unshare: Unsharing a thread does not require unsharing a vm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88 * Protected counters by write_lock_irq(&tasklist_lock)
89 */
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
92
93 int max_threads; /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109 int cpu;
110 int total = 0;
111
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
114
115 return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
145 */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
149 {
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
152
153 return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
165 {
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171 kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 struct zone *zone = page_zone(virt_to_page(ti));
204
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
239
240 security_task_free(tsk);
241 exit_creds(tsk);
242 delayacct_tsk_free(tsk);
243 put_signal_struct(tsk->signal);
244
245 if (!profile_handoff_task(tsk))
246 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 #endif
258 /* create a slab on which task_structs can be allocated */
259 task_struct_cachep =
260 kmem_cache_create("task_struct", sizeof(struct task_struct),
261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264 /* do the arch specific task caches init */
265 arch_task_cache_init();
266
267 /*
268 * The default maximum number of threads is set to a safe
269 * value: the thread structures can take up at most half
270 * of memory.
271 */
272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274 /*
275 * we need to allow at least 20 threads to boot a system
276 */
277 if (max_threads < 20)
278 max_threads = 20;
279
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 struct task_struct *src)
288 {
289 *dst = *src;
290 return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 struct task_struct *tsk;
296 struct thread_info *ti;
297 unsigned long *stackend;
298 int node = tsk_fork_get_node(orig);
299 int err;
300
301 tsk = alloc_task_struct_node(node);
302 if (!tsk)
303 return NULL;
304
305 ti = alloc_thread_info_node(tsk, node);
306 if (!ti)
307 goto free_tsk;
308
309 err = arch_dup_task_struct(tsk, orig);
310 if (err)
311 goto free_ti;
312
313 tsk->stack = ti;
314
315 setup_thread_stack(tsk, orig);
316 clear_user_return_notifier(tsk);
317 clear_tsk_need_resched(tsk);
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 tsk->stack_canary = get_random_int();
323 #endif
324
325 /*
326 * One for us, one for whoever does the "release_task()" (usually
327 * parent)
328 */
329 atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 tsk->btrace_seq = 0;
332 #endif
333 tsk->splice_pipe = NULL;
334 tsk->task_frag.page = NULL;
335
336 account_kernel_stack(ti, 1);
337
338 return tsk;
339
340 free_ti:
341 free_thread_info(ti);
342 free_tsk:
343 free_task_struct(tsk);
344 return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
354 struct mempolicy *pol;
355
356 uprobe_start_dup_mmap();
357 down_write(&oldmm->mmap_sem);
358 flush_cache_dup_mm(oldmm);
359 uprobe_dup_mmap(oldmm, mm);
360 /*
361 * Not linked in yet - no deadlock potential:
362 */
363 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364
365 mm->locked_vm = 0;
366 mm->mmap = NULL;
367 mm->mmap_cache = NULL;
368 mm->free_area_cache = oldmm->mmap_base;
369 mm->cached_hole_size = ~0UL;
370 mm->map_count = 0;
371 cpumask_clear(mm_cpumask(mm));
372 mm->mm_rb = RB_ROOT;
373 rb_link = &mm->mm_rb.rb_node;
374 rb_parent = NULL;
375 pprev = &mm->mmap;
376 retval = ksm_fork(mm, oldmm);
377 if (retval)
378 goto out;
379 retval = khugepaged_fork(mm, oldmm);
380 if (retval)
381 goto out;
382
383 prev = NULL;
384 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
385 struct file *file;
386
387 if (mpnt->vm_flags & VM_DONTCOPY) {
388 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
389 -vma_pages(mpnt));
390 continue;
391 }
392 charge = 0;
393 if (mpnt->vm_flags & VM_ACCOUNT) {
394 unsigned long len = vma_pages(mpnt);
395
396 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
397 goto fail_nomem;
398 charge = len;
399 }
400 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
401 if (!tmp)
402 goto fail_nomem;
403 *tmp = *mpnt;
404 INIT_LIST_HEAD(&tmp->anon_vma_chain);
405 pol = mpol_dup(vma_policy(mpnt));
406 retval = PTR_ERR(pol);
407 if (IS_ERR(pol))
408 goto fail_nomem_policy;
409 vma_set_policy(tmp, pol);
410 tmp->vm_mm = mm;
411 if (anon_vma_fork(tmp, mpnt))
412 goto fail_nomem_anon_vma_fork;
413 tmp->vm_flags &= ~VM_LOCKED;
414 tmp->vm_next = tmp->vm_prev = NULL;
415 file = tmp->vm_file;
416 if (file) {
417 struct inode *inode = file_inode(file);
418 struct address_space *mapping = file->f_mapping;
419
420 get_file(file);
421 if (tmp->vm_flags & VM_DENYWRITE)
422 atomic_dec(&inode->i_writecount);
423 mutex_lock(&mapping->i_mmap_mutex);
424 if (tmp->vm_flags & VM_SHARED)
425 mapping->i_mmap_writable++;
426 flush_dcache_mmap_lock(mapping);
427 /* insert tmp into the share list, just after mpnt */
428 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
429 vma_nonlinear_insert(tmp,
430 &mapping->i_mmap_nonlinear);
431 else
432 vma_interval_tree_insert_after(tmp, mpnt,
433 &mapping->i_mmap);
434 flush_dcache_mmap_unlock(mapping);
435 mutex_unlock(&mapping->i_mmap_mutex);
436 }
437
438 /*
439 * Clear hugetlb-related page reserves for children. This only
440 * affects MAP_PRIVATE mappings. Faults generated by the child
441 * are not guaranteed to succeed, even if read-only
442 */
443 if (is_vm_hugetlb_page(tmp))
444 reset_vma_resv_huge_pages(tmp);
445
446 /*
447 * Link in the new vma and copy the page table entries.
