine.
1563 *
1564 * It copies the process, and if successful kick-starts
1565 * it and waits for it to finish using the VM if required.
1566 */
1567 long do_fork(unsigned long clone_flags,
1568 unsigned long stack_start,
1569 unsigned long stack_size,
1570 int __user *parent_tidptr,
1571 int __user *child_tidptr)
1572 {
1573 struct task_struct *p;
1574 int trace = 0;
1575 long nr;
1576
1577 /*
1578 * Do some preliminary argument and permissions checking before we
1579 * actually start allocating stuff
1580 */
1581 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1582 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1583 return -EINVAL;
1584 }
1585
1586 /*
1587 * Determine whether and which event to report to ptracer. When
1588 * called from kernel_thread or CLONE_UNTRACED is explicitly
1589 * requested, no event is reported; otherwise, report if the event
1590 * for the type of forking is enabled.
1591 */
1592 if (!(clone_flags & CLONE_UNTRACED)) {
1593 if (clone_flags & CLONE_VFORK)
1594 trace = PTRACE_EVENT_VFORK;
1595 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1596 trace = PTRACE_EVENT_CLONE;
1597 else
1598 trace = PTRACE_EVENT_FORK;
1599
1600 if (likely(!ptrace_event_enabled(current, trace)))
1601 trace = 0;
1602 }
1603
1604 p = copy_process(clone_flags, stack_start, stack_size,
1605 child_tidptr, NULL, trace);
1606 /*
1607 * Do this prior waking up the new thread - the thread pointer
1608 * might get invalid after that point, if the thread exits quickly.
1609 */
1610 if (!IS_ERR(p)) {
1611 struct completion vfork;
1612 struct pid *pid;
1613
1614 trace_sched_process_fork(current, p);
1615
1616 pid = get_task_pid(p, PIDTYPE_PID);
1617 nr = pid_vnr(pid);
1618
1619 if (clone_flags & CLONE_PARENT_SETTID)
1620 put_user(nr, parent_tidptr);
1621
1622 if (clone_flags & CLONE_VFORK) {
1623 p->vfork_done = &vfork;
1624 init_completion(&vfork);
1625 get_task_struct(p);
1626 }
1627
1628 wake_up_new_task(p);
1629
1630 /* forking complete and child started to run, tell ptracer */
1631 if (unlikely(trace))
1632 ptrace_event_pid(trace, pid);
1633
1634 if (clone_flags & CLONE_VFORK) {
1635 if (!wait_for_vfork_done(p, &vfork))
1636 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1637 }
1638
1639 put_pid(pid);
1640 } else {
1641 nr = PTR_ERR(p);
1642 }
1643 return nr;
1644 }
1645
1646 /*
1647 * Create a kernel thread.
1648 */
1649 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1650 {
1651 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1652 (unsigned long)arg, NULL, NULL);
1653 }
1654
1655 #ifdef __ARCH_WANT_SYS_FORK
1656 SYSCALL_DEFINE0(fork)
1657 {
1658 #ifdef CONFIG_MMU
1659 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1660 #else
1661 /* can not support in nommu mode */
1662 return(-EINVAL);
1663 #endif
1664 }
1665 #endif
1666
1667 #ifdef __ARCH_WANT_SYS_VFORK
1668 SYSCALL_DEFINE0(vfork)
1669 {
1670 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1671 0, NULL, NULL);
1672 }
1673 #endif
1674
1675 #ifdef __ARCH_WANT_SYS_CLONE
1676 #ifdef CONFIG_CLONE_BACKWARDS
1677 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1678 int __user *, parent_tidptr,
1679 int, tls_val,
1680 int __user *, child_tidptr)
1681 #elif defined(CONFIG_CLONE_BACKWARDS2)
1682 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1683 int __user *, parent_tidptr,
1684 int __user *, child_tidptr,
1685 int, tls_val)
1686 #elif defined(CONFIG_CLONE_BACKWARDS3)
1687 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1688 int, stack_size,
1689 int __user *, parent_tidptr,
1690 int __user *, child_tidptr,
1691 int, tls_val)
1692 #else
1693 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1694 int __user *, parent_tidptr,
1695 int __user *, child_tidptr,
1696 int, tls_val)
1697 #endif
1698 {
1699 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1700 }
1701 #endif
1702
1703 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1704 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1705 #endif