448 */
449 *pprev = tmp;
450 pprev = &tmp->vm_next;
451 tmp->vm_prev = prev;
452 prev = tmp;
453
454 __vma_link_rb(mm, tmp, rb_link, rb_parent);
455 rb_link = &tmp->vm_rb.rb_right;
456 rb_parent = &tmp->vm_rb;
457
458 mm->map_count++;
459 retval = copy_page_range(mm, oldmm, mpnt);
460
461 if (tmp->vm_ops && tmp->vm_ops->open)
462 tmp->vm_ops->open(tmp);
463
464 if (retval)
465 goto out;
466 }
467 /* a new mm has just been created */
468 arch_dup_mmap(oldmm, mm);
469 retval = 0;
470 out:
471 up_write(&mm->mmap_sem);
472 flush_tlb_mm(oldmm);
473 up_write(&oldmm->mmap_sem);
474 uprobe_end_dup_mmap();
475 return retval;
476 fail_nomem_anon_vma_fork:
477 mpol_put(pol);
478 fail_nomem_policy:
479 kmem_cache_free(vm_area_cachep, tmp);
480 fail_nomem:
481 retval = -ENOMEM;
482 vm_unacct_memory(charge);
483 goto out;
484 }
485
486 static inline int mm_alloc_pgd(struct mm_struct *mm)
487 {
488 mm->pgd = pgd_alloc(mm);
489 if (unlikely(!mm->pgd))
490 return -ENOMEM;
491 return 0;
492 }
493
494 static inline void mm_free_pgd(struct mm_struct *mm)
495 {
496 pgd_free(mm, mm->pgd);
497 }
498 #else
499 #define dup_mmap(mm, oldmm) (0)
500 #define mm_alloc_pgd(mm) (0)
501 #define mm_free_pgd(mm)
502 #endif /* CONFIG_MMU */
503
504 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
505
506 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
507 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
508
509 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
510
511 static int __init coredump_filter_setup(char *s)
512 {
513 default_dump_filter =
514 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
515 MMF_DUMP_FILTER_MASK;
516 return 1;
517 }
518
519 __setup("coredump_filter=", coredump_filter_setup);
520
521 #include <linux/init_task.h>
522
523 static void mm_init_aio(struct mm_struct *mm)
524 {
525 #ifdef CONFIG_AIO
526 spin_lock_init(&mm->ioctx_lock);
527 INIT_HLIST_HEAD(&mm->ioctx_list);
528 #endif
529 }
530
531 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
532 {
533 atomic_set(&mm->mm_users, 1);
534 atomic_set(&mm->mm_count, 1);
535 init_rwsem(&mm->mmap_sem);
536 INIT_LIST_HEAD(&mm->mmlist);
537 mm->flags = (current->mm) ?
538 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
539 mm->core_state = NULL;
540 mm->nr_ptes = 0;
541 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
542 spin_lock_init(&mm->page_table_lock);
543 mm->free_area_cache = TASK_UNMAPPED_BASE;
544 mm->cached_hole_size = ~0UL;
545 mm_init_aio(mm);
546 mm_init_owner(mm, p);
547 clear_tlb_flush_pending(mm);
548
549 if (likely(!mm_alloc_pgd(mm))) {
550 mm->def_flags = 0;
551 mmu_notifier_mm_init(mm);
552 return mm;
553 }
554
555 free_mm(mm);
556 return NULL;
557 }
558
559 static void check_mm(struct mm_struct *mm)
560 {
561 int i;
562
563 for (i = 0; i < NR_MM_COUNTERS; i++) {
564 long x = atomic_long_read(&mm->rss_stat.count[i]);
565
566 if (unlikely(x))
567 printk(KERN_ALERT "BUG: Bad rss-counter state "
568 "mm:%p idx:%d val:%ld\n", mm, i, x);
569 }
570
571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
572 VM_BUG_ON(mm->pmd_huge_pte);
573 #endif
574 }
575
576 /*
577 * Allocate and initialize an mm_struct.
578 */
579 struct mm_struct *mm_alloc(void)
580 {
581 struct mm_struct *mm;
582
583 mm = allocate_mm();
584 if (!mm)
585 return NULL;
586
587 memset(mm, 0, sizeof(*mm));
588 mm_init_cpumask(mm);
589 return mm_init(mm, current);
590 }
591
592 /*
593 * Called when the last reference to the mm
594 * is dropped: either by a lazy thread or by
595 * mmput. Free the page directory and the mm.
596 */
597 void __mmdrop(struct mm_struct *mm)
598 {
599 BUG_ON(mm == &init_mm);
600 mm_free_pgd(mm);
601 destroy_context(mm);
602 mmu_notifier_mm_destroy(mm);
603 check_mm(mm);
604 free_mm(mm);
605 }
606 EXPORT_SYMBOL_GPL(__mmdrop);
607
608 /*
609 * Decrement the use count and release all resources for an mm.
610 */
611 void mmput(struct mm_struct *mm)
612 {
613 might_sleep();
614
615 if (atomic_dec_and_test(&mm->mm_users)) {
616 uprobe_clear_state(mm);
617 exit_aio(mm);
618 ksm_exit(mm);
619 khugepaged_exit(mm); /* must run before exit_mmap */
620 exit_mmap(mm);
621 set_mm_exe_file(mm, NULL);
622 if (!list_empty(&mm->mmlist)) {
623 spin_lock(&mmlist_lock);
624 list_del(&mm->mmlist);
625 spin_unlock(&mmlist_lock);
626 }
627 if (mm->binfmt)
628 module_put(mm->binfmt->module);
629 mmdrop(mm);
630 }
631 }
632 EXPORT_SYMBOL_GPL(mmput);
633
634 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
635 {
636 if (new_exe_file)
637 get_file(new_exe_file);
638 if (mm->exe_file)
639 fput(mm->exe_file);
640 mm->exe_file = new_exe_file;
641 }
642
643 struct file *get_mm_exe_file(struct mm_struct *mm)
644 {
645 struct file *exe_file;
646
647 /* We need mmap_sem to protect against races with removal of exe_file */
648 down_read(&mm->mmap_sem);
649 exe_file = mm->exe_file;
650 if (exe_file)
651 get_file(exe_file);
652 up_read(&mm->mmap_sem);
653 return exe_file;
654 }
655
656 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
657 {
658 /* It's safe to write the exe_file pointer without exe_file_lock because
659 * this is called during fork when the task is not yet in /proc */
660 newmm->exe_file = get_mm_exe_file(oldmm);
661 }
662
663 /**
664 * get_task_mm - acquire a reference to the task's mm
665 *
666 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
667 * this kernel workthread has transiently adopted a user mm with use_mm,
668 * to do its AIO) is not set and if so returns a reference to it, after
669 * bumping up the use count. User must release the mm via mmput()
670 * after use. Typically used by /proc and ptrace.
671 */
672 struct mm_struct *get_task_mm(struct task_struct *task)
673 {
674 struct mm_struct *mm;
675
676 task_lock(task);
677 mm = task->mm;
678 if (mm) {
679 if (task->flags & PF_KTHREAD)
680 mm = NULL;
681 else
682 atomic_inc(&mm->mm_users);
683 }
684 task_unlock(task);
685 return mm;
686 }
687 EXPORT_SYMBOL_GPL(get_task_mm);
688
689 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
690 {
691 struct mm_struct *mm;
692 int err;
693
694 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
695 if (err)
696 return ERR_PTR(err);
697
698 mm = get_task_mm(task);
699 if (mm && mm != current->mm &&
700 !ptrace_may_access(task, mode)) {
701 mmput(mm);
702 mm = ERR_PTR(-EACCES);
703 }
704 mutex_unlock(&task->signal->cred_guard_mutex);
705
706 return mm;
707 }
708
709 static void complete_vfork_done(struct task_struct *tsk)
710 {
711 struct completion *vfork;
712
713 task_lock(tsk);
714 vfork = tsk->vfork_done;
715 if (likely(vfork)) {
716 tsk->vfork_done = NULL;
717 complete(vfork);
718 }
719 task_unlock(tsk);
720 }
721
722 static int wait_for_vfork_done(struct task_struct *child,
723 struct completion *vfork)
724 {
725 int killed;
726
727 freezer_do_not_count();
728 killed = wait_for_completion_killable(vfork);
729 freezer_count();
730
731 if (killed) {
732 task_lock(child);
733 child->vfork_done = NULL;
734 task_unlock(child);
735 }
736
737 put_task_struct(child);
738 return killed;
739 }
740
741 /* Please note the differences between mmput and mm_release.
742 * mmput is called whenever we stop holding onto a mm_struct,
743 * error success whatever.
744 *
745 * mm_release is called after a mm_struct has been removed
746 * from the current process.
747 *
748 * This difference is important for error handling, when we
749 * only half set up a mm_struct for a new process and need to restore
750 * the old one. Because we mmput the new mm_struct before
751 * restoring the old one. . .
752 * Eric Biederman 10 January 1998
753 */
754 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
755 {
756 /* Get rid of any futexes when releasing the mm */
757 #ifdef CONFIG_FUTEX
758 if (unlikely(tsk->robust_list)) {
759 exit_robust_list(tsk);
760 tsk->robust_list = NULL;
761 }
762 #ifdef CONFIG_COMPAT
763 if (unlikely(tsk->compat_robust_list)) {
764 compat_exit_robust_list(tsk);
765 tsk->compat_robust_list = NULL;
766 }
767 #endif
768 if (unlikely(!list_empty(&tsk->pi_state_list)))
769 exit_pi_state_list(tsk);
770 #endif
771
772 uprobe_free_utask(tsk);
773
774 /* Get rid of any cached register state */
775 deactivate_mm(tsk, mm);
776
777 /*
778 * If we're exiting normally, clear a user-space tid field if
779 * requested. We leave this alone when dying by signal, to leave
780 * the value intact in a core dump, and to save the unnecessary
781 * trouble, say, a killed vfork parent shouldn't touch this mm.
782 * Userland only wants this done for a sys_exit.
783 */
784 if (tsk->clear_child_tid) {
785 if (!(tsk->flags & PF_SIGNALED) &&
786 atomic_read(&mm->mm_users) > 1) {
787 /*
788 * We don't check the error code - if userspace has
789 * not set up a proper pointer then tough luck.
790 */
791 put_user(0, tsk->clear_child_tid);
792 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
793 1, NULL, NULL, 0);
794 }
795 tsk->clear_child_tid = NULL;
796 }
797
798 /*
799 * All done, finally we can wake up parent and return this mm to him.
800 * Also kthread_stop() uses this completion for synchronization.
801 */
802 if (tsk->vfork_done)
803 complete_vfork_done(tsk);
804 }
805
806 /*
807 * Allocate a new mm structure and copy contents from the
808 * mm structure of the passed in task structure.
809 */
810 struct mm_struct *dup_mm(struct task_struct *tsk)
811 {
812 struct mm_struct *mm, *oldmm = current->mm;
813 int err;
814
815 if (!oldmm)
816 return NULL;
817
818 mm = allocate_mm();
819 if (!mm)
820 goto fail_nomem;
821
822 memcpy(mm, oldmm, sizeof(*mm));
823 mm_init_cpumask(mm);
824
825 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
826 mm->pmd_huge_pte = NULL;
827 #endif
828 #ifdef CONFIG_NUMA_BALANCING
829 mm->first_nid = NUMA_PTE_SCAN_INIT;
830 #endif
831 if (!mm_init(mm, tsk))
832 goto fail_nomem;
833
834 if (init_new_context(tsk, mm))
835 goto fail_nocontext;
836
837 dup_mm_exe_file(oldmm, mm);
838
839 err = dup_mmap(mm, oldmm);
840 if (err)
841 goto free_pt;
842
843 mm->hiwater_rss = get_mm_rss(mm);
844 mm->hiwater_vm = mm->total_vm;
845
846 if (mm->binfmt && !try_module_get(mm->binfmt->module))
847 goto free_pt;
848
849 return mm;
850
851 free_pt:
852 /* don't put binfmt in mmput, we haven't got module yet */
853 mm->binfmt = NULL;
854 mmput(mm);
855
856 fail_nomem:
857 return NULL;
858
859 fail_nocontext:
860 /*
861 * If init_new_context() failed, we cannot use mmput() to free the mm
862 * because it calls destroy_context()
863 */
864 mm_free_pgd(mm);
865 free_mm(mm);
866 return NULL;
867 }
868
869 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
870 {
871 struct mm_struct *mm, *oldmm;
872 int retval;
873
874 tsk->min_flt = tsk->maj_flt = 0;
875 tsk->nvcsw = tsk->nivcsw = 0;
876 #ifdef CONFIG_DETECT_HUNG_TASK
877 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
878 #endif
879
880 tsk->mm = NULL;
881 tsk->active_mm = NULL;
882
883 /*
884 * Are we cloning a kernel thread?
885 *
886 * We need to steal a active VM for that..
887 */
888 oldmm = current->mm;
889 if (!oldmm)
890 return 0;
891
892 if (clone_flags & CLONE_VM) {
893 atomic_inc(&oldmm->mm_users);
894 mm = oldmm;
895 goto good_mm;
896 }
897
898 retval = -ENOMEM;
899 mm = dup_mm(tsk);
900 if (!mm)
901 goto fail_nomem;
902
903 good_mm:
904 tsk->mm = mm;
905 tsk->active_mm = mm;
906 return 0;
907
908 fail_nomem:
909 return retval;
910 }
911
912 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
913 {
914 struct fs_struct *fs = current->fs;
915 if (clone_flags & CLONE_FS) {
916 /* tsk->fs is already what we want */
917 spin_lock(&fs->lock);
918 if (fs->in_exec) {
919 spin_unlock(&fs->lock);
920 return -EAGAIN;
921 }
922 fs->users++;
923 spin_unlock(&fs->lock);
924 return 0;
925 }
926 tsk->fs = copy_fs_struct(fs);
927 if (!tsk->fs)
928 return -ENOMEM;
929 return 0;
930 }
931
932 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
933 {
934 struct files_struct *oldf, *newf;
935 int error = 0;
936
937 /*
938 * A background process may not have any files ...