1706
1707 static void sighand_ctor(void *data)
1708 {
1709 struct sighand_struct *sighand = data;
1710
1711 spin_lock_init(&sighand->siglock);
1712 init_waitqueue_head(&sighand->signalfd_wqh);
1713 }
1714
1715 void __init proc_caches_init(void)
1716 {
1717 sighand_cachep = kmem_cache_create("sighand_cache",
1718 sizeof(struct sighand_struct), 0,
1719 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1720 SLAB_NOTRACK, sighand_ctor);
1721 signal_cachep = kmem_cache_create("signal_cache",
1722 sizeof(struct signal_struct), 0,
1723 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1724 files_cachep = kmem_cache_create("files_cache",
1725 sizeof(struct files_struct), 0,
1726 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1727 fs_cachep = kmem_cache_create("fs_cache",
1728 sizeof(struct fs_struct), 0,
1729 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1730 /*
1731 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1732 * whole struct cpumask for the OFFSTACK case. We could change
1733 * this to *only* allocate as much of it as required by the
1734 * maximum number of CPU's we can ever have. The cpumask_allocation
1735 * is at the end of the structure, exactly for that reason.
1736 */
1737 mm_cachep = kmem_cache_create("mm_struct",
1738 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1739 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1740 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1741 mmap_init();
1742 nsproxy_cache_init();
1743 }
1744
1745 /*
1746 * Check constraints on flags passed to the unshare system call.
1747 */
1748 static int check_unshare_flags(unsigned long unshare_flags)
1749 {
1750 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1751 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1752 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1753 CLONE_NEWUSER|CLONE_NEWPID))
1754 return -EINVAL;
1755 /*
1756 * Not implemented, but pretend it works if there is nothing to
1757 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1758 * needs to unshare vm.
1759 */
1760 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1761 /* FIXME: get_task_mm() increments ->mm_users */
1762 if (atomic_read(&current->mm->mm_users) > 1)
1763 return -EINVAL;
1764 }
1765
1766 return 0;
1767 }
1768
1769 /*
1770 * Unshare the filesystem structure if it is being shared
1771 */
1772 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1773 {
1774 struct fs_struct *fs = current->fs;
1775
1776 if (!(unshare_flags & CLONE_FS) || !fs)
1777 return 0;
1778
1779 /* don't need lock here; in the worst case we'll do useless copy */
1780 if (fs->users == 1)
1781 return 0;
1782
1783 *new_fsp = copy_fs_struct(fs);
1784 if (!*new_fsp)
1785 return -ENOMEM;
1786
1787 return 0;
1788 }
1789
1790 /*
1791 * Unshare file descriptor table if it is being shared
1792 */
1793 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1794 {
1795 struct files_struct *fd = current->files;
1796 int error = 0;
1797
1798 if ((unshare_flags & CLONE_FILES) &&
1799 (fd && atomic_read(&fd->count) > 1)) {
1800 *new_fdp = dup_fd(fd, &error);
1801 if (!*new_fdp)
1802 return error;
1803 }
1804
1805 return 0;
1806 }
1807
1808 /*
1809 * unshare allows a process to 'unshare' part of the process
1810 * context which was originally shared using clone. copy_*
1811 * functions used by do_fork() cannot be used here directly
1812 * because they modify an inactive task_struct that is being
1813 * constructed. Here we are modifying the current, active,
1814 * task_struct.
1815 */
1816 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1817 {
1818 struct fs_struct *fs, *new_fs = NULL;
1819 struct files_struct *fd, *new_fd = NULL;
1820 struct cred *new_cred = NULL;
1821 struct nsproxy *new_nsproxy = NULL;
1822 int do_sysvsem = 0;
1823 int err;
1824
1825 /*
1826 * If unsharing a user namespace must also unshare the thread.