939 */
940 oldf = current->files;
941 if (!oldf)
942 goto out;
943
944 if (clone_flags & CLONE_FILES) {
945 atomic_inc(&oldf->count);
946 goto out;
947 }
948
949 newf = dup_fd(oldf, &error);
950 if (!newf)
951 goto out;
952
953 tsk->files = newf;
954 error = 0;
955 out:
956 return error;
957 }
958
959 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
960 {
961 #ifdef CONFIG_BLOCK
962 struct io_context *ioc = current->io_context;
963 struct io_context *new_ioc;
964
965 if (!ioc)
966 return 0;
967 /*
968 * Share io context with parent, if CLONE_IO is set
969 */
970 if (clone_flags & CLONE_IO) {
971 ioc_task_link(ioc);
972 tsk->io_context = ioc;
973 } else if (ioprio_valid(ioc->ioprio)) {
974 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
975 if (unlikely(!new_ioc))
976 return -ENOMEM;
977
978 new_ioc->ioprio = ioc->ioprio;
979 put_io_context(new_ioc);
980 }
981 #endif
982 return 0;
983 }
984
985 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
986 {
987 struct sighand_struct *sig;
988
989 if (clone_flags & CLONE_SIGHAND) {
990 atomic_inc(&current->sighand->count);
991 return 0;
992 }
993 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
994 rcu_assign_pointer(tsk->sighand, sig);
995 if (!sig)
996 return -ENOMEM;
997 atomic_set(&sig->count, 1);
998 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
999 return 0;
1000 }
1001
1002 void __cleanup_sighand(struct sighand_struct *sighand)
1003 {
1004 if (atomic_dec_and_test(&sighand->count)) {
1005 signalfd_cleanup(sighand);
1006 kmem_cache_free(sighand_cachep, sighand);
1007 }
1008 }
1009
1010
1011 /*
1012 * Initialize POSIX timer handling for a thread group.
1013 */
1014 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1015 {
1016 unsigned long cpu_limit;
1017
1018 /* Thread group counters. */
1019 thread_group_cputime_init(sig);
1020
1021 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1022 if (cpu_limit != RLIM_INFINITY) {
1023 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1024 sig->cputimer.running = 1;
1025 }
1026
1027 /* The timer lists. */
1028 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1029 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1030 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1031 }
1032
1033 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1034 {
1035 struct signal_struct *sig;
1036
1037 if (clone_flags & CLONE_THREAD)
1038 return 0;
1039
1040 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1041 tsk->signal = sig;
1042 if (!sig)
1043 return -ENOMEM;
1044
1045 sig->nr_threads = 1;
1046 atomic_set(&sig->live, 1);
1047 atomic_set(&sig->sigcnt, 1);
1048
1049 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1050 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1051 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1052
1053 init_waitqueue_head(&sig->wait_chldexit);
1054 sig->curr_target = tsk;
1055 init_sigpending(&sig->shared_pending);
1056 INIT_LIST_HEAD(&sig->posix_timers);
1057
1058 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1059 sig->real_timer.function = it_real_fn;
1060
1061 task_lock(current->group_leader);
1062 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1063 task_unlock(current->group_leader);
1064
1065 posix_cpu_timers_init_group(sig);
1066
1067 tty_audit_fork(sig);
1068 sched_autogroup_fork(sig);
1069
1070 #ifdef CONFIG_CGROUPS
1071 init_rwsem(&sig->group_rwsem);
1072 #endif
1073
1074 sig->oom_score_adj = current->signal->oom_score_adj;
1075 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1076
1077 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1078 current->signal->is_child_subreaper;
1079
1080 mutex_init(&sig->cred_guard_mutex);
1081
1082 return 0;
1083 }
1084
1085 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1086 {
1087 unsigned long new_flags = p->flags;
1088
1089 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1090 new_flags |= PF_FORKNOEXEC;
1091 p->flags = new_flags;
1092 }
1093
1094 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1095 {
1096 current->clear_child_tid = tidptr;
1097
1098 return task_pid_vnr(current);
1099 }
1100
1101 static void rt_mutex_init_task(struct task_struct *p)
1102 {
1103 raw_spin_lock_init(&p->pi_lock);
1104 #ifdef CONFIG_RT_MUTEXES
1105 plist_head_init(&p->pi_waiters);
1106 p->pi_blocked_on = NULL;
1107 #endif
1108 }
1109
1110 #ifdef CONFIG_MM_OWNER
1111 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1112 {
1113 mm->owner = p;
1114 }
1115 #endif /* CONFIG_MM_OWNER */
1116
1117 /*
1118 * Initialize POSIX timer handling for a single task.
1119 */
1120 static void posix_cpu_timers_init(struct task_struct *tsk)
1121 {
1122 tsk->cputime_expires.prof_exp = 0;
1123 tsk->cputime_expires.virt_exp = 0;
1124 tsk->cputime_expires.sched_exp = 0;
1125 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1126 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1127 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1128 }
1129
1130 /*
1131 * This creates a new process as a copy of the old one,
1132 * but does not actually start it yet.
1133 *
1134 * It copies the registers, and all the appropriate
1135 * parts of the process environment (as per the clone
1136 * flags). The actual kick-off is left to the caller.
1137 */
1138 static struct task_struct *copy_process(unsigned long clone_flags,
1139 unsigned long stack_start,
1140 unsigned long stack_size,
1141 int __user *child_tidptr,
1142 struct pid *pid,
1143 int trace)
1144 {
1145 int retval;
1146 struct task_struct *p;
1147
1148 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1149 return ERR_PTR(-EINVAL);
1150
1151 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1152 return ERR_PTR(-EINVAL);
1153
1154 /*
1155 * Thread groups must share signals as well, and detached threads
1156 * can only be started up within the thread group.
1157 */
1158 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1159 return ERR_PTR(-EINVAL);
1160
1161 /*
1162 * Shared signal handlers imply shared VM. By way of the above,
1163 * thread groups also imply shared VM. Blocking this case allows
1164 * for various simplifications in other code.
1165 */
1166 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1167 return ERR_PTR(-EINVAL);
1168
1169 /*
1170 * Siblings of global init remain as zombies on exit since they are
1171 * not reaped by their parent (swapper). To solve this and to avoid
1172 * multi-rooted process trees, prevent global and container-inits
1173 * from creating siblings.
1174 */
1175 if ((clone_flags & CLONE_PARENT) &&
1176 current->signal->flags & SIGNAL_UNKILLABLE)
1177 return ERR_PTR(-EINVAL);
1178
1179 /*
1180 * If the new process will be in a different pid namespace don't
1181 * allow it to share a thread group or signal handlers with the
1182 * forking task.
1183 */
1184 if ((clone_flags & (CLONE_SIGHAND | CLONE_NEWPID)) &&
1185 (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1186 return ERR_PTR(-EINVAL);
1187
1188 retval = security_task_create(clone_flags);
1189 if (retval)
1190 goto fork_out;
1191
1192 retval = -ENOMEM;
1193 p = dup_task_struct(current);
1194 if (!p)
1195 goto fork_out;
1196
1197 ftrace_graph_init_task(p);
1198 get_seccomp_filter(p);
1199
1200 rt_mutex_init_task(p);
1201
1202 #ifdef CONFIG_PROVE_LOCKING
1203 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1204 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1205 #endif
1206 retval = -EAGAIN;
1207 if (atomic_read(&p->real_cred->user->processes) >=
1208 task_rlimit(p, RLIMIT_NPROC)) {
1209 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1210 p->real_cred->user != INIT_USER)
1211 goto bad_fork_free;
1212 }
1213 current->flags &= ~PF_NPROC_EXCEEDED;
1214
1215 retval = copy_creds(p, clone_flags);
1216 if (retval < 0)
1217 goto bad_fork_free;
1218
1219 /*
1220 * If multiple threads are within copy_process(), then this check
1221 * triggers too late. This doesn't hurt, the check is only there
1222 * to stop root fork bombs.
1223 */
1224 retval = -EAGAIN;
1225 if (nr_threads >= max_threads)
1226 goto bad_fork_cleanup_count;
1227
1228 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1229 goto bad_fork_cleanup_count;
1230
1231 p->did_exec = 0;
1232 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1233 copy_flags(clone_flags, p);
1234 INIT_LIST_HEAD(&p->children);
1235 INIT_LIST_HEAD(&p->sibling);
1236 rcu_copy_process(p);
1237 p->vfork_done = NULL;
1238 spin_lock_init(&p->alloc_lock);
1239
1240 init_sigpending(&p->pending);
1241
1242 p->utime = p->stime = p->gtime = 0;
1243 p->utimescaled = p->stimescaled = 0;
1244 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1245 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1246 #endif
1247 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1248 seqlock_init(&p->vtime_seqlock);
1249 p->vtime_snap = 0;
1250 p->vtime_snap_whence = VTIME_SLEEPING;
1251 #endif
1252
1253 #if defined(SPLIT_RSS_COUNTING)
1254 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1255 #endif
1256
1257 p->default_timer_slack_ns = current->timer_slack_ns;
1258
1259 task_io_accounting_init(&p->ioac);
1260 acct_clear_integrals(p);
1261
1262 posix_cpu_timers_init(p);
1263
1264 do_posix_clock_monotonic_gettime(&p->start_time);
1265 p->real_start_time = p->start_time;
1266 monotonic_to_bootbased(&p->real_start_time);
1267 p->io_context = NULL;
1268 p->audit_context = NULL;
1269 if (clone_flags & CLONE_THREAD)
1270 threadgroup_change_begin(current);
1271 cgroup_fork(p);
1272 #ifdef CONFIG_NUMA
1273 p->mempolicy = mpol_dup(p->mempolicy);
1274 if (IS_ERR(p->mempolicy)) {
1275 retval = PTR_ERR(p->mempolicy);
1276 p->mempolicy = NULL;
1277 goto bad_fork_cleanup_cgroup;
1278 }
1279 mpol_fix_fork_child_flag(p);
1280 #endif
1281 #ifdef CONFIG_CPUSETS
1282 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1283 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1284 seqcount_init(&p->mems_allowed_seq);
1285 #endif
1286 #ifdef CONFIG_TRACE_IRQFLAGS
1287 p->irq_events = 0;
1288 p->hardirqs_enabled = 0;
1289 p->hardirq_enable_ip = 0;
1290 p->hardirq_enable_event = 0;
1291 p->hardirq_disable_ip = _THIS_IP_;
1292 p->hardirq_disable_event = 0;
1293 p->softirqs_enabled = 1;
1294 p->softirq_enable_ip = _THIS_IP_;
1295 p->softirq_enable_event = 0;
1296 p->softirq_disable_ip = 0;
1297 p->softirq_disable_event = 0;
1298 p->hardirq_context = 0;
1299 p->softirq_context = 0;
1300 #endif
1301 #ifdef CONFIG_LOCKDEP
1302 p->lockdep_depth = 0; /* no locks held yet */
1303 p->curr_chain_key = 0;
1304 p->lockdep_recursion = 0;
1305 #endif
1306
1307 #ifdef CONFIG_DEBUG_MUTEXES
1308 p->blocked_on = NULL; /* not blocked yet */
1309 #endif
1310 #ifdef CONFIG_MEMCG
1311 p->memcg_batch.do_batch = 0;
1312 p->memcg_batch.memcg = NULL;
1313 #endif
1314 #ifdef CONFIG_BCACHE
1315 p->sequential_io = 0;
1316 p->sequential_io_avg = 0;
1317 #endif
1318
1319 /* Perform scheduler related setup. Assign this task to a CPU. */
1320 sched_fork(p);
1321
1322 retval = perf_event_init_task(p);
1323 if (retval)
1324 goto bad_fork_cleanup_policy;
1325 retval = audit_alloc(p);
1326 if (retval)
1327 goto bad_fork_cleanup_perf;
1328 /* copy all the process information */
1329 retval = copy_semundo(clone_flags, p);
1330 if (retval)
1331 goto bad_fork_cleanup_audit;
1332 retval = copy_files(clone_flags, p);
1333 if (retval)
1334 goto bad_fork_cleanup_semundo;
1335 retval = copy_fs(clone_flags, p);
1336 if (retval)
1337 goto bad_fork_cleanup_files;
1338 retval = copy_sighand(clone_flags, p);
1339 if (retval)
1340 goto bad_fork_cleanup_fs;
1341 retval = copy_signal(clone_flags, p);
1342 if (retval)
1343 goto bad_fork_cleanup_sighand;
1344 retval = copy_mm(clone_flags, p);
1345 if (retval)
1346 goto bad_fork_cleanup_signal;
1347 retval = copy_namespaces(clone_flags, p);
1348 if (retval)
1349 goto bad_fork_cleanup_mm;
1350 retval = copy_io(clone_flags, p);
1351 if (retval)
1352 goto bad_fork_cleanup_namespaces;
1353 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1354 if (retval)
1355 goto bad_fork_cleanup_io;
1356
1357 if (pid != &init_struct_pid) {
1358 retval = -ENOMEM;
1359 pid = alloc_pid(p->nsproxy->pid_ns);
1360 if (!pid)
1361 goto bad_fork_cleanup_io;
1362 }
1363
1364 p->pid = pid_nr(pid);
1365 p->tgid = p->pid;
1366 if (clone_flags & CLONE_THREAD)
1367 p->tgid = current->tgid;
1368
1369 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1370 /*
1371 * Clear TID on mm_release()?