1827 */
1828 if (unshare_flags & CLONE_NEWUSER)
1829 unshare_flags |= CLONE_THREAD | CLONE_FS;
1830 /*
1831 * If unsharing a pid namespace must also unshare the thread.
1832 */
1833 if (unshare_flags & CLONE_NEWPID)
1834 unshare_flags |= CLONE_THREAD;
1835 /*
1836 * If unsharing a thread from a thread group, must also unshare vm.
1837 */
1838 if (unshare_flags & CLONE_THREAD)
1839 unshare_flags |= CLONE_VM;
1840 /*
1841 * If unsharing vm, must also unshare signal handlers.
1842 */
1843 if (unshare_flags & CLONE_VM)
1844 unshare_flags |= CLONE_SIGHAND;
1845 /*
1846 * If unsharing namespace, must also unshare filesystem information.
1847 */
1848 if (unshare_flags & CLONE_NEWNS)
1849 unshare_flags |= CLONE_FS;
1850
1851 err = check_unshare_flags(unshare_flags);
1852 if (err)
1853 goto bad_unshare_out;
1854 /*
1855 * CLONE_NEWIPC must also detach from the undolist: after switching
1856 * to a new ipc namespace, the semaphore arrays from the old
1857 * namespace are unreachable.
1858 */
1859 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1860 do_sysvsem = 1;
1861 err = unshare_fs(unshare_flags, &new_fs);
1862 if (err)
1863 goto bad_unshare_out;
1864 err = unshare_fd(unshare_flags, &new_fd);
1865 if (err)
1866 goto bad_unshare_cleanup_fs;
1867 err = unshare_userns(unshare_flags, &new_cred);
1868 if (err)
1869 goto bad_unshare_cleanup_fd;
1870 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1871 new_cred, new_fs);
1872 if (err)
1873 goto bad_unshare_cleanup_cred;
1874
1875 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1876 if (do_sysvsem) {
1877 /*
1878 * CLONE_SYSVSEM is equivalent to sys_exit().
1879 */
1880 exit_sem(current);
1881 }
1882
1883 if (new_nsproxy)
1884 switch_task_namespaces(current, new_nsproxy);
1885
1886 task_lock(current);
1887
1888 if (new_fs) {
1889 fs = current->fs;
1890 spin_lock(&fs->lock);
1891 current->fs = new_fs;
1892 if (--fs->users)
1893 new_fs = NULL;
1894 else
1895 new_fs = fs;
1896 spin_unlock(&fs->lock);
1897 }
1898
1899 if (new_fd) {
1900 fd = current->files;
1901 current->files = new_fd;
1902 new_fd = fd;
1903 }
1904
1905 task_unlock(current);
1906
1907 if (new_cred) {
1908 /* Install the new user namespace */
1909 commit_creds(new_cred);
1910 new_cred = NULL;
1911 }
1912 }
1913
1914 bad_unshare_cleanup_cred:
1915 if (new_cred)
1916 put_cred(new_cred);
1917 bad_unshare_cleanup_fd:
1918 if (new_fd)
1919 put_files_struct(new_fd);
1920
1921 bad_unshare_cleanup_fs:
1922 if (new_fs)
1923 free_fs_struct(new_fs);
1924
1925 bad_unshare_out:
1926 return err;
1927 }
1928
1929 /*
1930 * Helper to unshare the files of the current task.
1931 * We don't want to expose copy_files internals to
1932 * the exec layer of the kernel.
1933 */
1934
1935 int unshare_files(struct files_struct **displaced)
1936 {
1937 struct task_struct *task = current;
1938 struct files_struct *copy = NULL;
1939 int error;
1940
1941 error = unshare_fd(CLONE_FILES, &copy);
1942 if (error || !copy) {
1943 *displaced = NULL;
1944 return error;
1945 }
1946 *displaced = task->files;
1947 task_lock(task);
1948 task->files = copy;
1949 task_unlock(task);
1950 return 0;
1951 }