1372 */
1373 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1374 #ifdef CONFIG_BLOCK
1375 p->plug = NULL;
1376 #endif
1377 #ifdef CONFIG_FUTEX
1378 p->robust_list = NULL;
1379 #ifdef CONFIG_COMPAT
1380 p->compat_robust_list = NULL;
1381 #endif
1382 INIT_LIST_HEAD(&p->pi_state_list);
1383 p->pi_state_cache = NULL;
1384 #endif
1385 uprobe_copy_process(p);
1386 /*
1387 * sigaltstack should be cleared when sharing the same VM
1388 */
1389 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1390 p->sas_ss_sp = p->sas_ss_size = 0;
1391
1392 /*
1393 * Syscall tracing and stepping should be turned off in the
1394 * child regardless of CLONE_PTRACE.
1395 */
1396 user_disable_single_step(p);
1397 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1398 #ifdef TIF_SYSCALL_EMU
1399 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1400 #endif
1401 clear_all_latency_tracing(p);
1402
1403 /* ok, now we should be set up.. */
1404 if (clone_flags & CLONE_THREAD)
1405 p->exit_signal = -1;
1406 else if (clone_flags & CLONE_PARENT)
1407 p->exit_signal = current->group_leader->exit_signal;
1408 else
1409 p->exit_signal = (clone_flags & CSIGNAL);
1410
1411 p->pdeath_signal = 0;
1412 p->exit_state = 0;
1413
1414 p->nr_dirtied = 0;
1415 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1416 p->dirty_paused_when = 0;
1417
1418 /*
1419 * Ok, make it visible to the rest of the system.
1420 * We dont wake it up yet.
1421 */
1422 p->group_leader = p;
1423 INIT_LIST_HEAD(&p->thread_group);
1424 p->task_works = NULL;
1425
1426 /* Need tasklist lock for parent etc handling! */
1427 write_lock_irq(&tasklist_lock);
1428
1429 /* CLONE_PARENT re-uses the old parent */
1430 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1431 p->real_parent = current->real_parent;
1432 p->parent_exec_id = current->parent_exec_id;
1433 } else {
1434 p->real_parent = current;
1435 p->parent_exec_id = current->self_exec_id;
1436 }
1437
1438 spin_lock(&current->sighand->siglock);
1439
1440 /*
1441 * Process group and session signals need to be delivered to just the
1442 * parent before the fork or both the parent and the child after the
1443 * fork. Restart if a signal comes in before we add the new process to
1444 * it's process group.
1445 * A fatal signal pending means that current will exit, so the new
1446 * thread can't slip out of an OOM kill (or normal SIGKILL).
1447 */
1448 recalc_sigpending();
1449 if (signal_pending(current)) {
1450 spin_unlock(&current->sighand->siglock);
1451 write_unlock_irq(&tasklist_lock);
1452 retval = -ERESTARTNOINTR;
1453 goto bad_fork_free_pid;
1454 }
1455
1456 if (likely(p->pid)) {
1457 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1458
1459 if (thread_group_leader(p)) {
1460 if (is_child_reaper(pid)) {
1461 ns_of_pid(pid)->child_reaper = p;
1462 p->signal->flags |= SIGNAL_UNKILLABLE;
1463 }
1464
1465 p->signal->leader_pid = pid;
1466 p->signal->tty = tty_kref_get(current->signal->tty);
1467 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1468 attach_pid(p, PIDTYPE_SID, task_session(current));
1469 list_add_tail(&p->sibling, &p->real_parent->children);
1470 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1471 __this_cpu_inc(process_counts);
1472 } else {
1473 current->signal->nr_threads++;
1474 atomic_inc(&current->signal->live);
1475 atomic_inc(&current->signal->sigcnt);
1476 p->group_leader = current->group_leader;
1477 list_add_tail_rcu(&p->thread_group,
1478 &p->group_leader->thread_group);
1479 list_add_tail_rcu(&p->thread_node,
1480 &p->signal->thread_head);
1481 }
1482 attach_pid(p, PIDTYPE_PID, pid);
1483 nr_threads++;
1484 }
1485
1486 total_forks++;
1487 spin_unlock(&current->sighand->siglock);
1488 syscall_tracepoint_update(p);
1489 write_unlock_irq(&tasklist_lock);
1490
1491 proc_fork_connector(p);
1492 cgroup_post_fork(p);
1493 if (clone_flags & CLONE_THREAD)
1494 threadgroup_change_end(current);
1495 perf_event_fork(p);
1496
1497 trace_task_newtask(p, clone_flags);
1498
1499 return p;
1500
1501 bad_fork_free_pid:
1502 if (pid != &init_struct_pid)
1503 free_pid(pid);
1504 bad_fork_cleanup_io:
1505 if (p->io_context)
1506 exit_io_context(p);
1507 bad_fork_cleanup_namespaces:
1508 exit_task_namespaces(p);
1509 bad_fork_cleanup_mm:
1510 if (p->mm)
1511 mmput(p->mm);
1512 bad_fork_cleanup_signal:
1513 if (!(clone_flags & CLONE_THREAD))
1514 free_signal_struct(p->signal);
1515 bad_fork_cleanup_sighand:
1516 __cleanup_sighand(p->sighand);
1517 bad_fork_cleanup_fs:
1518 exit_fs(p); /* blocking */
1519 bad_fork_cleanup_files:
1520 exit_files(p); /* blocking */
1521 bad_fork_cleanup_semundo:
1522 exit_sem(p);
1523 bad_fork_cleanup_audit:
1524 audit_free(p);
1525 bad_fork_cleanup_perf:
1526 perf_event_free_task(p);
1527 bad_fork_cleanup_policy:
1528 #ifdef CONFIG_NUMA
1529 mpol_put(p->mempolicy);
1530 bad_fork_cleanup_cgroup:
1531 #endif
1532 if (clone_flags & CLONE_THREAD)
1533 threadgroup_change_end(current);
1534 cgroup_exit(p, 0);
1535 delayacct_tsk_free(p);
1536 module_put(task_thread_info(p)->exec_domain->module);
1537 bad_fork_cleanup_count:
1538 atomic_dec(&p->cred->user->processes);
1539 exit_creds(p);
1540 bad_fork_free:
1541 free_task(p);
1542 fork_out:
1543 return ERR_PTR(retval);
1544 }
1545
1546 static inline void init_idle_pids(struct pid_link *links)
1547 {
1548 enum pid_type type;
1549
1550 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1551 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1552 links[type].pid = &init_struct_pid;
1553 }
1554 }
1555
1556 struct task_struct * __cpuinit fork_idle(int cpu)
1557 {
1558 struct task_struct *task;
1559 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1560 if (!IS_ERR(task)) {
1561 init_idle_pids(task->pids);
1562 init_idle(task, cpu);
1563 }
1564
1565 return task;
1566 }
1567
1568 /*
1569 * Ok, this is the main fork-routine.
1570 *
1571 * It copies the process, and if successful kick-starts
1572 * it and waits for it to finish using the VM if required.
1573 */
1574 long do_fork(unsigned long clone_flags,
1575 unsigned long stack_start,
1576 unsigned long stack_size,
1577 int __user *parent_tidptr,
1578 int __user *child_tidptr)
1579 {
1580 struct task_struct *p;
1581 int trace = 0;
1582 long nr;
1583
1584 /*
1585 * Do some preliminary argument and permissions checking before we
1586 * actually start allocating stuff
1587 */
1588 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1589 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1590 return -EINVAL;
1591 }
1592
1593 /*
1594 * Determine whether and which event to report to ptracer. When
1595 * called from kernel_thread or CLONE_UNTRACED is explicitly
1596 * requested, no event is reported; otherwise, report if the event
1597 * for the type of forking is enabled.
1598 */
1599 if (!(clone_flags & CLONE_UNTRACED)) {
1600 if (clone_flags & CLONE_VFORK)
1601 trace = PTRACE_EVENT_VFORK;
1602 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1603 trace = PTRACE_EVENT_CLONE;
1604 else
1605 trace = PTRACE_EVENT_FORK;
1606
1607 if (likely(!ptrace_event_enabled(current, trace)))
1608 trace = 0;
1609 }
1610
1611 p = copy_process(clone_flags, stack_start, stack_size,
1612 child_tidptr, NULL, trace);
1613 /*
1614 * Do this prior waking up the new thread - the thread pointer
1615 * might get invalid after that point, if the thread exits quickly.
1616 */
1617 if (!IS_ERR(p)) {
1618 struct completion vfork;
1619 struct pid *pid;
1620
1621 trace_sched_process_fork(current, p);
1622
1623 pid = get_task_pid(p, PIDTYPE_PID);
1624 nr = pid_vnr(pid);
1625
1626 if (clone_flags & CLONE_PARENT_SETTID)
1627 put_user(nr, parent_tidptr);
1628
1629 if (clone_flags & CLONE_VFORK) {
1630 p->vfork_done = &vfork;
1631 init_completion(&vfork);
1632 get_task_struct(p);
1633 }
1634
1635 wake_up_new_task(p);
1636
1637 /* forking complete and child started to run, tell ptracer */
1638 if (unlikely(trace))
1639 ptrace_event_pid(trace, pid);
1640
1641 if (clone_flags & CLONE_VFORK) {
1642 if (!wait_for_vfork_done(p, &vfork))
1643 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1644 }
1645
1646 put_pid(pid);
1647 } else {
1648 nr = PTR_ERR(p);
1649 }
1650 return nr;
1651 }
1652
1653 /*
1654 * Create a kernel thread.
1655 */
1656 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1657 {
1658 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1659 (unsigned long)arg, NULL, NULL);
1660 }
1661
1662 #ifdef __ARCH_WANT_SYS_FORK
1663 SYSCALL_DEFINE0(fork)
1664 {
1665 #ifdef CONFIG_MMU
1666 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1667 #else
1668 /* can not support in nommu mode */
1669 return(-EINVAL);
1670 #endif
1671 }
1672 #endif
1673
1674 #ifdef __ARCH_WANT_SYS_VFORK
1675 SYSCALL_DEFINE0(vfork)
1676 {
1677 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1678 0, NULL, NULL);
1679 }
1680 #endif
1681
1682 #ifdef __ARCH_WANT_SYS_CLONE
1683 #ifdef CONFIG_CLONE_BACKWARDS
1684 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1685 int __user *, parent_tidptr,
1686 int, tls_val,
1687 int __user *, child_tidptr)
1688 #elif defined(CONFIG_CLONE_BACKWARDS2)
1689 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1690 int __user *, parent_tidptr,
1691 int __user *, child_tidptr,
1692 int, tls_val)
1693 #elif defined(CONFIG_CLONE_BACKWARDS3)
1694 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1695 int, stack_size,
1696 int __user *, parent_tidptr,
1697 int __user *, child_tidptr,
1698 int, tls_val)
1699 #else
1700 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1701 int __user *, parent_tidptr,
1702 int __user *, child_tidptr,
1703 int, tls_val)
1704 #endif
1705 {
1706 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1707 }
1708 #endif
1709
1710 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1711 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1712 #endif
1713
1714 static void sighand_ctor(void *data)
1715 {
1716 struct sighand_struct *sighand = data;
1717
1718 spin_lock_init(&sighand->siglock);
1719 init_waitqueue_head(&sighand->signalfd_wqh);
1720 }
1721
1722 void __init proc_caches_init(void)
1723 {
1724 sighand_cachep = kmem_cache_create("sighand_cache",
1725 sizeof(struct sighand_struct), 0,
1726 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1727 SLAB_NOTRACK, sighand_ctor);
1728 signal_cachep = kmem_cache_create("signal_cache",
1729 sizeof(struct signal_struct), 0,
1730 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1731 files_cachep = kmem_cache_create("files_cache",
1732 sizeof(struct files_struct), 0,
1733 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1734 fs_cachep = kmem_cache_create("fs_cache",
1735 sizeof(struct fs_struct), 0,
1736 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1737 /*
1738 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1739 * whole struct cpumask for the OFFSTACK case. We could change
1740 * this to *only* allocate as much of it as required by the
1741 * maximum number of CPU's we can ever have. The cpumask_allocation
1742 * is at the end of the structure, exactly for that reason.
1743 */
1744 mm_cachep = kmem_cache_create("mm_struct",
1745 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1746 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1747 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1748 mmap_init();
1749 nsproxy_cache_init();
1750 }
1751
1752 /*
1753 * Check constraints on flags passed to the unshare system call.
1754 */
1755 static int check_unshare_flags(unsigned long unshare_flags)
1756 {
1757 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1758 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1759 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1760 CLONE_NEWUSER|CLONE_NEWPID))
1761 return -EINVAL;
1762 /*
1763 * Not implemented, but pretend it works if there is nothing
1764 * to unshare. Note that unsharing the address space or the
1765 * signal handlers also need to unshare the signal queues (aka
1766 * CLONE_THREAD).
1767 */
1768 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1769 if (!thread_group_empty(current))
1770 return -EINVAL;
1771 }
1772 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1773 if (atomic_read(&current->sighand->count) > 1)
1774 return -EINVAL;
1775 }
1776 if (unshare_flags & CLONE_VM) {
1777 if (!current_is_single_threaded())
1778 return -EINVAL;
1779 }
1780
1781 return 0;
1782 }
1783
1784 /*
1785 * Unshare the filesystem structure if it is being shared
1786 */
1787 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1788 {
1789 struct fs_struct *fs = current->fs;
1790
1791 if (!(unshare_flags & CLONE_FS) || !fs)
1792 return 0;
1793
1794 /* don't need lock here; in the worst case we'll do useless copy */
1795 if (fs->users == 1)
1796 return 0;
1797
1798 *new_fsp = copy_fs_struct(fs);
1799 if (!*new_fsp)
1800 return -ENOMEM;
1801
1802 return 0;
1803 }
1804
1805 /*
1806 * Unshare file descriptor table if it is being shared
1807 */
1808 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1809 {
1810 struct files_struct *fd = current->files;
1811 int error = 0;
1812
1813 if ((unshare_flags & CLONE_FILES) &&
1814 (fd && atomic_read(&fd->count) > 1)) {
1815 *new_fdp = dup_fd(fd, &error);
1816 if (!*new_fdp)
1817 return error;
1818 }
1819
1820 return 0;
1821 }
1822
1823 /*
1824 * unshare allows a process to 'unshare' part of the process
1825 * context which was originally shared using clone. copy_*
1826 * functions used by do_fork() cannot be used here directly
1827 * because they modify an inactive task_struct that is being
1828 * constructed. Here we are modifying the current, active,
1829 * task_struct.
1830 */
1831 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1832 {
1833 struct fs_struct *fs, *new_fs = NULL;
1834 struct files_struct *fd, *new_fd = NULL;
1835 struct cred *new_cred = NULL;
1836 struct nsproxy *new_nsproxy = NULL;
1837 int do_sysvsem = 0;
1838 int err;
1839
1840 /*
1841 * If unsharing a user namespace must also unshare the thread.
1842 */
1843 if (unshare_flags & CLONE_NEWUSER)
1844 unshare_flags |= CLONE_THREAD | CLONE_FS;
1845 /*
1846 * If unsharing a pid namespace must also unshare the thread.
1847 */
1848 if (unshare_flags & CLONE_NEWPID)
1849 unshare_flags |= CLONE_THREAD;
1850 /*
1851 * If unsharing vm, must also unshare signal handlers.
1852 */
1853 if (unshare_flags & CLONE_VM)
1854 unshare_flags |= CLONE_SIGHAND;
1855 /*
1856 * If unsharing a signal handlers, must also unshare the signal queues.
1857 */
1858 if (unshare_flags & CLONE_SIGHAND)
1859 unshare_flags |= CLONE_THREAD;
1860 /*
1861 * If unsharing namespace, must also unshare filesystem information.
1862 */
1863 if (unshare_flags & CLONE_NEWNS)
1864 unshare_flags |= CLONE_FS;
1865
1866 err = check_unshare_flags(unshare_flags);
1867 if (err)
1868 goto bad_unshare_out;
1869 /*
1870 * CLONE_NEWIPC must also detach from the undolist: after switching
1871 * to a new ipc namespace, the semaphore arrays from the old
1872 * namespace are unreachable.
1873 */
1874 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1875 do_sysvsem = 1;
1876 err = unshare_fs(unshare_flags, &new_fs);
1877 if (err)
1878 goto bad_unshare_out;
1879 err = unshare_fd(unshare_flags, &new_fd);
1880 if (err)
1881 goto bad_unshare_cleanup_fs;
1882 err = unshare_userns(unshare_flags, &new_cred);
1883 if (err)
1884 goto bad_unshare_cleanup_fd;
1885 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1886 new_cred, new_fs);
1887 if (err)
1888 goto bad_unshare_cleanup_cred;
1889
1890 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1891 if (do_sysvsem) {
1892 /*
1893 * CLONE_SYSVSEM is equivalent to sys_exit().
1894 */
1895 exit_sem(current);
1896 }
1897
1898 if (new_nsproxy)
1899 switch_task_namespaces(current, new_nsproxy);
1900
1901 task_lock(current);
1902
1903 if (new_fs) {
1904 fs = current->fs;
1905 spin_lock(&fs->lock);
1906 current->fs = new_fs;
1907 if (--fs->users)
1908 new_fs = NULL;
1909 else
1910 new_fs = fs;
1911 spin_unlock(&fs->lock);
1912 }
1913
1914 if (new_fd) {
1915 fd = current->files;
1916 current->files = new_fd;
1917 new_fd = fd;
1918 }
1919
1920 task_unlock(current);
1921
1922 if (new_cred) {
1923 /* Install the new user namespace */
1924 commit_creds(new_cred);
1925 new_cred = NULL;
1926 }
1927 }
1928
1929 bad_unshare_cleanup_cred:
1930 if (new_cred)
1931 put_cred(new_cred);
1932 bad_unshare_cleanup_fd:
1933 if (new_fd)
1934 put_files_struct(new_fd);
1935
1936 bad_unshare_cleanup_fs:
1937 if (new_fs)
1938 free_fs_struct(new_fs);
1939
1940 bad_unshare_out:
1941 return err;
1942 }
1943
1944 /*
1945 * Helper to unshare the files of the current task.
1946 * We don't want to expose copy_files internals to
1947 * the exec layer of the kernel.
1948 */
1949
1950 int unshare_files(struct files_struct **displaced)
1951 {
1952 struct task_struct *task = current;
1953 struct files_struct *copy = NULL;
1954 int error;
1955
1956 error = unshare_fd(CLONE_FILES, &copy);
1957 if (error || !copy) {
1958 *displaced = NULL;
1959 return error;
1960 }
1961 *displaced = task->files;
1962 task_lock(task);
1963 task->files = copy;
1964 task_unlock(task);
1965 return 0;
1966 }